WO2017142858A1 - Glass furnace regenerators formed of one-piece load-bearing wall blocks - Google Patents

Glass furnace regenerators formed of one-piece load-bearing wall blocks Download PDF

Info

Publication number
WO2017142858A1
WO2017142858A1 PCT/US2017/017769 US2017017769W WO2017142858A1 WO 2017142858 A1 WO2017142858 A1 WO 2017142858A1 US 2017017769 W US2017017769 W US 2017017769W WO 2017142858 A1 WO2017142858 A1 WO 2017142858A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass furnace
tie back
regenerator
blocks
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2017/017769
Other languages
English (en)
French (fr)
Inventor
Trevor Robert WILSON
Alan Bowser
Lou Carolla
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dsf Refractories And Minerals Ltd
Fosbel Inc
Original Assignee
Dsf Refractories And Minerals Ltd
Fosbel Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dsf Refractories And Minerals Ltd, Fosbel Inc filed Critical Dsf Refractories And Minerals Ltd
Priority to BR112018015773-2A priority Critical patent/BR112018015773B1/pt
Priority to AU2017221255A priority patent/AU2017221255B2/en
Priority to PL17706949.9T priority patent/PL3416920T3/pl
Priority to FIEP17706949.9T priority patent/FI3416920T3/fi
Priority to KR1020187026993A priority patent/KR102704994B1/ko
Priority to JP2018544078A priority patent/JP6763026B2/ja
Priority to MX2018009454A priority patent/MX2018009454A/es
Priority to CN201780011572.1A priority patent/CN108698874B/zh
Priority to EP17706949.9A priority patent/EP3416920B1/en
Priority to ES17706949T priority patent/ES2978867T3/es
Publication of WO2017142858A1 publication Critical patent/WO2017142858A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • C03B5/237Regenerators or recuperators specially adapted for glass-melting furnaces
    • C03B5/2375Regenerator brick design ; Use of materials therefor; Brick stacking arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/04Casings; Linings; Walls; Roofs characterised by the form, e.g. shape of the bricks or blocks used
    • F27D1/042Bricks shaped for use in regenerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/04Casings; Linings; Walls; Roofs characterised by the form, e.g. shape of the bricks or blocks used
    • F27D1/06Composite bricks or blocks, e.g. panels, modules
    • F27D1/08Bricks or blocks with internal reinforcement or metal backing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Definitions

