WO2017141947A1 - エクソソーム複合体の形成方法 - Google Patents

エクソソーム複合体の形成方法 Download PDF

Info

Publication number
WO2017141947A1
WO2017141947A1 PCT/JP2017/005455 JP2017005455W WO2017141947A1 WO 2017141947 A1 WO2017141947 A1 WO 2017141947A1 JP 2017005455 W JP2017005455 W JP 2017005455W WO 2017141947 A1 WO2017141947 A1 WO 2017141947A1
Authority
WO
WIPO (PCT)
Prior art keywords
exosome
liposome
exosomes
complex
cationic compound
Prior art date
Application number
PCT/JP2017/005455
Other languages
English (en)
French (fr)
Inventor
吏惟 森村
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Publication of WO2017141947A1 publication Critical patent/WO2017141947A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes

Definitions

  • the present invention relates to a method for forming an exosome complex. More specifically, the present invention relates to a method for forming an exosome complex, a method for dispersing an exosome complex, an exosome complex forming agent, a kit for exosome recovery, a dispersant for an exosome complex, and a kit for dispersing an exosome complex.
  • This application claims priority based on Japanese Patent Application No. 2016-025835 filed in Japan on February 15, 2016 and Japanese Patent Application No. 2016-124375 filed in Japan on June 23, 2016. Is incorporated herein by reference.
  • Lipid vesicles are natural or artificial structures formed by lipid bilayer membranes. Conventionally, analysis has been performed on the contents of lipid vesicles, substances retained on a lipid bilayer, and the like. In particular, in recent years, it has become clear that exosomes, which are one type of natural lipid vesicle, are responsible for cell-to-cell information transmission.
  • An exosome is a lipid vesicle having a size of 40 to 100 nm, contains protein, mRNA, microRNA (miRNA), DNA and the like inside, and transmits information to a destination cell by moving between cells. . For example, it is known that an immune function is activated or a metastatic ability is acquired in a cell that receives an exosome containing a microRNA derived from cancer cells.
  • exosomes include factors that can control the functions of other cells that have received exosomes. For this reason, it is thought that exosome can be utilized as a new biomarker source for diagnosing a disease (for example, refer patent document 1).
  • Patent Document 2 describes a method for separating a exosome by adding a volume exclusion polymer to a biological sample.
  • Patent Document 3 describes a technique in which a liposome encapsulating a physiologically active substance and an exosome are complexed and the exosome is applied as a drug delivery carrier.
  • JP 2013-102768 A International Publication No. 2013/158203 JP 2014-185090 A
  • an object of the present invention is to provide a technique capable of easily collecting a high yield of exosomes.
  • a method for forming an exosome complex comprising a step of contacting an exosome and an exosome complex-forming agent, wherein the exosome complex-forming agent includes a cationic compound or a salting-out agent.
  • a method for dispersing the exosome complex comprising a step of bringing a chelating agent into contact with an exosome complex formed by contact with a metal cation.
  • a method for dispersing the exosome complex comprising a step of bringing an anion into contact with an exosome complex formed by contact with a cationic compound.
  • a method for dispersing the exosome complex comprising dialysis of an exosome complex formed by contact with a cationic compound or a salting-out agent, and removing the cationic compound or the salting-out agent.
  • An exosome complex-forming agent containing a cationic compound or a salting-out agent as an active ingredient.
  • exosome collection kit comprising the exosome complex-forming agent according to [11].
  • the exosome collection kit according to [15] which is for collection of exosomes from a biological sample.
  • the exosome collection kit according to [15] or [16], wherein the liposome further comprises sphingomyelin.
  • a method for aggregating lipid vesicles comprising a step of bringing lipid vesicles into contact with a cationic compound or a salting-out agent.
  • A2) The method for aggregating lipid vesicles according to (A1), wherein the cationic compound is a metal cation or a cationic polymer compound.
  • A3) A method for dispersing the agglomerated lipid vesicles, comprising a step of bringing a chelating agent into contact with the lipid vesicles aggregated by contact with a metal cation.
  • a method for dispersing the aggregated lipid vesicles comprising a step of bringing an anion into contact with the lipid vesicles aggregated by contact with a cationic compound.
  • a method for dispersing the agglomerated lipid vesicles comprising a step of dialyzing the agglomerated lipid vesicles by contact with a cationic compound or a salting-out agent and removing the cationic compound or the salting-out agent.
  • a kit for aggregating lipid vesicles comprising the aggregating agent according to (A6).
  • (B1) A method for recovering exosomes, comprising a step of coexisting exosomes and liposomes to form an exosome-liposome complex.
  • (B2) The exosome recovery method according to (B1), wherein in the step of forming an exosome-liposome complex, a cationic compound is further allowed to coexist in the exosome and the liposome.
  • (B3) The exosome collection method according to (B1) or (B2), wherein the liposome is an anionic liposome.
  • (B4) The method for recovering an exosome according to any one of (B1) to (B3), wherein the liposome comprises phosphatidylserines.
  • (B5) The method for recovering exosomes according to (B4), wherein the liposome further comprises sphingomyelin.
  • (B6) The method for recovering exosomes according to (B5), wherein the molar ratio of phosphatidylserines and sphingomyelin in the liposome is 9: 1 to 1: 9.
  • (B7) An exosome collection kit comprising liposomes.
  • (B8) The exosome collection kit according to (B7), further comprising a cationic compound.
  • (B9) The exosome collection kit according to (B7) or (B8), wherein the liposome is an anionic liposome.
  • (B10) The exosome collection kit according to any one of (B7) to (B9), wherein the liposome comprises phosphatidylserines.
  • (B11) The exosome collection kit according to (B10), which is for exosome collection from a biological sample.
  • (B12) The exosome collection kit according to (B10) or (B11), wherein the liposome further comprises sphingomyelin.
  • (B13) The exosome collection kit according to (B12), which is for collection of purified exosomes.
  • (B14) The exosome collection kit according to (B12) or (B13), wherein the molar ratio of phosphatidylserines and sphingomyelin in the liposome is 9: 1 to 1: 9.
  • FIG. 2 is a sectional view taken along line II-II in FIG. 6 is a graph showing the results of sandwich ELISA of Experimental Example 1.
  • 6 is a graph showing the results of sandwich ELISA in Experimental Example 2.
  • 10 is a graph showing the result of particle size distribution in Experimental Example 3.
  • 10 is a graph showing the results of sandwich ELISA of Experimental Example 4.
  • 10 is a graph showing the result of particle size distribution in Experimental Example 4.
  • (A)-(e) is a graph which shows the result of the particle size distribution of Experimental Example 5.
  • 6 is a graph showing the number of particles per mL of a sample in Experimental Example 5. It is a graph which shows the result of the sandwich ELISA of Experimental Example 6.
  • the present invention provides a method for forming an exosome complex, comprising the step of contacting an exosome and an exosome complex-forming agent, wherein the exosome complex-forming agent comprises a cationic compound or a salting-out agent.
  • the formed exosome complex can be easily recovered by centrifugation or the like. Therefore, it can be said that the method for forming an exosome complex of the present embodiment is a method for recovering exosomes.
  • the exosome complex means an aggregate of exosomes, a fusion of exosomes, a fusion and aggregation of exosomes, and the like.
  • Aggregation means a state in which a plurality of exosomes are in close contact with each other.
  • lipid vesicles such as exosomes can be aggregated in a dispersible state.
  • Aggregated exosomes can be easily recovered by centrifugation, filtration or the like. Therefore, it can be said that the method for forming an exosome complex of the present embodiment is an exosome aggregation method.
  • exosomes can be concentrated by dispersing the collected exosomes in a smaller volume of solvent than the original sample.
  • the high purity exosome means an exosome that does not contain a polymer such as PEG.
  • exosomes purified using a conventional exosome purification kit may be contaminated with polymers such as PEG, and it has been difficult to remove them.
  • exosomes that do not contain a polymer such as PEG can be easily recovered.
  • Exosomes may be isolated from samples such as biological fluids derived from living organisms, culture supernatants of microorganisms and cells, microorganisms, cells, tissue disruption fluids, etc., or may be artificially prepared.
  • Body fluids include whole blood, serum, plasma, various blood cells, blood clots, platelets and other blood components, urine, semen, breast milk, sweat, interstitial fluid, interstitial lymph fluid, bone marrow fluid, tissue fluid, saliva, gastric fluid, joints
  • Examples include fluid, pleural effusion, bile, ascites and amniotic fluid.
  • the method for forming an exosome complex of the present embodiment is a method for concentrating exosomes in a sample.
  • the concentration means that the concentration of exosomes after collection is higher than the concentration of exosomes in the initial sample.
  • the concentration of exosome can be measured, for example, by detecting an exosome marker. Examples of the exosome marker include CD9.
  • the formation method of the exosome complex of this embodiment is preferably performed in a liquid.
  • a cationic compound or salting-out agent for example, by adding a cationic compound or salting-out agent to a liquid containing exosomes, the exosome can be brought into contact with the cationic compound or salting-out agent to aggregate the exosomes.
  • the cationic compound or salting-out agent may be added to the liquid containing exosomes in the form of a powder, or may be added in the form of a solution dissolved in a solvent such as water.
  • the above liquid preferably has a buffering capacity. More specifically, the liquid may be phosphoric acid, citric acid, acetic acid, succinic acid, maleic acid, boric acid, trishydroxymethylaminomethane (Tris), HEPES, MES, PIPES, MOPS, TES, Tricine, etc. It preferably contains a compound having a buffer capacity.
  • the compound having a buffering ability may be added to the liquid containing exosomes in the form of a powder or in the form of a buffer.
  • the cationic compound is a compound that is ionized in a cation or an aqueous solution to generate a cation, and examples thereof include a metal cation and a cationic polymer compound.
  • metal cations include lithium ions, magnesium ions, calcium ions, sodium ions, potassium ions, strontium ions, barium ions, radium ions, zinc ions, copper ions, cadmium ions, silver ions, gold ions, nickel. Examples include ions, cobalt ions, iron ions, manganese ions, chromium ions, vanadium ions, titanium ions, and scandium ions.
  • the metal cation may be added to a sample containing exosomes in the form of a metal salt.
  • the metal salt include a salt formed by an ionic bond between any one of the above metal cations and an anion.
  • Anions include inorganic anions and organic anions. Examples of inorganic anions include halide ions such as chloride ions and iodide ions; sulfate ions, phosphate ions, and nitrate ions.
  • organic anion examples include sulfonate ions such as mesylate ion, besylate ion, tosylate ion and triflate ion; carboxylate ions such as formate ion, acetate ion, citrate ion and fumarate ion.
  • sulfonate ions such as mesylate ion, besylate ion, tosylate ion and triflate ion
  • carboxylate ions such as formate ion, acetate ion, citrate ion and fumarate ion.
  • calcium chloride, magnesium chloride and the like can be suitably used as the metal salt.
  • examples of the cationic polymer compound include polymer compounds having a repeating structure containing a cationic functional group.
  • the cationic functional group is not particularly limited as long as it is a positively charged functional group, and examples thereof include an amino group.
  • the cationic polymer compound only needs to be electrically positive as a whole molecule, and it is not necessary to have a cationic functional group in the side chain of all repeating units. It preferably has a functional functional group.
  • Examples of the cationic polymer compound include polypeptides such as polylysine, polyarginine, polyornithine, polyhistidine; polyacrylamide, polyvinylamine, polyallylamine, polyethylamine, polymethallylamine, polyvinylmethylimidazole, polyvinylpyridine, chitosan, 1,5-dimethyl-1,5-diazaundecamethylene-polymethobromide, poly (2-dimethylaminoethyl (meth) acrylate), poly (2-diethylaminoethyl (meth) acrylate), poly (2-trimethyl) And polymers such as ammonium ethyl (meth) acrylate), polydimethylaminomethylstyrene, polytrimethylammonium methylstyrene, and the like.
  • polypeptides such as polylysine, polyarginine, polyornithine, polyhistidine
  • polyacrylamide polyviny
  • the cationic compound one kind may be used alone, or two or more kinds may be used in combination. Further, the final concentration of the cationic metal salt to be contacted with the exosome may be, for example, 1 mM to 1 M, for example, 5 mM to 500 mM, for example, 5 mM to 100 mM.
  • Salting out uses the property that solutes such as proteins and low-molecular-weight organic compounds do not dissolve in high-concentration salt solutions, and dissolves salts in aqueous solutions of proteins and low-molecular-weight organic compounds to precipitate solutes. It is a method to make it.
  • Salting-out agent means a compound that causes exosome salting-out, and specifically includes ammonium sulfate and the like.
  • the salting-out agent one kind may be used alone, or two or more kinds may be used in combination.
  • the final concentration of the salting-out agent to be contacted with the exosome may be, for example, 20 w / v% or more, for example, 30 w / v% or more, for example, 40 w / v% or more, For example, it may be 50 w / v% or more (where w is the mass of the salting-out agent (solute), v is the volume of the solvent, and w / v% is the percentage of the ratio of w to v). )
  • the exosome complex forming agent may be a composition.
  • the exosome complex forming agent may further contain a liposome.
  • an exosome complex-forming agent containing liposomes is used, an exosome-liposome complex is formed by aggregation or fusion of exosomes and liposomes.
  • Liposomes are one type of artificial lipid vesicles. Liposomes can be produced by any conventionally known method such as sonication, reverse phase evaporation, freeze-thaw, lipid lysis, or spray drying. As a difference between exosomes and liposomes, for example, exosomes are natural products released from cells, whereas liposomes are artificially prepared.
  • Examples of the components of liposomes include phospholipids, glycolipids, and cholesterols.
  • Examples of phospholipids include phosphatidylcholines (for example, dioleoylphosphatidylcholine, dipalmitoylphosphatidylcholine, dilauroylphosphatidylcholine, etc.) and phosphatidylglycerols (for example, dioleoyl) having a saturated or unsaturated fatty acid having 3 to 30 carbon atoms as a component.
