WO2017140231A1 - 一种闭环控制系统的监测装置、方法及闭环控制系统 - Google Patents

一种闭环控制系统的监测装置、方法及闭环控制系统 Download PDF

Info

Publication number
WO2017140231A1
WO2017140231A1 PCT/CN2017/073241 CN2017073241W WO2017140231A1 WO 2017140231 A1 WO2017140231 A1 WO 2017140231A1 CN 2017073241 W CN2017073241 W CN 2017073241W WO 2017140231 A1 WO2017140231 A1 WO 2017140231A1
Authority
WO
WIPO (PCT)
Prior art keywords
set value
control system
loop control
closed
displacement
Prior art date
Application number
PCT/CN2017/073241
Other languages
English (en)
French (fr)
Inventor
岳小军
Original Assignee
西安大医数码技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安大医数码技术有限公司 filed Critical 西安大医数码技术有限公司
Publication of WO2017140231A1 publication Critical patent/WO2017140231A1/zh
Priority to US16/104,960 priority Critical patent/US20180356785A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/048Monitoring; Safety
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0428Safety, monitoring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4062Monitoring servoloop, e.g. overload of servomotor, loss of feedback or reference
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24015Monitoring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24065Real time diagnostics

Definitions

  • the invention relates to the field of automatic control, in particular to a monitoring device, a method and a closed loop control system for a closed loop control system.
  • the control mode of the servo unit is divided into open loop control and closed loop control.
  • the open loop control system is mainly used for occasions where the control position accuracy is not high. If there is a certain control precision requirement, the closed loop control system needs to be selected.
  • the closed-loop control system will experience a flying phenomenon (high-speed loss of control).
  • various manufacturers basically adopt safety limit switches, controller position monitoring and the like to prevent the flying-loop phenomenon of the closed-loop control system. The above method is based on the fact that after the actual phenomenon of the flying car occurs, the servo motor and the control shaft are stopped from the high speed to the complete stop, which requires a long movement time, which often causes damage to the machine components and causes property damage. .
  • the technical problem mainly solved by the present invention is to provide a monitoring device, a method and a closed-loop control system for a closed-loop control system, which can stop and operate when a closed-loop control system is about to fly, avoiding damage caused by machine damage.
  • a technical solution adopted by the present invention is to provide a monitoring device for a closed loop control system
  • the closed loop control system includes at least a control mechanism, a servo motor and an actuator
  • the device includes: an acquisition module for slave control
  • the mechanism collects the movement displacement and the displacement error of the actuator;
  • the first judging module is configured to compare the displacement error and the first set value within the set T time period;
  • the second judging module is configured to perform the displacement and the displacement error according to the movement Calculating the actual moving distance of the actuator, and comparing the actual moving distance and the second set value in the T time period;
  • the control module is configured to determine, in the first determining module, that the displacement error is greater than the first set value, and the second When the determining module determines that the actual moving distance is greater than the second set value, the closed loop control system is closed; wherein the first set value is a minimum displacement error value that affects the operation of the closed loop control system, and the second set value is set by the control mechanism.
  • a technical solution adopted by the present invention is to provide a closed-loop control system including at least a control mechanism, a servo motor and an actuator, and the system further includes a monitoring device in the previous technical solution.
  • a technical solution adopted by the present invention is to provide a monitoring method for a closed-loop control system, the method comprising the steps of: collecting movement displacement and displacement error of the actuator from the control mechanism; at the set time T In the segment, the displacement error and the first set value are compared; the actual moving distance of the actuator is calculated according to the moving displacement and the displacement error, and the actual moving distance and the second set value are compared in the T period; the displacement error is determined When the first set value is greater than the first set value, and the actual moving distance is determined to be greater than the second set value, the closed loop control system is closed.
  • the monitoring device of the closed-loop control system of the present invention collects the displacement of the actuator movement of the closed-loop control system and the displacement error generated during the movement, calculates the measured displacement of the movement of the actuator, and utilizes the set time period.
  • the displacement error and the measured displacement are compared with the preset value, and when the displacement error and the measured displacement are both greater than the preset value, the closed command is sent to the closed loop control system.
  • the monitoring device of the invention can stop the operation of the machine when the closed-loop control system is about to fly, avoiding damage caused by machine damage.
  • FIG. 1 is a schematic structural view of a first embodiment of a monitoring device for a closed loop control system provided by the present invention
  • FIG. 2 is a schematic structural view of a first embodiment of a closed loop control system provided by the present invention
  • FIG. 3 is a schematic flow chart of a first embodiment of a monitoring method for a closed loop control system provided by the present invention.
  • the full-closed-loop monitoring system and the semi-closed-loop monitoring system are common monitoring systems in the field of automatic control.
  • the semi-closed-loop monitoring system monitors the driving link of the final execution of the whole system, and does not monitor the final executing mechanism;
  • the full-closed monitoring system monitors the final execution of the whole system, and can perform the displacement error caused by any part of the system. make up.
  • the closed-loop control system includes at least four parts: a control mechanism, a servo control mechanism, a servo motor and an actuator.
  • the control process is usually transmitted by the control mechanism to set the motion displacement of the load to the servo control mechanism.
  • the servo control mechanism is based on the performance of the servo motor.
  • the rotational speed converts the motion displacement of the load into the number of revolutions of the servo motor rotation, and the servo motor rotates according to the number of revolutions of the motor converted by the servo control mechanism to cause the actuator to drive the load to move. After the servo motor rotates the corresponding number of revolutions, the load is brought to the specified position with the actuator.
  • FIG. 1 is a schematic structural diagram of a first embodiment of a monitoring apparatus for a closed-loop control system according to the present invention.
  • the apparatus 100 is coupled to a closed loop control system 101 for monitoring the closed loop control system 101 to stop operation of the closed loop control system 101 when it is open loop.
  • the device 100 includes: an acquisition module 110, a first determination module 120, and a second determination module 130.
  • the control module 140, the first determining module 120 and the second determining module 130 are both connected to the collecting module 110 and the control module 140.
  • the acquisition module 110 is connected to the closed-loop control system 101.
  • the closed-loop control system 101 collects the displacement of the load set by the closed-loop control system 101 with the actuator (not shown) in real time, and obtains the displacement error generated when the load moves with the actuator.
  • the first determining module 120 obtains the displacement error data collected by the acquiring module 110, and sets a first setting value according to a conventional control operation, where the first setting value is a minimum displacement error that affects the operation of the closed-loop control system 101. The value, when the displacement error value exceeds the minimum displacement error value, it is necessary to stop the operation of the closed-loop control system 101 for adjustment.
  • the closed-loop control system 101 calculates the time required for the actuator to complete the movement based on the number of revolutions of the servo motor and the displacement of the actuator, and records the time as T.
  • the first determining module 120 compares the obtained displacement error value with the first set value in the T time, and when it is determined that the displacement error value is greater than the first set value, the second determining module 130 is activated.
  • the second determining module 130 obtains the measured displacement according to the displacement error value and the moving displacement collected by the collecting module 110.
  • the measurement displacement theory is equal to the difference between the set movement displacement and the acquired displacement error value. Therefore, the measured displacement can be obtained by the foregoing calculation or directly from the control mechanism of the closed loop control system 101.
  • the closed loop control system 101 takes the distance actually moved by the load as the measured displacement.
  • the second determining module 130 sets a second set value.
  • the second set value is the displacement of the load set by the control mechanism of the closed loop control system 101 as the actuator moves.
  • the second determining module 130 compares the calculated measured displacement with the second set value during the T time. When the measured displacement is greater than the second set value, the control module 140 transmits an instruction to the closed-loop control system 101 to turn off the power, stop the servo motor, and stop the load.
  • the third determining module 150 further determines, according to the rotational speed of the servo motor in real time, the rotational speed and the third set value obtained in real time during the T time period, and determines, by the third determining module 150, that the rotational speed is greater than At the third set value, a close command is sent to the closed loop control system 101.
  • the third set value is the set servo motor maximum rotation speed threshold.
  • the control module 140 sends a close command to the closed loop control system 101.
  • the set time period T and the first set value, the second set value, and the third set value are different, and are all set according to the actual configuration of the system.
  • control module 140 is connected to an off source mechanism (not shown), and the control module 140 sends a close command to the closed loop control system 101.
  • the source mechanism is preferably a watchdog software.
  • the monitoring device 100 is used in a radiotherapy system including at least one treatment head.
  • the control module 140 is connected to a source mechanism (not shown) of the radiotherapy system. If it is determined that the displacement error is greater than the first set value, and the actual moving distance is greater than the first When the value is set, the control module 140 controls the source mechanism to turn off the radiotherapy head (not shown) of the radiotherapy system while stopping the rotation of the radiotherapy head.
  • the control mechanism cannot When the servo motor is running, the servo motor can't get the stop command, it always drives the load movement, and the rotation speed is getting higher and higher, so the speed of the load movement is getting faster and faster, causing its impact and damage to the equipment, resulting in economic loss.
  • the monitoring device 100 of the present invention is capable of avoiding losses caused by machine damage.
  • the monitoring device of the closed-loop control system of the present invention collects the displacement of the actuator movement of the closed-loop control system and the displacement error generated during the movement, calculates the measured displacement of the movement of the actuator, and utilizes the set time period.
  • the displacement error and the measured displacement are compared with the preset value, and when the displacement error and the measured displacement are both greater than the preset value, the closed command is sent to the closed loop control system.
  • the monitoring device of the invention can stop the operation of the machine when the closed-loop control system is about to fly, avoiding damage caused by machine damage.
  • FIG. 2 is a schematic structural diagram of a first embodiment of a closed-loop control system provided by the present invention.
  • the system 200 includes at least a control mechanism 210, a servo motor 220, an actuator 230, and a monitoring mechanism 240.
  • the control mechanism 210 sets the displacement of the movement of the load 250, and determines the number of revolutions that the servo motor 220 needs to rotate when the load 250 moves the set displacement according to the set displacement.
  • the control mechanism 210 includes a system control unit 211 and a servo control unit 212 that sets parameters of load movement for control of the entire system 200.
  • System control unit 211 sets execution
  • the mechanism 230 drives the displacement of the load movement, and the servo control unit 212 converts the displacement parameter set by the system control unit 211 into the number of revolutions of the servo motor 220.
  • the servo motor 220 rotates according to the number of revolutions required by the servo control unit 212, and is the actuator 230. Driving the load moves to provide kinetic energy to move the specified displacement.
  • the monitoring mechanism 240 is the monitoring device described in the previous embodiment, and the displacement of the load movement, the displacement error fed back by the actuator 230, and the measured displacement when the actuator 230 drives the load are moved from the control mechanism 210, and the displacements obtained in real time are respectively obtained.
  • the error value is compared with the measured displacement and the set value collected in real time, and the set value compared with the displacement error value is a minimum displacement error value that affects the operation of the closed loop control system 101.
  • the displacement error value exceeds the minimum displacement error value, It is necessary to stop the operation of the closed-loop control system 101 for adjustment; the displacement of the load movement set by the control mechanism 210 is compared with the measured displacement. And when both the displacement error value and the measured displacement are greater than the set value, the monitoring mechanism 240 sends a shutdown command to the control mechanism 210 to disable the operation of the system 200.
  • the closed loop control system 200 further includes a human-machine interaction mechanism 250 for providing a visual interface for reading operational data or setting control data.
  • the servo motor 220 feeds back the rotational speed and the number of revolutions of the real-time operation to the control mechanism 210.
  • the control mechanism 210 determines whether the load is completed according to the command according to the data fed back by the servo motor 220, but when the servo motor 220 is finished.
  • the link fed back to the control unit 210 is disconnected, the control unit 210 cannot transmit a command according to the feedback data, the rotational speed of the servo motor 220 is always increased, and the actuator 230 drives the load to accelerate, which may cause damage to the machine equipment.
  • the monitoring mechanism 240 monitors the displacement error value and the measured displacement of the actuator 230 to drive the load.
  • the stop command is sent to the control mechanism 210 to avoid damage to the machine equipment. Cause economic losses.
  • the closed-loop control system of the present invention collects the displacement of the actuator movement of the closed-loop control system and the displacement error generated during the movement by the monitoring mechanism monitoring device, and calculates the measured displacement of the movement of the actuator, within the set time period.
  • the displacement error and the measured displacement are compared with the preset value, and when the displacement error and the measured displacement are both greater than the preset value, the closed command is sent to the closed loop control system.
  • the closed-loop control system of the invention can stop the operation of the machine when the flying phenomenon is about to occur, and avoid damage caused by machine damage.
  • FIG. 3 is a schematic flowchart diagram of a first embodiment of a monitoring method for a closed-loop control system according to the present invention. The steps of the method include:
  • S301 Collecting movement displacement and displacement error of the actuator from the control mechanism.
  • the closed-loop control system collects the displacement of the load set by the closed-loop control system with the actuator in real time, and obtains the displacement error generated by the load as the actuator moves.
  • the first set value is a minimum displacement error value affecting the operation of the closed loop control system, and when the displacement error value exceeds the minimum displacement error value, the closed loop control system needs to be stopped.
  • the operation is adjusted.
  • the closed-loop control system calculates the time required for the actuator to complete the movement based on the number of revolutions of the servo motor and the displacement of the actuator, and records the time as T. In the T time, the obtained displacement error value is compared with the first set value.
  • S303 Calculate the actual moving distance of the actuator according to the moving displacement and the displacement error, and compare the actual moving distance with the second set value within the T period.
  • the measurement displacement theory is equal to the difference between the set movement displacement and the acquired displacement error value.
  • the measured displacement can be obtained by the aforementioned calculation or directly from the control mechanism of the closed loop control system 101.
  • the closed loop control system uses the distance at which the load actually moves as the measured displacement.
  • a second set value is set.
  • the second set value is the displacement of the load set by the control mechanism of the closed-loop control system with the movement of the actuator.
  • the calculated measured displacement is compared with the second set value during the T time.
  • the command is transmitted to the closed loop control system to turn off the power supply, the servo motor stops running, and the load stops moving.
  • the third set value is the set servo motor maximum rotation speed threshold.
  • the rotation of the servo motor when the rotary motor drives the displacement set by the load motion Speed is a process from slow to fast to slow. If the servo motor rotation speed continues to rise after reaching the third set value, the displacement of the load motion must exceed the set motion displacement, resulting in equipment damage.
  • a close command is sent to the closed loop control system.
  • the set time period T and the first set value, the second set value, and the third set value are different, and are all set according to the actual configuration of the system.
  • the source-off mechanism is connected to the closed-loop control system, and the source-off mechanism causes the load to be turned off to the initial position for further operation.
  • the source mechanism is preferably a watchdog software.
  • the control mechanism cannot obtain When the servo motor is running, the servo motor can not get the stop command, and the load movement is always driven, and the rotation speed is getting higher and higher, so that the speed of the load movement is getting faster and faster, causing the impact and damage to the equipment, resulting in economic loss.
  • the monitoring device of the present invention is capable of avoiding losses caused by machine damage.
  • the monitoring method of the closed-loop control system of the present invention collects the displacement of the actuator movement of the closed-loop control system and the displacement error generated during the movement, calculates the measured displacement of the movement of the actuator, and utilizes the set time period.
  • the displacement error and the measured displacement are compared with the preset value, and when the displacement error and the measured displacement are both greater than the preset value, the closed command is sent to the closed loop control system.
  • the monitoring device of the invention can stop the operation of the machine when the closed-loop control system is about to fly, avoiding damage caused by machine damage.

Abstract

一种闭环控制系统的监测装置(100)、方法及闭环控制系统(101),该装置(100)包括:采集模块(110),用于从控制机构(210)采集执行机构(230)的移动位移以及位移误差;第一判断模块(120),用于在设定的T时间段内,对比位移误差和第一设定值;第二判断模块(130),用于根据移动位移和位移误差计算得到执行机构(230)的实际移动距离,并在T时间段内,对比实际移动距离和第二设定值;以及控制模块(140),用于在第一判断模块(120)判定位移误差大于第一设定值,且第二判断模块(130)判定实际移动距离大于第二设定值时,控制闭环控制系统(101)关闭,该装置(100)能够在闭环控制系统(101)即将发生飞车现象时停止及其运转,避免机器损坏造成损失。

Description

一种闭环控制系统的监测装置、方法及闭环控制系统 技术领域
本发明涉及自动控制领域,特别是涉及一种闭环控制系统的监测装置、方法及闭环控制系统。
背景技术
伺服单元的控制方式分为开环控制和闭环控制方式,开环控制系统主要用于对控制位置精度要求不高的场合,如果有一定的控制精度需求,则需要选择闭环控制系统。
但是闭环控制系统一旦发生反馈断线(比如电缆断裂、反馈线接触不良、调试时反馈线接错等情况),闭环控制系统会发生飞车现象(高速失控)。目前为了达到安全可靠的目的,各个厂家为避免上述现象基本上采用安全限位开关、控制器位置监控等方法防止闭环控制系统出现飞车现象。上述方式的处理是建立在飞车现象真实发生以后,伺服电机及控制转轴从飞车时的高速到完全停止下来,需要较长的运动时间,在这段时间内往往会造成机器部件损坏,造成财产损失。
发明内容
本发明主要解决的技术问题是提供一种闭环控制系统的监测装置、方法及闭环控制系统,能够在闭环控制系统即将发生飞车现象时停止及其运转,避免机器损坏造成损失。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种闭环控制系统的监测装置,闭环控制系统至少包括控制机构、伺服电机和执行机构,该装置包括:采集模块,用于从控制机构采集执行机构的移动位移以及位移误差;第一判断模块,用于在设定的T时间段内,对比位移误差和第一设定值;第二判断模块,用于根据移动位移和位移误差 计算得到执行机构的实际移动距离,并在T时间段内,对比实际移动距离和第二设定值;控制模块,用于在第一判断模块判定位移误差大于第一设定值,且第二判断模块判定实际移动距离大于第二设定值时,控制闭环控制系统关闭;其中,第一设定值是影响闭环控制系统运转的最小位移误差值,第二设定值是控制机构设定的执行机构移动的位移值。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种闭环控制系统,至少包括控制机构、伺服电机和执行机构,该系统还包括前一技术方案中的监测装置。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种闭环控制系统的监测方法,该方法的步骤包括:从控制机构采集执行机构的移动位移以及位移误差;在设定的T时间段内,对比位移误差和第一设定值;根据移动位移和位移误差计算得到执行机构的实际移动距离,并在T时间段内,对比实际移动距离和第二设定值;在判定位移误差大于第一设定值,且判定实际移动距离大于第二设定值时,控制闭环控制系统关闭。
区别于现有技术,本发明的闭环控制系统的监测装置采集闭环控制系统的执行机构运动的位移及运动时产生的位移误差,计算得到执行机构运动的测量位移,在设定时间段内,利用位移误差及测量位移与预设值比较,在位移误差和测量位移均大于预设值时,向闭环控制系统发送关闭的命令。本发明的监测装置能够在闭环控制系统即将发生飞车现象时停止机器运转,避免机器损坏造成损失。
附图说明
图1是本发明提供的一种闭环控制系统的监测装置第一实施方式的结构示意图;
图2是本发明提供的一种闭环控制系统第一实施方式的结构示意图;
图3是本发明提供的一种闭环控制系统的监测方法第一实施方式的流程示意图。
具体实施方式
下面结合具体实施方式对本发明的技术方案作进一步更详细的描述。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
全闭环监测系统和半闭环监测系统是目前自动控制领域常见的监控系统。其中,半闭环监测系统监控的是整个系统最终执行环节的驱动环节,对最终执行机构不作监控;全闭环监测系统监控的是整个系统的最终执行环节,可对系统任一环节造成的位移误差进行补偿。
闭环控制系统至少包括四个部分:控制机构、伺服控制机构、伺服电机和执行机构,其控制过程通常是由控制机构设定负载的运动位移传输到伺服控制机构,伺服控制机构根据伺服电机的性能及转速,将负载的运动位移转换成伺服电机旋转的转数,伺服电机根据伺服控制机构转换成的电机转数转动以使执行机构带动负载进行移动。伺服电机旋转相应的转数后,使负载随执行机构到达指定位置。由于转换的精度问题,执行机构带动负载移动时,往往存在位移误差而无法准确到达指定位置,若位移误差在合理范围内是可以接受的。当位移误差过大时会由伺服电机及伺服控制机构反馈到控制机构,进行重新设定。
但是在实际的闭环控制系统中,容易出现伺服控制机构与控制机构的反馈链接因外力因素而断开,造成控制机构无法得到反馈,无法向伺服电机及伺服控制机构发送停止的指令,或者出现伺服电机不受控制,发生飞车现象的情况。伺服电机带动执行机构继续移动,此时若使高速运转的伺服电机停止,需要一段时间,在该时间段内,执行机构或负载会高速撞击设备,导致设备损坏,造成经济损失。
参阅图1,图1是本发明提供的一种闭环控制系统的监测装置第一实施方式的结构示意图。该装置100连接闭环控制系统101,用于监测闭环控制系统101,在其出现开环时停止闭环控制系统101的运转。该装置100包括:采集模块110、第一判断模块120、第二判断模块130 和控制模块140,第一判断模块120和第二判断模块130均连接采集模块110及控制模块140。
采集模块110连接到闭环控制系统101,从闭环控制系统101实时采集由闭环控制系统101设定的负载随执行机构(图未示)的移动位移,获取负载随执行机构移动时产生的位移误差。第一判断模块120从采集模块110获取其采集到的位移误差数据,根据常规的控制操作设定一第一设定值,该第一设定值是影响该闭环控制系统101运转的最小位移误差值,当位移误差值超过该最小位移误差值时,需要停止闭环控制系统101的运转进行调整。闭环控制系统101根据伺服电机转数及执行机构移动的位移,计算执行机构完成移动所需时间,并记录该时间为T。第一判断模块120在T时间内,用获取到的位移误差值和第一设定值比较,当判断到位移误差值大于第一设定值时,启动第二判断模块130。第二判断模块130根据采集模块110采集到的位移误差值和移动位移,得到测量位移。根据常规操作过程的数据可知,测量位移理论等于设定的移动位移和获取的位移误差值的差值。所以测量位移可通过前述计算得到,或者从闭环控制系统101的控制机构直接读取。在本实施方式中,闭环控制系统101将负载实际移动的距离作为测量位移。同时第二判断模块130设定一第二设定值。第二设定值是闭环控制系统101控制机构设定的负载随执行机构移动的位移。第二判断模块130在T时间内用计算得到的测量位移和第二设定值比较。在测量位移大于第二设定值时,控制模块140向闭环控制系统101传输指令,使其关闭电源,使伺服电机停止运行,负载停止运动。
进一步,还包括第三判断模块150,根据实时获取的,伺服电机的旋转速度,在T时间段内,对比实时获取的旋转速度和第三设定值,在第三判断模块150判定旋转速度大于第三设定值时,向闭环控制系统101发送关闭命令。第三设定值是设定的伺服电机最大旋转速度阈值。旋转电机带动负载运动设定的位移时,伺服电机的旋转速度是从慢到快再到慢的过程。如果伺服电机旋转速度达到第三设定值后还继续升高,负载运动的位移必然超出设定的运动位移,造成设备损坏。因此第三判断模 块150在判定伺服电机旋转速度大于设定的速度阈值时,控制模块140向闭环控系统101发送关闭指令。
对于不同的闭环控制系统101,设定的时间段T及第一设定值、第二设定值、第三设定值是不同的,均根据系统的实际配置进行设置。
进一步,控制模块140连接到关源机构(图未示),在控制模块140向闭环控制系统101发送关闭指令。关源机构优选为看门狗软件。监测装置100用于包含至少一个治疗头的放疗系统中,控制模块140连接到放疗系统的一关源机构(图未示),若判定位移误差大于第一设定值,且实际移动距离大于第二设定值时,控制模块140控制关源机构关闭放疗系统的放射性治疗头(图未示),同时使所述放射性治疗头停止转动。
在本实施方式中,如果闭环控制系统101的伺服控制机构和控制机构之间的反馈链接因外力作用断开(比如电缆断开、反馈线接触不良、调试时反馈线接错),控制机构无法得到伺服电机运转的情况,伺服电机也无法得到停止的指令,一直带动负载运动,且旋转速度越来越高,使负载运动的速度也越来越快,导致其撞击以及损坏设备,造成经济损失。而本发明的监测装置100能够避免机器损坏造成的损失。
区别于现有技术,本发明的闭环控制系统的监测装置采集闭环控制系统的执行机构运动的位移及运动时产生的位移误差,计算得到执行机构运动的测量位移,在设定时间段内,利用位移误差及测量位移与预设值比较,在位移误差和测量位移均大于预设值时,向闭环控制系统发送关闭的命令。本发明的监测装置能够在闭环控制系统即将发生飞车现象时停止机器运转,避免机器损坏造成损失。
参阅图2,图2是本发明提供的一种闭环控制系统第一实施方式的结构示意图。该系统200至少包括:控制机构210、伺服电机220、执行机构230和监测机构240。
控制机构210设定负载250移动的位移,并根据设定的位移确定负载250移动设定位移时伺服电机220需要转动的转数。控制机构210包括系统控制单元211和伺服控制单元212,系统控制单元211设定负载移动的参数,用于对整个系统200的控制。系统控制单元211设定执行 机构230带动负载移动的位移,伺服控制单元212将系统控制单元211设定的位移参数转换成伺服电机220旋转的转数,伺服电机220根据伺服控制单元212要求的转数转动,为执行机构230带动负载移动提供动能,使之移动指定的位移。监测机构240是前一实施方式中所述的监测装置,从控制机构210获取负载移动的位移、执行机构230反馈的位移误差以及执行机构230带动负载移动时的测量位移,分别用实时获取的位移误差值及实时采集的测量位移和设定值进行比较,与位移误差值比较的设定值是影响该闭环控制系统101运转的最小位移误差值,当位移误差值超过该最小位移误差值时,需要停止闭环控制系统101的运转进行调整;与测量位移比较的是控制机构210设定的负载移动的位移。且在位移误差值及测量位移均大于设定值时,监测机构240向控制机构210发送关闭指令,使之关闭系统200的运行。
进一步,闭环控制系统200还包括人机交互机构250,用于为读取操作数据或设定控制数据提供可视化界面。
当系统200正常运转时,伺服电机220会将其实时运转的转速和转数反馈到控制机构210,控制机构210根据伺服电机220反馈的数据,判断负载是否按照指令完成移动,但是当伺服电机220向控制机构210反馈的链接断开时,控制机构210无法根据反馈数据发送指令,伺服电机220的转速会一直提高,执行机构230带动负载加速运动,可能导致机器设备损坏。本实施方式中,监测机构240监测执行机构230带动负载移动的位移误差值和测量位移,在伺服电机220即将发生飞车现象时,向控制机构210发送停止的指令,可避免对机器设备的损坏和造成经济损失。
区别于现有技术,本发明的闭环控制系统通过监测机构监测装置采集闭环控制系统的执行机构运动的位移及运动时产生的位移误差,计算得到执行机构运动的测量位移,在设定时间段内,利用位移误差及测量位移与预设值比较,在位移误差和测量位移均大于预设值时,向闭环控制系统发送关闭的命令。本发明闭环控制系统能够在即将发生飞车现象时停止机器运转,避免机器损坏造成损失。
参阅图3,图3是本发明提供的一种闭环控制系统的监测方法第一实施方式的流程示意图。该方法的步骤包括:
S301:从控制机构采集执行机构的移动位移以及位移误差。
从闭环控制系统实时采集由闭环控制系统设定的负载随执行机构的移动位移,并获取负载随执行机构移动时产生的位移误差。
S302:在设定的T时间段内,对比位移误差和第一设定值。
根据常规的控制操作设定一第一设定值,该第一设定值是影响该闭环控制系统运转的最小位移误差值,当位移误差值超过该最小位移误差值时,需要停止闭环控制系统的运转进行调整。闭环控制系统根据伺服电机转数及执行机构移动的位移,计算执行机构完成移动所需时间,并记录该时间为T。在T时间内,用获取到的位移误差值和第一设定值比较。
S303:根据移动位移和位移误差计算得到执行机构的实际移动距离,并在T时间段内,对比实际移动距离和第二设定值。
根据常规操作过程的数据可知,测量位移理论等于设定的移动位移和获取的位移误差值的差值。测量位移可通过前述计算得到,或者从闭环控制系统101的控制机构直接读取。在本实施方式中,闭环控制系统将负载实际移动的距离作为测量位移。同时设定一第二设定值。第二设定值是闭环控制系统控制机构设定的负载随执行机构移动的位移。在T时间内用计算得到的测量位移和第二设定值比较。
S304:在判定位移误差大于第一设定值,且判定实际移动距离大于第二设定值时,控制闭环控制系统关闭。
在位移误差值大于第一设定值,且测量位移大于第二设定值时,向闭环控制系统传输指令,使其关闭电源,使伺服电机停止运行,负载停止运动。
进一步,根据实时获取的伺服电机的旋转速度,在T时间段内,对比实时获取的旋转速度和第三设定值,在判定旋转速度大于第三设定值时,向闭环控制系统发送关闭命令。第三设定值是设定的伺服电机最大旋转速度阈值。旋转电机带动负载运动设定的位移时,伺服电机的旋转 速度是从慢到快再到慢的过程。如果伺服电机旋转速度达到第三设定值后还继续升高,负载运动的位移必然超出设定的运动位移,造成设备损坏。在判定伺服电机旋转速度大于设定的速度阈值时,向闭环控系统发送关闭指令。
对于不同的闭环控制系统,设定的时间段T及第一设定值、第二设定值、第三设定值是不同的,均根据系统的实际配置进行设置。
进一步,在向闭环控制系统发送关闭指令后,连接到闭环控制系统的关源机构,关源机构使负载关源到初始位置,以便进行再次的操作。关源机构优选为看门狗软件。在本实施方式中,连接到放疗系统的一关源机构,若判定位移误差大于第一设定值,且实际移动距离大于第二设定值时,控制关源机构关闭放疗系统的放射性治疗头,同时使所述放射性治疗头停止转动。
在本实施方式中,如果闭环控制系统的伺服控制机构和控制机构之间的反馈链接因外力作用断开(比如电缆断开、反馈线接触不良、调试时反馈线接错),控制机构无法得到伺服电机运转的情况,伺服电机也无法得到停止的指令,一直带动负载运动,且旋转速度越来越高,使负载运动的速度也越来越快,导致其撞击以及损坏设备,造成经济损失。而本发明的监测装置能够避免机器损坏造成的损失。
区别于现有技术,本发明的闭环控制系统的监测方法采集闭环控制系统的执行机构运动的位移及运动时产生的位移误差,计算得到执行机构运动的测量位移,在设定时间段内,利用位移误差及测量位移与预设值比较,在位移误差和测量位移均大于预设值时,向闭环控制系统发送关闭的命令。本发明的监测装置能够在闭环控制系统即将发生飞车现象时停止机器运转,避免机器损坏造成损失。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种闭环控制系统的监测装置,所述闭环控制系统至少包括控制机构、伺服电机和执行机构,其特征在于,所述监测装置至少包括:
    采集模块,用于从所述控制机构采集所述执行机构的移动位移以及位移误差;
    第一判断模块,用于在设定的T时间段内,对比所述位移误差和第一设定值;
    第二判断模块,用于根据所述移动位移和所述位移误差计算得到所述执行机构的实际移动距离,并在所述T时间段内,对比所述实际移动距离和第二设定值;以及
    控制模块,用于在所述第一判断模块判定所述位移误差大于所述第一设定值,且所述第二判断模块判定所述实际移动距离大于所述第二设定值时,控制所述闭环控制系统关闭;
    其中,所述第一设定值是影响所述闭环控制系统运转的最小位移误差值,所述第二设定值是所述控制机构设定的所述执行机构移动的位移值。
  2. 根据权利要求1所述的闭环控制系统的监测装置,其特征在于,还包括第三判断模块,用于实时获取所述伺服电机的旋转速度,并在所述T时间段内,对比所述旋转速度和第三设定值;在所述第三判断模块判定所述旋转速度大于所述第三设定值时,所述控制模块控制所述闭环控制系统关闭;其中,所述第三设定值是所述伺服电机的最大旋转速度阈值。
  3. 根据权利要求2所述的闭环控制系统的监测装置,其特征在于,所述T时间段、所述第一设定值、所述第二设定值及所述第三设定值根据所述闭环控制系统当前的负载大小以及所述执行机构控制所述负载的运动速度确定,且在不同的所述闭环控制系统中,所述T时间段、所述第一设定值、所述第二设定值及所述第三设定值各不相同。
  4. 根据权利要求1所述的闭环控制系统的监测装置,其特征在于,所述监测装置用于包含至少一个治疗头的放疗系统中,所述控制模块连接到所述放疗系统的一关源机构,若判定所述位移误差大于所述第一设定值,且所述实际移动距离大于所述第二设定值时,所述控制模块同时控制所述关源机构关闭所述放疗系统的放射源。
  5. 一种闭环控制系统,至少包括控制机构、伺服电机和执行机构,其特征在于,还包括权利要求1-4中任一项所述的监测装置。
  6. 根据权利要求5所述的闭环控制系统,其特征在于,所述控制机构包括系统控制单元和伺服控制单元;
    其中,所述系统控制单元用于设定执行机构带动负载移动的位移;所述伺服控制单元用于将所述系统控制单元设定的位移参数转换成伺服电机旋转的转数。
  7. 根据权利要求5所述的闭环控制系统,其特征在于,所述闭环控制系统还包括人机交互机构,用于为读取操作数据或设定控制数据提供可视化界面。
  8. 一种闭环控制系统的监测方法,所述闭环控制系统包括控制机构、伺服电机以及执行机构,其特征在于,所述方法包括:
    从所述控制机构采集所述执行机构的移动位移以及位移误差;
    在设定的T时间段内,对比所述位移误差和第一设定值;
    根据所述移动位移和所述位移误差计算得到所述执行机构的实际移动距离,并在所述T时间段内,对比所述实际移动距离和第二设定值;
    在判定所述位移误差大于所述第一设定值,且判定所述实际移动距离大于所述第二设定值时,控制所述闭环控制系统关闭。
  9. 根据权利要求8所述的闭环控制系统的监测方法,其特征在于,还包括步骤:根据实时获取的所述伺服电机的旋转速度,在所述T时间段内,对比实时获取的所述旋转速度和第三设定值,在判定所述旋转速度大于所述第三设定值时,向所述闭环控系统发送关闭命令;其中,所述第三设定值是设定的所述伺服电机最大旋转速度阈值。
  10. 根据权利要求8所述的闭环控制系统的监测方法,其特征在于, 若判定所述位移误差大于所述第一设定值,且所述实际移动距离大于所述第二设定值时,控制所述关源机构关闭所述放疗系统的放射源。
PCT/CN2017/073241 2016-02-19 2017-02-10 一种闭环控制系统的监测装置、方法及闭环控制系统 WO2017140231A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/104,960 US20180356785A1 (en) 2016-02-19 2018-08-20 Method and device for monitoring closed-loop control system, and closed-loop control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610093730.XA CN105629852B (zh) 2016-02-19 2016-02-19 一种闭环控制系统的监测装置、方法及闭环控制系统
CN201610093730.X 2016-02-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/104,960 Continuation US20180356785A1 (en) 2016-02-19 2018-08-20 Method and device for monitoring closed-loop control system, and closed-loop control system

Publications (1)

Publication Number Publication Date
WO2017140231A1 true WO2017140231A1 (zh) 2017-08-24

Family

ID=56044917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/073241 WO2017140231A1 (zh) 2016-02-19 2017-02-10 一种闭环控制系统的监测装置、方法及闭环控制系统

Country Status (3)

Country Link
US (1) US20180356785A1 (zh)
CN (2) CN108762315B (zh)
WO (1) WO2017140231A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111936205A (zh) * 2018-03-26 2020-11-13 医科达有限公司 放射治疗控制系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108762315B (zh) * 2016-02-19 2022-07-12 西安大医集团股份有限公司 一种闭环控制系统的监测装置、方法及闭环控制系统
CN108919735B (zh) * 2018-07-02 2019-10-25 北京无线电测量研究所 伺服系统安全保护方法
CN110568843A (zh) * 2019-08-19 2019-12-13 广东博智林机器人有限公司 移动作业设备的控制方法、控制装置
CN114185371A (zh) * 2021-11-23 2022-03-15 北京科技大学设计研究院有限公司 一种带钢卷跟踪的过跨车控制方法及其控制系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5610489A (en) * 1994-08-26 1997-03-11 Trinova Corporation Method and apparatus for machine control
CN102588133A (zh) * 2012-03-22 2012-07-18 潍柴动力股份有限公司 柴油机飞车的控制方法和控制系统
CN202765874U (zh) * 2012-09-21 2013-03-06 中国神华能源股份有限公司 运动机构的运动控制设备
CN103499932A (zh) * 2013-10-17 2014-01-08 北京经纬恒润科技有限公司 一种全闭环伺服控制方法、装置及系统
CN203824754U (zh) * 2014-03-25 2014-09-10 潍柴动力股份有限公司 一种发动机防飞车测试系统
CN105259856A (zh) * 2015-11-17 2016-01-20 中国神华能源股份有限公司 一种卸料小车飞车检测设备及方法
CN105629852A (zh) * 2016-02-19 2016-06-01 西安大医数码技术有限公司 一种闭环控制系统的监测装置、方法及闭环控制系统

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7191024B2 (en) * 2000-11-02 2007-03-13 Yamaha Coproration Remote control method and apparatus, remote controller, and apparatus and system based on such remote control
CN1246957C (zh) * 2003-07-29 2006-03-22 威盛电子股份有限公司 一种校正步进马达的控制方法及其相关装置
US7447293B2 (en) * 2005-03-15 2008-11-04 Kabushiki Kaisha Toshiba X-ray computer tomographic imaging apparatus and control method thereof
DE102008025596B4 (de) * 2008-05-28 2020-06-10 Robert Bosch Gmbh Verfahren zum Betrieb einer Einrichtung
CN102454071B (zh) * 2010-10-26 2014-07-02 北京大豪科技股份有限公司 伺服驱动器及刺绣系统
CN102128133A (zh) * 2011-04-28 2011-07-20 沈阳远大机电装备有限公司 兆瓦级风力发电机组变桨控制装置
CN102320457A (zh) * 2011-08-23 2012-01-18 北京纵横兴业科技发展有限公司 一种用于监控输煤系统的输煤皮带的智能监控系统
CN102328888B (zh) * 2011-09-15 2013-12-25 莱芜钢铁集团有限公司 液压伺服同步升降装置及其控制方法
US8955378B2 (en) * 2011-12-19 2015-02-17 Hunter Engineering, Inc. Wheel balance and force measurement procedure
JP6194583B2 (ja) * 2012-01-31 2017-09-13 株式会社リコー モータ制御装置、モータ制御方法、モータシステム、搬送装置及び画像形成装置
JP2013163439A (ja) * 2012-02-10 2013-08-22 Yamaha Motor Co Ltd 船外機の制御システム
CN102601863B (zh) * 2012-04-11 2015-04-08 三一汽车制造有限公司 搅拌筒转速控制系统以及混凝土搅拌车、混凝土搅拌泵车
JP6020061B2 (ja) * 2012-11-12 2016-11-02 トヨタ自動車株式会社 内燃機関の制御装置
FR2998924B1 (fr) * 2012-11-30 2014-11-21 IFP Energies Nouvelles Procede de commande d'un moteur thermique equipe d'une double suralimentation
CN103336484B (zh) * 2013-07-18 2015-12-09 浙江恒强科技股份有限公司 一种横机快速回转的安全控制方法
US9645213B2 (en) * 2014-02-14 2017-05-09 Ming-Chang Shih Device combining magnetic resonance imaging and positron emission tomography for breast examination
CN103940303B (zh) * 2014-04-03 2016-05-18 北京航天发射技术研究所 一种数控油缸的闭环累进控制的方法
JP6219776B2 (ja) * 2014-04-24 2017-10-25 ファナック株式会社 電動モータによって開閉されるドアを備えるドア開閉装置
CN104033432B (zh) * 2014-05-23 2017-06-13 北京航天发射技术研究所 数控油缸闭环控制系统及方法
CN104062965A (zh) * 2014-07-08 2014-09-24 武汉理工大学 船舶柴油机机旁监测控制系统
CN104868821B (zh) * 2014-08-29 2018-04-03 广东美的环境电器制造有限公司 单相感应电机的调速装置和调速方法
CN104967371A (zh) * 2015-04-15 2015-10-07 北京航空航天大学 一种具有实时故障监控能力的三轴旋转机构控制装置
CN104779875A (zh) * 2015-05-04 2015-07-15 奇瑞汽车股份有限公司 一种直流伺服电机闭环控制系统
CN104963809B (zh) * 2015-06-25 2017-11-21 北京天诚同创电气有限公司 风力发电机组的转速保护方法和系统
CN105060120A (zh) * 2015-08-12 2015-11-18 上海核工程研究设计院 装卸料机起升机构高低速轴传动比保护装置及方法
CN105288867B (zh) * 2015-10-21 2018-01-12 江苏海明医疗器械有限公司 一种放射治疗模拟机旋转运动机构精确控制系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5610489A (en) * 1994-08-26 1997-03-11 Trinova Corporation Method and apparatus for machine control
CN102588133A (zh) * 2012-03-22 2012-07-18 潍柴动力股份有限公司 柴油机飞车的控制方法和控制系统
CN202765874U (zh) * 2012-09-21 2013-03-06 中国神华能源股份有限公司 运动机构的运动控制设备
CN103499932A (zh) * 2013-10-17 2014-01-08 北京经纬恒润科技有限公司 一种全闭环伺服控制方法、装置及系统
CN203824754U (zh) * 2014-03-25 2014-09-10 潍柴动力股份有限公司 一种发动机防飞车测试系统
CN105259856A (zh) * 2015-11-17 2016-01-20 中国神华能源股份有限公司 一种卸料小车飞车检测设备及方法
CN105629852A (zh) * 2016-02-19 2016-06-01 西安大医数码技术有限公司 一种闭环控制系统的监测装置、方法及闭环控制系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111936205A (zh) * 2018-03-26 2020-11-13 医科达有限公司 放射治疗控制系统
CN111936205B (zh) * 2018-03-26 2024-02-09 医科达有限公司 放射治疗控制系统

Also Published As

Publication number Publication date
CN108762315A (zh) 2018-11-06
CN105629852A (zh) 2016-06-01
CN108762315B (zh) 2022-07-12
US20180356785A1 (en) 2018-12-13
CN105629852B (zh) 2018-07-17

Similar Documents

Publication Publication Date Title
WO2017140231A1 (zh) 一种闭环控制系统的监测装置、方法及闭环控制系统
US20170220091A1 (en) Power supply management device and machine tool having the power-supply management device
TWM543137U (zh) 刀具伺服控制系統
CN106933169B (zh) 一种锂电池极片轧机设备远程监控系统
US20130036864A1 (en) Method of operating a pivot drive
CN209335630U (zh) 一种基于工业机器人的无传感弹性碰撞装置
CN109577847A (zh) 一种电动卷帘门的限位设置方法及系统
CN104071523B (zh) 一种皮带传动纠偏方法、系统及装置
CN103323250A (zh) 模拟风力发电机组变桨系统现场运行的试验系统与方法
CN104723170A (zh) 一种数控转塔刀架的寻零位装置及其寻零位方法
JP2013000821A (ja) 圧縮機の切断装置および圧縮機の切断方法
CN102255592A (zh) 直流电机转动位置精确定位方法和相关定位装置
CN113894778B (zh) 一种用于灵巧手伺服系统及其故障检测、控制保护方法
CN103189641B (zh) 风力发电设备和用于风力发电设备的受控停机的方法
US20200103727A1 (en) Shutter device
CN114895631A (zh) 伺服驱动器、伺服系统及机器人
CN203326937U (zh) 一种具有编码器故障自诊断功能的伺服控制器
JP7377684B2 (ja) ロボットシステム
CN105983966B (zh) 机器手臂的控制装置及方法
CN205739512U (zh) 水泥生产线回转窑上带变频调速控制的下料装置
CN114699654B (zh) 一种加速器治疗床的控制系统及其故障判断方法
US20140110138A1 (en) Protective apparatus in connection with machine tools to safeguard workload installation
KR20160076986A (ko) 오버라이드를 토대로 하는 예견적인 속도 규제
TWM562749U (zh) 鎖固裝置
CN204565786U (zh) 一种数控转塔刀架寻零位装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17752663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17752663

Country of ref document: EP

Kind code of ref document: A1