WO2017143590A1 - 光学浓度传感器保护罩及光学浓度测试装置 - Google Patents

光学浓度传感器保护罩及光学浓度测试装置 Download PDF

Info

Publication number
WO2017143590A1
WO2017143590A1 PCT/CN2016/074697 CN2016074697W WO2017143590A1 WO 2017143590 A1 WO2017143590 A1 WO 2017143590A1 CN 2016074697 W CN2016074697 W CN 2016074697W WO 2017143590 A1 WO2017143590 A1 WO 2017143590A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
optical density
tested
bubble
hole
Prior art date
Application number
PCT/CN2016/074697
Other languages
English (en)
French (fr)
Inventor
顾一新
Original Assignee
东莞正扬电子机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞正扬电子机械有限公司 filed Critical 东莞正扬电子机械有限公司
Priority to KR1020187027737A priority Critical patent/KR102106564B1/ko
Priority to EP16891044.6A priority patent/EP3428617A4/en
Priority to US16/079,702 priority patent/US10670516B2/en
Priority to PCT/CN2016/074697 priority patent/WO2017143590A1/zh
Publication of WO2017143590A1 publication Critical patent/WO2017143590A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K13/00Arrangement in connection with combustion air intake or gas exhaust of propulsion units
    • B60K13/04Arrangement in connection with combustion air intake or gas exhaust of propulsion units concerning exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/075Investigating concentration of particle suspensions by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • G01N2021/054Bubble trap; Debubbling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/021Special mounting in general
    • G01N2201/0216Vehicle borne
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/022Casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present application relates to the field of sensor technology, for example, to an optical density sensor cover and an optical density test device.
  • Urea or urea based solutions are often used in automotive applications to reduce exhaust emissions.
  • some diesel powered motor vehicles include a urea tank separate from the fuel tank for carrying a working fluid such as a car urea solution.
  • the automotive urea solution is stored in a urea tank and injected into the exhaust of the vehicle to convert nitrogen oxides into basic nitrogen and water, thereby reducing harmful emissions from the vehicle.
  • the related art discloses a sensor for measuring a liquid, comprising:
  • a light source operatively coupled to a lumen disposed in the liquid solution, the light source configured to emit light and transmit the light to the inner cavity; a light detector operatively coupled to the inner cavity, the light A detector is configured to receive at least a portion of the light from the inner cavity; and a controller configured to determine the portion based on light emitted by the light source and light received by the light detector The concentration or quality of the liquid solution.
  • the solution cannot eliminate the factors affecting the test accuracy in the urea concentration test process.
  • the solution cannot eliminate the test to be tested in advance.
  • the bubbles in the solution if the solution to be tested is doped with bubbles, will affect the accuracy of the urea concentration test. Therefore, the reliability of the test results of the urea concentration obtained by the above scheme is low.
  • the embodiment of the invention provides an optical concentration sensor protection cover, which protects the sensor body from being damaged by collision or extrusion, and prolongs the service life of the sensor body.
  • the embodiment of the invention further provides an optical concentration sensor protective cover, so that the solution to be tested inside the protective cover tends to be stationary, thereby improving the reliability of the test result.
  • the embodiment of the invention further provides an optical density testing device, which effectively protects the sensor body, prolongs the service life of the sensor body, and improves the test accuracy.
  • an optical concentration sensor protective cover including an outer cover and a bubble spacer, the bubble spacer being embedded inside the outer cover;
  • the outer cover is provided with a convection hole
  • the bubble compartment is provided with a liquid inlet hole.
  • the outer cover and the bubble spacer may both be made of a non-transparent material.
  • the sensor body can be protected by providing a protective cover to prevent the sensor body from being damaged by collision or squeezing, and prolonging the service life of the sensor body.
  • the utility model further includes a venting baffle, the outer cover is provided with a first venting hole, and the venting baffle covers the first venting hole, the venting baffle There is a gap between the first exhaust hole and the first exhaust hole.
  • the optical density sensor protective cover may further include a fixed middle frame, a fixed upper bracket, a fixed lower bracket and a fixing ring, the outer cover and the bubble spacer being mounted at one end of the fixed middle frame, the fixing ring being mounted on the fixing At the other end of the middle frame, the fixed upper bracket and the fixed lower bracket are sleeved on the outer side of the fixed middle frame.
  • the bubble compartment and the inner space of the fixed middle frame form a test area of the solution to be tested.
  • the vent flap may be fixed to the fixed upper bracket.
  • the vent flap may be fixed to the fixed middle frame.
  • the vent flap may be fixed to the outer cover.
  • the air vent baffle may be disposed outside the first vent hole to prevent the solution to be tested from directly entering the test area from the first vent hole, and to prevent dust and the like from entering the test area from the first vent hole to affect the test result. Accuracy to ensure the reliability of test results.
  • the bubble cover is provided with a second exhaust hole, and the first exhaust hole is in communication with the second exhaust hole.
  • the central axis of the first exhaust hole and the central axis of the second exhaust hole may be the same straight line.
  • the test area can be convected with the outside by opening the first venting opening and the second venting opening, thereby ensuring that the solution to be tested can enter the test area.
  • a barrier is disposed between the convection hole and the liquid inlet hole, and the solution to be tested bypasses the barrier from the convection hole to reach the liquid inlet hole.
  • the barrier can be disposed, and the barrier is disposed between the convection hole and the liquid inlet hole, so that the solution to be tested needs to bypass the barrier to reach the liquid inlet hole, thereby making the solution to be tested
  • the bubbles are effectively separated from the liquid, ensuring that the solution to be tested entering the test area is free of bubbles.
  • the outer cover is provided with two convection holes, and the barrier comprises two separation plates, and the liquid inlet holes are opened in the two separation plates. Meanwhile, two of the convection holes are respectively disposed outside the two separation plates.
  • the inner and outer sides of the outer cover can be effectively convected by providing two of the convection holes, so that the solution to be tested can quickly enter the outer cover.
  • the two separation holes can be respectively disposed on the outer sides of the two separation plates, so that the separation plate can effectively space the convection holes and the liquid inlet holes, thereby obtaining bubbles in the solution to be tested. More effective separation.
  • the two separation plates are distributed in an "eight" shape.
  • the air bubbles in the solution to be tested can be more easily floated up and discharged along the separation plate by tilting the separation plate.
  • the two separating plates are respectively a first separating plate and a second separating plate, and the liquid inlet holes are located in the first separating plate and the second separating plate At one end of the large distance, the liquid inlet hole abuts against the second separation plate.
  • the first separating plate may be located above the second separating plate.
  • the liquid inlet hole is disposed at a position close to the second separation plate, that is, the liquid inlet hole is disposed at a relatively lower position, and the air bubbles in the solution to be tested can be prevented from entering the test hole from the liquid inlet hole. region.
  • the outer cover has an open end and a sealing end, and the convection hole is disposed at a periphery of the sealing end of the outer cover, and the bubble spacer has an open end and a closed end At the end, the barrier and the inlet hole are both disposed at the closed end of the bubble shield, and a bubble separation chamber is formed between the closed end of the bubble shield and the sealing end of the outer cover.
  • the bubble spacer is made of an elastic material.
  • the bubble spacer may be made of rubber.
  • the bubble spacer can be made by using an elastic material, so that the bubble spacer can buffer the force of the solution to be tested due to icing, and the force caused by the ice of the solution to be tested can be prevented from causing damage to the product.
  • an optical density testing device including the optical density sensor protective cover described above.
  • the optical density testing device is configured to detect the concentration of urea in the urea solution.
  • the sensor body further includes a test notch, and the opening direction of the test notch is oriented in a horizontal direction.
  • the sensor body may be mounted within the fixed middle frame.
  • the test gap can be opened on the horizontal side wall of the sensor body, so that the bubbles in the solution to be tested can be easily floated up and discharged along the test gap, eliminating bubbles in the solution to be tested, thereby improving the accuracy of the test result.
  • an optical concentration sensor protective cover which is made of a flexible material to form a bubble spacer, so that the bubble spacer can buffer the force of the solution to be tested due to icing, and avoid the force caused by the ice of the solution to be tested.
  • the product caused damage.
  • FIG. 1 is a schematic cross-sectional view showing an optical density testing device according to Embodiment 1;
  • Figure 2 is a side elevational view of the bubble barrier of the first embodiment
  • FIG. 3 is a schematic side view of the sensor body according to the first embodiment
  • FIG. 4 is a cross-sectional view showing the optical density testing device of the second embodiment
  • Figure 5 is a side elevational view of the bubble barrier of the second embodiment
  • FIG. 6 is a side view of the sensor body according to the second embodiment
  • FIG. 7 is a cross-sectional view showing an optical density testing device according to Embodiment 3.
  • Figure 8 is a side elevational view of the bubble barrier of the third embodiment
  • FIG. 9 is a side view of the sensor body according to the third embodiment.
  • Figure 10 is a cross-sectional view showing the optical density testing device of the fourth embodiment.
  • Figure 11 is a side elevational view of the bubble barrier of the fourth embodiment
  • Figure 12 is a side elevational view of the sensor body of the fourth embodiment.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • an optical density sensor protective cover includes an outer cover 1 and a bubble spacer 2, and the bubble spacer 2 is embedded inside the outer cover 1; and further includes a fixed middle frame 3 Fixing the upper bracket 4, fixing the lower bracket 5 and the fixing ring 6, the outer cover 1 and the bubble spacer 2 are mounted at one end of the fixed middle frame 3, and the fixing ring 6 is mounted on the fixed middle frame 3 At the other end, the fixed upper bracket 4 and the fixed lower bracket 5 are sleeved on the outer side of the fixed middle frame 3.
  • the bubble compartment 2 and the inner space of the fixed middle frame 3 form a test area of the solution to be tested.
  • the outer cover 1 is provided with a convection hole 11; the bubble hood 2 is provided with a liquid inlet hole 23; a barrier is disposed between the convection hole 11 and the liquid inlet hole 23, and the solution to be tested The barrier is passed from the convection hole 11 to the inlet hole 23.
  • the outer cover 1 is provided with two convection holes 11; the barrier comprises two separating plates, and the liquid inlet holes 23 and the two separating plates are disposed on the bubble partition.
  • the liquid inlet hole 23 is opened between the two separation plates, and the two convection holes 11 are respectively disposed outside the two separation plates.
  • the separating plate may also be disposed on the inner wall of the outer cover 1.