  • phosphatidylethanolamines eg dioleoylphosphatidylethanolamine, dipalmitoyl
  • glycolipids examples include glyceroglycolipids such as sulfoxyribosyl glyceride, diglycosyl diglyceride and digalactosyl diglyceride; glycosphingolipids such as galactosyl cerebroside, lactosyl cerebroside and ganglioside.
  • cholesterols examples include cholesterol, 3 ⁇ - [N- (dimethylaminoethane) carbamoyl] cholesterol, N- (trimethylammonioethyl) carbamoylcholesterol and the like.
  • the liposome is preferably an anionic liposome.
  • anionic liposomes As will be described later in Examples, the use of anionic liposomes as liposomes tends to improve the recovery rate of exosomes.
  • an anionic liposome means a liposome having a negative charge.
  • the anionic liposome may contain an anionic lipid in its constituent components.
  • the anionic lipid include phosphatidylserines, phosphatidylglycerols, phosphatidic acids, phosphatidylinositols and the like described above.
  • the anionic liposome may contain one kind of anionic lipid alone, or may contain two or more kinds in combination.
  • the liposome preferably contains phosphatidylserines or phosphatidylglycerols and sphingomyelin.
  • the molar ratio of phosphatidylserines or phosphatidylglycerols and sphingomyelin in the liposome is preferably 9: 1 to 1: 9, more preferably 9: 1 to 3: 7, and 9: It is more preferably 1: 1 to 1: 1, particularly preferably 8: 2 to 6: 4, and most preferably about 7: 3.
  • liposomes having a molar ratio of phosphatidylserines or phosphatidylglycerols to sphingomyelin within the above range tends to improve the exosome recovery rate.
  • the liposome may contain non-charged phospholipids, membrane stabilizers, membrane proteins, and the like. By containing these substances, the stability of the liposome can be enhanced.
  • Examples of the phospholipid having no charge include the above-described phosphatidylcholines and phosphatidylethanolamines.
  • Examples of the film stabilizer include sterol, glycerin or fatty acid ester thereof.
  • examples of sterols include the aforementioned cholesterols.
  • examples of glycerin fatty acid esters include triolein and trioctanoin.
  • membrane proteins examples include membrane surface proteins and membrane integral proteins.
  • the exosome-liposome complex may be a fusion of exosomes and liposomes, an aggregate of exosomes and liposomes, or exosomes and liposomes. May be fused and aggregated.
  • an exosome-liposome complex can be formed by mixing the exosome and the anionic liposome.
  • the exosome-liposome complex can be formed at a reaction temperature of about 4 to 50 ° C.
  • a complex may be formed at a ratio of one liposome to one exosome, or a complex may be formed at a ratio of one liposome to a plurality of exosomes. It may be formed, a complex may be formed at a ratio of a plurality of liposomes with respect to one exosome, or a complex may be formed at a ratio of a plurality of liposomes with respect to a plurality of exosomes. .
  • the aggregated exosome or exosome-liposome complex can be recovered by, for example, centrifugation, filter separation, or the like.
  • aggregated exosomes or exosome-liposome complexes are higher in density and larger in particle size than exosomes, and thus can be collected by ordinary centrifugation, filter separation, or the like.
  • normal centrifugation means centrifugation that is not ultracentrifugation, and means centrifugation by a centrifugal force of approximately 20,000 ⁇ g (where g represents gravitational acceleration) or less.
  • the centrifugation time may be, for example, 1 to 60 minutes, may be, for example, 1 to 30 minutes, may be, for example, 1 to 15 minutes, and may be, for example, 1 to 10 minutes.
  • the filter When performing filter separation, the filter may be a cellulose-based membrane or a synthetic polymer-based membrane. Further, the shape of the filter may be a tube shape, a hollow fiber membrane, a film shape, or a form in which a film-like filter is provided in a part of the container. .
  • the molecular weight cutoff of the filter is not particularly limited as long as the exosome-liposome complex can be separated, and may be, for example, 100 to 1,000,000, for example, 500 to 300,000. For example, it may be 1000 to 100,000, for example 5000 to 100,000.
  • the present invention provides a method for dispersing the exosome complex, comprising the step of bringing a chelating agent into contact with an exosome complex formed by contact with a metal cation.
  • the dispersion method of this embodiment can also be said to be a method for dispersing the aggregated exosome, comprising a step of bringing a chelating agent into contact with the exosome aggregated by contact with a metal cation.
  • exosome complex can be observed with the naked eye.
  • exosome dispersion means a state in which the exosome complex cannot be observed with the naked eye.
  • the aggregated exosome can be dispersed by bringing a chelating agent into contact with the exosome aggregated by contact with the metal cation.
  • the chelating agent is not particularly limited as long as it is a compound capable of chelating a metal cation.
  • ethylenediaminetetraacetic acid EDTA
  • O O′-bis (2-aminophenylethyleneglycol) ethylenediaminetetraacetic acid
  • BAPTA ethylenediaminetetraacetic acid
  • N N-bis (2-hydroxyethyl) glycine
  • CeDTA trans-1,2-diaminocyclohexane-ethylenediaminetetraacetic acid
  • DPTA- 1,3-diamino-2-hydroxypropane-ethylenediaminetetraacetic acid
  • DTPA diethylenetriaminepentaacetic acid
  • EDDP ethylenediaminedipropanoic acid reagent acid reagent
  • EPDPO N- (2-hydroxyethyl) ethylenediaminetriacetic acid
  • EDTA- H ethylenediaminediamine
  • the concentration of the chelating agent to be contacted with the aggregated exosome is not particularly limited as long as it can chelate and remove the metal cation interacting with the exosome, and may be, for example, 1 mM to 1 M, for example, 5 mM to 500 mM. For example, it may be 5 mM to 100 mM.
  • the present invention provides a method for dispersing the exosome complex, comprising the step of bringing an anion into contact with an exosome complex formed by contact with a cationic compound.
  • the dispersion method of this embodiment can also be said to be a method of dispersing the aggregated exosome, comprising a step of bringing an anion into contact with the exosome aggregated by contact with the cationic compound.
  • the cationic compound may be the metal cation or the cationic polymer compound described above.
  • the aggregated exosome is dispersed by the anion neutralizing the charge of the cationic compound interacting with the exosome.
  • the anion may be added to a sample containing aggregated exosomes in the form of an ionic compound (anionic compound) that is ionized in an aqueous solution to generate an anion.
  • anionic compound an ionic compound
  • the thing similar to the anion of the metal salt mentioned above is mentioned.
  • cations that form anionic compounds include polyatomic ions such as oxonium ions and ammonium ions; diammine silver ions, tetraammine zinc (II) ions, and hexaammine cobalt (III) ions. And the like.
  • the present invention comprises a step of dialysis of an exosome complex formed by contact with a cationic compound or a salting-out agent, and removing the cationic compound or the salting-out agent.
  • a method of dispersion is a method for dispersing the aggregated exosome, comprising dialysis of the exosome aggregated by contact with a cationic compound or a salting-out agent, and removing the cationic compound or the salting-out agent. It can be said that there is.
  • the cationic compound may be the metal cation described above or a cationic polymer compound that can be removed by dialysis.
  • the aggregated exosome is dispersed by removing the cationic compound or salting-out agent interacting with the exosome by dialysis.
  • the present invention provides an exosome complex-forming agent containing a cationic compound or a salting-out agent as an active ingredient. It can also be said that the exosome complex-forming agent of this embodiment is an exosome aggregation agent.
  • the cationic compound and the salting-out agent are the same as those described above.
  • the present invention provides an exosome collection kit comprising the exosome complex forming agent. Moreover, the kit of this embodiment may further comprise a liposome. According to the kit of this embodiment, exosomes can be easily recovered.
  • high purity exosomes can be easily recovered by coexisting exosomes and liposomes to form exosome-liposome complexes and recovering them by ordinary centrifugation or the like.
  • the aggregated exosome-liposome complex may be recovered by filter separation. Therefore, the exosome collection kit of this embodiment may further include a filter. As the filter, those described above can be used.
  • the exosome collection kit of this embodiment preferably includes a cationic compound.
  • a cationic compound As will be described later in the Examples, the coexistence of exosomes, liposomes and cationic compounds tends to improve the formation efficiency of exosome-liposome complexes and facilitate the recovery of exosomes.
  • the cationic compound those described above can be used.
  • the liposome is preferably an anionic liposome.
  • the recovery efficiency of exosome tends to increase.
  • the liposome may contain phosphatidylserines or phosphatidylglycerols.
  • the phosphatidylserine include those described above.
  • exosomes can be directly recovered from a biological sample such as a cell culture supernatant by using liposomes containing phosphatidylserines or phosphatidylglycerols. That is, the exosome collection kit of this embodiment may be used for exosome collection from a biological sample.
  • the biological sample include cell culture supernatant, serum, plasma, urine, tears, saliva and the like.
  • the liposome may contain phosphatidylserines or phosphatidylglycerols and sphingomyelin.
  • exosomes purified by ultracentrifugation using phosphatidylserines and sphingomyelin and exosomes purified using a conventional exosome purification kit using polyethylene glycol. Can be efficiently recovered.
  • the exosome collection kit of this embodiment provided with liposomes containing phosphatidylserines or phosphatidylglycerols and sphingomyelin is suitably used for exosome collection from a biological sample and for collection of purified exosomes. be able to.
  • the molar ratio of phosphatidylserines or phosphatidylglycerols to sphingomyelin in the liposome is preferably 9: 1 to 1: 9, more preferably 9: 1 to 3: 7, more preferably 9: 1 to It is more preferably 1: 1, particularly preferably 8: 2 to 6: 4, and most preferably about 7: 3.
  • the present invention provides a dispersant for an exosome complex formed by contact with a cationic compound, containing a chelating agent or an anionic compound as an active ingredient. It can also be said that the dispersant of the present embodiment is an exosome dispersant aggregated by contact with a cationic compound, containing a chelating agent or an anionic compound as an active ingredient.
  • the chelating agent and the anionic compound are the same as those described above.
  • the present invention provides a kit for dispersing an exosome complex formed by contact with a cationic compound, comprising the above-described dispersant. It can also be said that the kit of this embodiment is a kit for dispersing exosomes aggregated by contact with a metal salt. According to the kit of this embodiment, aggregated exosomes can be easily dispersed.
  • the present invention provides a kit for dispersing an exosome complex formed by contact with a cationic compound or a salting-out agent, comprising a dialysis membrane. It can also be said that the kit of this embodiment is a kit for dispersing exosomes aggregated by contact with a cationic compound or a salting-out agent provided with a dialysis membrane.
  • the dialysis membrane may be a cellulosic membrane or a synthetic polymer membrane.
  • the dialysis membrane may be in the form of a tube, may be in the form of a hollow fiber membrane, or may be in the form of a film. For example, a dialysis membrane in the form of a film is provided in a part of the container. The form may be sufficient.
  • the molecular weight cut off of the dialysis membrane is not particularly limited as long as it is larger than the molecular weight of the cationic compound or salting-out agent to be removed and smaller than the exosome, but may be 100 to 500, for example, 500 to 1,000. It may be 1,000 to 5,000, 5,000 to 10,000, 10,000 to 50,000, 50,000 to 100 May be 1,000,000, 100,000 to 300,000, or 300,000 to 1,000,000.
  • FIG. 1 is a perspective view showing one embodiment of a microfluidic device.
  • 2 is a cross-sectional view taken along the line II-II in FIG.
  • the microfluidic device 100 includes a channel 110, a filter 120, a channel inlet 130, and a channel outlet 140.
  • the microfluidic device 100 of this embodiment is a device that concentrates exosomes in a sample.
  • the pore size of the filter 120 is such a size that the aggregated exosome cannot pass through and the dispersed exosome can pass through, for example, 0.5 ⁇ m, for example, 0.22 ⁇ m, for example, 0.1 ⁇ m. It may be.
  • the process of concentrating exosomes will be described with reference to FIGS.
  • the above-described exosome aggregating agent cationic compound or salting-out agent
  • a sample containing aggregated exosomes is introduced into the channel inlet 130.
  • the liquid introduced into the flow path may be driven by an external suction pump connected to the flow path outlet 140 or by applying pressure from the flow path inlet 130.
  • the aggregated exosome cannot pass through the filter 120 and is captured by the filter 120.
  • exosome dispersant chelating agent or anionic compound
  • the dispersant is introduced from the channel inlet 130 in a state dissolved in a suitable solvent such as a buffer solution.
  • a suitable solvent such as a buffer solution.
  • the exosomes captured by the filter 120 are dispersed and can pass through the filter 120.
  • the exosome that has passed through the filter 120 is recovered from the flow path outlet 140.
  • the microfluidic device may further include a region for analyzing exosomes downstream of the filter 120 described above.
  • Exosomes were collected from the cell culture supernatant by ultracentrifugation.
  • Cells were removed by centrifuging 35 mL of the culture supernatant of human colon cancer cell line HCT116 at 300 ⁇ g (gravity acceleration) for 10 minutes.
  • the culture supernatant was centrifuged at 2,000 ⁇ g for 10 minutes to remove debris.
  • the culture supernatant was centrifuged at 10,000 ⁇ g for 30 minutes to remove finer debris.
  • the culture supernatant was filtered through a filter unit (Millipore) having a pore size of 0.22 ⁇ m.
  • the above sample was put into a tube for ultracentrifugation and centrifuged at 175,000 ⁇ g for 84 minutes using an ultracentrifuge (model “XE-90”, Beckman Coulter, Inc.). After centrifugation, the supernatant was discarded. 1 mL of buffer was added to the precipitate and suspended. Subsequently, an appropriate amount of buffer was added to make up the volume, and the mixture was further centrifuged at 175,000 ⁇ g for 84 minutes. After discarding the supernatant, 350 ⁇ L of buffer was added to the purified exosome precipitate, suspended, and transferred to a new tube.
  • Exosomes were collected directly from the cell culture supernatant.
