WO2017141588A1 - 高強度冷延鋼板およびその製造方法 - Google Patents

高強度冷延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2017141588A1
WO2017141588A1 PCT/JP2017/000880 JP2017000880W WO2017141588A1 WO 2017141588 A1 WO2017141588 A1 WO 2017141588A1 JP 2017000880 W JP2017000880 W JP 2017000880W WO 2017141588 A1 WO2017141588 A1 WO 2017141588A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
rolled
circularity
retained austenite
cold
Prior art date
Application number
PCT/JP2017/000880
Other languages
English (en)
French (fr)
Inventor
田中 裕二
シャルカ ミクメコバ
孝子 山下
美絵 小幡
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2017527935A priority Critical patent/JP6260745B1/ja
Priority to KR1020187022232A priority patent/KR102093057B1/ko
Priority to MX2018009969A priority patent/MX2018009969A/es
Priority to US16/075,750 priority patent/US20190048436A1/en
Priority to EP17752852.8A priority patent/EP3418414B1/en
Priority to CN201780011756.8A priority patent/CN108699646B/zh
Publication of WO2017141588A1 publication Critical patent/WO2017141588A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling

Definitions

  • the present invention relates to a high-strength cold-rolled steel sheet and a method for producing the same, and particularly to obtain a high-strength cold-rolled steel sheet having a high yield ratio and excellent workability.
  • Patent Document 1 discloses an ultra-high strength cold-rolled steel sheet having a tensile strength of 1180 MPa or more and excellent elongation and stretch flangeability, and a method for manufacturing the same.
  • Patent Document 2 discloses a high strength cold-rolled steel sheet having a tensile strength of 980 MPa or more and a yield ratio of 70 to 80% and excellent shape freezing property, and its A manufacturing method is disclosed.
  • the present invention has been developed in view of the above-described situation, and has a tensile strength of 900 MPa or higher and a total elongation of 20% or more, and a yield ratio of 60% or more.
  • the object is to provide a high-strength cold-rolled steel sheet having a high yield ratio of preferably 65% or more.
  • an object of this invention is to provide the manufacturing method of said high strength cold-rolled steel plate.
  • the inventors now have a high-strength cold-rolled steel sheet with high tensile strength: 900 MPa or higher and total elongation: excellent workability of 20% or higher, and yield ratio: 60% or higher. As a result of intensive studies to develop it, we found out the following.
  • the steel structure is composed of ferrite, martensite and retained austenite. It is effective to use the TRIP effect due to retained austenite.
  • the mechanical properties of the steel sheet, particularly the yield ratio are not uniquely determined by the component composition and the area ratio of each phase in the steel structure (hereinafter also referred to as the structure fraction). Even if the rate is almost the same, it may change greatly.
  • the structure fraction Even if the rate is almost the same, it may change greatly.
  • the steel structure was observed and analyzed in detail using a field emission scanning electron microscope (FE-SEM).
  • the morphology of retained austenite, particularly the retained austenite The circularity of the crystal grains has an influence on the yield ratio of the steel sheet, and the desired yield ratio of the steel sheet can be obtained by appropriately controlling the circularity of the crystal grains of the retained austenite.
  • the hot rolled sheet structure before annealing is made bainite or martensite structure, and then annealed in the two-phase region of ferrite and austenite. By performing the overaging treatment under predetermined conditions, it is possible to appropriately control the circularity of the residual austenite crystal grains in the final structure.
  • the present invention was completed after further studies based on the above findings.
  • the gist configuration of the present invention is as follows. 1. % By mass C: 0.15-0.35%, Si: 1.0-2.0% Mn: 1.8-3.5% P: 0.020% or less, S: 0.0040% or less, Al: 0.01 to 0.1% and N: 0.01% or less, with the balance being composed of Fe and inevitable impurities, Having a steel structure in the area ratio of ferrite: 30-75%, martensite: 15-40% and residual austenite: 10-30%, Further, the circularity distribution of the residual austenite crystal grains is as follows: Class range: more than 0.1 ⁇ (n-1) 0.1 ⁇ n or less, Class value: 0.1 ⁇ n (where n is an integer from 1 to 10) The mode of circularity of the residual austenite crystal grains is 0.6 or less, High strength cold rolled steel sheet.
  • Circularity 4 ⁇ S / L 2
  • S is the area of crystal grains
  • the hot rolled sheet is cold rolled to form a cold rolled sheet
  • the cold-rolled sheet is annealed at 730 ° C. or higher and 820 ° C. or lower, and then cooled to a temperature range of 300 ° C. or higher and 500 ° C. or lower. Apply overaging treatment to keep, Manufacturing method of high-strength cold-rolled steel sheet.
  • a high-strength cold-rolled steel sheet having both high strength of tensile strength: 900 MPa or more and excellent workability of total elongation: 20% or more and yield ratio: high yield ratio of 60% or more is obtained. be able to.
  • high-strength cold-rolled steel sheets to predetermined automobile parts, it is possible to improve fuel efficiency by reducing the weight of the vehicle body while securing the occupant's living space in the event of a collision. The useful value is extremely large.
  • (A) is a diagram showing an example of a secondary electron image obtained when the steel structure is observed by FE-SEM, and (b) is obtained by observing the steel structure by EBSD and analyzing it with a predetermined PC software. It is a figure which shows an example of the image obtained. It is the secondary electron image obtained when the steel structure of the steel plate No. 4 of an Example was observed by FE-SEM using an Everhart-Thronley (ET) detector with an acceleration voltage of 15 kV. FE-SEM image showing steel structure of steel plate No. 2 in Example ((a) accelerating voltage: 15 kV, secondary electron image observed at 2000 ⁇ magnification, (b) accelerating voltage: 1 kV, at 5000 ⁇ magnification) Observed secondary electron image).
  • the C content is in the range of 0.15 to 0.35%. Preferably it is 0.15% or more. Preferably it is 0.28% or less.
  • Si 1.0-2.0% Si is an important element for suppressing the formation of cementite during overaging and obtaining a sufficient amount of retained austenite.
  • the Si content is less than 1.0%, the above effect cannot be obtained.
  • the Si content exceeds 2.0%, surface oxidation during hot rolling and annealing becomes remarkable, which adversely affects the appearance and plating properties. Therefore, the Si content is in the range of 1.0 to 2.0%. Preferably it is 1.2% or more. Preferably it is 1.8% or less.
  • Mn 1.8-3.5%
  • Mn has an effect of stabilizing retained austenite. However, when the amount of Mn is less than 1.8%, the above effect is small. On the other hand, if the amount of Mn exceeds 3.5%, ferrite transformation during overaging treatment and generation of retained austenite are suppressed, making it difficult to obtain a desired elongation. Therefore, the Mn content is in the range of 1.8 to 3.5%. Preferably it is 1.9% or more. Preferably it is 2.5% or less.
  • P 0.020% or less P is preferably as small as possible because it lowers weldability. Therefore, the P content is 0.020% or less. Preferably it is 0.015% or less.
  • S 0.0040% or less Since S forms inclusions and reduces local elongation, it is desirable that S be as small as possible. Therefore, the S amount is 0.0040% or less. Preferably it is 0.0020% or less.
  • Al 0.01-0.1% Al is added as a deoxidizer. However, the effect is small when the Al content is less than 0.01%. On the other hand, when the amount of Al exceeds 0.1%, inclusions are formed, and local elongation decreases. Therefore, the Al content is in the range of 0.01 to 0.1%. Preferably it is 0.02% or more. Preferably it is 0.06% or less.
  • N 0.01% or less N is an element that affects strain aging and is preferably as small as possible. Therefore, the N content is 0.01% or less. Preferably it is 0.006% or less.
  • Components other than the above are Fe and inevitable impurities. However, inclusion of components other than those described above is not rejected as long as the effects of the present invention are not impaired.
  • Ferrite area ratio 30-75%
  • Ferrite is a soft phase and contributes to an improvement in elongation.
  • the area ratio of ferrite is less than 30%, martensite increases, the strength increases excessively, and the elongation decreases.
  • the area ratio of ferrite exceeds 75%, the area ratio of martensite is lowered and the desired strength cannot be ensured. Therefore, the area ratio of ferrite should be in the range of 30 to 75%.
  • it is 40% or more.
  • Martensite area ratio 15-40% Martensite is a hard phase and contributes to improvement in strength.
  • the area ratio of martensite is less than 15%, desired strength cannot be secured.
  • the area ratio of martensite exceeds 40%, the strength increases excessively and the elongation decreases. Therefore, the area ratio of martensite is in the range of 15 to 40%. Preferably it is 20% or more. Preferably it is 35% or less.
  • Area ratio of retained austenite 10-30% Residual austenite greatly contributes to the improvement of elongation through the TRIP effect.
  • the area ratio of retained austenite is less than 10%, desired elongation cannot be obtained.
  • the area ratio of the retained austenite increases, the C concentration in the retained austenite decreases and the stability of the retained austenite decreases. For this reason, in order to industrially obtain retained austenite having an area ratio of more than 30%, it is difficult to control. Therefore, the area ratio of retained austenite is in the range of 10 to 30%. Preferably it is 12% or more. Preferably it is 28% or less.
  • the steel structure is basically composed of the above-described ferrite, martensite and retained austenite, but may be included if there is a trace amount of carbides such as cementite and inclusions such as TiN, and the total of these. An area ratio of 1% or less is acceptable.
  • Mode of circularity of residual austenite grains 0.6 or less
  • the circularity of residual austenite grains affects the yield ratio of the steel sheet, and the maximum degree of circularity of residual austenite grains.
  • the mode value By controlling the mode value to 0.6 or less, it is possible to obtain a desired yield ratio: 60% or more, preferably 65% or more.
  • the mechanism by which the circularity of the retained austenite grains affects the yield ratio of the steel sheet is not always clear, but the inventors believe that the microscopic stress distribution changes depending on the microstructure. ing.
  • the mode value of the circularity of the residual austenite crystal grains here means that the circularity distribution of the residual austenite crystal grains is represented by a class range: 0.1 ⁇ (n ⁇ 1) above 0.1 as shown in FIG. Xn or less, class value: 0.1 ⁇ n (where n is an integer from 1 to 10), this is the mode value of circularity.
  • the mode value means a class value that maximizes the frequency (number of crystal grains) in the circularity distribution. In FIG. 1, the mode value is 0.5.
  • S is the area of crystal grains of retained austenite
  • L is the circumference of crystal grains of retained austenite.
  • the circularity of each crystal grain of retained austenite is preferably measured by image processing of an observation image of a field emission scanning electron microscope (FE-SEM). That is, after the sample cross section of the steel sheet is mirror-polished, an appropriate structure etching process is performed, and secondary electron image observation by FE-SEM is performed, so that the form of retained austenite is increased as shown in FIG. It can be observed with resolution.
  • FE-SEM field emission scanning electron microscope
  • the etching treatment for example, nital and electropolishing etching may be used.
