WO2017143620A1 - 矫形器、用于该矫形器的形状记忆高分子材料的制造方法 - Google Patents

矫形器、用于该矫形器的形状记忆高分子材料的制造方法 Download PDF

Info

Publication number
WO2017143620A1
WO2017143620A1 PCT/CN2016/074834 CN2016074834W WO2017143620A1 WO 2017143620 A1 WO2017143620 A1 WO 2017143620A1 CN 2016074834 W CN2016074834 W CN 2016074834W WO 2017143620 A1 WO2017143620 A1 WO 2017143620A1
Authority
WO
WIPO (PCT)
Prior art keywords
orthosis
shape memory
polymer material
acrylate
memory polymer
Prior art date
Application number
PCT/CN2016/074834
Other languages
English (en)
French (fr)
Inventor
胡金莲
陈诚
Original Assignee
香港纺织及成衣研发中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 香港纺织及成衣研发中心有限公司 filed Critical 香港纺织及成衣研发中心有限公司
Publication of WO2017143620A1 publication Critical patent/WO2017143620A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • C08F283/065Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals on to unsaturated polyethers, polyoxymethylenes or polyacetals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/048Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F20/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/01Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals

Definitions

  • the present invention relates to the field of shape memory materials, and in particular, to an orthosis, a method for manufacturing a shape memory polymer material for the orthosis; and the shape memory polymer material of the present invention is a polyacrylate type shape memory polymer. material.
  • Shape memory materials have been widely known for more than half a century. Among them, temperature-sensitive shape memory polymers are particularly attractive due to their high strain recovery capability (up to 800%), which is much more resilient than shape memory alloys. The highest strain recovery capability of less than 8% can be achieved. In addition to its high strain recovery capability, shape memory polymers have the advantage of being lightweight, superior in processability and low in cost relative to shape memory alloys.
  • the stationary phase is responsible for the initial shape of the memory polymer and is achieved by chemical or physical cross-linking (eg, chain entanglement and crystallization);
  • the reversible phase determines the fixation and change of the new shape of the polymer, the initial shape of the polymer is new
  • the shape change can be achieved by an external force at a glass transition temperature or a melting temperature. Since most polymers have a glass transition temperature (T g), melting temperature (T m) or said two temperatures, these polymers can be incorporated into a shape memory polymer crosslinking mechanism (e.g., chemically crosslinked). Diversity found by polyurethane shape memory polymers and shape memory polymer can achieve a wide range of T g of
  • Orthotics are external fixation devices for the human torso and extremities used to treat, ameliorate or compensate for body malformations and dysfunction caused by bone, muscle and nervous system disorders, with stroke, cerebral palsy and fractures, etc. Patients with the disease can get rehabilitation through the orthosis.
  • the orthosis provides a continuous rehabilitation process for the patient, but in this process, waste of resources is a very prominent problem.
  • a patient with a foot drop wears a series of treatments during the rehabilitation process.
  • the traditional orthosis is mainly composed of polymethyl methacrylate or Epoxy resin synthetic thermosetting plastics.
  • the present invention is directed to the problem that the existing orthosis cannot adapt to the shape of the patient's correction site at different correction stages, resulting in a large amount of inter-turn and money, and an orthosis is proposed, and the shape memory for the orthosis is high.
  • a method of manufacturing molecular materials is provided.
  • the present invention provides a method of manufacturing a shape memory polymer material for an orthosis, comprising the following steps:
  • the acrylate monomer, the polyol acrylate, and the catalyst are mixed and cross-linked to form a shape memory polymer material; wherein, the acrylate monomer is 50-150 parts by weight; the polyol acrylate 10-30 parts by weight; catalyst 0.01-0.2 parts by weight.
  • the acrylate monomer includes one of methyl methacrylate, ethyl methacrylate, propyl methacrylate, and butyl methacrylate. Or a variety.
  • the polyol acrylates include polyethylene glycol acrylate having a number average molecular weight of 200 to 2000, and a number average molecular weight of 200 to 4000. Tetrahydrofuran diol acrylate, polycaprolactone diol acrylate having a number average molecular weight of 650-8000, and one of polyethylene adipate glycol acrylate having a number average molecular weight of 1000-4000 Or a variety.
  • the catalyst includes an azo compound initiator and/or a peroxide initiator.
  • the present invention also proposes an orthosis made of the shape memory polymer material as described above.
  • the present invention uses a temperature-sensitive shape memory polymer material to make an orthosis, so that the orthosis can be softened at a specific temperature, and then shaped into a new shape, and if the new shape is not suitable, the orthosis can be restored. To the original shape, this reduces the waste of resources due to the re-preparation of the orthosis.
  • the transition temperature refers to the glass transition temperature or melting temperature of the substance.
