WO2017138647A1 - 圧力検出装置とその製造方法 - Google Patents

圧力検出装置とその製造方法 Download PDF

Info

Publication number
WO2017138647A1
WO2017138647A1 PCT/JP2017/004968 JP2017004968W WO2017138647A1 WO 2017138647 A1 WO2017138647 A1 WO 2017138647A1 JP 2017004968 W JP2017004968 W JP 2017004968W WO 2017138647 A1 WO2017138647 A1 WO 2017138647A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
main surface
lead terminal
pressure
detection device
Prior art date
Application number
PCT/JP2017/004968
Other languages
English (en)
French (fr)
Inventor
小林 喜幸
慈裕 片岡
恵宏 上村
Original Assignee
日本電産トーソク株式会社
日本精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産トーソク株式会社, 日本精機株式会社 filed Critical 日本電産トーソク株式会社
Priority to US16/075,785 priority Critical patent/US10935448B2/en
Priority to DE112017000748.8T priority patent/DE112017000748T5/de
Priority to JP2017567015A priority patent/JPWO2017138647A1/ja
Priority to CN201790000569.5U priority patent/CN208635961U/zh
Publication of WO2017138647A1 publication Critical patent/WO2017138647A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • G01L9/0052Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
    • G01L9/0054Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements integral with a semiconducting diaphragm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • G01L19/0627Protection against aggressive medium in general
    • G01L19/0645Protection against aggressive medium in general using isolation membranes, specially adapted for protection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • G01L19/142Multiple part housings
    • G01L19/144Multiple part housings with dismountable parts, e.g. for maintenance purposes or for ensuring sterile conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/12Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor

Definitions

  • the present invention relates to a pressure detection device and a manufacturing method thereof.
  • Patent Document 1 discloses a metal base plate having a pressure introduction port, a pressure sensor that receives a fluid pressure via a pressure introduction port formed in the base plate, and a circuit connected to the pressure sensor via wire bonding. There is disclosed a pressure detection device that includes a substrate and a capacitor that is mounted on a circuit board and removes external noise that arrives at a semiconductor pressure sensor.
  • the pressure detection device disclosed in Patent Document 1 is mounted on a circuit board between a power electrode terminal and a ground electrode terminal, and between an output electrode terminal and a ground electrode terminal. A capacitor is connected. Therefore, this pressure detection device requires a circuit board, and the storage space and the number of parts increase accordingly, and the pressure detection device increases in size.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a small-sized pressure detection device having a small number of parts and a manufacturing method thereof.
  • the pressure detection device of the present invention comprises: A first main surface, a second main surface located behind the first main surface, and a through hole through which the fluid to be measured passes from the first main surface to the second main surface.
  • a base plate comprising: A pressure sensor that covers the through hole of the base plate and is disposed above the first main surface, and that outputs an electrical signal corresponding to the pressure of the fluid to be measured in the through hole; A lead terminal electrically connected to the pressure sensor;
  • a manufacturing method of a pressure detection device of the present invention includes: A first main surface, a second main surface located behind the first main surface, and a through hole through which the fluid to be measured passes from the first main surface to the second main surface.
  • a housing including a base plate including a lead terminal and a concave portion exposing a part of the lead terminal, and a capacitor housing portion communicating with the concave portion;
  • a pressure sensor that covers the through hole on the first main surface of the base plate and outputs an electric signal corresponding to the pressure of the fluid to be measured in the through hole is fixed upward, and the lead terminal and the pressure Electrically connecting the sensor; Inserting a capacitor main body of the capacitor into the capacitor accommodating portion, and placing the capacitor lead portion in the concave portion; and Connecting the lead portion and the lead terminal within the concave portion.
  • the capacitor accommodated in the capacitor accommodating portion is connected to the lead terminal held in the concave portion, a circuit board is not necessary, and thus a compact pressure detecting device constituted by a small number of parts and a method for manufacturing the same. Can be obtained.
  • FIG. 1 is a plan view of a pressure detection device according to an embodiment of the present invention.
  • FIG. 2 is a sectional view taken along the line II-II in FIG. It is the top view which removed the cover member of the pressure detection apparatus shown in FIG. It is a partial bottom view of a pressure detection device concerning one embodiment.
  • FIG. 5 is a partial cross-sectional view taken along line VV in FIG. 4. It is a fragmentary sectional view of the pressure detection apparatus concerning other one embodiments.
  • the pressure detection device 100 includes: i) a base plate 10 having a first main surface 11 and a second main surface 12 positioned on the back side of the first main surface 11 and having a through hole 13.
  • a pressure sensor 20 that is disposed on the first main surface 11 so as to cover the through hole 13 of the base plate 10 and outputs an electric signal corresponding to the pressure of the fluid to be measured in the through hole 13, and iii) the pressure
  • a lead terminal 30 that is electrically connected to the sensor 20, and iv) a housing 40 that holds the base plate 10 and the lead terminal 30, and includes a concave portion 41 in which a part of the lead terminal 30 is exposed, and v) a pressure sensor.
  • a capacitor 50 for protecting 20 from static electricity.
  • the housing 40 has a housing main body 43 formed in a substantially cylindrical shape located in the central portion, and protrudes obliquely from the central portion of the housing main body 43 to both sides, and is located on the outer side.
  • the housing body 43 includes a lid member 45.
  • reference numerals 41a and 42a are attached to one concave portion 41 and capacitor housing portion 42 on the left side of the drawing, and reference numerals 41b and 42b are attached to the other concave portion 41 and capacitor housing portion 42 on the right side of the drawing.
  • the housing 40 is made of an electrically insulating resin such as PPS (Poly Phenylene Sulfide) resin.
  • the housing 40 is integrally formed as a whole, including the concave portion 41 and the capacitor accommodating portion 42, the housing main body 43, and the fixing portion 44.
  • the housing main body 43 accommodates the base plate 10, the pressure sensor 20, and the lead terminal 30.
  • the concave portions 41 a and 41 b are respectively arranged in the direction of the central axis of the housing body 43 (from the first main surface 11 to the second main surface 12 of the base plate 10.
  • the lead terminal 30 accommodated in the housing body 43 and the lead portion 52 of the capacitor 50 are exposed. In this sense, the concave portion 41 functions as an exposed portion.
  • the capacitor accommodating portions 42 a and 42 b are formed in a concave shape and accommodate the capacitor main body 51 of the capacitor 50.
  • the concave portion of the capacitor housing portion 42 communicates with the opening of the concave portion 41.
  • the tip portion of the lead portion 52 of the capacitor 50 housed in the capacitor housing portion 42 is disposed in the concave portion 41 and exposed.
  • the capacitor accommodating portions 42 a and 42 b are configured to fix the mounted capacitor 50 by surrounding the periphery with a wall 48. Similar to the recessed portion 41, the capacitor accommodating portions 42 a and 42 b are opened in the central axis direction of the housing body 43 (the direction from the first main surface 11 to the second main surface 12 of the base plate 10).
  • condenser accommodating parts 42a and 42b can mount
  • the capacitor accommodating portions 42 a and 42 b are provided with a pair of protrusions 47 and 47 that are arranged at opposing positions and press the mounted capacitor 50.
  • the fixing portions 44 are disposed on both sides of the housing main body 43, and mounting holes are formed in each.
  • the fixing portion 44 is a portion for attaching the pressure detection device 100 to the detection target.
  • the fixed portion 44 is reinforced by attaching a metal collar 46 to the attachment hole.
  • the fixing portions 44 By disposing the fixing portions 44 on both sides of the housing main body 43, the fixing portions 44 can be attached to the outer peripheral portion of the disc-shaped object to be detected.
  • a base plate 10 and lead terminals 30 are insert-molded in the housing main body 43.
  • a metal collar 46 such as brass is insert-molded in the fixing portion 44.
  • the lid member 45 is for making the side of the housing body 43 opposite to the fluid to be measured (the first main surface 11 side of the base plate 10) airtight. .
  • the lid member 45 covers the back surface of the surface of the housing main body 43 that receives the pressure of the fluid to be measured, forms a sealed space, and this space serves as a pressure reference chamber PRR.
  • the lid member 45 is made of, for example, a resin such as PPS made of the same material as the housing 40.
  • the lid member 45 is fixed to the housing main body 43 by sealing the pressure reference chamber PRR, for example, by laser welding.
  • the base plate 10 is a metal member that supports the pressure sensor 20.
  • the base plate 10 is formed in a disc shape with a metal material such as 42 alloy, for example. As shown in FIG. 2, the base plate 10 includes a first main surface 11 and a second main surface 12 that is the back of the first main surface 11.
  • the base plate 10 includes a through hole (pressure inlet) 13 through which a fluid to be measured such as oil flows.
  • the base plate 10 is fixed to the housing 40 in an airtight state such that the outer peripheral portion is sandwiched between the housing main bodies 43 by insert molding, for example.
  • the base plate 10 supports the pressure sensor 20 and has sufficient strength so that no distortion occurs due to the pressure of the fluid to be measured.
  • the pressure sensor 20 is composed of a one-chip semiconductor pressure sensor. As shown in FIGS. 2 and 3, the pressure sensor 20 is configured by anodically bonding a silicon wafer on a glass pedestal (first insulating layer) 21.
  • the pressure sensor 20 includes a Whiston bridge circuit formed on a silicon substrate. The whiston bridge circuit converts a strain resistance caused by a change in the pressure of the silicon substrate into a voltage signal and outputs the voltage signal.
  • the pressure sensor 20 is supplied with power and output voltage by a lead terminal 30 described later.
  • the pressure sensor 20 is disposed on the first main surface 11 of the base plate 10 so as to cover the through hole 13 of the base plate 10.
  • the pedestal 21 of the pressure sensor 20 is airtightly fixed to the base plate 10 by die bonding.
  • the lead terminal 30 is hermetically insert-molded in the housing 40. As shown in FIG. 2, one end of the lead terminal 30 is electrically connected to the pressure sensor 20 in the housing body 43 by a wire 31, and the other end is connected to the lead terminal 30 as shown in FIG. 1, FIG. 2, FIG. It protrudes and is exposed to the concave portions 41 on both sides outside the housing main body 43.
  • the lead terminal 30 includes a power lead terminal 32, a ground lead terminal 33, and an output lead terminal 34.
  • the wire 31 that connects the pressure sensor 20 and the lead terminal 30 is made of, for example, an aluminum wire.
  • Each lead terminal 32, 33, 34 is made of, for example, Ni-plated phosphor bronze.
  • One concave portion 41a holds a part of the output lead terminal 34 and a part of the ground lead terminal 33 in an exposed state.
  • the other concave portion 41b holds a part of the power lead terminal 32 and a part of the ground lead terminal 33 in an exposed state.
  • a power supply voltage is applied to the power lead terminal 32, and the ground lead terminal 33 is grounded. Then, a constant voltage is applied to the pressure sensor 20, and the Whiston bridge circuit operates.
  • the whiston bridge circuit outputs to the output lead terminal 34 a voltage corresponding to the distortion of the substrate of the pressure sensor 20 due to the pressure of the fluid to be measured in the through hole 13.
  • the capacitor 50 is used to ensure the resistance against static electricity of the pressure sensor 20 of the pressure detection device 100.
  • the capacitor 50 is constituted by a chip capacitor, for example.
  • the capacitor 50 includes a capacitor body 51 and a lead part 52. As shown in FIG. 4, the capacitor 50 is formed (formed) so that two lead portions 52 extend from the capacitor body 51 and protrude in the longitudinal direction of the capacitor body 51.
  • the capacitor 50 is mounted and accommodated from the back side (measured fluid side) in the capacitor accommodation portions 42a and 42b of the housing 40.
  • the capacitor 50 is accommodated such that a part of the lead terminal 30 exposed in the concave portions 41a and 41b communicating with the capacitor accommodating portions 42a and 42b and the lead portion 52 are in contact with each other on the back side.
  • the capacitor body 51 is fixed by being surrounded by a wall 48 around the capacitor housing portions 42a and 42b.
  • the capacitor main body 51 is held down by protrusions 47 and 47 of the concave portions 41a and 41b and a wall 48 on the front side (anti-measurement fluid side) as shown in FIG. It is done.
  • the lead part 52 of the capacitor 50 and the lead terminals 32, 33, 34 are electrically joined by welding or the like at the concave parts 41a, 41b.
  • one and the other lead portions 52 of the capacitor 50 are connected to the output lead terminal 34 and the ground lead terminal 33, respectively.
  • the other concave portion 41b one and the other lead portions 52 of the capacitor 50 are connected to the power supply lead terminal 32 and the ground lead terminal 33, respectively.
  • the housing 40 can be made compact even if the capacitor 50 that secures a withstand voltage against external noise is provided, and the pressure detection device 100 itself can be downsized.
  • the pressure detection device 100 is disposed along a disc-shaped outer peripheral portion of a detection target such as a hydraulic pump.
  • the pressure detection device 100 is fixed by a bolt (not shown) inserted through the metal collar 46 of the fixing portion 44, so that the fluid to be measured acts on the through hole 13 of the base plate 10 via a sealing material (not shown). And fixed in a sealed state.
  • the pressure sensor 20 is distorted (deformed) according to the difference between the pressure of the fluid to be measured acting on the through-hole 13 and the pressure (reference pressure) of the fluid (atmosphere) in the pressure reference chamber PRR on the back side of the pressure sensor 20.
  • the resistance value of the bridge circuit changes and the output voltage changes. This change in output voltage is output to the output lead terminal 34 as a measurement signal. That is, the pressure sensor 20 outputs a voltage signal corresponding to the pressure of the fluid to be measured.
  • the base plate 10 and the lead terminal 30 are insert-molded to form the housing 40 including the concave portion 41, the capacitor housing portion 42, and the fixing portion 44.
  • the pressure sensor 20 is fixed above the pedestal 21.
  • the base 21 is fixed above the base plate 10. Note that the pressure sensor 20 may be bonded to the pedestal after the pedestal 21 is fixed to the base plate 10.
  • the pressure sensor 20 and the lead terminal 30 are electrically connected by a wire 31.
  • the capacitor main bodies 51 and 51 are inserted into the capacitor accommodating portions 42a and 42b from the openings on the back side.
  • the capacitor body 51 is fixed by the protrusions 47 and 47 and the wall 48.
  • the lead portion 52 of the capacitor 50 is inserted into the concave portions 41a and 41b.
  • the lead part 52 is fixed to the lead terminal 30 by welding, soldering or the like.
  • the lid member 45 is fixed to the housing body 43 in an airtight manner by laser welding. Note that the order of the above steps may be appropriately changed, and a plurality of steps may be executed in parallel.
  • the fixing portion 44 is fixed to the detection target with a bolt or the like.
  • the lead portion 52 extends from the capacitor body 51 and is formed (formed) linearly.
  • the present invention is not limited to the above embodiment.
  • the shape of the housing 40 is arbitrary.
  • the shape that is the object of the left and right line is illustrated, but the shape and arrangement of each part are arbitrary.
  • the shape of the concave portion 41 and the capacitor housing portion 42 is arbitrary as long as the capacitor 50 can be mounted from the outside.
  • the concave portion 41 is formed with a through hole in the above embodiment, but may be a concave portion opened on the lower surface instead of the through hole. Further, a plurality of through holes and recesses may be formed according to the number of lead parts 52 of the capacitor 50.
  • the present invention is not limited to this.
  • the configuration is arbitrary as long as the capacitor 50 can be mounted from the portion opened to the outside and the mounted capacitor 50 can be held.
  • FIG. 6 it is good also as a structure provided with a side wall and the front wall 49.
  • FIG. In the case of this configuration, the capacitor body 51 is inserted into the capacitor housing portion 42 from the back side of the housing 40.
  • the capacitor accommodating portion 42 does not need to have a size that can accommodate the entire capacitor body 51.
  • a size and a configuration for accommodating a part of the capacitor main body 51 may be used.
  • the method of fixing the capacitor main body 51 by the capacitor housing portion 42 is not limited to pressing force, fitting, etc., and is arbitrary.
  • the capacitor body 51 may be fixed to the capacitor housing portion 42 with an adhesive or the like.
  • the longitudinal direction of the capacitor body 51 and the longitudinal direction of the lead portion 52 are the same direction, the longitudinal direction of the capacitor body 51 and the longitudinal direction of the lead portion 52 may be orthogonal to each other.
  • the capacitor main body 51 may be arranged upright, and the lead portion 52 may be formed to extend in a horizontal direction orthogonal to the capacitor main body 51 via the bent portion 53. .
  • the concave portion 41 and the capacitor housing portion 42 can be made compact as much as the capacitor main body 51 is stood up and housed. Accordingly, it is possible to reduce the projected area when the pressure detection device 100A is attached to the detection target. Also with such a pressure detection device 100A, pressure can be detected and output as an electrical signal in the same manner as the pressure detection device 100 already described.
  • the concave portion 41 is disposed on the center side of the housing main body 43 with respect to the capacitor housing portion 42, the lead portion 52 of the capacitor 50 is the central portion side, and the capacitor main body 51 is the outer side (outer peripheral side) did.
  • the capacitor main body 51 and the lead part 52 of the capacitor 50 are arranged oppositely, the capacitor main body 51 is positioned on the center side, and the lead part 52 is arranged on the outer side (outer peripheral side). Also good. By doing so, joining operations such as welding of the lead terminals 32, 33, 34 and the lead portion 52 of the lead terminal 30 can be performed at the concave portion 41 at the end without being obstructed by the housing 40.
  • a power supply connector and an output connector can be installed at the end.
  • the pressure sensor 20 is not limited to a semiconductor type, and any known sensor can be used.
  • a method of fixing the pressure sensor 20 to the base plate 10 is also arbitrary.
  • a method of fixing the lid member 45 to the holder is also arbitrary.
  • the method of connecting the pressure sensor 20 and the lead terminal 30 is not limited to that using the wire 31 and is arbitrary.
  • the planar shape of the lead terminals 30 (32 to 34) is arbitrary as long as the lead terminals 30 (32 to 34) can be connected to the pressure sensor 20 and a part thereof is exposed at the concave portion 41.
  • the pressure detection device 100 includes the first main surface 11, the second main surface 12 located behind the first main surface 11, and the first main surface 11 to the second main surface 11.
  • a base plate 10 having a through-hole 13 that penetrates to the main surface 12 and through which the fluid to be measured flows; and is disposed above the first main surface 11 so as to cover the through-hole 13 of the base plate 10 and in the through-hole 13.
  • a pressure sensor 20 that outputs an electrical signal corresponding to the pressure of the fluid to be measured, a lead terminal 30 that is electrically connected to the pressure sensor 20, the base plate 10, and the lead terminal 30.
  • a capacitor 40 that protects the pressure sensor 20 from external noise.
  • the housing 40 includes a concave portion 41 that exposes the portion and a capacitor housing portion 42 that communicates with the concave portion 41. And the capacitor
  • the concave portion 41 is electrically connected to the lead terminal 30 by inserting the lead portion 52 of the capacitor 50 attached to the capacitor housing portion 42. That is, the capacitor 50 accommodated in the capacitor accommodating portion 42 is connected to the lead terminal 30 held in the concave portion 41. Therefore, the capacitor 50 can be provided without using a circuit board to ensure resistance to external noise, and the number of components can be reduced and the size can be reduced.
  • the lead terminal 30 and the capacitor 50 can be easily electrically connected by the concave portion 41. Further, the capacitor 50 can be easily mounted by mounting the capacitor 50 from the outside of the housing 40.
  • the lead terminal 30 extends to the outside of the base plate 10 in a direction away from the central axis extending in the direction penetrating the center of the through hole 13.
  • the concave portion 41 is located outside the base plate 10 and communicates with the capacitor housing portion 42. Therefore, by accommodating the capacitor 50 in the capacitor accommodating portion 42, the lead terminal 30 extending outward from the center portion of the base plate 10 and the capacitor 50 are electrically connected by the concave portion 41 communicating with the capacitor accommodating portion 42. Can connect.
  • the capacitor housing portion 42 and the concave portion 41 are open in the direction from the first main surface 11 toward the second main surface 12. Therefore, the capacitor 50 can be mounted or electrically connected to the lead terminal 30 from the opened first main surface 11 side or second main surface 12 side.
  • the capacitor 50 includes the capacitor main body 51 and the lead portion 52, and the capacitor main body 51 is installed so that the longitudinal direction of the capacitor main body 51 extends along the extension line of the lead terminal 30. . Therefore, the capacitor main body 51 and the lead portion 52 are linearly arranged, so that the thickness can be suppressed and the capacitor housing portion 42 can be accommodated, and the pressure detection device 100 can be thinned.
  • the capacitor body 51 is installed such that the longitudinal direction of the capacitor body 51 is orthogonal to the extension line of the lead terminal 30. Therefore, the total length of the capacitor main body 51 and the lead portion 52A can be suppressed, and the projection area when the pressure detection device 100 is attached to the measurement object can be reduced and the size can be reduced.
  • the housing 40 includes the lid member 45 that forms the sealed pressure reference chamber PRR that covers the back surface of the pressure sensor 20 that receives the pressure of the fluid to be measured. Therefore, the pressure change with respect to the reference pressure can be detected by the pressure reference chamber PRR.
  • the base plate 10 has been described as an example of a disk shape.
  • the shape thereof is arbitrary such as a quadrangle.
  • the base plate 10 and the housing 40 are not limited to a flat shape as long as the base plate 10 and the housing 40 can be in close contact with the object to be measured. You may enable it to compress a packing reliably.
  • the one-chip semiconductor type pressure sensor has been described as an example of the pressure sensor, the configuration of the pressure sensor is arbitrary, such as another type.
  • the present invention is capable of various embodiments and modifications without departing from the broad spirit and scope of the present invention. Further, the above-described embodiment is for explaining an example of the present invention, and does not limit the scope of the present invention. The said Example and modification can be combined arbitrarily. Further, even if a part of the configuration requirements of the embodiment is removed as necessary, it is within the scope of the technical idea of the present invention.
  • the present invention is suitable for a pressure detection device attached to a transmission mounted on a moving body such as an automobile, a motorcycle or a ship.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

圧力検出装置(100)は、第1の主面、第1の主面の裏に位置する第2の主面、および第1の主面から第2の主面まで貫通し被測定流体が流通する貫通孔を備えるベース板(10)と、ベース板(10)の貫通孔を覆って第1の主面の上方に配置され、貫通孔内の被測定流体の圧力に応じた電気信号を出力する圧力センサと、圧力センサに電気的に接続されるリード端子(30)と、ハウジング(40)と、リード端子(30)に電気的に接続されたコンデンサ(50)と、を有する。ハウジング(40)は、ベース板(10)およびリード端子(30)を保持し、リード端子(30)の一部を露出する凹状部(41)と、外部に開放された凹部を有し、コンデンサ(50)を収容するコンデンサ収容部(42)と、を備える。

Description

圧力検出装置とその製造方法
 本発明は、圧力検出装置とその製造方法に関する。
 気体、液体等の流体の圧力を測定するために、圧力検出装置が使用されている。特許文献1には、圧力導入口を備えた金属ベース板と、ベース板に形成されている圧力導入口を介して流体圧を受ける圧力センサと、圧力センサにワイヤボンディングを介して接続された回路基板と、回路基板に実装され、半導体式圧力センサに到来する外来ノイズを除去するコンデンサと、を備える圧力検出装置が開示されている。
特開2002-257663号公報
 特許文献1に開示されている圧力検出装置は、電源用の電極端子とグランド用の電極端子との間、及び出力用の電極端子とグランド用の電極端子との間にそれぞれ回路基板に実装されたコンデンサが接続されている。従って、この圧力検出装置は、回路基板が必要であり、その分だけ収納スペースや部品点数が増大し、圧力検出装置が大型化する。
 本発明は、このような実情に鑑みてなされたものであり、部品数が少なく、小型の圧力検出装置とその製造方法を提供することを目的とする。
 上記目的を達成するため、本発明の圧力検出装置は、
 第1の主面と、前記第1の主面の裏に位置する第2の主面と、前記第1の主面から前記第2の主面まで貫通し被測定流体が流通する貫通孔と、を備えるベース板と、
 前記ベース板の前記貫通孔を覆って前記第1の主面の上方に配置され、前記貫通孔内の前記被測定流体の圧力に応じた電気信号を出力する圧力センサと、
 前記圧力センサに電気的に接続されるリード端子と、
 前記ベース板および前記リード端子を保持し、前記リード端子の一部を露出する凹状部と、外部に開放された凹部を有し、コンデンサを収容するコンデンサ収容部と、を備えるハウジングと、
 前記ハウジングの前記コンデンサ収容部に収容され、前記リード端子に電気的に接続されたコンデンサと、を有する。
 上記目的を達成するため、本発明の圧力検出装置の製造方法は、
 第1の主面と、前記第1の主面の裏に位置する第2の主面と、前記第1の主面から前記第2の主面まで貫通し被測定流体が流通する貫通孔と、を備えるベース板と、リード端子と、がインサート成形され、前記リード端子の一部を露出する凹状部と、前記凹状部に連通するコンデンサ収容部とを備えるハウジングを成型する工程と、
 前記ベース板の前記第1の主面に前記貫通孔を覆って前記貫通孔内の前記被測定流体の圧力に応じた電気信号を出力する圧力センサを上方に固定すると共に前記リード端子と前記圧力センサとを電気的に接続する工程と、
 前記コンデンサ収容部にコンデンサのコンデンサ本体を挿入し、前記コンデンサのリード部を前記凹状部に配置する工程と、
 前記リード部と前記リード端子とを、前記凹状部内で接続する工程と、を有する。
 本発明によれば、コンデンサ収容部に収容されたコンデンサが、凹状部に保持されたリード端子に接続されるため回路基板が必要ないので、少ない部品から構成され小型の圧力検出装置とその製造方法を得ることができる。
本発明の一実施の形態に係る圧力検出装置の平面図である。 図1のII-II断面図である。 図1に示す圧力検出装置の、蓋部材を取り除いた平面図である。 一実施の形態に係る圧力検出装置の部分底面図である。 図4のV-V線での部分断面図である。 他の一実施の形態に係る圧力検出装置の部分断面図である。
 (実施の形態)
 以下、本発明を実施するための形態に係る圧力検出装置とその製造方法を、図1~図6を参照しながら説明する。
 本実施の形態の圧力検出装置100は、i)第1の主面11と第1の主面11の裏側に位置する第2の主面12とを有し、貫通孔13を備えるベース板10と、ii)ベース板10の貫通孔13を覆って第1の主面11に配置され、貫通孔13内の被測定流体の圧力に応じた電気信号を出力する圧力センサ20と、iii)圧力センサ20に電気的に接続されるリード端子30と、iv)ベース板10およびリード端子30を保持し、リード端子30の一部が露出される凹状部41を備えるハウジング40と、v)圧力センサ20を静電気から保護するコンデンサ50と、を備える。
 ハウジング40は、図1に示すように、中央部に位置する略円筒状に形成されたハウジング本体43と、ハウジング本体43の中央部から両側に斜めに突き出して外側に位置し、全体として略矩形の凹状部41およびコンデンサ収容部42と、ハウジング本体43の中央部から両側に突き出して外側に位置する固定部44とを備える。ハウジング本体43は、蓋部材45を備える。
 区別のため、図面左側の一方の凹状部41とコンデンサ収容部42に符号41aと42aを付し、図面右側の他方の凹状部41とコンデンサ収容部42に符号41bと42bを付す。
 ハウジング40は、例えばPPS(Poly Phenylene Sulfide)樹脂などの電気的に絶縁性を有する樹脂から形成されている。ハウジング40は、凹状部41およびコンデンサ収容部42と、ハウジング本体43と、固定部44とを含め、全体が一体に形成されている。
 ハウジング本体43は、ベース板10、圧力センサ20およびリード端子30を収納する。
 図1、図3、図4、図5に示すように、凹状部41a、41bは、それぞれ、ハウジング本体43の中心軸方向(ベース板10の第1の主面11から第2の主面12に向かう方向)に開口し、ハウジング本体43に収納されたリード端子30の一部とコンデンサ50のリード部52とを露出する。この意味で、凹状部41は露出部として機能する。
 図1、図3、図4、図5に示すように、コンデンサ収容部42a、42bは、凹状に形成され、コンデンサ50のコンデンサ本体51を収納する。コンデンサ収容部42の凹部は、凹状部41の開口に連通している。コンデンサ収容部42に収納されたコンデンサ50のリード部52の先端部分は、凹状部41に配置され、露出させる。コンデンサ収容部42a、42bは、周囲を壁48で囲むことで装着されたコンデンサ50を固定できるように構成されている。コンデンサ収容部42a、42bは、凹状部41と同様、ハウジング本体43の中心軸方向(ベース板10の第1の主面11から第2の主面12に向かう方向)に開口している。これにより、コンデンサ収容部42a、42bは、コンデンサ50を外側(裏側:第2の主面12側)から装着できる。コンデンサ収容部42a、42bは、図4に示すように、それぞれ、対向する位置に配置され、装着されたコンデンサ50を押圧する一対の突起47,47を備える。
 図1、図2、図3に示すように、固定部44は、ハウジング本体43の両側に配置され、それぞれに取付孔が形成されている。固定部44は、圧力検出装置100を被検出体に取り付けるための部分である。固定部44は、取付孔に金属製カラー46が取り付けられて補強されている。
 ハウジング本体43の両側に固定部44を配置することで、円板状の被検出体の外周部に固定部44を取り付けることができる。ハウジング本体43には、ベース板10、リード端子30がインサート成形されている。固定部44には、例えば黄銅などの金属製カラー46がインサート成形されている。
 図1、図2に示すように、蓋部材45は、ハウジング本体43の被測定流体側とは反対側(ベース板10の第1の主面11側)を気密状態にするためのものである。蓋部材45は、ハウジング本体43の圧力センサ20の被測定流体の圧力を受ける面の裏面を覆い、密閉された空間を形成して、その空間を圧力基準室PRRとする。蓋部材45は、例えばハウジング40と同一材料のPPSなどの樹脂から構成される。蓋部材45は、例えばレーザ溶着によってハウジング本体43に、圧力基準室PRRを封止して固定される。
 ベース板10は、圧力センサ20を支持する金属製の部材である。ベース板10は、例えば42アロイなどの金属材料で円板状に形成されている。ベース板10は、図2に示すように、第1の主面11と、第1の主面11の裏となる第2の主面12と、を有する。ベース板10は、油等の被測定流体が流通する貫通孔(圧力導入口)13を中心部に備えている。ベース板10は、例えばインサート成形によって外周部がハウジング本体43に挟まれるように気密状態でハウジング40に固定される。ベース板10は、圧力センサ20を支持し、被測定流体の圧力により歪みが発生しないように強度が確保されている。
 圧力センサ20は、ワンチップ化された半導体式圧力センサから構成されている。図2、図3に示すように、圧力センサ20は、ガラス製の台座(第1の絶縁層)21上にシリコンウエハを陽極接合して構成されている。圧力センサ20は、シリコン基板に形成されたホイストンブリッジ回路を備える。ホイストンブリッジ回路は、シリコン基板の圧力の変化による歪み抵抗を電圧信号に変換して出力する。圧力センサ20は、後述するリード端子30によって電源供給と電圧出力がなされる。圧力センサ20は、ベース板10の貫通孔13を覆ってベース板10の第1の主面11に配置されている。圧力センサ20の台座21は、ダイボンドによりベース板10に気密に固定されている。
 図2~図5に示すように、リード端子30は、ハウジング40に気密にインサート成形されている。図2に示すように、リード端子30は、一端がワイヤ31によってハウジング本体43内の圧力センサ20に電気的に接続され、図1、図2、図4、図5示すように、他端がハウジング本体43の外の両側の凹状部41に突出して露出している。リード端子30は、電源用リード端子32と、グランド用リード端子33と、出力用リード端子34と、を備える。圧力センサ20とリード端子30を接続するワイヤ31は、例えばアルミニウム製ワイヤから構成される。各リード端子32,33,34は、例えばNiメッキされたリン青銅などから構成される。
 一方の凹状部41aは、出力用リード端子34の一部とグランド用リード端子33の一部とを露出させた状態で保持している。他方の凹状部41bは、電源用リード端子32の一部とグランド用リード端子33の一部とを露出させた状態で保持している。電源用リード端子32に電源電圧が印加され、グランド用リード端子33が接地される。すると、定電圧が圧力センサ20に印加され、ホイストンブリッジ回路が動作する。ホイストンブリッジ回路は、貫通孔13内の被測定流体の圧力による圧力センサ20の基板の歪みに対応する電圧を出力用リード端子34に出力する。
 コンデンサ50は、圧力検出装置100の圧力センサ20の静電気に対する耐力を確保するためのものである。コンデンサ50は、例えばチップコンデンサで構成される。コンデンサ50は、コンデンサ本体51と、リード部52とを備える。図4に示すように、コンデンサ50は、コンデンサ本体51に2本のリード部52が延設されてコンデンサ本体51の長手方向に突き出すように形成(フォーミング)されている。
 コンデンサ50は、図4および図5に示すように、ハウジング40のコンデンサ収容部42a、42bに裏側(被測定流体側)から装着されて収容される。コンデンサ50は、コンデンサ収容部42a、42bに連通する凹状部41a、41bに露出されたリード端子30の一部とリード部52が裏側で接するように収容される。コンデンサ本体51は、コンデンサ収容部42a、42bの周囲の壁48に囲まれて固定される。
 ここでは、コンデンサ本体51は、図4に示すように、凹状部41a、41bの対向する突起47,47と、図5に示すように、表側(反被測定流体側)の壁48とで押さえられる。
 コンデンサ50のリード部52と各リード端子32,33,34とは、凹状部41a、41bで溶接などによって電気的に接合される。一方の凹状部41aでは、出力用リード端子34とグランド用リード端子33とに、それぞれ、コンデンサ50の一方と他方のリード部52が接続される。他方の凹状部41bでは、電源用リード端子32とグランド用リード端子33に、それぞれ、コンデンサ50の一方と他方のリード部52が接続される。これにより、圧力センサ20への静電気による耐力を確保する。
 圧力検出装置100では、ハウジング40にインサート成形で設けたリード端子30の一部を凹状部41に露出させ、露出したリード端子30にコンデンサ収容部42に収容したコンデンサ50のリード部52を配置して接続する。従って、これまでのように回路基板をハウジング40内に収納して回路基板を介してコンデンサ50を接合する必要がない。また、外来ノイズに対する耐圧を確保するコンデンサ50を設けてもハウジング40をコンパクトにすることができ、圧力検出装置100自体を小型化できる。
 圧力検出装置100は、例えば油圧ポンプなどの被検出体の円板状の外周部に沿って配置される。圧力検出装置100は、固定部44の金属製カラー46に挿通したボルト(図示せず)で固定され、被測定流体がベース板10の貫通孔13に作用するように、図示しないシール材を介して密封状態で固定される。貫通孔13に作用する被測定流体の圧力と、圧力センサ20の裏側の圧力基準室PRR内の流体(大気)の圧力(基準圧力)との差分に応じて圧力センサ20が歪み(変形し)、この歪み(変形)に応じてブリッジ回路の抵抗値が変化し、出力電圧が変化する。この出力電圧の変化が測定信号として出力用リード端子34に出力される。すなわち、圧力センサ20が被測定流体の圧力に対応する電圧信号を出力する。
 次に、上記構成を有する圧力検出装置100の製造方法を説明する。
 まず、ベース板10とリード端子30がインサート成型され、凹状部41、コンデンサ収容部42、固定部44を備えるハウジング40を形成する。台座21の上方に圧力センサ20を固定する。台座21をベース板10の上方に固定する。なお、台座21をベース板10に固定してから、圧力センサ20を台座にボンディングしてもよい。圧力センサ20とリード端子30をワイヤ31で電気的に接続する。
 裏側の開口から、コンデンサ収容部42a、42bに、コンデンサ本体51,51を挿入する。コンデンサ本体51は、突起47,47、壁48により固定される。また、コンデンサ50のリード部52を凹状部41a、41bに挿入する。リード部52をリード端子30に溶接、半田等で固定する。
 蓋部材45をレーザ溶着により気密にハウジング本体43に固定する。
 なお、上記工程の順番は適宜入れ替えても良く、複数の工程を並行して実行してもよい。
 固定部44をボルト等で被検出体に固定する。
 (変形例)
 上記の実施の形態では、リード部52は、コンデンサ本体51から延設され、直線状に形成(フォーミング)された。しかし、この発明は、上記実施の形態に限定されない。
 例えば、ハウジング40の形状は任意である。例えば、上記実施の形態では、図1に示すように左右線対象な形状を例示したが、各部の形状と配置は任意である。
 例えば、凹状部41とコンデンサ収容部42とは、コンデンサ50を外部から装着できれば、その形状は任意である。
 例えば、凹状部41は、上記実施の形態では、貫通穴が形成されていたが、貫通穴に代えて、下面に開口した凹部でもよい。また、貫通穴及び凹部は、コンデンサ50のリード部52の数にあわせて複数個形成されてもよい。
 また、コンデンサ収容部42として、裏面に壁48が存在する構成を例示したが、この発明はこれに限定されない。外部に開かれた部分を備え、そこからコンデンサ50を装着でき、装着されたコンデンサ50を保持できるならば、その構成は任意である。例えば、図6に示すように、側壁及び表壁49を備える構成としてもよい。この構成の場合、コンデンサ本体51は、ハウジング40の裏面側からコンデンサ収容部42に挿入される。
 コンデンサ収容部42は、コンデンサ本体51の全体を収容できるサイズを有する必要はない。コンデンサ本体51の一部を収容するサイズ及び構成でもよい。コンデンサ収容部42がコンデンサ本体51を固定する方法は押圧力、嵌合などに限定されず、任意である。例えば、接着剤等でコンデンサ本体51をコンデンサ収容部42に固定してもよい。
 また、コンデンサ本体51の長手方向とリード部52の長手方向を同一方向としたが、コンデンサ本体51の長手方向とリード部52の長手方向とが直交するようにしてもよい。例えば、図6に示すように、コンデンサ本体51を直立して配置し、リード部52を、折り曲げ部53を介してコンデンサ本体51とは直交する水平方向に延在するように形成してもよい。
 この構成により、凹状部41およびコンデンサ収容部42は、コンデンサ本体51を直立させて収納する分だけコンパクトにできる。従って、圧力検出装置100Aの被検出体への取り付けの際の投影面積を小さくできる。
 このような圧力検出装置100Aによっても、既に説明した圧力検出装置100と同様にして圧力を検出し、電気信号として出力できる。
 圧力検出装置100では、コンデンサ収容部42に対して凹状部41をハウジング本体43の中心部側に配置し、コンデンサ50のリード部52を中心部側とし、コンデンサ本体51を外側(外周側)とした。しかし、圧力検出装置100では、コンデンサ50のコンデンサ本体51とリード部52とを反対に配置して、中心部側にコンデンサ本体51を位置させ、リード部52を外側(外周側)に配置しても良い。こうすることで、リード端子30の各リード端子32,33,34とリード部52との溶接などの接合作業をハウジング40に邪魔されることなく端部の凹状部41で行うことができる。また、電源供給用や出力用のコネクタなども端部に設置できる。
 圧力センサ20は、半導体式に限定されず、公知の任意のものを使用可能である。圧力センサ20をベース板10に固定する手法も任意である。圧力基準室PRRを形成できれば、蓋部材45をホルダに固定する方法も任意である。圧力センサ20とリード端子30を接続する手法も、ワイヤ31を用いるものに限定されず任意である。リード端子30(32~34)の平面形状は、圧力センサ20と接続でき、凹状部41で一部が露出されるならば、任意である。
 以上、説明したように、圧力検出装置100は、第1の主面11と、第1の主面11の裏に位置する第2の主面12と、第1の主面11から第2の主面12まで貫通し被測定流体が流通する貫通孔13と、を備えるベース板10と、ベース板10の貫通孔13を覆って第1の主面11の上方に配置され、貫通孔13内の被測定流体の圧力に応じた電気信号を出力する圧力センサ20と、圧力センサ20に電気的に接続されるリード端子30と、ベース板10およびリード端子30を保持し、リード端子30の一部を露出する凹状部41と凹状部41に連通したコンデンサ収容部42とを備えるハウジング40と、圧力センサ20を外来ノイズから保護するコンデンサ50と、を有している。そして、コンデンサ収容部42は、外部に開口しており、コンデンサ50を外側から装着できる。凹状部41は、コンデンサ収容部42に装着されたコンデンサ50のリード部52が挿入され、リード端子30に電気的に接続される。つまり、コンデンサ収容部42に収容されたコンデンサ50が、凹状部41に保持されたリード端子30に接続される。従って、回路基板を用いることなくコンデンサ50を設けて外来ノイズに対する耐力を確保でき、部品点数を減らし、小型化できる。また、リード端子30とコンデンサ50とを凹状部41で簡単に電気的に接続できる。また、コンデンサ50をハウジング40の外側から装着することで、コンデンサ50の装着も簡単にできる。
 上述した圧力検出装置100によれば、リード端子30は、貫通孔13の中心を貫通する方向に延びる中心軸から離れる方向に向かって、ベース板10の外側に延びている。凹状部41は、ベース板10の外に位置するとともに、コンデンサ収容部42に連通している。従って、コンデンサ収容部42にコンデンサ50を収容することで、ベース板10の中心部から外側に向かって延びるリード端子30とコンデンサ50とをコンデンサ収容部42に連通する凹状部41で、電気的に接続できる。
 上述した圧力検出装置100によれば、コンデンサ収容部42および凹状部41は、第1の主面11から第2の主面12に向かう方向に開口している。従って、開口している第1の主面11側や第2の主面12側からコンデンサ50を装着したり、リード端子30と電気的に接続できる。
 上述した圧力検出装置100によれば、コンデンサ50は、コンデンサ本体51とリード部52とを備え、コンデンサ本体51は、コンデンサ本体51の長手方向がリード端子30の延長線に沿うように設置される。従って、コンデンサ本体51とリード部52とが直線状に配置されることで、厚みを抑えてコンデンサ収容部42に収容でき、圧力検出装置100を薄くできる。
 本発明の圧力検出装置100Aによれば、コンデンサ本体51は、コンデンサ本体51の長手方向がリード端子30の延長線に直交するように設置されている。従って、コンデンサ本体51とリード部52Aの全長を抑えることができ、圧力検出装置100を被測定体に取り付ける場合の投影面積を抑えてコンパクトにできる。
 本発明の圧力検出装置100によれば、ハウジング40は、圧力センサ20の被測定流体の圧力を受ける面の裏面を覆う密閉された圧力基準室PRRを形成する蓋部材45を備えている。従って、圧力基準室PRRによって基準圧力に対する圧力変化を検出できる。
 また、上記実施の形態では、ベース板10として、円板状の場合を例に説明した。しかし、圧力センサ20を安定して支持することができれば、その形状は四角形など任意である。また、ベース板10やハウジング40は、被測定体に密着できる形状であれば、平面状に限らず、ベース板10とハウジング40との間に段差を設けて被測定体との間に装着するパッキンを確実に圧縮できるようにしてもよい。また、圧力センサとしてワンチップ半導体式の圧力センサを例に説明したが、圧力センサの構成は他の形式など任意である。
 なお、本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされているものである。また、上述した実施形態は、本発明の一実施例を説明するためのものであり、本発明の範囲を限定するものではない。上記実施例及び変形例は任意に組み合わせることができる。さらに、必要に応じて実施形態の構成要件の一部を除いても本発明の技術的思想の範囲内となる。
 本出願は、2016年2月10日に出願された日本国特許出願2016-023709号に基づく。本明細書中に日本国特許出願2016-023709号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。
 本発明は、自動車やオートバイ、船舶などの移動体に搭載される変速装置などに取り付けられる圧力検出装置に好適である。
100  圧力検出装置
100A 圧力検出装置
10   ベース板
11   第1の主面
12   第2の主面
13   貫通孔
20   圧力センサ
21   台座
30   リード端子
31   ワイヤ
32   電源用リード端子
33   グランド用リード端子
34   出力用リード端子
40   ハウジング
41(42a,41b)   凹状部
42(42a,42b)   コンデンサ収容部
43   ハウジング本体
44   固定部
45   蓋部材
46   金属製カラー
47   突起
48   壁
50   コンデンサ
51   コンデンサ本体
52   リード部
52A  リード部
53   折り曲げ部
PRR  圧力基準室

Claims (7)

  1.  第1の主面と、前記第1の主面の裏に位置する第2の主面と、前記第1の主面から前記第2の主面まで貫通し被測定流体が流通する貫通孔と、を備えるベース板と、
     前記ベース板の前記貫通孔を覆って前記第1の主面の上方に配置され、前記貫通孔内の前記被測定流体の圧力に応じた電気信号を出力する圧力センサと、
     前記圧力センサに電気的に接続されるリード端子と、
     前記ベース板および前記リード端子を保持し、前記リード端子の一部を露出する凹状部と、外部に開放された凹部を有し、コンデンサを収容するコンデンサ収容部と、を備えるハウジングと、
     前記ハウジングの前記コンデンサ収容部に収容され、前記リード端子に電気的に接続されたコンデンサと、を有する、
     ことを特徴とする圧力検出装置。
  2.  前記リード端子は、前記貫通孔の中心を貫通する方向に延びる中心軸から離れる方向に向かって、前記ベース板の外側に延び、
     前記凹状部は、前記ベース板の外に位置するとともに、前記コンデンサ収容部に連通している、
     ことを特徴とする請求項1に記載の圧力検出装置。
  3.  前記コンデンサ収容部および前記凹状部は、前記第1の主面から前記第2の主面に向かう方向に開口している、
     ことを特徴とする請求項1又は2に記載の圧力検出装置。
  4.  前記コンデンサは、コンデンサ本体とリード部とを備え、
     前記コンデンサ本体は、前記コンデンサ本体の長手方向が前記リード端子の延長線に沿うように設置される、
     ことを特徴とする請求項1から3のいずれか1項に記載の圧力検出装置。
  5.  前記コンデンサは、コンデンサ本体とリード部とを備え、
     前記コンデンサ本体は、前記コンデンサ本体の長手方向が前記リード端子の延長線に直交するように設置される、
     ことを特徴とする請求項1から3のいずれか1項に記載の圧力検出装置。
  6.  前記ハウジングは、前記圧力センサを収容する圧力基準室を形成する蓋部材を備える、
     ことを特徴とする請求項1から5のいずれか1項に記載の圧力検出装置。
  7.  第1の主面と、前記第1の主面の裏に位置する第2の主面と、前記第1の主面から前記第2の主面まで貫通し被測定流体が流通する貫通孔と、を備えるベース板と、リード端子と、がインサート成形され、前記リード端子の一部を露出する凹状部と、前記凹状部に連通するコンデンサ収容部とを備えるハウジングを成型する工程と、
     前記ベース板の前記第1の主面に前記貫通孔を覆って前記貫通孔内の前記被測定流体の圧力に応じた電気信号を出力する圧力センサを上方に固定すると共に前記リード端子と前記圧力センサとを電気的に接続する工程と、
     前記コンデンサ収容部にコンデンサのコンデンサ本体を挿入し、前記コンデンサのリード部を前記凹状部に配置する工程と、
     前記リード部と前記リード端子とを、前記凹状部内で接続する工程と、を有する、
     ことを特徴とする圧力検出装置の製造方法。
PCT/JP2017/004968 2016-02-10 2017-02-10 圧力検出装置とその製造方法 WO2017138647A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/075,785 US10935448B2 (en) 2016-02-10 2017-02-10 Pressure detection device with improved external noise measurement reduction
DE112017000748.8T DE112017000748T5 (de) 2016-02-10 2017-02-10 Druck-Erfassungsvorrichtung und Verfahren zum Herstellen einer solchen
JP2017567015A JPWO2017138647A1 (ja) 2016-02-10 2017-02-10 圧力検出装置とその製造方法
CN201790000569.5U CN208635961U (zh) 2016-02-10 2017-02-10 压力检测装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-023709 2016-02-10
JP2016023709 2016-02-10

Publications (1)

Publication Number Publication Date
WO2017138647A1 true WO2017138647A1 (ja) 2017-08-17

Family

ID=59563039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004968 WO2017138647A1 (ja) 2016-02-10 2017-02-10 圧力検出装置とその製造方法

Country Status (5)

Country Link
US (1) US10935448B2 (ja)
JP (1) JPWO2017138647A1 (ja)
CN (1) CN208635961U (ja)
DE (1) DE112017000748T5 (ja)
WO (1) WO2017138647A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022102212A1 (ja) * 2020-11-13 2022-05-19 株式会社鷺宮製作所 センサユニットおよび圧力センサユニット並びに圧力検出装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7327247B2 (ja) * 2020-03-31 2023-08-16 株式会社デンソー 蒸発燃料漏れ検査装置の圧力センサ
US11674862B2 (en) * 2021-04-19 2023-06-13 Pixart Imaging Inc. Input device including improved pressure sensing unit design

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005265667A (ja) * 2004-03-19 2005-09-29 Denso Corp 圧力センサおよびその製造方法
JP2007501937A (ja) * 2004-03-12 2007-02-01 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング センサモジュール
JP2011033531A (ja) * 2009-08-04 2011-02-17 Mitsubishi Electric Corp 温度センサ一体型圧力センサ装置
JP2011510276A (ja) * 2008-01-18 2011-03-31 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 圧力センサモジュール
JP2014211391A (ja) * 2013-04-19 2014-11-13 日本精機株式会社 圧力検出装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6053049A (en) * 1997-05-30 2000-04-25 Motorola Inc. Electrical device having atmospheric isolation
JP3438879B2 (ja) 2001-02-28 2003-08-18 日本精機株式会社 圧力検出装置
JP6214487B2 (ja) 2014-07-18 2017-10-18 株式会社鷺宮製作所 電動弁

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007501937A (ja) * 2004-03-12 2007-02-01 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング センサモジュール
JP2005265667A (ja) * 2004-03-19 2005-09-29 Denso Corp 圧力センサおよびその製造方法
JP2011510276A (ja) * 2008-01-18 2011-03-31 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 圧力センサモジュール
JP2011033531A (ja) * 2009-08-04 2011-02-17 Mitsubishi Electric Corp 温度センサ一体型圧力センサ装置
JP2014211391A (ja) * 2013-04-19 2014-11-13 日本精機株式会社 圧力検出装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022102212A1 (ja) * 2020-11-13 2022-05-19 株式会社鷺宮製作所 センサユニットおよび圧力センサユニット並びに圧力検出装置
JP2022078498A (ja) * 2020-11-13 2022-05-25 株式会社鷺宮製作所 センサユニットおよび圧力センサユニット並びに圧力検出装置
JP7360375B2 (ja) 2020-11-13 2023-10-12 株式会社鷺宮製作所 センサユニットおよび圧力センサユニット並びに圧力検出装置

Also Published As

Publication number Publication date
DE112017000748T5 (de) 2018-10-18
CN208635961U (zh) 2019-03-22
US10935448B2 (en) 2021-03-02
US20190064025A1 (en) 2019-02-28
JPWO2017138647A1 (ja) 2018-11-29

Similar Documents

Publication Publication Date Title
JP5972850B2 (ja) 物理量測定センサ
KR101236678B1 (ko) 압력 센서 장치
RU2279650C2 (ru) Модуль с датчиком давления
US7036385B2 (en) Pressure sensor and related method
KR19990082707A (ko) 압력센서
RU2324158C2 (ru) Устройство для измерения давления
EP3128305B1 (en) A hermetic pressure sensor
JP2005098976A (ja) 圧力センサ装置
WO2017138647A1 (ja) 圧力検出装置とその製造方法
US6678164B2 (en) Pressure sensor and method for manufacturing the same
US10260979B2 (en) Pressure detection unit, pressure sensor using the same, and method of manufacturing pressure detection unit
CN105547576A (zh) 介质隔离式压力传感器封装结构
KR20050079215A (ko) 압력반응 금속다이아프램을 구비한 압력센서
JP6500691B2 (ja) 物理量センサ装置および物理量センサ装置の製造方法
JP5050392B2 (ja) 圧力センサ
US20150369684A1 (en) Pressure Sensors Having Low Cost, Small, Universal Packaging
JP5278448B2 (ja) 圧力センサ装置
CN113108831A (zh) 传感器
JP2006208087A (ja) 圧力センサ
JP6471118B2 (ja) 圧力検出装置、および圧力検出装置を格納した電動油圧ポンプ
JP4622666B2 (ja) 電子装置
JP2002098552A (ja) センサ装置
JP4442399B2 (ja) 圧力センサおよびその組み付け構造
JP4155204B2 (ja) 圧力センサ
JP3617441B2 (ja) センサ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750368

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017567015

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 112017000748

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17750368

Country of ref document: EP

Kind code of ref document: A1