  • the outer cover 1 has an open end and a sealing end, the convection hole 11 is disposed at a periphery of the sealing end of the outer cover 1, and the bubble compartment 2 has an open end and a closed end, and the barrier and the inlet Liquid holes 23 are provided Located at the closed end of the bubble compartment 2, a bubble separation chamber is formed between the closed end of the bubble barrier 2 and the sealing end of the outer cover 1.
  • the inner and outer sides of the outer cover 1 can be effectively convected by providing two of the convection holes 11, so that the solution to be tested can quickly enter the bubble separation chamber in the outer cover 1.
  • the solution to be tested needs to bypass the separating plate to reach the liquid inlet hole 23, thereby making the solution to be tested
  • the bubbles are effectively separated from the liquid, ensuring that the solution to be tested entering the test area is free of bubbles.
  • the separating plate can effectively space the convection hole 11 and the liquid inlet hole 23, thereby making the solution to be tested Bubbles are more effectively separated.
  • the two separation plates are distributed in an "eight" shape.
  • the air bubbles in the solution to be tested can be more easily floated up and discharged along the separation plate by tilting the separation plate.
  • the two separating plates are a first separating plate 21 and a second separating plate 22, respectively, and the liquid inlet hole 23 is located at a side at a large distance between the first separating plate 21 and the second separating plate 22, The inlet hole 23 abuts against the second separation plate 22.
  • the first separating plate 21 may be located above the second separating plate 22.
  • the liquid inlet hole 23 is disposed at a position close to the second separating plate 22, that is, the liquid inlet hole 23 is disposed at a relatively low position, and bubbles in the solution to be tested can be avoided from the liquid inlet. Hole 23 enters the test area.
  • the outer cover 1 is made of a non-transparent material.
  • the bubble spacer 2 is made of a non-transmissive elastic material.
  • the bubble barrier 2 can be made of an elastic material, so that the bubble barrier 2 can buffer the force of the solution to be tested due to icing, and prevent the force caused by the ice of the solution to be tested from damaging the product.
  • the bubble spacer 2 is made of rubber.
  • a first exhaust hole 12 is defined in the outer cover 1
  • a second exhaust hole 24 is defined in the bubble cover 2
  • the first exhaust hole 12 and the second exhaust hole 24 are defined therein.
  • the test area can be convected with the outside by opening the first exhaust hole 12 and the second exhaust hole 24, thereby ensuring that the solution to be tested can enter the test area.
  • the central axis of the first exhaust hole 12 and the central axis of the second exhaust hole 24 are the same straight line.
  • the optical density sensor cover further includes a vent baffle 7 that covers the first vent hole 12 with a gap between the vent baffle 7 and the first vent hole 12.
  • the air vent baffle 7 can be disposed outside the first venting hole 12 to prevent the solution to be tested from entering the test area directly from the first venting hole 12, while preventing pollutants such as dust from entering the test area from the first venting hole 12. Affect the test results Accuracy to ensure the reliability of test results.
  • the air vent baffle 7 is fixed on the fixed upper bracket 4.
  • An optical density testing device includes the above-mentioned optical density sensor protective cover and a sensor main body 8 .
  • the sensor main body 8 is mounted inside the optical density sensor protective cover, and the sensor main body 8 is provided with a test notch 81.
  • the opening direction of the test notch 81 is directed to the horizontal direction.
  • the sensor body 8 is mounted in the fixed middle frame 3.
  • the test gap 81 is generally V-shaped.
  • the opening direction of the test notch 81 on the sensor body 8 may be in a horizontal direction, and the sidewall of the test notch 81 is inclined. If there is an unremoved bubble in the solution to be tested, the bubble will follow The side wall of the test notch 81 floats upward and is discharged outward from the second vent hole, thereby eliminating air bubbles in the solution to be tested.
  • the solution to be tested may enter the bubble separation chamber from the convection hole 11, and then the solution to be tested is blocked by the separation plate in the bubble separation chamber to be forced to change the flow direction, and cannot directly enter the solution.
  • the solution to be tested In the liquid inlet hole 23, after the solution to be tested flows along the extending direction of the separating plate to reach the end of the separating plate, the solution to be tested is separated from the blocking plate and flows toward the liquid inlet hole 23, Since the bubble density is small, the doped bubbles in the solution to be tested float up and separate from the solution to be tested, and then the solution to be tested after the bubble is removed enters the test area from the inlet hole 23, and is composed of the sensor body. 8 Test the concentration of the solution to be tested.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • an optical density sensor protective cover includes an outer cover 1 and a bubble spacer 2, and the bubble spacer 2 is fitted inside the outer cover 1; and further includes a fixed middle frame 3 Fixing the upper bracket 4, fixing the lower bracket 5 and the fixing ring 6, the outer cover 1 and the bubble spacer 2 are mounted at one end of the fixed middle frame 3, and the fixing ring 6 is mounted on the fixed middle frame 3 At the other end, the fixed upper bracket 4 and the fixed lower bracket 5 are sleeved on the outer side of the fixed middle frame 3.
  • the bubble compartment 2 and the inner space of the fixed middle frame 3 form a test area of the solution to be tested.
  • the outer cover 1 is provided with a convection hole 11; the bubble hood 2 is provided with a liquid inlet hole 23; a barrier is disposed between the convection hole 11 and the liquid inlet hole 23, and the solution to be tested The barrier is passed from the convection hole 11 to the inlet hole 23.
  • the outer cover 1 is provided with two convection holes 11; the barrier comprises two separating plates, and the liquid inlet holes 23 and the two separating plates are respectively provided.
  • the bubble compartment 2 is disposed between the two separation plates, and the two convection holes 11 are respectively disposed outside the two separation plates.
  • the separating plate may also be disposed on the inner wall of the outer cover 1.
  • the outer cover 1 has an open end and a sealing end, the convection hole 11 is disposed at a periphery of the sealing end of the outer cover 1, and the bubble compartment 2 has an open end and a closed end, and the barrier and the inlet
  • the liquid holes 23 are both disposed at the closed end of the bubble shield 2, and a bubble separation chamber is formed between the closed end of the bubble shield 2 and the sealed end of the outer cover 1.
  • the inner and outer sides of the outer cover 1 can be effectively convected by providing two of the convection holes 11, so that the solution to be tested can quickly enter the bubble separation chamber in the outer cover 1.
  • the solution to be tested needs to bypass the separating plate to reach the liquid inlet hole 23, thereby making the solution to be tested
  • the bubbles are effectively separated from the liquid, ensuring that the solution to be tested entering the test area is free of bubbles.
  • the separating plate can effectively space the convection hole 11 and the liquid inlet hole 23, thereby making the solution to be tested Bubbles are more effectively separated.
  • two of the separating plates are spaced apart in parallel, and the two separating plates are a first separating plate 21 and a second separating plate 22, respectively, the liquid inlet hole 23 and the first separating plate 21 The distance is equal to the distance between the liquid inlet hole 23 and the second separation plate 22.
  • the outer cover 1 is made of a non-transparent material.
  • the bubble spacer 2 is made of a non-transmissive elastic material.
  • the bubble barrier 2 can be made of an elastic material, so that the bubble barrier 2 can buffer the force of the solution to be tested due to icing, and prevent the force caused by the ice of the solution to be tested from damaging the product.
  • the bubble spacer 2 is made of rubber.
  • a first exhaust hole 12 is defined in the outer cover 1
  • a second exhaust hole 24 is defined in the bubble cover 2
  • the first exhaust hole 12 and the second exhaust hole 24 are defined therein.
  • the test area can be convected with the outside by opening the first exhaust hole 12 and the second exhaust hole 24, thereby ensuring that the solution to be tested can enter the test area.
  • the first exhaust hole 12 and the second exhaust hole 24 are staggered, and the first exhaust hole 12 and the second exhaust hole 24 are connected by a pipe.
  • the optical density sensor cover further includes a vent baffle 7 that covers the first vent hole 12 with a gap between the vent baffle 7 and the first vent hole 12.
  • the air vent baffle 7 can be disposed outside the first venting hole 12 to prevent the solution to be tested from directly entering the test zone from the first venting hole 12. In the domain, at the same time, the contamination of the pollutants and the like from the first vent hole 12 into the test area is affected, thereby affecting the accuracy of the test result, thereby ensuring the reliability of the test result.
  • the air vent baffle 7 is fixed on the fixed middle frame 3.
  • An optical density testing device includes the above-mentioned optical density sensor protective cover and a sensor main body 8 .
  • the sensor main body 8 is mounted inside the optical density sensor protective cover, and the sensor main body 8 is provided with a test notch 81.
  • the opening direction of the test notch 81 is directed to the horizontal direction.
  • the sensor body 8 is mounted in the fixed middle frame 3.
  • the test gap 81 is generally semi-circular.
  • the opening direction of the test notch 81 on the sensor body 8 may be in a horizontal direction, and the sidewall of the test notch 81 is inclined. If there is an unremoved bubble in the solution to be tested, the bubble will follow The side wall of the test notch 81 floats upward and is discharged outward from the second vent hole, thereby eliminating air bubbles in the solution to be tested.
  • the solution to be tested may enter the bubble separation chamber from the convection hole 11, and then the solution to be tested is blocked by the separation plate in the bubble separation chamber to be forced to change the flow direction, and cannot directly enter the solution.
  • the solution to be tested In the liquid inlet hole 23, after the solution to be tested flows along the extending direction of the separating plate to reach the end of the separating plate, the solution to be tested is separated from the blocking plate and flows toward the liquid inlet hole 23, Since the bubble density is small, the doped bubbles in the solution to be tested float up and separate from the solution to be tested, and then the solution to be tested after the bubble is removed enters the test area from the inlet hole 23, and is composed of the sensor body. 8 Test the concentration of the solution to be tested.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • an optical density sensor protective cover includes an outer cover 1 and a bubble spacer 2, and the bubble spacer 2 is fitted inside the outer cover 1; and further includes a fixed middle frame 3 Fixing the upper bracket 4, fixing the lower bracket 5 and the fixing ring 6, the outer cover 1 and the bubble spacer 2 are mounted at one end of the fixed middle frame 3, and the fixing ring 6 is mounted on the fixed middle frame 3 At the other end, the fixed upper bracket 4 and the fixed lower bracket 5 are sleeved on the outer side of the fixed middle frame 3.
  • the bubble compartment 2 and the inner space of the fixed middle frame 3 form a test area of the solution to be tested.
  • the outer cover 1 is provided with a convection hole 11; the bubble hood 2 is provided with a liquid inlet hole 23; a barrier is disposed between the convection hole 11 and the liquid inlet hole 23, and the solution to be tested The barrier is passed from the convection hole 11 to the inlet hole 23.