  • the culture supernatant the culture supernatant of human colon cancer cell line HCT116 was used.
  • Liposomes were prepared using dioleoylphosphatidylcholine (DOPC), dioleoylphosphatidylserine (DOPS), sphingomyelin (SM) or dioleoylphosphoglycerol (DOPG) as lipids. In some cases, a plurality of lipids were mixed and used to prepare liposomes.
  • DOPC dioleoylphosphatidylcholine
  • DOPS dioleoylphosphatidylserine
  • SM sphingomyelin
  • DOPG dioleoylphosphoglycerol
  • lipid 10 mg was dissolved in 1 mL of chloroform. Subsequently, the lipid solution was placed in a glass container, and vacuumed with an evaporator while stirring with a vortex mixer to volatilize chloroform, thereby forming a lipid film in the glass container.
  • liposomes were injected into a glass syringe (Hamilton), and syringes were set on both sides of a Mini-extruder (Avanti Polar Rapid) with a pore size 100 nm Nuclepore polymer carbonate (Whatman). Subsequently, the liposome was manually passed through the filter 11 times to prepare a liposome having a diameter of about 100 nm.
  • CD9 is a kind of exosome marker.
  • fetal bovine serum (BSA) diluted with PBS was added at 150 ⁇ L / well, and the mixture was stirred on a plate shaker at room temperature for 60 minutes for blocking.
  • the plate was washed 3 times with 300 ⁇ L / well of PBS, a sample was added at 100 ⁇ L / well, and stirred at room temperature for 5 hours. Subsequently, the plate was washed 3 times with 300 ⁇ L / well of PBS, 100 ⁇ L / well of biotinylated anti-CD9 antibody (Ancell) diluted to 0.5 ⁇ g / mL with 1% BSA / PBS was added, and a plate shaker at room temperature for 60 minutes. Stir above.
  • HRP streptavidin-horseradish peroxidase
  • the plate was washed with 300 ⁇ L / well of PBS three times, and a coloring reagent (trade name “TMB substrate solution”, KPL) was added 100 ⁇ L / well at a time, and the mixture was stirred at room temperature for 30 minutes for color development. After stopping the reaction by adding 100% / well of 1% hydrochloric acid, the absorbance at a wavelength of 450 nm was measured with a plate reader (Tecan).
  • TMB substrate solution trade name “TMB substrate solution”, KPL
  • Nanoparticle tracking analysis The nanoparticle tracking analysis was performed using a nanoparticle characteristic analyzer (model “Nanosite NS500”, Malvern). This device measures the Brownian motion of scattered light obtained by irradiating a sample with a laser, and calculates the particle size distribution, particle size, and number of particles from the Stokes-Einstein equation. Samples were appropriately diluted and subjected to nanoparticle tracking analysis.
  • a nanoparticle characteristic analyzer model “Nanosite NS500”, Malvern. This device measures the Brownian motion of scattered light obtained by irradiating a sample with a laser, and calculates the particle size distribution, particle size, and number of particles from the Stokes-Einstein equation. Samples were appropriately diluted and subjected to nanoparticle tracking analysis.
  • FIG. 3 is a graph showing the results of sandwich ELISA. As shown in FIG. 3, when calcium chloride was not added, exosomes were detected from the supernatant. On the other hand, when calcium chloride was added, it became clear that the localization of exosomes shifted from the supernatant to the precipitate in a calcium chloride concentration-dependent manner. This result shows that exosomes aggregate by the addition of calcium chloride.
  • FIG. 4 is a graph showing the results of sandwich ELISA.
  • Experimental Example 1 when calcium chloride was not added, exosomes were detected from the supernatant, and the localization of exosomes shifted from the supernatant to the precipitate in a calcium chloride concentration-dependent manner. It became clear.
  • FIG. 5 and Table 1 are graphs showing the results of the particle size distribution.
  • the vertical axis represents the number of particles, and the horizontal axis represents the particle diameter.
  • exosomes were prepared from 5 ⁇ L of human serum using a commercially available exosome preparation kit (trade name “Total Exosome Isolation (Serum) Reagent”, Model “4478360”, Thermo Fisher Scientific)) using polyethylene glycol. And suspended in 100 ⁇ L of buffer.
  • FIG. 6 is a graph showing the results of sandwich ELISA. As a result, it was revealed that about 1.6 times as many exosomes as a commercially available kit could be prepared by the method using calcium chloride and EDTA.
  • FIG. 7 and Table 2 are graphs showing the results of the particle size distribution.
  • the vertical axis indicates the number of particles, and the horizontal axis indicates the particle diameter.
  • Example 5 (Examination of cations other than calcium ions) A sample obtained by adding 9 mL of D-MEM medium to 1 mL of the culture supernatant of the colon cancer cell line HCT116 was used. After removing cell debris and the like in the sample by centrifugation, calcium chloride, magnesium chloride, lithium chloride, sodium chloride or potassium chloride was added so that the final concentrations were 10, 50 and 100 mM.
  • the concentration of calcium chloride is the same as the concentration of calcium ions.
  • the concentration of magnesium chloride is the same as the concentration of magnesium ions.
  • the concentration of lithium chloride is the same as the concentration of lithium ions.
  • the concentration of sodium chloride is the same as the concentration of sodium ions.
  • the concentration of potassium chloride is the same as the concentration of potassium ions.
  • FIG. 8A to 8E are graphs showing the results of particle size distribution. 8A to 8E, the vertical axis represents the number of particles, and the horizontal axis represents the particle diameter.
  • FIG. 8 (a) shows the results for calcium chloride
  • FIG. 8 (b) shows the results for magnesium chloride
  • FIG. 8 (c) shows the results for lithium chloride
  • FIG. 8 (d) shows the results for sodium chloride.
  • FIG. 8 (e) shows the results for potassium chloride.
  • the particle size distribution measurement the presence of the most exosomes was confirmed in the sample to which calcium chloride was added at a final concentration of 50 mM or 100 mM.
  • FIG. 9 is a graph showing the number of particles per mL of sample. The results in FIG. 9 also showed that the most exosomes could be recovered by adding calcium chloride.
  • FIG. 10 is a graph showing the results of sandwich ELISA. As a result, it was revealed that exosomes could be recovered in a sample containing ammonium sulfate having a final concentration of 40% or more.
  • a liposome prepared with DOPC hereinafter sometimes referred to as “DOPC liposome”
  • DOPS liposome a liposome prepared with DOPS
  • DOPS liposome a liposome prepared with DOPS
  • DOPS and SM in a molar ratio of 7 Liposome prepared by mixing in 3 (hereinafter sometimes referred to as “DOPS / SM (7: 3) liposome”) and liposome prepared by DOPG (hereinafter sometimes referred to as “DOPG liposome”) were used.
  • DOPS liposome a liposome prepared with DOPC
  • DOPS liposome a liposome prepared with DOPS
  • DOPS liposome prepared with DOPS liposome DOPS and SM in a molar ratio of 7: Liposome prepared by mixing in 3 (hereinafter sometimes referred to as “DOPS / SM (7: 3) liposome”) and liposome prepared by DOPG (hereinafter sometimes referred to as “DOPG liposome”) were used.
  • each sample was allowed to stand at room temperature for 1 hour, and then centrifuged at 10,000 ⁇ g for 10 minutes to remove the supernatant. Subsequently, 100 ⁇ L of buffer was added to disperse the precipitate, and the abundance of CD9 was measured by the above-mentioned sandwich ELISA method.
  • FIG. 11 is a graph showing the results of sandwich ELISA. As a result, it was revealed that the recovery efficiency of exosomes was particularly high when DOPS / SM liposomes were used. This result indicates that DOPS / SM liposomes are useful for recovering exosomes purified by ultracentrifugation.
  • Example 8 (Recovery of exosomes purified with a commercial kit)
  • 10 ⁇ L of the liposome prepared by the above-described method was added to 50 ⁇ L of the exosome purified by a commercial kit (trade name “Total Exosome Isolation Reagent”, model “4478359”, Thermo Fisher Scientific Co., Ltd.) by the above-described method.
  • Concentration 1 mg / mL) and calcium chloride solution were added and mixed with a vortex mixer.
  • the liposome the same liposome as used in Experimental Example 7 was used.
  • the calcium chloride solution was added so that the final concentration of calcium ions was 5 mM.
  • a negative control a sample in which a calcium chloride solution was added to 50 ⁇ L of exosome purified by a commercially available kit so that the final concentration of calcium ions was 5 mM and liposomes were not added was used. Moreover, the sample which added 50 microliters of buffers to 50 microliters of exosomes was used as a positive control.
  • each sample was allowed to stand at room temperature for 1 hour, and then centrifuged at 10,000 ⁇ g for 10 minutes to remove the supernatant. Subsequently, 100 ⁇ L of buffer was added to disperse the precipitate, and the abundance of CD9 was measured by the above-mentioned sandwich ELISA method.
  • FIG. 12 is a graph showing the results of sandwich ELISA. As a result, it was revealed that the recovery efficiency of exosomes was particularly high when DOPS / SM liposomes were used. This result shows that DOPS / SM liposomes are also useful for recovering exosomes purified with commercial kits.
  • each sample was allowed to stand at room temperature for 1 hour, and then centrifuged at 10,000 ⁇ g for 10 minutes to remove the supernatant. Subsequently, 100 ⁇ L of buffer was added to disperse the precipitate, and the abundance of CD9 was measured by the above-mentioned sandwich ELISA method.
  • FIG. 13 is a graph showing the results of sandwich ELISA.
  • the exosome recovery rate is high when the molar ratio of DOPS to SM is in the range of 7: 3 to 3: 7, and the exosome recovery rate is highest when DOPS / SM (7: 3) liposomes are used. It became clear.
  • Exosomes were collected directly from the cell culture supernatant.
  • the culture supernatant the culture supernatant of human colon cancer cell line HCT116 was used.
  • 10 ⁇ L of the liposome prepared by the above-mentioned method and a calcium chloride solution were added and mixed with a vortex mixer.
  • the liposome DOPC liposome, DOPS liposome, DOPS / SM (7: 3) liposome was used.
  • the calcium chloride solution was added so that the final concentration of calcium ions was 10 mM.
  • a sample in which a calcium chloride solution was added to 100 ⁇ L of cell culture supernatant so that the final concentration of calcium ions was 10 mM and liposomes were not added was used.
  • each sample was allowed to stand at room temperature for 1 hour, and then centrifuged at 10,000 ⁇ g for 10 minutes to remove the supernatant and collect exosomes.
  • high purity exosomes could be recovered more easily than ultracentrifugation.
  • FIG. 14 is a graph showing the results of sandwich ELISA. As a result, it was clear that exosomes could not be recovered with DOPC liposomes, whereas exosomes could be recovered directly from the cell culture supernatant when DOPS liposomes and DOPS / SM (7: 3) liposomes were used. became.
  • the charge of the DOPC liposome is 0, and the charge of the DOPS liposome and DOPS / SM (7: 3) liposome is negative. That is, the above results indicate that anionic liposomes are useful for recovering exosomes in cell culture supernatant.
  • FIGS. 15A to 15C are photographs of the above tubes.
  • FIG. 15 (a) is a photograph of a tube in which exosomes and liposomes are only mixed (untreated).
  • FIG. 15B is a photograph of a tube in which exosomes and liposomes are mixed and freeze-thawed 15 times.
  • FIG. 15 (c) is a photograph of a tube in which exosomes and liposomes are mixed and calcium chloride is added.
  • FIG. 16 is a graph showing the results of nanoparticle tracking analysis.
  • the particle size of the exosome-liposome complex was too large, and the particle size could not be measured by nanoparticle tracking analysis.
  • FIG. 16 it was found that even when freeze-thawing was repeated, the change in the particle size of the exosome-liposome complex was small compared to that of the untreated one.
  • Example 12 Exosome recovery and electron microscope observation 1
  • Exosome purified by ultracentrifugation by the above-mentioned method 1 mg / mL DOPS / SM liposome, calcium chloride solution, EDTA solution mixed in various combinations, negatively stained, and transmission electron microscope (model “JEM-1400”) , JeoL).
  • the support film body grid Cu400 mesh (JeoL) was used for the sample stage of the electron microscope.
  • Exosomes were stained with colloidal gold-labeled anti-CD9 antibody.
  • FIG. 17A is an electron micrograph of a sample in which exosomes and liposomes are mixed.
  • the arrow indicates a gold colloid.
  • FIG. 17 (b) is an electron micrograph of a sample in which exosomes, liposomes and calcium chloride solution are mixed.
  • the calcium chloride solution was added so that the final concentration of calcium ions was 10 mM.
  • large black aggregates were observed in FIG. 17B, and exosomes or liposomes could not be observed. This result was consistent with the result of Experimental Example 11.
  • FIGS. 17 (c) and (d) are electron micrographs of a sample in which exosomes, liposomes, calcium chloride solution and EDTA solution are mixed.
  • the calcium chloride solution was added so that the final concentration of calcium ions was 10 mM.
  • EDTA was added so that the final concentration was 10 mM.
  • the arrow indicates a gold colloid.
  • the sample which mixed the buffer containing exosome, a calcium chloride solution, and EDTA was observed with the electron microscope.
  • FIGS. 17 (e) and (f) are electron micrographs of a sample in which exosomes, calcium chloride solution and EDTA solution are mixed.
  • the calcium chloride solution was added so that the final concentration of calcium ions was 10 mM.
  • EDTA was added so that the final concentration was 10 mM.
  • the arrow indicates a gold colloid. As a result, exosome aggregation was confirmed, but no fusion of 500 nm or more was observed.
  • Example 13 (Exosome recovery and electron microscope observation 2) Liposomes and calcium chloride solution were added to the culture supernatant of human colon cancer cell line HCT116 and allowed to stand at 37 ° C. for 1 hour. Exosomes were stained with colloidal gold-labeled anti-CD9 antibody. Liposomes were added to a final concentration of 0.45 mg / mL. The calcium chloride solution was added so that the final concentration of calcium ions was 150 mM.
  • the supernatant was removed by centrifugation at 12,000 ⁇ g for 10 minutes, the exosome precipitate was washed with a buffer, and a calcium chloride solution was added for reaggregation. Subsequently, the exosome was reprecipitated by further centrifugation at 12,000 ⁇ g for 10 minutes, and the sample in which the EDTA solution was added to disperse the exosome precipitate was negatively stained and observed with a transmission electron microscope.
  • FIGS. 18A to 18C are representative electron micrographs.
  • arrows indicate gold colloids.
  • exosome-liposome fusions and aggregates of 500 nm or more were observed. This result shows that exosomes in the culture supernatant can be recovered by mixing the culture supernatant with a liposome and a calcium chloride solution and centrifuging.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mycology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Preparation (AREA)

