WO2017138542A1 - 振動センサー、振動測定方法および振動センサー作製用キット - Google Patents

振動センサー、振動測定方法および振動センサー作製用キット Download PDF

Info

Publication number
WO2017138542A1
WO2017138542A1 PCT/JP2017/004471 JP2017004471W WO2017138542A1 WO 2017138542 A1 WO2017138542 A1 WO 2017138542A1 JP 2017004471 W JP2017004471 W JP 2017004471W WO 2017138542 A1 WO2017138542 A1 WO 2017138542A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
piezoelectric element
layer
vibration sensor
vibrating body
Prior art date
Application number
PCT/JP2017/004471
Other languages
English (en)
French (fr)
Inventor
米田 哲也
康 油谷
泰央 市川
佳郎 田實
Original Assignee
日本バルカー工業株式会社
学校法人関西大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本バルカー工業株式会社, 学校法人関西大学 filed Critical 日本バルカー工業株式会社
Priority to JP2017566965A priority Critical patent/JP6783255B2/ja
Publication of WO2017138542A1 publication Critical patent/WO2017138542A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • G01H11/08Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions

Definitions

  • the present invention relates to a vibration sensor, a vibration measurement method, and a vibration sensor manufacturing kit.
  • vibrations of parts where vibrations such as piping and rotating parts can occur have been measured.
  • a vibration sensor including a piezoelectric element is used in view of relatively simple measurement and little secular change.
  • a vibration sensor including a piezoelectric element such as a single crystal of crystal or barium titanate and a weight has been developed. Specifically, vibration is generated by applying a compressive force to the piezoelectric element.
  • a compression type vibration sensor for measuring and a shear type vibration sensor for measuring vibration by applying a shearing force to the piezoelectric element have been developed.
  • Patent Document 1 discloses a membrane vibration sensor in which a weight is bonded to a polymer piezoelectric film.
  • the vibration sensor In the vibration sensor, a compression force or a shearing force is applied to the piezoelectric element by the vibration of the weight included in the sensor, and the vibration is detected.
  • these sensors require weights, which increases the mass of the sensor and increases the size of the sensor.
  • the sensor mass increases, the sensor mass is added to the vibrating body, and the natural vibration frequency of the vibrating body tends to be reduced, so that the vibration information inherent to the vibrating body tends not to be obtained, and the sensor size increases. Then, there existed problems, such as being unable to install a sensor in desired places, such as a narrow part.
  • one surface of the piezoelectric element is brought into contact with a vibrating body, and the other surface is brought into contact with a non-vibrating body such as the ground, thereby generating a charge in the piezoelectric element and detecting vibration.
  • a vibration sensor is also considered, such a vibration sensor has a problem that a place where the vibration sensor can be installed is limited and the sensor size is increased.
  • a vibration sensor that can be easily installed on the surface of a vibrating body such as a pipe or a rotating system component and can detect the vibration state of the vibrating body without using a weight. With the goal.
  • a configuration example of the present invention is as follows.
  • a vibration transmitting body fixed to the vibrating body A vibration detection laminate that is a laminate of a piezoelectric element layer and a vibration absorption layer; The vibration detection laminate is configured so that vibration of the vibration body is suppressed by the vibration absorption layer on one surface of the piezoelectric element layer and transmitted by a vibration transmission body on the other surface of the piezoelectric element layer.
  • a vibration sensor that detects the vibration of a vibrating body.
  • the vibration absorbing layer includes any one of a layer made of gel, a layer made of natural rubber, a layer made of synthetic rubber, a layer made of elastomer, a resin foam, a woven fabric or a non-woven fabric made of a fiber material, The vibration sensor according to [1] or [2].
  • the piezoelectric element layer includes a nonwoven fabric or a woven fabric made of fiber,
  • the polymer is polytetrafluoroethylene.
  • the ratio Z1 / Z2 of the acoustic impedance (Z1) of the material of the vibration member surface in contact with the vibration transmission member to the acoustic impedance (Z2) of the material of the vibration transmission member is 0.2 to 5.0
  • a vibration measurement method for detecting vibration of a vibrating body by installing the vibration sensor according to any one of [1] to [8] on the surface of the vibrating body.
  • a vibration measurement method for detecting vibration of a vibration body by installing a vibration sensor obtained from the vibration sensor manufacturing kit according to [10] on the surface of the vibration body.
  • the present invention can be easily installed on the surface of a vibrating body such as a pipe or a rotating system component, and the vibration state of the vibrating body can be easily detected without using a weight.
  • a vibrating body such as a pipe or a rotating system component
  • mounting and handling are simple, light weight and downsizing are possible, and even if the desired location such as a narrow portion, particularly the vibrating body surface is a curved surface or the like. It can be easily installed, and the vibration of the vibrating body can be easily detected.
  • FIG. 1 is a schematic cross-sectional view of a vibration sensor according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a vibration sensor according to an embodiment of the present invention.
  • a vibration sensor 10 is a vibration sensor that detects vibration of the vibrating body 5, and includes a vibration transmitting body 3 that is fixed to the vibrating body 5, a piezoelectric element layer 2, and a vibration absorbing layer 1.
  • a vibration detecting laminated body that is a laminated body, and vibration of the vibrating body 5 is suppressed by the vibration absorbing layer 1 on one surface of the piezoelectric element layer 2, and on the other surface of the piezoelectric element layer 2, This is a vibration sensor having the vibration detection laminate so as to be transmitted by the vibration transmission body 3.
  • vibration of the vibrating body is suppressed by the vibration absorbing layer on one surface of the piezoelectric element layer in place of contact with a conventionally used weight or non-vibrating body (eg, ground). Since the vibration of the vibrating body is transmitted to the other surface by the vibration transmitting body, a compressive force or a shearing force can be applied to the piezoelectric element layer, so that electric charges are generated in the piezoelectric element layer due to the vibration of the vibrating body. By measuring this amount of charge, the presence or absence of vibration, the magnitude of vibration, etc. can be detected.
  • a conventionally used weight or non-vibrating body eg, ground
  • vibration sensor which is an embodiment of the present invention
  • mounting and handling are simple, light weight and downsizing are possible, and a desired place such as a narrow portion, in particular, a vibrating body surface is curved. Even if it is, etc., it can be easily installed, and vibration can be easily detected even when dimensional deformation of the vibrating body itself (eg, change in the diameter of the pipe) does not occur.
  • the vibration sensor according to an embodiment of the present invention is not particularly limited as long as it has a vibration transmission body and a vibration detection laminate, and may include a conventionally known layer, member, or the like.
  • the member include a charge transmission unit that transmits a charge generated in the piezoelectric element layer, and an amplifier that amplifies the charge transmitted by the charge transmission unit and outputs a voltage signal.
  • the vibration sensor according to an embodiment of the present invention is used by being attached to a part of the surface of the vibrating body.
  • the vibration sensor according to the embodiment of the present invention may be wound and used so as to cover the outer periphery thereof.
  • the vibration sensor according to one embodiment of the present invention may be configured such that after the vibration detection laminated body is accommodated in the vibration transmitting body, the obtained sensor may be attached to the vibration body, or the vibration detection laminated body is attached to the vibration body. Thereafter, a vibration transmission body may be attached to the vibration body so as to cover the vibration detection laminated body. For example, after attaching the vibration absorber to the vibration body, a piezoelectric element layer is attached thereon, and then obtained. You may attach a vibration transmission body to a vibration body so that a vibration detection laminated body may be covered.
  • a vibration sensor includes a vibration detection laminate that is a laminate of a piezoelectric element layer and a vibration absorption layer.
  • the vibration detection laminated body is arranged such that vibration of the vibration body is suppressed by the vibration absorption layer on one surface of the piezoelectric element layer and transmitted by the vibration transmission body on the other surface of the piezoelectric element layer.
  • the vibration absorbing layer 1 is disposed on the vibration member 5 side and the piezoelectric element layer 2 is disposed between the vibration absorbing layer 1 and the vibration transmitting member 3 as shown in FIG. As shown in FIG.
  • the piezoelectric element layer 2 is disposed on the vibrating body 5 side via the vibration transmitting body 3, and the vibration absorbing layer 1 is disposed on the opposite side of the piezoelectric element layer 2 from the vibrating body 5 side.
  • the vibration detection laminate may be disposed in an accommodation space formed between the vibration transmission body and the vibration body or in the accommodation space when the vibration transmission body has an accommodation space inside. Even if the vibration detection surface has a high curved surface or a complicated structure, it is possible to manufacture a vibration sensor having an arbitrary shape following the vibration surface. On the other hand, it is possible to install the vibration sensor according to an embodiment of the present invention by a simple method such as winding or pasting without any special effort.
  • the vibration sensor Since the direction of the polarization axis (the direction corresponding to the piezoelectric constant d33) is substantially the same, it is easy to install the vibration sensor according to the embodiment of the present invention. It is preferable that the absorption layer 1 is disposed, and the piezoelectric element layer 2 is disposed between the vibration absorption layer 1 and the vibration transmission body 3. In addition, the vibration detection laminated body is disposed in the accommodation space inside the vibration transmitting body from the viewpoint of easy installation on the vibration body and prevention of damage to the vibration detection laminate upon installation on the surface of the vibration body. It is preferable.
  • the vibration detection laminate is not particularly limited including a piezoelectric element and a vibration absorber, and may include a conventionally known layer such as an adhesive layer.
  • the vibration of the vibrating body is suppressed by the vibration absorbing layer on one surface of the piezoelectric element layer, and transmitted by the vibration transmitting body on the other surface of the piezoelectric element layer.
  • the vibration detection laminate since the vibration detection laminate is provided, the vibration of the vibration body needs to be reliably transmitted to one surface of the piezoelectric element layer. For this reason, when the piezoelectric element layer exists on the vibration transmitting body side as shown in FIG.
  • the piezoelectric element layer and the vibration transmitting body may always be in contact with each other, for example, in a state of being bonded with an adhesive layer or the like.
  • the piezoelectric element layer and the vibrating body have a vibration transmitting body in between and are always in contact with each other, for example, in an adhesive layer.
  • the piezoelectric element layer and the vibration absorbing layer are always in contact with each other, for example, in a state of being bonded by an adhesive layer or the like.