  • the present invention proposes an orthosis, which has high shape memory for the orthosis.
  • the method for manufacturing a molecular material wherein, the shape memory polymer material comprises a stationary phase and a reversible phase; and the reversible phase generally exhibits an amorphous rubber state and a glass transition, or a melt and crystal transition in the shape memory process.
  • the stationary phase can be a network of molecularly entangled interpenetration of shape memory polymer materials.
  • the orthosis has an initial shape, and in order to make the internal stress of the orthosis small, injection molding or casting molding is usually adopted; specifically, the liquid shape memory polymer material is injected into the cavity of the molding machine, and then passed through Cooling, solidifying the shape memory polymer material in the cavity to form an orthosis; here, the temperature of the liquid shape memory polymer material is higher than the transition temperature of the stationary phase; in addition, the initial shape of the orthosis and the shape of the cavity Adapted.
  • the orthosis When the orthosis is heated above the transition temperature of the reversible phase and below the transition temperature of the stationary phase, the orthosis may be deformed by an external force to have a new shape; the orthosis is maintained in the orthosis maintaining a new shape of the orthosis The temperature is lowered below the transition temperature of the reversible phase to harden the new shape of the orthosis.
  • the new shape here is determined by the shape of the different correction stages of the patient's correction site.
  • the orthosis has a tendency to recover from the initial shape when the orthosis is reheated above the transition temperature of the reversible phase and below the transition temperature of the stationary phase. In this way, the orthosis can be adapted to the shape of the patient's correction site at different correction stages, and the operation of the orthosis is more convenient and the treatment effect is better.
  • the transition temperature means a glass transition temperature or a melting temperature.
  • the method of manufacturing the shape memory polymer material of the present invention comprises the following steps: [0020] The acrylate monomer, the polyol acrylate, and the catalyst are mixed and cross-linked to form a shape memory polymer material; wherein, the acrylate monomer is 50-150 parts by weight; the polyol acrylate 10-30 parts by weight; catalyst 0.01-0.2 parts by weight.
  • the acrylate monomer is a reversible phase component of the shape memory polymer material
  • the polyol acrylate is a stationary phase component of the shape memory polymer material, and is used in the crosslinking reaction.
  • As a crosslinking agent As a crosslinking agent.
  • the acrylate monomer includes one or more of methyl methacrylate, ethyl methacrylate, propyl methacrylate, and butyl methacrylate.
  • the polyol acrylates include polyethylene glycol acrylate having a number average molecular weight of 200 to 2,000, polytetrahydrofuran diol acrylate having a number average molecular weight of 200 to 4000, and a number average relative molecular weight of 650 to 80.
  • the catalyst comprises an azo compound hair agent and/or a peroxide agent.
  • the actual manufacturing process of the shape memory polymer material comprises: 1) mixing the acrylate monomer and the polyol acrylate into the reactor; 2) adding a catalyst to the reactor to make the acrylate The monomer and the polyol acrylate continue to react to obtain a shape memory polymer material.
  • the shape memory polymer material is a polyacrylate polymer.
  • the crosslinking reaction in the reactor can be carried out uniformly by the addition of the catalyst.
  • the shape memory polymer material described above is formed into an orthosis having an initial shape by a certain molding process.
  • the initial shape of the orthosis conforms to the healthy shape of the patient's correction site.
  • the shape memory polymer material has a reversible phase and a stationary phase, and the stationary phase is a chemical crosslinking point in which a acrylate monomer and a polyol acrylate are cross-linked, and the reversible phase has a transition temperature of 45° C. to 75° C.
  • the molecular chain of the reversible phase has sufficient energy for the conformational change, the motion of the segment is intensified, and the macroscopic representation is that the melting or glass state of the crystal changes to a high elastic state.
  • the stationary phase is still in a crystalline or glassy state, and the molecules of the stationary phase are physically fixed to each other, preventing the molecular chain from slipping, resisting deformation, and the interaction between the reversible phase and the stationary phase, inhibiting the plastic movement of the chain. Produces a shape memory effect.
  • the reversible phase can produce high elastic deformation under the action of external force, and the crucible stationary phase plays a supporting role under chemical crosslinking.
  • the homogenization of the high-elastic deformation in the reversible phase makes the temperature of the shape memory polymer material
  • T d degree is reduced below T d
  • the high elastic deformation of the reversible phase can be fixed, the motion of the segment is restricted, and the reversible phase is returned to the glass or crystal state, thereby fixing the shape.