Abstract

エクソソームとエクソソーム複合体形成剤とを接触させる工程を備え、前記エクソソーム複合体形成剤がカチオン性化合物又は塩析剤を含む、エクソソーム複合体の形成方法。

Description

エクソソーム複合体の形成方法
 本発明は、エクソソーム複合体の形成方法に関する。より詳細には、エクソソーム複合体の形成方法、エクソソーム複合体の分散方法、エクソソーム複合体形成剤、エクソソーム回収用キット、エクソソーム複合体の分散剤及びエクソソーム複合体の分散用キットに関する。本願は、2016年2月15日に日本に出願された特願2016-025835号、及び2016年6月23日に日本に出願された特願2016-124375号に基づき優先権を主張し、それらの内容をここに援用する。
 脂質小胞は、脂質二重膜により形成された、天然の又は人工の構造体である。従来より、脂質小胞の内容物や脂質二重膜上に保持された物質等に対する分析が行われている。特に、近年、天然の脂質小胞の1種であるエクソソームが細胞間情報伝達を担っていることが明らかになり、注目されている。エクソソームは、40~100nmのサイズを有する脂質小胞であり、タンパク質、mRNA、マイクロRNA(miRNA)、DNA等を内部に包含し、細胞間を移動することにより移動先の細胞に情報を伝達する。例えば、がん細胞由来のマイクロRNAを含むエクソソームを受容した細胞において、免疫機能が活性化したり、転移能を獲得したりすることが知られている。
 このように、エクソソームには、エクソソームを放出した細胞の遺伝情報やシグナル因子に加え、エクソソームを受容した他の細胞の機能を制御し得る因子が含まれている。このため、エクソソームは疾患を診断するための新たなバイオマーカーソースとして活用できると考えられている(例えば、特許文献1を参照)。
 エクソソームの分離方法としては、超遠心分離や密度勾配超遠心分離による方法、エクソソーム表面に存在する抗原に対する抗体を用いた方法等が知られている。また、ポリエチレングリコール(PEG)等の試薬を用いたエクソソーム分離キットが市販されている。例えば、特許文献2には、生体試料に容量排除ポリマーを添加してエクソソームを分離する方法が記載されている。
 ところで、特許文献3には、生理活性物質を内包するリポソームとエクソソームを複合化し、エクソソームをドラッグデリバリーキャリアとして応用する技術が記載されている。
特開2013-102768号公報 国際公開第2013/158203号 特開2014-185090号公報
 しかしながら、超遠心分離や密度勾配超遠心分離による分離方法は、作業手順が煩雑で長時間を要する場合がある。また、抗体を用いた分離方法は、エクソソーム特異的な抗原が同定できていないため、エクソソーム一般に広く適用できるとは限らない。また、PEGを用いてエクソソームを分離した場合には、エクソソームが凝集し、分散することが困難になる場合がある。また、分離したエクソソームからPEGを完全に取り除くことができないため、エクソソームの解析に影響を及ぼす場合がある。
 そこで、本発明は、簡便に高収量のエクソソームを回収することができる技術を提供することを目的とする。
 本発明は以下の態様を含む。
[1]エクソソームとエクソソーム複合体形成剤とを接触させる工程を備え、前記エクソソーム複合体形成剤がカチオン性化合物又は塩析剤を含む、エクソソーム複合体の形成方法。
[2]前記エクソソーム複合体形成剤がリポソームを更に含む、[1]に記載のエクソソーム複合体の形成方法。
[3]前記リポソームがアニオン性リポソームである、[2]に記載のエクソソーム複合体の形成方法。
[4]前記リポソームがホスファチジルセリン類又はホスファチジルグリセロール類を含む、[2]又は[3]に記載のエクソソーム複合体の形成方法。
[5]前記リポソームがスフィンゴミエリンを更に含む、[4]に記載のエクソソーム複合体の形成方法。
[6]前記リポソーム中のホスファチジルセリン類又はホスファチジルグリセロール類と、スフィンゴミエリンとのモル比が9:1~1:9である、[5]に記載のエクソソーム複合体の形成方法。
[7]前記カチオン性化合物が、金属カチオン又はカチオン性高分子化合物である、[1]~[6]のいずれかに記載のエクソソーム複合体の形成方法。
[8]金属カチオンとの接触により形成されたエクソソーム複合体に、キレート剤を接触させる工程を備える、前記エクソソーム複合体の分散方法。
[9]カチオン性化合物との接触により形成されたエクソソーム複合体に、アニオンを接触させる工程を備える、前記エクソソーム複合体の分散方法。
[10]カチオン性化合物又は塩析剤との接触により形成されたエクソソーム複合体を透析し、前記カチオン性化合物又は前記塩析剤を除去する工程を備える、前記エクソソーム複合体の分散方法。
[11]カチオン性化合物又は塩析剤を有効成分として含有する、エクソソーム複合体形成剤。
[12][11]に記載のエクソソーム複合体形成剤を備える、エクソソーム回収用キット。
[13]リポソームを更に備える、[12]に記載のエクソソーム回収用キット。
[14]前記リポソームがアニオン性リポソームである、[13]に記載のエクソソーム回収用キット。
[15]前記リポソームがホスファチジルセリン類又はホスファチジルグリセロール類を含む、[13]又は[14]に記載のエクソソーム回収用キット。
[16]生体試料からのエクソソームの回収用である、[15]に記載のエクソソーム回収用キット。
[17]前記リポソームがスフィンゴミエリンを更に含む、[15]又は[16]に記載のエクソソーム回収用キット。
[18]精製されたエクソソームの回収用である、[17]に記載のエクソソーム回収用キット。
[19]前記リポソーム中のホスファチジルセリン類又はホスファチジルグリセロール類と、スフィンゴミエリンとのモル比が9:1~1:9である、[17]又は[18]に記載のエクソソーム回収用キット。
[20]キレート剤又はアニオン性化合物を有効成分として含有する、カチオン性化合物との接触により形成されたエクソソーム複合体の分散剤。
[21][20]に記載の分散剤を備える、カチオン性化合物との接触により形成されたエクソソーム複合体の分散用キット。
[22]透析膜を備える、カチオン性化合物又は塩析剤との接触により形成されたエクソソーム複合体の分散用キット。
(A1)脂質小胞とカチオン性化合物又は塩析剤とを接触させる工程を備える、脂質小胞の凝集方法。
(A2)前記カチオン性化合物が、金属カチオン又はカチオン性高分子化合物である、(A1)に記載の脂質小胞の凝集方法。
(A3)金属カチオンとの接触により凝集した脂質小胞に、キレート剤を接触させる工程を備える、凝集した前記脂質小胞の分散方法。
(A4)カチオン性化合物との接触により凝集した脂質小胞に、アニオンを接触させる工程を備える、凝集した前記脂質小胞の分散方法。
(A5)カチオン性化合物又は塩析剤との接触により凝集した脂質小胞を透析し、前記カチオン性化合物又は前記塩析剤を除去する工程を備える、凝集した前記脂質小胞の分散方法。
(A6)カチオン性化合物又は塩析剤を有効成分として含有する、脂質小胞の凝集剤。
(A7)(A6)に記載の凝集剤を備える、脂質小胞の凝集用キット。
(A8)キレート剤又はアニオン性化合物を有効成分として含有する、カチオン性化合物との接触により凝集した脂質小胞の分散剤。
(A9)(A8)に記載の分散剤を備える、カチオン性化合物との接触により凝集した脂質小胞の分散用キット。
(A10)透析膜を備える、カチオン性化合物又は塩析剤との接触により凝集した脂質小胞の分散用キット。
(B1)エクソソーム及びリポソームを共存させて、エクソソーム-リポソーム複合体を形成する工程を含む、エクソソームの回収方法。
(B2)エクソソーム-リポソーム複合体を形成する前記工程において、前記エクソソーム及び前記リポソームに、カチオン性化合物を更に共存させる、(B1)に記載のエクソソームの回収方法。
(B3)前記リポソームがアニオン性リポソームである、(B1)又は(B2)に記載のエクソソームの回収方法。
(B4)前記リポソームがホスファチジルセリン類を含む、(B1)~(B3)のいずれかに記載のエクソソームの回収方法。
(B5)前記リポソームがスフィンゴミエリンを更に含む、(B4)に記載のエクソソームの回収方法。
(B6)前記リポソーム中のホスファチジルセリン類及びスフィンゴミエリンのモル比が9:1~1:9である、(B5)に記載のエクソソームの回収方法。
(B7)リポソームを備える、エクソソーム回収用キット。
(B8)カチオン性化合物を更に備える、(B7)に記載のエクソソーム回収用キット。
(B9)前記リポソームがアニオン性リポソームである、(B7)又は(B8)に記載のエクソソーム回収用キット。
(B10)前記リポソームがホスファチジルセリン類を含む、(B7)~(B9)のいずれかに記載のエクソソーム回収用キット。
(B11)生体試料からのエクソソーム回収用である、(B10)に記載のエクソソーム回収用キット。
(B12)前記リポソームがスフィンゴミエリンを更に含む、(B10)又は(B11)に記載のエクソソーム回収用キット。
(B13)精製されたエクソソームの回収用である、(B12)に記載のエクソソーム回収用キット。
(B14)前記リポソーム中のホスファチジルセリン類及びスフィンゴミエリンのモル比が9:1~1:9である、(B12)又は(B13)に記載のエクソソーム回収用キット。
 本発明により、簡便に高純度のエクソソームを回収することができる技術を提供することができる。
マイクロ流体デバイスの1実施形態を示す斜視図である。 図1のII-II線断面図である。 実験例1のサンドイッチELISAの結果を示すグラフである。 実験例2のサンドイッチELISAの結果を示すグラフである。 実験例3の粒度分布の結果を示すグラフである。 実験例4のサンドイッチELISAの結果を示すグラフである。 実験例4の粒度分布の結果を示すグラフである。 (a)~(e)は実験例5の粒度分布の結果を示すグラフである。 実験例5における試料1mLあたりの粒子数を示すグラフである。 実験例6のサンドイッチELISAの結果を示すグラフである。 実験例7において、サンドイッチELISAによりエクソソームを検出した結果を示すグラフである。 実験例8において、サンドイッチELISAによりエクソソームを検出した結果を示すグラフである。 実験例9において、サンドイッチELISAによりエクソソームを検出した結果を示すグラフである。 実験例10において、サンドイッチELISAによりエクソソームを検出した結果を示すグラフである。 (a)~(c)は、実験例11の結果を示す写真である。 実験例11におけるナノ粒子トラッキング解析の結果を示す写真である。 (a)~(f)は、実験例12の結果を示す電子顕微鏡写真である。 (a)~(c)は、実験例13の結果を示す電子顕微鏡写真である。
[エクソソーム複合体の形成方法]
 1実施形態において、本発明は、エクソソームとエクソソーム複合体形成剤とを接触させる工程を備え、前記エクソソーム複合体形成剤がカチオン性化合物又は塩析剤を含む、エクソソーム複合体の形成方法を提供する。形成されたエクソソーム複合体は遠心分離等により容易に回収することができる。したがって、本実施形態のエクソソーム複合体の形成方法は、エクソソームの回収方法であるということもできる。
 本明細書において、エクソソーム複合体とは、エクソソーム同士が凝集したもの、エクソソーム同士が融合したもの、エクソソーム同士が融合且つ凝集したもの等を意味する。また、凝集とは、複数のエクソソームが密着して存在した状態を意味する。実施例において後述するように、本実施形態の方法によれば、エクソソーム等の脂質小胞を、分散可能な状態で凝集させることができる。また、凝集したエクソソームは、遠心分離、ろ過等により簡便に回収することができる。したがって、本実施形態のエクソソーム複合体の形成方法は、エクソソームの凝集方法であるということもできる。また、回収したエクソソームを、もとの試料よりも少ない容量の溶媒中に分散させることにより、エクソソームを濃縮することもできる。
 本実施形態のエクソソーム複合体の形成方法によれば、簡便に高純度のエクソソームを回収することができる。ここで、高純度のエクソソームとは、PEG等のポリマーを含有しないエクソソームであることを意味する。上述したように、従来のエクソソーム精製キットを用いて精製したエクソソームには、PEG等のポリマーが混入している場合があり、これを除去することは困難であった。これに対し、本実施形態の回収方法によれば、PEG等のポリマーを含有しないエクソソームを簡便に回収することができる。
(エクソソーム)
 エクソソームは、例えば、生体由来の体液、微生物や細胞の培養上清、微生物、細胞、組織の破砕液等の試料から分離したものであってもよく、人工的に作製したものであってもよい。体液としては、全血、血清、血漿、各種血球、血餅、血小板等の血液成分、尿、精液、母乳、汗、間質液、間質性リンパ液、骨髄液、組織液、唾液、胃液、関節液、胸水、胆汁、腹水、羊水等が挙げられる。
 本実施形態のエクソソーム複合体の形成方法は、試料中のエクソソームの濃縮方法であるということもできる。ここで、濃縮とは、当初の試料中のエクソソームの濃度よりも、回収後のエクソソームの濃度が高くなることを意味する。エクソソームの濃度は、例えば、エクソソームマーカーを検出することにより測定することができる。エクソソームマーカーとしては、例えば、CD9等が挙げられる。
 本実施形態のエクソソーム複合体の形成方法は液体中で行うことが好適である。例えば、エクソソームを含有する液体に、カチオン性化合物又は塩析剤を添加することにより、エクソソームとカチオン性化合物又は塩析剤とを接触させ、前記エクソソームを凝集させることができる。カチオン性化合物又は塩析剤は、エクソソームを含有する液体に、粉末の形態で添加してもよいし、水等の溶媒中に溶解させた溶液の形態で添加してもよい。
 上記の液体は緩衝能を有していることが好ましい。より具体的には、上記の液体は、リン酸、クエン酸、酢酸、コハク酸、マレイン酸、ホウ酸、トリスヒドロキシメチルアミノメタン(Tris)、HEPES、MES、PIPES、MOPS、TES、Tricine等の緩衝能を有する化合物を含有していることが好ましい。緩衝能を有する化合物は、エクソソームを含有する液体に、粉末の形態で添加してもよいし、緩衝液の形態で添加してもよい。
(カチオン性化合物)
 カチオン性化合物とは、カチオン又は水溶液中で電離してカチオンを生じる化合物であり、金属カチオン、カチオン性高分子化合物等が挙げられる。金属カチオンとしては、具体的には、リチウムイオン、マグネシウムイオン、カルシウムイオン、ナトリウムイオン、カリウムイオン、ストロンチウムイオン、バリウムイオン、ラジウムイオン、亜鉛イオン、銅イオン、カドミウムイオン、銀イオン、金イオン、ニッケルイオン、コバルトイオン、鉄イオン、マンガンイオン、クロムイオン、バナジウムイオン、チタンイオン、スカンジウムイオン等が挙げられる。
 金属カチオンは、金属塩の形態でエクソソームを含有する試料に添加してもよい。金属塩としては、上記のいずれかの金属カチオンとアニオンとのイオン結合により形成された塩が挙げられる。アニオンとしては、無機アニオン及び有機アニオンが挙げられる。無機アニオンとしては、例えば、塩化物イオン、ヨウ化物イオン等のハロゲン化物イオン;硫酸イオン、リン酸イオン、硝酸イオン等が挙げられる。有機アニオンとしては、メシレートイオン、ベシレートイオン、トシレートイオン、トリフレートイオン等のスルホン酸イオン;ギ酸イオン、酢酸イオン、クエン酸イオン、フマル酸イオン等のカルボン酸イオン等が挙げられる。金属塩としては、中でも、塩化カルシウム、塩化マグネシウム等を好適に用いることができる。