  • the vibration detection laminated body has one surface of the laminated body in contact with the vibrating body 5 (via an adhesive layer or the like), and the side of the laminated body in contact with the vibrating body 5 It is preferable that the surface on the opposite side is in contact with the vibration transmission body 3 (via an adhesive layer or the like), and that the other surface than the two surfaces of the laminate is not in contact with the vibration transmission body 3. This is preferable from the standpoint that vibration of the vibrating body 5 can be detected more accurately.
  • the vibration absorbing layer is not particularly limited as long as it can absorb part or all of the vibration of the vibrating body, and is preferably a layer that can shield vibration transmission, and is preferably a layer made of a vibration-proof material.
  • the vibration transmissibility of the vibration absorbing layer is preferably 1 or less, more preferably 0.5 or less, from the viewpoint of obtaining a vibration sensor with higher vibration detection capability.
  • the vibration transmissibility is defined as an output voltage when the vibration of the vibrating body is directly measured by the acceleration sensor as V 0, and an output voltage when measured through the vibration absorbing layer between the vibrating body and the acceleration sensor as V. when a value calculated by V / V 0.
  • the loss coefficient measured in accordance with JIS K 7244-1 of the vibration absorbing layer is preferably 0.2 or more, more preferably from the viewpoint of obtaining a vibration sensor with higher vibration detection capability. Is 0.3 or more.
  • the vibration absorbing layer is a layer made of an acrylic, urethane, or silicone gel; a layer made of natural rubber; a layer made of synthetic rubber such as butyl rubber or silicone rubber; a layer made of elastomer; Resin foams obtained by foaming polypropylene, polyethylene, polycarbonate, etc .; woven fabrics or non-woven fabrics made of fiber materials such as synthetic fibers, semi-synthetic fibers, regenerated fibers, natural fibers, etc.
  • a layer made of gel is preferable, and silicone gel is preferable particularly when vibration of a vibrating body at a high temperature (about 100 ° C. or higher) is to be measured.
  • the vibration-absorbing layer is a layer comprising two or more kinds of a layer made of gel, a layer made of natural rubber, a layer made of synthetic rubber, a layer made of elastomer, a resin foam, a woven fabric or a non-woven fabric made of a fiber material, and the like. There may be.
  • the thickness of the vibration absorbing layer may be appropriately selected according to the desired application, and is not particularly limited as long as it can absorb even a part of the vibration of the vibrating body, but is preferably 0.01 to 10 mm, lightweight and small. In view of obtaining a vibration sensor, the thickness is more preferably 0.1 to 2 mm.
  • the piezoelectric element layer is not particularly limited as long as it includes a piezoelectric element, and may include a conventionally known layer. Specifically, on both sides of the piezoelectric element, an electrode layer, a surface smoothing layer, a protective layer, A laminate in which an insulating layer, an adhesive layer, and the like are present can be given.
  • the shape and size of the piezoelectric element layer are not particularly limited as long as vibration of the vibrating body can be detected.
  • the piezoelectric element layer 2 is disposed so as to contact the vibration transmitting body 3 as shown in FIG. It is preferable that the surface of the piezoelectric element layer 2 on the side in contact with the vibration transmitting body 3 is substantially parallel to the surface of the vibrating body 5 from the viewpoint that the vibration of the piezoelectric element layer 2 can be detected.
  • the piezoelectric element layer may be an organic piezoelectric layer such as a sheet made of piezoelectric resin or a porous resin sheet, or a layer made of an inorganic piezoelectric material such as quartz, barium titanate, or lead zirconate titanate. Moreover, any of a monomorph, a bimorph, and a lamination
  • the piezoelectric constant d33 is preferably 20 ⁇ 10 -12 C / N or more More preferably, it is a piezoelectric element layer made of a material of 100 ⁇ 10 ⁇ 12 C / N or more, and more preferably 200 ⁇ 10 ⁇ 12 C / N or more.
  • a porous resin sheet is preferable.
  • the charge response to micro vibration is high, the vibration detection ability is high, and the charge can be held even in a high temperature environment. It is possible to obtain a vibration sensor that is excellent in detection capability, large in flexibility, excellent in impact resistance, and lightweight.
  • the porous resin sheet when used, it is easy to form into any shape such as a thin film or a large area, and the surface of the vibrating body is a curved surface or has a complicated structure.
  • the vibration sensor according to the embodiment of the present invention can be installed on the vibrating body by a simple method such as winding or pasting without any particular effort. It is possible to easily install the vibration sensor according to the embodiment of the present invention in a state where the normal of the surface of the vibrating body and the direction of the polarization axis of the piezoelectric element layer substantially coincide.
  • the porous resin sheet is preferably a sheet made of an organic material capable of holding an electric charge.
  • the porous resin sheet made of such an organic material include a nonwoven fabric or woven cloth made of fiber, a sheet-like foam made of an organic polymer, a stretched porous film made of an organic polymer, a matrix resin and a charge.
  • hole is mentioned.
  • non-woven fabrics or woven fabrics made of polymer fibers are preferred from the viewpoints of durability and ability to maintain deformation performance over a long period of time.
  • the porous resin sheet contains one or more inorganic fillers within a range that does not impair the effects of the present invention from the viewpoint of obtaining a piezoelectric element layer having a high charge retention amount and excellent piezoelectric characteristics. It may be.
  • the inorganic filler a filler having a dielectric constant higher than that of the polymer is preferable from the viewpoint of obtaining a sheet having a high piezoelectric constant.
  • an inorganic filler having a relative dielectric constant ⁇ of 10 to 10,000 is preferable.
  • Specific examples of the inorganic filler include titanium oxide, aluminum oxide, barium titanate, lead zirconate titanate, zirconium oxide, cerium oxide, nickel oxide and tin oxide.
  • the thickness of the porous resin sheet may be appropriately selected depending on the application to be used, but is usually 10 ⁇ m to 1 mm, preferably 50 ⁇ m to 500 ⁇ m.
  • the porosity of the porous resin sheet is preferably 60% or more, more preferably 75% or more, and still more preferably 80 to 99% from the viewpoint of obtaining a piezoelectric element layer with high charge retention.
  • the porosity can be calculated by the following method. (True density of resin ⁇ apparent density of porous resin sheet) ⁇ 100 / true density of resin
  • the apparent density is a value calculated using the weight and the apparent volume of the porous resin sheet.
  • polymers constituting the fiber include polymers having a volume resistivity of 1.0 ⁇ 10 13 ⁇ ⁇ cm or more.
  • polyamide resins (6-nylon, 6,6-nylon, etc.), aromatics Polyamide resins (such as aramid), polyolefin resins (such as polyethylene and polypropylene), polyester resins (such as polyethylene terephthalate), polyacrylonitrile, phenolic resins, fluorine resins (such as polytetrafluoroethylene and polyvinylidene fluoride), Examples thereof include imide resins (polyimide, polyamideimide, bismaleimide, etc.).
  • a polymer that does not have a dipole attributed to a molecule and a crystal structure is preferable.
  • polymers include polyolefin resins (polyethylene, polypropylene, ethylene propylene resin, etc.), polyester resins (polyethylene terephthalate, etc.), polyurethane resins, polystyrene resins, non-fluorine resins such as silicone resins, and polytetra Examples thereof include fluorine resins such as fluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), and tetrafluoroethylene-hexafluoropropylene copolymer (FEP).
  • PTFE fluoroethylene
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • a polymer that has a high continuous usable temperature and does not have a glass transition point in the operating temperature range of the vibration sensor is preferable.
  • the continuous useable temperature can be measured by a continuous use temperature test described in UL746B (UL standard), preferably 50 ° C or higher, more preferably 100 ° C or higher, and further preferably 200 ° C or higher.
  • UL746B UL standard
  • a polymer exhibiting water repellency is preferred.
  • the polymer having these characteristics for example, polyolefin resins and fluorine resins are preferable, and the piezoelectric characteristics are deteriorated even when the vibration of a vibrating body at a high temperature (about 100 ° C. or higher) is measured.
  • fluorine resin is more preferable, and PTFE is particularly preferable.
  • the fiber has an average fiber diameter of preferably 0.05 to 50 ⁇ m, more preferably 0.1 to 20 ⁇ m, and still more preferably 0.3 to 5 ⁇ m.
  • the average fiber diameter is within the above range, a non-woven fabric or woven fabric exhibiting high flexibility can be formed, and a sufficient space for holding charges can be formed by increasing the fiber surface area. Even when it is formed, it is preferable in that the fiber distribution uniformity can be increased.
  • the average fiber diameter of the fiber can be adjusted by appropriately selecting the conditions for forming the fiber.For example, in the case of producing by an electrospinning method, the humidity is reduced during electrospinning, and the nozzle diameter is adjusted. By decreasing the applied voltage or increasing the voltage density, the average fiber diameter of the obtained fiber tends to be reduced.
  • the average fiber diameter was determined by observing the fiber (group) to be measured with a scanning electron microscope (SEM) (magnification: 10000 times), and randomly selecting 20 fibers from the obtained SEM image. The fiber diameter (major diameter) of each fiber is measured, and is an average value calculated based on the measurement result.
  • SEM scanning electron microscope
  • the fiber diameter variation coefficient of the fiber calculated by the following formula is preferably 0.7 or less, more preferably 0.01 to 0.5.
  • the fiber diameter variation coefficient is within the above range, the fiber has a uniform fiber diameter, and the non-woven fabric or woven fabric obtained using the fiber has a higher porosity. Since a resin sheet is obtained, it is preferable.
  • Fiber diameter variation coefficient standard deviation / average fiber diameter (“standard deviation” is the standard deviation of the fiber diameters of the 20 fibers)
  • the fiber length of the fiber is preferably 0.1 to 1000 mm, more preferably 0.5 to 100 mm, and still more preferably 1 to 50 mm.
  • the fiber is produced, for example, by an electrospinning method, a melt spinning method, a melt electrospinning method, a spunbond method (melt blow method), a wet method, or a spunlace method.
  • the fiber obtained by the electrospinning method has a fiber diameter. Since a nonwoven fabric or woven fabric formed from such fibers has a high porosity and a high specific surface area, a porous resin sheet having high piezoelectricity can be obtained.
  • Electrospinning method When forming a polymer fiber using an electrospinning method, for example, a spinning solution containing the polymer and, if necessary, a solvent is used.
  • the ratio of the polymer contained in the spinning solution is, for example, 5 to 100% by weight, preferably 5 to 80% by weight, and more preferably 10 to 70% by weight.
  • the said polymer may be used individually by 1 type, and may use 2 or more types.
  • the solvent is not particularly limited as long as it can dissolve or disperse the polymer.
  • water dimethylacetamide, dimethylformamide, tetrahydrofuran, methylpyrrolidone, xylene, acetone, chloroform, ethylbenzene, cyclohexane, benzene, sulfolane.
  • solvents may be used alone or in a combination of two or more.
  • the solvent is contained in the spinning solution in an amount of, for example, 0 to 90% by weight, preferably 10 to 90% by weight, more preferably 20 to 80% by weight.
  • the spinning solution may further contain additives other than the polymer, such as inorganic fillers, surfactants, dispersants, charge adjusting agents, functional particles, adhesives, viscosity adjusting agents, and fiber forming agents. . These additives may be used alone or in combination of two or more.
  • additives such as inorganic fillers, surfactants, dispersants, charge adjusting agents, functional particles, adhesives, viscosity adjusting agents, and fiber forming agents.
  • additives may be used alone or in combination of two or more.