  • the embodiments disclosed herein relate generally to large load-bearing pre-formed integral (one-piece) refractory components for constructing regenerator structures associated with glass furnaces.
  • raw materials including sand, lime, soda ash and other ingredients are fed into a furnace, sometimes called a glass tank.
  • the raw materials are subjected to temperature above about 2,800°F (approximately 1538°C) in the glass furnace which causes the raw materials to melt and thereby form a molten bed of glass that exits the glass furnace for further downstream processing into glass products.
  • the most common way of heating the glass furnace is through the combustion of a hydrocarbon fuel source, such as natural gas or oil.
  • the hydrocarbon fuel is mixed with combustion air inside the furnace and combusted to thereby transfer the combustion heat energy to the raw materials and glass melt prior to exiting the furnace.
  • the combustion air used to combust the fuel is preheated by means of regenerator structures. More specifically, a supply of combustion air is preheated in a honeycombed pack of checker bricks contained within the interior of the regenerator structure. More
  • fresh combustion air is drawn up through the pack of heated checker bricks in the regenerator structure and preheated by means of heat transfer.
  • the pre-heated combustion air may then be mixed with the fuel and combusted.
  • Waste combustion gas exits the glass furnace and passes through a second regenerator structure. As the waste gasses pass through the second regenerator the checkers in the pack are heated by means of heat transferred from the waste gas.
  • the process cycle is reversed so that the checker bricks in one of the regenerator structures that were being heated by heat transfer with the waste gas are then used to preheat the fresh combustion air while the checker bricks in the other regenerator structures that were used to preheat the combustion air are then re-heated by heat transfer with the waste combustion gas.
  • a predetermined time e.g., after about 15-30 minutes
  • regenerator structure e.g., the regenerator walls
  • the regenerator structure could be fabricated from larger refractory blocks, then fewer mortar joints would ensue thereby prolonging the regenerator structure's useful life and minimizing down time due to rebuilding.
  • the embodiments disclosed herein are directed toward glass furnace regenerators having monolithic interlocking refractory wall blocks which allow a faster build as compared to
  • opposed pairs of side and end walls are formed of refractory blocks, wherein at last one of the side and end walls of the regenerator comprise an interlocking plurality of refractory blocks, and wherein the refractory blocks are self-supporting and load-bearing one-piece pre-cast structures of refractory materials.
  • At least some of the refractory blocks may formed of dissimilar precast refractory materials to establish longitudinally adjacent integral regions of the blocks that differ in at least one of melting temperature and thermal conductivity of the refractory material.
  • the precast refractory materials establishing the adjacent integral regions of at least some of the refractory blocks have a melting temperature difference of at least about 50°C and/or the precast refractory materials establishing the integral regions of at least some of the refractory blocks have a thermal conductivity difference of at least about 10%.
  • the refractory blocks comprise interlocking tongue and grooves.
  • a plurality of adjacent upright buck stays each having an interior flange positioned against an exterior portion of the side walls, with a plurality of rods extending between the adjacent buck stays, wherein the rods have opposed terminal ends that are engaged with an interior flange of the buck stays so as to slide relative to the interior flange.
  • Tie back bars may thus be
  • the refractory blocks include interlocking tongue and grooves
  • at least one of the tongues of some blocks may be discontinuous so as to receive therein a portion of a respective tie back bar.
  • the refractory blocks comprise latitudinally oriented recessed channels for receiving respective ones of the tie back bars therein.
  • the channels may define a hole which is sized and configured to accept therein a pin dependently extending from a proximal end of a tie back bar.
  • the block includes a tongue on a top surface thereof, the tongue will be interrupted by the latitudinally oriented recessed channel thereby forming a gap.
  • the tie back bar may therefore be further provided with an intermediate protrusion having a cross-sectional profile corresponding to the tongue so that when the intermediate protrusion is positioned in the gap, it will be aligned with the tongue.
  • FIG. 1 is a perspective view of a non-furnace side of a regenerator structure that that embodies the one-piece blocks as described more fully herein;
  • FIG. 2 is a perspective view similar to FIG. 1 but showing the regenerator structure from the furnace side;
  • FIG. 3 is a perspective view of a partially assembled lower wall section of the regenerator depicted in FIGS. 1 and 2 which also shows the placement of the rider arches thereon;
  • FIG. 4 is a perspective cross-sectional elevational view of an upper wall section of the regenerator depicted in FIGS. 1 and 2 which also shows the placement of the crown arches thereon;