 また、カチオン性高分子化合物としては、カチオン性官能基を含有した繰り返し構造を持つ高分子化合物が挙げられる。カチオン性官能基とは、正電荷を帯びる官能基であれば特に制限されず、例えばアミノ基等が挙げられる。
 カチオン性高分子化合物は、分子全体として電気的に陽性であればよく、全ての繰り返し単位の側鎖にカチオン性官能基を有している必要はないが、全ての繰り返し単位の側鎖にカチオン性官能基を有していることが好ましい。
 カチオン性高分子化合物としては、例えば、ポリリジン、ポリアルギニン、ポリオルニチン、ポリヒスチジン等のポリペプチド;ポリアクリルアミド、ポリビニルアミン、ポリアリルアミン、ポリエチルアミン、ポリメタリルアミン、ポリビニルメチルイミダゾール、ポリビニルピリジン、キトサン、1,5-ジメチル-1,5-ジアザウンデカメチレン-ポリメトブロマイド、ポリ(2-ジメチルアミノエチル(メタ)アクリレート)、ポリ(2-ジエチルアミノエチル(メタ)アクリレート)、ポリ(2-トリメチルアンモニウムエチル(メタ)アクリレート)、ポリジメチルアミノメチルスチレン、ポリトリメチルアンモニウムメチルスチレン等のポリマー等が挙げられる。
 カチオン性化合物は1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、エクソソームと接触させるカチオン性金属塩の終濃度は、例えば1mM~1Mであってもよく、例えば5mM~500mMであってもよく、例えば5mM~100mMであってもよい。
(塩析剤)
 塩析とは、タンパク質や低分子有機化合物等の溶質が高濃度の塩の溶液には溶解しないという性質を利用して、タンパク質や低分子有機化合物の水溶液に塩類を溶解させて、溶質を析出させる方法である。
 この現象は、添加した塩類が水分子と水和し、溶質と水和している水分子を奪い取る脱水、溶質粒子の表面の電荷を塩類の電荷が中和して溶質の溶解度を減少させること等により起こる。
 塩析剤(上述したカチオン性化合物を除く。)とは、エクソソームの塩析を生じさせる化合物を意味し、具体的には、硫酸アンモニウム等が挙げられる。
 塩析剤は1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、エクソソームと接触させる塩析剤の終濃度は、例えば20w/v%以上であってもよく、例えば30w/v%以上であってもよく、例えば40w/v%以上であってもよく、例えば50w/v%以上であってもよい(ここで、wは塩析剤(溶質)の質量、vは溶媒の容量を示し、w/v%は、wとvの比率の百分率である。)
 なお、本明細書において、塩析剤にもカチオン性化合物にも該当する化合物は、カチオン性化合物として取り扱うものとする。
 本実施形態のエクソソーム複合体の形成方法において、エクソソーム複合体形成剤は、組成物であってもよい。エクソソーム複合体形成剤が組成物である場合、リポソームを更に含んでいてもよい。リポソームを含むエクソソーム複合体形成剤を使用した場合、エクソソーム及びリポソームが凝集又は融合した、エクソソーム-リポソーム複合体が形成される。
(リポソーム)
 リポソームとは、人工的な脂質小胞の1種である。リポソームは、超音波処理法、逆相蒸発法、凍結融解法、脂質溶解法、噴霧乾燥法等の従来公知の任意の方法により製造することができる。エクソソームとリポソームとの相違点としては、例えば、エクソソームが細胞から放出された天然物であるのに対し、リポソームは人工的に作製したものである点が挙げられる。
 リポソームの構成成分としては、リン脂質、糖脂質、コレステロール類等が挙げられる。リン脂質としては、炭素数3~30の飽和又は不飽和脂肪酸を構成成分に有する、ホスファチジルコリン類(例えば、ジオレオイルホスファチジルコリン、ジパルミトイルホスファチジルコリン、ジラウロイルホスファチジルコリン等)、ホスファチジルグリセロール類(例えば、ジオレオイルホスファチジルグリセロール、ジパルミトイルホスファチジルグリセロール、ジラウロイルホスファチジルグリセロール等)、ホスファチジルエタノールアミン類(例えば、ジオレオイルホスファチジルエタノールアミン、ジパルミトイルホスファチジルエタノールアミン、ジラウロイルホスファチジルエタノールアミン等)、ホスファチジルセリン類(例えば、ジオレオイルホスファチジルセリン、ジパルミトイルホスファチジルセリン、ジラウロイルホスファチジルセリン等)、ホスファチジン酸類、ホスファチジルイノシトール類、カルジオリピン類、スフィンゴミエリン、卵黄レシチン、大豆レシチン、及びこれらの水素添加物等が挙げられる。
 糖脂質としては、例えば、スルホキシリボシルグリセリド、ジグリコシルジグリセリド、ジガラクトシルジグリセリド等のグリセロ糖脂質;ガラクトシルセレブロシド、ラクトシルセレブロシド、ガングリオシド等のスフィンゴ糖脂質等が挙げられる。
 コレステロール類としては、コレステロール、3β-[N-(ジメチルアミノエタン)カルバモイル]コレステロール、N-(トリメチルアンモニオエチル)カルバモイルコレステロール等が挙げられる。
 本実施形態のエクソソームの回収方法において、リポソームはアニオン性リポソームであることが好ましい。実施例において後述するように、リポソームとしてアニオン性リポソームを用いることにより、エクソソームの回収率が向上する傾向にある。
 本明細書において、アニオン性リポソームとは、負の電荷を有するリポソームを意味する。アニオン性リポソームは、その構成成分にアニオン性脂質を含んでいてもよい。アニオン性脂質としては、上述したホスファチジルセリン類、ホスファチジルグリセロール類、ホスファチジン酸類、ホスファチジルイノシトール類等が挙げられる。アニオン性リポソームは、アニオン性脂質1種を単独で含んでいてもよく、2種以上を組み合わせて含んでいてもよい。
 本実施形態のエクソソームの回収方法において、リポソームは、ホスファチジルセリン類又はホスファチジルグリセロール類と、スフィンゴミエリンとを含んでいることが好ましい。また、リポソーム中のホスファチジルセリン類又はホスファチジルグリセロール類と、スフィンゴミエリンとのモル比は9:1~1:9であることが好ましく、9:1~3:7であることがより好ましく、9:1~1:1であることが更に好ましく、8:2~6:4であることが特に好ましく、約7:3であることが最も好ましい。
 実施例において後述するように、ホスファチジルセリン類又はホスファチジルグリセロール類と、スフィンゴミエリンとのモル比が上記の範囲であるリポソームを用いると、エクソソームの回収率が特に向上する傾向にある。
 リポソームは、上記の他にも、電荷を有しないリン脂質、膜安定化剤、膜タンパク質等を含んでいてもよい。これらの物質を含むことにより、リポソームの安定性を高めることができる。
 電荷を有しないリン脂質としては、上述したホスファチジルコリン類、ホスファチジルエタノールアミン類等が挙げられる。
 膜安定化剤としては、例えば、ステロール、グリセリン又はその脂肪酸エステル等が挙げられる。ステロールとしては、上述したコレステロール類が挙げられる。また、グリセリンの脂肪酸エステルとしては、例えば、トリオレイン、トリオクタノイン等が挙げられる。
 膜タンパク質としては、例えば、膜表在性タンパク質、膜内在性タンパク質等が挙げられる。
(エクソソーム-リポソーム複合体)
 本実施形態のエクソソーム複合体の形成方法において、エクソソーム-リポソーム複合体は、エクソソーム及びリポソームが融合したものであってもよいし、エクソソーム及びリポソームが凝集したものであってもよいし、エクソソーム及びリポソームが融合且つ凝集したものであってもよい。
 リポソームとしてアニオン性リポソームを使用した場合、エクソソームとアニオン性リポソームとを混合することによりエクソソーム-リポソーム複合体を形成することができる。エクソソーム-リポソーム複合体の形成は、反応温度4~50℃程度で実施することができる。
 エクソソーム-リポソーム複合体の形成においては、1個のエクソソームに対して1個のリポソームの割合で複合体が形成されてもよいし、複数のエクソソームに対して1個のリポソームの割合で複合体が形成されてもよいし、1個のエクソソームに対して複数のリポソームの割合で複合体が形成されてもよいし、複数のエクソソームに対して複数のリポソームの割合で複合体が形成されてもよい。
 本実施形態のエクソソーム複合体の形成方法において、凝集したエクソソーム又はエクソソーム-リポソーム複合体は、例えば、遠心分離、フィルター分離等により回収することができる。
 実施例において後述するように、凝集したエクソソーム又はエクソソーム-リポソーム複合体は、エクソソームよりも密度が高く、粒径が大きいため、通常の遠心分離や、フィルター分離等により回収することができる。
 本明細書において、通常の遠心分離とは、超遠心分離ではない遠心分離を意味し、概ね20,000×g(ここで、gは重力加速度を表す。)以下の遠心力による遠心分離をいう。遠心分離の時間は、例えば1~60分間であってもよく、例えば1~30分間であってもよく、例えば1~15分間であってもよく、例えば1~10分間であってもよい。
 また、フィルター分離を行う場合、フィルターは、セルロース系膜であってもよく、合成高分子系膜であってもよい。また、フィルターの形状はチューブ状であってもよく、中空糸膜であってもよく、フィルム状であってもよく、容器の一部にフィルム状のフィルターが備えられた形態であってもよい。また、フィルターの分画分子量は、エクソソーム-リポソーム複合体を分離することができれば特に制限されず、例えば、100~1,000,000であってもよく、例えば、500~300,000であってもよく、例えば、1000~100,000であってもよく、例えば5000~100,000であってもよい。
[エクソソームの分散方法]
 1実施形態において、本発明は、金属カチオンとの接触により形成されたエクソソーム複合体に、キレート剤を接触させる工程を備える、前記エクソソーム複合体の分散方法を提供する。本実施形態の分散方法は、金属カチオンとの接触により凝集したエクソソームに、キレート剤を接触させる工程を備える、凝集した前記エクソソームの分散方法であるということもできる。
 実施例において後述するように、エクソソーム複合体は肉眼で観察することができる。本実施形態の分散方法において、エクソソームの分散とは、エクソソーム複合体が肉眼で観察できなくなる状態を意味する。実施例において後述するように、金属カチオンとの接触により凝集したエクソソームに、キレート剤を接触させることにより、凝集したエクソソームを分散させることができる。
 キレート剤としては、金属カチオンをキレートすることができる化合物であれば特に制限されず、例えば、エチレンジアミン四酢酸(EDTA)、O,O’-ビス(2-アミノフェニルエチレングリコール)エチレンジアミン四酢酸(BAPTA)、N,N-ビス(2-ヒドロキシエチル)グリシン(Bicine)、トランス-1,2-ジアミノシクロヘキサン-エチレンジアミン四酢酸(CyDTA)、1,3-ジアミノー2-ヒドロキシプロパン-エチレンジアミン四酢酸(DPTA-OH)、ジエチレントリアミン五酢酸(DTPA)、エチレンジアミン二プロパン酸試薬酸試薬(EDDP)、エチレンジアミン二メチレンホスホン酸1水和物(EDDPO)、N-(2-ヒドロキシエチル)エチレンジアミン三酢酸(EDTA-OH)、エチレンジアミン四メチレンホスホン酸(EDTPO)、O,O’-ビス(2-アミノエチル)エチレングリコール四酢酸(EGTA)、N,N-ビス(2-ヒドロキシベンジル)エチレンジアミン二酢酸(HBED)、1,6-ヘキサメチレンジアミン四酢酸(HDTA)、N-(2-ヒドロキシエチル)イミノ二酢酸(HIDA)、イミノ二酢酸(IDA)、1,2-ジアミノプロパン四酢酸(Methyl-EDTA)、ニトリロ三酢酸(NTA)、ニトリロ三プロパン酸(NTP)、ニトリロ三メチレンホスホン酸三ナトリウム試薬(NTPO)、エチレンジアミン四(2-ピリジルメチル)(TPEN)、トリエチレンテトラアミン六酢酸(TTHA)等が挙げられる。
 キレート剤は1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、凝集したエクソソームに接触させるキレート剤の濃度は、エクソソームと相互作用している金属カチオンをキレートして除去できる濃度であればよく、例えば1mM~1Mであってもよく、例えば5mM~500mMであってもよく、例えば5mM~100mMであってもよい。
 1実施形態において、本発明は、カチオン性化合物との接触により形成されたエクソソーム複合体に、アニオンを接触させる工程を備える、前記エクソソーム複合体の分散方法を提供する。本実施形態の分散方法は、カチオン性化合物との接触により凝集したエクソソームに、アニオンを接触させる工程を備える、凝集した前記エクソソームの分散方法であるということもできる。
 本実施形態のエクソソーム複合体の分散方法において、カチオン性化合物は、上述した、金属カチオンであってもよく、カチオン性高分子化合物であってもよい。本実施形態のエクソソーム複合体の分散方法では、エクソソームと相互作用しているカチオン性化合物の電荷をアニオンが中和することにより、凝集したエクソソームが分散される。
 本実施形態のエクソソーム複合体の分散方法において、アニオンは、水溶液中で電離してアニオンを生じるイオン性化合物(アニオン性化合物)の形態で、凝集したエクソソームを含有する試料に添加してもよい。アニオンとしては、上述した金属塩のアニオンと同様のものが挙げられる。また、アニオン性化合物を形成するカチオンとしては、上述した金属カチオンの他、例えばオキソニウムイオン、アンモニウムイオン等の多原子イオン;ジアンミン銀イオン、テトラアンミン亜鉛(II)イオン、ヘキサアンミンコバルト(III)イオン等の錯イオン等が挙げられる。
 1実施形態において、本発明は、カチオン性化合物又は塩析剤との接触により形成されたエクソソーム複合体を透析し、前記カチオン性化合物又は前記塩析剤を除去する工程を備える、前記エクソソーム複合体の分散方法を提供する。本実施形態の分散方法は、カチオン性化合物又は塩析剤との接触により凝集したエクソソームを透析し、前記カチオン性化合物又は前記塩析剤を除去する工程を備える、凝集した前記エクソソームの分散方法であるということもできる。
 本実施形態のエクソソーム複合体の分散方法において、カチオン性化合物は、上述した金属カチオンであってもよく、透析により除去することが可能なカチオン性高分子化合物であってもよい。本実施形態のエクソソーム複合体の分散方法では、エクソソームと相互作用しているカチオン性化合物又は塩析剤を透析により除去することにより、凝集したエクソソームが分散される。
[エクソソーム複合体形成剤及びキット]
 1実施形態において、本発明は、カチオン性化合物又は塩析剤を有効成分として含有する、エクソソーム複合体形成剤を提供する。本実施形態のエクソソーム複合体形成剤は、エクソソーム凝集剤であるということもできる。カチオン性化合物及び塩析剤については上述したものと同様である。