  • the temperature of the shape memory polymer material rises again above T d , the reversible phase will again be in a flexible state; under the action of entropy elasticity, the orthosis made of the shape memory polymer material will be restored to the original shape. .
  • the above-mentioned reversible phase transition temperature is a wide range within a wide range due to the reversible phase glass transition temperature or melting temperature, and there is no particular limitation.
  • the acrylate monomer and the polyol acrylate are put into a reactor for mixing; then, a catalyst is added to the reactor, so that the acrylate monomer and the polyol acrylate continue to react, thereby obtaining a shape memory.
  • a catalyst is added to the reactor, so that the acrylate monomer and the polyol acrylate continue to react, thereby obtaining a shape memory.
  • the acrylate monomer is 100 parts by weight
  • the polyol acrylate is 20 parts by weight
  • the catalyst is 0.02 parts by weight.
  • the acrylate monomer includes one or more of methyl methacrylate, ethyl methacrylate, propyl methacrylate, and butyl methacrylate.
  • the polyol acrylates include polyethylene glycol acrylate having a number average molecular weight of 200 to 2000, polytetrahydrofuran diol acrylate having a number average molecular weight of 200 to 4000, and a number average relative molecular weight of 650-80.
  • the catalyst is an azo compound initiator.
  • the acrylate monomer and the polyol acrylate are put into a reactor for mixing; then, a catalyst is added to the reactor, so that the acrylate monomer and the polyol acrylate continue to react, thereby obtaining a shape memory.
  • a catalyst is added to the reactor, so that the acrylate monomer and the polyol acrylate continue to react, thereby obtaining a shape memory.
  • the acrylate monomer is 90 parts by weight
  • the polyol acrylate is 30 parts by weight
  • the catalyst is 0.02 parts by weight.
  • the acrylate monomer includes methyl methacrylate, ethyl methacrylate, propyl methacrylate, and One or more of butyl methacrylate.
  • the polyol acrylates include polyethylene glycol acrylate having a number average molecular weight of 200-2000, polytetrahydrofuran diol acrylate having a number average molecular weight of 200-4000, and a number average relative molecular weight of 650-80.
  • the catalyst is a peroxide initiator.
  • the acrylate monomer and the polyol acrylate are put into a reactor for mixing; then, a catalyst is added to the reactor, so that the acrylate monomer and the polyol acrylate continue to react, thereby obtaining a shape memory.
  • a catalyst is added to the reactor, so that the acrylate monomer and the polyol acrylate continue to react, thereby obtaining a shape memory.
  • the acrylate monomer is 80 parts by weight
  • the polyol acrylate is 40 parts by weight
  • the catalyst is 0.02 parts by weight.
  • the acrylate monomer includes one or more of methyl methacrylate, ethyl methacrylate, propyl methacrylate, and butyl methacrylate.
  • Polyol acrylates include polyethylene glycol acrylate having a number average molecular weight of 200-2000, polytetrahydrofuran diol acrylate having a number average molecular weight of 200-4000, and a number average molecular weight of 650-80. Polycaprolactone diol acrylate of 00 and one or more of polyethylene adipate glycol acrylate having a number average molecular weight of from 1000 to 4000.
  • the catalyst is a mixture of an azo compound and a peroxide initiator.
  • the shape memory polymer material of Example 1, the shape memory polymer material of Example 2, and the shape memory polymer material of Example 3 were subjected to a deformation recovery rate test.
  • the specific test method is as follows: The shape memory polymer material of the above embodiment is formed into a strip having a length of 4 cm (L 0 ), a width of 0.5 cm, and a thickness of 0.1 cm by a solution film forming method. Then, the strip was heated to 80 ° C to make it elastic, and then an external force was applied to stretch the strip to 8 cm (L , ). While maintaining the strip-like external force load, the temperature of the strip is lowered to room temperature, and the strip is still stretched without an external load.
  • the strip was again heated to 80 ° C, the strip was shrunk, the length L 2 was measured, and the shape memory polymer material of each example was calculated based on the length L 2 .
  • Deformation recovery rate (L! - L 2 ) / L 0 .
  • the shape memory polymer material of Example 1 was tested to have a strain recovery rate of 70%, and the shape memory polymer material of Example 2 had a strain recovery rate of 80%.
  • the shape memory polymer material of Example 3 was tested.
  • the deformation recovery rate is 95 ⁇ 3 ⁇ 4.
  • the present invention uses a temperature-sensitive shape memory polymer material to make an orthosis, so that the orthosis can be softened at a specific temperature, and then shaped into a new shape, and if the new shape is not suitable, the orthosis can be restored. To the original shape, this reduces the waste of resources due to the re-preparation of the orthosis.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Vascular Medicine (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明提出了一种矫形器、用于该矫形器的形状记忆高分子材料的制造方法;所述形状记忆高分子材料的制造方法包括以下步骤:将丙烯酸酯类单体、多元醇丙烯酸酯类和催化剂混合并发生交联反应,从而生成形状记忆高分子材料;其中,丙烯酸酯类单体50-150重量份;多元醇丙烯酸酯类10-30重量份;催化剂0.01-0.2重量份。本发明采用温度敏感型形状记忆高分子材料来制作矫形器,使矫形器可以在特定的温度下软化,然后被塑造成新形状,若得到的新形状不合适,矫形器也能恢复至初始形状,这样就减少了由于重新制备矫形器而带来的资源浪费。

Description

发明名称:矫形器、 用于该矫形器的形状记忆高分子材料的制造方 法
技术领域
[0001] 本发明涉及形状记忆材料领域, 尤其涉及一种矫形器、 用于该矫形器的形状记 忆高分子材料的制造方法; 本发明的形状记忆高分子材料为聚丙烯酸酯类形状 记忆高分子材料。
背景技术
[0002] 历经半个多世纪, 形状记忆材料已被广为知晓。 其中, 温度感应型形状记忆聚 合物尤为引人关注, 这是由它们的高应变恢复能力 (最高达 800%) 引起的, 这 种温度感应型形状记忆聚合物的应变恢复能力远大于形状记忆合金所能达到的 低于 8%的最高应变恢复能力。 除了具有很高的应变恢复能力外, 形状记忆聚合 物相对于形状记忆合金还具有重量轻、 加工性优越和成本低的优点。
[0003] 对于形状记忆聚合物, 必须具有固定相和可逆相。 其中, 固定相负责记忆聚 合物的初始形状并由化学交联或物理交联 (例如链缠结和结晶) 实现; 可逆相 决定聚合物新形状的固定和变化, 该聚合物的初始形状向新形状的转变可以在 玻璃化转变温度或熔化温度吋通过外力实现。 因为大多数聚合物具有玻璃化转 变温度 (T g) 、 熔化温度 (T m) 或上述两种温度, 所以这些聚合物可以通过引 入交联机制 (例如化学交联) 转变成形状记忆聚合物。 通过所发现形状记忆聚 合物的多样性和聚氨酯形状记忆聚合物所能达到的宽范围的 T g
(从- 30°C到十 70°C) , 例证了经分子设计而得到的形状记忆聚合物的形状记忆 特性的巨大空间。
[0004] 矫形器是用于人体躯干和四肢的体外固定装置, 用于治疗、 改善或代偿由骨 骼、 肌肉和神经系统病变所致的机体畸形和功能障碍, 患有中风、 脑瘫和骨折 等疾病的病人可以通过矫形器得到康复治疗。
[0005] 矫形器为患者提供了一个持续的康复治疗过程, 然而在该过程中, 资源浪费 是一个非常突出的问题, 例如足下垂患者在康复治疗过程中, 会穿戴一系列不 同形状的足下垂矫形器, 从而为足部病变肌肉提供支撑, 随着康复治疗的进行 , 患者踝关节的背曲角会发生变化; 而传统的矫形器主要是由聚甲基丙烯酸甲 酯或环氧树脂合成的热固性塑料, 该类矫形器形状一旦固定, 将很难发生改变 , 为适应不同的角度而提供更好的康复治疗效果, 矫形器会定期更换, 其更换 周期一般为一个月, 但是矫形器的制造过程会耗费大量的吋间和金钱。
技术问题
[0006] 本发明针对现有矫形器无法适应患者矫正部位在不同矫正阶段的形状, 而导致 耗费大量的吋间和金钱的问题, 提出了一种矫形器、 用于该矫形器的形状记忆 高分子材料的制造方法。
问题的解决方案
技术解决方案
[0007] 本发明提出了一种用于矫形器的形状记忆高分子材料的制造方法, 包括以下步 骤:
[0008] 将丙烯酸酯类单体、 多元醇丙烯酸酯类和催化剂混合并发生交联反应, 从而生 成形状记忆高分子材料; 其中, 丙烯酸酯类单体 50-150重量份; 多元醇丙烯酸酯 类 10-30重量份; 催化剂 0.01-0.2重量份。
[0009] 本发明上述的形状记忆高分子材料的制造方法中, 丙烯酸酯类单体包括甲基丙 烯酸甲酯、 甲基丙烯酸乙酯、 甲基丙烯酸丙酯以及甲基丙烯酸丁酯中的一种或 多种。
[0010] 本发明上述的形状记忆高分子材料的制造方法中, 多元醇丙烯酸酯类包括数均 相对分子质量为 200-2000的聚乙二醇丙烯酸酯、 数均相对分子量为 200-4000的聚 四氢呋喃二醇丙烯酸酯、 数均相对分子量为 650-8000的聚己内酯二醇丙烯酸酯以 及数均相对分子质量为 1000-4000的聚己二酸乙二醇酯二醇丙烯酸酯中的一种或 多种。
[0011] 本发明上述的形状记忆高分子材料的制造方法中, 催化剂包括偶氮化合物引发 剂和 /或过氧化物引发剂。
[0012] 本发明还提出了一种矫形器, 由如上所述的形状记忆高分子材料制成。
发明的有益效果 有益效果
[0013] 本发明采用温度敏感型形状记忆高分子材料来制作矫形器, 使矫形器可以在特 定的温度下软化, 然后被塑造成新形状, 若得到的新形状不合适, 矫形器也能 恢复至初始形状, 这样就减少了由于重新制备矫形器而带来的资源浪费。
本发明的实施方式
[0014] 为了方便说明, 下面对术语"转变温度"做出定义:
[0015] 转变温度是指物质的玻璃化转变温度或熔化温度。
[0016] 针对现有矫形器形状一旦固定, 将很难发生改变, 不能适应于患者矫正部位在 不同矫正阶段的形状的问题, 本发明提出一种矫形器、 用于该矫形器的形状记 忆高分子材料的制造方法; 其中, 形状记忆高分子材料包括固定相和可逆相; 可逆相在形状记忆过程中通常表现为无定形的橡胶态与玻璃态的转变, 或者熔 融体与晶体的转变。 固定相可以是形状记忆高分子材料的分子缠绕互穿的网络
, 具有物理交联点或化学交联点。
[0017] 进一步地, 矫形器具有初始形状, 为了使矫形器内应力小, 通常采用注塑成型 或浇注成型; 具体来说, 是将液态形状记忆高分子材料注入成型机的型腔中, 然后通过冷却, 使型腔中的形状记忆高分子材料凝固, 制成矫形器; 这里, 液 态形状记忆高分子材料的温度要高于固定相的转变温度; 此外, 矫形器的初始 形状与型腔的形状相适应。
[0018] 当矫形器被加热到可逆相的转变温度以上且处于固定相的转变温度以下吋, 可 以通过外力驱使矫形器变形, 从而具有新形状; 在矫形器保持新形状的同吋将 矫形器的温度降低到可逆相的转变温度以下使矫形器的新形状硬化固定。 这里 的新形状根据患者矫正部位的不同矫正阶段的形状确定。 在当矫形器重新被加 热到可逆相的转变温度以上且处于固定相的转变温度以下吋, 矫形器具有向初 始形状恢复的趋势。 这样, 矫形器就能适应于患者矫正部位在不同矫正阶段的 形状, 矫形器的操作也更方便、 治疗效果更好。 这里, 转变温度是指玻璃化转 变温度或熔化温度。
[0019] 具体地, 本发明的形状记忆高分子材料的制造方法包括以下步骤: [0020] 将丙烯酸酯类单体、 多元醇丙烯酸酯类和催化剂混合并发生交联反应, 从而生 成形状记忆高分子材料; 其中, 丙烯酸酯类单体 50-150重量份; 多元醇丙烯酸酯 类 10-30重量份; 催化剂 0.01-0.2重量份。
[0021] 在该制造方法中, 丙烯酸酯类单体为形状记忆高分子材料的可逆相组分, 多元 醇丙烯酸酯类为形状记忆高分子材料的固定相组分, 并在交联反应中用作交联 剂。
[0022] 进一步地, 丙烯酸酯类单体包括甲基丙烯酸甲酯、 甲基丙烯酸乙酯、 甲基丙烯 酸丙酯以及甲基丙烯酸丁酯中的一种或多种。
[0023] 多元醇丙烯酸酯类包括数均相对分子质量为 200-2000的聚乙二醇丙烯酸酯、 数 均相对分子量为 200-4000的聚四氢呋喃二醇丙烯酸酯、 数均相对分子量为 650-80
00的聚己内酯二醇丙烯酸酯以及数均相对分子质量为 1000-4000的聚己二酸乙二 醇酯二醇丙烯酸酯中的一种或多种。
[0024] 催化剂包括偶氮化合物弓 I发剂和 /或过氧化物弓 I发剂。
[0025] 优选地, 形状记忆高分子材料的实际制造过程包括: 1) 将丙烯酸酯类单体和 多元醇丙烯酸酯类投入反应器中混合; 2) 向反应器中加入催化剂, 使得丙烯酸 酯类单体和多元醇丙烯酸酯类继续发生反应, 从而获得具有形状记忆高分子材 料。 该形状记忆高分子材料为聚丙烯酸酯类聚合物。 通过后加入催化剂使得反 应器中的交联反应能够均匀进行。
[0026] 上述形状记忆高分子材料通过一定的成型工艺制成具有初始形状的矫形器。 该 矫形器的初始形状与患者矫正部位的健康形状相适应。 形状记忆高分子材料具 有可逆相和固定相, 固定相为丙烯酸酯类单体和多元醇丙烯酸酯类发生交联反 应的化学交联点, 可逆相具有 45°C-75°C的转变温度 T d ; 当形状记忆高分子材料 的温度高于 T d吋, 可逆相的分子链有足够的能量做构象变化, 链段运动加剧, 宏观表现为晶体的熔融或玻璃态转变为高弹态, 而固定相此吋仍然处于晶体态 或玻璃态, 固定相的分子被相互间物理作用固定, 阻止分子链产生滑移, 抵抗 形变, 可逆相与固定相之间的作用, 抑制了链的塑性移动而产生形状记忆效应 。 然后, 可逆相在外力作用下可以产生高弹性形变, 此吋固定相在化学交联作 用下起支撑作用。 在可逆相保持高弹性形变的同吋使形状记忆高分子材料的温 度降低到 T d以下吋, 可逆相的高弹性形变就能固定下来, 链段运动受限, 可逆 相重新回到玻璃态或晶体态, 从而使形状固定。 当形状记忆高分子材料的温度 重新升高到 T d以上吋, 可逆相会再次处于柔性状态; 在熵弹性的作用下, 由该 形状记忆高分子材料制成的矫形器会重新恢复到初始形状。
[0027] 上述的可逆相的转变温度由于为可逆相玻璃化转变温度或融化温度, 是在一个 较宽范围内变化, 没有特定的限制。
[0028] 为了使本发明的技术目的、 技术方案以及技术效果更为清楚, 以便于本领域技 术人员理解和实施本发明, 下面将结合具体实施例对本发明做进一步的说明。
[0029] 实施例 1
[0030] 将丙烯酸酯类单体和多元醇丙烯酸酯类投入反应器中混合; 然后向反应器中加 入催化剂, 使得丙烯酸酯类单体和多元醇丙烯酸酯类继续发生反应, 从而获得 具有形状记忆高分子材料。
[0031] 其中, 丙烯酸酯类单体为 100重量份, 多元醇丙烯酸酯类为 20重量份, 催化剂 为 0.02重量份。
[0032] 丙烯酸酯类单体包括甲基丙烯酸甲酯、 甲基丙烯酸乙酯、 甲基丙烯酸丙酯以及 甲基丙烯酸丁酯中的一种或多种。
[0033] 多元醇丙烯酸酯类包括数均相对分子质量为 200-2000的聚乙二醇丙烯酸酯、 数 均相对分子量为 200-4000的聚四氢呋喃二醇丙烯酸酯、 数均相对分子量为 650-80
00的聚己内酯二醇丙烯酸酯以及数均相对分子质量为 1000-4000的聚己二酸乙二 醇酯二醇丙烯酸酯中的一种或多种。
[0034] 催化剂为偶氮化合物引发剂。
[0035] 实施例 2
[0036] 将丙烯酸酯类单体和多元醇丙烯酸酯类投入反应器中混合; 然后向反应器中加 入催化剂, 使得丙烯酸酯类单体和多元醇丙烯酸酯类继续发生反应, 从而获得 具有形状记忆高分子材料。
[0037] 其中, 丙烯酸酯类单体为 90重量份, 多元醇丙烯酸酯类为 30重量份, 催化剂为 0.02重量份。
[0038] 丙烯酸酯类单体包括甲基丙烯酸甲酯、 甲基丙烯酸乙酯、 甲基丙烯酸丙酯以及 甲基丙烯酸丁酯中的一种或多种。
[0039] 多元醇丙烯酸酯类包括数均相对分子质量为 200-2000的聚乙二醇丙烯酸酯、 数 均相对分子量为 200-4000的聚四氢呋喃二醇丙烯酸酯、 数均相对分子量为 650-80 00的聚己内酯二醇丙烯酸酯以及数均相对分子质量为 1000-4000的聚己二酸乙二 醇酯二醇丙烯酸酯中的一种或多种。
[0040] 催化剂为过氧化物引发剂。
[0041] 实施例 3
[0042] 将丙烯酸酯类单体和多元醇丙烯酸酯类投入反应器中混合; 然后向反应器中加 入催化剂, 使得丙烯酸酯类单体和多元醇丙烯酸酯类继续发生反应, 从而获得 具有形状记忆高分子材料。
[0043] 其中, 丙烯酸酯类单体为 80重量份, 多元醇丙烯酸酯类为 40重量份, 催化剂为 0.02重量份。
[0044] 丙烯酸酯类单体包括甲基丙烯酸甲酯、 甲基丙烯酸乙酯、 甲基丙烯酸丙酯以及 甲基丙烯酸丁酯中的一种或多种。
[0045] 多元醇丙烯酸酯类包括数均相对分子质量为 200-2000的聚乙二醇丙烯酸酯、 数 均相对分子量为 200-4000的聚四氢呋喃二醇丙烯酸酯、 数均相对分子量为 650-80 00的聚己内酯二醇丙烯酸酯以及数均相对分子质量为 1000-4000的聚己二酸乙二 醇酯二醇丙烯酸酯中的一种或多种。
[0046] 催化剂为偶氮化合物弓 I发剂和过氧化物弓 I发剂的混合物。
[0047] 对实施例 1的形状记忆高分子材料、 实施例 2的形状记忆高分子材料和实施例 3 的形状记忆高分子材料进行形变回复率测试。
[0048] 具体测试方法为: 将上述实施例的形状记忆高分子材料通过溶液成膜方法分别 制成长 4cm (L 0) 、 宽 0.5cm、 厚 0.1cm的条状体。 然后将条状体升温至 80°C, 使 之呈高弹态, 然后施加外力, 将条状体的长拉伸至 8cm (L ,) 。 在保持条状体外 力负载的同吋, 将条状体的温度降低至室温, 此吋条状体在无外力负载下仍然 保持拉伸状态。 之后, 在无外力负载的情况下, 再次将条状体升温至 80°C, 此吋 条状体收缩, 测量其长度 L 2, 再根据长度 L 2计算各实施例的形状记忆高分子材 料的形变回复率 (L! - L 2)/L 0。 [0049] 经测试, 实施例 1的形状记忆高分子材料的形变回复率为 70%, 实施例 2的形状 记忆高分子材料的形变回复率为 80%, 实施例 3的形状记忆高分子材料的形变回 复率为 95<¾。
工业实用性
[0050] 本发明采用温度敏感型形状记忆高分子材料来制作矫形器, 使矫形器可以在特 定的温度下软化, 然后被塑造成新形状, 若得到的新形状不合适, 矫形器也能 恢复至初始形状, 这样就减少了由于重新制备矫形器而带来的资源浪费。

Claims

权利要求书
[权利要求 1] 一种用于矫形器的形状记忆高分子材料的制造方法, 其特征在于, 包 括以下步骤:
将丙烯酸酯类单体、 多元醇丙烯酸酯类和催化剂混合并发生交联反应
, 从而生成形状记忆高分子材料; 其中, 丙烯酸酯类单体 50-150重量 份; 多元醇丙烯酸酯类 10-30重量份; 催化剂 0.01-0.2重量份。
[权利要求 2] 根据权利要求 1所述的形状记忆高分子材料的制造方法, 其特征在于
, 丙烯酸酯类单体包括甲基丙烯酸甲酯、 甲基丙烯酸乙酯、 甲基丙烯 酸丙酯以及甲基丙烯酸丁酯中的一种或多种。
[权利要求 3] 根据权利要求 1所述的形状记忆高分子材料的制造方法, 其特征在于
, 多元醇丙烯酸酯类包括数均相对分子质量为 200-2000的聚乙二醇丙 烯酸酯、 数均相对分子量为 200-4000的聚四氢呋喃二醇丙烯酸酯、 数 均相对分子量为 650-8000的聚己内酯二醇丙烯酸酯以及数均相对分子 质量为 1000-4000的聚己二酸乙二醇酯二醇丙烯酸酯中的一种或多种
[权利要求 4] 根据权利要求 1所述的形状记忆高分子材料的制造方法, 其特征在于
, 催化剂包括偶氮化合物弓 I发剂和 /或过氧化物弓 I发剂。
[权利要求 5] —种矫形器, 其特征在于, 由如权利要求 1-4任意一项所述的形状记 忆高分子材料制成。
PCT/CN2016/074834 2016-02-24 2016-02-29 矫形器、用于该矫形器的形状记忆高分子材料的制造方法 WO2017143620A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610102267.0A CN107118310A (zh) 2016-02-24 2016-02-24 矫形器、用于该矫形器的形状记忆高分子材料的制造方法
CN201610102267.0 2016-02-24

Publications (1)

Publication Number Publication Date
WO2017143620A1 true WO2017143620A1 (zh) 2017-08-31

Family

ID=59685860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074834 WO2017143620A1 (zh) 2016-02-24 2016-02-29 矫形器、用于该矫形器的形状记忆高分子材料的制造方法

Country Status (2)

Country Link
CN (1) CN107118310A (zh)
WO (1) WO2017143620A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111479597A (zh) * 2017-10-12 2020-07-31 武汉市迅舒科技有限公司 可调节外固定支具

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110003395A (zh) * 2019-04-23 2019-07-12 深圳大学 形状记忆材料及其制备方法和应用
CN112245664B (zh) * 2020-10-16 2021-09-17 浙江大学 用于食道支架的形状记忆聚合物材料及制备、应用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003093341A1 (en) * 2002-05-02 2003-11-13 University Of Connecticut Castable shape memory polymers
US20090149617A1 (en) * 2007-11-27 2009-06-11 Keneth Allen Gall Shape memory polymer materials with controlled toughness and methods of formulating same
WO2015038940A1 (en) * 2013-09-13 2015-03-19 Abbott Medical Optics Inc. Shape memory polymer intraocular lenses
CN104592453A (zh) * 2015-01-13 2015-05-06 浙江大学 具有双向可逆形状记忆效应的聚合物及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1721450A (zh) * 2004-07-15 2006-01-18 中国科学院成都有机化学有限公司 具有二次转变温度的形状记忆聚合物及其制备方法
CN101381433A (zh) * 2007-08-13 2009-03-11 中国科学院成都有机化学有限公司 具有软/硬网络结构的形状记忆聚合物及其制备方法
CN105037702B (zh) * 2015-07-23 2017-01-04 浙江大学 基于酯交换的可塑性形状记忆聚合物的应用方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003093341A1 (en) * 2002-05-02 2003-11-13 University Of Connecticut Castable shape memory polymers
US20090149617A1 (en) * 2007-11-27 2009-06-11 Keneth Allen Gall Shape memory polymer materials with controlled toughness and methods of formulating same
WO2015038940A1 (en) * 2013-09-13 2015-03-19 Abbott Medical Optics Inc. Shape memory polymer intraocular lenses
CN104592453A (zh) * 2015-01-13 2015-05-06 浙江大学 具有双向可逆形状记忆效应的聚合物及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111479597A (zh) * 2017-10-12 2020-07-31 武汉市迅舒科技有限公司 可调节外固定支具
CN111479597B (zh) * 2017-10-12 2022-08-26 武汉市迅舒科技有限公司 可调节外固定支具

Also Published As

Publication number Publication date
CN107118310A (zh) 2017-09-01

Similar Documents

Publication Publication Date Title
Zare et al. Thermally-induced two-way shape memory polymers: Mechanisms, structures, and applications
Liu et al. Review of progress in shape-memory polymers
Hong et al. Two-way shape memory behavior of shape memory polyurethanes with a bias load
Gao et al. Reversible shape memory polymer from semicrystalline poly (ethylene-co-vinyl acetate) with dynamic covalent polymer networks
Mather et al. Shape memory polymer research
CN103992631B (zh) 具有双向形状记忆的聚合物材料及其制备方法
Hu Shape memory polymers and textiles
Chen et al. Properties and mechanism of two-way shape memory polyurethane composites
WO2017143620A1 (zh) 矫形器、用于该矫形器的形状记忆高分子材料的制造方法
Li et al. Advancing reversible shape memory by tuning the polymer network architecture
US20170210055A1 (en) Thermoset shape memory poly(urea-urethane) with tunable reshaping temperature and its applications
CN111518377B (zh) 一种生物医用形状记忆高分子材料及其制备方法
Pretsch Durability of a polymer with triple-shape properties
CN102430156A (zh) 一种具有形状记忆的医用外固定材料及其制备方法
CN103539919A (zh) 一种具有形状记忆功能的聚氨酯脲水凝胶的应用
Antony et al. Tailored poly (ethylene) glycol dimethacrylate based shape memory polymer for orthopedic applications
CN111788243A (zh) 形状记忆聚合物
Xu et al. Effect of self-nucleation and stress-induced crystallization on the tunable two-way shape-memory effect of a semicrystalline network
WO2017127506A1 (en) Stimuli-responsive liquid crystalline networks
JP2006523770A (ja) 形状記憶材料、およびこれを製造する方法
Petisco-Ferrero et al. The relevance of molecular weight in the design of amorphous biodegradable polymers with optimized shape memory effect
Cui et al. A light-responsive poly (urethane-urea) actuator with room temperature self-healing performance
CN112245664B (zh) 用于食道支架的形状记忆聚合物材料及制备、应用方法
CN113817145B (zh) 一种基于聚ε-己内酯的聚酯型生物可降解形状记忆共聚物及其制备方法
US10647812B2 (en) Shape-memory polymers and methods of making and use thereof

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16891074

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16891074

Country of ref document: EP

Kind code of ref document: A1