  • FIG. 5 is a perspective view of a partially assembled wall section of the regenerator depicted in FIGS. 1 and 2 and showing the external buck stays associated with such wall section;
  • FIG. 5A is an enlarged detailed perspective view of the wall section depicted in FIG. 5;
  • FIG. 5B is an enlarged cross-sectional view of the wall section depicted in FIG. 5 as taken along line 5B-5B in FIG. 5A;
  • FIG. 5C is an exploded perspective view of a representative wall block and tie back bars;
  • FIG. 6A is a partially exploded perspective view of a representative wall block showing another embodiment of the tie back bars that may be employed in the constructions disclosed herein;
  • FIG. 6B is an enlarged detailed perspective view of the embodiment of the tie back bars shown in FIG. 6A;
  • FIG. 7 A is a perspective view of a wall section showing yet another embodiment of tie back bars that may be employed in the constructions disclosed herein;
  • FIG. 7B is an enlarged detailed perspective view of the embodiment of the tie back bars shown in FIG. 7A.
  • FIGS. 1 and 2 schematically depict non- furnace side and furnace side perspective views, respectively, of a regenerator structure 10 having a lower wall section 10L constructed of large pre-cast refractory blocks (a few of which are identified by reference numeral 12) and an upper wall section 10U constructed of large pre-cast refractory blocks (a few of which are identified by reference numeral 14) thereby forming opposed pairs of side and end walls 16, 18, respectively.
  • the regenerator structure 10 is used in operative combination with a glass furnace (not shown) and that the regenerator structure 10 generally depicted in the accompanying FIGS. 1 and 2 is of a type used for side-fired glass furnaces.
  • the regenerator structure 10 includes a series of ports 10-1 which are used to introduce pre-heated combustion air into the glass furnace (not shown) or to exhaust combustion gas from the furnace depending on the operational cycle.
  • the upper wall section 10U of the regenerator structure 10 is capped with a series of adjacently positioned crowns (a representative few of which are noted by reference numeral 30).
  • the walls 16, 18 are structurally supported by external upright structural beams known colloquially as buck stays 20 (see FIG. 5).
  • the buck stays 20 are compressively held against the walls 16, 18 by means of tie rods (not shown) extending between and interconnecting opposed pairs of buck stays 20 both latitudinally and longitudinally relative to the regenerator structure 10.
  • the bottom portion of the regenerator structure includes adjacently positioned rider arches 40 (not shown in FIGS 1 and 2, but seen FIG. 3).
  • the rider arches 40 are thus provided to establish a channel 10C for the ingress/egress of combustion air and gases to/from the regenerator structure 10 and to provide a supporting floor for the checker bricks (not shown) occupying the interior volume of the regenerator structure 10 thereabove.
  • the various integral (one-piece) refractory blocks 12, 14 forming the walls 16, 18 as well as the crown arches 30, the rider arches 40 and the internal checker bricks may be positioned during construction and/or refurbishment of the regenerator 10 by the assembly apparatus and methods described more fully in U.S. Patent Application Serial No. 14/859,820 filed on September 21 , 2015 (the entire contents of which are expressly incorporated hereinto by reference).
  • the crown arches 30 and the rider arches 40 may be in accordance with those disclosed more fully in U.S. Patent Application Serial No. 14/939,210 filed on November 12, 2015 (the entire contents of which are expressly incorporated hereinto by reference).
  • the walls 16, 18 of the lower section 10L of regenerator 10 are formed by relatively large integral pressed blocks 12 that are interlocked with other blocks in the same course and in adjacent courses by mated tongue-and-groove structures (a representative few of the tongues and grooves are identified in FIG. 3 by 12a and 12b, respectively).
  • the blocks 12 may be fabricated of desired width in the lower wall 10L so as to accommodate foundation stringer blocks 40a having respective tongue and groove ends that provide foundation support for the rider arches 40.
  • FIG. 4 shows in greater detail a portion of the walls 16, 18 associated with the upper section 10U of the regenerator 10.
  • the blocks 14 in the upper section 10U of the walls 16, 18 are of lesser width as compared to the blocks 12 in the lower section 10L of the walls.
  • the interior of the walls 16, 18 at the upper section 10U of the regenerator 10 may thus be lined with relatively smaller refractory bricks (a representative few of which are identified by reference numeral 10B).
  • the blocks 14 are interlocked with other blocks in the same course and in adjacent courses by mated tongue-and-groove structures (a representative few of the tongues and grooves are identified in FIG. 3 by 14a and 14b, respectively).
  • FIG. 5 shows some of the blocks 12 in the lower section 10L of the regenerator 10 during construction which are provided with latitudinally oriented recessed tie back channels 20a, each of which receives a respective one of the tie back bars 20b (see FIG. 5C).