 1実施形態において、本発明は、上記のエクソソーム複合体形成剤を備える、エクソソーム回収用キットを提供する。また、本実施形態のキットは、リポソームを更に備えていてもよい。本実施形態のキットによれば、エクソソームを容易に回収することができる。
 実施例において後述するように、エクソソーム及びリポソームを共存させて、エクソソーム-リポソーム複合体を形成させ、通常の遠心分離等で回収することにより、簡便に高純度のエクソソームを回収することができる。
 凝集したエクソソーム-リポソーム複合体は、フィルター分離により回収してもよい。したがって、本実施形態のエクソソーム回収用キットは、フィルターを更に備えていてもよい。フィルターとしては、上述したものを用いることができる。
 本実施形態のエクソソーム回収用キットは、カチオン性化合物を備えていることが好ましい。実施例において後述するように、エクソソーム、リポソーム及びカチオン性化合物を共存させることにより、エクソソーム-リポソーム複合体の形成効率が向上し、エクソソームの回収が容易になる傾向にある。カチオン性化合物としては上述したものを用いることができる。
 本実施形態のエクソソーム回収用キットにおいて、リポソームはアニオン性リポソームであることが好ましい。実施例において後述するように、リポソームがアニオン性リポソームであることにより、エクソソームの回収効率が上昇する傾向にある。
 本実施形態のエクソソーム回収用キットにおいて、リポソームはホスファチジルセリン類又はホスファチジルグリセロール類を含んでいてもよい。ホスファチジルセリン類としては、上述したものが挙げられる。実施例において後述するように、ホスファチジルセリン類又はホスファチジルグリセロール類を含むリポソームを使用することにより、例えば、細胞培養上清等の生体試料から直接エクソソームを回収することができる。すなわち、本実施形態のエクソソーム回収用キットは、生体試料からのエクソソーム回収用であってもよい。ここで、生体試料としては、細胞培養上清、血清、血漿、尿、涙、唾液等が挙げられる。
 本実施形態のエクソソーム回収用キットにおいて、リポソームはホスファチジルセリン類又はホスファチジルグリセロール類と、スフィンゴミエリンとを含んでいてもよい。実施例において後述するように、特に、ホスファチジルセリン類及びスフィンゴミエリンを含むリポソームを使用することにより、超遠心法により精製したエクソソームや、ポリエチレングリコールを使用した従来のエクソソーム精製キットを用いて精製したエクソソームを、効率よく回収することができる。
 すなわち、ホスファチジルセリン類又はホスファチジルグリセロール類と、スフィンゴミエリンとを含むリポソームを備えた本実施形態のエクソソーム回収用キットは、生体試料からのエクソソーム回収用、及び精製されたエクソソームの回収用に好適に用いることができる。
 リポソーム中のホスファチジルセリン類又はホスファチジルグリセロール類と、スフィンゴミエリンとのモル比は9:1~1:9であることが好ましく、9:1~3:7であることがより好ましく、9:1~1:1であることが更に好ましく、8:2~6:4であることが特に好ましく、約7:3であることが最も好ましい。
[エクソソーム複合体の分散剤及びキット]
 1実施形態において、本発明は、キレート剤又はアニオン性化合物を有効成分として含有する、カチオン性化合物との接触により形成されたエクソソーム複合体の分散剤を提供する。本実施形態の分散剤は、キレート剤又はアニオン性化合物を有効成分として含有する、カチオン性化合物との接触により凝集したエクソソームの分散剤であるということもできる。キレート剤及びアニオン性化合物については上述したものと同様である。
 1実施形態において、本発明は、上記の分散剤を備える、カチオン性化合物との接触により形成されたエクソソーム複合体の分散用キットを提供する。本実施形態のキットは、金属塩との接触により凝集したエクソソームの分散用キットであるということもできる。本実施形態のキットによれば、凝集したエクソソームを容易に分散させることができる。
 1実施形態において、本発明は、透析膜を備える、カチオン性化合物又は塩析剤との接触により形成されたエクソソーム複合体の分散用キットを提供する。本実施形態のキットは、透析膜を備える、カチオン性化合物又は塩析剤との接触により凝集したエクソソームの分散用キットであるということもできる。透析膜は、セルロース系膜であってもよく、合成高分子系膜であってもよい。また、透析膜はチューブ状の形態であってもよく、中空糸膜の形態であってもよく、フィルム状の形態であってもよく、例えば容器の一部にフィルム状の透析膜が備えられた形態であってもよい。また、透析膜の分画分子量は、除去するカチオン性化合物又は塩析剤の分子量より大きく、エクソソームよりも小さければ特に限定されないが、例えば、100~500であってもよく、500~1,000であってもよく、1,000~5,000であってもよく、5,000~10,000であってもよく、10,000~50,000であってもよく、50,000~100,000であってもよく、100,000~300,000であってもよく、300,000~1,000,000であってもよい。
[マイクロ流体デバイス]
 例えば、マイクロ流体デバイス上で、上述したエクソソームの凝集及び分散を行うことができる。図1は、マイクロ流体デバイスの1実施形態を示す斜視図である。図2は図1のII-II線矢視断面図である。マイクロ流体デバイス100は、流路110と、フィルター120と、流路入口130と、流路出口140とを備えている。本実施形態のマイクロ流体デバイス100は、試料中のエクソソームを濃縮するデバイスである。フィルター120のポアサイズは、凝集したエクソソームが通過できず、分散したエクソソームが通過可能な大きさであり、例えば0.5μmであってもよく、例えば0.22μmであってもよく、例えば0.1μmであってもよい。
 以下、図1及び2を用いてエクソソームを濃縮する過程を説明する。まず、エクソソームを含有する試料に、上述したエクソソーム凝集剤(カチオン性化合物又は塩析剤)を添加し、エクソソームを凝集させる。続いて、凝集したエクソソームを含有する試料を流路入口130に導入する。流路に導入した液体の駆動は、流路出口140に接続した外部吸引ポンプによって行ってもよく、流路入口130から圧力を印加することによって行ってもよい。すると、凝集したエクソソームは、フィルター120を通過することができず、フィルター120に捕捉される。
 続いて、流路入口130から上述したエクソソームの分散剤(キレート剤又はアニオン性化合物)を導入する。分散剤は、緩衝液等の適切な溶媒に溶解した状態で流路入口130から導入する。すると、フィルター120に捕捉されていたエクソソームが分散し、フィルター120を通過できるようになる。フィルター120を通過したエクソソームは、流路出口140から回収される。以上の操作により、試料中のエクソソームを濃縮することができる。
 マイクロ流体デバイスは、上述したフィルター120の下流に、エクソソームを分析する領域を更に備えていてもよい。
 次に実施例を示して本発明を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。
[実験方法]
(超遠心法によるエクソソームの精製)
 細胞培養上清から超遠心法によりエクソソームを回収した。ヒト大腸癌細胞株HCT116の培養上清35mLを300×g(重力加速度)で10分間遠心して細胞を除去した。さらに培養上清を2,000×gで10分間遠心してデブリスを除去した。続いて、培養上清を10,000×gで30分間遠心して更に細かいデブリスを除去した。続いて、培養上清をポアサイズ0.22μmのフィルターユニット(ミリポア社)でろ過した。
 上記の試料を超遠心専用チューブに入れ、超遠心機(型式「XE-90」、ベックマンコールター社)を用いて175,000×gで84分間遠心した。遠心後、上清を廃棄した。沈殿にバッファーを1mL加えて懸濁した。続いて、バッファーを適量加えてメスアップし、175,000×gで84分間更に遠心した。上清を廃棄後、精製されたエクソソームの沈殿にバッファーを350μL加えて懸濁し、新しいチューブに移した。
(市販のキットによるエクソソームの精製)
 細胞培養上清から直接エクソソームを回収した。細胞培養上清としては、ヒト大腸癌細胞株HCT116の培養上清を使用した。細胞培養上清10mLからポリエチレングリコールを使用した市販のエクソソーム精製キット(商品名「Total Exosome Isolation(培養上清用)試薬」、型式「4478359」、サーモフィッシャーサイエンティフィック社)を用いてエクソソームを精製し、100μLのバッファーに懸濁した。
(リポソームの調製)
 脂質として、ジオレオイルホスファチジルコリン(DOPC)、ジオレオイルホスファチジルセリン(DOPS)、スフィンゴミエリン(SM)又はジオレオイルホスフォグリセロール(DOPG)を用いてリポソームを調製した。場合により、複数の脂質を混合してリポソームの調製に用いた。
 まず、脂質10mgをクロロホルム1mLに溶解した。続いて、脂質溶液をガラス容器に入れ、ボルテックスミキサーで撹拌しながらエバポレーターで真空に引いてクロロホルムを揮発させ、ガラス容器に脂質膜を形成させた。
 続いて、ガラス容器にバッファーを1mL添加し、ボルテックスミキサーによる撹拌や超音波処理を行うことによりリポソームを作製した。
 続いて、リポソームをガラスシリンジ(ハミルトン社)に注入し、ポアサイズ100nmのNuclepore polymembrane carbonate(ワットマン社)を挟んだMini-extruder(アバンティ ポーラ リピッド社)の両側にシリンジをセットした。続いて、手動で11回リポソームをフィルターに通過させ、直径約100nmのリポソームを調製した。
(サンドイッチELISA)
 96ウェルプレート(nunc社)に、リン酸緩衝液(PBS)で5μg/mLに希釈した抗CD9抗体(Ancell社)を50μL/ウェルずつ加え、4℃で一晩静置してプレート上に固定した。なお、CD9はエクソソームマーカーの一種である。
 続いて、ウェル中の溶液を除去し、PBSで希釈した5%ウシ胎児血清(BSA)を150μL/ウェルずつ加え、常温で60分間プレートシェーカー上で攪拌し、ブロッキングした。
 続いて、300μL/ウェルのPBSで3回洗浄し、試料を100μL/ウェル添加して、常温で5時間攪拌した。続いて、300μL/ウェルのPBSで3回洗浄し、1%BSA/PBSで0.5μg/mLに希釈したビオチン化抗CD9抗体(Ancell社)を100μL/ウェルずつ加え、常温で60分間プレートシェーカー上で攪拌した。
 続いて、300μL/ウェルのPBSで3回洗浄し、1%BSA/PBSで200倍希釈したストレプトアビジン-セイヨウワサビペルオキシダーゼ(HRP)(Thermo社)を100μL/ウェルずつ添加し、プレートシェーカー上で常温で1時間反応させた。
 続いて、300μL/ウェルのPBSで3回洗浄し、発色試薬(商品名「TMB substrate solution」、KPL社)を100μL/ウェルずつ加え、常温で30分間攪拌し発色させた。1%塩酸を100μL/ウェルずつ加えて反応停止後、プレートリーダー(tecan社)で波長450nmの吸光度を測定した。
(ナノ粒子トラッキング解析)
 ナノ粒子トラッキング解析は、ナノ粒子特性解析装置(型式「ナノサイトNS500」、マルバーン社)を用いて行った。本装置は、サンプルにレーザーを照射して得られる散乱光のブラウン運動を経時的に測定し、ストークス・アインシュタイン式から粒度分布、粒子径、粒子数を算出する。サンプルは適宜希釈してナノ粒子トラッキング解析に供した。
[実験例1]
(カルシウムイオンの接触によるエクソソームの凝集)
 ヒト血清(Lonza社)5μLに、バッファー及び塩化カルシウム水溶液を添加し、塩化カルシウムの終濃度を0、10、20及び40mMに調整し、37℃で30分間インキュベートした。なお、塩化カルシウムの濃度はカルシウムイオンの濃度と同じになる。続いて、10000×gで10分間遠心し、沈殿及び上清を回収した。沈殿はバッファー100μLで懸濁した。続いて、サンドイッチELISAを行い、沈殿及び上清におけるエクソソームの存在量を検討した。
 図3は、サンドイッチELISAの結果を示すグラフである。図3に示すように、塩化カルシウムを添加しなかった場合には、上清からエクソソームが検出された。一方、塩化カルシウムを添加した場合には、塩化カルシウム濃度依存的にエクソソームの局在が上清から沈殿にシフトしていくことが明らかとなった。この結果は、塩化カルシウムの添加によりエクソソームが凝集することを示す。
[実験例2]
(キレート剤の添加による凝集したエクソソームの分散1)
 ヒト血清(Lonza社)5μLに、バッファー及び塩化カルシウム水溶液を添加し、塩化カルシウムの終濃度を0、10、20及び40mMに調整し、37℃で30分間インキュベートした。続いて、10000×gで10分間遠心し、上清及び沈殿を回収した。続いて、沈殿に0、10、20及び40mMのEDTAを含有するバッファーを100μLずつ添加し、懸濁した。続いて、サンドイッチELISAを行い、上清及び沈殿の懸濁液におけるエクソソームの存在量を検討した。
 図4は、サンドイッチELISAの結果を示すグラフである。その結果、実験例1と同様に、塩化カルシウムを添加しなかった場合には上清からエクソソームが検出され、塩化カルシウム濃度依存的にエクソソームの局在が上清から沈殿にシフトしていくことが明らかとなった。
 また、実験例1の結果との比較から、沈殿を懸濁するバッファーにEDTAを添加することにより、沈殿中のエクソソームをより高感度に検出できることが明らかとなった。この結果は、キレート剤の添加により、凝集したエクソソームが分散したことを示す。
[実験例3]
(キレート剤の添加による凝集したエクソソームの分散2)
 ヒト血清(Lonza社)5μLに、バッファー及び塩化カルシウム水溶液を添加し、塩化カルシウムの終濃度を40mMに調整し、37℃で30分間インキュベートした。続いて、10000×gで10分間遠心し、沈殿を回収した。続いて、回収した沈殿に0及び40mMのEDTAを含有するバッファーを100μLずつ添加し、懸濁した。続いて、各懸濁液をナノ粒子トラッキング解析に供し、粒度分布を測定した。
 図5及び表1は粒度分布の結果を示すグラフである。図5において、縦軸は粒子数を示し、横軸は粒子径を示す。その結果、EDTAを含有するバッファーで沈殿を懸濁することにより、EDTAを含有しないバッファーで懸濁した沈殿中の粒子径約400~800nmの粒子が減少し、分散したことが明らかとなった。この結果は、キレート剤の添加により、凝集したエクソソームが分散したことを示す。
Figure JPOXMLDOC01-appb-T000001
[実験例4]
(従来のエクソソーム精製キットとの比較)
 ヒト血清(Lonza社)5μLに、バッファー及び塩化カルシウム水溶液を添加し、塩化カルシウムの終濃度を20及び40mMに調整し、37℃で30分間インキュベートした。続いて、10000×gで10分間遠心し、上清及び沈殿を回収した。続いて、沈殿に20及び40mMのEDTAを含有するバッファーを100μLずつ添加し、懸濁した。
 また、ヒト血清5μLから、ポリエチレングリコールを使用した市販のエクソソーム調製キット(商品名「Total Exosome Isolation(血清用)試薬」、型式「4478360」、サーモフィッシャーサイエンティフィック社)を用いてエクソソームを調製し、100μLのバッファーに懸濁した。