  • the outer cover 1 is provided with two a convection hole 11; the barrier comprises two separation plates, the inlet hole 23 and the two separation plates are both disposed on the bubble spacer 2, and the inlet hole 23 is opened in two places Between the separating plates, two of the convection holes 11 are respectively disposed outside the two separating plates.
  • the separating plate may also be disposed on the inner wall of the outer cover 1.
  • the outer cover 1 has an open end and a sealing end, the convection hole 11 is disposed at a periphery of the sealing end of the outer cover 1, and the bubble compartment 2 has an open end and a closed end, and the barrier and the inlet
  • the liquid holes 23 are both disposed at the closed end of the bubble shield 2, and a bubble separation chamber is formed between the closed end of the bubble shield 2 and the sealed end of the outer cover 1.
  • the inner and outer sides of the outer cover 1 can be effectively convected by providing two of the convection holes 11, so that the solution to be tested can quickly enter the bubble separation chamber in the outer cover 1.
  • the solution to be tested needs to bypass the separating plate to reach the liquid inlet hole 23, thereby making the solution to be tested
  • the bubbles are effectively separated from the liquid, ensuring that the solution to be tested entering the test area is free of bubbles.
  • the separating plate can effectively space the convection hole 11 and the liquid inlet hole 23, thereby making the solution to be tested Bubbles are more effectively separated.
  • two of the separating plates are spaced apart in parallel, and the two separating plates are a first separating plate 21 and a second separating plate 22, respectively, and the liquid inlet hole 23 abuts against the second separating plate 22, that is, the distance between the liquid inlet hole 23 and the first separating plate 21 is greater than the distance between the liquid inlet hole 23 and the second separating plate 22.
  • the first separating plate 21 may be located above the second separating plate 22.
  • the liquid inlet hole 23 is disposed at a position close to the second separating plate 22, that is, the liquid inlet hole 23 is disposed at a relatively low position, and bubbles in the solution to be tested can be avoided from the liquid inlet. Hole 23 enters the test area.
  • the outer cover 1 is made of a non-transparent material.
  • the bubble spacer 2 is made of a non-transmissive elastic material.
  • the bubble barrier 2 can be made of an elastic material, so that the bubble barrier 2 can buffer the force of the solution to be tested due to icing, and prevent the force caused by the ice of the solution to be tested from damaging the product.
  • the bubble spacer 2 is made of rubber.
  • a first exhaust hole 12 is defined in the outer cover 1
  • a second exhaust hole 24 is defined in the bubble cover 2
  • the first exhaust hole 12 and the second exhaust hole 24 are defined therein.
  • the test area can be convected with the outside by opening the first exhaust hole 12 and the second exhaust hole 24, thereby ensuring that the solution to be tested can enter the test area.
  • the first exhaust hole 12 The central axis is the same line as the central axis of the second venting opening 24.
  • the optical density sensor cover further includes a vent baffle 7 that covers the first vent hole 12 with a gap between the vent baffle 7 and the first vent hole 12.
  • the air vent baffle 7 can be disposed outside the first venting hole 12 to prevent the solution to be tested from entering the test area directly from the first venting hole 12, while preventing pollutants such as dust from entering the test area from the first venting hole 12. Affect the accuracy of the test results to ensure the reliability of the test results.
  • the air vent baffle 7 is fixed on the outer cover 1.
  • An optical density testing device includes the above-mentioned optical density sensor protective cover and a sensor main body 8 .
  • the sensor main body 8 is mounted inside the optical density sensor protective cover, and the sensor main body 8 is provided with a test notch 81.
  • the opening direction of the test notch 81 is directed to the horizontal direction.
  • the sensor body 8 is mounted in the fixed middle frame 3.
  • the test gap 81 is generally trapezoidal.
  • the opening direction of the test notch 81 on the sensor body 8 may be in a horizontal direction, and the sidewall of the test notch 81 is inclined. If there is an unremoved bubble in the solution to be tested, the bubble will follow The side wall of the test notch 81 floats upward and is discharged outward from the second vent hole, thereby eliminating air bubbles in the solution to be tested.
  • the solution to be tested may enter the bubble separation chamber from the convection hole 11, and then the solution to be tested is blocked by the separation plate in the bubble separation chamber to be forced to change the flow direction, and cannot directly enter the solution.
  • the solution to be tested In the liquid inlet hole 23, after the solution to be tested flows along the extending direction of the separating plate to reach the end of the separating plate, the solution to be tested is separated from the blocking plate and flows toward the liquid inlet hole 23, Since the bubble density is small, the doped bubbles in the solution to be tested float up and separate from the solution to be tested, and then the solution to be tested after the bubble is removed enters the test area from the inlet hole 23, and is composed of the sensor body. 8 Test the concentration of the solution to be tested.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • an optical density sensor protective cover includes an outer cover 1 and a bubble spacer 2, and the bubble spacer 2 is fitted inside the outer cover 1; and further includes a fixed middle frame 3 Fixing the upper bracket 4, fixing the lower bracket 5 and the fixing ring 6, the outer cover 1 and the bubble spacer 2 are mounted at one end of the fixed middle frame 3, and the fixing ring 6 is mounted on the fixed middle frame 3 At the other end, the fixed upper bracket 4 and the fixed lower bracket 5 are sleeved on the outer side of the fixed middle frame 3.
  • the bubble spacer 2 and the fixing The internal space of the frame 3 forms a test area of the solution to be tested.
  • the outer cover 1 is provided with a convection hole 11; the bubble hood 2 is provided with a liquid inlet hole 23; a barrier is disposed between the convection hole 11 and the liquid inlet hole 23, and the solution to be tested The barrier is passed from the convection hole 11 to the inlet hole 23.
  • the outer cover 1 is provided with two convection holes 11; the barrier comprises two separating plates, and the liquid inlet holes 23 and the two separating plates are disposed on the bubble partition.
  • the liquid inlet hole 23 is opened between the two separation plates, and the two convection holes 11 are respectively disposed outside the two separation plates.
  • the separating plate may also be disposed on the inner wall of the outer cover 1.
  • the outer cover 1 has an open end and a sealing end, the convection hole 11 is disposed at a periphery of the sealing end of the outer cover 1, and the bubble compartment 2 has an open end and a closed end, and the barrier and the inlet
  • the liquid holes 23 are both disposed at the closed end of the bubble shield 2, and a bubble separation chamber is formed between the closed end of the bubble shield 2 and the sealed end of the outer cover 1.
  • the inner and outer sides of the outer cover 1 can be effectively convected by providing two of the convection holes 11, so that the solution to be tested can quickly enter the bubble separation chamber in the outer cover 1.
  • the solution to be tested needs to bypass the separating plate to reach the liquid inlet hole 23, thereby making the solution to be tested
  • the bubbles are effectively separated from the liquid, ensuring that the solution to be tested entering the test area is free of bubbles.
  • the separating plate can effectively space the convection hole 11 and the liquid inlet hole 23, thereby making the solution to be tested Bubbles are more effectively separated.
  • the two separation plates are distributed in an "eight" shape.
  • the air bubbles in the solution to be tested can be more easily floated up and discharged along the separation plate by tilting the separation plate.
  • the two separating plates are a first separating plate 21 and a second separating plate 22, respectively, and the liquid inlet hole 23 is located at a side at a large distance between the first separating plate 21 and the second separating plate 22, The distance between the inlet hole 23 and the first separating plate 21 is equal to the distance between the inlet hole 23 and the second separating plate 22.
  • the outer cover 1 is made of a non-transparent material.
  • the bubble spacer 2 is made of a non-transmissive elastic material.
  • the bubble barrier 2 can be made of an elastic material, so that the bubble barrier 2 can buffer the force of the solution to be tested due to icing, and prevent the force caused by the ice of the solution to be tested from damaging the product.
  • the bubble spacer 2 is made of rubber.
  • a first exhaust hole 12 is defined in the outer cover 1
  • a second exhaust hole 24 is defined in the bubble cover 2
  • the first exhaust hole 12 and the second exhaust hole 24 are defined therein. Connected. Can be connected through
  • the first venting opening 12 and the second venting opening 24 enable the test area to be convected with the outside to ensure that the solution to be tested can enter the test area.
  • the central axis of the first exhaust hole 12 and the central axis of the second exhaust hole 24 are the same straight line.
  • the optical density sensor cover further includes a vent baffle 7 that covers the first vent hole 12 with a gap between the vent baffle 7 and the first vent hole 12.
  • the air vent baffle 7 can be disposed outside the first venting hole 12 to prevent the solution to be tested from entering the test area directly from the first venting hole 12, while preventing pollutants such as dust from entering the test area from the first venting hole 12. Affect the accuracy of the test results to ensure the reliability of the test results.
  • the air vent baffle 7 is fixed on the fixed upper bracket 4.
  • An optical density testing device includes the above-mentioned optical density sensor protective cover and a sensor main body 8 .
  • the sensor main body 8 is mounted inside the optical density sensor protective cover, and the sensor main body 8 is provided with a test notch 81.
  • the opening direction of the test notch 81 is directed to the horizontal direction.
  • the sensor body 8 is mounted in the fixed middle frame 3.
  • the test gap 81 is generally V-shaped.
  • the opening direction of the test notch 81 on the sensor body 8 may be in a horizontal direction, and the sidewall of the test notch 81 is inclined. If there is an unremoved bubble in the solution to be tested, the bubble will follow The side wall of the test notch 81 floats upward and is discharged outward from the second vent hole, thereby eliminating air bubbles in the solution to be tested.
  • the solution to be tested may enter the bubble separation chamber from the convection hole 11, and then the solution to be tested is blocked by the separation plate in the bubble separation chamber to be forced to change the flow direction, and cannot directly enter the solution.
  • the solution to be tested In the liquid inlet hole 23, after the solution to be tested flows along the extending direction of the separating plate to reach the end of the separating plate, the solution to be tested is separated from the blocking plate and flows toward the liquid inlet hole 23, Since the bubble density is small, the doped bubbles in the solution to be tested float up and separate from the solution to be tested, and then the solution to be tested after the bubble is removed enters the test area from the inlet hole 23, and is composed of the sensor body. 8 Test the concentration of the solution to be tested.
  • the present application discloses an optical density sensor protective cover including an outer cover and a bubble spacer, the bubble spacer being embedded inside the outer cover; the outer cover is provided with a convection hole; the bubble spacer There is a liquid inlet hole in the upper opening.
  • the present application also discloses an optical density testing device including the above protective cover.
  • the solution to be tested is prevented from directly entering the test area during the watering process, and impurities such as dust are prevented from entering the test area to affect the accuracy of the test result, thereby ensuring the reliability of the test result.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Measuring Cells (AREA)

Abstract

一种光学浓度传感器保护罩及光学浓度测试装置,保护罩包括外盖(1)和气泡隔罩(2),所述气泡隔罩(2)嵌装在所述外盖(1)的内侧;所述外盖(1)上开设有对流孔(11);所述气泡隔罩(2)上开设有进液孔(23)。光学浓度装置包括上述保护罩。通过设置保护罩对传感器主体进行保护,一方面避免传感器主体受碰撞或挤压而损坏,延长传感器主体的使用寿命,另一方面使保护罩内侧的待测溶液趋于静止,提高测试结果的精度。另外,通过在外盖(1)的外侧设置气孔挡板(7)防止待测溶液在浇灌过程中直接进入测试区内,同时避免灰尘等污染物进入测试区域内影响测试结果的精度,从而保证测试结果的可靠性。

Description

光学浓度传感器保护罩及光学浓度测试装置 技术领域
本申请涉及传感器技术领域,例如涉及一种光学浓度传感器保护罩及光学浓度测试装置。
背景技术
尿素或者基于尿素的溶液经常被用在汽车应用中以减少废气排放。例如,一些柴油动力机动车辆包括与燃料箱分离的尿素箱,该尿素箱用于携带诸如汽车尿素溶液之类的工作液。汽车尿素溶液被存储在尿素箱中,并且被喷射到车辆的尾气中以便将氮的氧化物转换成基本氮元素和水,从而减少了车辆的有害排放。
随着国四标准和更高排放标准的全面执行,所有重型商用车必须安装SCR系统或等同排放后处理装置,而当前绝大部分车厂优先选择SCR系统,因而必须使用尿素。车用尿素溶液必须保证在一定的浓度范围才可充分的将氧化物转化为氮气和水,浓度过高会带来NH3的二次污染,浓度过低则达不到排放标准要求,而基于欺骗使用自来水、海水或者误加柴油等其他溶剂甚至可能会造成昂贵的后处理系统被损坏。随着OBD车载诊断系统的强制执行,在排放不达标或者尿素品质浓度不符合要求的情况下,车辆会被限扭,甚至限制启动。因此随着国外欧六的实施,品质传感器成为强制安装部件。基于上述情况,检测尿素在尿素溶液中的浓度的准确性非常重要。
相关技术公开一种测量液体的传感器,包括:
可操作地耦合到布置在液体溶液中的内腔的光源,该光源被配置为发出光并且将该光传输到所述内腔;可操作地耦合到所述内腔的光检测器,该光检测器被配置为从所述内腔接收所述光的至少一部分;以及控制器,被配置为基于由所述光源发出的光和由所述光检测器接收到的光的所述部分确定所述液体溶液的浓度或品质。
上述测量液体的传感器虽然可以对尿素浓度进行测量,但该方案无法在尿素浓度测试过程中消除影响测试精度的因素,例如,该方案无法提前消除待测 溶液中的气泡,若待测溶液中掺杂有气泡,将会影响尿素浓度的测试精度,因此,通过上述方案得到的尿素浓度的测试结果的可靠性较低。
发明内容
本发明实施例提供一种光学浓度传感器保护罩,对传感器主体进行保护,避免传感器主体受碰撞或挤压而损坏,延长传感器主体的使用寿命。
本发明实施例还提供一种光学浓度传感器保护罩,使保护罩内侧的待测溶液趋于静止,提高测试结果的可靠性。
本发明实施例还提供一种光学浓度测试装置,有效保护传感器主体,延长传感器主体的使用寿命,同时提高测试精度。
本发明实施例可以采用以下技术方案:
一方面,提供一种光学浓度传感器保护罩,包括外盖和气泡隔罩,所述气泡隔罩嵌装在所述外盖的内侧;
所述外盖上开设有对流孔;
所述气泡隔罩上开设有进液孔。
所述外盖和气泡隔罩可以均采用非透光材料制成。
可以通过设置保护罩对传感器主体进行保护,避免传感器主体受碰撞或挤压而损坏,延长传感器主体的使用寿命。
作为光学浓度传感器保护罩的一种技术方案,还包括气孔挡板,所述外盖上开设有第一排气孔,所述气孔挡板遮盖所述第一排气孔,所述气孔挡板与所述第一排气孔之间具有间隙。
光学浓度传感器保护罩还可以包括固定中框、固定上支架、固定下支架和固定环,所述外盖和气泡隔罩安装在所述固定中框的一端,所述固定环安装在所述固定中框的另一端,所述固定上支架和所述固定下支架套在所述固定中框的外侧。所述气泡隔罩和所述固定中框的内部空间形成待测溶液的测试区域。
所述气孔挡板可以固定在所述固定上支架上。
所述气孔挡板可以固定在所述固定中框上。
所述气孔挡板可以固定在所述外盖上。
可以通过在第一排气孔外侧设置气孔挡板,防止待测溶液直接从第一排气孔进入测试区域内,同时避免灰尘等污染物从第一排气孔进入测试区域内影响测试结果的精度,从而保证测试结果的可靠性。
作为光学浓度传感器保护罩的一种技术方案,所述气泡隔罩上开设有第二排气孔,所述第一排气孔与所述第二排气孔连通。
所述第一排气孔的中心轴线与所述第二排气孔的中心轴线可以是同一条直线。
可以通过开设连通的所述第一排气孔和所述第二排气孔,使测试区域能够与外部进行空气对流,从而保证待测溶液能够进入测试区域。
作为光学浓度传感器保护罩的一种技术方案,所述对流孔与所述进液孔之间设置有阻挡物,待测溶液从所述对流孔绕过所述阻挡物到达所述进液孔。
可以通过设置所述阻挡物,并将所述阻挡物设置在所述对流孔与所述进液孔之间,使待测溶液需要绕过阻挡物才能到达进液孔,从而使待测溶液中的气泡与液体有效分离,保证进入测试区域的待测溶液无气泡。
作为光学浓度传感器保护罩的一种技术方案,所述外盖上开设有两个所述对流孔,所述阻挡物包括两个分离板,所述进液孔开设在两个所述分离板之间,两个所述对流孔分别设置在两个所述分离板的外侧。
可以通过设置两个所述对流孔,使所述外盖的内、外侧有效对流导通,从而使待测溶液能够快速进入所述外盖内。
可以通过将两个所述对流孔分别设置在两个所述分离板的外侧,使所述分离板能够有效地间隔所述对流孔与所述进液孔,从而使待测溶液中的气泡得到更加有效的分离。
作为光学浓度传感器保护罩的一种技术方案,两个所述分离板呈“八”形分布。
可以通过将所述分离板倾斜设置,使待测溶液中的气泡能够沿所述分离板更加容易地向上浮起和排出。
作为光学浓度传感器保护罩的一种技术方案,两个所述分离板分别是第一分离板和第二分离板,所述进液孔位于所述第一分离板与所述第二分离板之间距离大的一端,所述进液孔紧靠所述第二分离板。
在工作状态下,所述第一分离板可以位于所述第二分离板的上方。本方案将所述进液孔设置在紧靠所述第二分离板的位置,即将所述进液孔设置相对较低的位置,能够避免待测溶液中的气泡从所述进液孔进入测试区域。
作为光学浓度传感器保护罩的一种技术方案,所述外盖具有开口端和封口端,所述对流孔设置在所述外盖的封口端的周部,所述气泡隔罩具有敞口端和闭口端,所述阻挡物和进液孔均设置在所述气泡隔罩的闭口端,所述气泡隔罩的闭口端与所述外盖的封口端之间形成气泡分离腔。
作为光学浓度传感器保护罩的一种技术方案,所述气泡隔罩采用弹性材料制成。
所述气泡隔罩可以采用橡胶制成。
可以通过采用弹性材料制成气泡隔罩,使气泡隔罩能够缓冲待测溶液因结冰引起的作用力,避免待测溶液结冰引起的作用力对产品造成损坏。
另一方面,提供一种光学浓度测试装置,包括上述光学浓度传感器保护罩。
该光学浓度测试装置被配置为检测尿素在尿素溶液中的浓度。
作为光学浓度测试装置的一种技术方案,还包括传感器主体,所述传感器主体上开设有测试缺口,所述测试缺口的开口方向朝水平方向。
所述传感器主体可以安装在所述固定中框内。
可以通过在传感器主体的水平侧壁上开设测试缺口,使待测溶液中的气泡能够沿测试缺口更加容易地向上浮起和排出,消除待测溶液中的气泡,从而提高测试结果的精度。
本发明实施例的有益效果为:
(一)提供一种光学浓度传感器保护罩,对传感器主体进行保护,避免传感器主体受碰撞或挤压而损坏,延长传感器主体的使用寿命。
(二)提供一种光学浓度传感器保护罩,使保护罩内侧的待测溶液趋于静止,提高测试结果的可靠性。
(三)提供一种光学浓度传感器保护罩,通过将进液孔设置在两个分离板之间,使待测溶液需要绕过分离板才能到达进液孔,从而使待测溶液中的气泡与液体有效分离,保证进入测试区域的待测溶液无气泡。
(四)提供一种光学浓度传感器保护罩,通过在第一排气孔外侧设置气孔挡板,防止待测溶液直接从第一排气孔进入测试区域内,同时避免灰尘等污染物从第一排气孔进入测试区域内影响测试结果的精度,从而保证测试结果的可靠性。
(五)提供一种光学浓度传感器保护罩,通过采用弹性材料制成气泡隔罩,使气泡隔罩能够缓冲待测溶液因结冰引起的作用力,避免待测溶液结冰引起的作用力对产品造成损坏。
(六)提供一种光学浓度测试装置,通过在保护罩内设置分离板,使待测溶液需要绕过分离板才能到达进液孔,从而使待测溶液中的气泡与液体有效分离,保证测试所用的待测溶液无气泡,有效提高待测溶液浓度的测试结果的精度。
(七)提供一种光学浓度测试装置,通过在传感器主体的水平侧壁上开设测试缺口,使待测溶液中的气泡能够沿测试缺口更加容易地向上浮起和排出,消除待测溶液中的气泡,从而提高测试结果的精度。
附图概述
下面根据附图和实施例对本发明进行详细说明。
图1为实施例一所述的光学浓度测试装置的剖视示意图;
图2为实施例一所述的气泡隔罩的侧视示意图;
图3为实施例一所述的传感器主体的侧视示意图;
图4为实施例二所述的光学浓度测试装置的剖视示意图;
图5为实施例二所述的气泡隔罩的侧视示意图;
图6为实施例二所述的传感器主体的侧视示意图;
图7为实施例三所述的光学浓度测试装置的剖视示意图;
图8为实施例三所述的气泡隔罩的侧视示意图;
图9为实施例三所述的传感器主体的侧视示意图;
图10为实施例四所述的光学浓度测试装置的剖视示意图;
图11为实施例四所述的气泡隔罩的侧视示意图;
图12为实施例四所述的传感器主体的侧视示意图。
图1至图12中:
1、外盖;11、对流孔;12、第一排气孔;
2、气泡隔罩;21、第一分离板;22、第二分离板;23、进液孔;24、第二排气孔;
3、固定中框;4、固定上支架;5、固定下支架;6、固定环;7、气孔挡板;
8、传感器主体;81、测试缺口。
本发明的实施方式
下面结合附图并通过实施方式说明本发明的技术方案。
实施例一:
如图1至图3所示,一种光学浓度传感器保护罩,包括外盖1和气泡隔罩2,所述气泡隔罩2嵌装在所述外盖1的内侧;还包括固定中框3、固定上支架4、固定下支架5和固定环6,所述外盖1和气泡隔罩2安装在所述固定中框3的一端,所述固定环6安装在所述固定中框3的另一端,所述固定上支架4和所述固定下支架5套在所述固定中框3的外侧。所述气泡隔罩2和所述固定中框3的内部空间形成待测溶液的测试区域。
其中,所述外盖1上开设有对流孔11;所述气泡隔罩2上开设有进液孔23;所述对流孔11与所述进液孔23之间设置有阻挡物,待测溶液从所述对流孔11绕过所述阻挡物到达所述进液孔23。于本实施例中,所述外盖1上开设有两个对流孔11;所述阻挡物包括两个分离板,所述进液孔23和两个所述分离板均设置在所述气泡隔罩2上,且所述进液孔23开设在两个所述分离板之间,两个所述对流孔11分别设置在两个所述分离板的外侧。于其它实施例中,所述分离板也可以设置在所述外盖1内壁上。
所述外盖1具有开口端和封口端,所述对流孔11设置在所述外盖1的封口端的周部,所述气泡隔罩2具有敞口端和闭口端,所述阻挡物和进液孔23均设 置在所述气泡隔罩2的闭口端,所述气泡隔罩2的闭口端与所述外盖1的封口端之间形成气泡分离腔。
可以通过设置两个所述对流孔11,使所述外盖1的内、外侧有效对流导通,从而使待测溶液能够快速进入所述外盖1内的气泡分离腔。通过设置两个所述分离板,并将所述进液孔23开设在两个所述分离板之间,使待测溶液需要绕过分离板才能到达进液孔23,从而使待测溶液中的气泡与液体有效分离,保证进入测试区域的待测溶液无气泡。通过将两个所述对流孔11分别设置在两个所述分离板的外侧,使所述分离板能够有效地间隔所述对流孔11与所述进液孔23,从而使待测溶液中的气泡得到更加有效的分离。
于本实施例中,两个所述分离板呈“八”形分布。可以通过将所述分离板倾斜设置,使待测溶液中的气泡能够沿所述分离板更加容易地向上浮起和排出。两个所述分离板分别是第一分离板21和第二分离板22,所述进液孔23位于所述第一分离板21与所述第二分离板22之间距离大的一端,所述进液孔23紧靠所述第二分离板22。在工作状态下,所述第一分离板21可以位于所述第二分离板22的上方。本方案将所述进液孔23设置在紧靠所述第二分离板22的位置,即将所述进液孔23设置相对较低的位置,能够避免待测溶液中的气泡从所述进液孔23进入测试区域。
其中,所述外盖1采用非透光材料制成。所述气泡隔罩2采用非透光的弹性材料制成。可以通过采用弹性材料制成气泡隔罩2,使气泡隔罩2能够缓冲待测溶液因结冰引起的作用力,避免待测溶液结冰引起的作用力对产品造成损坏。于本实施例中,所述气泡隔罩2采用橡胶制成。
其中,所述外盖1上开设有第一排气孔12,所述气泡隔罩2上开设有第二排气孔24,所述第一排气孔12与所述第二排气孔24连通。可以通过开设连通的所述第一排气孔12和所述第二排气孔24,使测试区域能够与外部进行空气对流,从而保证待测溶液能够进入测试区域。于本实施例中,所述第一排气孔12的中心轴线与所述第二排气孔24的中心轴线是同一条直线。
光学浓度传感器保护罩还包括气孔挡板7,所述气孔挡板7遮盖所述第一排气孔12,所述气孔挡板7与所述第一排气孔12之间具有间隙。可以通过在第一排气孔12外侧设置气孔挡板7,防止待测溶液直接从第一排气孔12进入测试区域内,同时避免灰尘等污染物从第一排气孔12进入测试区域内影响测试结果的 精度,从而保证测试结果的可靠性。于本实施例中,所述气孔挡板7固定在所述固定上支架4上。
一种光学浓度测试装置,包括上述光学浓度传感器保护罩和传感器主体8,所述传感器主体8安装在所述光学浓度传感器保护罩的内部,所述传感器主体8上开设有测试缺口81,所述测试缺口81的开口方向朝水平方向。通过在传感器主体8的水平侧壁上开设测试缺口81,使待测溶液中的气泡能够沿测试缺口81更加容易地向上浮起和排出,消除待测溶液中的气泡,从而提高测试结果的精度。于本实施例中,所述传感器主体8安装在所述固定中框3内。所述测试缺口81整体呈V形。所述传感器主体8上的所述测试缺口81的开口方向可以朝水平方向,且所述测试缺口81的侧壁是倾斜的,若待测溶液中存在未被消除的气泡,该气泡将会沿所述测试缺口81的侧壁向上浮起,并从所述第二排气孔向外排出,从而消除待测溶液中的气泡。
在测试过程中,待测溶液可以从所述对流孔11进入所述气泡分离腔,接着待测溶液在所述气泡分离腔内受到所述分离板的阻挡被迫改变流动方向,无法直接进入所述进液孔23,待测溶液沿所述分离板的延伸方向流动到达所述分离板的端部后,待测溶液脱离所述分离板的阻挡,并向所述进液孔23方向流动,由于气泡密度较小,此时待测溶液中掺杂的气泡向上浮起并脱离待测溶液,然后消除气泡后的待测溶液从所述进液孔23进入所述测试区域,并由传感器主体8对待测溶液的浓度进行测试。
实施例二:
如图4至图6所示,一种光学浓度传感器保护罩,包括外盖1和气泡隔罩2,所述气泡隔罩2嵌装在所述外盖1的内侧;还包括固定中框3、固定上支架4、固定下支架5和固定环6,所述外盖1和气泡隔罩2安装在所述固定中框3的一端,所述固定环6安装在所述固定中框3的另一端,所述固定上支架4和所述固定下支架5套在所述固定中框3的外侧。所述气泡隔罩2和所述固定中框3的内部空间形成待测溶液的测试区域。
其中,所述外盖1上开设有对流孔11;所述气泡隔罩2上开设有进液孔23;所述对流孔11与所述进液孔23之间设置有阻挡物,待测溶液从所述对流孔11绕过所述阻挡物到达所述进液孔23。于本实施例中,所述外盖1上开设有两个对流孔11;所述阻挡物包括两个分离板,所述进液孔23和两个所述分离板均设 置在所述气泡隔罩2上,且所述进液孔23开设在两个所述分离板之间,两个所述对流孔11分别设置在两个所述分离板的外侧。于其它实施例中,所述分离板也可以设置在所述外盖1内壁上。
所述外盖1具有开口端和封口端,所述对流孔11设置在所述外盖1的封口端的周部,所述气泡隔罩2具有敞口端和闭口端,所述阻挡物和进液孔23均设置在所述气泡隔罩2的闭口端,所述气泡隔罩2的闭口端与所述外盖1的封口端之间形成气泡分离腔。
可以通过设置两个所述对流孔11,使所述外盖1的内、外侧有效对流导通,从而使待测溶液能够快速进入所述外盖1内的气泡分离腔。通过设置两个所述分离板,并将所述进液孔23开设在两个所述分离板之间,使待测溶液需要绕过分离板才能到达进液孔23,从而使待测溶液中的气泡与液体有效分离,保证进入测试区域的待测溶液无气泡。通过将两个所述对流孔11分别设置在两个所述分离板的外侧,使所述分离板能够有效地间隔所述对流孔11与所述进液孔23,从而使待测溶液中的气泡得到更加有效的分离。
于本实施例中,两个所述分离板平行间隔分布,两个所述分离板分别是第一分离板21和第二分离板22,所述进液孔23与所述第一分离板21的距离等于所述进液孔23与所述第二分离板22的距离。
其中,所述外盖1采用非透光材料制成。所述气泡隔罩2采用非透光的弹性材料制成。可以通过采用弹性材料制成气泡隔罩2,使气泡隔罩2能够缓冲待测溶液因结冰引起的作用力,避免待测溶液结冰引起的作用力对产品造成损坏。于本实施例中,所述气泡隔罩2采用橡胶制成。
其中,所述外盖1上开设有第一排气孔12,所述气泡隔罩2上开设有第二排气孔24,所述第一排气孔12与所述第二排气孔24连通。可以通过开设连通的所述第一排气孔12和所述第二排气孔24,使测试区域能够与外部进行空气对流,从而保证待测溶液能够进入测试区域。于本实施例中,所述第一排气孔12与所述第二排气孔24错开设置,所述第一排气孔12与所述第二排气孔24之间通过管道连接。
光学浓度传感器保护罩还包括气孔挡板7,所述气孔挡板7遮盖所述第一排气孔12,所述气孔挡板7与所述第一排气孔12之间具有间隙。可以通过在第一排气孔12外侧设置气孔挡板7,防止待测溶液直接从第一排气孔12进入测试区 域内,同时避免灰尘等污染物从第一排气孔12进入测试区域内影响测试结果的精度,从而保证测试结果的可靠性。于本实施例中,所述气孔挡板7固定在所述固定中框3上。
一种光学浓度测试装置,包括上述光学浓度传感器保护罩和传感器主体8,所述传感器主体8安装在所述光学浓度传感器保护罩的内部,所述传感器主体8上开设有测试缺口81,所述测试缺口81的开口方向朝水平方向。通过在传感器主体8的水平侧壁上开设测试缺口81,使待测溶液中的气泡能够沿测试缺口81更加容易地向上浮起和排出,消除待测溶液中的气泡,从而提高测试结果的精度。于本实施例中,所述传感器主体8安装在所述固定中框3内。所述测试缺口81整体呈半圆形。所述传感器主体8上的所述测试缺口81的开口方向可以朝水平方向,且所述测试缺口81的侧壁是倾斜的,若待测溶液中存在未被消除的气泡,该气泡将会沿所述测试缺口81的侧壁向上浮起,并从所述第二排气孔向外排出,从而消除待测溶液中的气泡。
在测试过程中,待测溶液可以从所述对流孔11进入所述气泡分离腔,接着待测溶液在所述气泡分离腔内受到所述分离板的阻挡被迫改变流动方向,无法直接进入所述进液孔23,待测溶液沿所述分离板的延伸方向流动到达所述分离板的端部后,待测溶液脱离所述分离板的阻挡,并向所述进液孔23方向流动,由于气泡密度较小,此时待测溶液中掺杂的气泡向上浮起并脱离待测溶液,然后消除气泡后的待测溶液从所述进液孔23进入所述测试区域,并由传感器主体8对待测溶液的浓度进行测试。
实施例三:
如图7至图9所示,一种光学浓度传感器保护罩,包括外盖1和气泡隔罩2,所述气泡隔罩2嵌装在所述外盖1的内侧;还包括固定中框3、固定上支架4、固定下支架5和固定环6,所述外盖1和气泡隔罩2安装在所述固定中框3的一端,所述固定环6安装在所述固定中框3的另一端,所述固定上支架4和所述固定下支架5套在所述固定中框3的外侧。所述气泡隔罩2和所述固定中框3的内部空间形成待测溶液的测试区域。
其中,所述外盖1上开设有对流孔11;所述气泡隔罩2上开设有进液孔23;所述对流孔11与所述进液孔23之间设置有阻挡物,待测溶液从所述对流孔11绕过所述阻挡物到达所述进液孔23。于本实施例中,所述外盖1上开设有两个 对流孔11;所述阻挡物包括两个分离板,所述进液孔23和两个所述分离板均设置在所述气泡隔罩2上,且所述进液孔23开设在两个所述分离板之间,两个所述对流孔11分别设置在两个所述分离板的外侧。于其它实施例中,所述分离板也可以设置在所述外盖1内壁上。
所述外盖1具有开口端和封口端,所述对流孔11设置在所述外盖1的封口端的周部,所述气泡隔罩2具有敞口端和闭口端,所述阻挡物和进液孔23均设置在所述气泡隔罩2的闭口端,所述气泡隔罩2的闭口端与所述外盖1的封口端之间形成气泡分离腔。
可以通过设置两个所述对流孔11,使所述外盖1的内、外侧有效对流导通,从而使待测溶液能够快速进入所述外盖1内的气泡分离腔。通过设置两个所述分离板,并将所述进液孔23开设在两个所述分离板之间,使待测溶液需要绕过分离板才能到达进液孔23,从而使待测溶液中的气泡与液体有效分离,保证进入测试区域的待测溶液无气泡。通过将两个所述对流孔11分别设置在两个所述分离板的外侧,使所述分离板能够有效地间隔所述对流孔11与所述进液孔23,从而使待测溶液中的气泡得到更加有效的分离。
于本实施例中,两个所述分离板平行间隔分布,两个所述分离板分别是第一分离板21和第二分离板22,所述进液孔23紧靠所述第二分离板22设置,即所述进液孔23与所述第一分离板21的距离大于所述进液孔23与所述第二分离板22的距离。在工作状态下,所述第一分离板21可以位于所述第二分离板22的上方。本方案将所述进液孔23设置在紧靠所述第二分离板22的位置,即将所述进液孔23设置相对较低的位置,能够避免待测溶液中的气泡从所述进液孔23进入测试区域。
其中,所述外盖1采用非透光材料制成。所述气泡隔罩2采用非透光的弹性材料制成。可以通过采用弹性材料制成气泡隔罩2,使气泡隔罩2能够缓冲待测溶液因结冰引起的作用力,避免待测溶液结冰引起的作用力对产品造成损坏。于本实施例中,所述气泡隔罩2采用橡胶制成。
其中,所述外盖1上开设有第一排气孔12,所述气泡隔罩2上开设有第二排气孔24,所述第一排气孔12与所述第二排气孔24连通。可以通过开设连通的所述第一排气孔12和所述第二排气孔24,使测试区域能够与外部进行空气对流,从而保证待测溶液能够进入测试区域。于本实施例中,所述第一排气孔12 的中心轴线与所述第二排气孔24的中心轴线是同一条直线。
光学浓度传感器保护罩还包括气孔挡板7,所述气孔挡板7遮盖所述第一排气孔12,所述气孔挡板7与所述第一排气孔12之间具有间隙。可以通过在第一排气孔12外侧设置气孔挡板7,防止待测溶液直接从第一排气孔12进入测试区域内,同时避免灰尘等污染物从第一排气孔12进入测试区域内影响测试结果的精度,从而保证测试结果的可靠性。于本实施例中,所述气孔挡板7固定在所述外盖1上。
一种光学浓度测试装置,包括上述光学浓度传感器保护罩和传感器主体8,所述传感器主体8安装在所述光学浓度传感器保护罩的内部,所述传感器主体8上开设有测试缺口81,所述测试缺口81的开口方向朝水平方向。通过在传感器主体8的水平侧壁上开设测试缺口81,使待测溶液中的气泡能够沿测试缺口81更加容易地向上浮起和排出,消除待测溶液中的气泡,从而提高测试结果的精度。于本实施例中,所述传感器主体8安装在所述固定中框3内。所述测试缺口81整体呈梯形。所述传感器主体8上的所述测试缺口81的开口方向可以朝水平方向,且所述测试缺口81的侧壁是倾斜的,若待测溶液中存在未被消除的气泡,该气泡将会沿所述测试缺口81的侧壁向上浮起,并从所述第二排气孔向外排出,从而消除待测溶液中的气泡。
在测试过程中,待测溶液可以从所述对流孔11进入所述气泡分离腔,接着待测溶液在所述气泡分离腔内受到所述分离板的阻挡被迫改变流动方向,无法直接进入所述进液孔23,待测溶液沿所述分离板的延伸方向流动到达所述分离板的端部后,待测溶液脱离所述分离板的阻挡,并向所述进液孔23方向流动,由于气泡密度较小,此时待测溶液中掺杂的气泡向上浮起并脱离待测溶液,然后消除气泡后的待测溶液从所述进液孔23进入所述测试区域,并由传感器主体8对待测溶液的浓度进行测试。
实施例四:
如图10至图12所示,一种光学浓度传感器保护罩,包括外盖1和气泡隔罩2,所述气泡隔罩2嵌装在所述外盖1的内侧;还包括固定中框3、固定上支架4、固定下支架5和固定环6,所述外盖1和气泡隔罩2安装在所述固定中框3的一端,所述固定环6安装在所述固定中框3的另一端,所述固定上支架4和所述固定下支架5套在所述固定中框3的外侧。所述气泡隔罩2和所述固定中 框3的内部空间形成待测溶液的测试区域。
其中,所述外盖1上开设有对流孔11;所述气泡隔罩2上开设有进液孔23;所述对流孔11与所述进液孔23之间设置有阻挡物,待测溶液从所述对流孔11绕过所述阻挡物到达所述进液孔23。于本实施例中,所述外盖1上开设有两个对流孔11;所述阻挡物包括两个分离板,所述进液孔23和两个所述分离板均设置在所述气泡隔罩2上,且所述进液孔23开设在两个所述分离板之间,两个所述对流孔11分别设置在两个所述分离板的外侧。于其它实施例中,所述分离板也可以设置在所述外盖1内壁上。
所述外盖1具有开口端和封口端,所述对流孔11设置在所述外盖1的封口端的周部,所述气泡隔罩2具有敞口端和闭口端,所述阻挡物和进液孔23均设置在所述气泡隔罩2的闭口端,所述气泡隔罩2的闭口端与所述外盖1的封口端之间形成气泡分离腔。
可以通过设置两个所述对流孔11,使所述外盖1的内、外侧有效对流导通,从而使待测溶液能够快速进入所述外盖1内的气泡分离腔。通过设置两个所述分离板,并将所述进液孔23开设在两个所述分离板之间,使待测溶液需要绕过分离板才能到达进液孔23,从而使待测溶液中的气泡与液体有效分离,保证进入测试区域的待测溶液无气泡。通过将两个所述对流孔11分别设置在两个所述分离板的外侧,使所述分离板能够有效地间隔所述对流孔11与所述进液孔23,从而使待测溶液中的气泡得到更加有效的分离。
于本实施例中,两个所述分离板呈“八”形分布。可以通过将所述分离板倾斜设置,使待测溶液中的气泡能够沿所述分离板更加容易地向上浮起和排出。两个所述分离板分别是第一分离板21和第二分离板22,所述进液孔23位于所述第一分离板21与所述第二分离板22之间距离大的一端,所述进液孔23与所述第一分离板21的距离等于所述进液孔23与所述第二分离板22的距离。
其中,所述外盖1采用非透光材料制成。所述气泡隔罩2采用非透光的弹性材料制成。可以通过采用弹性材料制成气泡隔罩2,使气泡隔罩2能够缓冲待测溶液因结冰引起的作用力,避免待测溶液结冰引起的作用力对产品造成损坏。于本实施例中,所述气泡隔罩2采用橡胶制成。
其中,所述外盖1上开设有第一排气孔12,所述气泡隔罩2上开设有第二排气孔24,所述第一排气孔12与所述第二排气孔24连通。可以通过开设连通 的所述第一排气孔12和所述第二排气孔24,使测试区域能够与外部进行空气对流,从而保证待测溶液能够进入测试区域。于本实施例中,所述第一排气孔12的中心轴线与所述第二排气孔24的中心轴线是同一条直线。
光学浓度传感器保护罩还包括气孔挡板7,所述气孔挡板7遮盖所述第一排气孔12,所述气孔挡板7与所述第一排气孔12之间具有间隙。可以通过在第一排气孔12外侧设置气孔挡板7,防止待测溶液直接从第一排气孔12进入测试区域内,同时避免灰尘等污染物从第一排气孔12进入测试区域内影响测试结果的精度,从而保证测试结果的可靠性。于本实施例中,所述气孔挡板7固定在所述固定上支架4上。
一种光学浓度测试装置,包括上述光学浓度传感器保护罩和传感器主体8,所述传感器主体8安装在所述光学浓度传感器保护罩的内部,所述传感器主体8上开设有测试缺口81,所述测试缺口81的开口方向朝水平方向。通过在传感器主体8的水平侧壁上开设测试缺口81,使待测溶液中的气泡能够沿测试缺口81更加容易地向上浮起和排出,消除待测溶液中的气泡,从而提高测试结果的精度。于本实施例中,所述传感器主体8安装在所述固定中框3内。所述测试缺口81整体呈V形。所述传感器主体8上的所述测试缺口81的开口方向可以朝水平方向,且所述测试缺口81的侧壁是倾斜的,若待测溶液中存在未被消除的气泡,该气泡将会沿所述测试缺口81的侧壁向上浮起,并从所述第二排气孔向外排出,从而消除待测溶液中的气泡。
在测试过程中,待测溶液可以从所述对流孔11进入所述气泡分离腔,接着待测溶液在所述气泡分离腔内受到所述分离板的阻挡被迫改变流动方向,无法直接进入所述进液孔23,待测溶液沿所述分离板的延伸方向流动到达所述分离板的端部后,待测溶液脱离所述分离板的阻挡,并向所述进液孔23方向流动,由于气泡密度较小,此时待测溶液中掺杂的气泡向上浮起并脱离待测溶液,然后消除气泡后的待测溶液从所述进液孔23进入所述测试区域,并由传感器主体8对待测溶液的浓度进行测试。
本文中的“第一”、“第二”仅仅是为了在描述上加以区分,并没有特殊的含义。
需要声明的是,上述技术方案仅仅为本发明的实施例,在本发明所公开的技术范围内,任何熟悉本技术领域的技术人员所容易想到的变化或替换,都应 涵盖在本发明的保护范围内。
工业实用性
本申请公开了一种光学浓度传感器保护罩,包括外盖和气泡隔罩,所述气泡隔罩嵌装在所述外盖的内侧;所述外盖上开设有对流孔;所述气泡隔罩上开设有进液孔。本申请还公开一种包括上述保护罩的光学浓度测试装置。通过设置保护罩对传感器主体进行保护,一方面避免传感器主体受碰撞或挤压而损坏,延长传感器主体的使用寿命,另一方面使保护罩内侧的待测溶液趋于静止,提高测试结果的精度。另外,通过在外盖的外侧设置气孔挡板,防止待测溶液在浇灌过程中直接进入测试区域内,同时避免灰尘等污染物进入测试区域内影响测试结果的精度,从而保证测试结果的可靠性。

Claims (10)

  1. 一种光学浓度传感器保护罩,包括外盖和气泡隔罩,所述气泡隔罩嵌装在所述外盖的内侧;
    所述外盖上开设有对流孔;
    所述气泡隔罩上开设有进液孔。
  2. 根据权利要求1所述的光学浓度传感器保护罩,还包括气孔挡板,所述外盖上开设有第一排气孔,所述气孔挡板遮盖所述第一排气孔,所述气孔挡板与所述第一排气孔之间具有间隙。
  3. 根据权利要求2所述的光学浓度传感器保护罩,其中,所述气泡隔罩上开设有第二排气孔,所述第一排气孔与所述第二排气孔连通。
  4. 根据权利要求1所述的光学浓度传感器保护罩,其中,所述对流孔与所述进液孔之间设置有阻挡物,待测溶液从所述对流孔绕过所述阻挡物到达所述进液孔。
  5. 根据权利要求4所述的光学浓度传感器保护罩,其中,所述外盖上开设有两个所述对流孔,所述阻挡物包括两个分离板,所述进液孔开设在两个所述分离板之间,两个所述对流孔分别设置在两个所述分离板的外侧。
  6. 根据权利要求5所述的光学浓度传感器保护罩,其中,两个所述分离板呈“八”形分布。
  7. 根据权利要求6所述的光学浓度传感器保护罩,其中,两个所述分离板分别是第一分离板和第二分离板,所述进液孔位于所述第一分离板与所述第二分离板之间距离大的一端,所述进液孔紧靠所述第二分离板。
  8. 根据权利要求1至7任一项所述的光学浓度传感器保护罩,其中,所述气泡隔罩采用弹性材料制成。
  9. 一种光学浓度测试装置,包括权利要求1至8任一项所述的光学浓度传感器保护罩。
  10. 根据权利要求9所述的光学浓度测试装置,还包括传感器主体,所述传感器主体上开设有测试缺口,所述测试缺口的开口方向朝水平方向。
PCT/CN2016/074697 2016-02-26 2016-02-26 光学浓度传感器保护罩及光学浓度测试装置 WO2017143590A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187027737A KR102106564B1 (ko) 2016-02-26 2016-02-26 광학 농도 센서 보호케이스 및 광학 농도 측정 장치
EP16891044.6A EP3428617A4 (en) 2016-02-26 2016-02-26 PROTECTIVE HOUSING FOR OPTICAL SEALING SENSOR AND OPTICAL DENSITY TESTING DEVICE
US16/079,702 US10670516B2 (en) 2016-02-26 2016-02-26 Optical concentration sensor protective casing and optical concentration testing device
PCT/CN2016/074697 WO2017143590A1 (zh) 2016-02-26 2016-02-26 光学浓度传感器保护罩及光学浓度测试装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/074697 WO2017143590A1 (zh) 2016-02-26 2016-02-26 光学浓度传感器保护罩及光学浓度测试装置

Publications (1)

Publication Number Publication Date
WO2017143590A1 true WO2017143590A1 (zh) 2017-08-31

Family

ID=59684928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074697 WO2017143590A1 (zh) 2016-02-26 2016-02-26 光学浓度传感器保护罩及光学浓度测试装置

Country Status (4)

Country Link
US (1) US10670516B2 (zh)
EP (1) EP3428617A4 (zh)
KR (1) KR102106564B1 (zh)
WO (1) WO2017143590A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113075153B (zh) * 2021-03-31 2021-12-24 浙江焜腾红外科技有限公司 一种远距离红外气体的成像传感器及其检测机构
CN114460008B (zh) * 2022-02-16 2023-11-21 西南石油大学 一种井口泡沫检测装置和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3560099A (en) * 1968-07-10 1971-02-02 Inst Produktudvikling Colorimeter flow cell including a baffle to remove gas bubbles
CN202110139U (zh) * 2011-05-31 2012-01-11 中国农业大学 水下光学溶解氧传感器
CN102803932A (zh) * 2010-03-31 2012-11-28 埃科莱布美国股份有限公司 手持式光学测量装置和使用方法
JP5221053B2 (ja) * 2007-04-09 2013-06-26 株式会社日本自動車部品総合研究所 尿素濃度検出装置
CN204214768U (zh) * 2014-11-24 2015-03-18 安徽芯核防务装备技术股份有限公司 一种用于浊度和溶解氧传感器的消泡遮光装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE370454B (zh) * 1970-01-30 1974-10-14 Nordstjernan Rederi Ab
US3849002A (en) * 1973-05-11 1974-11-19 Hach Chemical Co Method and apparatus for eliminating air during fluid turbidity measurement
US5831727A (en) * 1997-04-29 1998-11-03 Hach Company Bubble elimination from liquid
US8663562B2 (en) * 2011-09-13 2014-03-04 Sabic Innovative Plastics Ip B.V. Flow cell for measuring electromagnetic radiation absorption spectra in a continuously flowing immiscible liquid(s) or liquids with entrained gas phases
KR101221880B1 (ko) * 2012-04-30 2013-01-16 주식회사 과학기술분석센타 탁도 측정 용기가 구비된 수질 측정 센서용 보호캡 및 탁도 측정 용기가 구비된 수질 측정 장치
KR101732039B1 (ko) * 2014-04-18 2017-06-05 주식회사 과학기술분석센타 안정적인 해수 유출입을 위한 수질 측정 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3560099A (en) * 1968-07-10 1971-02-02 Inst Produktudvikling Colorimeter flow cell including a baffle to remove gas bubbles
JP5221053B2 (ja) * 2007-04-09 2013-06-26 株式会社日本自動車部品総合研究所 尿素濃度検出装置
CN102803932A (zh) * 2010-03-31 2012-11-28 埃科莱布美国股份有限公司 手持式光学测量装置和使用方法
CN202110139U (zh) * 2011-05-31 2012-01-11 中国农业大学 水下光学溶解氧传感器
CN204214768U (zh) * 2014-11-24 2015-03-18 安徽芯核防务装备技术股份有限公司 一种用于浊度和溶解氧传感器的消泡遮光装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3428617A4 *

Also Published As

Publication number Publication date
EP3428617A1 (en) 2019-01-16
EP3428617A4 (en) 2019-11-20
US20190072480A1 (en) 2019-03-07
US10670516B2 (en) 2020-06-02
KR102106564B1 (ko) 2020-05-07
KR20180116395A (ko) 2018-10-24

Similar Documents

Publication Publication Date Title
CN105738284A (zh) 光学浓度传感器保护罩及光学浓度测试装置
RU2704382C2 (ru) Система (варианты) и способ обнаружения твердых частиц
US20150159531A1 (en) Urea injection device for selective catalyst reduction device
WO2017143590A1 (zh) 光学浓度传感器保护罩及光学浓度测试装置
CN207225209U (zh) 一种油箱盖未关提醒装置
US9804004B1 (en) Fluid quality sensor and cover assembly
CN103717960A (zh) 结合有排出管壳体的用于车辆的耐压容器气体泄漏检测装置
JP2015190348A (ja) 燃料蒸発ガス排出抑制装置
CN202116284U (zh) 用于机动车的燃油注入器系统
KR20170114466A (ko) 입자상물질 및 질소산화물 통합감지센서
US20140250871A1 (en) Exhaust gas purification device for general-purpose engine
CN107420235A (zh) 汽油机进气歧管回火保护装置
CN208469549U (zh) 一种燃料电池客车顶置储氢舱
CN208900166U (zh) 一种国六车用18l尿素罐
CN111964983A (zh) 带u形三通管的烟尘烟气采样检测设备
CN202169869U (zh) 车用燃气泄漏报警安全保护舱
CN201884936U (zh) 燃气汽车气瓶气体导流安全帽
KR101315705B1 (ko) 차량용 가스감지장치
CN207864035U (zh) 一种具有防水排水功能汽车用排水管
CN205478012U (zh) 一种用于客车顶部进气系统的进气罩
US7673622B2 (en) Air filter, secondary air charging system and seal arrangement for a secondary air charging system
CN105571911B (zh) 防爆叉车气体检测集气方法
CN204936805U (zh) 一种塑料油箱
CN104564437A (zh) 一种加强型燃油蒸发排放控制系统
CN108150266B (zh) 排气消声系统、排气消声系统的防倒灌方法和车辆

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187027737

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016891044

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016891044

Country of ref document: EP

Effective date: 20180926

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16891044

Country of ref document: EP

Kind code of ref document: A1