  • the tie back bars 20b include a pin 20c dependently extending from a proximal end thereof which is physically received within a correspondingly sized hole 12c formed in the top of the blocks 12 so as to retain the bars 20b in their respective grooves 20a.
  • the tie back bars 20b also include an intermediate protrusion 20d which has a corresponding cross-sectional raised profile to that of the tongues 12a of the blocks 12. As such, when positioned within the recessed channels 20a, the intermediate protrusion 20d of the tie back bars 20b will thereby bridge the gap 12d formed in the tongue 12a by the channels 20a thereby presenting an essentially continuous tongue profile in cross-section (see FIG. 5B).
  • the tie back bars 20b will also be physically held in the recessed channels 20a by virtue of the weight of a superjacent block 12 stacked thereabove.
  • the exposed distal ends of the tie back bars 20b are rigidly connected (e.g., via welding) to cross-wise adjusting angle rods 22.
  • Each of the adjusting angle rods 22 extends substantially horizontally parallel to the courses of the blocks 12 (or 14) between an adjacent pair of the buck stays 20.
  • the opposed terminal ends of the rods 22 are unconnected to the buck stays 20 but are slideably engaged with an interior flange
  • the adjusting angle rods 22 are permitted to slideably move in the lengthwise direction of the buck stays 20 thereby allowing the walls 16 and 18 to accommodate such thermal expansion.
  • tie back bars 20b' is shown in accompanying FIGS. 6A and 6B as being positioned in the channels 20a of a block 12 and having a proximal turn-back bent end forming a generally triangular protrusion 20d'.
  • the protrusion 20d' has a smaller raised profile as compared to the tongue 12a of the blocks 12 so that when positioned in the channels 20a, the protrusion 20d' will be received by a groove 12b on the bottom surface of a vertically adjacent block 12.
  • the distal ends 20e' of the bars 20b' may likewise be rigidly connected (e.g., via welding) to crosswise rods 22 (not shown in FIG. 6 but see FIGS. 5A and 5B) to allow for vertical positional movement of the blocks 12 relative to the buckstays 20 (e.g., as may occur due to thermal expansion of the blocks 12).
  • FIGS. 5B and 6B depict certain of the blocks 12 as having a transverse groove 20a
  • the groove 20a may be omitted from the blocks 12, in which case the tie back bars 20b or 20b' as may be the case will then be fashioned with an intermediate curved section conforming to the contour of the tongue of the block 12.
  • the blocks 12 will have continuous (uninterrupted) tongues along an upper surface thereof with the tie back rods 20b, 20b' being positioned on the top surface of the block 12 such that the curved section thereof conformably receives a subjacent portion of the tongue 12a.
  • the terminal end of such alternately configured tie back bars 20b, 20b' may be rigidly connected to the angle rods 22.
  • the tie back bars 20b and 20b' may be employed together provided that the blocks 12 include the
  • FIGS. 7A and 7B A further alternative tie back bar assembly 30 that may be employed in the embodiments described herein is shown in FIGS. 7A and 7B.
  • the tie back assembly 30 is generally comprised of a series of interior and exterior tie back plates 32, 34, respectively that are positioned in an end-to-end manner parallel and adjacent to the discontinuous tongues 12a.
  • the interior and exterior tie back plates 32, 34, respectively are rigidly joined to one another (e.g., via welding) by coplanar bridge plates 36 which are received in a respective gap 12d formed in the discontinuous tongues 12a.
  • each of the tie back assemblies 30 comprised of interior and exterior tie back plates 30, 34 and the interconnecting bridge plate 36 can be positioned on the top surface of the blocks 12 and compressively held in a fixed position by the weight of blocks 12 stacked thereon.
  • the exterior plate 34 is preferably dimensioned so that an outer edge portion 34a extends beyond the exterior face of the blocks 12a (see FIG. 7B).
  • the outer edge portion 34a may also be provided with a series of apertures (a representative one of the apertures being shown in FIG. 7B by reference numeral 34b) to allow connection to a cross-wise angle rod 22 extending between adjacent pairs of buckstays 20 for the purpose as already described previously by means of a corresponding series of connectors (e.g., nut and bolt assemblies, a representative few of which are shown in FIGS. 7 A and 7B by reference numeral 38).
  • the outer edge portion 34a may of course alternatively or additionally be rigidly connected to the angle rod 22 by welding.
  • block as used herein is intended to refer to a generally large sized solid refractory member that requires mechanical assistance for handling and manipulation (e.g., via suitable hoists, lifts and the like). More specifically, a refractory "block” as used herein and the accompanying claims is intended to refer to a refractory member whose weight cannot be lifted manually by a single individual in accordance with generally accepted guidelines according to the US Occupational Safety and Health Administration (OSHA), e.g., typically an object which weighs more than about 50 pounds.
  • OSHA US Occupational Safety and Health Administration
  • a refractory block is therefore to be distinguished from a conventional refractory hand-laid brick since the latter is a small sized solid refractory member that may easily be handled and manipulated by a single individual in accordance with the generally accepted OSHA guidelines, e.g., typically an object weight less than about 50 pounds.
  • the refractory blocks 12, 14 employed by the embodiments disclosed herein are most preferably formed of a refractory material (e.g., fused silica) that is mechanically pressed and cured at high temperatures (e.g., up to about 1400°C) as described, for example, in U.S. Patent Nos. 2,599,236, 2,802,749 and 2,872,328, the entire contents of each such patent being expressly incorporated hereinto by reference.
  • a refractory material e.g., fused silica
  • high temperatures e.g., up to about 1400°C
  • refractory block members are of an exceptionally large size (e.g., block members having a size of generally about 650 mm or greater), then such blocks may be formed by casting and heat curing a refractory material (e.g., fused silica) as described in U.S. Patent Nos. 5,277, 106 and
  • the large integral (one-piece) refractory blocks 12, 14 as disclosed herein are pre-cast structures formed of castable refractory materials.
  • the castable refractory materials may have an air permeability of typically about 5 x 10 ⁇ 15 m 2 to about 5 x 10 ⁇ 14 m 2 (i.e., about 100 times lower than the air permeability for conventional pressed bricks currently used for regenerator walls) as measured according to British Standard (BS) 1902-3.9: 1981 (the entire content of which is expressly incorporated hereinto by reference).
  • BS British Standard
  • This relatively low air permeability further reduces penetration by gaseous components in the regenerator thereby also contributing to a reduction of wall corrosion.
  • the blocks 12 and/or 14 forming the lower and upper wall sections 12, 14, respectively, of the regenerator 10 may be formed monolithically of the same fused refractory material or may include multiple sections formed of different refractory material.
  • certain of the blocks may be formed with an exterior longitudinally extending section that is of a dissimilar refractory material as compared to one (or more) interior longitudinally extending sections integrally fused together so as to provide a gradient of thermal insulating properties across the thickness of the block as noted
  • the fused refractory materials forming each section differ from the fused refractory materials forming integrally adjacent sections by at least one of melting point and/or thermal conductivities.
  • the melting points of the fused refractory materials forming integrally adjacent sections of the blocks 12 and/or 14 will differ by at least 50 °C, sometime at least about 100 °C or even at least 150 °C, relative to one another.
  • the thermal conductivities of the fused refractory materials forming integrally adjacent sections of the blocks 12 and/or 14 will differ by at least about 10%, sometimes at least about 20% or even at least about 30%, relative to one another.
  • the blocks 12 and/or 14 forming the lower and upper wall sections 10L and 10U, respectively, may therefore be "engineered” in order to provide suitable thermal insulating characteristics in dependence of the particular location of the blocks 12 and/or 14 in the wall.
  • certain of the blocks 12 and/or 14 may be formed of side-by-side longitudinal sections each formed of a different refractory material so as to, e.g., provide a higher melting point and/or higher thermal conductivity material on the exposed "hot face" of the block and a relatively lower melting point and/or lower thermal conductivity material at the back face of the same block.
  • the integral refractory blocks 12 and/or 14 may be provided as a one-piece unitary block structure which serves the thermal insulating functions that have traditionally required the presence of multiple layers of bricks across the wall thickness of the regenerator structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
PCT/US2017/017769 2016-02-18 2017-02-14 Glass furnace regenerators formed of one-piece load-bearing wall blocks Ceased WO2017142858A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
BR112018015773-2A BR112018015773B1 (pt) 2016-02-18 2017-02-14 Regeneradores de fornalha de vidro formados de blocos de parede de uma única peça
AU2017221255A AU2017221255B2 (en) 2016-02-18 2017-02-14 Glass furnace regenerators formed of one-piece load-bearing wall blocks
PL17706949.9T PL3416920T3 (pl) 2016-02-18 2017-02-14 Regeneratory pieców szklarskich zbudowane z jednoczęściowych, nośnych bloków ściennych
FIEP17706949.9T FI3416920T3 (fi) 2016-02-18 2017-02-14 Yksiosaisista kantavista seinälohkoista muodostettuja lasiuunin regeneraattoreita
KR1020187026993A KR102704994B1 (ko) 2016-02-18 2017-02-14 일체형 로드 베어링 벽 블록으로 형성된 유리 노 축열기
JP2018544078A JP6763026B2 (ja) 2016-02-18 2017-02-14 ワンピースの耐荷重壁ブロックで形成されたガラス炉熱交換器
MX2018009454A MX2018009454A (es) 2016-02-18 2017-02-14 Recuperadores de horno de vidrio formados de bloques de pared de soporte de carga de una pieza.
CN201780011572.1A CN108698874B (zh) 2016-02-18 2017-02-14 由单件式承重壁块形成的玻璃熔炉蓄热器
EP17706949.9A EP3416920B1 (en) 2016-02-18 2017-02-14 Glass furnace regenerators formed of one-piece load-bearing wall blocks
ES17706949T ES2978867T3 (es) 2016-02-18 2017-02-14 Regeneradores de horno de vidrio formados por bloques de pared portantes de una pieza

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662296858P 2016-02-18 2016-02-18
US62/296,858 2016-02-18

Publications (1)

Publication Number Publication Date
WO2017142858A1 true WO2017142858A1 (en) 2017-08-24

Family

ID=58108760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2017/017769 Ceased WO2017142858A1 (en) 2016-02-18 2017-02-14 Glass furnace regenerators formed of one-piece load-bearing wall blocks

Country Status (11)

Country Link
US (1) US10364174B2 (enExample)
EP (1) EP3416920B1 (enExample)
JP (1) JP6763026B2 (enExample)
KR (1) KR102704994B1 (enExample)
CN (1) CN108698874B (enExample)
AU (1) AU2017221255B2 (enExample)
ES (1) ES2978867T3 (enExample)
FI (1) FI3416920T3 (enExample)
MX (1) MX2018009454A (enExample)
PL (1) PL3416920T3 (enExample)
WO (1) WO2017142858A1 (enExample)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD829248S1 (en) 2016-02-18 2018-09-25 Fosbel, Inc. Regenerator wall block
USD941973S1 (en) * 2017-06-14 2022-01-25 Fosbel, Inc. Coke oven corbel gas offtake module
JP7731016B1 (ja) * 2025-03-28 2025-08-28 ノリタケ株式会社 加熱炉

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1948798A (en) * 1931-12-30 1934-02-27 Nygaard Oscar Furnace wall
US2599236A (en) 1949-05-19 1952-06-03 C Otto & Company G M B H Dr Manufacture of silica brick from highly siliceous sands
US2802749A (en) 1953-05-18 1957-08-13 Illinois Clay Products Co Chemically bonded silica brick
US2872328A (en) 1955-07-12 1959-02-03 Illinois Clay Products Co Fired tricalcium bonded silica brick and mortar
GB833238A (en) * 1955-07-01 1960-04-21 Nobel Bozel Improvements in or relating to glass-melting furnaces and their manufacture
GB856830A (en) * 1958-04-16 1960-12-21 Hadex Company Ltd Improvements in or relating to constructions of walls, roofs or floors
US3294509A (en) * 1962-07-16 1966-12-27 Owens Illinois Inc Method of and apparatus for producing non-thermal currents in a body of molten glass
US3326541A (en) 1965-10-24 1967-06-20 Harbison Walker Refractories Glass tank structure with a regenerator chamber
US5137603A (en) * 1991-01-16 1992-08-11 Resco Products, Inc. Oven walls
AU634201B2 (en) * 1989-01-20 1993-02-18 Refractory Nominees Pty Ltd Outer refractory wall for heating or heat transfer apparatus and a panel therefor
US5277106A (en) 1990-07-02 1994-01-11 The Thermos Company, Inc. Easily assembled barbecue grill with heat distribution plate
US5423152A (en) 1990-02-09 1995-06-13 Tonawanda Coke Corporation Large size cast monolithic refractory repair modules and interfitting ceiling repair modules suitable for use in a coke over repair
DE102009045808A1 (de) * 2009-10-19 2011-04-21 Sintertechnik Gmbh Fertigbauteil für einen Ofen
US20110291310A1 (en) * 2008-12-17 2011-12-01 Humberto Calderon Degollado Method for constructing a monolithic refractory concrete furnace for the manufacture of glass
US20120111063A1 (en) * 2007-10-17 2012-05-10 Humberto Calderon Degollado Glass melting furnace built entirely with refractory concrete
WO2016004106A1 (en) * 2014-06-30 2016-01-07 Suncoke Technology And Development Llc Horizontal heat recovery coke ovens having monolith crowns

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US915195A (en) * 1907-04-13 1909-03-16 William Lemb Lining for walls.
US1699554A (en) * 1925-11-06 1929-01-22 Victor H Wigglesworth Tie for binding spaced walls together
US2109942A (en) * 1936-08-21 1938-03-01 Dee Thomas Wall block
US2341971A (en) * 1940-12-13 1944-02-15 American Arch Co Sectionally supported wall
US2847849A (en) * 1955-11-28 1958-08-19 Georges P Reintjes Modular suspended wall
US3134199A (en) * 1960-05-19 1964-05-26 North American Refractories Complexed refractory brick
US3376681A (en) * 1965-03-08 1968-04-09 Quigley Co Furnace wall of blocks with embedded fastening elements
US3763796A (en) * 1972-02-28 1973-10-09 Phillips Petroleum Co Furnace wall construction
US3912485A (en) * 1973-10-19 1975-10-14 Libbey Owens Ford Co Glass melting furnace and method of operation
JPS5421568Y2 (enExample) * 1974-12-07 1979-07-31
US4321779A (en) * 1979-08-20 1982-03-30 Speed-Form Manufacturing Ltd. Wall system utilizing interlocking block and ties
US4375236A (en) * 1981-09-24 1983-03-01 Ppg Industries, Inc. Regenerator flow distribution by means of air jets
US4763458A (en) * 1982-05-18 1988-08-16 Ksm Fastening Systems, Inc. Insulation system and method and apparatus for retaining same
US4768578A (en) * 1987-04-06 1988-09-06 Sulit Rodialo D Regenerative heat exchange systems and refractory bricks therefore
US5117604A (en) * 1989-06-26 1992-06-02 M.H. Detrick Co. Refractory brick wall system
JPH05157458A (ja) * 1991-12-11 1993-06-22 Asahi Glass Co Ltd 蓄熱室
US5277580A (en) * 1993-02-16 1994-01-11 Lea-Con, Inc. Wall construction system for refractory furnaces
JP2732366B2 (ja) * 1995-03-20 1998-03-30 前田製管株式会社 組立式焼却炉
US7677007B2 (en) * 2005-05-11 2010-03-16 Parker William H Interlocking insulating firebrick
TW201410620A (zh) * 2012-07-26 2014-03-16 Corning Inc 耐火襯墊結構及於玻璃熔融抽拉中的使用
WO2014174968A1 (ja) * 2013-04-24 2014-10-30 旭硝子株式会社 溶融ガラスの導管構造、該導管構造を用いた装置および方法
GB201500703D0 (en) * 2014-11-14 2015-03-04 Fosbel Inc Monolithic refractory crown and rider arches for glass furnace regenerators and glass furnace regenerators including the same
GB201503141D0 (en) * 2015-02-03 2015-04-08 Fosbel Inc Integral self-supporting refractory checker brick modules for glass furnace regenerator structures, and methods of forming same
JP5819552B1 (ja) * 2015-02-26 2015-11-24 美濃窯業株式会社 加熱炉の炉壁構造及びその製造方法
JP6432545B2 (ja) * 2016-02-24 2018-12-05 Jfeスチール株式会社 炉体構築方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1948798A (en) * 1931-12-30 1934-02-27 Nygaard Oscar Furnace wall
US2599236A (en) 1949-05-19 1952-06-03 C Otto & Company G M B H Dr Manufacture of silica brick from highly siliceous sands
US2802749A (en) 1953-05-18 1957-08-13 Illinois Clay Products Co Chemically bonded silica brick
GB833238A (en) * 1955-07-01 1960-04-21 Nobel Bozel Improvements in or relating to glass-melting furnaces and their manufacture
US2872328A (en) 1955-07-12 1959-02-03 Illinois Clay Products Co Fired tricalcium bonded silica brick and mortar
GB856830A (en) * 1958-04-16 1960-12-21 Hadex Company Ltd Improvements in or relating to constructions of walls, roofs or floors
US3294509A (en) * 1962-07-16 1966-12-27 Owens Illinois Inc Method of and apparatus for producing non-thermal currents in a body of molten glass
US3326541A (en) 1965-10-24 1967-06-20 Harbison Walker Refractories Glass tank structure with a regenerator chamber
AU634201B2 (en) * 1989-01-20 1993-02-18 Refractory Nominees Pty Ltd Outer refractory wall for heating or heat transfer apparatus and a panel therefor
US5423152A (en) 1990-02-09 1995-06-13 Tonawanda Coke Corporation Large size cast monolithic refractory repair modules and interfitting ceiling repair modules suitable for use in a coke over repair
US5277106A (en) 1990-07-02 1994-01-11 The Thermos Company, Inc. Easily assembled barbecue grill with heat distribution plate
US5137603A (en) * 1991-01-16 1992-08-11 Resco Products, Inc. Oven walls
US20120111063A1 (en) * 2007-10-17 2012-05-10 Humberto Calderon Degollado Glass melting furnace built entirely with refractory concrete
US20110291310A1 (en) * 2008-12-17 2011-12-01 Humberto Calderon Degollado Method for constructing a monolithic refractory concrete furnace for the manufacture of glass
DE102009045808A1 (de) * 2009-10-19 2011-04-21 Sintertechnik Gmbh Fertigbauteil für einen Ofen
WO2016004106A1 (en) * 2014-06-30 2016-01-07 Suncoke Technology And Development Llc Horizontal heat recovery coke ovens having monolith crowns

Also Published As

Publication number Publication date
AU2017221255B2 (en) 2020-03-12
US10364174B2 (en) 2019-07-30
US20170240451A1 (en) 2017-08-24
EP3416920A1 (en) 2018-12-26
KR102704994B1 (ko) 2024-09-09
BR112018015773A2 (pt) 2019-01-08
CN108698874B (zh) 2022-05-13
FI3416920T3 (fi) 2024-06-28
EP3416920B1 (en) 2024-04-03
JP2019505473A (ja) 2019-02-28
ES2978867T3 (es) 2024-09-23
AU2017221255A1 (en) 2018-08-09
JP6763026B2 (ja) 2020-09-30
MX2018009454A (es) 2019-03-07
KR20180118685A (ko) 2018-10-31
CN108698874A (zh) 2018-10-23
PL3416920T3 (pl) 2025-07-07

Similar Documents

Publication Publication Date Title
EP3218316B1 (en) Glass furnace regenerators including monolithic refractory crown
AU2017221255B2 (en) Glass furnace regenerators formed of one-piece load-bearing wall blocks
US7677007B2 (en) Interlocking insulating firebrick
US10260813B2 (en) Integral self-supporting refractory checker brick modules for glass furnace regenerator structures, and methods of forming same
US10407333B2 (en) Methods and apparatus for constructing glass furnace structures
US11180350B2 (en) Methods and apparatus for constructing glass furnace structures
CN107207306B (zh) 一体式自支撑复合耐火部件及其制造方法
EP3811013B1 (en) Methods and apparatus for constructing glass furnace refractory structures
BR112018015773B1 (pt) Regeneradores de fornalha de vidro formados de blocos de parede de uma única peça
HK1234718B (en) Methods and apparatus for constructing glass furnace structures
HK1234718A1 (en) Methods and apparatus for constructing glass furnace structures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17706949

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/009454

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2017221255

Country of ref document: AU

Date of ref document: 20170214

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018015773

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018544078

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187026993

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017706949

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017706949

Country of ref document: EP

Effective date: 20180918

ENP Entry into the national phase

Ref document number: 112018015773

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180801