 続いて、調製した各試料をサンドイッチELISAに供し、エクソソームの存在量を測定した。図6はサンドイッチELISAの結果を示すグラフである。その結果、塩化カルシウム及びEDTAを用いる方法により、市販のキットの約1.6倍のエクソソームを調製できたことが明らかとなった。
 続いて、調製した各エクソソームをナノ粒子トラッキング解析に供し、粒度分布を測定した。図7及び表2は粒度分布の結果を示すグラフである。図7において、縦軸は粒子数を示し、横軸は粒子径を示す。その結果、塩化カルシウム及びEDTAを用いる方法により調製したエクソソームは、市販のキットで調製したエクソソームと比較して、粒子径約400~800nmの粒子が少ないことが明らかとなった。
Figure JPOXMLDOC01-appb-T000002
[実験例5]
(カルシウムイオン以外のカチオンの検討)
 大腸癌細胞株HCT116の培養上清1mLにD-MEM培地を9mL加えたものを試料とした。試料中の細胞片等を遠心分離で除去した後、塩化カルシウム、塩化マグネシウム、塩化リチウム、塩化ナトリウム又は塩化カリウムを終濃度が10、50及び100mMとなるように添加した。なお、塩化カルシウムの濃度はカルシウムイオンの濃度と同じになる。また、塩化マグネシウムの濃度はマグネシウムイオンの濃度と同じになる。また、塩化リチウムの濃度はリチウムイオンの濃度と同じになる。また、塩化ナトリウムの濃度はナトリウムイオンの濃度と同じになる。また、塩化カリウムの濃度はカリウムイオンの濃度と同じになる。
 続いて、氷上で30分間保持した後、37℃のインキュベーター中で5分間保持した。続いて、5000×gで10分間遠心した。上清を除去し、沈殿に20mM EDTAを含有するバッファーを500μL添加して懸濁し、ナノ粒子トラッキング解析に供し、粒度分布を測定した。
 図8(a)~(e)は粒度分布の結果を示すグラフである。図8(a)~(e)において、縦軸は粒子数を示し、横軸は粒子径を示す。図8(a)は塩化カルシウムの結果を示し、図8(b)は塩化マグネシウムの結果を示し、図8(c)は塩化リチウムの結果を示し、図8(d)は塩化ナトリウムの結果を示し、図8(e)は塩化カリウムの結果を示す。粒度分布計測定の結果、塩化カルシウムを終濃度50mM又は100mM添加した試料において、最も多くのエクソソームの存在が確認された。
 また、図9は試料1mLあたりの粒子数を示すグラフである。図9の結果からも、塩化カルシウムの添加により、最も多くのエクソソームを回収できたことが示された。
[実験例6]
(硫酸アンモニウムの検討)
 大腸癌細胞株HCT116の培養上清1mLに硫酸アンモニウムを含有するD-MEM培地9mLを添加し、氷上で1時間静置した。なお、各試料中の硫酸アンモニウムの終濃度は、それぞれ、0(対照)、20、40、60及び80w/v%であった。続いて、5000×gで10分間遠心した。上清を除去し、沈殿にバッファーを1mL添加して懸濁し、サンドイッチELISAを行い、沈殿の懸濁液におけるエクソソームの存在量を検討した。
 続いて、調製した各試料をサンドイッチELISAに供し、エクソソームの存在量を測定した。図10はサンドイッチELISAの結果を示すグラフである。その結果、終濃度40%以上の硫酸アンモニウムを含有する試料において、エクソソームを回収できたことが明らかとなった。
[実験例7]
(超遠心法で精製したエクソソームの回収)
 上述した方法により超遠心法で精製したエクソソーム50μLに、上述した方法で調製したリポソームを10μL(終濃度1mg/mL)、及び塩化カルシウム溶液を添加し、ボルテックスミキサーで混合した。リポソームとしては、DOPCで調製したリポソーム(以下、「DOPCリポソーム」という場合がある。)、DOPSで調製したリポソーム(以下、「DOPSリポソーム」という場合がある。)、DOPS及びSMをモル比7:3で混合して調製したリポソーム(以下、「DOPS/SM(7:3)リポソーム」という場合がある。)、DOPGで調製したリポソーム(以下、「DOPGリポソーム」という場合がある。)を使用した。塩化カルシウム溶液はカルシウムイオンの終濃度が5mMとなるように添加した。
 また、陰性対照として、超遠心法で精製したエクソソーム50μLに、塩化カルシウム溶液をカルシウムイオンの終濃度が5mMとなるように添加し、リポソームを添加しなかった試料を用いた。また、陽性対照としてエクソソーム50μLにバッファーを50μL添加した試料を使用した。
 続いて、各試料を室温で1時間静置した後、10,000×gで10分間遠心し、上清を除去した。続いて、バッファーを100μL添加して沈殿を分散し、上述したサンドイッチELISA法によりCD9の存在量を測定した。
 図11は、サンドイッチELISAの結果を示すグラフである。その結果、特に、DOPS/SMリポソームを使用した場合には、エクソソームの回収効率が高いことが明らかとなった。この結果は、DOPS/SMリポソームが、超遠心法で精製したエクソソームを回収するのに有用であることを示す。
[実験例8]
(市販のキットで精製したエクソソームの回収)
 エクソソームとして、上述した方法により市販のキット(商品名「Total Exosome Isolation試薬」、型式「4478359」、サーモフィッシャーサイエンティフィック社)で精製したエクソソーム50μLに、上述した方法で調製したリポソームを10μL(終濃度1mg/mL)、及び塩化カルシウム溶液を添加し、ボルテックスミキサーで混合した。リポソームとしては、実験例7で用いたものと同様のリポソームを用いた。塩化カルシウム溶液はカルシウムイオンの終濃度が5mMとなるように添加した。
 また、陰性対照として、市販のキットで精製したエクソソーム50μLに、塩化カルシウム溶液をカルシウムイオンの終濃度が5mMとなるように添加し、リポソームを添加しなかった試料を用いた。また、陽性対照としてエクソソーム50μLにバッファーを50μL添加した試料を使用した。
 続いて、各試料を室温で1時間静置した後、10,000×gで10分間遠心し、上清を除去した。続いて、バッファーを100μL添加して沈殿を分散し、上述したサンドイッチELISA法によりCD9の存在量を測定した。
 図12は、サンドイッチELISAの結果を示すグラフである。その結果、特に、DOPS/SMリポソームを使用した場合には、エクソソームの回収効率が高いことが明らかとなった。この結果は、DOPS/SMリポソームが、市販のキットで精製したエクソソームを回収するのにも有用であることを示す。
[実験例9]
(リポソームの脂質成分の検討)
 上述した方法により超遠心法で精製したエクソソーム50μLに、上述した方法で調製したリポソームを10μL(終濃度1mg/mL)、及び塩化カルシウム溶液を添加し、ボルテックスミキサーで混合した。リポソームとしては、DOPSリポソーム、DOPS/SM(7:3)リポソーム、DOPS及びSMをモル比1:1又は3:7となるように混合して調製したリポソーム(以下、それぞれ「DOPS/SM(1:1)リポソーム」、「DOPS/SM(3:7)リポソーム」という場合がある。)を使用した。塩化カルシウム溶液はカルシウムイオンの終濃度が5mMとなるように添加した。
 また、陰性対照として、超遠心法で精製したエクソソーム50μLに、塩化カルシウム溶液をカルシウムイオンの終濃度が5mMとなるように添加し、リポソームを添加しなかった試料を用いた。また、陽性対照としてエクソソーム50μLにバッファーを50μL添加した試料を使用した。
 続いて、各試料を室温で1時間静置した後、10,000×gで10分間遠心し、上清を除去した。続いて、バッファーを100μL添加して沈殿を分散し、上述したサンドイッチELISA法によりCD9の存在量を測定した。
 図13は、サンドイッチELISAの結果を示すグラフである。その結果、DOPSとSMのモル比が7:3~3:7の範囲でエクソソームの回収率が高く、DOPS/SM(7:3)リポソームを用いた場合に最もエクソソームの回収率が高いことが明らかとなった。
[実験例10]
(細胞培養上清中のエクソソームの回収)
 細胞培養上清から直接エクソソームを回収した。細胞培養上清としては、ヒト大腸癌細胞株HCT116の培養上清を使用した。細胞培養上清100μLに、上述した方法で調製したリポソームを10μL、及び塩化カルシウム溶液を添加し、ボルテックスミキサーで混合した。リポソームとしては、DOPCリポソーム、DOPSリポソーム、DOPS/SM(7:3)リポソームを使用した。塩化カルシウム溶液はカルシウムイオンの終濃度が10mMとなるように添加した。
 また、陰性対照として、細胞培養上清100μLに、塩化カルシウム溶液をカルシウムイオンの終濃度が10mMとなるように添加し、リポソームを添加しなかった試料を用いた。
 続いて、各試料を室温で1時間静置した後、10,000×gで10分間遠心して上清を除去し、エクソソームを回収した。この方法により、超遠心法よりも簡便に高純度のエクソソームを回収することができた。
 続いて、バッファーを100μL添加して沈殿を分散し、上述したサンドイッチELISA法によりCD9の存在量を測定した。
 図14は、サンドイッチELISAの結果を示すグラフである。その結果、DOPCリポソームではエクソソームを回収できなかったのに対し、DOPSリポソーム及びDOPS/SM(7:3)リポソームを使用した場合には、細胞培養上清から直接エクソソームを回収できたことが明らかとなった。
 ところで、DOPCリポソームの電荷は0であり、DOPSリポソーム及びDOPS/SM(7:3)リポソームの電荷はマイナスである。すなわち、上記の結果は、アニオン性リポソームが細胞培養上清中のエクソソームを回収するのに有用であることを示す。
[実験例11]
(エクソソーム-リポソーム複合体の粒径変化の検討)
 上述した方法により超遠心法で精製したエクソソーム50μLに、上述した方法で調製したDOPS/SM(7:3)リポソームを10μLとバッファーを40μL混合したものを調製し、3つのチューブに分注した。続いて、分注した上記のチューブのうち1つを15回繰り返し凍結融解した。また、分注した上記のチューブのうち1つに塩化カルシウム溶液をカルシウムイオンの終濃度が5mMとなるように添加し、ボルテックスミキサーで混合し、室温で1時間静置した。
 図15(a)~(c)は、上記の各チューブの写真である。図15(a)は、エクソソームとリポソームを混合しただけ(未処理)のチューブの写真である。図15(b)は、エクソソームとリポソームを混合し、15回凍結融解を繰り返したチューブの写真である。図15(c)は、エクソソームとリポソームを混合し、塩化カルシウムを添加したチューブの写真である。
 その結果、凍結融解を繰り返したチューブは、未処理のチューブと比較して肉眼で識別可能な変化は認められなかった。一方、塩化カルシウムを添加したチューブでは、エクソソーム-リポソーム複合体の沈殿が肉眼で観察された。
 続いて、上記の各チューブ内のエクソソーム-リポソーム複合体について、上述した方法によりナノ粒子トラッキング解析を行った。図16は、ナノ粒子トラッキング解析の結果を示すグラフである。なお、塩化カルシウムを添加したチューブは、エクソソーム-リポソーム複合体の粒径が大きすぎてナノ粒子トラッキング解析では粒径が測定できなかった。図16に示すように、凍結融解を繰り返しても、未処理のものと比較して、エクソソーム-リポソーム複合体の粒径の変化はわずかであることが明らかとなった。
 以上の結果は、カルシウムイオンを添加することがエクソソーム-リポソーム複合体の粒径の増大に有効であることを示す。
[実験例12]
(エクソソームの回収及び電子顕微鏡観察1)
 上述した方法により超遠心で精製したエクソソーム、1mg/mLのDOPS/SMリポソーム、塩化カルシウム溶液、EDTA溶液を、様々な組み合わせで混合してネガティブ染色し、透過型電子顕微鏡(型式「JEM-1400」、JeoL社)で観察した。電子顕微鏡の試料台には、支持膜体グリッドCu400メッシュ(JeoL社)を使用した。また、エクソソームを金コロイド標識抗CD9抗体で染色した。
 図17(a)は、エクソソームとリポソームを混合した試料の電子顕微鏡写真である。図17(a)中、矢印は金コロイドを示す。その結果、エクソソームとリポソームを混合しただけでは、エクソソームは凝集せず分散していることが明らかとなった。
 また、図17(b)は、エクソソーム、リポソーム及び塩化カルシウム溶液を混合した試料の電子顕微鏡写真である。塩化カルシウム溶液は、カルシウムイオンの終濃度が10mMとなるように添加した。その結果、図17(b)中に大きな黒い凝集物が観察され、エクソソーム又はリポソームが観察できなかった。なお、この結果は、実験例11の結果とも一致した。
 また、図17(c)及び(d)は、エクソソーム、リポソーム、塩化カルシウム溶液及びEDTA溶液を混合した試料の電子顕微鏡写真である。塩化カルシウム溶液は、カルシウムイオンの終濃度が10mMとなるように添加した。また、EDTAは、終濃度が10mMとなるように添加した。図17(c)及び(d)中、矢印は金コロイドを示す。その結果、ほとんどの凝集物が消失し、500~1000nmのエクソソームの融合体が観察された。この結果から、エクソソームとリポソームとが融合した可能性、エクソソーム同士が融合した可能性等が考えられた。そこで、エクソソーム、塩化カルシウム溶液及びEDTAを含有するバッファーを混合した試料を電子顕微鏡で観察した。
 図17(e)及び(f)は、エクソソーム、塩化カルシウム溶液及びEDTA溶液を混合した試料の電子顕微鏡写真である。塩化カルシウム溶液は、カルシウムイオンの終濃度が10mMとなるように添加した。また、EDTAは、終濃度が10mMとなるように添加した。図17(e)及び(f)中、矢印は金コロイドを示す。その結果、エクソソームの凝集は確認されたが、500nm以上の融合体は観察されなかった。
 以上の結果から、エクソソーム、リポソーム及び塩化カルシウム溶液を混合することにより、エクソソーム及びリポソームが融合又は凝集したことが明らかとなった。
[実験例13]
(エクソソームの回収及び電子顕微鏡観察2)
 ヒト大腸癌細胞株HCT116の培養上清に、リポソーム及び塩化カルシウム溶液を添加し、37℃で1時間静置した。また、エクソソームを金コロイド標識抗CD9抗体で染色した。リポソームは終濃度が0.45mg/mLになるように添加した。また、塩化カルシウム溶液は、カルシウムイオンの終濃度が150mMとなるように添加した。
 続いて、12,000×gで10分間遠心して上清を除去し、バッファーでエクソソームの沈殿を洗浄し、塩化カルシウム溶液を添加して再凝集させた。続いて、更に12,000×gで10分間遠心してエクソソームを再沈殿させ、EDTA溶液を添加してエクソソームの沈殿を分散させた試料をネガティブ染色し、透過型電子顕微鏡で観察した。
 図18(a)~(c)は、代表的な電子顕微鏡写真である。図18(a)~(c)中、矢印は金コロイドを示す。その結果、500nm以上のエクソソーム-リポソームの融合体や凝集体が観察された。この結果は、培養上清に、リポソーム及び塩化カルシウム溶液を混合して遠心することにより、培養上清中のエクソソームを回収できることを示す。
 本発明により、簡便に高純度のエクソソームを回収することができる技術を提供することができる。