  • the acceleration voltage of FE-SEM at this time shall be 2 kV or less (in addition, the white part in Fig.2 (a) is a residual particle of an abrasive
  • a method for determining the crystal phase of a steel structure As a method for determining the crystal phase of a steel structure, a method of attaching an EBSD (Electron Back Scattered Diffraction) detector to an SEM and analyzing the observed image with PC software is widely used.
  • EBSD Electro Back Scattered Diffraction
  • the boundary of the residual austenite crystal grains As shown in Fig. 2 (b), the boundary of the residual austenite crystal grains (corresponding to the white part in Fig. 2 (b)) with a size of 50 nm or less is ambiguous. Cannot accurately determine the area S and the circumference L of the retained austenite crystal grains.
  • image processing using contrast is easy.
  • the area of the crystal grains of residual austenite extracted by binarizing and extracting an image using free software ImageJ software and The circularity obtained from the circumference can be output as circularity.
  • the crystal grains of retained austenite are crystal grains having a crystal grain size (short axis) of 10 nm or more. Furthermore, it is preferable that the number of crystal grains having a circularity class value of 0.6 or less is more than 50% of the total.
  • the manufacturing method of the high-strength cold-rolled steel sheet of this invention is demonstrated.
  • the steel slab having the above-described composition is heated to 1100 ° C. or higher and 1200 ° C. or lower, and then the finish rolling exit temperature of the steel slab is 850 ° C. or higher and 950 ° C. or lower.
  • the hot-rolled sheet is subjected to hot rolling to cool the hot-rolled sheet at a cooling rate of 50 ° C / s or more in the temperature range from the finish rolling outlet temperature to 700 ° C, and the hot-rolled sheet is heated to 300 ° C. Winding at a temperature of 550 ° C.
  • the cold rolled sheet Is annealed at 730 ° C or higher and 820 ° C or lower, then cooled to 300 ° C or higher and 500 ° C or lower, and then the above-mentioned cold-rolled sheet is kept in the temperature range of 300 ° C or higher and 500 ° C or lower for 100s or longer and 1000s or shorter. Is to be applied.
  • the reasons for limiting the above manufacturing conditions will be described.
  • slab heating temperature 1100 ° C or more and 1200 ° C or less If the slab heating temperature is less than 1100 ° C, the rolling load increases and problems such as increased risk of troubles during hot rolling occur. On the other hand, when the slab heating temperature exceeds 1200 ° C., the energy load for heating increases, and the scale loss also increases. For this reason, slab heating temperature shall be 1100 degreeC or more and 1200 degrees C or less.
  • Hot rolling finish rolling exit temperature 850 ° C. or more and 950 ° C. or less If the hot rolling finish rolling exit temperature is less than 850 ° C., deformation resistance during hot rolling increases. On the other hand, when the finish rolling outlet temperature of hot rolling exceeds 950 ° C., the crystal grains become coarse and the strength decreases. Therefore, the finish rolling outlet temperature of hot rolling is set to 850 ° C. or higher and 950 ° C. or lower.
  • Cooling rate in the temperature range from the finish rolling exit temperature to 700 ° C 50 ° C / s or more
  • the cooling rate in the temperature range from the finish rolling exit temperature to 700 ° C. is set to 50 ° C./s or more.
  • Winding temperature 300 ° C or more and less than 550 ° C
  • the winding temperature of the hot-rolled sheet after hot rolling is particularly important in order to control the circularity of the retained austenite grains in the final structure of the steel sheet within a predetermined range. is there. That is, in order to obtain a desired high yield ratio by controlling the circularity of the residual austenite crystal grains within a predetermined range, the steel structure of the hot-rolled sheet before the annealing treatment is changed to a bainite or martensite structure. It is important to perform annealing in the two-phase region of ferrite and austenite.
  • the winding temperature is less than 300 ° C., the hot-rolled sheet becomes extremely hard, and it is difficult to perform winding.
  • the winding temperature is set to 300 ° C. or higher and lower than 550 ° C.
  • the winding temperature is preferably 300 ° C. or higher, more preferably 350 ° C. or higher.
  • it is preferably 450 ° C. or lower, more preferably 420 ° C. or lower.
  • Cooling conditions after winding Cooling to 100 ° C. or less by water cooling
  • the cooling conditions after winding include the amount of retained austenite produced in the final structure of the steel sheet and the circularity of the crystal grains together with the above-described winding temperature. It is important to control to a predetermined range. That is, in order to control the amount of retained austenite generated in the final structure of the steel sheet and the circularity of the crystal grains within a predetermined range, the steel structure of the hot rolled sheet before annealing is changed to a bainite or martensite structure, and annealing treatment is performed. Sometimes it is necessary to properly control the nucleation site of austenite that transforms from bainite or martensite. In this respect, by cooling to 100 ° C.
  • the carbon in the steel is dissolved in bainite and martensite grains.
  • the carbon dissolved in the bainite and martensite grains diffuses to the lath or block boundaries of the bainite and martensite during the annealing process, and austenite transformation occurs along the grain boundaries from the inside of the microstructure. It is possible to control the amount of retained austenite produced in the final structure and the circularity of the crystal grains within a predetermined range.
  • cooling is not performed by water cooling or when the cooling stop temperature exceeds 100 ° C., a part of carbon segregates at the prior austenite grain boundaries, and austenite transforms from the grain boundaries during the annealing treatment, resulting in coarse austenite.
  • the cooling conditions after winding shall be water-cooled and cooled to 100 ° C. or lower.
  • pickling and cold-rolling the hot-rolled sheet to form a cold-rolled sheet After winding up the hot-rolled sheet, pickling and cold-rolling the hot-rolled sheet to form a cold-rolled sheet.
  • pickling conditions and cold rolling conditions are not specifically limited, What is necessary is just to follow a conventional method.
  • the cold-rolled sheet obtained as described above is annealed.
  • cementite precipitates in a network form along the lath or block boundary of bainite and martensite, from which austenite nucleates and austenite disperses along the grain boundaries.
  • annealing temperature when the annealing temperature is less than 730 ° C., cementite generated in the annealing process is not dissolved, and C in the martensite formed by the overaging treatment is insufficient and the strength is lowered. Further, the retained austenite obtained by the overaging treatment is reduced, and the ductility is lowered.
  • the annealing temperature exceeds 820 ° C., the austenite fraction during annealing becomes excessive, and they are connected to each other. Thereby, amorphous austenite is formed, the retained austenite obtained by overaging treatment decreases, and ductility falls.
  • annealing temperature shall be 730 degreeC or more and 820 degrees C or less. Preferably it is 740 degreeC or more. Preferably it is 810 degrees C or less.
  • Overaging treatment condition Hold for 100 seconds or more and 1000 seconds or less in a temperature range of 300 ° C or more and 500 ° C or less
  • cool to a temperature range of 300 ° C or more and 500 ° C or less and in this temperature range, 100 seconds or more and 1000 seconds or less
  • overaging treatment to keep.
  • the overaging temperature is less than 300 ° C.
  • the austenite undergoes martensite transformation, and a predetermined amount of retained austenite cannot be obtained, resulting in a decrease in elongation.
  • the overaging temperature exceeds 500 ° C., the ferrite transformation from austenite does not sufficiently proceed, and C concentration to austenite becomes insufficient.
  • the overaging treatment temperature is set to 300 ° C. or more and 500 ° C. or less. Preferably it is 350 degreeC or more. Preferably it is 450 degrees C or less. Also, if the retention time in the overaging treatment is less than 100 seconds, the ferrite transformation from austenite does not proceed sufficiently, C concentration to austenite becomes insufficient, a predetermined amount of retained austenite cannot be obtained, and elongation Decreases. On the other hand, when the retention time in the overaging treatment exceeds 1000 seconds, the productivity decreases. Therefore, the retention time in the overaging treatment is 100 seconds or more and 1000 seconds or less. Preferably it is 120 seconds or more. Preferably it is 600 seconds or less.
  • the steel plate obtained by performing the above-described overaging treatment may be further subjected to galvanizing treatment to form a galvanized layer on the surface thereof.
  • galvanizing treatment include hot dip galvanizing treatment, alloying hot dip galvanizing treatment, and electrogalvanizing treatment.
  • the treatment conditions are not particularly limited, and may be according to ordinary methods.
  • a steel slab was prepared by melting steel having the composition shown in Table 1 and the balance being Fe and inevitable impurities. Next, the steel slab is heated to form a hot-rolled sheet by hot rolling under the conditions shown in Table 2, and the obtained hot-rolled sheet is cooled, wound, and then further cooled to 100 ° C or less under the cooling conditions shown in Table 2. Until cooled. Next, after pickling with hydrochloric acid and cold rolling at a rolling reduction of 40-60% to make a cold-rolled sheet (thickness: 0.8-1.0 mm), annealing and overaging were performed under the conditions shown in Table 2. went.
  • the steel plate thus produced was subjected to structure observation and tensile test as follows. The results are shown in Table 3.
  • the area ratio of ferrite was determined by mirror-polishing the cross section of a sample made from the manufactured steel sheet, then corroding with nital and using FE-SEM LEO-1530 made by Carl Zeiss NTS GmbH The thickness of the sample was determined by observing the structure at 1/4 position (position corresponding to 1/4 of the thickness in the depth direction from the surface).
  • the acceleration voltage was 15 kV
  • a secondary electron image was observed using an Everhart-Thronley (ET) detector.
  • FIG. 3 shows an example of a secondary electron image obtained by observing the steel structure at a magnification of 5000 times in steel plate No. 4.
  • FIG. 4A shows an example of a secondary electron image obtained by observing the steel structure at a magnification of 2000 times in steel plate No. 2.
  • the area ratio of retained austenite is obtained by mirror-polishing the cross section of a sample prepared from the manufactured steel sheet and then mixing methanol, butyl cellosolve and perchloric acid in a volume ratio of 10: 6: 1. It was obtained by performing electropolishing with a liquid and observing the structure at a 1/4 position of the thickness of the sample using FE-SEM LEO-1530 manufactured by Carl Zeiss NTS GmbH. Here, the acceleration voltage was 1 kV, and a secondary electron image was observed using an Everhart-Thornley type detector.
  • FIG. 4B shows an example of a secondary electron image obtained by observing the steel structure at a magnification of 5000 times in the steel plate No. 2.
  • the martensite area ratio was determined by subtracting the area ratio of ferrite and the area ratio of retained austenite obtained above from 100%.
  • tensile strength high strength of 900 MPa or more and total workability: excellent workability of 20% or more are obtained, and further, yield ratio: high yield ratio of 60% or more is obtained.
  • yield ratio high yield ratio of 60% or more is obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

所定の成分組成とするとともに、鋼組織を、面積率でフェライト:30~75%、マルテンサイト:15~40%および残留オーステナイト:10~30%である組織とし、さらに残留オーステナイトの結晶粒の円形度分布を、階級範囲:0.1×(n-1)超0.1×n以下、階級値:0.1×n(ここで、nは1~10までの整数)としたヒストグラムで表す場合に、残留オーステナイトの結晶粒の円形度の最頻値を0.6以下とすることにより、引張強さ:900MPa以上の高強度と全伸び:20%以上の高加工性を兼備し、かつ60%以上の高降伏比を有する高強度冷延鋼板とする。

Description

高強度冷延鋼板およびその製造方法
 本発明は、高強度冷延鋼板およびその製造方法に関し、特に高降伏比でかつ加工性にも優れた高強度冷延鋼板を得ようとするものである。
 近年、高強度と優れた加工性を兼備した鋼板として、鋼板の鋼組織(微細組織)を制御した種々の鋼板が開発されている。
 例えば、特許文献1には、引張強さが1180MPa以上で、伸びと伸びフランジ性に優れた超高強度冷延鋼板及びその製造方法が開示されている。
 また、自動車部品には、自動車の衝突安全性の観点から、強度に加え、衝突時に乗員の居住空間を確保するよう、容易に変形しないことが求められるものもある。このため、かような自動車部品には、高降伏比の鋼板を使用することが望まれる。
 このような高降伏比の鋼板として、例えば、特許文献2には、引張強度が980MPa以上、降伏比が70~80%を満足する鋼板形状及び形状凍結性に優れた高強度冷延鋼板及びその製造方法が開示されている。
特開2015-014026号公報 特開2014-196557号公報
 しかし、特許文献1に記載の鋼板では、降伏強度や降伏比について何ら考慮が払われていない。加えて、上記の鋼板では、必ずしも十分な延性が得られているとは言えず、加工性の面にも課題を残していた。
 また、特許文献2に記載の鋼板でも、十分な延性が得られず、やはり加工性の面に課題を残していた。
 本発明は、上記の現状に鑑み開発されたものであって、引張強さ:900MPa以上の高強度と全伸び:20%以上の優れた加工性を兼備し、かつ降伏比:60%以上、好ましくは65%以上の高降伏比の高強度冷延鋼板を提供することを目的とする。
 また、本発明は、上記の高強度冷延鋼板の製造方法を提供することを目的とする。
 さて、発明者らは、引張強さ:900MPa以上の高強度と全伸び:20%以上の優れた加工性を兼備し、かつ降伏比:60%以上の高降伏比の高強度冷延鋼板を開発すべく鋭意検討を重ねたところ、以下のことを知見した。
(1)引張強さ:900MPa以上と全伸び:20%以上を両立するためには、成分組成を適正に調整した上で、鋼組織を、フェライト、マルテンサイトおよび残留オーステナイトがそれぞれ適正な配合比率になる複合組織とし、残留オーステナイトによるTRIP効果を活用することが有効である。
(2)また、鋼板の機械的特性、特に降伏比は、成分組成や鋼組織における各相の面積率(以下、組織分率ともいう)によって一義的に決まるわけではなく、成分組成や組織分率がほぼ同じであっても大きく変わる場合がある。
(3)そこで、各相の組織形態に着目し、電界放出型走査電子顕微鏡(FE-SEM)を用いて鋼組織の詳細な観察・解析を行ったところ、残留オーステナイトの形態、特に残留オーステナイトの結晶粒の円形度が鋼板の降伏比に影響を与えており、この残留オーステナイトの結晶粒の円形度を適正に制御することによって、所望とする鋼板の降伏比を得ることが可能となる。
(4)また、特に熱間圧延後の巻き取り温度と冷却条件を調整することにより、焼鈍処理前の熱延板組織をベイナイトまたはマルテンサイト組織とし、その後、フェライトとオーステナイトの二相域において焼鈍を行って、所定の条件で過時効処理を行うことにより、最終組織における残留オーステナイトの結晶粒の円形度を適正に制御することができる。
 本発明は、上記の知見に基づき、さらに検討を加えた末に完成されたものである。
 すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、
 C:0.15~0.35%、 
 Si:1.0~2.0%、
 Mn:1.8~3.5%、
 P:0.020%以下、
 S:0.0040%以下、
 Al:0.01~0.1%および
 N:0.01%以下
を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
 面積率で、フェライト:30~75%、マルテンサイト:15~40%および残留オーステナイト:10~30%の範囲である鋼組織を有し、
 また、上記残留オーステナイトの結晶粒の円形度分布を、階級範囲:0.1×(n-1)超0.1×n以下、階級値:0.1×n(ここで、nは1~10までの整数)としたヒストグラムで表す場合に、上記残留オーステナイトの結晶粒の円形度の最頻値が0.6以下である、
高強度冷延鋼板。
 ここに、残留オーステナイトの各結晶粒の円形度は、次式により求めたものである。
  円形度=4πS/L2
 ここで、Sは残留オーステナイトの結晶粒の面積、Lは残留オーステナイトの結晶粒の周長である。
2.表面に亜鉛めっき層を有する前記1に記載の高強度冷延鋼板。
3.質量%で、
 C:0.15~0.35%、
 Si:1.0~2.0%、
 Mn:1.8~3.5%、
 P:0.020%以下、
 S:0.0040%以下、
 Al:0.01~0.1%および
 N:0.01%以下
を含有し、残部がFeおよび不可避的不純物からなる鋼スラブを、1100℃以上1200℃以下に加熱したのち、上記鋼スラブに仕上圧延出側温度:850℃以上950℃以下で熱間圧延を施して熱延板とし、
 上記熱延板を、上記仕上圧延出側温度から700℃までの温度域における冷却速度を50℃/s以上として冷却し、上記熱延板を300℃以上550℃未満で巻き取り、巻き取り後に水冷を施して100℃以下まで冷却し、
 酸洗を行ったのち、上記熱延板に冷間圧延を施して冷延板とし、
 上記冷延板を、730℃以上820℃以下で焼鈍したのち、300℃以上500℃以下の温度域に冷却し、上記冷延板を当該300℃以上500℃以下の温度域で100s以上1000s以下保持する過時効処理を施す、
高強度冷延鋼板の製造方法。
4.前記過時効処理後に亜鉛めっき処理を行う前記3に記載の高強度冷延鋼板の製造方法。
 本発明によれば、引張強さ:900MPa以上の高強度と全伸び:20%以上の優れた加工性を兼備し、かつ降伏比:60%以上の高降伏比の高強度冷延鋼板を得ることができる。
 また、かような高強度冷延鋼板を、所定の自動車部品に適用することにより、衝突時に乗員の居住空間を確保しつつ、車体軽量化による燃費改善を図ることが可能となるので、産業的な利用価値は極めて大きい。
残留オーステナイトの結晶粒の円形度分布を表すヒストグラムの一例を示す図である。 (a)は鋼組織をFE-SEMにより観察した場合に得られる二次電子像の一例を示す図であり、(b)は鋼組織をEBSDにより観察し、所定のPCソフトで解析して得られる画像の一例を示す図である。 実施例の鋼板No.4の鋼組織を、FE-SEMにより、加速電圧:15kV、Everhart-Thronley(ET)検出器を用いて観察したときに得られた二次電子像である。 実施例の鋼板No.2の鋼組織を示すFE-SEM像((a)加速電圧:15kV、倍率:2000倍で観察した二次電子像、(b)加速電圧:1kV、倍率:5000倍で観察した二次電子像)である。
 以下、本発明を具体的に説明する。
 まず、本発明の高強度冷延鋼板における成分組成の限定理由を以下に述べる。なお、成分組成における単位はいずれも「質量%」であるが、以下、特に断らない限り単に「%」で示す。
C:0.15~0.35%
 Cは、鋼板の高強度化にも寄与するとともに、残留オーステナイトを得るために重要な元素である。本発明の鋼板を製造するにあたっては、焼鈍後の過時効処理時にフェライト変態が進行する。ここで、フェライトはCをほとんど固溶しないので、未変態オーステナイトにCが濃化し、オーステナイトが安定化する。その結果、最終組織において残留オーステナイトが得られ、伸びを向上させる。また、Cの濃化が不十分な一部のオーステナイトは、マルテンサイト変態し、Cを過飽和に固溶した硬質相(マルテンサイト)となって強度の向上に寄与する。ここに、C量が0.15%未満では、十分な強度を得ることが出来ない。一方、C量が0.35%を超えると、溶接性の劣化が顕著となる。したがって、C量は0.15~0.35%の範囲とする。好ましくは0.15%以上である。好ましくは0.28%以下である。
Si:1.0~2.0%
 Siは、過時効時のセメンタイト生成を抑制し、十分な量の残留オーステナイトを得るために重要な元素である。しかし、Si量が1.0%未満では、上記の効果を得ることができない。一方、Si量が2.0%を超えると、熱間圧延及び焼鈍時の表面酸化が顕著になり、外観およびめっき性に悪影響を及ぼす。したがって、Si量は1.0~2.0%の範囲とする。好ましくは1.2%以上である。好ましくは1.8%以下である。
Mn:1.8~3.5%
 Mnは、残留オーステナイトを安定化させる効果がある。しかし、Mn量が1.8%未満では、上記の効果が小さい。一方、Mn量が3.5%を超えると、過時効処理時のフェライト変態、さらには残留オーステナイトの生成が抑制され、所望の伸びを得ることが困難となる。したがって、Mn量は1.8~3.5%の範囲とする。好ましくは1.9%以上である。好ましくは2.5%以下である。
P:0.020%以下
 Pは、溶接性を低下させるため、極力少ないほうが望ましい。したがって、P量は0.020%以下とする。好ましくは0.015%以下である。
S:0.0040%以下
 Sは、介在物を形成して局部伸びを低下させるため、極力少ないほうが望ましい。したがって、S量は0.0040%以下とする。好ましくは0.0020%以下である。
Al:0.01~0.1%
 Alは、脱酸剤として添加される。しかし、Al量が0.01%未満ではその効果が小さい。一方、Al量が0.1%を超えると、介在物が形成され、局部伸びが低下する。したがって、Al量は0.01~0.1%の範囲とする。好ましくは0.02%以上である。好ましくは0.06%以下である。
N:0.01%以下
 Nは、歪時効に影響を及ぼす元素であり、極力少ない方が望ましい。したがって、N量は0.01%以下とする。好ましくは0.006%以下である。
 なお、上記以外の成分はFeおよび不可避的不純物である。ただし、本発明の効果を損なわない範囲であれば上記以外の成分の含有を拒むものではない。
 次に、本発明の高強度冷延鋼板の鋼組織について説明する。
フェライトの面積率:30~75%
 フェライトは、軟質相であり伸びの向上に寄与する。ここで、フェライトの面積率が30%未満では、マルテンサイトが増加して強度が過度に高まり、伸びが低下する。一方、フェライトの面積率が75%を超えると、マルテンサイトの面積率が低下して、所望の強度を確保できない。したがって、フェライトの面積率は30~75%の範囲とする。好ましくは40%以上である。好ましくは70%以下である。
マルテンサイトの面積率:15~40%
 マルテンサイトは、硬質相であり強度の向上に寄与する。ここで、マルテンサイトの面積率が15%未満では、所望の強度を確保できない。一方、マルテンサイトの面積率が40%を超えると、強度が過度に高まり伸びが低下する。したがって、マルテンサイトの面積率は15~40%の範囲とする。好ましくは20%以上である。好ましくは35%以下である。
残留オーステナイトの面積率:10~30%
 残留オーステナイトは、TRIP効果を通じて伸びの向上に大きく寄与する。ここで、残留オーステナイトの面積率が10%未満では、所望の伸びを得ることができない。一方、残留オーステナイトの面積率が増加するにつれて、残留オーステナイト中のC濃度が低くなって残留オーステナイトの安定度が低下する。このため、面積率で30%超の残留オーステナイトを工業的に得るには、制御が困難である。したがって、残留オーステナイトの面積率は10~30%の範囲とする。好ましくは12%以上である。好ましくは28%以下である。
 なお、鋼組織は、基本的に上記したフェライト、マルテンサイトおよび残留オーステナイトにより構成されるが、セメンタイト等の炭化物やTiN等の介在物が微量であれば含まれていてもよく、これらの合計の面積率が1%以下であれば許容できる。
残留オーステナイトの結晶粒の円形度の最頻値:0.6以下
 前述したように、残留オーステナイトの結晶粒の円形度は、鋼板の降伏比に影響を及ぼし、この残留オーステナイトの結晶粒の円形度の最頻値を0.6以下に制御することによって、所望とする降伏比:60%以上、好ましくは65%以上の高降伏比を得ることが可能となる。
 ここで、残留オーステナイトの結晶粒の円形度が、鋼板の降伏比に影響を及ぼすメカニズムについては必ずしも明らかではないが、発明者らは、組織形態により微視的な応力分配が変化するためと考えている。
 すなわち、残留オーステナイトの結晶粒の円形度(以下、単に円形度ともいう)の最頻値が小さくなると、残留オーステナイトの結晶粒の多くは細長く延びた形状となる。鋼板に引張荷重を加えた場合、残留オーステナイトの結晶粒の形状が、引張方向に対してどのような方向に延びているかで、応力の加わり方が異なるものとなる。このような場合、細長く延びた形状となった残留オーステナイトの結晶粒は、応力が加わってもTRIP現象を起こさず、その応力をフェライトまたはマルテンサイトが受け持つようになる。TRIP現象は不可逆な塑性変形であるため、TRIP現象が起きれば降伏する。しかし、フェライトおよびマルテンサイトは、応力が加わると弾性変形するため、降伏せず、降伏比を高める側に作用する。このため、残留オーステナイトの結晶粒の円形度の最頻値が小さくなると、鋼板の降伏比が上昇する。一方、残留オーステナイトの結晶粒の円形度の最頻値が大きくなると、鋼中の多くの残留オーステナイトにおいてTRIP現象が生じ、その結果、降伏比が低下するものと考えている。
 なお、ここでいう残留オーステナイトの結晶粒の円形度の最頻値とは、図1に示すように、残留オーステナイトの結晶粒の円形度分布を、階級範囲:0.1×(n-1)超0.1×n以下、階級値:0.1×n(ここで、nは1~10までの整数)としたヒストグラムで表す場合における、円形度の最頻値である。なお、最頻値とは、上記の円形度分布において、度数(結晶粒の数)が最大となる階級値を意味するものであり、図1の場合、最頻値は0.5である。
 また、残留オーステナイトの各結晶粒の円形度は、次式により求めたものである。
  円形度=4πS/L2
 ここで、Sは残留オーステナイトの結晶粒の面積、Lは残留オーステナイトの結晶粒の周長である。
 さらに、鋼板中の残留オーステナイトの結晶粒の形態は様々なため、統計的に円形度を判定するためには、1000個以上の残留オーステナイトの結晶粒の円形度を測定することが好ましい。
 加えて、残留オーステナイトの各結晶粒の円形度の測定は、電界放出型走査電子顕微鏡(FE-SEM)の観察像の画像処理により行うことが好適である。
 すなわち、鋼板の試料断面を鏡面研磨した後、適切な組織エッチング処理を施し、FE-SEMによる二次電子像観察を行うことにより、図2(a)に示すように、残留オーステナイトの形態を高解像度で観察可能である。ここで、エッチング処理としては、例えば、ナイタール及び電解研磨エッチングを用いればよい。また、エッチングされた領域の中心部ではなく周辺部をFE-SEMのインレンズ型検出器またはEverhart-Thornley検出器で観察することにより、残留オーステナイトのみを常にフェライトやマルテンサイトよりも暗いコントラストで観察可能である。なお、このときのFE-SEMの加速電圧は2kV以下とすることが好ましい(なお、図2(a)中の白色部分は、研磨剤の残留粒子である。)。
 なお、鋼組織の結晶相の判定手法として、SEMにEBSD(Electron BackScattered Diffraction)検出器を取り付け、観察した画像をPCソフトで解析する手法が広く普及している。しかし、EBSDで観察した画像では、図2(b)のように、50nm以下の大きさの残留オーステナイトの結晶粒(図2(b)中の白色部分に相当)の境界が曖昧で、場所によっては、精度よく残留オーステナイトの結晶粒の面積Sおよび周長Lを求めることができない。一方、上述したFE-SEM像では、50nm以下の残留オーステナイトも高解像度で観察可能であり、これによって、50nm以下の大きさの残留オーステナイトの結晶粒であっても円形度を高精度に測定可能である。
 なお、FE-SEMの観察像の画像処理としては、コントラストを利用した画像処理が容易であり、例えばフリーソフトのImageJソフトウェアを用いて画像を二値化し、抽出した残留オーステナイトの結晶粒の面積および周長から求めた円形度を、circularityとして出力することができる。
 また、円形度の測定対象とする残留オーステナイトの結晶粒は、結晶粒径(短径):10nm以上の結晶粒とする。さらに、円形度の階級値が0.6以下となる結晶粒の数は、全体の50%超とすることが好ましい。
 次に、本発明の高強度冷延鋼板の製造方法について、説明する。
 本発明の高強度冷延鋼板の製造方法は、上記した成分組成となる鋼スラブを、1100℃以上1200℃以下に加熱したのち、上記鋼スラブに仕上圧延出側温度:850℃以上950℃以下で熱間圧延を施して熱延板とし、上記熱延板を、上記仕上圧延出側温度から700℃までの温度域における冷却速度を50℃/s以上として冷却し、上記熱延板を300℃以上550℃未満で巻き取り、巻き取り後に水冷を施して100℃以下まで冷却し、酸洗を行ったのち、上記熱延板に冷間圧延を施して冷延板とし、上記冷延板を、730℃以上820℃以下で焼鈍したのち、300℃以上500℃以下に冷却し、ついで、上記冷延板を当該300℃以上500℃以下の温度域で100s以上1000s以下保持する過時効処理を施すものである。
 以下、上記した製造条件の限定理由について説明する。
スラブ加熱温度:1100℃以上1200℃以下
 スラブ加熱温度が1100℃未満では、圧延負荷が増大し、熱間圧延時のトラブル発生の危険が増大するなどの問題が生じる。一方、スラブ加熱温度が1200℃を超えると、加熱のためのエネルギー負荷が大きく、またスケールロスも大きくなる。このため、スラブ加熱温度は、1100℃以上1200℃以下とする。
熱間圧延の仕上圧延出側温度:850℃以上950℃以下
 熱間圧延の仕上圧延出側温度が850℃未満では、熱間圧延時の変形抵抗が増大する。一方、熱間圧延の仕上圧延出側温度が950℃を超えると、結晶粒の粗大化を招き、強度が低下する。したがって、熱間圧延の仕上圧延出側温度は、850℃以上950℃以下とする。
仕上圧延出側温度から700℃までの温度域における冷却速度:50℃/s以上
 熱間圧延後、仕上圧延出側温度から700℃までの温度域における冷却速度が50℃/s未満になると、フェライト粒径が大きくなり、強度が低下する。このため、仕上圧延出側温度から700℃までの温度域における冷却速度は50℃/s以上とする。
巻き取り温度:300℃以上550℃未満
 熱間圧延後の熱延板の巻き取り温度は、鋼板の最終組織における残留オーステナイトの結晶粒の円形度を所定の範囲に制御するために、特に重要である。すなわち、残留オーステナイトの結晶粒の円形度を所定の範囲に制御して、所望の高降伏比を得るには、焼鈍処理前の熱延板の鋼組織をベイナイトまたはマルテンサイト組織とした上で、フェライトとオーステナイトの二相域において焼鈍を行うことが重要である。ここで、巻き取り温度が300℃未満では、熱延板が極度に硬質化し、巻き取りを行うことが困難となる。一方、巻き取り温度が550℃以上になると、フェライトやパーライト組織が生成し、その後の焼鈍・過時効処理を経て得られる残留オーステナイトの結晶粒について、円形度が大きいものが多くなり、降伏比が低下する。このため、巻き取り温度は300℃以上550℃未満とする。なお、特に降伏比:65%以上の高降伏比を得る観点からは、巻き取り温度は好ましくは300℃以上、より好ましくは350℃以上である。また、好ましくは450℃以下、より好ましくは420℃以下である。
巻き取り後の冷却条件:水冷を施して100℃以下まで冷却
 また、巻き取り後の冷却条件も、上記した巻き取り温度とともに、鋼板の最終組織における残留オーステナイトの生成量および結晶粒の円形度を所定の範囲に制御するために、重要である。すなわち、鋼板の最終組織における残留オーステナイトの生成量および結晶粒の円形度を所定の範囲に制御するには、焼鈍処理前の熱延板の鋼組織をベイナイトまたはマルテンサイト組織にするとともに、焼鈍処理時に、ベイナイトまたはマルテンサイトから相変態するオーステナイトの核生成場所を適切に制御する必要がある。
 この点、巻き取り後の冷却を水冷として100℃以下まで冷却することにより、鋼中の炭素がベイナイトやマルテンサイト粒内に固溶する。そして、このベイナイトやマルテンサイト粒内に固溶した炭素が、焼鈍処理時にベイナイトやマルテンサイトのラス境界またはブロック境界へ拡散し、微細組織内部からオーステナイト変態が粒界に沿うように生じ、鋼板の最終組織における残留オーステナイトの生成量および結晶粒の円形度を所定の範囲に制御することが可能となる。
 一方、冷却を水冷により行わない場合や、冷却停止温度が100℃を超える場合には、炭素の一部が旧オーステナイト粒界に偏析し、焼鈍処理時に粒界からオーステナイトが変態し、粗大なオーステナイト粒を形成する。粗大なオーステナイト粒は、炭素量が少ないため、残留オーステナイトが不安定となり、ひいては残留オーステナイトの面積率が少なくなって、延性が低下する。
 このため、巻き取り後の冷却条件は、水冷を施して100℃以下まで冷却するものとする。
 上記熱延板を巻き取り後、酸洗し、上記熱延板に冷間圧延を施して冷延板とする。なお、酸洗条件及び冷間圧延条件は特に限定されず、常法に従えばよい。
焼鈍温度:730℃以上820℃以下
 ついで、上記のようにして得た冷延板を焼鈍する。ここでは、熱間圧延後の巻き取りの際に形成した熱延板のベイナイトまたはマルテンサイト組織から、フェライトとオーステナイトの二相組織を形成し、焼鈍を行うことが重要である。すなわち、焼鈍により、ベイナイトおよびマルテンサイト組織は転位密度の少ないフェライト組織となり、延性向上に寄与するものとなる。また、この焼鈍の過程において、セメンタイトが、ベイナイトおよびマルテンサイトのラス境界またはブロック境界に沿うようにネットワーク状に析出し、ここからオーステナイトが核生成して、結晶粒界に沿ってオーステナイトが分散した組織が形成される。
 ここで、焼鈍温度が730℃未満では、焼鈍の過程で生成するセメンタイトが溶解せず、過時効処理で形成されるマルテンサイト中のCが不足して強度が低下する。また、過時効処理で得られる残留オーステナイトが少なくなり、延性が低下する。一方、焼鈍温度が820℃を超えると、焼鈍時のオーステナイト分率が過剰となって、互いに連結する。これにより、不定形なオーステナイトが形成され、過時効処理で得られる残留オーステナイトが少なくなり、延性が低下する。このため、焼鈍温度は730℃以上820℃以下とする。好ましくは740℃以上である。好ましくは810℃以下である。
過時効処理条件:300℃以上500℃以下の温度域で100秒以上1000秒以下保持
 上記の焼鈍後、300℃以上500℃以下の温度域に冷却し、この温度域で100秒以上1000秒以下保持する過時効処理を施す。
 ここに、過時効処理温度が300℃未満の場合、オーステナイトがマルテンサイト変態して所定量の残留オーステナイトが得られず、伸びが低下する。一方、過時効処理温度が500℃を超えると、オーステナイトからのフェライト変態が十分に進まず、オーステナイトへのC濃化が不十分となる。このため、所定量の残留オーステナイトが得られず、伸びが低下する。したがって、過時効処理温度は300℃以上500℃以下とする。好ましくは350℃以上である。好ましくは450℃以下である。
 また、過時効処理での保持時間が100秒未満では、オーステナイトからのフェライト変態が十分に進まず、オーステナイトへのC濃化が不十分となって、所定量の残留オーステナイトが得られず、伸びが低下する。一方、過時効処理での保持時間が1000秒を超えると、生産性が低下する。したがって、過時効処理での保持時間は100秒以上1000秒以下とする。好ましくは120秒以上である。好ましくは600秒以下である。
 また、上記の過時効処理を施して得られた鋼板に、さらに亜鉛めっき処理を施して、その表面に亜鉛めっき層を形成してもよい。ここで、亜鉛めっき処理としては、溶融亜鉛めっき処理や合金化溶融亜鉛めっき処理、および電気亜鉛めっき処理などが挙げられる。処理条件については特に限定されず、常法に従えばよい。
 表1に示す成分組成を有し、残部がFeおよび不可避的不純物よりなる鋼を溶製して鋼スラブとした。ついで、表2に示す条件で、鋼スラブを加熱して熱間圧延により熱延板とし、得られた熱延板を冷却後、巻き取り、その後、さらに表2に示す冷却条件で100℃以下まで冷却した。ついで、塩酸酸洗を施し、圧下率:40~60%で冷間圧延して冷延板(厚さ:0.8~1.0mm)としたのち、表2に示す条件で、焼鈍および過時効処理を行った。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 かくして製造した鋼板について、以下のようにして組織観察および引張試験を行った。結果を表3に示す。
(1)組織観察
・フェライトの面積率
 フェライトの面積率は、製造した鋼板から作製した試料の断面を鏡面研磨した後、ナイタールで腐食し、Carl Zeiss NTS GmbH製FE-SEM LEO-1530を用いて、試料の板厚1/4位置(表面から深さ方向で板厚の1/4に相当する位置)の組織観察を行うことにより求めた。
 ここで、加速電圧は15kVとし、Everhart-Thronley(ET)検出器を用いて、二次電子像を観察した。また、上記の二次電子像では、周囲より暗いコントラストの結晶粒をフェライトとし、視野全体に対してフェライトが占める面積率を求めた。
 なお、観察は倍率:5000倍で10視野行い、各視野で観察されたフェライトが占める面積率の平均値を、フェライトの面積率とした。
 参考として、図3に、鋼板No.4において倍率:5000倍で鋼組織を観察して得られた二次電子像の一例を示す。また、参考として、図4(a)に、鋼板No.2において倍率:2000倍で鋼組織を観察して得られた二次電子像の一例を示す。
・残留オーステナイトの面積率
 残留オーステナイトの面積率は、製造した鋼板から作製した試料の断面を鏡面研磨した後、メタノール、ブチルセロソルブおよび過塩素酸を体積率で10:6:1 の割合で混合した電解液により電解研磨を行い、Carl Zeiss NTS GmbH製FE-SEM LEO-1530を用いて試料の板厚1/4位置の組織観察を行うことにより求めた。
 ここで、加速電圧は1kVとし、Everhart-Thornley型検出器を用いて二次電子像を観察した。また、上記の二次電子像では、周囲より暗いコントラストの結晶粒を残留オーステナイトとし、視野全体に対して残留オーステナイトが占める面積率を求めた。
 なお、観察は倍率:5000倍で10視野行い、各視野で観察された残留オーステナイトが占める面積率の平均値を、残留オーステナイトの面積率とした。
 参考として、図4(b)に、鋼板No.2において倍率:5000倍で鋼組織を観察して得られた二次電子像の一例を示す。
・マルテンサイトの面積率
 マルテンサイトの面積率は、100%から上記で求めたフェライトの面積率および残留オーステナイトの面積率を減じることにより求めた。
・残留オーステナイトの結晶粒の円形度の最頻値
 残留オーステナイトの面積率を求める際に用いた試料を使用し、Carl Zeiss NTS GmbH製FE-SEM LEO-1530により試料の板厚1/4位置の組織観察を行い、観察された残留オーステナイトの結晶粒の円形度を、ImageJソフトウェアを用いた画像解析により求めた。
 また、残留オーステナイトの結晶粒の円形度は、視野を変えながら1000個の結晶粒について算出し、算出した残留オーステナイトの結晶粒の円形度分布を、階級範囲:0.1×(n-1)超0.1×n以下、階級値:0.1×n(ここで、nは1~10までの整数)としたヒストグラムで表し、その最頻値を求めた。
(2)引張試験
 鋼板の圧延方向と90°の方向を長手方向(引張方向)とするJISZ2201に準拠したJIS5号試験片を用いて、JISZ2241に準拠した引張試験を行い、降伏強度(YS)、引張強さ(TS)、降伏比(YR)および全伸び(EL)を求めた。
Figure JPOXMLDOC01-appb-T000003
 表3より、本発明例ではいずれも、引張強さ:900MPa以上の高強度と全伸び:20%以上の優れた加工性が得られ、さらには降伏比:60%以上の高降伏比が得られていることがわかる。
 一方、比較例では、引張強さ、全伸びおよび降伏比のうちの少なくとも1つが、所望とする範囲外となった。

Claims (4)

  1.  質量%で、
     C:0.15~0.35%、 
     Si:1.0~2.0%、
     Mn:1.8~3.5%、
     P:0.020%以下、
     S:0.0040%以下、
     Al:0.01~0.1%および
     N:0.01%以下
    を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
     面積率で、フェライト:30~75%、マルテンサイト:15~40%および残留オーステナイト:10~30%の範囲である鋼組織を有し、
     また、上記残留オーステナイトの結晶粒の円形度分布を、階級範囲:0.1×(n-1)超0.1×n以下、階級値:0.1×n(ここで、nは1~10までの整数)としたヒストグラムで表す場合に、上記残留オーステナイトの結晶粒の円形度の最頻値が0.6以下である、
    高強度冷延鋼板。
     ここに、残留オーステナイトの各結晶粒の円形度は、次式により求めたものである。
      円形度=4πS/L2
     ここで、Sは残留オーステナイトの結晶粒の面積、Lは残留オーステナイトの結晶粒の周長である。
  2.  表面に亜鉛めっき層を有する請求項1に記載の高強度冷延鋼板。
  3.  質量%で、
     C:0.15~0.35%、
     Si:1.0~2.0%、
     Mn:1.8~3.5%、
     P:0.020%以下、
     S:0.0040%以下、
     Al:0.01~0.1%および
     N:0.01%以下
    を含有し、残部がFeおよび不可避的不純物からなる鋼スラブを、1100℃以上1200℃以下に加熱したのち、上記鋼スラブに仕上圧延出側温度:850℃以上950℃以下で熱間圧延を施して熱延板とし、
     上記熱延板を、上記仕上圧延出側温度から700℃までの温度域における冷却速度を50℃/s以上として冷却し、上記熱延板を300℃以上550℃未満で巻き取り、巻き取り後に水冷を施して100℃以下まで冷却し、
     酸洗を行ったのち、上記熱延板に冷間圧延を施して冷延板とし、
     上記冷延板を、730℃以上820℃以下で焼鈍したのち、300℃以上500℃以下の温度域に冷却し、上記冷延板を当該300℃以上500℃以下の温度域で100s以上1000s以下保持する過時効処理を施す、
    高強度冷延鋼板の製造方法。
  4.  前記過時効処理後に亜鉛めっき処理を行う請求項3に記載の高強度冷延鋼板の製造方法。
     
PCT/JP2017/000880 2016-02-18 2017-01-12 高強度冷延鋼板およびその製造方法 WO2017141588A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2017527935A JP6260745B1 (ja) 2016-02-18 2017-01-12 高強度冷延鋼板およびその製造方法
KR1020187022232A KR102093057B1 (ko) 2016-02-18 2017-01-12 고강도 냉연 강판 및 그 제조 방법
MX2018009969A MX2018009969A (es) 2016-02-18 2017-01-12 Lamina de acero laminada en frio de alta resistencia y metodo de produccion de la misma.
US16/075,750 US20190048436A1 (en) 2016-02-18 2017-01-12 High-strength cold rolled steel sheet and method of producing same
EP17752852.8A EP3418414B1 (en) 2016-02-18 2017-01-12 High-strength cold-rolled steel sheet, and production method therefor
CN201780011756.8A CN108699646B (zh) 2016-02-18 2017-01-12 高强度冷轧钢板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016029274 2016-02-18
JP2016-029274 2016-02-18

Publications (1)

Publication Number Publication Date
WO2017141588A1 true WO2017141588A1 (ja) 2017-08-24

Family

ID=59624919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000880 WO2017141588A1 (ja) 2016-02-18 2017-01-12 高強度冷延鋼板およびその製造方法

Country Status (7)

Country Link
US (1) US20190048436A1 (ja)
EP (1) EP3418414B1 (ja)
JP (1) JP6260745B1 (ja)
KR (1) KR102093057B1 (ja)
CN (1) CN108699646B (ja)
MX (1) MX2018009969A (ja)
WO (1) WO2017141588A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110747391A (zh) * 2019-08-30 2020-02-04 武汉钢铁有限公司 一种具有优良延伸率的冷轧超高强钢及其制备方法
US20230203615A1 (en) * 2020-05-11 2023-06-29 Jfe Steel Corporation Steel sheet, member, and methods for manufacturing the same
CN114438400B (zh) * 2020-10-30 2022-12-16 宝山钢铁股份有限公司 一种具有高延伸率的980MPa级热镀锌钢板及其制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091924A (ja) * 2002-08-12 2004-03-25 Kobe Steel Ltd 伸びフランジ性に優れた高強度鋼板
JP2004292891A (ja) * 2003-03-27 2004-10-21 Jfe Steel Kk 疲労特性および穴拡げ性に優れる高張力溶融亜鉛めっき鋼板およびその製造方法
JP2005179732A (ja) * 2003-12-19 2005-07-07 Jfe Steel Kk 冷延鋼板の製造方法
JP2007154283A (ja) * 2005-12-07 2007-06-21 Jfe Steel Kk 成形性および形状凍結性に優れる高強度鋼板
JP2014196557A (ja) 2013-03-06 2014-10-16 株式会社神戸製鋼所 鋼板形状および形状凍結性に優れた高強度冷延鋼板およびその製造方法
JP2015014026A (ja) 2013-07-04 2015-01-22 新日鐵住金株式会社 冷延鋼板およびその製造方法
WO2015174605A1 (ko) * 2014-05-13 2015-11-19 주식회사 포스코 연성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8460800B2 (en) * 2009-03-31 2013-06-11 Kobe Steel, Ltd. High-strength cold-rolled steel sheet excellent in bending workability
JP5589893B2 (ja) * 2010-02-26 2014-09-17 新日鐵住金株式会社 伸びと穴拡げに優れた高強度薄鋼板およびその製造方法
JP5662902B2 (ja) * 2010-11-18 2015-02-04 株式会社神戸製鋼所 成形性に優れた高強度鋼板、温間加工方法、および温間加工された自動車部品
JP5321605B2 (ja) * 2011-01-27 2013-10-23 Jfeスチール株式会社 延性に優れる高強度冷延鋼板およびその製造方法
CN103827335B (zh) * 2011-09-30 2015-10-21 新日铁住金株式会社 镀锌钢板及其制造方法
CN103857819B (zh) * 2011-10-04 2016-01-13 杰富意钢铁株式会社 高强度钢板及其制造方法
JP5764549B2 (ja) * 2012-03-29 2015-08-19 株式会社神戸製鋼所 成形性および形状凍結性に優れた、高強度冷延鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板、ならびにそれらの製造方法
JP5860354B2 (ja) * 2012-07-12 2016-02-16 株式会社神戸製鋼所 降伏強度と成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5862591B2 (ja) * 2013-03-28 2016-02-16 Jfeスチール株式会社 高強度鋼板およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091924A (ja) * 2002-08-12 2004-03-25 Kobe Steel Ltd 伸びフランジ性に優れた高強度鋼板
JP2004292891A (ja) * 2003-03-27 2004-10-21 Jfe Steel Kk 疲労特性および穴拡げ性に優れる高張力溶融亜鉛めっき鋼板およびその製造方法
JP2005179732A (ja) * 2003-12-19 2005-07-07 Jfe Steel Kk 冷延鋼板の製造方法
JP2007154283A (ja) * 2005-12-07 2007-06-21 Jfe Steel Kk 成形性および形状凍結性に優れる高強度鋼板
JP2014196557A (ja) 2013-03-06 2014-10-16 株式会社神戸製鋼所 鋼板形状および形状凍結性に優れた高強度冷延鋼板およびその製造方法
JP2015014026A (ja) 2013-07-04 2015-01-22 新日鐵住金株式会社 冷延鋼板およびその製造方法
WO2015174605A1 (ko) * 2014-05-13 2015-11-19 주식회사 포스코 연성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법

Also Published As

Publication number Publication date
CN108699646A (zh) 2018-10-23
KR20180098669A (ko) 2018-09-04
US20190048436A1 (en) 2019-02-14
EP3418414A1 (en) 2018-12-26
MX2018009969A (es) 2018-11-09
EP3418414B1 (en) 2020-01-01
JPWO2017141588A1 (ja) 2018-02-22
JP6260745B1 (ja) 2018-01-17
EP3418414A4 (en) 2019-02-20
KR102093057B1 (ko) 2020-03-24
CN108699646B (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
JP6252713B1 (ja) 高強度鋼板およびその製造方法
JP6048620B1 (ja) 高強度冷延鋼板およびその製造方法
JP5896086B1 (ja) 高降伏比高強度冷延鋼板およびその製造方法
JP6172298B2 (ja) 高強度冷延鋼板およびその製造方法
JP5888471B1 (ja) 高降伏比高強度冷延鋼板及びその製造方法
JP5821912B2 (ja) 高強度冷延鋼板およびその製造方法
TWI441928B (zh) 均勻伸長和鍍覆性優異之高強度熔融鍍鋅鋼板及其製造方法
JP5991450B1 (ja) 高強度冷延鋼板及びその製造方法
JP6260744B1 (ja) 高強度冷延鋼板およびその製造方法
JP6260745B1 (ja) 高強度冷延鋼板およびその製造方法
JP5811725B2 (ja) 耐面歪性、焼付け硬化性および伸びフランジ性に優れた高張力冷延鋼板およびその製造方法
JP6724320B2 (ja) 伸びと穴広げ性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
WO2018147211A1 (ja) 冷延鋼板とその製造方法
JP7078202B1 (ja) 高強度鋼板およびその製造方法
JP5246283B2 (ja) 伸びと伸びフランジ性に優れた低降伏比高強度冷延鋼板およびその製造方法
JP2017008368A (ja) 溶接性と成形性に優れた高強度冷延鋼板
JP2017008367A (ja) 溶接性と成形性に優れた高強度溶融亜鉛めっき鋼板
WO2013179497A1 (ja) 伸びと伸びフランジ性に優れた低降伏比高強度冷延鋼板およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017527935

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17752852

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187022232

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187022232

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/009969

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017752852

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017752852

Country of ref document: EP

Effective date: 20180918