WO2017141474A1 - ガス絶縁電気機器 - Google Patents

ガス絶縁電気機器 Download PDF

Info

Publication number
WO2017141474A1
WO2017141474A1 PCT/JP2016/077301 JP2016077301W WO2017141474A1 WO 2017141474 A1 WO2017141474 A1 WO 2017141474A1 JP 2016077301 W JP2016077301 W JP 2016077301W WO 2017141474 A1 WO2017141474 A1 WO 2017141474A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
gas
resistance insulating
resistance
electric field
Prior art date
Application number
PCT/JP2016/077301
Other languages
English (en)
French (fr)
Inventor
涼子 川野
壮一朗 海永
吉村 学
崇夫 釣本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017567941A priority Critical patent/JP6645706B2/ja
Priority to US16/063,742 priority patent/US10965106B2/en
Publication of WO2017141474A1 publication Critical patent/WO2017141474A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G5/00Installations of bus-bars
    • H02G5/06Totally-enclosed installations, e.g. in metal casings
    • H02G5/063Totally-enclosed installations, e.g. in metal casings filled with oil or gas
    • H02G5/065Particle traps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear
    • H02B13/045Details of casing, e.g. gas tightness

Definitions

  • the present invention relates to a gas-insulated electrical apparatus in which a central conductor to which a high voltage is applied is accommodated in a ground tank and the central conductor and the ground tank are insulated with an insulating gas filled in the ground tank.
  • Gas-insulated switchgear as a gas-insulated electrical device has a central conductor to which a high voltage is applied housed in a metal ground tank, and the insulation performance is achieved by sealing the insulating gas in the space between the ground tank and the central conductor. Is secured.
  • foreign matter dust, fibers, conductive or semiconductive solids, etc.
  • the mixed foreign matter is charged by the electric field generated during energization, and receives electrostatic force in the direction of rising from the inner surface of the ground tank. When the electrostatic force is greater than the gravity acting on the foreign material, the foreign material rises and moves toward the central conductor.
  • the electric field concentrates around the foreign material, if the foreign material approaches or adheres to the central conductor, a high electric field is locally generated, and the withstand voltage performance of the apparatus may be reduced.
  • the electric field is strongly concentrated at the tip of the foreign matter, so that the insulation performance is greatly reduced.
  • Patent Document 1 describes a gas-insulated bus in which a coating having a high resistivity is provided on the inner surface of a tank, a coating having a higher mechanical strength is provided on the coating, and coatings of different materials are doubled. ing.
  • Patent Document 2 a non-linear resistance film in which a non-linear resistance material having a non-linear resistance characteristic whose resistance value decreases as the current density increases is filled with a non-linear resistance film filled with a filler having a dielectric constant different from that of the non-linear resistance material.
  • a sealed insulation device provided on the inner surface is described.
  • Patent Document 3 describes a gas insulating apparatus in which an insulating film having a low resistivity is provided on the inner surface of a tank, and a nonlinear resistance film in which a nonlinear resistance material is contained in the insulating material is provided on the insulating film. Has been.
  • the present invention has been made in order to solve the above-described problems, and is a gas-insulated electricity that can suppress partial discharge in both a portion where a metal foreign object is in contact with an insulating film and a portion exposed to an insulating gas.
  • the purpose is to provide equipment.
  • a gas-insulated electrical device is disposed on a ground tank filled with an insulating gas, a central conductor disposed within the ground tank, to which a voltage is applied, and an inner surface below the ground tank.
  • a low resistance having a resistivity lower than the resistivity of the high resistance insulating portion, disposed on the surface of at least a part of the high resistance insulating portion;
  • Non-linear resistance composed of a resistance insulating portion and a non-linear resistance material that is arranged on at least a part of the surface of the low-resistance insulating portion and exhibits a non-linear resistivity with respect to a change in electric field and a high resistivity insulating material
  • An insulating portion, and the low-resistance insulating portion has a floating potential.
  • the gas-insulated electrical device of the present invention it is possible to alleviate the electric field on the surface of both the part where the metal foreign object is in contact with the insulating film and the part exposed to the insulating gas, and to suppress the charging of the metal foreign object Play.
  • FIG. 1 is an axial sectional view of a gas insulated electric device according to Embodiment 1 of the present invention. It is radial direction sectional drawing of the gas insulated electrical apparatus which concerns on Embodiment 1 of this invention. It is a figure which shows the state by which the nonlinear resistive material is distributed in the nonlinear resistive film of the gas insulated electrical apparatus which concerns on Embodiment 1 of this invention. It is the figure which showed the change of the resistivity with respect to the electric field of the nonlinear resistance insulating film of the gas insulated electrical apparatus which concerns on Embodiment 1 of this invention. It is an enlarged view for explaining a minute gap between a metal foreign object placed on a general high resistance insulating film and the high resistance insulating film.
  • FIG. 5 is a diagram illustrating the dependence of a local electric field in the vicinity of a contact point between an insulating film and a metal foreign object on a surrounding electric field of the metal foreign object in a general insulating film and the nonlinear resistance insulating film in the first embodiment.
  • It is sectional drawing which shows the case where a metal foreign material is arrange
  • FIG. 1 of the present invention it is a cross-sectional view showing a case where a metal foreign object is arranged on a nonlinear resistance insulating film.
  • FIG. 6 is a distribution diagram of a peripheral electric field when a metal foreign object placed on a general low-resistance insulating film and a non-linear resistance insulating film obtains electric field relaxation by the non-linear resistance insulating film.
  • a distribution diagram of a peripheral electric field when a metallic foreign object has obtained electric field relaxation by a nonlinear resistance insulating film In the gas-insulated electrical apparatus according to Embodiment 1 of the present invention, a distribution diagram of a peripheral electric field when a metallic foreign object has obtained electric field relaxation by a nonlinear resistance insulating film.
  • it is a diagram showing the dependence of the time constant on the electrical resistivity of a high-resistance insulating film having a relative dielectric constant of 5.
  • FIG. 1 is an axial cross-sectional view of a gas-insulated electrical apparatus according to Embodiment 1
  • FIG. 2 is a radial cross-sectional view of the gas-insulated electrical apparatus.
  • a gas-insulated electrical apparatus 1 includes a cylindrical ground tank 2 that is a pressure vessel, a center conductor 3 that is disposed inside the ground tank 2 and to which a high voltage is applied, and a ground tank 2. And an insulating support member 4 for insulatingly supporting the central conductor 3.
  • the center conductor 3 is fixed at a position coaxial with the ground tank 2 by an insulating support member 4 made of a solid insulator.
  • 1 and 2 constitutes a gas insulated switchgear together with other components such as a circuit breaker, a disconnector, and a current transformer for the instrument.
  • An insulating gas (not shown) for insulating the ground tank 2 and the central conductor 3 is filled between them.
  • the insulating gas include simple gases such as SF 6 , dry air, N 2 , CO 2 , O 2 , and CF 3 I.
  • a high resistance insulating film 5 (high resistance insulating portion) having a high resistivity is disposed on the inner surface of the ground tank 2.
  • the high resistance insulating film 5 is disposed on the lower inner surface of the ground tank 2, for example.
  • the high resistance insulating film 5 is a film formed of an insulating material containing resin as a main component.
  • a thermoplastic resin and a thermosetting resin can be considered.
  • resins such as vinyl chloride, polyester, and nylon are used, and for thermosetting resins, resins such as epoxy, urethane, and acrylic are used.
  • a low resistance insulating film 6 (having an electric resistivity lower than that of the high resistance insulating film 5 so as to at least partially cover the high resistance insulating film 5 on the high resistance insulating film 5 ( A low-resistance insulating part) is arranged.
  • the low-resistance insulating film 6 is disposed on the surface of the high-resistance insulating film 5 disposed on the lower inner peripheral surface of the ground tank 2 so as not to touch the ground tank 2.
  • the low-resistance insulating film 6 for example, a powder particle-like low-resistance material having a particle size of several ⁇ m to several tens of ⁇ m is mixed with a liquid binder resin, and spray coating, brush coating, baking coating, or immersion is performed. There is a method of curing after forming a thin film by painting or sheet coating.
  • the low-resistance material that can be applied to gas-insulated electrical equipment is not a metal, does not generate cracked gas, has little deterioration over time during performance, and does not deteriorate in a thermal environment of around 100 ° C. Is mentioned.
  • a non-linear resistance insulating film 7 (non-linear resistance insulating portion) is disposed on the low-resistance insulating film 6 so as to at least partially cover the low-resistance insulating film 6.
  • the non-linear resistance insulating film 7 is formed on the surface of the low resistance insulating film 6 disposed on the high resistance insulating film 5 disposed on the lower inner surface of the ground tank 2. It is arranged not to touch.
  • the non-linear resistance insulating film 7 has a non-linear resistance material 9 (for example, zinc oxide or silicon carbide) distributed discretely in the film in an insulating material 8 mainly composed of resin. Is contained.
  • the non-linear resistance material 9 has a characteristic having a non-linear resistivity with respect to an electric field, and has a large resistance value in a low electric field region but a small resistance value in a high electric field region.
  • a region A indicates a target resistivity region at a low electric field
  • a region B indicates a target resistivity region at a high electric field.
  • non-linear resistance material 9 exhibiting non-linear resistance characteristics include gallium nitride and diamond in addition to zinc oxide and silicon carbide.
  • Insulating material 8 may be a thermoplastic resin and a thermosetting resin. If it is a thermoplastic resin, a resin such as vinyl chloride, polyester, or nylon is used. If it is a thermosetting resin, an epoxy or urethane resin is used. Resins such as acrylic and acrylic are used. Examples of the method for forming the non-linear resistance insulating film 7 include spray coating, brush coating, baking coating, dip coating / sheet coating, and the like.
  • the nonlinear resistance material 9 in the nonlinear resistance insulating film 7 functions as an insulator. For this reason, the inflow of charges from the ground tank 2 to the metal foreign object 10 is blocked, and the metal foreign object 10 is hardly charged. Therefore, the electric attractive force due to the electric field generated from the center conductor 3 is larger than the weight of the metal foreign object 10 and the metal foreign object 10 does not rise.
  • FIG. 6 shows the dependence of the local electric field in the vicinity of the contact point between the metallic foreign material 10 and the nonlinear resistive insulating film 7 on the ambient electric field of the metallic foreign material 10 in the general insulating film and the nonlinear resistive insulating film 7 in the first embodiment.
  • FIG. 6 shows the dependence of the local electric field in the vicinity of the contact point between the metallic foreign material 10 and the nonlinear resistive insulating film 7 on the ambient electric field of the metallic foreign material 10 in the general insulating film and the nonlinear resistive insulating film 7 in the first embodiment.
  • the electric field concentration in the vicinity of the contact point between the non-linear resistance insulating film 7 and the metal foreign object 10 is alleviated so that partial discharge is less likely to occur, and even if the partial discharge occurs, the charge remains at the center of the non-linear resistance insulating film 7.
  • the portion that faces the conductor 3 flows away and escapes, and charging of the metal foreign object 10 is suppressed.
  • the portion of the nonlinear resistance insulating film 7 close to the ground tank 2 maintains a high resistance value, the charging of the metal foreign object 10 due to the transfer of charges from the inner surface of the ground tank 2 to the metal foreign object 10 is suppressed. From the above, the electrical attractive force due to the electric field generated from the central conductor 3 is greater than the weight of the metal foreign object 10, and the metal foreign object 10 does not rise.
  • the non-linear resistance insulating film 7 As described above, if the non-linear resistance insulating film 7 is configured, the electric field in the vicinity of the contact portion can be relaxed before the partial discharge occurs in the vicinity of the contact portion between the metal foreign object 10 and the ground tank 2, and the occurrence of the partial discharge can be suppressed. Explained. Next, the weak points of the nonlinear resistance insulating film 7 will be described in detail.
  • the non-linear resistance material 9 and the metal foreign object 10 contained in the non-linear resistance insulating film 7 are somewhere in the metal foreign object 10. At least one point needs to be in contact with the nonlinear resistance material 9.
  • the metallic foreign material 10 is larger than the non-linear resistance material 9, it is desirable to dispose the non-linear resistance material 9 so that it is widely distributed within the contact area between the metallic foreign material 10 and the non-linear resistance insulating film 7 as much as possible.
  • FIG. 7A is a cross-sectional view showing a case where a metal foreign object is disposed on a general insulating film and a nonlinear resistance insulating film.
  • FIG. 7B corresponds to the configuration of FIG. 7A, and the peripheral electric field when the metal foreign matter arranged on the general insulating film and the non-linear resistance insulating film obtains electric field relaxation by the non-linear resistance insulating film. It is an image figure which shows distribution of.
  • reference numeral 12 indicates an electric field: a large area
  • reference numeral 13 indicates an electric field: a small area.
  • Reference numeral 14 denotes an electric field: middle region indicating an electric field intermediate between the electric field: large region 12 and the electric field: small region 13.
  • FIG. 7B shows that the portion of the metallic foreign material 10 that has obtained the electric field relaxation effect by the non-linear resistance insulating film 7 is not in contact with the non-linear resistance material 9, and the electric field becomes high, so that partial discharge occurs and the metallic foreign material 10 There is a high possibility of charging and floating.
  • FIG. 7B only the local electric field in the vicinity where the metallic foreign material 10 and the nonlinear resistance material 9 are in contact is relaxed, and the electric field is reduced.
  • FIG. 7B shows an electric field generated on the surface of the metal foreign object.
  • the weak points of the non-linear resistance insulating film 7 have been described above, but the gas-insulated electrical apparatus 1 in which the metal foreign object 10 according to the first embodiment of the present invention is less likely to float will be described in detail.
  • FIG. 8A is a cross-sectional view showing a case where a metal foreign object is arranged on a nonlinear resistance insulating film in the gas-insulated electric apparatus according to Embodiment 1 of the present invention.
  • FIG. 8B corresponds to the configuration of FIG. 8A.
  • the distribution of the peripheral electric field when the metallic foreign object obtains the electric field relaxation by the nonlinear resistance insulating film In the gas-insulated electrical apparatus according to Embodiment 1 of the present invention, the distribution of the peripheral electric field when the metallic foreign object obtains the electric field relaxation by the nonlinear resistance insulating film.
  • FIG. FIG. 8B shows a state of an electric field around the metal foreign object 10 that is in contact with the nonlinear resistance insulating film 7 formed on the low resistance insulating film 6 in the first embodiment.
  • FIG. 8B shows the display including the electric field generated on the surface of the metal foreign object 10.
  • reference numeral 12 indicates an electric field: a large area
  • reference numeral 13 indicates an electric field: a small area.
  • FIG. 9 is a distribution diagram of the peripheral electric field when the metal foreign matter placed on the general low-resistance insulating film and the non-linear resistance insulating film obtains electric field relaxation by the non-linear resistance insulating film. The left side of FIG.
  • FIG. 9 shows the structure of a metal foreign object disposed on a general low-resistance insulating film and a non-linear resistance insulating film, and the right side shows the surrounding electric field in a portion surrounded by a dotted line in the left sectional view. Show.
  • the electric field generated on the surface of the metal foreign object is displayed.
  • reference numeral 12 denotes an electric field: a large area
  • reference numeral 13 denotes an electric field: a small area.
  • the periphery of the metal foreign object 10 has an electric field: a large region 12, and there is a possibility that partial discharge occurs.
  • FIG. 10 is a distribution diagram of the peripheral electric field when the metal foreign object obtains electric field relaxation by the nonlinear resistance insulating film in the gas-insulated electric apparatus according to Embodiment 1 of the present invention. The left side of FIG.
  • FIG. 10 shows the structure of the metal foreign object 10 in contact with the non-linear resistance insulating film 7 formed on the low resistance insulating film 6 in the first embodiment, and the right side is a portion surrounded by a dotted line in the left sectional view. The state of the surrounding electric field is shown.
  • the electric field generated on the surface of the metal foreign object 10 is displayed.
  • reference numeral 12 denotes an electric field: a large area
  • reference numeral 13 denotes an electric field: a small area.
  • the electric field around the metallic foreign material 10 facing the central conductor 3 can also be suppressed to the extent that partial discharge does not occur, and the conductive current can be reduced.
  • the low-resistance insulating film 6 is disposed on the high-resistance insulating film 5 disposed on the inner surface of the ground tank 2, and the low-resistance insulating film 6 is Since the non-linear resistance insulating film 7 is disposed on the outer peripheral electric field, the peripheral electric field other than the part directly touching the non-linear resistance material 9 included in the non-linear resistance insulating film 7 in the metal foreign object 10 can be relaxed, and partial discharge can be generated. Can be suppressed.
  • Embodiment 2 a gas-insulated electrical apparatus according to Embodiment 2 of the present invention will be described in detail with reference to FIG.
  • a high-resistance insulating film 5 that suppresses charging of the metal foreign object 10 due to electrostatic induction will be described.
  • the time constant T of the high-resistance insulating film 5 is expressed by the following formula (1).
  • T ⁇ r ⁇ ⁇ o ⁇ ⁇ (1)
  • ⁇ r is the dielectric constant of the insulating film
  • ⁇ o is the dielectric constant of vacuum 8.85 ⁇ 10 ⁇ 12 m ⁇ 3 kg ⁇ 1 s 4 A 2
  • is the electrical resistivity of the insulating film.
  • the high-resistance insulating film 5 is desirably 20 ms or more.
  • the time constant T of the high-resistance insulating film 5 is 20 ms and the relative dielectric constant ⁇ r is set to 5
  • the electric resistivity ⁇ of the high-resistance insulating film 5 is 5. As shown in FIG. 6 ⁇ 10 8 ⁇ m.
  • the electrical resistivity of the high resistance material of the high resistance insulating film 5 is preferably about 10 9 ⁇ m or more.
  • the floating potential of the low resistance insulating film 6 can be secured.
  • the electrical resistivity ⁇ of the high-resistance material of the high-resistance insulating film 5 it is possible to suppress the inflow of electric charges to the metal foreign object 10 due to the leakage current from the ground tank 2. It is possible to suppress the charging of the metallic foreign object 10 due to electrical induction.
  • Embodiment 3 FIG. Next, a gas-insulated electrical apparatus according to Embodiment 3 of the present invention will be described in detail.
  • a low-resistance insulating film 6 that can lower the electric potential of the metal foreign material 10 and reduce the electric field around the metal foreign material 10 and a nonlinear resistance insulating film 7 that efficiently reduces the electric potential of the metal foreign material 10 will be described.
  • the electric field relaxation effect of the metallic foreign material 10 occurs due to a decrease in the electrical resistivity of the nonlinear resistance insulating film 7.
  • the low resistance insulating film 6 Is the same value as that of the non-linear resistance material 9 of the non-linear resistance insulating film 7, the potential of the metal foreign material 10 drops to the same potential as the potential of the low resistance insulating film 6. It is possible to reduce the electric field in the vicinity of the contact point between the non-linear resistance insulating film 7 and the occurrence of partial discharge.
  • the electric resistivity of the non-linear resistance material 9 of the non-linear resistance insulating film 7 and the low resistance insulating film 6 is 10 ⁇ 10 3 ⁇ m
  • the potential of the metallic foreign material 10 is compared with the case where the low resistance insulating film 6 is not configured. Becomes 1/2.
  • the electric field around the metallic foreign material 10 can be relaxed.
  • the nonlinear resistance material 9 disposed in the nonlinear resistance insulating film 7 is connected so as to connect the interface between the low resistance insulating film 6 and the nonlinear resistance insulating film 7 and the interface between the nonlinear resistance insulating film 7 and the insulating gas. Since the metal foreign object 10 and the low-resistance insulating film 6 can be connected at the shortest distance, the potential of the metal foreign object 10 can be lowered more efficiently.
  • Embodiment 4 FIG. Next, a gas-insulated electrical apparatus according to Embodiment 4 of the present invention will be described in detail.
  • the fourth embodiment even when the metal foreign object 10 moves due to mechanical vibration and the local electric field at the contact portion between the metal foreign object 10 and the non-linear resistance insulating film 7 changes, the electric field can be relaxed before the partial discharge occurs.
  • the electrical resistivity of the nonlinear resistance insulating film 7 will be described.
  • the metal foreign object 10 When mechanical vibration is applied to the ground tank 2 from the outside, the metal foreign object 10 that did not have the amount of charge necessary for levitation in the stationary state moves due to vibration, and the metal foreign object 10 and the non-linear resistance insulating film 7 There is a possibility that the local electric field in the vicinity of the contact point changes, a partial discharge occurs, charges are supplied to the metal foreign object 10, and the metal foreign object 10 rises.
  • the mechanical vibration from the outside applied to the ground tank 2 is, for example, an earthquake or vibration generated by the movement of a device (disconnector, circuit breaker) or the like attached to the ground tank 2. .
  • the local electric field near the contact point between the metal foreign object 10 and the nonlinear resistance insulating film 7 is in a stationary state before the partial discharge occurs. It is necessary to return to a value almost equal to the local electric field value. This time when the electric field returns is defined as a time constant.
  • the time constant T of the high resistance insulating film 5, the low resistance insulating film 6, and the non-linear resistance insulating film 7 is expressed by the above-described formula (1).
  • the discharge delay time is a sum of a statistical delay time from when a voltage is applied to the generation of initial electrons serving as a discharge seed, and a formation delay time from the generation of initial electrons to the growth of discharge. .
  • the statistical delay time of the discharge in the gas is about zero s at the shortest, and the formation delay time is several tens of ns at the shortest.
  • the shortest discharge delay time is set to several tens of ns (for example, the literature “Elucidation of short-time region Vt characteristics of quasi-equal electric field gap in SF6 by square wave impulse (Author, Central Research Institute of Electric Power Industry)). ]).
  • the time constant T of the nonlinear resistance insulating film 7 is smaller than the discharge delay time, the electric field in the vicinity of the contact point is generated before the partial discharge occurs in the vicinity of the contact point between the metal foreign object 10 and the nonlinear resistance insulating film 7. This can be alleviated and charging of the metallic foreign material 10 can be suppressed.
  • the discharge delay time time constant (time constant at the minimum value of electrical resistivity) is 50 ns and the relative dielectric constant of the nonlinear resistive insulating film 7 is set to 10, the nonlinear resistive insulating film 7 is substituted.
  • the electrical resistivity is 5.5 ⁇ 10 2 ⁇ m.
  • the electric resistivity of the non-linear resistance insulating film 7 is configured so that the time constant T of the non-linear resistance insulating film 7 becomes smaller than the discharge delay time as described above, the displacement of the metal foreign object 10 occurs due to the vibration of the ground tank 2. Even before the partial discharge occurs in the vicinity of the contact portion between the metal foreign object 10 and the nonlinear resistance insulating film 7, the electric field value in the vicinity of the contact portion can be returned to the local electric field value in the stationary state. Generation can be suppressed.
  • Embodiment 5 FIG. Next, a gas-insulated electrical apparatus according to Embodiment 5 of the present invention will be described in detail.
  • a description will be given of the low resistance insulating film 6 formed of a resin coating film having a low electrical resistivity.
  • Conductive polymer is used as low electrical resistivity resin.
  • the conductive polymer include polyacetylene, polyparaphenylene, polythiophene, polypyrrole, polyaniline, polyacene and the like. Since the conductive polymer can be applied as a resin itself, it is easier to form a film than using a powder of a low resistance material.
  • the low-resistance insulating film 6 is formed of a low-electric-resistive resin coating film as described above, the electric field in the vicinity of the metal foreign object 10 can be suppressed, and partial discharge can be performed even when the metal foreign object 10 moves due to standing or vibration. Generation can be suppressed.
  • the gas-insulated electrical device of the present invention is useful as a gas-insulated switchgear that is used in combination with devices such as circuit breakers, disconnectors, and current transformers for instruments.
  • 1 Gas-insulated electrical equipment
  • 2 Ground tank
  • 3 Center conductor
  • 4 Insulating support member
  • 5 High resistance insulating film (high resistance insulating part)
  • 6 Low resistance insulating film (low resistance insulating part)
  • 7 Nonlinear resistance insulating film (nonlinear resistance insulating part)
  • 8 Insulating material
  • 9 Nonlinear resistance material
  • 10 Metal foreign material
  • 11 Minute gap

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Installation Of Bus-Bars (AREA)
  • Gas-Insulated Switchgears (AREA)

Abstract

金属異物が絶縁膜に接している部分および絶縁ガスに晒されている部分の両方で部分放電を抑制できるガス絶縁電気機器を得る。ガス絶縁電気機器(1)は、絶縁ガスが充填された接地タンク(2)と、接地タンク(2)の内部に配置され、電圧が印加される中心導体(3)と、接地タンク(2)の下側の内表面に配置され、高抵抗率の絶縁材料で構成された高抵抗絶縁部(5)と、高抵抗絶縁部(5)の少なくとも一部の表面上に配置され、高抵抗絶縁部(5)の抵抗率よりも低い抵抗率を有した低抵抗絶縁部(6)と、低抵抗絶縁部(6)の少なくとも一部の表面上に配置され、電界の変化に対し非直線的な抵抗率を示す非線形抵抗材料(9)と高抵抗率の絶縁材料(8)で構成された非線形抵抗絶縁部(7)と、を備え、低抵抗絶縁部(6)は浮遊電位とするものである。

Description

ガス絶縁電気機器
 この発明は、高電圧が印加される中心導体を接地タンク内部に収容し、接地タンク内部に充填した絶縁ガスで中心導体と接地タンクとを絶縁したガス絶縁電気機器に関するものである。
 ガス絶縁電気機器としてのガス絶縁開閉装置は、高電圧が印加される中心導体を金属製の接地タンクに収納し、接地タンクと中心導体との間の空間に絶縁ガスを封入することで絶縁性能を確保している。ただし、製作時や現地での据付作業時に異物(ちり・繊維・導電性または半導電性の固体等)が接地タンク内に混入し、絶縁性能が低下する恐れがある。混入した異物は通電時に発生する電界によって帯電し、接地タンクの内表面から浮上する方向に静電気力を受ける。静電気力が異物に働く重力より大きくなると異物は浮上し、中心導体に向かって移動する。異物周囲で電界は集中するため、異物が中心導体に接近したり付着したりすると局所的に高電界となり、装置の耐電圧性能が低下する恐れがある。特に異物が金属製でかつ線状の場合は異物先端で強く電界が集中するため、絶縁性能の低下が大きい。
 この金属異物の問題に対し、金属異物とタンク内表面に設けた膜との接触部に発生する電界集中を緩和し、集中電界で起こる部分放電による金属異物の帯電を抑制し、金属異物の浮上を抑制するようにしたものが次に示すように種々知られている。
 例えば特許文献1には、タンク内表面に高抵抗率の被膜を設け、この被膜の上にさらに機械的強度の大きい被膜を設けて、異なる材質の被膜を2重にしたガス絶縁母線が記載されている。
 また、特許文献2には、電流密度が増大するにつれて抵抗値が低下する非線形抵抗特性を備えた非線形抵抗材に、この非線形抵抗材と誘電率の異なる充填材が充填された非線形抵抗膜をタンク内表面に設けた密閉型絶縁装置が記載されている。
 さらに、特許文献3には、タンク内表面に低抵抗率の絶縁膜を設け、その絶縁膜の上に絶縁材料に非直線抵抗材料が含有されてなる非線形抵抗膜を設けたガス絶縁機器が記載されている。
実開昭59-149422号公報 特許第5135263号公報 特許第5705384号公報
 しかし、特許文献1に示されたタンク内表面に高抵抗率の絶縁被膜を設ける構成では、電圧が低い場合は金属異物の挙動の抑制に効果的であるが、電圧が高い場合は金属異物の挙動を抑制することが困難となり、金属異物が浮上することになる。
 特許文献2に示されたタンク内表面に非線形抵抗膜を設けた構造では、高電圧が印加された場合、金属異物において非線形抵抗膜に触れておらず絶縁ガスに晒されている部位で、電界が集中し、集中電界部で部分放電が起こり、金属異物が帯電する恐れがある。
 また、特許文献3に示された絶縁膜の上に非線形抵抗膜を設けた構造では、仮に金属異物が、非直線抵抗充填剤が部分的に存在しない非線形抵抗膜表面に配置された場合、金属異物にとって絶縁膜上に配置された状態と同じになるため、低電圧でも膜と金属異物の接触部近傍で部分放電が発生し、金属異物が帯電する恐れがある。これらにより、金属異物の電荷に作用する静電力が金属異物に働く重力を上回ると金属異物が浮上を開始し、ガス絶縁開閉機器の絶縁性能を大きく低下させることになる。
 この発明は、上記のような課題を解決するためになされたものであり、金属異物が絶縁膜に接している部分および絶縁ガスに晒されている部分の両方で部分放電を抑制できるガス絶縁電気機器を提供することを目的とするものである。
 この発明に係るガス絶縁電気機器は、絶縁ガスが充填された接地タンクと、前記接地タンクの内部に配置され、電圧が印加される中心導体と、前記接地タンクの下側の内表面に配置され、高抵抗率の絶縁材料で構成された高抵抗絶縁部と、前記高抵抗絶縁部の少なくとも一部の表面上に配置され、前記高抵抗絶縁部の抵抗率よりも低い抵抗率を有した低抵抗絶縁部と、前記低抵抗絶縁部の少なくとも一部の表面上に配置され、電界の変化に対し非直線的な抵抗率を示す非線形抵抗材料と高抵抗率の絶縁材料で構成された非線形抵抗絶縁部と、を備え、前記低抵抗絶縁部が浮遊電位であるものである。
 この発明のガス絶縁電気機器によれば、金属異物が絶縁膜に接している部分および絶縁ガスに晒されている部分の両方の表面の電界を緩和でき、金属異物の帯電を抑制できる、という効果を奏する。
この発明の実施の形態1に係るガス絶縁電気機器の軸方向断面図である。 この発明の実施の形態1に係るガス絶縁電気機器の径方向断面図である。 この発明の実施の形態1に係るガス絶縁電気機器の非線形抵抗膜内に非線形抵抗材料が分布している状態を示す図である。 この発明の実施の形態1に係るガス絶縁電気機器の非線形抵抗絶縁膜の電界に対する抵抗率の変化を示した図である。 一般的な高抵抗絶縁膜の上に置かれた金属異物と高抵抗絶縁膜との微小ギャップを説明する拡大図である。 一般的な絶縁膜と実施の形態1における非線形抵抗絶縁膜において、金属異物の周囲電界に対する絶縁膜と金属異物との接触点近傍の局所電界の依存性を示す図である。 金属異物が一般的な絶縁膜と非線形抵抗絶縁膜の上に配置された場合を示す断面図である。 一般的な絶縁膜と非線形抵抗絶縁膜の上に配置された金属異物が、非線形抵抗絶縁膜による電界緩和を得たときの周辺電界の分布を示すイメージ図である。 この発明の実施の形態1に係るガス絶縁電気機器において、金属異物が非線形抵抗絶縁膜上に配置された場合を示す断面図である。 この発明の実施の形態1に係るガス絶縁電気機器において、金属異物が非線形抵抗絶縁膜による電界緩和を得たときの周辺電界の分布を示すイメージ図である。 一般的な低抵抗絶縁膜と非線形抵抗絶縁膜の上に配置された金属異物が、非線形抵抗絶縁膜による電界緩和を得たときの周辺電界の分布図である。 この発明の実施の形態1に係るガス絶縁電気機器において、金属異物が非線形抵抗絶縁膜による電界緩和を得たときの周辺電界の分布図である。 この発明の実施の形態2に係るガス絶縁電気機器において、比誘電率が5の高抵抗絶縁膜の電気抵抗率に対する時定数の依存性を表した図である。
実施の形態1.
 以下、この発明の実施の形態1に係るガス絶縁電気機器を図1から図10に基づいて詳細に説明する。
 図1は実施の形態1に係るガス絶縁電気機器の軸方向断面図で、図2はガス絶縁電気機器の径方向断面図である。図1および図2において、ガス絶縁電気機器1は、圧力容器である円筒状の接地タンク2と、接地タンク2の内部に配置され、高電圧が印加される中心導体3と、接地タンク2に取付けられ、中心導体3を絶縁支持する絶縁支持部材4とを有する。中心導体3は固体絶縁物からなる絶縁支持部材4で接地タンク2と同軸中心の位置に固定されている。なお、図1および図2に示すガス絶縁電気機器1は、以上述べた構成要素の他、遮断器、断路器、計器用変流器等の機器と共にガス絶縁開閉装置を構成している。
 接地タンク2と中心導体3との間には、両者を絶縁するための絶縁ガス(図示せず)が充填されている。絶縁ガスとして、例えばSF、乾燥空気、N、CO、O、CFIなどの単体ガスが挙げられる。また、上記ガスを2種類もしくはそれ以上の種類で混合させたものを用いても良い。
 接地タンク2の内表面には高抵抗率を有する高抵抗絶縁膜5(高抵抗絶縁部)が配置されている。高抵抗絶縁膜5は、例えば接地タンク2の下側の内表面に配置されている。高抵抗絶縁膜5は樹脂を主成分とする絶縁材料で形成された被膜である。絶縁材料としては熱可塑性樹脂と熱硬化性樹脂が考えられる。熱可塑性樹脂であれば塩化ビニル系・ポリエステル系・ナイロン系等の樹脂が、熱硬化性樹脂であればエポキシ系・ウレタン系・アクリル系等の樹脂が使用される。高抵抗絶縁膜5の形成方法としては、吹き付け塗装、はけ塗り、焼付け塗装、浸漬塗装、シート塗装などで薄膜を形成後硬化させる方法がある。
 また、この高抵抗絶縁膜5の上には高抵抗絶縁膜5を少なくとも部分的に被覆するように、高抵抗絶縁膜5の電気抵抗率よりも低い電気抵抗率をもつ低抵抗絶縁膜6(低抵抗絶縁部)が配置されている。低抵抗絶縁膜6は、例えば図2に示すように、接地タンク2の下側内周面に配置された高抵抗絶縁膜5の表面に、接地タンク2に触れないように配置されている。低抵抗絶縁膜6の形成方法としては、例えば数μm~数10μmの粒径を持った粉体粒子状の低抵抗材料を液状バインダ樹脂と混ぜあわせ、吹き付け塗装、はけ塗り、焼付け塗装、浸漬塗装、シート塗装などで薄膜を形成後硬化させる方法がある。
 ただし、この場合は、低抵抗絶縁膜6の構成材として低抵抗材料と異なる材料を混合させるため、体積割合で低抵抗材料が他の混合物よりも多くの割合とする必要がある。またガス絶縁電気機器に適用できる低抵抗材料は、金属ではないこと、分解ガスを生成しないこと、運転時間中に性能に対する経年劣化が小さいこと、100℃前後の熱環境下で性能が落ちないことが挙げられる。
 また、この低抵抗絶縁膜6の上には低抵抗絶縁膜6を少なくとも部分的に被覆するように、非線形抵抗絶縁膜7(非線形抵抗絶縁部)が配置されている。非線形抵抗絶縁膜7は、例えば図2のように、接地タンク2の下側内表面に配置された高抵抗絶縁膜5の上に配置された低抵抗絶縁膜6の表面に、接地タンク2に触れないように配置されている。
 また、非線形抵抗絶縁膜7は、図3に示すように、樹脂を主成分とする絶縁材料8の中に非線形抵抗材料9(例えば酸化亜鉛や炭化ケイ素)を、膜内に離散的に分布するように含有している。非線形抵抗材料9は、例えば図4に示すように電界に対して非直線的な抵抗率を有した特性で、低電界領域での抵抗値は大きいが、高電界領域では抵抗値が小さくなる特性を有する。図4において、領域Aは低電界時の目標抵抗率領域を示し、領域Bは高電界時の目標抵抗率領域を示す。
 非線形抵抗特性を示す非線形抵抗材料9としては、酸化亜鉛や炭化ケイ素以外に例えば窒化ガリウム・ダイヤモンドが挙げられる。また、絶縁材料8としては熱可塑性樹脂と熱硬化性樹脂が考えられ、熱可塑性樹脂であれば塩化ビニル系・ポリエステル系・ナイロン系等の樹脂が、熱硬化性樹脂であればエポキシ系・ウレタン系・アクリル系等の樹脂が使用される。非線形抵抗絶縁膜7の形成方法としては、吹き付け塗装、はけ塗り、焼付け塗装、浸漬塗装・シート塗装等が挙げられる。
 次に、この発明の実施の形態1に係るガス絶縁電気機器1において生じる物理現象について説明する。
 ガス絶縁電気機器1を構成するほとんどのパーツは、工場内のクリーンルームで組み立てられて現地へ輸送されるが、一部は現地で組み立てられる。そのため、現地組立時にガス絶縁電気機器1の中に、図1及び図2に示すように金属異物10が紛れ込む可能性がある。これら金属異物10の大部分は検査工程で取り除かれるが、長さが3mm程度以下で太さが0.2mm程度以下の金属異物10は発見が困難であり、検査で見落とされ、接地タンク2内に残される場合がある。
 金属異物10は、発生した直後は重力によって接地タンク2内の底面に落下して平伏した状態となる。ここで、中心導体3に電圧が印加されている運転状態で、接地タンク2を構成する金属に金属異物10が直接接触する場合、静電誘導の現象が金属異物10に作用して接地タンク2から金属異物10に電荷が供給されて、金属異物10は帯電する。
 一方、高抵抗絶縁膜5のみが接地タンク2の内面に形成されている場合、静電誘導による接地タンク2から金属異物10への電荷供給はなくなるが、図5に示すように、金属異物10と高抵抗絶縁膜5の接触部近傍の微小ギャップ11による放電で生成したイオンが金属異物10を帯電させる。帯電した金属異物10は、課電されている接地タンク2内では高電圧の中心導体3と接地タンク2の間で電界が発生しているため、帯電量に応じたクーロン力の作用を受けて、平伏した状態から起立し、中心導体3に向けて浮上する。その後、中心導体3に接近して接触する。中心導体3の近傍は高電界であるため、金属異物10が高電圧の中心導体3に接近した状態で雷サージなどの過電圧が侵入すると、地絡に至る場合がある。
 以上、接地タンク2底面に被覆がない場合、あるいは接地タンク2底面に高抵抗絶縁膜5のみが被覆されている場合に、金属異物10が接地タンク2内で平伏した状態から起立、浮上する現象について説明したが、次に非線形抵抗絶縁膜7の作用について説明する。
 ここで、図1では接地タンク2内に微小な金属異物10が混入し、非線形抵抗絶縁膜7上に存在するものとする。
 中心導体3に印加される電圧が低い場合、または中心導体3から発生する電界が低い場合、非線形抵抗絶縁膜7内の非線形抵抗材料9は絶縁物として機能する。このため、接地タンク2から金属異物10への電荷の流入が遮断され、金属異物10はほとんど帯電しない。従って、中心導体3から発生した電界による電気的吸引力が金属異物10の自重より大きくなって金属異物10が浮上することはない。
 一方、中心導体3に印加される電圧が高い場合、または中心導体3から発生する電界が高い場合、非線形抵抗絶縁膜7内の非線形抵抗材料9の抵抗値は小さくなる。これにより、非線形抵抗絶縁膜7の中心導体3に近い部分は導電性を示す。
 図6は、一般的な絶縁膜と実施の形態1における非線形抵抗絶縁膜7において、金属異物10の周囲電界に対する金属異物10と非線形抵抗絶縁膜7の接触点近傍の局所電界の依存性を示す図である。図6に示す通り非線形抵抗絶縁膜7と金属異物10の接触点近傍における電界集中は緩和されて部分放電が発生しにくくなり、仮に部分放電が発生したとしても電荷は非線形抵抗絶縁膜7の中心導体3に面する部分を流れて逃げてしまい、金属異物10の帯電は抑制される。
 一方、非線形抵抗絶縁膜7のうち接地タンク2に近い部分は高い抵抗値を保つため、接地タンク2の内表面から金属異物10への電荷の移動による金属異物10の帯電は抑制される。以上より、中心導体3から発生した電界による電気的吸引力が金属異物10の自重より大きくなって金属異物10が浮上することはない。
 以上のように、非線形抵抗絶縁膜7を構成すれば、金属異物10と接地タンク2の接触部近傍で部分放電が発生する前に接触部近傍における電界を緩和でき、部分放電の発生を抑制できることを説明した。次に、一方で非線形抵抗絶縁膜7の弱点について詳細に説明する。
 金属異物10と非線形抵抗絶縁膜7の接触点近傍に電界緩和効果を得るためには、非線形抵抗絶縁膜7中に含有されている非線形抵抗材料9と金属異物10が、金属異物10のどこか一点でも非線形抵抗材料9に接触している必要がある。また、金属異物10が非線形抵抗材料9よりも大きい場合、出来る限り金属異物10と非線形抵抗絶縁膜7の接触面積内に広く分布するように、非線形抵抗材料9を配置した方が望ましい。しかし非線形抵抗絶縁膜7中における非線形抵抗材料9の割合を大きくしすぎると、塗装時に塗料の粘度が下がるため、塗装方法を変更する必要性が生じるなどして、作業効率が減退する可能性がある。
 ここで、図7Aは、金属異物が一般的な絶縁膜と非線形抵抗絶縁膜の上に配置された場合を示す断面図である。また、図7Bは、図7Aの構成と対応しており、一般的な絶縁膜と非線形抵抗絶縁膜の上に配置された金属異物が、非線形抵抗絶縁膜による電界緩和を得たときの周辺電界の分布を示すイメージ図である。図7Bにおいて、符号12は電界:大領域を示しており、符号13は電界:小領域を示す。また、符号14は、電界:大領域12と電界:小領域13の中間の電界を示す電界:中領域を示す。図7Bに示すように、非線形抵抗絶縁膜7による電界緩和効果を得た金属異物10の、非線形抵抗材料9に触れていない部分は電界が高くなるため、部分放電が発生し、金属異物10が帯電して浮上する可能性が高くなる。図7Bにおいては、金属異物10と非線形抵抗材料9が接する周辺の局所電界だけが緩和され、電界が小さくなっている。なお、図7Bは金属異物表面に発生する電界を含めて表示している。
 以上、非線形抵抗絶縁膜7の弱点について説明したが、この発明の実施の形態1の金属異物10が浮上しにくいガス絶縁電気機器1について詳細に説明する。
 図8Aは、この発明の実施の形態1に係るガス絶縁電気機器において、金属異物が非線形抵抗絶縁膜上に配置された場合を示す断面図である。また、図8Bは、図8Aの構成と対応しており、この発明の実施の形態1に係るガス絶縁電気機器において、金属異物が非線形抵抗絶縁膜による電界緩和を得たときの周辺電界の分布を示すイメージ図である。図8Bにおいては、実施の形態1における低抵抗絶縁膜6の上に構成した非線形抵抗絶縁膜7と接触する金属異物10の周囲電界の様子を示している。図8Bは、金属異物10の表面に発生する電界を含めて表示している。図8Bにおいて、符号12は、電界:大領域を示しており、符号13は、電界:小領域を示す。図8Aのように、低抵抗絶縁膜6を非線形抵抗絶縁膜7の下部に配置すると、非線形抵抗材料9を通じて金属異物10の電位を下げる効果が得られる。これによって、金属異物10と非線形抵抗材料9が接する周辺の局所電界だけでなく、金属異物10周囲の電界を緩和することが可能となる。
 しかし、この状態において低抵抗絶縁膜6が接地電位にまで下がると、金属異物10も接地電位となるため、高電界が印加されると中心導体3に対向している金属異物10周辺の電界は上昇して部分放電が発生し、金属異物10が帯電して浮上する恐れがある。なお、図9は、一般的な低抵抗絶縁膜と非線形抵抗絶縁膜の上に配置された金属異物が、非線形抵抗絶縁膜による電界緩和を得たときの周辺電界の分布図である。図9の左側は、一般的な低抵抗絶縁膜と非線形抵抗絶縁膜の上に配置された金属異物の構造を示しており、右側は、左側の断面図における点線取り囲み部分の周囲電界の様子を示している。図9では、金属異物表面に発生する電界を含めて表示している。図9において、符号12は電界:大領域であり、符号13は電界:小領域を示している。図9に示すように、金属異物10周辺は電界:大領域12を有しており、部分放電が発生する恐れがある。
 また、接地電位となった場合、接地タンク2からの導電電流によって金属異物10が帯電し、浮上する恐れがある。したがって、接地タンク2の内表面に高抵抗絶縁膜5を施し、その上に低抵抗絶縁膜6、非線形抵抗絶縁膜7を施すことで、低抵抗絶縁膜6を浮遊電位にする。
 図10は、この発明の実施の形態1に係るガス絶縁電気機器において、金属異物が非線形抵抗絶縁膜による電界緩和を得たときの周辺電界の分布図である。図10の左側は、実施の形態1における低抵抗絶縁膜6の上に構成した非線形抵抗絶縁膜7と接触する金属異物10の構造を示しており、右側は、左側の断面図における点線取り囲み部分の周囲電界の様子を示している。図10では、金属異物10の表面に発生する電界を含めて表示している。図10において、符号12は電界:大領域であり、符号13は電界:小領域を示している。図10に示すように、中心導体3に対向している金属異物10周辺の電界も部分放電が発生しない程度に抑制でき、導電電流を減らすことができる。
 以上のように実施の形態1のガス絶縁電気機器は、接地タンク2の内表面に配置された高抵抗絶縁膜5の上に低抵抗絶縁膜6を配置し、その低抵抗絶縁膜6の上に非線形抵抗絶縁膜7を配置しているので、金属異物10において非線形抵抗絶縁膜7に含まれている非線形抵抗材料9に直接触れている部位以外の周辺電界を緩和でき、部分放電の発生を抑制できる。
実施の形態2.
 次に、この発明の実施の形態2に係るガス絶縁電気機器を図11に基づいて詳細に説明する。実施の形態2では静電誘導による金属異物10の帯電を抑制するような高抵抗絶縁膜5について述べる。
 静置状態の金属異物10に電荷流入が発生する要因として先に述べたように、静電誘導によって接地タンク2の底面等から電荷供給を受ける場合がある。接地タンク2の底面からの静電誘導による電荷供給は、金属異物10と接地タンク2の底面の間に高抵抗絶縁膜5があれば防げる。ここで、高抵抗絶縁膜5の時定数Tは以下の式(1)で表される。
   T=εr×εo×ρ ・・・(1)
   εrは絶縁膜の比誘電率、
   εoは真空の誘電率8.85 ×10-12-3kg-1 s
   ρは絶縁膜の電気抵抗率である。
 一般的に中心導体3に商用周波数(50または60Hz)の交流電圧が印加されることを考えると、電圧の変化による静電誘導を抑制するには、たとえば周波数50Hzの場合、高抵抗絶縁膜5の時定数Tは20ms以上あることが望ましい。数値例として高抵抗絶縁膜5の時定数Tが20ms、比誘電率εrを5として(1)式に代入すると、図11に示すように、高抵抗絶縁膜5の電気抵抗率ρは5.6×10Ωmとなる。
 接地タンク2の内部が高電界となる電圧が中心導体3に印加される場合等は、高抵抗絶縁膜5の高抵抗材料の電気抵抗率は10Ωm程度以上あった方がのぞましい。また高抵抗絶縁膜5が存在することで、低抵抗絶縁膜6の浮遊電位を担保することができる。
 上記のように高抵抗絶縁膜5の高抵抗材料の電気抵抗率ρを10Ωm程度以上に構成することにより、接地タンク2からの漏れ電流による金属異物10への電荷流入も抑制でき、静電誘導による金属異物10の帯電を抑制することができる。
実施の形態3.
 次に、この発明の実施の形態3に係るガス絶縁電気機器について詳細に説明する。実施の形態3では、金属異物10の電位を下げ金属異物10の周辺の電界を緩和できる低抵抗絶縁膜6と金属異物10の電位を効率的に下げる非線形抵抗絶縁膜7とについて述べる。
 中心導体3に高電界が印加されたとき、非線形抵抗絶縁膜7の電気抵抗率が低下することによって金属異物10の電界緩和効果が発生することは先に述べたが、たとえば低抵抗絶縁膜6の電気抵抗率が非線形抵抗絶縁膜7の非線形抵抗材料9の電気抵抗率と同じ値である場合、金属異物10の電位は低抵抗絶縁膜6の電位と同電位にまで下がるため、金属異物10と非線形抵抗絶縁膜7との接触点近傍の電界を低下させ、部分放電の発生を抑制することができる。たとえば非線形抵抗絶縁膜7の非線形抵抗材料9と低抵抗絶縁膜6の電気抵抗率が10×10Ωmのとき、金属異物10の電位は低抵抗絶縁膜6が構成されていない場合に比較して、1/2になる。
 上記のように低抵抗絶縁膜6の電気抵抗率を、非線形抵抗材料9の電気抵抗率の最低値より小さい電気抵抗率とすることで、金属異物10の周辺の電界を緩和することができる。また、非線形抵抗絶縁膜7の中に配置される非線形抵抗材料9が、低抵抗絶縁膜6と非線形抵抗絶縁膜7の界面と、非線形抵抗絶縁膜7と絶縁ガスの界面を接続するように繋がって配置されていると、金属異物10と低抵抗絶縁膜6を最短距離で接続できるため、金属異物10の電位を更に効率的に下げることができる。
実施の形態4.
 次に、この発明の実施の形態4に係るガス絶縁電気機器について詳細に説明する。実施の形態4では、金属異物10が機械的振動によって運動し、金属異物10と非線形抵抗絶縁膜7との接触部の局所電界が変化した場合でも、部分放電が発生する前に電界緩和可能な非線形抵抗絶縁膜7の電気抵抗率について述べる。
 接地タンク2に外部から機械的振動が加わると、静置状態では浮上に必要な電荷量を持たなかった金属異物10が振動によって運動し、運動したはずみに金属異物10と非線形抵抗絶縁膜7の接触点近傍の局所電界が変化し、部分放電が発生して金属異物10に電荷が供給され金属異物10が浮上してしまう可能性がある。ここで言う、接地タンク2に加わる外部からの機械振動とは、例えば地震であったり、この接地タンク2に併設された機器(断路器、遮断器)等の動きで発生する振動であったりする。金属異物10が運動した瞬間に部分放電が発生しないためには、金属異物10と非線形抵抗絶縁膜7の接触点近傍の局所電界が、部分放電が発生する前に、金属異物10が静置状態の局所電界値とほぼ同等の値に戻る必要がある。この、電界が元に戻る時間を時定数と定義する。
 ここで、高抵抗絶縁膜5および低抵抗絶縁膜6および非線形抵抗絶縁膜7の時定数Tは、前述の式(1)で表される。一方で、金属異物10に部分放電が発生するまでは、放電遅れ時間と呼ばれる時間がある。放電遅れ時間は、電圧が印加されてから放電のタネとなる初期電子が発生するまでの統計的遅れ時間と、初期電子が発生してから放電に成長するまでの形成遅れ時間との和である。ガス中における放電の統計遅れ時間は最短でほぼゼロsであり、形成遅れ時間は最短で数十nsである。このことから放電遅れ時間の最短時間は数十nsとされる(たとえば文献『方形波インパルスによるSF6中準平等電界ギャップの短時間領域V-t特性の解明(著・財団法人電力中央研究所)』)。
 したがって、非線形抵抗絶縁膜7の時定数Tを、放電遅れ時間より小さくすることで、金属異物10と非線形抵抗絶縁膜7との接触点近傍で部分放電が発生する前に接触点近傍における電界を緩和でき、金属異物10の帯電を抑制できる。
 因みに、数値例として放電遅れ時間=時定数(電気抵抗率の最小値における時定数)を50ns、非線形抵抗絶縁膜7の比誘電率を10として(1)式に代入すると、非線形抵抗絶縁膜7の電気抵抗率は5.5×10Ωmとなる。
 上記のように非線形抵抗絶縁膜7の時定数Tが放電遅れ時間より小さくなるよう、非線形抵抗絶縁膜7の電気抵抗率を構成すれば、接地タンク2の振動により金属異物10の位置ずれが発生しても、金属異物10と非線形抵抗絶縁膜7との接触部近傍で部分放電が発生する前に接触部近傍における電界値を静置状態の局所電界値にまで戻すことができ、部分放電の発生を抑制できる。
実施の形態5.
 次に、この発明の実施の形態5に係るガス絶縁電気機器について詳細に説明する。実施の形態5では低抵抗絶縁膜6として、低電気抵抗率の樹脂の塗布膜で構成したものについて説明する。
 低電気抵抗率の樹脂として、導電性高分子を用いる。導電性高分子の例としてポリアセチレン、ポリパラフェニレン,ポリチオフェン,ポリピロール,ポリアニリン,ポリアセン等が挙げられる。導電性高分子は樹脂そのものとして塗布可能であるため、低抵抗材料の粉体を利用するよりも成膜が容易である。
 上記のように低抵抗絶縁膜6を低電気抵抗率の樹脂の塗布膜で構成すると、金属異物10付近の電界を抑制でき、静置時または振動による金属異物10が移動時も、部分放電の発生を抑制できる。
 以上、この発明の実施の形態を記述したが、この発明は実施の形態に限定されるものではなく、種々の設計変更を行うことが可能であり、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
 この発明のガス絶縁電気機器は、遮断器、断路器、計器用変流器等の機器と組み合わせて使用されるガス絶縁開閉装置として有用である。
 1:ガス絶縁電気機器、2:接地タンク、3:中心導体、4:絶縁支持部材、5:高抵抗絶縁膜(高抵抗絶縁部)、6:低抵抗絶縁膜(低抵抗絶縁部)、7:非線形抵抗絶縁膜(非線形抵抗絶縁部)、8:絶縁材料、9:非線形抵抗材料、10:金属異物、11:微小ギャップ

Claims (6)

  1.  絶縁ガスが充填された接地タンクと、
     前記接地タンクの内部に配置され、電圧が印加される中心導体と、
     前記接地タンクの下側の内表面に配置され、高抵抗率の絶縁材料で構成された高抵抗絶縁部と、
     前記高抵抗絶縁部の少なくとも一部の表面上に配置され、前記高抵抗絶縁部の抵抗率よりも低い抵抗率を有した低抵抗絶縁部と、
     前記低抵抗絶縁部の少なくとも一部の表面上に配置され、電界の変化に対し非直線的な抵抗率を示す非線形抵抗材料と高抵抗率の絶縁材料で構成された非線形抵抗絶縁部と、を備え、
     前記低抵抗絶縁部が浮遊電位であることを特徴とするガス絶縁電気機器。
  2.  前記高抵抗絶縁部は、電気抵抗率が10Ωm以上であることを特徴とする請求項1に記載のガス絶縁電気機器。
  3.  前記低抵抗絶縁部の電気抵抗率は、前記非線形抵抗絶縁部の前記非線形抵抗材料の電気抵抗率の最低値より小さいことを特徴とする請求項1または請求項2に記載のガス絶縁電気機器。
  4.  前記非線形抵抗絶縁部は、前記非線形抵抗材料が、前記非線形抵抗絶縁部内で、前記低抵抗絶縁部と前記非線形抵抗絶縁部の界面と、前記非線形抵抗絶縁部と前記絶縁ガスの界面を接続するように繋がった状態で配置されていることを特徴とする請求項1から請求項3のいずれか1項に記載のガス絶縁電気機器。
  5.  前記非線形抵抗絶縁部の時定数は、放電遅れ時間より小さいことを特徴とする請求項1から請求項3のいずれか1項に記載のガス絶縁電気機器。
  6.  前記低抵抗絶縁部は、導電性高分子からなる低抵抗率材料で構成されたことを特徴とする請求項1から請求項5のいずれか1項に記載のガス絶縁電気機器。
PCT/JP2016/077301 2016-02-17 2016-09-15 ガス絶縁電気機器 WO2017141474A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017567941A JP6645706B2 (ja) 2016-02-17 2016-09-15 ガス絶縁電気機器
US16/063,742 US10965106B2 (en) 2016-02-17 2016-09-15 Gas-insulated electrical equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016027534 2016-02-17
JP2016-027534 2016-02-17

Publications (1)

Publication Number Publication Date
WO2017141474A1 true WO2017141474A1 (ja) 2017-08-24

Family

ID=59625803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077301 WO2017141474A1 (ja) 2016-02-17 2016-09-15 ガス絶縁電気機器

Country Status (3)

Country Link
US (1) US10965106B2 (ja)
JP (1) JP6645706B2 (ja)
WO (1) WO2017141474A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6807276B2 (ja) * 2017-05-19 2021-01-06 株式会社日立製作所 絶縁スペーサ及びそれを用いたガス絶縁開閉装置
US11888295B2 (en) * 2019-02-01 2024-01-30 Mitsubishi Electric Corporation Gas insulated apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59149422U (ja) * 1983-03-24 1984-10-05 株式会社東芝 管路気中母線
JP5135263B2 (ja) * 2009-03-06 2013-02-06 株式会社東芝 密閉型絶縁装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135263B2 (ja) 1972-08-09 1976-10-01
US4667061A (en) * 1985-04-02 1987-05-19 Hitachi, Ltd. Gas insulated apparatus with internal coated insulation layer of high dielectric constant
JPH0279711A (ja) * 1988-06-23 1990-03-20 Mitsubishi Electric Corp ガス絶縁容器
JP2000166065A (ja) * 1998-11-24 2000-06-16 Mitsubishi Electric Corp ガス絶縁開閉装置
JP5859142B2 (ja) * 2012-12-21 2016-02-10 三菱電機株式会社 ガス絶縁電気機器
WO2014112123A1 (ja) * 2013-01-21 2014-07-24 三菱電機株式会社 ガス絶縁開閉装置
WO2015136753A1 (ja) * 2014-03-12 2015-09-17 三菱電機株式会社 ガス絶縁開閉装置
WO2015198420A1 (ja) 2014-06-25 2015-12-30 三菱電機株式会社 ガス絶縁機器
WO2016080018A1 (ja) * 2014-11-20 2016-05-26 三菱電機株式会社 ガス絶縁開閉装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59149422U (ja) * 1983-03-24 1984-10-05 株式会社東芝 管路気中母線
JP5135263B2 (ja) * 2009-03-06 2013-02-06 株式会社東芝 密閉型絶縁装置

Also Published As

Publication number Publication date
US20190372318A1 (en) 2019-12-05
JP6645706B2 (ja) 2020-02-14
JPWO2017141474A1 (ja) 2018-09-20
US10965106B2 (en) 2021-03-30

Similar Documents

Publication Publication Date Title
JP6072353B2 (ja) ガス絶縁開閉装置
JP6289665B2 (ja) ガス絶縁開閉装置
JP5859142B2 (ja) ガス絶縁電気機器
JP5710080B2 (ja) ガス絶縁開閉装置
Okabe et al. Behavior of metallic particles in GIS under DC voltage
JP6067150B2 (ja) ガス絶縁電気機器
WO2017141474A1 (ja) ガス絶縁電気機器
JP6807276B2 (ja) 絶縁スペーサ及びそれを用いたガス絶縁開閉装置
JP2016131415A (ja) ガス絶縁開閉装置
EP3487019B1 (en) Gas-insulated electric apparatus and manufacturing method for gas-insulated electric apparatus
JP7137486B2 (ja) ガス絶縁開閉装置及びその製造方法
JP6189002B1 (ja) ガス絶縁電気機器及びガス絶縁電気機器の製造方法
JP6608099B1 (ja) ガス絶縁機器
WO2017098553A1 (ja) ガス絶縁機器
Zhang et al. A novel nonlinear coating for suppression of metallic particle motion in GIS
JP2019115138A (ja) 開閉装置
Bamanqa et al. EVALUATION OF ROOM TEMPERATURE VULCANIZATION (RTV) COATING MATERIAL ON BUSHING UNDER ELECTRICAL STRESS CONDITION
Rao et al. Movement Patterns of Metallic Particles in a Single Phase Gas Insulated Busduct with Superimposed Lighting and Switching Impulses
Zhang et al. On the Particle-Contaminated GIS/GITL Systems with Dielectric Coated Electrodes
Rao et al. Performance of gas insulated substations with metallic particle contamination under the influence of various types of voltages
JP2019088117A (ja) ガス絶縁開閉装置
Mavroidis et al. Surface corona development in dielectric covered rod-plane air gaps under impulse voltages
Rao et al. Effect of various excitations on the performance of gas insulated substations with metallic particle contamination
Kumar et al. Control of particle dynamics in a compact size gas insulated busduct with dielectric films
JP2008193787A (ja) ガス絶縁開閉装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890611

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017567941

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16890611

Country of ref document: EP

Kind code of ref document: A1