  • the solubility of the polymer in the solvent is low (for example, when the polymer is PTFE and the solvent is water), one type or It is preferable that 2 or more types of fiber forming agents are included.
  • the fiber forming agent is preferably a polymer having high solubility in a solvent, such as polyethylene oxide, polyethylene glycol, dextran, alginic acid, chitosan, starch, polyvinylpyrrolidone, polyacrylic acid, polymethacrylic acid, polyacrylamide. , Cellulose, and polyvinyl alcohol.
  • a solvent such as polyethylene oxide, polyethylene glycol, dextran, alginic acid, chitosan, starch, polyvinylpyrrolidone, polyacrylic acid, polymethacrylic acid, polyacrylamide. , Cellulose, and polyvinyl alcohol.
  • the amount of the fiber-forming agent used is, for example, 0.1 to 15% by weight, preferably 1 to 10% by weight in the spinning solution, although it depends on the viscosity of the solvent and the solubility in the solvent.
  • the spinning solution can be produced by mixing the polymer, a solvent and, if necessary, an additive by a conventionally known method.
  • spinning solution (1) When the polymer is PTFE, preferred examples of the spinning solution include the following spinning solution (1).
  • Spinning liquid (1) 30 to 70% by weight, preferably 35 to 60% by weight of PTFE, 0.1 to 10% by weight, preferably 1 to 7% by weight, and a total of 100% by weight Spinning solution containing solvent
  • the applied voltage at the time of electrospinning is preferably 1 to 100 kV, more preferably 5 to 50 kV, and still more preferably 10 to 40 kV.
  • the tip diameter (outer diameter) of the spinning nozzle used for electrospinning is preferably 0.1 to 2.0 mm, more preferably 0.2 to 1.6 mm.
  • the applied voltage is preferably 10 to 50 kV, more preferably 10 to 40 kV, and the tip diameter (outer diameter) of the spinning nozzle is used. ) Is preferably 0.3 to 1.6 mm.
  • Examples of a method for forming a nonwoven fabric by the wet method include a method of forming (paper making) a sheet by depositing (accumulating) the fibers on a mesh using an aqueous dispersion containing the fibers. .
  • the amount of fiber used in this wet method is preferably 0.1 to 10% by weight, more preferably 0.1 to 5% by weight, based on the total amount of the aqueous dispersion. If the fiber is used within this range, water can be efficiently used in the process of depositing the fiber, and the dispersion state of the fiber is improved, so that a uniform wet nonwoven fabric can be obtained.
  • a dispersing agent or an oil agent composed of a cationic, anionic or nonionic surfactant, an antifoaming agent or the like that suppresses the generation of bubbles, respectively.
  • You may add 1 type (s) or 2 or more types.
  • a woven fabric using the fiber it can be produced by a method including a step of producing the fiber and a step of weaving the obtained fiber into a sheet to form a woven fabric.
  • a method of weaving the fiber into a sheet a conventionally known weaving method can be used, and methods such as a water jet room, an air jet room, and a rapier room can be used.
  • the polymer is PTFE
  • the heat treatment is performed by heat-treating the obtained non-woven fabric or woven fabric under conditions of usually 200 to 390 ° C. and 30 to 300 minutes. By this heat treatment, the solvent, fiber forming agent, and the like remaining on the nonwoven fabric or woven fabric can be removed.
  • the method for producing the nonwoven fabric will be specifically described by taking as an example a case including a step of producing a fiber made of PTFE by an electrospinning method.
  • a method for producing a nonwoven fabric made of PTFE fiber a conventionally known production method can be employed, and examples thereof include the following methods described in JP-A-2012-515850.
  • a spinning solution comprising PTFE, a fiber forming agent and a solvent and having a viscosity of at least 50,000 cP; Spinning the spinning solution from a nozzle and forming a fiber by electrostatic traction; Collecting the fibers on a collector (eg, a take-up spool) to form a precursor; Firing the precursor to remove the solvent and the fiber forming agent to form a nonwoven fabric made of PTFE fibers.
  • a collector eg, a take-up spool
  • the basis weight of the nonwoven fabric and the woven fabric is preferably 100 g / m 2 or less, more preferably 0.1 to 50 g / m 2 , and still more preferably 0.1 to 20 g / m 2 .
  • the basis weight tends to increase by increasing the spinning time or increasing the number of spinning nozzles.
  • the non-woven fabric and woven fabric are obtained by accumulating or weaving the fibers in a sheet shape.
  • Such non-woven fabric and woven fabric are composed of a single layer, or composed of two or more layers having different materials and fiber diameters. Any of these may be used.
  • the porous resin sheet is preferably subjected to polarization treatment.
  • a polarization treatment charges can be injected into the sheet.
  • the injected charges are concentrated in the pores existing in the porous resin sheet to induce polarization.
  • the internally polarized sheet can take out electric charges through the front and back surfaces of the sheet by applying a compressive load in the sheet thickness direction. That is, charge transfer occurs with respect to the external load (electric circuit), and an electromotive force is obtained.
  • a conventionally known method can be used and is not particularly limited, and examples thereof include voltage application processing such as DC voltage application processing and AC voltage application processing, and corona discharge processing.
  • the corona discharge treatment can be performed using a commercially available device composed of a high voltage power source and electrodes.
  • the discharge conditions may be appropriately selected according to the material and thickness of the porous resin sheet to be used.
  • a high voltage power supply The voltage is -0.1 to -100 kV, more preferably -1 to -20 kV, the current is 0.1 to 100 mA, more preferably 1 to 80 mA, and the distance between the electrodes is 0.1 to 100 cm, more preferably 1 to 10 cm.
  • the applied voltage is 0.01 to 10.0 MV / m, more preferably 0.5 to 2.0 MV / m.
  • a porous resin sheet may be subjected to polarization treatment, but when the piezoelectric element layer is a laminate of a porous resin sheet and the conventionally known layer such as an insulating layer, After forming the laminated body, for example, it is preferable to perform polarization treatment after laminating an insulating layer. This is because the layer laminated on the porous resin sheet plays a role in preventing the electric charge held in the porous resin sheet by the polarization treatment from being attenuated by electrically connecting with the external environment.
  • the vibration transmitting body is used while being fixed to the vibrating body, and the size, shape and the like are not particularly limited.
  • the vibration transmission body has a vibration body fixing portion that is a portion fixed to the vibration body, and a shape having an accommodation space for accommodating the vibration detection laminate as shown in FIG. As in 2, it is preferable to have a shape having an accommodation space for accommodating the vibration detection laminate.
  • the piezoelectric element layer 2 is disposed so as to be in contact with the vibration transmission body 3 as shown in FIG. 1, the piezoelectric element layer 2 of the vibration transmission body 3 can be detected from the viewpoint that the vibration of the vibration body can be detected with higher sensitivity.
  • the surface on the side in contact with be substantially parallel to the surface of the vibrator 5. Since the vibration transmitting body is used while being fixed to the vibrating body, it also has a function as a fastening body for fixing the vibration sensor according to an embodiment of the present invention on the surface of the vibrating body.
  • the material of the vibration transmitting body is not limited as long as it is a material that can transmit vibration from the vibrating body to one surface of the piezoelectric element layer without being attenuated as much as possible.
  • the ratio Z1 / Z2 of the acoustic impedance (Z1) of the material of the vibration member in contact with the vibration transmission member and the acoustic impedance (Z2) of the material of the vibration transmission member from the point that transmission to one surface of the layer is possible
  • the material is preferably in the range of 0.2 to 5.0, more preferably 0.4 to 3.0, and still more preferably 0.7 to 1.3.
  • an impedance matching layer may be interposed between the surface of the vibration body and the vibration transmission body from the viewpoint of efficiently transmitting vibration from the vibration body to one surface of the vibration detection laminate.
  • the method for fixing the vibration transmitting body to the vibrating body is not particularly limited, and conventionally known methods such as a method of fixing by an adhesive force or (electro) magnetic force, a method of fixing by a fastener are necessary, and are necessary. These methods may be combined.
  • the vibration sensor that is one embodiment of the present invention
  • the mounting and handling are simple, and the weight and size can be reduced. Even if it exists, it can be installed easily.
  • the vibrating body that is a target to be detected by the vibration sensor according to the embodiment of the present invention is not particularly limited, and is a vibrating body that does not undergo dimensional deformation (e.g., pipe diameter change). However, vibration can be easily detected.
  • Examples of the vibrating body include machines including piping, ground, buildings, vehicles, ships, aircraft, rotating parts, and the like.
  • Examples of the pipe include water pipe, gas pipe, petrochemical plant pipe, heat exchanger pipe, fuel pipe, hydraulic / pneumatic pipe, chemical liquid pipe, and food plant pipe.
  • the vibration sensor which is one embodiment of the present invention for such a pipe
  • the sensor also has a role as an abnormality detector for detecting an abnormality such as leakage of fluid in the pipe.
  • examples of the rotating system parts include a pump, a compressor, a motor, an engine, a bearing, a turbine, and wheels.
  • the vibration sensor which is one embodiment of the present invention for such a component, the sensor also has a role as an abnormality detector for detecting an abnormality of the rotating system component.
  • the material of the surface of the vibrating body is a material of the surface of the pipe or component, and examples thereof include metals, ceramics, and polymers (rubber and resin).
  • the mounting and handling are simple, and even if the surface of the vibrating body is a curved surface, it can be easily installed.
  • the place of use is not particularly limited, examples of the surface shape include a flat surface, a curved surface (cylindrical surface, spherical surface), and an uneven surface.
  • a kit for manufacturing a vibration sensor according to an embodiment of the present invention includes a vibration transmitting body that is used while being fixed to a vibrating body, a piezoelectric element, and a vibration absorbing body, and the vibration of the vibrating body is the piezoelectric element.
  • the piezoelectric element and the vibration absorber are suppressed by the vibration absorber on one surface and transmitted by the vibration transmission body on the other surface of the piezoelectric element.
  • the vibration transmitting body in the kit corresponds to the vibration transmitting body in the vibration sensor according to one embodiment of the present invention
  • the piezoelectric element in the kit is formed on the piezoelectric element layer in the vibration sensor according to one embodiment of the present invention
  • the vibration absorber in the kit corresponds to the vibration absorption layer in the vibration sensor according to one embodiment of the present invention.
  • the vibration measuring method includes a vibration sensor (including a vibration sensor obtained from a vibration sensor manufacturing kit) according to an embodiment of the present invention on the surface of the vibrating body. Detect vibration. Specifically, the presence or absence of vibration, the magnitude of vibration, and the like can be detected.
  • the installation is not particularly limited as long as the structure of the installed vibration body with the vibration sensor is installed so as to satisfy the relationship, and may be installed by a method similar to the method of fixing the vibration transmitting body described above. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本発明は、振動センサー、振動測定方法および振動センサー作製用キットに関し、該振動センサー(10)は、振動体(5)の振動を検知する振動センサー(10)であり、振動体(5)に固定される振動伝達体(3)と、圧電素子層(2)と振動吸収層(1)との積層体である振動検出積層体とを備え、前記振動体(5)の振動が、前記圧電素子層(2)の一方の面において、前記振動吸収層(1)により抑制され、圧電素子層(2)の他方の面において、振動伝達体(3)により伝達されるように、前記振動検出積層体を有する。

Description

振動センサー、振動測定方法および振動センサー作製用キット
 本発明は、振動センサー、振動測定方法および振動センサー作製用キットに関する。
 従来より、配管や回転系部品などの振動が生じ得る部分の振動を測定することが行われている。このような振動を測定する方法として、計測が比較的簡単であり、経年変化が少ないこと等の点から、圧電素子を含む振動センサーが用いられている。
 前記振動センサーとしては、水晶の単結晶やチタン酸バリウムなどの圧電素子と、おもり等とを含む振動センサーが開発されており、具体的には、該圧電素子に圧縮力がかかることにより振動を測定する圧縮型の振動センサーと、該圧電素子にせん断力がかかることにより振動を測定するせん断型の振動センサーとが開発されている。
 また、特許文献1には、高分子圧電性フィルムに、重錘を結合した膜振動センサーが開示されている。
特開昭56-012513号公報
 前記振動センサーでは、該センサーに含まれるおもりの振動によって、圧電素子に圧縮力やせん断力が付与され、振動が検知される。
 しかしながら、これらのセンサーではおもりが必要となるため、センサーの質量が重くなってしまい、また、センサーサイズが大型化してしまうという問題点があった。
 センサーの質量が重くなると、センサーの質量が振動体に付加され、振動体の固有振動数が小さくなることによって、振動体本来の振動情報が得られない傾向にあり、また、センサーサイズが大型化すると、狭隘部等の所望の場所にセンサーを設置ができない等の問題があった。
 また、前記おもりを用いず、圧電素子の一方の面を振動体に接触させ、もう一方の面を地面等の非振動体に接触させることで、圧電素子に電荷を生じさせ、振動を検知する振動センサーも考えられているが、このような振動センサーでは、設置可能な場所が限定されてしまい、また、センサーサイズが大型化してしまうという問題点があった。
 本発明の一実施形態では、配管や回転系部品などの振動体表面に簡易に設置することができ、おもりを使用しなくても、振動体の振動状態を検知可能な振動センサーを提供することを目的とする。
 このような状況のもと、本発明者らは、前記課題を解決すべく鋭意検討した結果、特定構造の振動センサーによれば、前記の目的を達成できることを見出し、本発明を完成するに至った。
 本発明の構成例は以下の通りである。
 [1] 振動体に固定される振動伝達体と、
 圧電素子層と振動吸収層との積層体である振動検出積層体とを備え、
 前記振動体の振動が、前記圧電素子層の一方の面において、前記振動吸収層により抑制され、圧電素子層の他方の面において、振動伝達体により伝達されるように、前記振動検出積層体を有する、
 振動体の振動を検知する振動センサー。
 [2] 前記振動吸収層の振動伝達率が1以下である、[1]に記載の振動センサー。
 [3] 前記振動吸収層が、ゲルからなる層、天然ゴムからなる層、合成ゴムからなる層、エラストマーからなる層、樹脂発泡体、繊維材料からなる織布または不織布、のいずれかを含む、[1]または[2]に記載の振動センサー。
 [4] 前記圧電素子層が多孔質樹脂シートを含む、[1]~[3]のいずれかに記載の振動センサー。
 [5] 前記圧電素子層が、ファイバーからなる不織布または織布を含み、
 該ファイバーは、分子および結晶構造に起因する双極子を持たないポリマー製である、[1]~[4]のいずれかに記載の振動センサー。
 [6] 前記ポリマーがポリテトラフルオロエチレンである、[5]に記載の振動センサー。
 [7] 前記振動伝達体に接する部分の振動体表面の材質の音響インピーダンス(Z1)と、前記振動伝達体の材質の音響インピーダンス(Z2)との比Z1/Z2が0.2~5.0の範囲にある、[1]~[6]のいずれかに記載の振動センサー。
 [8] 前記振動検出積層体のうち、振動吸収層が振動体に接する、[1]~[7]のいずれかに記載の振動センサー。
 [9] [1]~[8]のいずれかに記載の振動センサーを、振動体表面に設置することにより振動体の振動を検知する、振動測定方法。
 [10] 振動体に固定して使用される振動伝達体と、
 圧電素子と、
 振動吸収体とを含み、
 前記振動体の振動が、前記圧電素子の一方の面において、前記振動吸収体により抑制され、圧電素子の他方の面において、振動伝達体により伝達されるように、前記圧電素子と振動吸収体とが配置されて使用される、
 振動センサー作製用キット。
 [11] [10]に記載の振動センサー作製用キットから得られる振動センサーを、振動体表面に設置することにより振動体の振動を検知する、振動測定方法。
 本発明の一実施形態によれば、配管や回転系部品などの振動体表面に簡易に設置することができ、おもりを使用しなくても、振動体の振動状態を容易に検知することができる。
 特に、本発明の一実施形態によれば、取付・取扱い性が簡単であり、軽量・小型化が可能であり、狭隘部等の所望の場所、特に、振動体表面が曲面等であっても容易に設置が可能であり、容易に振動体の振動を検知することができる。
図1は、本発明の一実施形態である振動センサーの断面概略図である。 図2は、本発明の一実施形態である振動センサーの断面概略図である。
 ≪振動センサー≫
 以下、本発明の一実施形態である振動センサーを、その一実施形態の断面概略図である図1に基づいて説明する。
 本発明の一実施形態である振動センサー10は、振動体5の振動を検知する振動センサーであり、振動体5に固定される振動伝達体3と、圧電素子層2と振動吸収層1との積層体である振動検出積層体とを備え、前記振動体5の振動が、前記圧電素子層2の一方の面において、前記振動吸収層1により抑制され、圧電素子層2の他方の面において、振動伝達体3により伝達されるように、前記振動検出積層体を有する振動センサーである。
 本発明の一実施形態では、従来用いていたおもりや非振動体(例:地面)との接触の代わりに、圧電素子層の一方の面を、前記振動吸収層によって振動体の振動を抑制し、他方の面を、振動伝達体によって振動体の振動を伝達することで、圧電素子層に圧縮力やせん断力を付与することができるため、圧電素子層には振動体の振動により電荷が生じ、この電荷量を計測することで、振動の有無、振動の大きさ等を検知することができる。
 このような本発明の一実施形態である振動センサーによれば、取付・取扱い性が簡単であり、軽量・小型化が可能であり、狭隘部等の所望の場所、特に、振動体表面が曲面等であっても容易に設置が可能であり、振動体自体の寸法変形(例:配管の径変化)が起こらない場合であっても、容易に振動を検知することができる。
 本発明の一実施形態である振動センサーは、振動伝達体と、振動検出積層体とを有すれば特に制限されず、従来公知の層、部材等を含んでもよい。該部材としては、圧電素子層に発生した電荷を伝送する電荷伝送手段や、該電荷伝送手段により伝送された電荷を増幅して電圧信号を出力する増幅器等が挙げられる。
 本発明の一実施形態である振動センサーは、振動体表面の一部に取り付けられて使用される。振動体が例えば、配管である場合、その外周を覆うように、本発明の一実施形態である振動センサーを巻き付けて使用してもよい。また、本発明の一実施形態である振動センサーは、振動検出積層体を振動伝達体に収容した後、得られるセンサーを振動体に取り付けてもよいし、振動検出積層体を振動体に取り付けた後、該振動検出積層体を覆うように振動伝達体を振動体に取り付けてもよいし、例えば、振動吸収体を振動体に取り付けた後、その上に圧電素子層を取り付け、次いで、得られる振動検出積層体を覆うように振動伝達体を振動体に取り付けてもよい。
 <振動検出積層体>
 本発明の一実施形態である振動センサーは、圧電素子層と振動吸収層との積層体である振動検出積層体を有する。
 前記振動検出積層体は、振動体の振動が、前記圧電素子層の一方の面において、前記振動吸収層により抑制され、圧電素子層の他方の面において、振動伝達体により伝達されるように配置されれば特に制限されず、図1のように、振動体5側に振動吸収層1が配置され、該振動吸収層1と振動伝達体3との間に圧電素子層2が配置されてもよく、図2のように、振動体5側に振動伝達体3を介して圧電素子層2が配置され、該圧電素子層2の振動体5側とは反対側に振動吸収層1が配置されてもよい。また、前記振動検出積層体は、前記振動伝達体と振動体との間に形成される収容空間や前記振動伝達体が内部に収容空間を有する場合の該収容空間に配置されてもよい。振動検知能が高く、振動体表面が曲面であったり、さらに、複雑な構造を有していたとしても、該振動体表面に追従した任意の形状の振動センサーを製造することができ、振動体に対して、特に工夫をすることなく、巻き付けや貼り付け等の簡易な方法で本発明の一実施形態である振動センサーを設置することが可能であり、振動体表面の法線と圧電素子層の分極軸の向き(圧電定数d33に対応する向き)とが略一致した状態で本発明の一実施形態である振動センサーを設置することが容易となる等の点から、振動体5側に振動吸収層1が配置され、該振動吸収層1と振動伝達体3との間に圧電素子層2が配置されていることが好ましい。また、振動体への設置の簡便性および振動体表面への設置時に振動検出積層体の破損などを防ぐ等の点から、前記振動検出積層体は、前記振動伝達体内部の収容空間に配置されていることが好ましい。
 前記振動検出積層体は、圧電素子と、振動吸収体とを含めは特に制限されず、接着層などの従来公知の層を含んでもよい。
 本発明の一実施形態である振動センサーは、振動体の振動が、前記圧電素子層の一方の面において、前記振動吸収層により抑制され、圧電素子層の他方の面において、振動伝達体により伝達されるように、振動検出積層体を有することを特徴とするため、振動体の振動が、前記圧電素子層の一方の面に確実に伝達される必要がある。このため、圧電素子層が図1のように振動伝達体側に存在する場合には、圧電素子層と振動伝達体とが常に接した状態、例えば、接着層などで接着された状態にあることが好ましく、圧電素子層が振動体側に存在する場合には、圧電素子層と振動体とが振動伝達体を間に有し、常に接した状態、例えば、接着層などで接着された状態にあることが好ましく、さらには、圧電素子層と振動吸収層とも常に接した状態、例えば、接着層などで接着された状態にあることが好ましい。
 また、前記振動検出積層体は、図1に示すように、該積層体の一方の面が振動体5に(接着層等を介して)接しており、該積層体の振動体5に接する側とは反対側の面が振動伝達体3に(接着層等を介して)接していることが好ましく、該積層体のこれら2つの面以外の面は振動伝達体3に接していないことが、より正確に振動体5の振動を検知できる等の点から好ましい。
 〈振動吸収層〉
 前記振動吸収層としては、振動体の振動を一部または全部吸収できる層であれば特に制限されず、振動の伝達を遮蔽できる層であることが好ましく、防振材料からなる層が好ましい。
 前記振動吸収層の振動伝達率は、より振動検知能の高い振動センサーが得られる等の点から、好ましくは1以下であり、より好ましくは0.5以下である。
 前記振動伝達率は、振動体の振動を加速度センサーにより直接測定した場合の出力電圧をV0とし、振動体と加速度センサーとの間に振動吸収層を介して測定した場合の出力電圧をVとするとき、V/V0で算出される値である。
 また、前記振動吸収層のJIS K 7244-1に準拠して測定される損失係数は、より振動検知能の高い振動センサーが得られる等の点から、好ましくは0.2以上であり、より好ましくは0.3以上である。
 前記振動吸収層としては、具体的には、アクリル系、ウレタン系、シリコーン系等のゲルからなる層;天然ゴムからなる層;ブチルゴムやシリコーンゴム等の合成ゴムからなる層;エラストマーからなる層;ポリプロピレン、ポリエチレン、ポリカーボネート等を発泡させた樹脂発泡体;合成繊維、半合成繊維、再生繊維、天然繊維等の繊維材料からなる織布または不織布等が挙げられ、これらの中でも、より振動検知能の高い振動センサーが得られる等の点から、ゲルからなる層が好ましく、特に、高温(100℃以上程度)の振動体の振動を測定対象とする場合には、シリコーン系ゲルが好ましい。
 なお、前記振動吸収層は、ゲルからなる層、天然ゴムからなる層、合成ゴムからなる層、エラストマーからなる層、樹脂発泡体、繊維材料からなる織布または不織布等を2種以上含む層であってもよい。
 前記振動吸収層の厚みは、所望の用途に応じ適宜選択すればよく、振動体の振動を一部でも吸収できる厚みであれば特に制限されないが、好ましくは0.01~10mm、軽量・小型の振動センサーが得られる等の点から、より好ましくは0.1~2mmである。
 〈圧電素子層〉
 前記圧電素子層としては、圧電素子を含めば特に制限されず、従来公知の層を含んでいてもよく、具体的には、圧電素子の両側に、電極層、表面平滑化層、保護層、絶縁層、接着層等が存在していている積層体が挙げられる。
 前記圧電素子層の形状および大きさは、振動体の振動を検知できれば特に制限されないが、図1のように圧電素子層2が振動伝達体3に接するように配置する場合、より感度良く振動体の振動を検知することができる等の点から、該圧電素子層2の振動伝達体3に接する側の面は、振動体5表面と略平行になるようにすることが好ましい。
 前記圧電素子層としては、圧電性樹脂からなるシート、多孔質樹脂シートなどの有機圧電層であってもよく、水晶、チタン酸バリウム、チタンジルコン酸鉛等の無機圧電材料からなる層であってもよく、また、モノモルフ、バイモルフおよび積層型のいずれであってもよい。
 前記圧電素子層は、圧電素子の厚さ方向の振動を検知することで振動検知能により優れる振動センサーが得られる等の点から、圧電定数d33が、好ましくは20×10-12C/N以上であり、より好ましくは100×10-12C/N以上であり、さらに好ましくは200×10-12C/N以上である材料からなる圧電素子層であることが望ましい。
 前記圧電素子層としては、多孔質樹脂シートが好ましく、多孔質樹脂シートを用いることで、微小振動への電荷応答性が高く、振動検知能が高く、高温環境においても電荷を保持できるため、振動検知能に優れ、可撓性が大きく、耐衝撃性に優れ、軽量である振動センサーを得ることができる。
 さらに、前記多孔質樹脂シートを用いると、薄膜化や大面積化等の任意の形状への成形性が容易であり、振動体表面が曲面であったり、さらに、複雑な構造を有していたとしても、該振動体表面に追従した任意の形状の振動センサーを製造することができる。このため、前記多孔質樹脂シートを用いると、振動体に対して、特に工夫をすることなく、巻き付けや貼り付け等の簡易な方法で本発明の一実施形態である振動センサーを設置することが可能であり、振動体表面の法線と圧電素子層の分極軸の向きとが略一致した状態で本発明の一実施形態である振動センサーを設置することが容易となる。
 前記多孔質樹脂シートとしては、電荷を保持し得る有機系材料からなるシートであることが好ましい。このような有機系材料からなる多孔質樹脂シートとしては、例えば、ファイバーからなる不織布または織布、有機重合体からなるシート状の発泡体、有機重合体からなる延伸多孔質膜、マトリックス樹脂と電荷誘起性中空粒子(中空粒子の表面の少なくとも一部に導電性物質が付着している粒子)とを含む多孔質樹脂シート、有機重合体中に分散させた相分離化剤を、超臨界二酸化炭素などの抽出剤を用いて除去し、空孔を形成する方法によって形成されるシートが挙げられる。
 これらの中でも、耐久性、長期に変形性能が維持できる等の点から、ポリマー製のファイバーからなる不織布または織布が好ましい。
 前記多孔質樹脂シートには、電荷保持量が高く、圧電特性に優れる圧電素子層が得られる等の点から、本発明の効果を損なわない範囲で1種または2種以上の無機フィラーが含まれていてもよい。該無機フィラーとしては、高い圧電率を有するシートが得られる等の点から、ポリマーより高い誘電率を有するフィラーが好ましく、例えば、比誘電率εが10~10000の無機フィラーが好ましい。無機フィラーの具体例としては、酸化チタン、酸化アルミニウム、チタン酸バリウム、チタン酸ジルコン酸鉛、酸化ジルコニウム、酸化セリウム、酸化ニッケル、酸化スズなどが挙げられる。
 前記多孔質樹脂シートの厚さは、用いる用途に応じて適宜選択すればよいが、通常10μm~1mm、好ましくは50μm~500μmである。
 前記多孔質樹脂シートの空孔率は、電荷保持性の高い圧電素子層が得られる等の点から、好ましくは60%以上、より好ましくは75%以上、さらに好ましくは80~99%である。空孔率は以下の方法により算出することができる。
 (樹脂の真密度-多孔質樹脂シートの見掛けの密度)×100/樹脂の真密度
 なお、見掛けの密度は、多孔質樹脂シートの重量および見掛けの体積を用いて算出される値を用いる。
 前記ファイバーを構成するポリマーとしては、体積抵抗率が1.0×1013Ω・cm以上であるポリマーが挙げられ、例えば、ポリアミド系樹脂(6-ナイロン、6,6-ナイロンなど)、芳香族ポリアミド系樹脂(アラミドなど)、ポリオレフィン系樹脂(ポリエチレン、ポリプロピレンなど)、ポリエステル系樹脂(ポリエチレンテレフタラートなど)、ポリアクリロニトリル、フェノール系樹脂、フッ素系樹脂(ポリテトラフルオロエチレン、ポリフッ化ビニリデンなど)、イミド系樹脂(ポリイミド、ポリアミドイミド、ビスマレイミドなど)などが挙げられる。
 これらの中でも、耐熱性、耐候性に優れる等の点から、分子および結晶構造に起因する双極子を持たないポリマーであることが好ましい。このようなポリマーとしては、ポリオレフィン系樹脂(ポリエチレン、ポリプロピレン、エチレンプロピレン樹脂など)、ポリエステル系樹脂(ポリエチレンエレフタラートなど)、ポリウレタン樹脂、ポリスチレン樹脂、シリコーン樹脂等の非フッ素系樹脂、および、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)等のフッ素系樹脂などが挙げられる。
 これらの中でも、耐熱性および耐候性等の観点から、連続使用可能温度が高く、ガラス転移点を振動センサーの使用温度域に持たないポリマーであることが好ましい。連続使用可能温度は、UL746B(UL規格)に記載の連続使用温度試験により測定でき、50℃以上であることが好ましく、100℃以上であることがより好ましく、200℃以上であることがさらに好ましい。また、耐湿性の観点から、撥水性を示すポリマーであることが好ましい。
 これらの特性を有するポリマーとしては、例えばポリオレフィン系樹脂、フッ素系樹脂が好ましく、特に、高温(100℃以上程度)の振動体の振動を測定対象とする場合であっても圧電特性が低下することなく振動を検知することができる振動センサーが得られる等の点から、フッ素系樹脂がより好ましく、PTFEが特に好ましい。
 特に、前記ポリマーとして、PTFEを用いる場合には、耐熱性、振動検知能および耐久性にバランスよく優れる振動センサーを得ることができ、該振動センサーは、高温/高圧環境下でも、性能や構造を維持できるため、高温振動体検査用の振動センサーとして好適に使用することができる。
 前記ファイバーは、平均繊維径が好ましくは0.05~50μm、より好ましくは0.1~20μm、さらに好ましくは0.3~5μmである。平均繊維径が前記範囲内にある場合には、高い柔軟性を示す不織布または織布を形成でき、繊維表面積が大きくなることで電荷を保持する十分な空間を形成でき、薄い不織布または織布を形成した場合でも繊維の分布均一性を高くすることができる点で好ましい。
 前記ファイバーの平均繊維径は、ファイバーを形成する条件を適宜選択することで調整することができるが、例えば、電界紡糸法により製造する場合には、電界紡糸の際に湿度を下げる、ノズル径を小さくする、印加電圧を大きくする、あるいは電圧密度を大きくすることにより、得られるファイバーの平均繊維径を小さくできる傾向にある。
 なお、前記平均繊維径は、測定対象となるファイバー(群)を走査型電子顕微鏡(SEM)観察(倍率:10000倍)し、得られたSEM画像から無作為に20本のファイバーを選び、これらの各ファイバーの繊維径(長径)を測定し、この測定結果に基づいて算出される平均値である。
 前記ファイバーの、下記式で算出される繊維径変動係数は、好ましくは0.7以下、より好ましくは0.01~0.5である。繊維径変動係数が前記範囲内にあると、ファイバーは繊維径が均一となり、該ファイバーを用いて得られる不織布または織布はより高い空孔率を有するため、また、電荷保持性の高い多孔質樹脂シートが得られるため好ましい。
   繊維径変動係数=標準偏差/平均繊維径
(なお、「標準偏差」とは、前記20本のファイバーの繊維径の標準偏差である。)
 前記ファイバーの繊維長は、好ましくは0.1~1000mm、より好ましくは0.5~100mm、さらに好ましくは1~50mmである。
 前記ファイバーは、例えば、電界紡糸法、溶融紡糸法、溶融電界紡糸法、スパンボンド法(メルトブロー法)、湿式法、スパンレース法により製造されるが、特に電界紡糸法により得られるファイバーは繊維径が小さく、このようなファイバーより形成される不織布または織布は、空孔率が高くかつ高比表面積であるため、高い圧電性を有する多孔質樹脂シートを得ることができる。
 [電界紡糸法]
 電界紡糸法を用いてポリマー製のファイバーを形成する際には、例えば、前記ポリマーおよび必要に応じて溶媒を含む紡糸液が用いられる。
 前記紡糸液中に含まれるポリマーの割合は、例えば5~100重量%、好ましくは5~80重量%、より好ましくは10~70重量%である。
 前記ポリマーは、1種単独で用いてもよく、2種以上を用いてもよい。
 前記溶媒としては、前記ポリマーを溶解または分散し得るものであれば特に限定されず、例えば、水、ジメチルアセトアミド、ジメチルホルムアミド、テトラヒドロフラン、メチルピロリドン、キシレン、アセトン、クロロホルム、エチルベンゼン、シクロヘキサン、ベンゼン、スルホラン、メタノール、エタノール、フェノール、ピリジン、プロピレンカーボネート、アセトニトリル、トリクロロエタン、ヘキサフルオロイソプロパノール、ジエチルエーテルが挙げられる。これらの溶媒は、1種単独で用いてもよく、2種以上を組み合わせた混合溶媒を用いてもよい。
 前記溶媒は、紡糸液中に例えば0~90重量%、好ましくは10~90重量%、より好ましくは20~80重量%含まれる。
 前記紡糸液は、さらに、前記ポリマー以外の、無機フィラー、界面活性剤、分散剤、電荷調整剤、機能性粒子、接着剤、粘度調整剤、繊維形成剤等の添加剤を含んでいてもよい。これらの添加剤は、1種単独で用いてもよく、2種以上を用いてもよい。
 前記紡糸液において、前記ポリマーの前記溶媒への溶解度が低い場合(例えば、ポリマーがPTFEであり、溶媒が水である場合)、紡糸時にポリマーを繊維形状に保持させる等の点から、1種または2種以上の繊維形成剤を含むことが好ましい。
 前記繊維形成剤としては、溶媒に対し高い溶解度を有するポリマーであることが好ましく、例えば、ポリエチレンオキサイド、ポリエチレングリコール、デキストラン、アルギン酸、キトサン、でんぷん、ポリビニルピロリドン、ポリアクリル酸、ポリメタクリル酸、ポリアクリルアミド、セルロース、ポリビニルアルコールが挙げられる。
 前記繊維形成剤を使用する場合の使用量は、溶媒の粘度、溶媒への溶解度にもよるが、紡糸液中に例えば0.1~15重量%、好ましくは1~10重量%である。
 前記紡糸液は、前記ポリマー、溶媒および必要に応じて添加剤を従来公知の方法で混合することにより製造できる。
 前記ポリマーがPTFEである場合、前記紡糸液の好ましい例としては、以下の紡糸液(1)が挙げられる。
 紡糸液(1):PTFEを30~70重量%、好ましくは35~60重量%含み、繊維形成剤を0.1~10重量%、好ましくは1~7重量%含み、合計が100重量%となるよう溶媒を含む紡糸液
 電界紡糸を行う際の印加電圧は、好ましくは1~100kV、より好ましくは5~50kV、さらに好ましくは10~40kVである。
 電界紡糸に用いられる紡糸ノズルの先端径(外径)は、好ましくは0.1~2.0mm、より好ましくは0.2~1.6mmである。
 より具体的には、例えば前記紡糸液(1)を用いる場合であれば、前記印加電圧は、好ましくは10~50kV、より好ましくは10~40kVであり、前記の紡糸ノズルの先端径(外径)は、好ましくは0.3~1.6mmである。
 [不織布または織布の製造方法]
 前記ファイバーを用いて不織布を形成するには、具体的には、例えば、電界紡糸法を用いて、前記ファイバーを製造する工程、および前記ファイバーをシート状に集積して不織布を形成する工程を同時に行ってもよいし、前記ファイバーを製造する工程を行った後に、湿式法等により前記ファイバーをシート状に集積して不織布を形成する工程を行ってもよい。
 前記湿式法により不織布を形成する方法としては、例えば、前記ファイバーを含有する水分散液を用い、例えばメッシュ上に前記ファイバーを堆積(集積)させてシート状に成形(抄紙)する方法が挙げられる。
 この湿式法におけるファイバーの使用量は、前記水分散液全量に対して、好ましくは0.1~10重量%、より好ましくは0.1~5重量%である。ファイバーをこの範囲内で使用すれば、ファイバーを堆積させる工程で水を効率よく活用することができ、また、ファイバーの分散状態がよくなり、均一な湿式不織布を得ることができる。
 前記水分散液には、分散状態を良好にするためにカチオン系、アニオン系、ノニオン系等の界面活性剤などからなる分散剤や油剤、また、泡の発生を抑制する消泡剤等をそれぞれ1種または2種以上添加してもよい。
 前記ファイバーを用いて織布を形成するには、前記ファイバーを製造する工程、および得られたファイバーをシート状に製織して織布を形成する工程を含む方法で製造できる。
 ファイバーをシート状に製織する方法としては、従来公知の製織方法を用いることができ、ウォータージェットルーム、エアージェットルーム、レピアルームなどの方法が挙げられる。
 前記ポリマーがPTFEである場合、不織布または織布を形成した後に、加熱処理を行うことが好ましい。該加熱処理は、得られた不織布または織布を、通常200~390℃、30~300分の条件で熱処理することで行われる。この加熱処理により、不織布または織布に残留している前記溶媒および繊維形成剤などを除去することができる。
 前記不織布の製造方法として、PTFEからなるファイバーを電界紡糸法により製造する工程を含む場合を例に挙げて具体的に説明する。PTFEファイバーからなる不織布の製造方法としては、従来公知の製造方法を採用することができ、例えば、特表2012-515850号公報に記載された以下の方法が挙げられる。
 PTFE、繊維形成剤および溶媒を含み、少なくとも50,000cPの粘度を有する紡糸液を提供するステップと;
 紡糸液をノズルより紡糸し静電的牽引力によりファイバー化するステップと;
 前記ファイバーをコレクター(例:巻き取りスプール)の上に集め、前駆体を形成するステップと;
 前記前駆体を焼成して前記溶媒および前記繊維形成剤を除去することでPTFEファイバーからなる不織布を形成するステップとを含む方法
 前記不織布および織布の目付は、好ましくは100g/m2以下、より好ましくは0.1~50g/m2、さらに好ましくは0.1~20g/m2である。
 前記目付は、紡糸時間を長くする、紡糸ノズル数を増やすなどにより、増大する傾向にある。
 前記不織布および織布は、前記ファイバーをシート状に集積または製織したものであるが、このような不織布および織布は、単層から構成されるもの、材質や繊維径の異なる2層以上から構成されるものの何れでもよい。
 [分極処理]
 前記多孔質樹脂シートは、分極処理されたものであることが好ましい。分極処理を施すことによって、該シートに電荷を注入することができる。注入された電荷は、多孔質樹脂シート内に存在する空孔内に集中して分極を誘起させる。内部分極したシートは、シート厚さ方向に圧縮荷重を印加することによって、シート表裏面を通して電荷を取り出すことが可能となる。すなわち、外部負荷(電気回路)に対して電荷移動が生じて起電力が得られる。
 前記分極処理の方法としては、従来公知の方法を用いることができ、特に制限されないが、例えば、直流電圧印加処理や交流電圧印加処理等の電圧印加処理、およびコロナ放電処理が挙げられる。
 例えば、コロナ放電処理は、市販の高電圧電源と電極からなる装置を使用して行うことができる。
 放電条件は、用いる多孔質樹脂シートの材料および厚さに応じて適宜選択すればよいが、例えば多孔質樹脂シートがPTFEからなる多孔質樹脂シートである場合は、好ましい条件として、高電圧電源の電圧が-0.1~-100kV、より好ましくは-1~-20kV、電流が0.1~100mA、より好ましくは1~80mA、電極間距離が0.1~100cm、より好ましくは1~10cm、印加電圧が0.01~10.0MV/m、より好ましくは0.5~2.0MV/mである条件が挙げられる。
 前記分極処理は、多孔質樹脂シート単体を分極処理してもよいが、前記圧電素子層として、多孔質樹脂シートと、絶縁層等の前記従来公知の層との積層体を用いる場合には、該積層体を形成した後、例えば、絶縁層を積層した後、分極処理をすることが好ましい。
 これは、多孔質樹脂シートに積層される層が、分極処理により多孔質樹脂シートに保持された電荷が外部環境と電気的に接続して減衰するのを防止する役割を果たすため、より高感度の振動センサーを得ることができると考えられること、また、多孔質樹脂シートと該多孔質樹脂シートに積層される層との間に電荷を保持し得る新たな界面を形成できる傾向にあるため、得られる振動センサーにおける多孔質樹脂シートの圧電率が向上すると考えられることによる。
 <振動伝達体>
 前記振動伝達体は、振動体に固定して使用され、大きさ、形状等は特に制限されない。前記振動伝達体は、振動体に固定される部分である振動体固定部と、図1のように、前記振動検出積層体を収容する収容空間を振動体との間に有する形状、または、図2のように、前記振動検出積層体を収容する収容空間を内部に有する形状であることが好ましい。図1のように圧電素子層2が振動伝達体3に接するように配置する場合、より感度良く振動体の振動を検知することができる等の点から、該振動伝達体3の圧電素子層2に接する側の面は、振動体5表面と略平行になるようにすることが好ましい。
 前記振動伝達体は、振動体に固定して使用されるため、振動体表面に本発明の一実施形態である振動センサーを固定するための締結体としての機能も有する。
 前記振動伝達体の材質としては、振動体からの振動を、なるべく減衰させることなく、圧電素子層の一方の面に伝達できる材質であれば限定されないが、振動体からの振動を効率よく圧電素子層の一方の面に伝達できる等の点から、振動伝達体に接する部分の振動体表面の材質の音響インピーダンス(Z1)と、振動伝達体の材質の音響インピーダンス(Z2)との比Z1/Z2が、好ましくは0.2~5.0、より好ましくは0.4~3.0、さらに好ましくは0.7~1.3の範囲にあるような材質が望ましい。
 前記音響インピーダンスZは、アルキメデス法によって算出される密度ρと、透過法によって測定される内部透過音速vから、Z=ρ×vの式で求められる。
 前記振動伝達体の材質としては、例えば、アルミニウム(Z=17×106kg/m2s)、SUS304(Z=45×106kg/m2s)、アクリル樹脂(Z=3.2×106kg/m2s)などを用いることができるが、通常、振動減衰の小さい剛性の高い材質であることが好ましく、振動伝達体に接する部分の振動体表面と同じ材質であることがより好ましい。
 なお、振動体からの振動を効率よく振動検出積層体の一方の面に伝達する等の点から、振動体表面と振動伝達体との間にインピーダンスマッチング層を介在させてもよい。
 前記振動伝達体を振動体に固定する方法としては、特に制限されず、従来公知の方法、例えば、接着力や(電)磁気力により固定する方法、締結具により固定する方法が挙げられ、必要にこれらの方法を組み合わせてもよい。
 <振動体>
 本発明の一実施形態である振動センサーによれば、取付・取扱い性が簡単であり、軽量・小型化が可能であるため、狭隘部等の所望の場所、特に、振動体表面が曲面等であっても容易に設置が可能である。このため、本発明の一実施形態である振動センサーが検知する対象である振動体としては特に制限されず、振動体自体の寸法変形(例:配管の径変化)が起こらない振動体であっても、容易に振動を検知することができる。
 前記振動体としては、例えば、配管、地盤、建物、車両、船舶、航空機、回転系部品等を含む機械が挙げられる。
 前記配管としては、例えば、水道配管、ガス配管、石化プラント配管、熱交換器配管、燃料配管、油空圧配管、薬液配管、食品プラント配管等が挙げられる。このような配管に本発明の一実施形態である振動センサーを用いることで、該センサーは、配管内流体の漏洩等の異常を検出する異常検出器としての役割も有する。
 また、前記回転系部品としては、例えば、ポンプ、圧縮機、モーター、エンジン、ベアリング、タービン、車輪等が挙げられる。このような部品に本発明の一実施形態である振動センサーを用いることで、該センサーは、回転系部品の異常を検出する異常検出器としての役割も有する。
 前記振動体表面の材質は、前記配管や部品等の表面の材質であり、例えば、金属、セラミックス、高分子(ゴム、樹脂)が挙げられる。
 本発明の一実施形態である振動センサーによれば、取付・取扱い性が簡単であり、振動体表面が曲面等であっても容易に設置が可能であるため、振動体表面の形状により、その使用場所が特に制限されることはないが、該表面形状としては、例えば、平面、曲面(円筒面、球面)、凹凸面が挙げられる。
 ≪振動センサー作製用キット≫
 本発明の一実施形態である振動センサー作製用キットは、振動体に固定して使用される振動伝達体と、圧電素子と、振動吸収体とを含み、前記振動体の振動が、前記圧電素子の一方の面において、前記振動吸収体により抑制され、圧電素子の他方の面において、振動伝達体により伝達されるように、前記圧電素子と振動吸収体とが、好ましくは、前記圧電素子と振動吸収体との積層体が配置されて使用される、キットである。
 このキットにより、前記本発明の一実施形態である振動センサーが作成される。つまり、該キットにおける振動伝達体は、本発明の一実施形態である振動センサーにおける振動伝達体に相当し、該キットにおける圧電素子は、本発明の一実施形態である振動センサーにおける圧電素子層に相当し、該キットにおける振動吸収体は、本発明の一実施形態である振動センサーにおける振動吸収層に相当する。
 ≪振動測定方法≫
 本発明の一実施形態である振動測定方法は、本発明の一実施形態である振動センサー(振動センサー作製用キットから得られる振動センサーを含む)を、振動体表面に設置することにより振動体の振動を検知する。具体的には、振動の有無、振動の大きさ等を検知することができる。
 前記設置としては、設置された振動センサー付振動体の構造が、前記関係を満たすように設置すれば特に制限されず、前述の振動伝達体を固定する方法と同様の方法等で設置すればよい。

Claims (11)

  1.  振動体に固定される振動伝達体と、
     圧電素子層と振動吸収層との積層体である振動検出積層体とを備え、
     前記振動体の振動が、前記圧電素子層の一方の面において、前記振動吸収層により抑制され、圧電素子層の他方の面において、振動伝達体により伝達されるように、前記振動検出積層体を有する、
     振動体の振動を検知する振動センサー。
  2.  前記振動吸収層の振動伝達率が1以下である、請求項1に記載の振動センサー。
  3.  前記振動吸収層が、ゲルからなる層、天然ゴムからなる層、合成ゴムからなる層、エラストマーからなる層、樹脂発泡体、繊維材料からなる織布または不織布、のいずれかを含む、請求項1または2に記載の振動センサー。
  4.  前記圧電素子層が多孔質樹脂シートを含む、請求項1~3のいずれか1項に記載の振動センサー。
  5.  前記圧電素子層が、ファイバーからなる不織布または織布を含み、
     該ファイバーは、分子および結晶構造に起因する双極子を持たないポリマー製である、請求項1~4のいずれか1項に記載の振動センサー。
  6.  前記ポリマーがポリテトラフルオロエチレンである、請求項5に記載の振動センサー。
  7.  前記振動伝達体に接する部分の振動体表面の材質の音響インピーダンス(Z1)と、前記振動伝達体の材質の音響インピーダンス(Z2)との比Z1/Z2が0.2~5.0の範囲にある、請求項1~6のいずれか1項に記載の振動センサー。
  8.  前記振動検出積層体のうち、振動吸収層が振動体に接する、請求項1~7のいずれか1項に記載の振動センサー。
  9.  請求項1~8のいずれか1項に記載の振動センサーを、振動体表面に設置することにより振動体の振動を検知する、振動測定方法。
  10.  振動体に固定して使用される振動伝達体と、
     圧電素子と、
     振動吸収体とを含み、
     前記振動体の振動が、前記圧電素子の一方の面において、前記振動吸収体により抑制され、圧電素子の他方の面において、振動伝達体により伝達されるように、前記圧電素子と振動吸収体とが配置されて使用される、
     振動センサー作製用キット。
  11.  請求項10に記載の振動センサー作製用キットから得られる振動センサーを、振動体表面に設置することにより振動体の振動を検知する、振動測定方法。
PCT/JP2017/004471 2016-02-09 2017-02-08 振動センサー、振動測定方法および振動センサー作製用キット WO2017138542A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017566965A JP6783255B2 (ja) 2016-02-09 2017-02-08 振動センサー、振動測定方法および振動センサー作製用キット

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-022589 2016-02-09
JP2016022589 2016-02-09

Publications (1)

Publication Number Publication Date
WO2017138542A1 true WO2017138542A1 (ja) 2017-08-17

Family

ID=59563170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004471 WO2017138542A1 (ja) 2016-02-09 2017-02-08 振動センサー、振動測定方法および振動センサー作製用キット

Country Status (2)

Country Link
JP (2) JP6783255B2 (ja)
WO (1) WO2017138542A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019195910A1 (pt) * 2018-04-12 2019-10-17 Faculdades Católicas Conjunto e método para medição de vazão de fluido
US11913828B2 (en) 2019-05-14 2024-02-27 Mitsubishi Electric Corporation Vibration sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS513378U (ja) * 1974-06-25 1976-01-12
JPS5170575U (ja) * 1974-11-29 1976-06-03
US20120326563A1 (en) * 2011-06-22 2012-12-27 Boum Seock Kim Ultrasonic sensor and method of manufacturing the same
JP2014178194A (ja) * 2013-03-14 2014-09-25 Nec Corp 振動検知装置
WO2015005420A1 (ja) * 2013-07-10 2015-01-15 日本バルカー工業株式会社 圧電性シート、該シートの製造方法および圧電積層体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55147632U (ja) * 1979-04-10 1980-10-23
JPH0579896A (ja) * 1991-09-24 1993-03-30 Idec Izumi Corp 感震装置
WO1995004262A1 (fr) * 1993-08-03 1995-02-09 Nippondenso Co., Ltd. Detecteur de cliquetis
JP3596364B2 (ja) * 1999-08-05 2004-12-02 松下電器産業株式会社 超音波送受波器および超音波流れ計測装置
EP2668485A1 (en) * 2011-01-30 2013-12-04 Aquarius Spectrum Ltd. Method and system for leak detection in a pipe network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS513378U (ja) * 1974-06-25 1976-01-12
JPS5170575U (ja) * 1974-11-29 1976-06-03
US20120326563A1 (en) * 2011-06-22 2012-12-27 Boum Seock Kim Ultrasonic sensor and method of manufacturing the same
JP2014178194A (ja) * 2013-03-14 2014-09-25 Nec Corp 振動検知装置
WO2015005420A1 (ja) * 2013-07-10 2015-01-15 日本バルカー工業株式会社 圧電性シート、該シートの製造方法および圧電積層体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019195910A1 (pt) * 2018-04-12 2019-10-17 Faculdades Católicas Conjunto e método para medição de vazão de fluido
US11913828B2 (en) 2019-05-14 2024-02-27 Mitsubishi Electric Corporation Vibration sensor

Also Published As

Publication number Publication date
JP6889315B2 (ja) 2021-06-18
JP2020165986A (ja) 2020-10-08
JPWO2017138542A1 (ja) 2018-12-06
JP6783255B2 (ja) 2020-11-11

Similar Documents

Publication Publication Date Title
JP6764928B2 (ja) 振動検出方法、振動センサー、振動検出装置および振動検出システム
JP6889315B2 (ja) 振動センサー、振動測定方法および振動センサー作製用キット
Wu et al. Acoustic-electric conversion and piezoelectric properties of electrospun polyvinylidene fluoride/silver nanofibrous membranes.
JP5615988B1 (ja) 圧電積層体
KR102327115B1 (ko) 일반적으로 음향 및 전자 제품 내의 하위 구성요소로서의 사용을 위한 복합재료 복층 필터링 구조물
JP6761618B2 (ja) 吸音材
Selleri et al. Self-sensing composite material based on piezoelectric nanofibers
JP7143524B2 (ja) 高分子複合圧電体および圧電フィルム
JP6142387B2 (ja) 歪みセンサ及びその製造方法
CN107646146A (zh) 由循环稳定、可逆且可伸展电极构成的机电换能器及其制造方法
EP4102857A1 (en) Piezoelectric film
TW202101793A (zh) 壓電膜
WO2015005420A1 (ja) 圧電性シート、該シートの製造方法および圧電積層体
JP6842279B2 (ja) 振動センサーおよび振動検出システム
KR101370581B1 (ko) 멤브레인 어셈블리
JP6493276B2 (ja) 吸音材
TW201945604A (zh) 不織布、纖維形成方法及不織布製造方法
TW202101791A (zh) 壓電薄膜
JPWO2015167013A1 (ja) 音波・衝撃検知素子
US20160367924A1 (en) Laminated nonwoven fabric, air purifier, and manufacturing method of laminated nonwoven fabric
JP6932536B2 (ja) 圧電積層体の製造方法および圧電積層体
KR101292088B1 (ko) 통기성 및 소수성을 갖는 다층 복합소재
JP2020022188A (ja) 音波検知素子
JP6235362B2 (ja) 圧電型振動センサー
KR102443251B1 (ko) 이중 스펀지 구조의 접촉대전발전기를 포함하는 타이어

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750263

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017566965

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17750263

Country of ref document: EP

Kind code of ref document: A1