Claims (22)

  1.  エクソソームとエクソソーム複合体形成剤とを接触させる工程を備え、前記エクソソーム複合体形成剤がカチオン性化合物又は塩析剤を含む、エクソソーム複合体の形成方法。
  2.  前記エクソソーム複合体形成剤がリポソームを更に含む、請求項1に記載のエクソソーム複合体の形成方法。
  3.  前記リポソームがアニオン性リポソームである、請求項2に記載のエクソソーム複合体の形成方法。
  4.  前記リポソームがホスファチジルセリン類又はホスファチジルグリセロール類を含む、請求項2又は3に記載のエクソソーム複合体の形成方法。
  5.  前記リポソームがスフィンゴミエリンを更に含む、請求項4に記載のエクソソーム複合体の形成方法。
  6.  前記リポソーム中のホスファチジルセリン類又はホスファチジルグリセロール類と、スフィンゴミエリンとのモル比が9:1~1:9である、請求項5に記載のエクソソーム複合体の形成方法。
  7.  前記カチオン性化合物が、金属カチオン又はカチオン性高分子化合物である、請求項1~6のいずれか一項に記載のエクソソーム複合体の形成方法。
  8.  金属カチオンとの接触により形成されたエクソソーム複合体に、キレート剤を接触させる工程を備える、前記エクソソーム複合体の分散方法。
  9.  カチオン性化合物との接触により形成されたエクソソーム複合体に、アニオンを接触させる工程を備える、前記エクソソーム複合体の分散方法。
  10.  カチオン性化合物又は塩析剤との接触により形成されたエクソソーム複合体を透析し、前記カチオン性化合物又は前記塩析剤を除去する工程を備える、前記エクソソーム複合体の分散方法。
  11.  カチオン性化合物又は塩析剤を有効成分として含有する、エクソソーム複合体形成剤。
  12.  請求項11に記載のエクソソーム複合体形成剤を備える、エクソソーム回収用キット。
  13.  リポソームを更に備える、請求項12に記載のエクソソーム回収用キット。
  14.  前記リポソームがアニオン性リポソームである、請求項13に記載のエクソソーム回収用キット。
  15.  前記リポソームがホスファチジルセリン類又はホスファチジルグリセロール類を含む、請求項13又は14に記載のエクソソーム回収用キット。
  16.  生体試料からのエクソソームの回収用である、請求項15に記載のエクソソーム回収用キット。
  17.  前記リポソームがスフィンゴミエリンを更に含む、請求項15又は16に記載のエクソソーム回収用キット。
  18.  精製されたエクソソームの回収用である、請求項17に記載のエクソソーム回収用キット。
  19.  前記リポソーム中のホスファチジルセリン類又はホスファチジルグリセロール類と、スフィンゴミエリンとのモル比が9:1~1:9である、請求項17又は18に記載のエクソソーム回収用キット。
  20.  キレート剤又はアニオン性化合物を有効成分として含有する、カチオン性化合物との接触により形成されたエクソソーム複合体の分散剤。
  21.  請求項20に記載の分散剤を備える、カチオン性化合物との接触により形成されたエクソソーム複合体の分散用キット。
  22.  透析膜を備える、カチオン性化合物又は塩析剤との接触により形成されたエクソソーム複合体の分散用キット。
PCT/JP2017/005455 2016-02-15 2017-02-15 エクソソーム複合体の形成方法 WO2017141947A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-025835 2016-02-15
JP2016025835 2016-02-15
JP2016124375 2016-06-23
JP2016-124375 2016-06-23

Publications (1)

Publication Number Publication Date
WO2017141947A1 true WO2017141947A1 (ja) 2017-08-24

Family

ID=59625658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005455 WO2017141947A1 (ja) 2016-02-15 2017-02-15 エクソソーム複合体の形成方法

Country Status (1)

Country Link
WO (1) WO2017141947A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020528766A (ja) * 2017-07-26 2020-10-01 ロゼッタ エクソソーム 陽イオンを利用した細胞外小胞体の分離方法
JP7160294B1 (ja) 2022-03-31 2022-10-25 ヒューマン・メタボローム・テクノロジーズ株式会社 脂質二重膜に覆われた微粒子又は細胞外小胞の回収方法および脂質二重膜に覆われた微粒子又は細胞外小胞を回収するための回収キット
WO2022255840A1 (ko) * 2021-06-04 2022-12-08 기초과학연구원 염 분별 침전을 이용한 세포외 소포체 분리 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150125864A1 (en) * 2013-11-06 2015-05-07 Samsung Electronics Co., Ltd. Methods of stabilizing a vesicle in a sample
WO2015131153A1 (en) * 2014-02-27 2015-09-03 Board Of Regents, The University Of Texas System Methods and compositions for isolating exosomes
WO2016013660A1 (ja) * 2014-07-24 2016-01-28 凸版印刷株式会社 脂質膜構造体、脂質膜構造体固定化担体、及び胞体の融合方法
WO2016125243A1 (ja) * 2015-02-03 2016-08-11 株式会社日立製作所 エクソソーム測定方法及びエクソソーム抽出方法
JP2016161480A (ja) * 2015-03-04 2016-09-05 国立大学法人 千葉大学 微量の微小胞の定量、診断及びスクリーニング方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150125864A1 (en) * 2013-11-06 2015-05-07 Samsung Electronics Co., Ltd. Methods of stabilizing a vesicle in a sample
WO2015131153A1 (en) * 2014-02-27 2015-09-03 Board Of Regents, The University Of Texas System Methods and compositions for isolating exosomes
WO2016013660A1 (ja) * 2014-07-24 2016-01-28 凸版印刷株式会社 脂質膜構造体、脂質膜構造体固定化担体、及び胞体の融合方法
WO2016125243A1 (ja) * 2015-02-03 2016-08-11 株式会社日立製作所 エクソソーム測定方法及びエクソソーム抽出方法
JP2016161480A (ja) * 2015-03-04 2016-09-05 国立大学法人 千葉大学 微量の微小胞の定量、診断及びスクリーニング方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AKIKIO ABE ET AL.: "Flow Cytometer o Mochiita Exosome Teiryo Hyoka-kei no Kochiku", THE PHARMACEUTICAL SOCIETY OF JAPAN KANTO BRANCH TAIKAI KOEN YOSHISHU, vol. 58, 30 September 2014 (2014-09-30) *
AKIKO ABE ET AL: "Flow Cytometry ni yoru Seitai Yurai no Bisho Shoho no Teiryo Hyoka-kei no Kochiku", ABSTRACTS OF ANNUAL MEETING OF PHARMACEUTICAL SOCIETY OF JAPAN, vol. 135, 2 February 2015 (2015-02-02) *
BROENLEE ZACHARY ET AL.: "salting-out'' procedure for the isolation of tumor-derived exosomes", JOURNAL OF IMMUNOLOGICAL METHODS, vol. 407, 13 April 2014 (2014-04-13), pages 120 - 126, XP029030126, DOI: doi:10.1016/j.jim.2014.04.003 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020528766A (ja) * 2017-07-26 2020-10-01 ロゼッタ エクソソーム 陽イオンを利用した細胞外小胞体の分離方法
EP3660142A4 (en) * 2017-07-26 2021-05-05 Rosetta Exosome PROCESS FOR ISOLATING EXTRACELLULAR VESICLES USING CATIONS
US11904259B2 (en) 2017-07-26 2024-02-20 Rosetta Exosome Method for isolating extracellular vesicles using cations
WO2022255840A1 (ko) * 2021-06-04 2022-12-08 기초과학연구원 염 분별 침전을 이용한 세포외 소포체 분리 방법
JP7160294B1 (ja) 2022-03-31 2022-10-25 ヒューマン・メタボローム・テクノロジーズ株式会社 脂質二重膜に覆われた微粒子又は細胞外小胞の回収方法および脂質二重膜に覆われた微粒子又は細胞外小胞を回収するための回収キット
JP2023149346A (ja) * 2022-03-31 2023-10-13 ヒューマン・メタボローム・テクノロジーズ株式会社 脂質二重膜に覆われた微粒子又は細胞外小胞の回収方法および脂質二重膜に覆われた微粒子又は細胞外小胞を回収するための回収キット

Similar Documents

Publication Publication Date Title
Yang et al. Blood TfR+ exosomes separated by a pH-responsive method deliver chemotherapeutics for tumor therapy
WO2017141947A1 (ja) エクソソーム複合体の形成方法
US11479765B2 (en) Method of isolating exosomes using encapsulation and aqueous micellar system
TWI303275B (en) Devices and methods for biomaterial production
Papahadjopoulos et al. Interaction of a purified hydrophobic protein from myelin with phospholipid membranes: Studies on ultrastructure, phase transitions and permeability
JP6363621B2 (ja) チオ複素環カチオン処理によりタンパク質製剤中の凝集体レベルを低下させる方法
CN110540961B (zh) Annexin V-FITC外泌体捕获亲和磁珠、其制备方法及利用其提取外泌体的方法
Lin et al. Purification method of drug-loaded liposome
JP2020530780A (ja) 疎水性相互作用を利用した細胞外小胞体の分離方法
KR20150122650A (ko) 상승된 전도도에서 비이온성 유기 폴리머들의 존재에서의 단백질 정제
Mel'nikov et al. Folding of long DNA chains in the presence of distearyldimethylammonium bromide and unfolding induced by neutral liposomes
HU184714B (en) Process for the purification of lyposoma suspensions
JPH03502576A (ja) リポソームへのアフィニティ結合による精製
Notarangelo et al. Rapid nickel-based isolation of extracellular vesicles from different biological fluids
CA3001637A1 (fr) Procede de production de proteines erythrocytaires
WO2022144135A1 (en) Stabilisation of carbonate calcium nanoparticles
EP4353815A1 (en) Method for isolating extracellular vesicle using salt fractional precipitation
KR20150023331A (ko) 음으로 대전된 입자들로의 폴리뉴클레오티드들의 크로마토그래피 정제
CN115109742A (zh) 一种临床级高纯度血液或尿液中外泌体分离纯化试剂盒
EP4361252A1 (en) Commercial purification method for high-purity bacterial extracellular vesicles
JP4669665B2 (ja) 細胞毒性のないポリカチオン修飾リポソームおよびその製造方法
Van Hoogevest et al. The influence of lipid composition on glycophorin-induced bilayer permeability
CN111821263B (zh) 一种脂质体、包含所述脂质体的分散液及它们的制备方法和用途
CN101854214B (zh) 膜囊泡分裂体系
WO2024034178A1 (ja) 溶媒中抗原回収システム及び溶媒中抗原回収方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17753203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP