WO2017138444A1 - 作業車両 - Google Patents

作業車両 Download PDF

Info

Publication number
WO2017138444A1
WO2017138444A1 PCT/JP2017/003897 JP2017003897W WO2017138444A1 WO 2017138444 A1 WO2017138444 A1 WO 2017138444A1 JP 2017003897 W JP2017003897 W JP 2017003897W WO 2017138444 A1 WO2017138444 A1 WO 2017138444A1
Authority
WO
WIPO (PCT)
Prior art keywords
turning
traveling
straight
output
transmission path
Prior art date
Application number
PCT/JP2017/003897
Other languages
English (en)
French (fr)
Inventor
圭将 岩村
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to KR1020187011156A priority Critical patent/KR102050679B1/ko
Priority to US16/076,653 priority patent/US10926795B2/en
Priority to EP17750168.1A priority patent/EP3415404B1/en
Publication of WO2017138444A1 publication Critical patent/WO2017138444A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D11/00Steering non-deflectable wheels; Steering endless tracks or the like
    • B62D11/001Steering non-deflectable wheels; Steering endless tracks or the like control systems
    • B62D11/003Electric or electronic control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D11/00Steering non-deflectable wheels; Steering endless tracks or the like
    • B62D11/02Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides
    • B62D11/06Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides by means of a single main power source
    • B62D11/08Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides by means of a single main power source using brakes or clutches as main steering-effecting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D11/00Steering non-deflectable wheels; Steering endless tracks or the like
    • B62D11/02Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides
    • B62D11/06Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides by means of a single main power source
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D11/00Steering non-deflectable wheels; Steering endless tracks or the like
    • B62D11/02Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides
    • B62D11/06Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides by means of a single main power source
    • B62D11/10Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides by means of a single main power source using gearings with differential power outputs on opposite sides, e.g. twin-differential or epicyclic gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D11/00Steering non-deflectable wheels; Steering endless tracks or the like
    • B62D11/02Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides
    • B62D11/06Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides by means of a single main power source
    • B62D11/10Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides by means of a single main power source using gearings with differential power outputs on opposite sides, e.g. twin-differential or epicyclic gears
    • B62D11/14Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides by means of a single main power source using gearings with differential power outputs on opposite sides, e.g. twin-differential or epicyclic gears differential power outputs being effected by additional power supply to one side, e.g. power originating from secondary power source
    • B62D11/18Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides by means of a single main power source using gearings with differential power outputs on opposite sides, e.g. twin-differential or epicyclic gears differential power outputs being effected by additional power supply to one side, e.g. power originating from secondary power source the additional power supply being supplied hydraulically
    • B62D11/183Control systems therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/76Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
    • E02F3/80Component parts
    • E02F3/84Drives or control devices therefor, e.g. hydraulic drive systems
    • E02F3/841Devices for controlling and guiding the whole machine, e.g. by feeler elements and reference lines placed exteriorly of the machine
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/20Off-Road Vehicles
    • B60Y2200/22Agricultural vehicles
    • B60Y2200/221Tractors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/76Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
    • E02F3/7609Scraper blade mounted forwardly of the tractor on a pair of pivoting arms which are linked to the sides of the tractor, e.g. bulldozers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/02Travelling-gear, e.g. associated with slewing gears
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/16Cabins, platforms, or the like, for drivers

Definitions

  • the present invention relates to a work vehicle such as a farm work machine such as a tractor or a combiner or a special work machine such as a crane truck or a back fore.
  • a work vehicle such as a farm work machine such as a tractor or a combiner or a special work machine such as a crane truck or a back fore.
  • a work vehicle such as a farm vehicle such as a tractor or a combiner or a construction machine such as a crawler crane has been provided with two hydraulic continuously variable transmissions (HST) to which power from an engine is transmitted.
  • HST continuously variable transmissions
  • Some types of continuously variable transmissions output straight power and turning power based on engine output.
  • the applicant of the present application previously proposed a work vehicle in Patent Document 1 that can turn by combining the straight power and the turning power output from each of the two hydraulic continuously variable transmissions with the left and right planetary gear mechanisms. ing.
  • HMT hydraulic mechanical transmission
  • the applicant of the present application has previously made a series-type (in-line type) hydraulic mechanical transmission in which the hydraulic pump and the hydraulic motor are arranged in series so that the input shaft of the hydraulic pump and the output shaft of the hydraulic motor are positioned concentrically. Is proposed in Patent Document 2.
  • an output shaft is fitted on an input shaft to which power is transmitted from an engine so as to be relatively rotatable. Further, a hydraulic pump, a cylinder block, and a hydraulic motor are fitted on the input shaft. The cylinder block alone serves as both a hydraulic pump and a hydraulic motor, and power is transmitted from the hydraulic motor to the output shaft. For this reason, unlike a general hydraulic mechanical transmission, an in-line type hydraulic mechanical transmission can output a combination of hydraulic shift power and engine power without interposing a planetary gear mechanism. It has the advantage that transmission efficiency can be obtained.
  • JP 2002-059753 A Japanese Patent Laying-Open No. 2005-083497
  • the controller that controls the traveling operation needs to control the swash plate angles of the two hydraulic continuously variable transmissions by integrating the signals from the operation tools for main shift, forward / reverse, and turning.
  • the control flow must be executed by the controller. For this reason, the controller has a high calculation load in the control flow of the traveling operation, which may cause the operator to feel uncomfortable.
  • This invention makes it a technical subject to provide the work vehicle which improved after examining the above present conditions.
  • a work vehicle includes an engine mounted on a traveling machine body, a straight traveling system transmission path having a first continuously variable transmission, and a turning system transmission path having a second continuously variable transmission, wherein the straight traveling system transmission path
  • a control unit that controls the output of the straight traveling system transmission path and the output of the turning system transmission path in an interlocking manner
  • a power transmission mechanism that interrupts power transmission from the linear transmission path, and the control unit, when power transmission from the linear transmission path is interrupted by the power transmission mechanism, By limiting the output of the turning system transmission path, the reversing operation of the left and right traveling parts is prohibited.
  • the work vehicle includes a speed change operation tool that specifies an output of the straight travel system transmission path and a detector that detects an output of the straight travel system transmission path, and the control unit receives a command from the speed change operation tool.
  • the output of the turning system transmission path is set by alternatively selecting the value and the actual measurement value from the detector, and the power transmission from the straight transmission system transmission path is interrupted by the power transmission mechanism. In this case, the output of the turning transmission path may be set based on the actual measurement value from the detector.
  • the control unit when the power transmission mechanism cuts off power transmission from the linear transmission path, the control unit is configured such that one traveling direction of the traveling unit is opposite to the traveling direction of the traveling machine body.
  • the output of the turning system transmission path may be limited by limiting the coefficient by which the actual measurement value from the detector is multiplied.
  • the work vehicle includes a steering handle that can be rotated, and the control unit has a steering angle of a predetermined angle when power transmission from the linear transmission path is interrupted by the power transmission mechanism.
  • the output of the turning transmission path may be limited by limiting the coefficient by which the actual measurement value from the detector is multiplied.
  • control unit includes a first control unit that controls an output of the straight traveling system transmission path, and a second control unit that controls an output of the turning system transmission path.
  • the output of the turning transmission path may be set by the second control section receiving the output of the straight traveling transmission path set by the control section.
  • the power transmission mechanism cuts off the power transmission from the straight traveling system transmission path
  • the reverse traveling operation by the left and right traveling parts is prohibited, so that the straight traveling system transmission path is operating with inertia.
  • the differential output from the swivel transmission path is limited. Therefore, even when the braking action is not acting on the output side of the straight traveling system transmission path, it is possible to always set the output of the turning system transmission path optimal for the traveling state of the traveling machine body.
  • the traveling machine body is prevented from continuously performing a pivotal turn, and the reaction force such as frictional force from the ground against the traveling unit is prevented. You can drive safely by applying a braking action by force.
  • the present invention it is possible to select the command value from the shifting operation tool and the actual measurement value from the detector to set the output of the turning system transmission path, so that the traveling state of the traveling machine body is set.
  • the output of the optimal turning system transmission path can always be set. Therefore, the operator can stably maneuver even when the traveling vehicle body turns, thereby improving the maneuverability and executing a stable driving operation.
  • the output of the turning system transmission path is set with an actual measurement value when the power transmission mechanism is cut off, even if the command value based on the shifting operation tool and the actual measurement value are greatly different, It is possible to turn at a turning center and a turning radius according to the traveling state of the traveling machine body. Therefore, the operator can operate the traveling body without a sense of incongruity, and the smooth maneuverability can be contributed to the operator. In addition, the operator can stably maneuver even when the traveling machine body turns, thereby improving the maneuverability and executing a stable driving operation.
  • the traveling aircraft by determining the speed ratio of the left and right traveling parts when turning based on the turning angle of the steering handle, the traveling aircraft can be turned according to the operation amount of the steering handle, It can contribute to the improvement of sex.
  • the output of the straight traveling system transmission path and the output of the turning system transmission path are linked, not only the vehicle speed at the time of turning becomes close to the operator's sense of steering, but also the behavior of the traveling machine body can be stabilized.
  • control can be performed in a distributed manner by each of the first and second control units, it is possible to reduce the amount of calculation of each, and to execute travel control with good responsiveness.
  • the output from the first control unit is received and the output of the turning system transmission path is set, so that the running control is executed more smoothly without complicating the calculation. .
  • FIGS. 1 to 6 the traveling machine body 2 of the tractor 1 is supported by a pair of left and right traveling crawlers 3 as traveling portions.
  • a diesel engine 5 (hereinafter simply referred to as an engine) is mounted on the front of the traveling machine body 2, and the traveling crawler 3 is driven by the engine 5 so that the tractor 1 travels forward and backward.
  • the engine 5 is covered with a bonnet 6.
  • a cabin 7 is installed on the upper surface of the traveling machine body 2. Inside the cabin 7, a steering seat 8 and a steering handle 9 for steering the traveling crawler 3 are arranged. Steps 10 on which the operator gets on and off are provided on the left and right outer sides of the cabin 7.
  • a fuel tank 11 for supplying fuel to the engine 5 is provided below the left and right sides of the cabin 7.
  • the fuel tank 11 is covered with left and right rear fenders 21.
  • a battery 817 that supplies power to the front of the fuel tank 11 is provided on the left side of the cabin 7, and is covered with the left rear fender 21 together with the fuel tank 11.
  • the traveling machine body 2 includes an engine frame 14 having a front bumper 12 and a turning mission case (drive axle) 13 and left and right machine frame 15 detachably fixed to a rear portion of the engine frame 14.
  • the axle 16 is rotatably projected outwardly from the left and right ends of the turning mission case 13, and axle cases 90 covering the axle 16 are provided on both the left and right sides of the turning mission case 13.
  • Drive sprockets 62 are attached to the left and right ends of the turning mission case 13 via axles 16.
  • the rear portion of the body frame 15 is connected to a straight transmission case 17 for appropriately shifting the rotational power from the engine 5 and transmitting it to the drive sprocket 62.
  • left and right track frames 61 are arranged on the lower surface side of the traveling machine body 2.
  • the track frame 61 extends in the front-rear direction and is provided in a pair of left and right sides, and is positioned on both outer sides of the engine frame 14 and the body frame 15.
  • the left and right track frames 61 are connected to the engine frame 14 and the body frame 15 by a lower frame 67 extending in the left-right direction.
  • the front ends of the left and right track frames 61 are connected to axle cases 90 provided on both left and right sides of the turning mission case 13.
  • a step 10a on which the operator gets on and off is provided on the outside of each of the left and right track frames 61.
  • the left and right central part of the lower frame 67 is fixed to the rear side surface of the engine frame 14 via a connection bracket 72.
  • the left and right ends of a beam frame 68 extending in the left-right direction are connected to the middle part of the left and right track frames 61 in the front-rear direction.
  • the center of the beam frame 68 is connected to the center of the lower frame 67 via a reinforcing frame 70 provided in the front-rear direction.
  • Rear beams 73 projecting inward at the rear of the left and right track frames 61 are connected to rear housings 74 fixed to the left and right side surfaces of the straight traveling mission case 17 so that the rear part of the track frame 61 is connected to the left and right side surfaces of the transmission case 17. Fix it.
  • the track frame 61 includes a drive sprocket 62 that transmits the power of the engine 5 to the traveling crawler 3, a tension roller 63 that maintains the tension of the traveling crawler 3, and a plurality of track rollers that hold the ground side of the traveling crawler 3 in a grounded state. 64 and an intermediate roller 65 that holds the non-grounding side of the traveling crawler 3.
  • the driving sprocket 62 supports the front side of the traveling crawler 3
  • the tension roller 63 supports the rear side of the traveling crawler 3
  • the track roller 64 supports the grounding side of the traveling crawler 3
  • the intermediate roller 65 supports the non-traveling crawler 3. Support the ground side.
  • the tension roller 63 is rotatably supported by a rear end of a tension frame 69 configured to be extendable and retractable rearward from the rear end of the track frame 61.
  • the track roller 64 is rotatably supported on the front and back of an equalizer frame 71 supported on the lower part of the track frame 61 so as to be swingable back and forth.
  • a front dozer 80 can be mounted on the front of the tractor 1.
  • a pair of left and right dozer brackets 81 are fixed to the front side surface of the engine frame 14, the axle case 90, and the lower frame 67, and a U-shaped (U-shaped) support arm 83 of the front dozer 80 in the plan view is
  • the dozer bracket 81 is pivotally supported so as to be detachable on the outside (machine outside).
  • the left and right dozer brackets 81 have a front end inside (machine inside) connected to the side surfaces of the left and right engine frames 14, a rear end lower side connected to the upper surface of a middle part of the lower frame 67, and a midway part in the middle of the axle case 90. It is connected so that it can be held up and down.
  • the dozer bracket 81 can be secured to the three bodies of the engine frame 14, the axle case 90, and the lower frame 67, thereby ensuring the strength to withstand heavy work by the front dozer 80.
  • a hydraulic lifting mechanism 22 that lifts and lowers a ground working machine (not shown) such as a rotary tiller is detachably attached to the rear portion of the straight traveling case 17.
  • the ground work machine is connected to the rear part of the straight traveling transmission case 17 via a three-point link mechanism 111 including a pair of left and right lower links 23 and a top link 24.
  • a PTO shaft 25 for transmitting a PTO driving force to a working machine such as a rotary tiller is provided on the rear side surface of the straight traveling case 17 so as to protrude rearward.
  • a flywheel 26 is attached to the rear end of the output shaft (piston rod) 5a of the engine 5 projecting rearward from the rear side surface of the engine 5.
  • a main shaft 27 projecting rearward from the flywheel 26 and an input counter shaft 28 projecting forward from the front side of the straight traveling mission case 17 are connected via a power transmission shaft 29 having universal shaft joints at both ends.
  • the straight output shaft 30 that protrudes forward from the lower front portion of the straight transmission case 17 has a linear input counter that protrudes backward from the turning mission case 13 via a power transmission shaft 31 having universal joints at both ends.
  • the shaft 508 is connected.
  • the turning input counter shaft 712 is connected.
  • the hydraulic lifting mechanism 22 is provided with lift fulcrums on the left and right hydraulic lift cylinders 117 that are controlled by operation of the working portion position dial 51 and the upper lid of the transmission case 17 for straight traveling.
  • Left and right lift arms 120 that pivotally support the base end side through a shaft so as to be rotatable, and left and right lift rods 121 that connect the left and right lift arms 120 to the left and right lower links 23 are provided.
  • a part of the right lift rod 121 is formed by a horizontal cylinder 122 for hydraulic control, and the length of the right lift rod 121 is configured to be adjustable by the horizontal cylinder 122.
  • the piston of the horizontal cylinder 122 is expanded and contracted to change the length of the right lift rod 121.
  • the angle is configured to change.
  • a steering column 32 is disposed in front of the control seat 8 in the cabin 7.
  • the steering column 32 is erected in a state of being embedded in the back side of the dashboard 33 disposed on the front side inside the cabin 7.
  • a steering handle 9 having a substantially round shape in plan view is attached to the upper end side of the handle shaft 921 that protrudes upward from the upper surface of the steering column 32.
  • a steering angle (steering angle) detection mechanism 880 having a steering angle sensor 821 for detecting the steering angle of the steering handle 9 is connected to the lower end of the handle shaft 921 in the steering column 32.
  • a brake pedal 35 for braking the traveling machine body 2 is disposed on the right side of the steering column 32.
  • the forward / reverse switching lever 36 (reverser lever) for switching the traveling direction of the traveling machine body 2 between forward and reverse, and the hydraulic clutches 537, 539, and 541 for power transmission are shut off.
  • a clutch pedal 37 for operation is provided.
  • a parking brake lever 43 for holding the brake pedal 35 in the depressed position is disposed on the rear side of the steering column 32.
  • An erroneous operation preventing body 38 (reverser guard) extending along the forward / reverse switching lever 36 is disposed on the left side of the steering column 32 and below the forward / reverse switching lever 36.
  • an erroneous operation prevention body 38 as a contact preventer below the forward / reverse switching lever 36, the operator is prevented from inadvertently contacting the forward / reverse switching lever 36 when getting on and off the tractor 1.
  • An operation display panel 39 incorporating a liquid crystal panel is provided on the upper rear side of the dashboard 33.
  • Accelerator pedal 41 for controlling the rotational speed of the engine 5 or the vehicle speed is disposed on the right side of the steering column 32 on the floor plate 40 in front of the control seat 8 in the cabin 7. Note that substantially the entire top surface of the floor plate 40 is formed as a flat surface.
  • Side columns 42 are arranged on both the left and right sides of the control seat 8. Between the control seat 8 and the left side column 42, an ultra-low speed lever 44 (creep lever) for forcibly and greatly reducing the traveling speed (vehicle speed) of the tractor 1 and a traveling sub-shift in the straight traveling mission case 17 are provided.
  • An auxiliary transmission lever 45 for switching the output range of the gear mechanism and a PTO transmission lever 46 for switching the drive speed of the PTO shaft 25 are arranged.
  • an armrest 49 for placing the arm and elbow of the operator seated on the control seat 8 is provided.
  • the armrest 49 is configured separately from the control seat 8 and has a main transmission lever 50 that increases and decreases the traveling speed of the tractor 1 and a dial type that manually changes and adjusts the height position of a ground working machine such as a rotary tiller.
  • Working part position dial 51 (elevating dial).
  • the armrest 49 is configured to be able to be turned up and rotated in a plurality of stages with the rear end lower part as a fulcrum.
  • the vehicle speed of the traveling machine body 2 increases when the main transmission lever 50 is tilted forward, while the vehicle speed of the traveling machine body 2 decreases when the main transmission lever 50 is tilted backward.
  • the armrest 49 includes a potentiometer (variable resistor) type main transmission sensor 822 (see FIG. 13) that detects the forward / backward tilt of the main transmission lever 50.
  • the right side column 42 has, in order from the front side, an operation monitor 55 having a touch panel function and capable of commanding each part of the tractor 1, a throttle lever 52 for setting and maintaining the rotational speed of the engine 5, and the PTO shaft 25.
  • a plurality of hydraulic control levers for switching between a PTO clutch switch 53 for intermittently transmitting power to a working machine such as a rotary tiller and a hydraulic external take-off valve 430 disposed on the upper surface side of the straight traveling mission case 17 54 (SCV lever) and a single-acting switch 56 for switching the actuating double-acting valve mechanism 431 disposed on the front surface of the rear housing 74.
  • the hydraulic external take-off valve 430 is for controlling supply of hydraulic oil to hydraulic equipment of another work machine such as a front loader retrofitted to the tractor 1.
  • the double-acting valve mechanism 431 is for operating the hydraulic lift cylinder 117 in a double-acting manner by operating together with the elevating valve mechanism 652 disposed on the upper surface side of the straight traveling mission case 17.
  • a brake pedal support bracket 916 that supports the brake pedal shaft 755 is fixed to the back surface of the board support plate (air cut plate) 901 (the control seat 8 side).
  • the base end boss portion 35a of the brake pedal 35 is fitted on the brake pedal shaft 755, and the base end boss portion 35a of the brake pedal 35 is connected so as to rotate integrally with the brake pedal shaft 755.
  • the pedal shaft arm 756 protruding forward is fixed to both ends of the brake pedal shaft 755, and the pedal shaft arm 756 rotates together with the brake pedal shaft 755.
  • the base end boss portion of the clutch pedal 37 is also fitted to the brake pedal shaft 755 so as to be rotatable.
  • a clutch position sensor 829 (see FIG. 13) and a brake position sensor 828 are fixed to the left and right ends of the brake pedal shaft 755, respectively.
  • a brake switch 851 is disposed at a position facing the pedal arm 35b of the brake pedal 35, and a clutch switch 852 (see FIG. 13) is disposed at a position facing the pedal arm 37b of the clutch pedal 37.
  • a pair of left and right brake operation shafts 757 are supported on the lower left and right sides of the board support plate (air cut plate) 901.
  • a link boss body 758 connected to the brake arm 752 of the brake mechanism 751 in the turning mission case 13 is rotatably fitted to the left brake operation shaft 757.
  • a link arm 759 projecting from the outer peripheral surface of the link boss body 758 has a two-stage expansion / contraction that makes the braking operation of the brake mechanism 751 stepwise and the lower end of a vertically long link rod 762 connected to the left pedal shaft arm 756.
  • the upper end of the link body 763 is connected.
  • the lower end of the two-stage telescopic link body 763 is connected to the tip of the link arm 767 at the rear end of the brake rod 766.
  • the brake rod 766 is supported by link support brackets 764 and 765 fixed to the engine frame 14 and extends in the front-rear direction.
  • the link arm 768 at the front end of the brake rod 766 is connected to the brake arm 752 of the brake mechanism 751 in the turning mission case 13 via the connecting plate 753.
  • the left end of the brake pedal shaft 755 is connected to the brake arm 752 of the brake mechanism 751 via the link rod 762, the two-stage telescopic link body 763, and the brake rod 766. Therefore, as the brake pedal shaft 755 rotates as the brake pedal 35 is depressed, the brake arm 752 can be rotated, and the braking operation by the brake mechanism 751 can be executed. At this time, when the two-stage telescopic link body 763 acts, the amount of stepping for sudden braking is larger (the brake mechanism 751) than when the amount of stepping for adjusting the traveling speed is small (the play area of the brake mechanism 751). The braking force applied to the brake pedal 35 is increased in the braking region).
  • a link boss body 760 having a link arm 761 is rotatably fitted on the right brake operation shaft 757.
  • the upper end of a two-stage telescopic link body 769 for stepping on the brake pedal 35 is connected to the right pedal shaft arm 756, and the link arm 761 projecting from the outer peripheral surface of the link boss body 760 has two stages.
  • the lower end of the telescopic link body 769 is connected.
  • the parking brake lever 43 is connected to one end of the locking member 771 via the parking brake arm 770.
  • the locking member 771 having an arcuate side view is fixed to the brake pedal support bracket 916.
  • a locking plate 775 that is engaged with the locking claw of the locking member 771 is provided on the left side surface of the pedal arm 35b of the brake pedal 35.
  • the internal structure of the straight traveling mission case 17 and the turning mission case 13 and the power transmission system of the tractor 1 will be described with reference mainly to FIG. 4 to FIG. 6, FIG. 10, and FIG.
  • a hydraulic mechanical continuously variable transmission 500 for straight traveling there are a hydraulic mechanical continuously variable transmission 500 for straight traveling, a mechanical creep transmission gear mechanism 502 for shifting rotational power via a forward / reverse switching mechanism 501, which will be described later, and a traveling auxiliary gear.
  • a transmission gear mechanism 503 is disposed.
  • a forward / reverse switching mechanism 501 that switches the rotational power from the hydraulic mechanical continuously variable transmission 500 in the forward or reverse direction is disposed in the intermediate chamber of the transmission case 17 for straight travel.
  • a PTO transmission mechanism 505 that appropriately changes the rotational power from the engine 5 and transmits it to the PTO shaft 25 is disposed in the rear chamber of the straight traveling mission case 17.
  • the creep transmission gear mechanism 502 and the traveling auxiliary transmission gear mechanism 503 correspond to a traveling transmission gear mechanism that multi-shifts the transmission output via the forward / reverse switching mechanism 501.
  • a pump case 480 accommodating a working machine hydraulic pump 481 driven by the rotational power of the engine 5 and a traveling hydraulic pump 482 is attached to the front part of the right outer surface of the straight traveling case 17.
  • the flywheel 26 is directly connected to the output shaft 5a of the engine 5 protruding rearward from the rear side of the engine 5.
  • An input counter shaft 28 projecting forward from the front side of the straight traveling mission case 17 is connected to a main driving shaft 27 projecting rearward from the flywheel 26 through a power transmission shaft 29 having universal joints at both ends.
  • the rotational power of the engine 5 is transmitted to the input counter shaft 28 of the straight traveling mission case 17 via the main driving shaft 27 and the power transmission shaft 29, and the hydraulic mechanical continuously variable transmission 500 and the creep transmission gear mechanism 502 or the traveling auxiliary gear
  • the speed is appropriately changed by the transmission gear mechanism 503.
  • the shifting power via the creep transmission gear mechanism 502 or the traveling auxiliary transmission gear mechanism 503 is transferred to the gear mechanism in the turning mission case 13 via the linear output shaft 30, the power transmission shaft 31, and the linear input counter shaft 508. Communicated.
  • a main transmission output shaft 512 is concentrically disposed on a main transmission input shaft 511, and a hydraulic pump unit 521, a cylinder block, and a hydraulic motor unit 522 are arranged in series.
  • a main transmission input gear 513 is fitted on the rear end side of the input counter shaft 28 so as not to be relatively rotatable.
  • An input transmission gear 514 that is always meshed with the main transmission input gear 513 is fixed to the rear end side of the main transmission input shaft 511.
  • the rotational power of the input counter shaft 28 is transmitted to the hydraulic mechanical continuously variable transmission 500 via the main transmission input gear 513, the input transmission gear 514, and the main transmission input shaft 511.
  • a main transmission high-speed gear 516, a main transmission reverse gear 517, and a main transmission low-speed gear 515 are fitted on the main transmission output shaft 512 so as not to rotate relative to each other for traveling output.
  • the input side of the main transmission input shaft 511 and the output side of the main transmission output shaft 512 are located on the same side (both rear as viewed from the hydraulic mechanical continuously variable transmission 500).
  • the hydraulic mechanical continuously variable transmission 500 includes a variable displacement hydraulic pump unit 521 and a constant displacement hydraulic motor unit 522 that is operated by high-pressure hydraulic oil discharged from the hydraulic pump unit 521.
  • the hydraulic pump unit 521 is provided with a pump swash plate 523 that can change the inclination angle with respect to the axis of the main transmission input shaft 511 and adjust the amount of hydraulic oil supplied.
  • a main transmission hydraulic cylinder 524 that changes and adjusts the inclination angle of the pump swash plate 523 with respect to the axis of the main transmission input shaft 511 is linked to the pump swash plate 523.
  • the main transmission hydraulic cylinder 524 is assembled to the hydraulic mechanical continuously variable transmission 500 and unitized as one member.
  • the pump swash plate 523 of the embodiment is angle-adjusted in a range between one (positive) maximum inclination angle and the other (negative) maximum inclination angle with a neutral angle of substantially zero inclination (before and after including zero) interposed therebetween. It is possible to set an angle that is inclined to one of the two times when the vehicle speed of the traveling machine body 2 is the lowest (in this case, an inclination angle that is negative and near the maximum).
  • the input side plunger group is not pushed or pulled by the hydraulic pump unit 521.
  • the cylinder block rotates in the same direction and substantially the same rotational speed as the main transmission input shaft 511, there is no hydraulic oil supply from the hydraulic pump unit 521, so the output side plunger group of the cylinder block and thus the hydraulic motor unit 522 are not driven.
  • the main transmission output shaft 512 rotates at substantially the same rotational speed as the main transmission input shaft 511.
  • a planetary gear mechanism 526 that is a forward high-speed gear mechanism and a low-speed gear pair 525 that is a forward low-speed gear mechanism are disposed on the rear side of the input counter shaft 28.
  • the planetary gear mechanism 526 includes a sun gear 531 that rotates integrally with an input-side transmission gear 529 that is rotatably supported on the input counter shaft 28, a carrier 532 that rotatably supports a plurality of planetary gears 533 on the same radius,
  • a ring gear 534 having internal teeth on the inner peripheral surface is provided.
  • the sun gear 531 and the ring gear 534 are rotatably fitted on the input counter shaft 28.
  • the carrier 532 is fitted on the input counter shaft 28 so as not to be relatively rotatable.
  • the sun gear 531 meshes with each planetary gear 533 of the carrier 532 from the inside of the radius. Further, the inner teeth of the ring gear 534 mesh with the planetary gears 533 from the radially outer side.
  • An output side transmission gear 530 that rotates integrally with the ring gear 534 is also rotatably supported on the input counter shaft 28.
  • the input-side low-speed gear 527 and the output-side low-speed gear 528 constituting the low-speed gear pair 525 are integrated, and can rotate between the planetary gear mechanism 526 and the main transmission input gear 513 in the input counter shaft 28. It is pivotally supported.
  • an input counter shaft 28, a main transmission input shaft 511, and a traveling relay shaft 535 extending in parallel with the main transmission output shaft 512 and a traveling transmission shaft 536 are arranged.
  • a forward / reverse switching mechanism 501 is provided on a travel relay shaft 535 serving as a transmission shaft. That is, the traveling relay shaft 535 has a forward high-speed gear 540 coupled by a wet multi-plate forward high-speed hydraulic clutch 539, a reverse gear 542 coupled by a wet multi-plate reverse hydraulic clutch 541, and a wet multi-plate.
  • a forward low-speed gear 538 connected by a forward low-speed hydraulic clutch 537 of the mold is fitted.
  • a travel relay gear 543 is fitted between the forward high speed hydraulic clutch 539 and the reverse gear 542 in the travel relay shaft 535 so as not to be relatively rotatable.
  • a travel transmission gear 544 that always meshes with the travel relay gear 543 is fitted to the travel transmission shaft 536 so as not to be relatively rotatable.
  • the main transmission low speed gear 515 of the main transmission output shaft 512 is always meshed with the input low speed gear 527 of the low speed gear pair 525 on the input counter shaft 28 side, and the output low speed gear 528 is always meshed with the forward low speed gear 538.
  • the main transmission high speed gear 516 of the main transmission output shaft 512 is always meshed with the input transmission gear 529 of the planetary gear mechanism 526 on the input counter shaft 28 side, and the output transmission gear 530 is always meshed with the forward high speed gear 540.
  • a main transmission reverse gear 517 of the main transmission output shaft 512 is always meshed with the reverse gear 542.
  • the forward low-speed hydraulic clutch 537 or the forward high-speed hydraulic clutch 539 When the forward / reverse switching lever 36 is operated to the forward side, the forward low-speed hydraulic clutch 537 or the forward high-speed hydraulic clutch 539 is in a power connection state, and the forward low-speed gear 538 or forward high-speed gear 540 and the travel relay shaft 535 are connected to each other so as not to be relatively rotatable. Is done. As a result, forward low-speed or high-speed rotational power is transmitted from the main transmission output shaft 512 to the travel relay shaft 535 via the low-speed gear pair 525 or the planetary gear mechanism 526, and power is transmitted from the travel relay shaft 535 to the travel transmission shaft 536. Communicated.
  • the reverse hydraulic clutch 541 When the forward / reverse switching lever 36 is operated to the reverse side, the reverse hydraulic clutch 541 enters a power connection state, and the reverse gear 542 and the travel relay shaft 535 are coupled so as not to be relatively rotatable. As a result, the reverse rotational power is transmitted from the main transmission output shaft 512 to the traveling relay shaft 535 via the main transmission reverse gear 517 and the reverse gear 542, and the motive power is transmitted from the traveling relay shaft 535 to the traveling transmission shaft 536.
  • FIG. 10 shows the relationship between the hydraulic oil discharge amount (inclination angle of the pump swash plate 523) of the hydraulic mechanical continuously variable transmission 500 and the vehicle speed of the tractor 1.
  • the pump swash plate 523 is negative and has an inclination angle near the maximum (reverse rotation inclination) by driving the main speed change hydraulic cylinder 524. (See white circles), the main transmission output shaft 512 and the travel relay shaft 535 are in the lowest speed rotation state (substantially zero). As a result, the vehicle speed of the tractor 1 becomes substantially zero.
  • the pump swash plate 523 When the main transmission lever 50 is operated from the neutral to the intermediate speed while the forward / reverse switching lever 36 is operated to the forward side, the pump swash plate 523 is negative and maximum when the main transmission hydraulic cylinder 524 is driven. It changes from a nearby inclination angle (reverse rotation inclination angle) through zero to a positive and maximum vicinity inclination angle (forward rotation inclination angle) (see white squares), and from the hydraulic motor unit 522 to the main transmission output shaft 512. The speed change power is increased from approximately zero to high speed. At this time, the forward low-speed hydraulic clutch 537 is in a power connection state, and the forward low-speed gear 538 or the forward high-speed gear 540 and the travel relay shaft 535 are connected so as not to be relatively rotatable.
  • the forward low-speed rotational power is transmitted from the main transmission output shaft 512 to the traveling relay shaft 535 via the low-speed gear pair 525, and the traveling relay shaft 535 is rotated at the lowest speed by the increased power to the main transmission output shaft 512. It changes from the state to the forward intermediate speed rotation state (refer to the forward low speed region FL). Then, power is transmitted from the travel relay shaft 535 to the travel transmission shaft 536.
  • the inclination angle is positive and near the maximum by driving the main transmission hydraulic cylinder 524.
  • (Forward rotation tilt angle) changes from zero to a negative and maximum tilt angle (reverse rotation tilt angle) through zero, and the pump swash plate 523 shifts the shift power from the hydraulic motor unit 522 to the main shift output shaft 512 from a high speed. Decelerate to almost zero.
  • the forward high speed hydraulic clutch 539 is in a power connection state, and the forward high speed gear 540 and the travel relay shaft 535 are coupled so as not to be relatively rotatable.
  • forward high speed rotational power is transmitted from the main transmission output shaft 512 to the travel relay shaft 535 via the planetary gear mechanism 526. That is, after the power from the engine 5 and the deceleration power to the main transmission output shaft 512 are combined in the planetary gear mechanism 526, the travel relay shaft 535 is moved from the forward intermediate speed rotation state to the forward maximum speed rotation state by the combined power. Change (see forward high speed range FH). Then, power is transmitted from the travel relay shaft 535 to the travel transmission shaft 536.
  • the traveling machine body 2 has the highest speed.
  • the pump swash plate 523 is negative by the drive of the main transmission hydraulic cylinder 524 and the inclination angle near the maximum is reached. It changes from (reverse rotation tilt angle) to a positive and near-maximum tilt angle (forward rotation tilt angle) through zero, and the shift power from the hydraulic motor unit 522 to the main shift output shaft 512 is increased from substantially zero to high speed.
  • the reverse hydraulic clutch 541 is in a power connection state, and the reverse gear 542 and the travel relay shaft 535 are coupled so as not to be relatively rotatable.
  • the reverse rotational power is transmitted from the main transmission output shaft 512 to the traveling relay shaft 535 via the main transmission reverse gear 517 and the reverse gear 542, and the traveling relay shaft 535 is driven by the increased power to the main transmission output shaft 512. Changes from the lowest speed rotation state to the reverse high speed rotation state (see reverse region R). Then, power is transmitted from the travel relay shaft 535 to the travel transmission shaft 536.
  • a transmission gear 547 and a creep gear 548 are provided on the rear side of the travel counter shaft 545.
  • the transmission gear 547 is rotatably fitted to the travel counter shaft 545 and connected to the travel transmission shaft 536 so as to rotate integrally.
  • the creep gear 548 is rotatably fitted on the travel counter shaft 545.
  • a creep shifter 549 is spline-fitted between the transmission gear 547 and the creep gear 548 of the travel counter shaft 545 so as not to be relatively rotatable and slidable in the axial direction.
  • the creep shifter 549 slides by turning the ultra low speed lever 44 on and off, and the transmission gear 547 and the creep gear 548 are alternatively connected to the travel counter shaft 545.
  • a reduction gear pair 550 is rotatably fitted to a portion of the auxiliary transmission shaft 546 in the front chamber.
  • the input side reduction gear 551 and the output side reduction gear 552 constituting the reduction gear pair 550 have an integral structure, and the transmission gear 547 of the travel counter shaft 545 always meshes with the input side reduction gear 551 of the auxiliary transmission shaft 546,
  • the creep gear 548 is always meshed with the output side reduction gear 552.
  • a low speed relay gear 553 and a high speed relay gear 554 are provided on the front side of the travel counter shaft 545.
  • the low speed relay gear 553 is fixed to the travel counter shaft 545.
  • the high-speed relay gear 554 is fitted on the travel counter shaft 545 so as not to be relatively rotatable.
  • a low-speed gear 555 that meshes with the low-speed relay gear 553 and a high-speed gear 556 that meshes with the high-speed relay gear 554 are rotatably fitted on the auxiliary transmission shaft 546 on the front side of the reduction gear pair 550.
  • a sub-transmission shifter 557 is spline-fitted between the low-speed gear 555 and the high-speed gear 556 in the sub-transmission shaft 546 so as not to be relatively rotatable and slidable in the axial direction.
  • the sub transmission shifter 557 slides and the low speed gear 555 and the high speed gear 556 are alternatively connected to the sub transmission shaft 546.
  • An intermediate position between the low speed gear 555 and the high speed gear 556 is a sub shift neutral position where the low speed gear 555 and the high speed gear 556 are not connected to the sub shift shifter 557.
  • a rectilinear relay shaft 568 and a rectilinear output shaft 30 extending in parallel with the travel counter shaft 545 and the auxiliary transmission shaft 546 are disposed.
  • the driven gear 569 fitted so as to be relatively non-rotatable with the straight-traveling relay shaft 568 is always meshed with the main driving gear 569 fitted so as not to be relatively rotatable on the front end side of the auxiliary transmission shaft 546.
  • a straight travel relay gear 582 that is fitted to the rear end side of the straight travel relay shaft 568 so as not to be relatively rotatable, and a straight travel output gear 583 that is fitted to the straight travel output shaft 30 so as not to be relatively rotatable are always meshed.
  • the main drive gear 569 of the subtransmission shaft 546, the driven gear 570 and the rectilinear relay gear 582 of the rectilinear relay shaft 568, and the rectilinear output gear 583 of the rectilinear output shaft 30 are used to linearly rotate the subtransmission shaft 456.
  • a straight output gear mechanism 509 for transmitting power to the output shaft 30 is configured.
  • the straight output gear mechanism 509 is provided with a straight pickup pickup rotation sensor (straight vehicle speed sensor) 823, and the straight pickup pickup rotation sensor 823 detects the rotational speed (straight vehicle speed) of the straight output.
  • the straight traveling relay gear 582 is disposed so as to face the straight traveling pickup rotation sensor 823, and the rotational speed of the straight traveling output (straight traveling vehicle speed) is detected from the rotational speed of the straight traveling relay gear 582.
  • the creep gear 548 is connected to the travel counter shaft 545 so as not to be relatively rotatable, and the low speed gear 555 is connected to the sub transmission shaft 546.
  • a traveling driving force that is coupled so as not to be relatively rotatable and that is ultra-low speed than the straight output shaft 30 is output toward the turning mission case 13.
  • the transmission gear 547 is connected to the travel counter shaft 545 so as not to rotate relative to it, and the low speed gear 555 cannot be rotated relative to the sub transmission shaft 546.
  • the traveling drive force at an extremely low speed is output from the straight output shaft 30 toward the turning mission case 13.
  • the transmission gear 547 is connected to the travel counter shaft 545 so as not to rotate relative to it, and the high speed gear 556 cannot be rotated relative to the sub transmission shaft 546.
  • the traveling drive force at a higher speed than the straight traveling output shaft 30 is output toward the turning mission case 13.
  • the auxiliary transmission lever 45 is operated to the neutral position, the auxiliary transmission shaft 546 is disconnected from the low speed gear 555 and the high speed gear 556, and the power from the traveling transmission shaft 536 is cut off by the traveling auxiliary transmission gear mechanism 503. .
  • the linear transmission input countershaft 508 protruding backward from the turning mission case 13 and the linear output shaft 30 protruding forward from the lower front portion of the linear transmission case 17 are connected by a power transmission shaft 31.
  • the turning mission case 13 includes a turning hydraulic continuously variable transmission (HST) 701 for appropriately changing the rotational power from the engine 5, and an output rotation from the hydraulic continuously variable transmission 701 to the left and right traveling crawlers 3 ( A differential gear mechanism 702 for transmitting to the drive sprocket 62), and a pair of left and right planetary gear mechanisms 703 for synthesizing the rotational power from the differential gear mechanism 702 and the rotational power from the straight traveling mission case 17.
  • HST turning hydraulic continuously variable transmission
  • a pair of hydraulic pump units 704 and a hydraulic motor unit 705 are arranged in parallel, and the power transmitted to the pump shaft 706 is transferred from the hydraulic pump unit 704 to the hydraulic motor unit 705.
  • the hydraulic oil is fed appropriately.
  • a charge pump 707 for supplying hydraulic oil to the hydraulic pump unit 704 and the hydraulic motor unit 705 is attached to the pump shaft 706.
  • the turning hydraulic continuously variable transmission 701 changes the discharge angle and discharge amount of the hydraulic oil to the hydraulic motor unit 705 by changing and adjusting the inclination angle of the pump swash plate 708 in the hydraulic pump unit 704, thereby changing the hydraulic pressure.
  • the motor shaft 709 protruding from the motor 705 is configured to arbitrarily adjust the rotation direction and the number of rotations.
  • the turning input counter shaft 712 is arranged in parallel with the pump shaft 706 of the hydraulic pump unit 704, and the turning input gear 713 is fitted on the turning input counter shaft 712 so as not to be relatively rotatable. ing. Between the turning input counter shaft 712 and the pump shaft 706, a turning relay shaft 714 is arranged in parallel with the turning input counter shaft 712 and the pump shaft 706, and the turning is always meshed with the turning input gear 713.
  • the relay gear 715 is fitted on the turning relay shaft 714 so as not to rotate relative to the pivot shaft 714.
  • a pump input gear 710 that is always meshed with the turning relay gear 715 is fitted to the pump shaft 706 so as not to be relatively rotatable, and the rotational power transmitted from the engine 5 transmitted to the turning input counter shaft 712 is turned. It is transmitted to the pump shaft 706 via the relay shaft 714 for use.
  • a differential gear mechanism 702 is configured by a bevel gear mechanism in which a pair of left and right side gears 717 are engaged with both sides of a pinion gear 716 that is fitted to the rear end of the motor shaft 709 so as not to be relatively rotatable.
  • the differential gear mechanism 702 has a pair of left and right turning output shafts 718 each having a side gear 717 fitted at one end thereof so as not to rotate relative to each other.
  • a turning output gear 719 for transmitting power to the pair of left and right planetary gear mechanisms 703 is fitted to the other end of each of the pair of left and right turning output shafts 718 so as not to be relatively rotatable.
  • Rotational power (turning rotational power) from the hydraulic motor unit 705 output from the motor shaft 709 is branched into forward and reverse rotational power by the differential gear mechanism 702 and left and right via a pair of left and right turning output shafts 718. This is transmitted to the pair of planetary gear mechanisms 703. That is, in the differential gear mechanism 702, the reverse rotation power is transmitted to the left planetary gear mechanism 703 through the left turning output shaft 718 fitted with the left side gear 717, while the right side gear 717 is fitted. It is transmitted to the right planetary gear mechanism 703 as forward rotation power through the right turning output shaft 718.
  • the hydraulic motor unit 705 of the turning hydraulic continuously variable transmission 701 is provided with a turning pickup rotation sensor (turning vehicle speed sensor) 824, and the turning pickup rotation sensor 824 detects the rotation speed (turning vehicle speed) of the turning output. It is configured to do.
  • a turning pulse generating rotating wheel is provided on the motor shaft 709, and a turning pickup rotation sensor 824 is arranged to face the turning pulse generating rotating wheel, and depending on the number of rotations of the turning pulse generating rotating wheel, The number of rotations of the straight output (turning vehicle speed) is detected.
  • a brake mechanism 751 that interlocks with the operation of the brake pedal 35 is provided on the straight-going input counter shaft 508 to which the rotational power from the straight-running mission case 17 is transmitted.
  • the linear input gear 720 is fitted to the front end of the linear input counter shaft 508 so as not to be relatively rotatable.
  • the straight travel relay shaft 721 is arranged in parallel with the straight travel input counter shaft 508, and the straight travel relay gear 722 that is always meshed with the straight travel input gear 720 is not rotatable relative to the straight travel relay shaft 721. It is fitted.
  • a bevel gear mechanism is provided in which a ring gear 724 is engaged with a pinion gear 723 that is fitted to the rear end of the linear relay shaft 721 so as not to be relatively rotatable.
  • the ring gear 724 cannot be relatively rotated on a straight output shaft 725 that is extended to the left and right. It is put on.
  • Both ends of the straight output shaft 725 are connected to a pair of left and right planetary gear mechanisms 703, respectively.
  • the rotational power (straight forward rotational power) from the straight traveling mission case 17 input to the straight traveling input counter shaft 508 is transmitted to the pair of left and right planetary gear mechanisms 703 via the straight traveling output shaft 725.
  • the brake mechanism 751 performs a braking operation in accordance with the operation of the brake pedal 35, so that the rotational power of the straight output shaft 725 is attenuated or stopped.
  • the left and right planetary gear mechanisms 703 rotate one sun gear 726, a plurality of planet gears 727 meshed with the sun gear 726, a ring gear 728 meshed with the turning output gear 719, and a plurality of planet gears 727 on the same circumference. And a carrier 729 which can be arranged.
  • the carriers 729 of the left and right planetary gear mechanisms 703 are arranged on the same axis so as to face each other with an appropriate interval.
  • the left and right sun gears 726 are fixed to both ends of a straight output shaft 725 in which a ring gear 724 is fitted in the middle.
  • the left and right ring gears 728 are rotatably fitted to the straight output shaft 725, and the external teeth on the outer peripheral surface thereof are engaged with the left and right turning output gears 719 to be connected to the turning output shaft 718. ing.
  • a carrier 729 fixed to the ring gear 728 rotatably supports the planetary gear 727.
  • the left and right carriers 729 are rotatably fitted to the left and right differential output shafts 730.
  • the left and right output transmission gears 731 that rotate together with the left and right planetary gears 727 mesh with the left and right differential input gears 732 that are non-rotatably fitted to the left and right differential output shafts 730. is doing.
  • the left and right differential output shafts 730 are connected to the left and right relay shafts 735 via relay gears 733 and 734, and the left and right relay shafts 735 are connected to the left and right axles 16 via final gears 736 and 737. ing.
  • Each of the left and right planetary gear mechanisms 703 receives rotational power from the straight traveling mission case 17 via the straight traveling relay shaft 721 and the straight traveling output shaft 725, and rotates the sun gear 726 at the same rotational speed in the same direction. . That is, the left and right sun gears 726 receive the rotational power from the straight traveling mission case 17 as straight traveling rotation, and transmit it to the differential output shaft 730 via the planetary gear 727 and the output side transmission gear 731. Therefore, the rotational power transmitted from the straight traveling mission case 17 to the left and right planetary gear mechanisms 703 is transmitted from the left and right axles 16 to the drive sprockets 62 at the same rotational speed in the same direction, and the left and right traveling crawlers 3 are transmitted to the same. Driven at the same rotational speed in the direction, the traveling machine body 2 is moved straight (forward, backward).
  • the left and right planetary gear mechanisms 703 receive rotational power from the hydraulic motor unit 705 via the differential gear mechanism 702 and the turning output shaft 718, and cause the ring gear 728 to rotate in the opposite directions at the same rotational speed.
  • Rotate That is, the left and right ring gears 728 receive rotational power from the hydraulic motor unit 705 as turning rotation, and the carrier 729 causes the turning rotation to be superimposed on the straight rotation from the sun gear 726 to rotate the planetary gear 727 and the output transmission gear 731.
  • the rotational power obtained by adding the rotational rotation to the straight rotation is transmitted to one of the left and right differential output shafts 730 via the planetary gear 727 and the output-side transmission gear 731.
  • Rotational power obtained by subtracting the turning rotation from the rectilinear rotation is transmitted to the other of the two through the planetary gear 727 and the output-side transmission gear 731.
  • the speed change outputs from the linear input counter shaft 508 and the motor shaft 709 are transmitted to the drive sprockets 62 of the left and right traveling crawlers 3 via the left and right planetary gear mechanisms 703, respectively, so that the vehicle speed (traveling speed) of the traveling machine body 2 is increased. ) And the direction of travel is determined. That is, when the rotational power from the straight traveling mission case 17 is input to the straight traveling input counter shaft 508 with the hydraulic motor portion 705 of the hydraulic continuously variable transmission 701 stopped and the left and right ring gears 728 stationary and fixed.
  • the rotation of the straight traveling input counter shaft 508 is transmitted to the left and right sun gears 726 at the same left and right rotational speed, the left and right traveling crawlers 3 are driven at the same rotational speed in the same direction, and the traveling machine body 2 travels straight.
  • the left and right traveling crawlers 3 are driven by driving the left and right ring gears 728 by turning the hydraulic motor portion 705 of the hydraulic continuously variable transmission 701 while driving the left and right sun gears 726 by rotating straight from the transmission case 17 for straight traveling.
  • the traveling body 2 turns left or right (U-turn) with a turning radius larger than the belief turning radius while moving forward or backward. The turning radius at this time is determined according to the speed difference between the left and right traveling crawlers 3.
  • the straight traveling mission case 17 is provided with a PTO transmission mechanism 505 that transmits power from the engine 5 to the PTO shaft 25.
  • a PTO input shaft 591 extending coaxially with the main transmission input shaft 511 is connected to the rear end side of the main transmission input shaft 511 via a PTO hydraulic clutch 590 for power transmission interruption.
  • the straight traveling mission case 17 is provided with a PTO transmission shaft 592, a PTO counter shaft 593, and a PTO shaft 25 extending in parallel with the PTO input shaft 591.
  • the PTO shaft 25 protrudes rearward from the rear surface of the straight traveling mission case 17.
  • the PTO input shaft 591 is provided with a medium speed input gear 597, a low speed input gear 595, a high speed input gear 596, and a reverse shifter gear 598 in order from the front side.
  • the medium-speed input gear 597, the low-speed input gear 595, and the high-speed input gear 596 are fitted on the PTO input shaft 591 so as not to be relatively rotatable.
  • the reverse shifter gear 598 is spline-fitted to the PTO input shaft 591 so as not to rotate relative to the PTO input shaft 591 and to be slidable in the axial direction.
  • the PTO transmission shaft 592 is rotatably fitted with a PTO medium speed gear 601 meshing with the medium speed input gear 597, a PTO low speed gear 599 meshing with the low speed input gear 595, and a PTO high speed gear 600 meshing with the high speed input gear 596. is doing.
  • a pair of front and rear PTO transmission shifters 602 and 603 are spline-fitted to the PTO transmission shaft 592 so as not to be relatively rotatable and to be slidable in the axial direction.
  • the first PTO shift shifter 602 is disposed between the PTO medium speed gear 601 and the PTO low speed gear 599.
  • the second PTO speed shifter 603 is disposed on the rear end side with respect to the PTO high speed gear 600.
  • the pair of front and rear PTO shift shifters 602 and 603 are configured to slide in the axial direction in conjunction with the operation of the PTO shift lever 46.
  • a PTO transmission gear 604 is fixed between the PTO low-speed gear 599 and the PTO high-speed gear 600 in the PTO transmission shaft 592.
  • the PTO counter shaft 593 has a PTO counter gear 605 that meshes with the PTO transmission gear 604, a PTO relay gear 606 that meshes with a PTO output gear 608 that is non-rotatably fitted to the PTO shaft 25, and a PTO reverse gear 607. It is impossible to fit.
  • the reverse shifter gear 598 slides and the reverse shifter gear 598 meshes with the PTO reverse gear 607 of the PTO counter shaft 593. ing.
  • the pair of front and rear PTO shift shifters 602 and 603 slide along the PTO shift shaft 592 and the PTO low speed gear 599, the PTO medium speed gear 601 and the PTO high speed gear 600 are moved to the PTO shift shaft. 592 is alternatively connected.
  • low-speed to high-speed PTO shift outputs are transmitted from the PTO shift shaft 592 to the PTO counter shaft 593 via the PTO transmission gear 604 and the PTO counter gear 605, and further, the PTO relay gear 606 and the PTO output gear 608 are transmitted. Is transmitted to the PTO shaft 25.
  • the reverse shifter gear 598 meshes with the PTO reverse gear 607, and the rotational power of the PTO input shaft 591 is transmitted to the PTO counter shaft 593 via the reverse shifter gear 598 and the PTO reverse gear 607. Then, the reverse PTO shift output is transmitted from the PTO counter shaft 593 to the PTO shaft 25 via the PTO relay gear 606 and the PTO output gear 608.
  • the hydraulic circuit 620 of the tractor 1 includes a working machine hydraulic pump 481 and a traveling hydraulic pump 482 that are driven by the rotational power of the engine 5.
  • the straight traveling mission case 17 is used as a working oil tank, and the working oil in the straight traveling mission case 17 is supplied to the working machine hydraulic pump 481 and the traveling hydraulic pump 482.
  • the traveling hydraulic pump 482 is connected to a closed loop oil passage 623 that connects the hydraulic pump unit 521 and the hydraulic motor unit 522 in the straight-traveling hydraulic mechanical continuously variable transmission 500. While the engine 5 is being driven, the hydraulic oil from the traveling hydraulic pump 482 is always replenished to the closed loop oil passage 623.
  • the traveling hydraulic pump 482 includes a main transmission hydraulic pressure switching valve 624 for the main transmission hydraulic cylinder 524 of the hydraulic mechanical continuously variable transmission 500, a PTO clutch electromagnetic valve 627 for the PTO hydraulic clutch 590, and a switching valve 628 operated thereby. And connected to. Further, the traveling hydraulic pump 482 includes a forward low speed clutch electromagnetic valve 632 that operates the forward low speed hydraulic clutch 537, a forward high speed clutch electromagnetic valve 633 that operates the forward high speed hydraulic clutch 539, and a reverse clutch that operates the reverse hydraulic clutch 541.
  • the solenoid valve 634 is connected to a master control solenoid valve 635 that controls the supply of hydraulic oil to the clutch solenoid valves 632 to 634.
  • the work machine hydraulic pump 481 includes a plurality of hydraulic external take-off valves 430 arranged on the upper surface of the hydraulic lifting mechanism 22 on the rear side of the upper surface of the straight traveling mission case 17, and a hydraulic lift cylinder in the hydraulic lifting mechanism 22.
  • the rising hydraulic pressure switching valve 648 and the lowering hydraulic pressure switching valve 649 for controlling the hydraulic oil supply to the lower side of the lift cylinder 117, the rising control electromagnetic valve 650 for switching the rising hydraulic pressure switching valve 648, and the lowering hydraulic pressure switching valve 649 are operated.
  • the double-acting valve mechanism 431 includes a hydraulic circuit including a double-acting control electromagnetic valve 432, and the ascending / descending valve mechanism 652 includes an ascending hydraulic switching valve 648, a descending hydraulic switching valve 649, an ascending control electromagnetic valve 650, and a descending A hydraulic circuit including a control solenoid valve 651 is used.
  • the tilt control electromagnetic valve 647 When the tilt control electromagnetic valve 647 is switched and driven, the horizontal cylinder 122 expands and contracts, and the lower link 23 on the right side moves up and down with the lower link pin on the front side as a fulcrum. As a result, the ground work machine tilts to the left and right with respect to the traveling machine body 2 via the left and right lower links 23, and the left and right tilt angles of the ground work machine change.
  • the double-acting control electromagnetic valve 432 either a single-acting type or a double-acting type can be selected as a driving method of the hydraulic lift cylinder 117.
  • the drive system of the hydraulic lift cylinder 117 is set by switching the double-action control electromagnetic valve 432 in accordance with the switching operation of the single-double action switch 56.
  • the hydraulic circuit 620 of the tractor 1 includes a charge pump 707 that is driven by the rotational power of the engine 5, and the charge pump 707 includes a hydraulic pump unit 704 and a hydraulic motor unit 705 in the turning hydraulic continuously variable transmission 701. Is connected to a closed-loop oil passage 740 connecting the two.
  • the straight traveling mission case 17 is used as a working oil tank, and hydraulic oil in the straight traveling mission case 17 is supplied to the charge pump 707. Further, the working oil from the charge pump 707 is always replenished to the closed loop oil passage 740 while the engine 5 is being driven.
  • the hydraulic circuit 620 of the tractor 1 includes a swing hydraulic cylinder 741 that changes the angle of the pump swash plate 708 of the hydraulic pump unit 704 in the hydraulic continuously variable transmission 701, and a swing hydraulic pressure switching valve 742 for the swing hydraulic cylinder 741.
  • the hydraulic circuit 620 of the tractor 1 includes a lubricating oil pump 518 that is driven by the rotational power of the engine 5 in addition to the working machine hydraulic pump 481 and the traveling hydraulic pump 482 described above.
  • the lubricating oil pump 518 includes a PTO clutch hydraulic pressure switching valve 641 that supplies hydraulic oil (lubricating oil) to the lubricating portion of the PTO hydraulic clutch 590, and a main transmission input shaft 511 that supports the hydraulic mechanical continuously variable transmission 500.
  • the lubrication section the forward low speed clutch hydraulic pressure switching valve 642 that supplies hydraulic oil (lubricating oil) to the lubrication section of the forward low speed hydraulic clutch 537, and the forward movement that supplies hydraulic oil (lubricating oil) to the lubrication section of the forward high speed hydraulic clutch 539.
  • the high-speed clutch hydraulic pressure switching valve 643 is connected to a reverse clutch hydraulic pressure switching valve 644 that supplies hydraulic oil (lubricating oil) to the lubricating portion of the reverse hydraulic clutch 541.
  • the hydraulic circuit 620 includes a relief valve, a flow rate adjustment valve, a check valve, an oil cooler, an oil filter, and the like.
  • the tractor 1 includes an engine controller 811 that controls the driving of the engine 5, a meter controller 812 that controls the display operation of the operation display panel (meter panel) 39 mounted on the dashboard 33, A linear controller 813 and a turning controller 814 that perform speed control and the like are provided.
  • Each of the controllers 811 to 814 and the operation monitor 55 includes a CPU for executing various arithmetic processes and controls, a ROM for storing control programs and data, a RAM for temporarily storing control programs and data, A timer for time measurement, an input / output interface, and the like are provided, and are connected to each other via a CAN communication bus 815 so as to communicate with each other.
  • the engine controller 811 and the meter controller 812 are connected to the battery 817 via the power application key switch 816.
  • the fuel in the fuel tank is pumped to the common rail by the fuel pump and stored as high-pressure fuel in the common rail.
  • the engine controller 811 controls the opening and closing (electronic control) of each fuel injection valve so that the high-pressure fuel in the common rail (not shown) can accurately control the injection pressure, the injection timing, and the injection period (injection amount).
  • each injector (not shown) is injected into each cylinder of the engine 5.
  • the liquid crystal panel and various alarm lamps in the meter panel 39 are connected to the output side of the meter controller 812. Then, the meter controller 812 outputs various signals to the meter panel 39, and controls alarm lamp turn-on / off operation, flashing operation, liquid crystal panel display operation, alarm buzzer alarming operation, and the like.
  • main shift sensor main shift potentiometer
  • straight pick-up rotation sensor straight vehicle speed sensor
  • a forward / reverse sensor forward / reverse potentiometer
  • a sub-transmission sensor 826 for detecting the operation position of the sub-transmission lever 45
  • a creep for detecting the operation position of the ultra-low speed lever 44
  • Sensor 827, brake position sensor 828 for detecting the depression amount of brake pedal 35, clutch position sensor 829 for detecting the depression amount of clutch pedal 37, brake switch 851 for detecting depression of brake pedal 35, and depression of clutch pedal 37 are detected.
  • Clutch switch 852 and parking block Connecting the parking brake switch 853 for detecting the operation of a Kireba 43.
  • a forward low speed clutch electromagnetic valve 632 that operates the forward low speed hydraulic clutch 537
  • a forward high speed clutch electromagnetic valve 633 that operates the forward high speed hydraulic clutch 539
  • a reverse clutch electromagnetic valve that operates the reverse hydraulic clutch 541.
  • 634 and a main transmission hydraulic pressure switching valve 624 that operates the main transmission hydraulic cylinder 524 in accordance with the tilting operation amount of the main transmission lever 50 is connected.
  • a steering angle sensor for detecting the turning amount (steering angle) of the steering handle 9
  • a pickup pickup rotation sensor for turning that detects the rotation speed (turning vehicle speed) of the turning output.
  • a turning hydraulic pressure switching valve 742 for operating the turning hydraulic cylinder 741 according to the amount of rotation operation of the steering handle 9 is connected.
  • the rectilinear controller 813 includes a rectilinear travel calculation unit 831 that controls the output of a rectilinear transmission path having a hydraulic mechanical continuously variable transmission (first continuously variable transmission) 500, and steering of the steering handle 9.
  • a memory 832 that stores a deceleration rate table TA that stores a deceleration rate of the straight vehicle speed with respect to a corner, and a communication interface 833 connected to the CAN communication bus 815 are provided.
  • the deceleration rate table TA in the memory 832 includes “spin turn mode (first mode)”, “brake turn mode (second mode)”, and “slow turn mode (third mode)” which will be described later.
  • deceleration rates TA1 to TA4 of the straight vehicle speed with respect to the steering angle of the steering handle 9 are stored.
  • the deceleration rate table TA shown in FIG. 15 shows the deceleration rate when the steering handle 9 is rotated to the right in each mode (when the tractor 1 turns to the right), but the steering handle 9 is rotated to the left.
  • the steering handle 9 is restricted to rotate by ⁇ e (for example, 250 °) or more from 0 ° to the left and right from the neutral position by a steering angle detection mechanism (steering box) 880.
  • the deceleration rate table TA is a neutral area (so-called play area) when the steering angle of the steering handle 9 is from 0 ° (neutral position) to ⁇ mi (for example, 15 °). , Dead zone), and the deceleration rates TA1 to TA4 of each mode are 100%.
  • the steering angle of the steering handle 9 is from ⁇ mi to ⁇ ma (for example, 245 °)
  • the operating range of the steering handle 9 is set, and the deceleration rates TA1, TA2, TA4 of the spin turn mode, the brake turn mode, and the traveling mode, respectively. Is decreased monotonously according to the steering angle, while the deceleration rate TA3 in the gentle turning mode is kept constant at 100%.
  • the steering angle ⁇ mi is the neutral position (0 °) in the control
  • the steering angle ⁇ ma is the maximum steering angle in the control.
  • the rate of change of the deceleration rate with respect to the steering angle increases in the order of the travel mode, the brake turn mode, and the spin turn mode.
  • the deceleration rates TA1, TA2, and TA4 are minimum values De1 to De. De3 (0 ⁇ De1 ⁇ De2 ⁇ De3 ⁇ 100)%.
  • the turning controller 814 includes a turning travel calculation unit 841 that controls the output of the turning system transmission path having a hydraulic continuously variable transmission (second continuously variable transmission) 701, and the steering angle of the steering handle 9.
  • a memory 842 that stores a turn / straight ratio ratio table TB (see FIG. 17) that stores a turn / straight ratio of a straight vehicle speed and a turning vehicle speed, and a communication interface 843 that is connected to the CAN communication bus 815.
  • the turning / straight-running ratio table TB in the memory 842 includes “spin turn mode (first mode)”, “brake turn mode (second mode)”, “slow turn mode (third mode), which will be described later. ) ”And“ traveling mode (fourth mode) ”, the turning / straight travel ratios TB1 to TB4 with respect to the steering angle of the steering wheel 9 are stored.
  • the turn / straight-line ratio table TB shown in FIG. 15 shows the turn / straight-line ratio when the steering handle 9 is rotated to the right in each mode (when the tractor 1 turns right). Yes. Further, the turning / straight-ahead ratio is a ratio that is multiplied by the straight-ahead speed decelerated by the deceleration rate. When the turning / straight-ahead ratio is 0, there is no turning speed and both the left and right traveling crawlers 3 have the same straight-ahead speed. Since the turning speed increases as the turning / straight ahead ratio increases, the speed difference between the left and right traveling crawlers 3 increases.
  • the turning / straight travel ratio is mainly described when the steering handle 9 is rotated to the right (when turning right), and turning when the steering handle 9 is rotated to the left (when turning left).
  • the straight-line ratio is supplemented with parentheses.
  • the turn / straight forward ratio table TB indicates the turn / straight forward ratios TB1 to TB4 of each mode in the neutral region where the steering angle of the steering handle 9 is 0 ° to ⁇ mi ( ⁇ mi to 0 °). And In the operation region of the steering handle 9 in which the steering angle of the steering handle 9 is ⁇ mi to ⁇ ma ( ⁇ ma to ⁇ mi), the turn / straight forward ratio of each of the spin turn mode, the brake turn mode, the slow turn mode, and the travel mode TB1 to TB4 are monotonously increased according to the steering angle. At this time, the rate of change of the turn / straight travel ratio with respect to the steering angle increases in the order of the slow turn mode, the travel mode, the brake turn mode, and the spin turn mode.
  • the turn / straight travel ratio becomes the maximum value Ra1 to Ra4 (minimum value ⁇ Ra1 to ⁇ Ra4) in each mode.
  • the maximum turning / straight-line ratios Ra1 to Ra4 are such that 0 ⁇ Ra1 ⁇ Ra2 ⁇ Ra3 ⁇ Ra4 (-Ra4 ⁇ -Ra3 ⁇ -Ra2 ⁇ -Ra1 ⁇ 0).
  • the maximum turning / straight forward ratio Ra1 ( ⁇ Ra1) is obtained in the slow turning mode, and the maximum turning / straight forward ratio Ra2 ( ⁇ Ra2) is obtained in the traveling mode.
  • the maximum turn / straight forward ratio Ra3 (-Ra3) is obtained, and in the spin turn mode, the maximum turn / straight forward ratio Ra4 (-Ra4) is obtained.
  • the rectilinear travel calculation unit 831 receives a signal from the forward / reverse sensor 825, recognizes which of “forward”, “neutral”, and “reverse” is designated, Receiving signals from the speed change sensor 826 and the creep sensor 827, it is recognized which one of “high speed”, “low speed”, “super low speed”, and “neutral” is designated (STEP 1).
  • the straight travel calculation unit 831 receives a signal from the main speed change sensor 822 and calculates a target value of the straight vehicle speed (hereinafter referred to as “straight forward reference target value”) in the straight travel state (the steering angle is 0 °). (STEP 2).
  • the straight-ahead controller 813 receives the signal from the steering angle sensor 821 through the turning controller 814 by the communication interface 833, and gives the signal from the steering angle sensor 821 to the straight-ahead travel calculation unit 831 (STEP 3).
  • the straight traveling calculation unit 831 receives the signal from the steering angle sensor 821 and recognizes the steering angle of the steering handle 9, it refers to the deceleration rate table TA in the memory 832 and controls the steering handle 9 in the designated mode.
  • the deceleration rate of the straight vehicle speed corresponding to the steering angle is read (STEP 4).
  • the straight travel calculation unit 831 then multiplies the straight deceleration reference target value based on the signal from the main transmission sensor 822 by the read deceleration rate, thereby obtaining a straight vehicle speed target value corresponding to the steering angle (hereinafter referred to as “straight travel target”). Value ”) is calculated (STEP 5).
  • the “straight vehicle speed” in the straight travel reference target value and the straight travel target value is a relative speed of the rotational speed of the traveling transmission shaft 536 in the straight traveling mission case 17 with respect to the rotational speed of the engine 5.
  • the straight traveling calculation unit 831 receives signals from the brake position sensor 828 and the clutch position sensor 829 and confirms whether or not each of the brake pedal 35 and the clutch pedal 37 is depressed (STEP 6). Then, the straight travel calculation unit 831 confirms whether or not the aircraft pedal is stopped on the brake pedal 35, whether or not the clutch pedal 37 is operated, and whether or not the forward / reverse switching lever 36 or the auxiliary transmission lever 45 is in the neutral position. (STEP7).
  • the straight travel calculation unit 831 is operated when the aircraft is stopped, when the clutch pedal 37 is depressed, or when the forward / reverse switching lever 36 or the sub-shift lever 45 is in the neutral position (Yes in STEP 7). Then, a signal from the straight-ahead pickup rotation sensor 823 (hereinafter referred to as “straight-ahead actual measurement value”) is transmitted from the communication interface 833 to the turning controller 814 (STEP 8). Thereafter, in the case of forward movement, the straight traveling calculation unit 831 controls the operations of the forward low speed clutch electromagnetic valve 632, the forward high speed clutch electromagnetic valve 633, and the reverse clutch electromagnetic valve 634, and the forward low speed hydraulic clutch 537, the forward high speed clutch The hydraulic clutch 539 and the reverse hydraulic clutch 541 are disconnected (STEP 9).
  • the straight travel calculation unit 831 has no airframe stop operation, no stepping operation on both clutch pedals 37, the forward / reverse switching lever 36 is in the forward position or the reverse position, and the auxiliary transmission lever 45 is When the vehicle is in any of the super low speed position, the low speed position, or the high speed position (No in STEP 7), the calculated straight target value is transmitted from the communication interface 833 to the turning controller 814 (STEP 10). Thereafter, the straight traveling calculation unit 831 controls the operations of the forward low-speed clutch electromagnetic valve 632, the forward high-speed clutch electromagnetic valve 633, and the main transmission hydraulic pressure switching valve 624 in the case of forward movement based on the calculated linear advance target value.
  • the straight travel calculation unit 831 outputs the straight travel path (rotation speed by the straight travel output shaft 30) based on the straight travel actual measurement value (signal from the straight travel pickup rotation sensor 823) and the straight travel target value. Is feedback controlled (main shift control). It should be noted that the rotational speed of the traveling transmission shaft 536 is confirmed from the signal from the straight-ahead pickup rotation sensor 823 based on the transmission gear ratio specified by the signals from the auxiliary transmission sensor 826 and the creep sensor 827, and compared with the straight-ahead target value. Thus, the output of the straight-ahead transmission path is controlled.
  • the turning travel calculation unit 841 receives the signal from the steering angle sensor 821, and recognizes the steering angle of the steering handle 9 (STEP 51).
  • the turning traveling calculation unit 841 refers to the turning / straight ahead ratio table TB in the memory 842, and reads the turning / straight forward ratio according to the steering angle of the steering handle 9 in the designated mode (STEP 52).
  • the turning controller 814 receives the signals from the auxiliary transmission sensor 826 and the creep sensor 827 through the linear controller 813 by the communication interface 843, and gives the signals to the turning calculation unit 841 (STEP 53).
  • the turning travel calculation unit 841 recognizes whether “high speed”, “low speed”, or “ultra-low speed” is designated as the sub-shift based on signals from the sub-shift sensor 826 and the creep sensor 827.
  • the turning traveling calculation unit 841 reads the correction value of the turning / straight-ahead ratio from the memory 842 based on the designated sub-shift, and corrects the turning / straight-ahead ratio based on the designated sub-shift (STEP 54).
  • the turning controller 814 receives the straight target value or the straight measured value (signal from the straight pick-up pickup rotation sensor 823) calculated by the straight controller 813 by the communication interface 843, and gives it to the turning calculation unit 841 (STEP 55). ).
  • the turning travel calculation unit 841 confirms the straight traveling vehicle speed from the straight traveling target value or the straight traveling actual measurement value, and calculates the turning target value to be the turning vehicle speed by multiplying the straight traveling vehicle speed by the corrected turning / straight traveling ratio (STEP 56). ).
  • the “turning vehicle speed” in the turning target value is a relative speed of the rotational speed of the motor shaft 709 in the turning mission case 13 with respect to the rotational speed of the engine 5.
  • the turning travel calculation unit 841 controls the operation of the turning hydraulic pressure switching valve 742 after calculating the turning target value. At this time, the turning travel calculation unit 841 outputs the turning system transmission path (rotation by the motor shaft 709) based on the signal from the turning pickup rotation sensor 824 (hereinafter referred to as “turning actual measurement value”) and the turning target value. (Speed) is feedback controlled (turning control) (STEP 57).
  • the linear controller 813 switches the forward low-speed clutch solenoid valve 632 and the reverse clutch when the signal from the forward / reverse sensor 825 is switched from “forward to backward” or “backward to forward”.
  • the electromagnetic valve 634 is controlled to switch between the forward low speed hydraulic clutch 537 and the reverse hydraulic clutch 541.
  • the linear controller 813 performs control so that one of the forward low speed hydraulic clutch 537 and the reverse hydraulic clutch 541 is always connected.
  • the main shift hydraulic pressure switching valve 624 is controlled by changing the rectilinear reference target value (or the rectilinear target value) so that the main shift output shaft 512 and the travel relay shaft 535 are in the lowest speed rotation state, and then again.
  • the rotational speeds of the main transmission output shaft 512 and the travel relay shaft 535 are increased so that the original rotational speed is obtained. Therefore, the turning controller 814 can change the turning target value in the same way as the straight traveling target value by receiving the straight traveling target value from the straight traveling controller 813. Thereby, the turning controller 814 can reverse the output (turning vehicle speed) of the turning system transmission path with respect to the operation of the steering handle 9 when the traveling machine body 2 moves forward and backward, thereby contributing to smooth controllability to the operator.
  • the linear controller 813 When the main shift control is being executed and the signal from the forward / reverse sensor 825 is in the “forward” state and the main shift lever 50 is operated to the high speed side or the low speed side, the linear controller 813 performs the forward low speed clutch electromagnetic.
  • the valve 632 and the forward high speed clutch electromagnetic valve 633 are controlled to switch the forward low speed hydraulic clutch 537 and the forward high speed hydraulic clutch 539.
  • the linear advance controller 813 when switching between the forward low speed hydraulic clutch 537 and the forward high speed hydraulic clutch 539, the linear advance controller 813 performs control so that one of the forward low speed hydraulic clutch 537 and the forward high speed hydraulic clutch 539 is always connected.
  • the rectilinear controller 813 controls the main transmission hydraulic pressure switching valve 624 in accordance with the rectilinear target value.
  • the turning controller 814 receives the straight target value from the straight controller 813 to set the output (turning vehicle speed) of the turning system transmission path for the operation of the steering handle 9, so that the forward low-speed hydraulic clutch 537 and the forward high-speed hydraulic pressure are set. Without affecting the switching of the clutch 539 and without performing complicated calculations, the output of the turning system transmission path (turning vehicle speed) corresponding to the output of the straight traveling system transmission path (straight traveling vehicle speed) can be achieved.
  • the forward controller 813 controls the forward low-speed hydraulic clutch 537, the forward high-speed hydraulic clutch 539, and the reverse hydraulic clutch 541 to be disengaged by depressing the clutch pedal 37 or the like
  • the signal from the pickup rotation sensor 823 is transmitted to the turning controller 814.
  • the turning controller 814 sets the output (turning vehicle speed) of the turning system transmission path based on the actually measured value (signal from the straight-forward pickup rotation sensor 823).
  • the output of the turning transmission path (Turning vehicle speed) can be set optimally, so that the operator can operate the vehicle without a sense of incongruity.
  • the straight-forward controller 813 is configured to advance the forward low-speed hydraulic clutch 537, the forward high-speed hydraulic pressure in a high speed region where the traveling speed (straight forward vehicle speed) is equal to or higher than a predetermined speed. Control is performed so that each of the clutch 539 and the reverse hydraulic clutch 541 is disengaged. At this time, the turning controller 814 sets the output (turning vehicle speed) of the turning system transmission path based on the straight-running actual measurement value (signal from the straight-travel pickup rotation sensor 823).
  • the output of the turning system transmission path (turning vehicle speed) is obtained even if the output of the straight traveling system transmission path (straight traveling vehicle speed) does not correspond to the straight traveling target value. Since the vehicle can be decelerated in accordance with the output (straight vehicle speed) of the straight transmission path, the operator can operate the vehicle without a sense of incompatibility.
  • the straight traveling controller 813 adjusts to the vehicle's forward / backward travel.
  • the linear advance target value is set so that the pump swash plate 523 of the hydraulic mechanical continuously variable transmission 500 is in a neutral state (0 °).
  • Shift control feedback control
  • the turning controller 814 may set the output of the turning system transmission path (turning vehicle speed) based on the straight traveling actual measurement value, or may set the output of the turning system transmission path based on the straight traveling target value.
  • the turning controller 814 decelerates the output (turning vehicle speed) of the turning system transmission path as the output (straight running vehicle speed) of the straight running system transmission path is reduced.
  • the turning controller 814 increases the output of the turning transmission path (turning vehicle speed), and the turning controller 814 reduces the output of the straight driving transmission path (straight vehicle speed).
  • the speed ratio of the left and right traveling crawlers 3 during turning is determined.
  • the operator operates the operation monitor 55 so that when the steering angle is large, the inside of the turn can be reversed to make a small turn (spin turn), and the spin turn mode (first mode).
  • “Brake turn mode (2nd mode)” that can be executed up to the brake turn that stops the inside of the turn when the steering angle is close to the maximum when the steering angle is close to the maximum, and even more dull than the brake turn mode
  • a “slow turning mode (third mode)” and a “traveling mode (fourth mode)” that can handle high vehicle speeds can be selected.
  • ultra-low speed driving or low-speed driving is designated by the ultra-low speed lever 44 and the auxiliary transmission lever 45
  • the turning operation by any of the “spin turn mode”, “brake turn mode”, and “slow turning mode” is performed. Allowed.
  • high speed traveling is designated by the ultra low speed lever 44, only the turning operation in the “traveling mode” is permitted.
  • the operator can adjust the turning force during turning in a plurality of stages by operating the operation monitor 55. Accordingly, the operator can select one of a plurality of modes by operating the operation monitor 55, and can also make stepwise adjustments. Therefore, an appropriate traveling characteristic (turning characteristic) suitable for the field situation or the like is possible. Can be selected easily.
  • spin turn mode when the turning angle of the steering handle 9 becomes the angle ⁇ t1 ( ⁇ mi ⁇ t1 ⁇ ma), the inner traveling crawler 3 is stopped to travel.
  • the airframe 2 is turned by a brake turn and the turning angle of the steering handle 9 exceeds the angle ⁇ t1, the inner traveling crawler 3 is rotated in the reverse direction, and the traveling airframe 2 is turned by a spin turn. That is, when the turning angle of the steering handle 9 is less than the angle ⁇ t1, the inner traveling crawler 3 is decelerated, and when the turning angle of the steering handle 9 is the angle ⁇ t1, the inner traveling crawler 3 is stopped and the steering handle 9 is cut.
  • the inner traveling crawler 3 When the angle exceeds the angle ⁇ t1, the inner traveling crawler 3 is reversely rotated. Thereby, according to the operation amount of the steering handle 9, the turning center and turning radius of the traveling machine body 2 can be changed. Accordingly, the traveling machine body 2 can be turned in a state close to the sense of operation of the steering handle 9, and as a result, the traveling machine body 2 can be stably driven.
  • the turning controller 814 calculates the turning target value in STEP 56
  • the output from the hydraulic mechanical continuously variable transmission 500 is interrupted by the power transmission mechanism in the straight traveling mission case 17 (straight traveling transmission path).
  • the reverse rotation operation by the inner traveling crawler 3 is prohibited.
  • the turning target value setting operation operation of STEP 56 in FIG. 16
  • the turning controller 814 determines the turning / straight forward ratio. Is replaced with a limit value ⁇ Ralim (STEP 306). Note that the limit value ⁇ Ralim of the turning / straight running ratio is set to a value smaller than 1, and the absolute value of the turning target value (turning speed) is set to be smaller than the absolute value of the straight running actual measurement value (straight speed).
  • the turning controller 814 multiplies the straight vehicle speed based on the straight driving target value by the turning / straight speed ratio corrected in STEP 54, thereby obtaining the turning target value that becomes the turning vehicle speed. Calculate (STEP 308). Further, when the traveling speed of the left and right traveling crawlers 3 is the same direction as the straight traveling speed (No in STEP 305) or when there is an operation on the brake pedal 35 (Yes in STEP 307), the turning controller 814 is corrected in STEP 54. The turn target value to be the turning vehicle speed is calculated by multiplying the straight turn vehicle speed based on the straight advance actual measurement value by the turn / straight forward ratio thus obtained (STEP 309).
  • the turning controller 814 sets the turning / straight running ratio to a limit value (STEP 306), the turning / straight running ratio that becomes the limit value goes straight.
  • a turning target value to be the turning vehicle speed is calculated (STEP 310).
  • the hydraulic clutch 537, 539, 541 or the sub-shift shifter 557 which is a power transmission mechanism in the straight transmission case 17 (straight drive transmission path), is disconnected, and the hydraulic mechanical continuously variable transmission.
  • the power transmission from 500 to the straight output shaft 30 is interrupted.
  • the turning controller 814 limits the turning / straight forward ratio with the limit value, thereby The reverse rotation operation by the traveling crawler 3 can be prohibited. Therefore, the differential output from the turning mission case 13 is limited when the straight-travel output shaft 30 is rotating with inertia. Therefore, even when the steering angle of the steering handle 9 is large in the brake turn mode or the spin turn mode, the traveling radius of the traveling vehicle body 2 is increased (the turning curvature is decreased), and the traveling aircraft body 2 is continuously operated. It is possible to prevent turning around.
  • the turning / straight travel ratio is limited by the limit value. That is, when the left and right traveling crawlers 3 rotate in opposite directions and the left and right traveling crawlers 3 receive frictional forces in opposite directions from the ground, the turning / straight travel ratio is limited by the limit value. Furthermore, when the braking operation by the brake mechanism 751 is executed, the turning target value is calculated based on the straight running actual measurement value without limiting the turning / straight running ratio. Therefore, it is possible to always set the turning target value to the turning mission case 13 that is optimal for the traveling state of the traveling machine body 2.
  • the turning controller 814 stores in the memory 842 a plurality of dead zone widths (neutral regions) - ⁇ mi to ⁇ mi of the steering handle 9 where the deceleration rate is 100% and the turning / straightness ratio is 0. .
  • FIGS. 21 and 22 steering sensitivity setting control by switching the dead zone in the turning controller 814 will be described with reference to FIGS. 21 and 22.
  • FIG. 21 is a flowchart showing the operation of steering sensitivity setting control
  • FIG. 22 is a diagram showing the relationship between the deceleration rate and the turning / straight travel ratio set based on the change of the dead zone width.
  • the dead band width (neutral region) stored in the memory 842 is stored in two types: a narrow dead band width ⁇ mi1 to ⁇ mi1 and a wide dead band width ⁇ mi2 to ⁇ mi2. More than one type of dead band width may be stored.
  • the dead band width stored in the memory 842 can be changed to a value desired by the operator by operating the operation monitor 55, for example. As a result, it is possible not only to store the dead zone width optimum for the traveling state of the traveling machine body 2 and the road surface state such as a farm field or a road in the plurality of memories 842 but also to perform the steering operation optimum for the driving operation of each operator. It becomes.
  • the turning controller 814 receives a signal (actually measured value of rectilinear advance) from the rectilinear pickup rotation sensor 823, confirms the rectilinear vehicle speed (STEP 601), and receives a signal from the forward / reverse sensor 825, The traveling direction (back and forth) of the traveling machine body 2 is confirmed (STEP 602).
  • the straight traveling vehicle speed of the traveling machine body 2 is less than a predetermined speed, the traveling machine body 2 is traveling at a low speed (No in STEP 603), the traveling machine body 2 is traveling forward (No in STEP 604), the operation monitor 55, and the like.
  • the turning controller 814 sets the narrow dead band width ⁇ mi1 to ⁇ mi1 (STEP 608).
  • the turning controller 814 sets a wide dead band width ⁇ mi2 to ⁇ mi2 (STEP 609).
  • the traveling machine body 2 is traveling backward (Yes in STEP 603), the turning controller 814 first sets the turning radius to be larger (STEP 605), and then changes the sensitivity by operating the operation monitor 55 or the like.
  • the turning controller 814 sets a wide dead band width ⁇ mi2 to ⁇ mi2 (STEP 609).
  • the turning controller 814 sets the wide dead band width ⁇ mi2 to ⁇ mi2 (STEP 609), while if the sensitivity change is requested in STEP 607. (Yes), the turning controller 814 sets the narrow dead band width ⁇ mi1 to ⁇ mi1 (STEP 608).
  • the sensitivity change request is not limited to the operation during driving, but when the traveling machine body 2 is stopped, the operator performs an input operation on the operation monitor 55 or the like according to the state of the field or the road surface or the type of work, The turning controller 814 may store the flag in the memory 832 or the like.
  • the turning controller 814 refers to the deceleration rate table TA and the turning / straight-head ratio table TB in the memory 832 and is currently designated according to the dead zone width after setting.
  • the deceleration rate and the turn / straight-line ratio corresponding to the mode are set (STEP 610 to STEP 611).
  • the deceleration rate is the minimum value at the steering angle ⁇ ma1 (- ⁇ ma1).
  • the deceleration rate table TA11 is set so as to be De1
  • the turning / straightness ratio table TB12 is set so that the turning / straightness ratio becomes the maximum value Ra4 at the steering angle ⁇ ma1 ( ⁇ ma1).
  • the deceleration rate table TA12 is set so that the deceleration rate becomes the minimum value De1 at the steering angle ⁇ ma2 (- ⁇ ma2), while the steering angle ⁇ ma2 (- ⁇ ma2) is set.
  • the steering angle ⁇ ma2 (- ⁇ ma2) is set.
  • ⁇ mi1, ⁇ mi2, ⁇ ma1, and ⁇ ma2 have a relationship of 0 ⁇ mi1 ⁇ mi2 ⁇ ma1 ⁇ ma2 ⁇ e, respectively.
  • the deceleration rate table TA12 having a wide dead zone width ⁇ mi2 to ⁇ mi2 is in the forward rotation side (the steering angle is a positive value and turning right) with respect to the deceleration rate table TA11 having a narrow dead zone width ⁇ mi1 to ⁇ mi1.
  • ⁇ mi2 ⁇ mi1 is offset (parallel movement) in the positive direction
  • the reverse rotation side (the steering angle is a negative value and the left turn) is set to be offset in the negative direction by ⁇ mi2 ⁇ mi1.
  • the turning / straight-forward ratio table TB12 having a wide dead zone width ⁇ mi2 to ⁇ mi2 is also the forward rotation side (the steering angle is a positive value with the steering angle being a positive value to the right) with respect to the narrow dead zone width ⁇ mi1 to ⁇ mi1.
  • (Turning) is offset (parallel movement) by ⁇ mi2 ⁇ mi1 in the positive direction, while on the reverse side (steering angle is a negative value and turning left), it is offset in the negative direction by ⁇ mi2 ⁇ mi1. Is set.
  • the dead band width for the rotation of the steering handle 9 can be changed according to the traveling state. Therefore, even if the steering operation is affected by the attitude or vibration of the traveling machine body 2 , Unintended turning motion can be prevented and operability can be improved. Further, steering or shift control adapted to the traveling road surface (field) conditions or the operator's desired traveling feeling can be easily obtained, and the driving operability can be easily improved.
  • the dead zone width can be set wide during high-speed traveling or reverse traveling, so that not only an unintended turning operation of the operator can be prevented, and operability can be improved, Accidents caused by inadvertent turning during high-speed or reverse travel can be prevented. Further, by making it possible to change the turning radius during backward traveling and the turning radius during forward traveling, the operability can be improved even during backward traveling where the driving operation becomes difficult due to the operator facing backward.
  • the steering angle of the steering handle 9 for starting the deceleration of the straight vehicle speed (output of the straight traveling system transmission path) of the traveling machine body 2 (hereinafter referred to as “straight forward deceleration start steering angle”).
  • the steering angle of the steering handle 9 that starts increasing the turning vehicle speed (output of the turning transmission path) of the traveling vehicle body 2 (hereinafter referred to as “turning acceleration start steering angle”) is set to ⁇ mi1.
  • the dead zone width of the steering handle 9 is set to be narrow.
  • the dead zone width of the steering handle 9 is set wide by setting the straight-ahead deceleration start steering angle and the turning acceleration start steering angle at the steering handle 9 to ⁇ mi2.
  • the turning controller 814 when the turning controller 814 receives a signal from the straight-ahead controller 813 in STEP 55, the turning controller 814 confirms whether or not the brake pedal 35 is operated (STEP 307A). If the brake pedal 35 is not depressed (NO in STEP 307A), the presence / absence of operation of the clutch pedal 37 and the operation positions of the forward / reverse switching lever 36 and the auxiliary transmission lever 45 are confirmed (STEP 301 to STEP 303). On the other hand, when the depression of the brake pedal 35 is confirmed (Yes in STEP 307A), the turning target value is calculated from the straight running actual measurement value and the turning / straight running ratio (STEP 309).
  • the turning controller 814 When there is no operation to the brake pedal 35 and the power transmission from the hydraulic mechanical continuously variable transmission 500 to the output shaft 30 for straight travel is interrupted (Yes in any of STEP 301 to STEP 303), the turning controller 814 When it is confirmed that the left and right traveling crawlers 3 rotate in directions opposite to each other (YES in STEP 304 and STEP 305), the turning target value is calculated from the measured value of straight travel (STEP 306, STEP 310) by replacing the turning / straight travel ratio with a limit value. ).
  • the turning controller 814 calculates a turning target value based on the actual measured value and the turning / straightness ratio (STEP 309). Further, when any of the hydraulic clutches 537, 539, and 541 is connected to the auxiliary transmission shifter 557 (NO in STEP 301 to STEP 303), the turning target value is calculated from the straight traveling target value and the turning / straight running ratio (STEP 308). .
  • the vehicle turns according to the measured value of straight travel and the turn / straight travel ratio regardless of the transmission of power from the hydraulic mechanical continuously variable transmission 500 to the straight output shaft 30.
  • Set the target value That is, when the braking action on the straight-travel output shaft 30 is functioning, the turning target value is set based on the measured straight-running value corresponding to the rotation speed of the straight-travel output shaft 30, so the straight speed by the braking action is set. The turning speed is also reduced in accordance with the deceleration, and the traveling machine body 2 does not continuously turn around.
  • the traveling aircraft body 2 may turn in a pivot while the output shaft 30 for rectilinear rotation is rotated due to inertia, the turning in a straight line can be prohibited by limiting the turning / straight ahead ratio. Unexpected behavior of the operator can be prevented, and driving safety can be improved.
  • the turning controller 814 when the power transmission from the hydraulic mechanical continuously variable transmission 500 to the output shaft 30 for straight travel is interrupted (Yes in any of STEP 301 to STEP 303), the turning controller 814 is in the spin turn mode. Alternatively, it is confirmed whether any one of the brake turn modes is selected (STEP 351). When either the spin turn mode or the brake turn mode is selected (YES in STEP 351), the turning controller 814 determines the turning / straight forward ratio according to the turning / straight forward ratio table TB and the dead zone width of the selected mode. The steering angle (threshold angle) ⁇ ⁇ lim of the steering wheel 9 that becomes the limit value ⁇ Ralim is calculated (STEP 352).
  • the turning controller 814 turns / The straight turn ratio is replaced with the limit value, and the turning target value is calculated from the straight advance actual measurement value (STEP 306, STEP 310).
  • the steering angle ⁇ of the steering wheel 9 is within the threshold angle range ( If - ⁇ lim ⁇ ⁇ lim) (Yes in STEP 353), the turning target value is calculated from the straight-run actual measurement value and the turn / straight-forward ratio (STEP 309).
  • the turning target value is calculated from the straight-run actual measurement value and the turn / straight-forward ratio (STEP 309).
  • the steering angle of the steering handle 9 Since the turning / straight-running ratio is limited based on this, it is possible to prohibit the corner turning in accordance with the operation of the steering handle 9, and the operation responsiveness becomes good.
  • the amount of calculation in the turning controller 814 since it is possible to set whether or not the turning / straight-running ratio is restricted without predicting the traveling direction of the traveling crawler 3, since the amount of calculation in the turning controller 814 can be reduced, the electrical responsiveness in turning control is increased, Unexpected behavior of the operator can be prevented at an early stage, and driving safety can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Non-Deflectable Wheels, Steering Of Trailers, Or Other Steering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

作業車両は、走行機体2に搭載するエンジン5と、第一無段変速装置17を有する直進系伝動経路と、第二無段変速装置13を有する旋回系伝動経路を備え、直進系伝動経路の出力と旋回系伝動経路の出力を合成して左右の走行部3を駆動する。また、作業車両は、直進系伝動経路の出力と旋回系伝動経路の出力とを連動的に制御する制御部813,814と、直進系伝動経路からの動力伝達を継断する動力継断機構とを備えている。制御部814は、動力継断機構により直進系伝動経路からの動力伝達が遮断された場合、旋回系伝動経路の出力を制限して、左右の走行部3による相互の逆転動作を禁止する。

Description

作業車両
 本願発明は、例えばトラクタやコンバイン等の農作業機やクレーン車やバックフォー等の特殊作業機のような作業車両に関するものである。
 従来、トラクタ、コンバインといった農作業車やクローラクレーンなどの建設機械といった作業車両の中には、エンジンからの動力が伝達される2つの油圧式無段変速機(HST)を備えており、2つの油圧式無段変速機それぞれからエンジン出力に基づき直進動力と旋回動力を出力させるものがある。本願出願人は以前に、2つの油圧式無段変速機それぞれから出力させた直進動力と旋回動力を左右の遊星ギヤ機構で合成させることで旋回可能とした作業車両を、特許文献1において提案している。
 また、従来の作業車両の中には、エンジンから動力伝達されるミッションケースに、油圧式無段変速機よりも伝達効率の高い油圧機械式変速機(HMT)を備えたものがある。本願出願人は以前に、油圧ポンプの入力軸と油圧モータの出力軸とが同心状に位置するように油圧ポンプと油圧モータとを直列に配置した直列型(インライン型)の油圧機械式変速機を、特許文献2において提案している。
 直列型の油圧機械式変速機では、エンジンから動力伝達される入力軸に、出力軸を相対回転可能に被嵌している。更に、入力軸には、油圧ポンプとシリンダブロックと油圧モータとを被嵌している。シリンダブロックは単独で油圧ポンプ用と油圧モータ用とを兼ねていて、油圧モータから出力軸に動力伝達される。このため、直列型の油圧機械変速機では、一般的な油圧機械式変速機とは異なり、遊星ギヤ機構を介在させずに油圧による変速動力とエンジンの動力とを合成して出力でき、高い動力伝達効率が得られるという利点を有している。
特開2002-059753号公報 特開2005-083497号公報
 ところで、特許文献2における油圧機械式変速機を中型又は大型の作業車両に搭載するには、油圧機械式変速機の高出力化を図る必要がある。油圧機械式変速機の高出力化のためには、例えば油圧機械式変速機を大容量化することが挙げられる。しかし、単に油圧機械式変速機を大容量化しただけでは、油圧機械式変速機自体が大型化して製造コストが嵩むだけでなく、動力伝達効率(特に低負荷域での効率)が犠牲になるという問題があった。
 また、特許文献1における機構を大型の作業車両に搭載する場合においても、油圧式無段変速機の高出力化に伴って機構が大型化するため、作業車両重量が嵩むだけでなく、動力伝達効率が油圧機械式変速機に比べて低いことから、直進方向の変速域(主変速域)が制限されてしまう。更に、作業車両が信地旋回を実行した際に、左右の走行部が地面から受ける摩擦力が互いに逆方向となるため、信地旋回を長時間継続するなど、オペレータの予期せぬ動作となる場合がある。
 そして、走行動作を制御するコントローラは、主変速、前後進、旋回それぞれの操作具からの信号を統合して、2つの油圧式無段変速機の斜板角度を制御する必要があり、複雑な制御フローをコントローラで実行しなければならない。そのため、コントローラは、走行動作の制御フローにおける演算負荷が高くなることから、オペレータの操作性に違和感を生じることがある。
 本願発明は、上記のような現状を検討して改善を施した作業車両を提供することを技術的課題としている。
 本願発明の作業車両は、走行機体に搭載するエンジンと、第一無段変速装置を有する直進系伝動経路と、第二無段変速装置を有する旋回系伝動経路を備え、前記直進系伝動経路の出力と前記旋回系伝動経路の出力を合成して左右の走行部を駆動する作業車両において、前記直進系伝動経路の出力と前記旋回系伝動経路の出力とを連動的に制御する制御部と、前記直進系伝動経路からの動力伝達を継断する動力継断機構とを備えており、前記制御部は、前記動力継断機構により前記直進系伝動経路からの動力伝達が遮断された場合、前記旋回系伝動経路の出力を制限して、前記左右の走行部による相互の逆転動作を禁止するものである。
 上記作業車両において、前記直進系伝動経路の出力を指定する変速用操作具と、前記直進系伝動経路の出力を検出する検出器とを備え、前記制御部は、前記変速用操作具からの指令値及び前記検出器からの実測値を択一的に選択して前記旋回系伝動経路の出力を設定するものであって、前記動力継断機構により前記直進系伝動経路からの動力伝達が遮断された場合、前記検出器からの実測値に基づいて、前記旋回系伝動経路の出力を設定するものとしてもよい。
 上記作業車両において、前記制御部は、前記動力継断機構により前記直進系伝動経路からの動力伝達が遮断されている際、前記走行部の一方の進行方向が前記走行機体の進行方向と逆方向となることを認識したとき、前記検出器からの実測値に乗算する係数を制限することで前記旋回系伝動経路の出力を制限するものとしてもよい。
 上記作業車両において、回転操作可能な操縦ハンドルを備え、前記制御部は、前記動力継断機構により前記直進系伝動経路からの動力伝達が遮断されている際、前記操縦ハンドルの操舵角が所定角を超えたとき、前記検出器からの実測値に乗算する係数を制限することで前記旋回系伝動経路の出力を制限するものとしてもよい。
 上記作業車両において、前記制御部が、前記直進系伝動経路の出力を制御する第1制御部と、前記旋回系伝動経路の出力を制御する第2制御部とで構成されており、前記第1制御部で設定された前記直進系伝動経路の出力を前記第2制御部が受けることで、前記旋回系伝動経路の出力を設定するものとしてもよい。
 本願発明によると、動力継断機構により直進系伝動経路からの動力伝達が遮断された場合、左右の走行部による相互の逆転動作を禁止するため、直進系伝動経路が慣性で動作している際に、旋回系伝動経路からの差動出力が制限される。従って、直進系伝動経路の出力側に制動作用が作用していない場合であっても、走行機体の走行状態に最適な旋回系伝動経路の出力を常に設定することができる。これにより、直進系伝動経路の出力側に制動作用が作用していない場合に、走行機体が連続して信地旋回を実行することを防止するとともに、走行部に対する地面からの摩擦力などの反力による制動作用を作用させて、安全に走行できる。
 本願発明によると、変速用操作具からの指令値及び検出器からの実測値を択一的に選択して旋回系伝動経路の出力を設定するように構成することで、走行機体の走行状態に最適な旋回系伝動経路の出力を常に設定することができる。従って、オペレータは、走行機体の旋回時においても安定して操縦することができ、その操縦性を向上させるとともに、安定した運転動作を実行できる。
 本願発明によると、動力継断機構が切れているときには、実測値にて旋回系伝動経路の出力を設定するため、変速用操作具に基づく指令値と実測値とが大きく異なる場合でも、現状の走行機体の走行状態に応じた旋回中心及び旋回半径で旋回できる。従って、オペレータは違和感なく走行機体を操作でき、オペレータに円滑な操縦性を寄与できる。また、オペレータは、走行機体の旋回時においても安定して操縦することができ、その操縦性を向上させるとともに、安定した運転動作を実行できる。
 本願発明によると、操縦ハンドルの切れ角に基づいて旋回時の左右の走行部の速度比を決定するものとすることで、操縦ハンドルの操作量に合わせて走行機体を旋回させることができ、操作性の向上に寄与できる。また、直進系伝動経路の出力と旋回系伝動経路の出力とを連動させることから、旋回時の車速がオペレータの操縦感覚に近いものとなるだけでなく、走行機体の挙動が安定化できる。
 本願発明によると、第1及び第2制御部それぞれで分散して制御できるため、それぞれの演算量を低減でき、応答性の良い走行制御を実行できる。第2制御部においては、第1制御部からの出力を受けて、旋回系伝動経路の出力を設定するため、その演算が複雑化することなく、より円滑に走行制御が実行されることとなる。
トラクタの左側面図である。 トラクタの右側面図である。 トラクタの平面図である。 走行機体の右側面図である。 走行機体の左側面図である。 走行機体の平面図である。 操縦座席部の平面説明図である。 操縦ハンドル周辺の構成を示す斜視図である。 ブレーキ機構とブレーキペダルの連結構造を示す斜視図である。 油圧機械式変速機の作動油吐出量と車速との関係を示す説明図である。 トラクタの動力伝達系統のスケルトン図である。 トラクタの油圧回路図である。 トラクタの制御系統の構成を示すブロック図である。 トラクタの走行制御系統の構成を示すブロック説明図である。 減速率テーブル及び旋回/直進比テーブルに記憶されたパラメータの関係を示す説明図である。 トラクタの走行制御動作を示すフロー図である。 スピンターンモードにおける操縦ハンドルの操舵角とトラクタの車速との関係を示す説明図である。 ブレーキターンモードにおける操縦ハンドルの操舵角とトラクタの車速との関係を示す説明図である。 緩旋回ターンモードにおける操縦ハンドルの操舵角とトラクタの車速との関係を示す説明図である。 旋回目標値の設定動作を示すフロー図である。 操向感度設定制御の動作を示すフロー図である。 操向感度設定制御に基づいて設定される減速率と旋回/直進比の関係を示す図である。 旋回目標値の設定動作の別例(第2例)を示すフロー図である。 旋回目標値の設定動作の別例(第3例)を示すフロー図である。
 以下に、本願発明を具体化した実施形態について、農作業用トラクタを図面に基づき説明する。図1~図6に示す如く、トラクタ1の走行機体2は、走行部としての左右一対の走行クローラ3で支持されている。走行機体2の前部にディーゼルエンジン5(以下、単にエンジンという)を搭載し、走行クローラ3をエンジン5で駆動することによって、トラクタ1が前後進走行するように構成されている。エンジン5はボンネット6にて覆われている。走行機体2の上面にはキャビン7が設置される。該キャビン7の内部には、操縦座席8と、走行クローラ3を操向操作する操縦ハンドル9とが配置されている。キャビン7の左右外側には、オペレータが乗降するステップ10が設けられている。キャビン7の左右側方下側に、エンジン5に燃料を供給する燃料タンク11が設けられており、燃料タンク11は左右のリヤフェンダー21によって覆われている。キャビン7の左側方には、燃料タンク11前方に電力供給するバッテリ817が設けられており、燃料タンク11と共に左のリヤフェンダー21によって覆われている。
 走行機体2は、前バンパー12及び旋回用ミッションケース(ドライブアクスル)13を有するエンジンフレーム14と、エンジンフレーム14の後部に着脱自在に固定した左右の機体フレーム15とにより構成されている。旋回用ミッションケース13の左右両端側から外向きに、車軸16を回転可能に突出させており、車軸16を覆う車軸ケース90を旋回用ミッションケース13の左右両側面に設けている。旋回用ミッションケース13の左右両端側に車軸16を介して駆動スプロケット62を取り付けている。機体フレーム15の後部は、エンジン5からの回転動力を適宜変速して駆動スプロケット62に伝達するための直進用ミッションケース17と連結している。
 図1~図4に示す如く、走行機体2の下面側に左右のトラックフレーム61を配置する。トラックフレーム61は前後方向に延設されて左右一対設けられて、エンジンフレーム14及び機体フレーム15の両外側に位置している。左右のトラックフレーム61は左右方向に延設するロアフレーム67によりエンジンフレーム14及び機体フレーム15と連結される。左右のトラックフレーム61それぞれの前端は、旋回用ミッションケース13の左右両側面に設けた車軸ケース90と連結している。左右のトラックフレーム61それぞれの外側には、オペレータが乗降するステップ10aが設けられている。
 ロアフレーム67の左右中央部は、連結ブラケット72を介して、エンジンフレーム14の後部側面に固設されている。左右のトラックフレーム61の前後中途部分に、左右方向に延設させた梁フレーム68の左右両端が連結されている。また、梁フレーム68の中央は、前後方向に設けた補強フレーム70を介してロアフレーム67中央と連結されている。左右のトラックフレーム61後部で内方向に突設したリヤビーム73を、直進用ミッションケース17の左右側面に固設したリヤハウジング74に連結して、トラックフレーム61後部を直進用ミッションケース17左右側面で固定させる。
 トラックフレーム61には、走行クローラ3にエンジン5の動力を伝える駆動スプロケット62と、走行クローラ3のテンションを維持するテンションローラ63と、走行クローラ3の接地側を接地状態に保持する複数のトラックローラ64と、走行クローラ3の非接地側を保持する中間ローラ65とを設けている。駆動スプロケット62によって走行クローラ3の前側を支持し、テンションローラ63によって走行クローラ3の後側を支持し、トラックローラ64によって走行クローラ3の接地側を支持し、中間ローラ65によって走行クローラ3の非接地側を支持する。テンションローラ63はトラックフレーム61の後端より後方に伸縮可能に構成したテンションフレーム69の後端に回転自在に支持される。トラックローラ64はトラックフレーム61の下部に前後揺動自在に支持したイコライザフレーム71の前後に回転自在に支持される。
 また、トラクタ1の前部にはフロントドーザ80を装着可能に構成している。左右一対のドーザブラケット81が、エンジンフレーム14の前部側面と車軸ケース90とロアフレーム67に固定されており、フロントドーザ80の平面視U字状(コ字状)の支持アーム83が左右のドーザブラケット81の外側(機外側)に着脱可能に枢支される。左右ドーザブラケット81は、前端内側(機内側)が左右エンジンフレーム14側面に連結されており、後端下側がロアフレーム67中途部の上面に連結されており、中途部が車軸ケース90中途部を上下で狭持するように連結されている。ドーザブラケット81は、エンジンフレーム14と車軸ケース90とロアフレーム67の3体に強固に固定されることで、フロントドーザ80による重作業に耐えられる強度を確保できる。
 直進用ミッションケース17の後部には、例えばロータリ耕耘機などの対地作業機(図示省略)を昇降動させる油圧式昇降機構22を着脱可能に取付けている。前記対地作業機は、左右一対のロワーリンク23及びトップリンク24からなる3点リンク機構111を介して直進用ミッションケース17の後部に連結される。直進用ミッションケース17の後側面には、ロータリ耕耘機等の作業機にPTO駆動力を伝達するためのPTO軸25を後ろ向きに突設している。
 図4~図6に示す如く、エンジン5の後側面から後ろ向きに突設するエンジン5の出力軸(ピストンロッド)5a後端には、フライホイル26を直結するように取付けている。両端に自在軸継手を有する動力伝達軸29を介して、フライホイル26から後ろ向きに突出した主動軸27と、直進用ミッションケース17前面側から前向きに突出した入力カウンタ軸28とを連結している。直進用ミッションケース17の前面下部から前向きに突出した直進用出力軸30には、両端に自在軸継手を有する動力伝達軸31を介して、旋回用ミッションケース13から後向きに突出した直進用入力カウンタ軸508を連結している。エンジン5の前側面から前向きに突設するエンジン5の出力軸(ピストンロッド)5a前端には、両端に自在軸継手を有する動力伝達軸711を介して、旋回用ミッションケース13から後ろ向きに突出した旋回用入力カウンタ軸712を連結している。
 図1~図6に示すように、油圧式昇降機構22は、作業部ポジションダイヤル51等の操作にて作動制御する左右の油圧リフトシリンダ117と、直進用ミッションケース17の上面蓋体にリフト支点軸を介して基端側を回動可能に軸支する左右のリフトアーム120と、左右のロワーリンク23に左右のリフトアーム120を連結させる左右のリフトロッド121を有している。右のリフトロッド121の一部を油圧制御用の水平シリンダ122にて形成し、右のリフトロッド121の長さを水平シリンダ122にて伸縮調節可能に構成している。トップリンク24と左右のロワーリンク23に対地作業機を支持した状態下で、水平シリンダ122のピストンを伸縮させて、右のリフトロッド121の長さを変更した場合、前記対地作業機の左右傾斜角度が変化するように構成している。
 次に、図7~図9等を参照しながら、キャビン7内部の構造を説明する。キャビン7内における操縦座席8の前方にステアリングコラム32を配置している。ステアリングコラム32は、キャビン7内部の前面側に配置したダッシュボード33の背面側に埋設するような状態で立設している。ステアリングコラム32上面から上向きに突出したハンドル軸921の上端側に、平面視略丸型の操縦ハンドル9を取り付けている。そして、ステアリングコラム32内のハンドル軸921下端に、操縦ハンドル9の操舵角度を検出する操舵角センサ821を備えた操舵角(ハンドル切れ角)検出機構880を連結している。
 ステアリングコラム32の右側には、走行機体2を制動操作するためのブレーキペダル35を配置している。ステアリングコラム32の左側には、走行機体2の進行方向を前進と後進とに切り換え操作するための前後進切換レバー36(リバーサレバー)と、動力継断用の油圧クラッチ537,539,541を遮断操作するためのクラッチペダル37とを配置している。ステアリングコラム32の背面側には、ブレーキペダル35を踏み込み位置に保持するための駐車ブレーキレバー43が配置されている。
 ステアリングコラム32の左側で前後進切換レバー36の下方には、前後進切換レバー36に沿って延びる誤操作防止体38(リバーサガード)を配置している。接触防止具である誤操作防止体38を前後進切換レバー36下方に配置することによって、トラクタ1に乗降する際に、オペレータが前後進切換レバー36に不用意に接触するのを防止している。ダッシュボード33の背面上部側には、液晶パネルを内蔵した操作表示盤39を設けている。
 キャビン7内にある操縦座席8前方の床板40においてステアリングコラム32の右側には、エンジン5の回転速度または車速などを制御するアクセルペダル41を配置している。なお、床板40上面の略全体は平坦面に形成している。操縦座席8を挟んで左右両側にはサイドコラム42を配置している。操縦座席8と左サイドコラム42との間には、トラクタ1の走行速度(車速)を強制的に大幅に低減させる超低速レバー44(クリープレバー)と、直進用ミッションケース17内の走行副変速ギヤ機構の出力範囲を切換えるための副変速レバー45と、PTO軸25の駆動速度を切換え操作するためのPTO変速レバー46とを配置している。
 操縦座席8と右サイドコラム42との間には、操縦座席8に着座したオペレータの腕や肘を載せるためのアームレスト49を設けている。アームレスト49は、操縦座席8とは別体に構成すると共に、トラクタ1の走行速度を増減速させる主変速レバー50と、ロータリ耕耘機といった対地作業機の高さ位置を手動で変更調節するダイヤル式の作業部ポジションダイヤル51(昇降ダイヤル)とを備えている。なお、アームレスト49は、後端下部を支点として複数段階に跳ね上げ回動可能な構成になっている。また、本実施形態においては、主変速レバー50を前傾操作したとき、走行機体2の車速が増加する一方、主変速レバー50を後傾操作したとき、走行機体2の車速が低下する。更に、アームレスト49は、主変速レバー50の前後傾動を検出するポテンショメータ(可変抵抗器)型の主変速センサ822(図13参照)を備える。
 右サイドコラム42には、前側から順に、タッチパネル機能を有してトラクタ1各部への指令操作が可能な操作用モニタ55と、エンジン5の回転速度を設定保持するスロットルレバー52と、PTO軸25からロータリ耕耘機等の作業機への動力伝達を継断操作するPTOクラッチスイッチ53と、直進用ミッションケース17の上面側に配置する油圧外部取出バルブ430を切換操作するための複数の油圧操作レバー54(SCVレバー)と、リヤハウジング74前面に配置する複動バルブ機構431を切換操作するための単複動切換スイッチ56を配置している。ここで、油圧外部取出バルブ430は、トラクタ1に後付けされるフロントローダといった別の作業機の油圧機器に作動油を供給制御するためのものである。複動バルブ機構431は、直進用ミッションケース17の上面側に配置する昇降バルブ機構652とともに動作することで油圧リフトシリンダ117を複動式で作動させるためのものである。
 次に、主として図8及び図9を参照しながら、ブレーキペダル35とブレーキ機構751との関係について説明する。ステアリングコラム32前方において、ブレーキペダル軸755を軸支するブレーキペダル支持ブラケット916がボード支持板(エアカットプレート)901背面(操縦座席8側)に固定されている。ブレーキペダル軸755にはブレーキペダル35の基端ボス部35aを被嵌しており、ブレーキペダル35の基端ボス部35aをブレーキペダル軸755と一体回動するように連結している。
 ブレーキペダル軸755の両端部には、前向きに突出するペダル軸アーム756を固着しており、ペダル軸アーム756はブレーキペダル軸755と共に回動する。なお、ブレーキペダル軸755には、クラッチペダル37の基端ボス部も回動可能に被嵌している。そして、ブレーキペダル軸755の左右両端それぞれに、クラッチ位置センサ829(図13参照)及びブレーキ位置センサ828を固定している。また、ブレーキペダル35のペダルアーム35bに対向する位置にブレーキスイッチ851を配置する一方、クラッチペダル37のペダルアーム37bに対向する位置にクラッチスイッチ852(図13参照)を配置する。
 ボード支持板(エアカットプレート)901の左右下部側には、左右一対で横向きのブレーキ操作軸757を支持させている。左のブレーキ操作軸757には、旋回用ミッションケース13内のブレーキ機構751の制動アーム752と連結するリンクボス体758を回動可能に被嵌している。リンクボス体758外周面に突設させたリンクアーム759に、左側ペダル軸アーム756と連結した上下長手のリンクロッド762の下端と、ブレーキ機構751の制動動作を段階的なものとする二段階伸縮リンク体763の上端とが連結されている。二段階伸縮リンク体763の下端が、ブレーキロッド766後端のリンクアーム767の先端と連結している。ブレーキロッド766は、エンジンフレーム14に固定されたリンク支持ブラケット764,765に支持されるとともに前後方向に延設されている。そして、ブレーキロッド766前端のリンクアーム768が、連結プレート753を介して、旋回用ミッションケース13内のブレーキ機構751の制動アーム752と連結している。
 すなわち、ブレーキペダル軸755左端は、リンクロッド762、二段階伸縮リンク体763、及びブレーキロッド766を介して、ブレーキ機構751の制動アーム752と連結している。従って、ブレーキペダル35の踏み込みに従って、ブレーキペダル軸755が回動することで、制動アーム752を回動させることができ、ブレーキ機構751による制動動作を実行できる。このとき、二段階伸縮リンク体763が作用することで、走行速度を調整する踏み込み量が少ない時(ブレーキ機構751の遊び領域)に比べて、急ブレーキをかける踏み込み量が多い時(ブレーキ機構751による制動領域)には、ブレーキペダル35への踏力が大きくなる。
 右のブレーキ操作軸757には、リンクアーム761を有するリンクボス体760を回動可能に被嵌している。右側ペダル軸アーム756に、ブレーキペダル35への踏み込みを段階的なものとする二段階伸縮リンク体769の上端が連結され、リンクボス体760外周面に突設させたリンクアーム761に、二段階伸縮リンク体769の下端が連結されている。ブレーキペダル35の踏み込みに従って、ブレーキ操作軸757を回動させたとき、二段階伸縮リンク体769が作用することで、走行速度を調整する踏み込み量が少ない時(ブレーキ機構751の遊び領域)に比べて、急ブレーキをかける踏み込み量が多い時(ブレーキ機構751による制動領域)には、ブレーキペダル35への踏力が大きくなる。
 駐車ブレーキレバー43は、駐車ブレーキアーム770を介して係止部材771の一端と連結している。側面視弓形の係止部材771は、ブレーキペダル支持ブラケット916に軸止されている。ブレーキペダル35のペダルアーム35bの左側面には、係止部材771の係止爪に係合させる係止板775を設けている。これにより、ブレーキペダル35を踏み込んだ状態で駐車ブレーキレバー43を操作することで、係止部材771を係止板775に係止させて、トラクタ1の制動状態(駐車状態)を維持させる。
 次に、主として図4~図6、図10、及び図11を参照しながら、直進用ミッションケース17及び旋回用ミッションケース13の内部構造とトラクタ1の動力伝達系統について説明する。直進用ミッションケース17の前室内には、直進用の油圧機械式無段変速機500と、後述する前後進切換機構501を経由した回転動力を変速する機械式のクリープ変速ギヤ機構502及び走行副変速ギヤ機構503とを配置している。直進用ミッションケース17の中間室内には、油圧機械式無段変速機500からの回転動力を正転又は逆転方向に切り換える前後進切換機構501を配置している。直進用ミッションケース17の後室内には、エンジン5からの回転動力を適宜変速してPTO軸25に伝達するPTO変速機構505を配置している。クリープ変速ギヤ機構502及び走行副変速ギヤ機構503は、前後進切換機構501経由の変速出力を多段変速する走行変速ギヤ機構に相当するものである。直進用ミッションケース17の右外面前部には、エンジン5の回転動力で駆動する作業機用油圧ポンプ481及び走行用油圧ポンプ482を収容したポンプケース480を取り付けている。
 エンジン5の後側面から後ろ向きに突設するエンジン5の出力軸5aにはフライホイル26を直結している。フライホイル26から後ろ向きに突出した主動軸27に、両端に自在軸継手を有する動力伝達軸29を介して、直進用ミッションケース17前面側から前向きに突出した入力カウンタ軸28を連結している。エンジン5の回転動力は、主動軸27及び動力伝達軸29を経由して直進用ミッションケース17の入力カウンタ軸28に伝達され、油圧機械式無段変速機500とクリープ変速ギヤ機構502又は走行副変速ギヤ機構503とによって適宜変速される。クリープ変速ギヤ機構502又は走行副変速ギヤ機構503を経由した変速動力は、直進用出力軸30、動力伝達軸31及び直進用入力カウンタ軸508を介して、旋回用ミッションケース13内のギヤ機構に伝達される。
 直進用の油圧機械式無段変速機(HMT)500は、主変速入力軸511に主変速出力軸512を同心状に配置し且つ油圧ポンプ部521とシリンダブロックと油圧モータ部522とを直列状に配置した直列型(インライン型)のものである。入力カウンタ軸28の後端側には主変速入力ギヤ513を相対回転不能に被嵌している。主変速入力軸511の後端側には、主変速入力ギヤ513に常時噛み合う入力伝達ギヤ514を固着している。従って、入力カウンタ軸28の回転動力は、主変速入力ギヤ513、入力伝達ギヤ514及び主変速入力軸511を介して油圧機械式無段変速機500に伝達される。主変速出力軸512には、走行出力用として、主変速高速ギヤ516、主変速逆転ギヤ517及び主変速低速ギヤ515を相対回転不能に被嵌している。主変速入力軸511の入力側と主変速出力軸512の出力側とは、同一側(油圧機械式無段変速機500から見ていずれも後方側)に位置している。
 油圧機械式無段変速機500は、可変容量形の油圧ポンプ部521と、当該油圧ポンプ部521から吐出する高圧の作動油によって作動する定容量形の油圧モータ部522とを備えている。油圧ポンプ部521には、主変速入力軸511の軸線に対して傾斜角を変更可能して作動油供給量を調節するポンプ斜板523を設けている。ポンプ斜板523には、主変速入力軸511の軸線に対するポンプ斜板523の傾斜角を変更調節する主変速油圧シリンダ524を連動連結している。実施形態では、油圧機械式無段変速機500に主変速油圧シリンダ524を組み付けていて、一つの部材としてユニット化している。
 主変速レバー50の操作量に比例して主変速油圧シリンダ524を駆動させると、これに伴い主変速入力軸511の軸線に対するポンプ斜板523の傾斜角が変更される。実施形態のポンプ斜板523は、傾斜略ゼロ(ゼロを含むその前後)の中立角度を挟んで一方(正)の最大傾斜角度と他方(負)の最大傾斜角度との間の範囲で角度調節可能であり、且つ、走行機体2の車速が最低のときにいずれか一方に傾斜した角度(この場合は負で且つ最大付近の傾斜角度)に設定している。
 ポンプ斜板523の傾斜角が略ゼロ(中立角度)のときは、油圧ポンプ部521では入力側プランジャ群が押し引きされない。シリンダブロックが主変速入力軸511と同一方向且つ略同一回転速度で回転するものの、油圧ポンプ部521からの作動油供給がないため、シリンダブロックの出力側プランジャ群ひいては油圧モータ部522が駆動せず、主変速入力軸511と略同一回転速度にて主変速出力軸512が回転する。
 次に、前後進切換機構501を介して実行する前進と後進との切換構造について説明する。入力カウンタ軸28の後部側に、前進高速ギヤ機構である遊星ギヤ機構526と、前進低速ギヤ機構である低速ギヤ対525とを配置している。遊星ギヤ機構526は、入力カウンタ軸28に回転可能に軸支した入力側伝動ギヤ529と一体的に回転するサンギヤ531、複数の遊星ギヤ533を同一半径上に回転可能に軸支したキャリア532、並びに内周面に内歯を有するリングギヤ534を備えている。サンギヤ531及びリングギヤ534は入力カウンタ軸28に回転可能に被嵌している。キャリア532は入力カウンタ軸28に相対回転不能に被嵌している。サンギヤ531はキャリア532の各遊星ギヤ533と半径内側から噛み合っている。また、リングギヤ534の内歯は各遊星ギヤ533と半径外側から噛み合っている。入力カウンタ軸28には、リングギヤ534と一体回転する出力側伝動ギヤ530も回転可能に軸支している。低速ギヤ対525を構成する入力側低速ギヤ527と出力側低速ギヤ528とは一体構造になっていて、入力カウンタ軸28のうち遊星ギヤ機構526と主変速入力ギヤ513との間に回転可能に軸支している。
 直進用ミッションケース17には、入力カウンタ軸28、主変速入力軸511及び主変速出力軸512と平行状に延びる走行中継軸535並びに走行伝動軸536を配置している。伝達軸としての走行中継軸535に前後進切換機構501を設けている。すなわち、走行中継軸535には、湿式多板型の前進高速油圧クラッチ539で連結される前進高速ギヤ540と、湿式多板型の後進油圧クラッチ541で連結される後進ギヤ542と、湿式多板型の前進低速油圧クラッチ537で連結される前進低速ギヤ538とを被嵌している。走行中継軸535のうち前進高速油圧クラッチ539と後進ギヤ542との間には、走行中継ギヤ543を相対回転不能に被嵌している。走行伝動軸536には、走行中継ギヤ543と常時噛み合う走行伝動ギヤ544を相対回転不能に被嵌している。主変速出力軸512の主変速低速ギヤ515が入力カウンタ軸28側にある低速ギヤ対525の入力側低速ギヤ527と常時噛み合い、出力側低速ギヤ528が前進低速ギヤ538と常時噛み合っている。主変速出力軸512の主変速高速ギヤ516が入力カウンタ軸28側にある遊星ギヤ機構526の入力側伝動ギヤ529と常時噛み合い、出力側伝動ギヤ530が前進高速ギヤ540と常時噛み合っている。主変速出力軸512の主変速逆転ギヤ517が後進ギヤ542と常時噛み合っている。
 前後進切換レバー36を前進側に操作すると、前進低速油圧クラッチ537又は前進高速油圧クラッチ539が動力接続状態となり、前進低速ギヤ538又は前進高速ギヤ540と走行中継軸535とが相対回転不能に連結される。その結果、主変速出力軸512から低速ギヤ対525又は遊星ギヤ機構526を介して走行中継軸535に、前進低速又は前進高速の回転動力が伝達され、走行中継軸535から走行伝動軸536に動力伝達される。前後進切換レバー36を後進側に操作すると、後進油圧クラッチ541が動力接続状態となり、後進ギヤ542と走行中継軸535とが相対回転不能に連結される。その結果、主変速出力軸512から主変速逆転ギヤ517及び後進ギヤ542を介して走行中継軸535に、後進の回転動力が伝達され、走行中継軸535から走行伝動軸536に動力伝達される。
 なお、前後進切換レバー36の前進側操作によって、前進低速油圧クラッチ537及び前進高速油圧クラッチ539のどちらが動力接続状態になるかは、主変速レバー50の操作量に応じて決定される。また、前後進切換レバー36が中立位置のときは、全ての油圧クラッチ537,539,541がいずれも動力切断状態となり、主変速出力軸512からの走行駆動力が略ゼロ(主クラッチ切りの状態)になる。ここで、図10は、油圧機械式無段変速機500の作動油吐出量(ポンプ斜板523の傾斜角度)とトラクタ1の車速との関係を示している。実施形態において、前後進切換レバー36の操作状態に拘らず主変速レバー50を中立操作した場合は、主変速油圧シリンダ524の駆動によってポンプ斜板523が負で且つ最大付近の傾斜角度(逆転傾斜角)となり(白抜き丸印参照)、主変速出力軸512や走行中継軸535は最低速回転状態(略ゼロ)になる。ひいてはトラクタ1の車速が略ゼロになる。
 前後進切換レバー36を前進側に操作した状態で主変速レバー50を中立から中間速程度まで増速側に操作した場合は、主変速油圧シリンダ524の駆動によってポンプ斜板523が負で且つ最大付近の傾斜角度(逆転傾斜角)からゼロを介して正で且つ最大付近の傾斜角度(正転傾斜角)まで変化し(白抜き四角印参照)、油圧モータ部522から主変速出力軸512への変速動力を略ゼロから高速まで増速させる。このとき、前進低速油圧クラッチ537が動力接続状態となり、前進低速ギヤ538又は前進高速ギヤ540と走行中継軸535とが相対回転不能に連結される。その結果、主変速出力軸512から低速ギヤ対525を介して走行中継軸535に、前進低速の回転動力が伝達され、主変速出力軸512への増速動力によって走行中継軸535が最低速回転状態から前進中間速回転状態まで変化する(前進低速域FL参照)。そして、走行中継軸535から走行伝動軸536に動力伝達される。
 前後進切換レバー36を前進側に操作した状態で主変速レバー50を中間速から最高速程度まで増速側に操作した場合は、主変速油圧シリンダ524の駆動によって正で且つ最大付近の傾斜角度(正転傾斜角)からゼロを介して負で且つ最大付近の傾斜角度(逆転傾斜角)まで変化し、ポンプ斜板523が油圧モータ部522から主変速出力軸512への変速動力を高速から略ゼロまで減速させる。このとき、前進高速油圧クラッチ539が動力接続状態となり、前進高速ギヤ540と走行中継軸535とが相対回転不能に連結される。その結果、主変速出力軸512から遊星ギヤ機構526を介して走行中継軸535に、前進高速の回転動力が伝達される。すなわち、遊星ギヤ機構526においてエンジン5からの動力と主変速出力軸512への減速動力とが合成されてから、当該合成動力によって走行中継軸535が前進中間速回転状態から前進最高速回転状態まで変化する(前進高速域FH参照)。そして、走行中継軸535から走行伝動軸536に動力伝達される。走行機体2は最高速となる。
 前後進切換レバー36を後進側に操作した状態で主変速レバー50を中立から増速側に操作した場合は、主変速油圧シリンダ524の駆動によってポンプ斜板523が負で且つ最大付近の傾斜角度(逆転傾斜角)からゼロを介して正で且つ最大付近の傾斜角度(正転傾斜角)まで変化し、油圧モータ部522から主変速出力軸512への変速動力を略ゼロから高速まで増速させる。このとき、後進油圧クラッチ541が動力接続状態となり、後進ギヤ542と走行中継軸535とが相対回転不能に連結される。その結果、主変速出力軸512から主変速逆転ギヤ517及び後進ギヤ542を介して走行中継軸535に、後進の回転動力が伝達され、主変速出力軸512への増速動力によって走行中継軸535が最低速回転状態から後進高速回転状態まで変化する(後進域R参照)。そして、走行中継軸535から走行伝動軸536に動力伝達される。
 次に、走行変速ギヤ機構であるクリープ変速ギヤ機構502及び走行副変速ギヤ機構503を介して実行する超低速と低速と高速との切換構造について説明する。直進用ミッションケース17内には、前後進切換機構501を経由した回転動力を変速する機械式のクリープ変速ギヤ機構502及び走行副変速ギヤ機構503と、走行伝動軸536と同軸状に延びる走行カウンタ軸545と、走行カウンタ軸545と平行状に延びる副変速軸546とを配置している。
 走行カウンタ軸545の後部側には伝達ギヤ547とクリープギヤ548とを設けている。伝達ギヤ547は、走行カウンタ軸545に回転可能に被嵌すると共に、走行伝動軸536に一体回転するように連結している。クリープギヤ548は走行カウンタ軸545に回転可能に被嵌している。走行カウンタ軸545のうち伝達ギヤ547とクリープギヤ548との間には、クリープシフタ549を相対回転不能で且つ軸線方向にスライド可能にスプライン嵌合させている。超低速レバー44を入り切り操作することによって、クリープシフタ549がスライド移動して、伝達ギヤ547及びクリープギヤ548が走行カウンタ軸545に択一的に連結される。副変速軸546のうち前室内の箇所には、減速ギヤ対550を回転可能に被嵌している。減速ギヤ対550を構成する入力側減速ギヤ551と出力側減速ギヤ552とは一体構造になっていて、走行カウンタ軸545の伝達ギヤ547が副変速軸546の入力側減速ギヤ551に常時噛み合い、クリープギヤ548が出力側減速ギヤ552に常時噛み合っている。
 走行カウンタ軸545の前部側には低速中継ギヤ553と高速中継ギヤ554とを設けている。低速中継ギヤ553は走行カウンタ軸545に固着している。高速中継ギヤ554は走行カウンタ軸545に相対回転不能に被嵌している。副変速軸546のうち減速ギヤ対550よりも前部側には、低速中継ギヤ553に噛み合う低速ギヤ555と、高速中継ギヤ554に噛み合う高速ギヤ556とを回転可能に被嵌している。副変速軸546のうち低速ギヤ555と高速ギヤ556との間には、副変速シフタ557を相対回転不能で且つ軸線方向にスライド可能にスプライン嵌合させている。副変速レバー45を操作することによって、副変速シフタ557がスライド移動して、低速ギヤ555及び高速ギヤ556が副変速軸546に択一的に連結される。なお、低速ギヤ555と高速ギヤ556との中間位置が、低速ギヤ555及び高速ギヤ556と副変速シフタ557とを非連結とする副変速中立位置となる。
 更に、走行カウンタ軸545や副変速軸546と平行状に延びる直進用中継軸568及び直進用出力軸30を配置している。副変速軸546の前端側に相対回転不能に被嵌した主動ギヤ569に、直進用中継軸568に相対回転不能に被嵌した従動ギヤ570を常時噛み合わせている。直進用中継軸568の後端側に相対回転不能に被嵌した直進用中継ギヤ582に、直進用出力軸30に相対回転不能に被嵌した直進用出力ギヤ583を常時噛み合わせている。
 副変速軸546の主動ギヤ569と、直進用中継軸568の従動ギヤ570及び直進用中継ギヤ582と、直進用出力軸30の直進用出力ギヤ583とが、副変速軸456の回転を直進用出力軸30に動力伝達させる直進用出力ギヤ機構509を構成している。直進用出力ギヤ機構509に、直進用ピックアップ回転センサ(直進車速センサ)823を設けて、直進用ピックアップ回転センサ823によって、直進出力の回転数(直進車速)を検出するように構成している。例えば、直進用中継ギヤ582に直進用ピックアップ回転センサ823を対向させて配置し、直進用中継ギヤ582の回転数により、直進出力の回転数(直進車速)を検出する。
 実施形態では、超低速レバー44を入り操作すると共に副変速レバー45を低速側に操作すると、クリープギヤ548が走行カウンタ軸545に相対回転不能に連結されると共に、低速ギヤ555が副変速軸546に相対回転不能に連結され、直進用出力軸30より超低速の走行駆動力が旋回用ミッションケース13に向けて出力される。超低速レバー44を切り操作すると共に副変速レバー45を低速側に操作すると、伝達ギヤ547が走行カウンタ軸545に相対回転不能に連結されると共に、低速ギヤ555が副変速軸546に相対回転不能に連結され、直進用出力軸30より超低速の走行駆動力が旋回用ミッションケース13に向けて出力される。超低速レバー44を切り操作すると共に副変速レバー45を高速側に操作すると、伝達ギヤ547が走行カウンタ軸545に相対回転不能に連結されると共に、高速ギヤ556が副変速軸546に相対回転不能に連結され、直進用出力軸30より高速の走行駆動力が旋回用ミッションケース13に向けて出力される。また、副変速レバー45を中立位置に操作すると、副変速軸546と低速ギヤ555及び高速ギヤ556それぞれとが非連結となり、走行伝動軸536からの動力が走行副変速ギヤ機構503で遮断される。
 旋回用ミッションケース13から後ろ向きに突出する直進用入力カウンタ軸508と、直進用ミッションケース17の前面下部から前向きに突出する直進用出力軸30とを、動力伝達軸31によって連結している。旋回用ミッションケース13は、エンジン5からの回転動力を適宜変速する旋回用の油圧式無段変速機(HST)701と、油圧式無段変速機701からの出力回転を左右の走行クローラ3(駆動スプロケット62)に伝達する差動ギヤ機構702と、差動ギヤ機構702からの回転動力と直進用ミッションケース17からの回転動力とを合成する左右一対の遊星ギヤ機構703とを備える。
 油圧式無段変速機701は、1対の油圧ポンプ部704及び油圧モータ部705を並列に配置しており、ポンプ軸706に伝達された動力にて、油圧ポンプ部704から油圧モータ部705に向けて作動油が適宜送り込まれる。なお、ポンプ軸706には、油圧ポンプ部704及び油圧モータ部705に作動油を供給するためのチャージポンプ707が取付けられている。旋回用油圧式無段変速機701は、油圧ポンプ部704におけるポンプ斜板708の傾斜角度を変更調節して、油圧モータ部705への作動油の吐出方向及び吐出量を変更することにより、油圧モータ705から突出したモータ軸709の回転方向及び回転数を任意に調節するように構成されている。
 旋回用ミッションケース13は、旋回用入力カウンタ軸712を油圧ポンプ部704のポンプ軸706と平行に配置しており、旋回用入力カウンタ軸712に旋回用入力ギヤ713を相対回転不能に被嵌している。旋回用入力カウンタ軸712とポンプ軸706の間には、旋回用中継軸714を旋回用入力カウンタ軸712及びポンプ軸706と平行に配置しており、旋回用入力ギヤ713と常時噛合させた旋回用中継ギヤ715を旋回用中継軸714に対して相対回転不能に被嵌している。ポンプ軸706には、旋回用中継ギヤ715と常時噛合させたポンプ入力ギヤ710を相対回転不能に被嵌しており、旋回用入力カウンタ軸712に伝達されたエンジン5からの回転動力が、旋回用中継軸714を介してポンプ軸706に伝達される。
 旋回用ミッションケース13内において、モータ軸709後端に相対回転不能に被嵌させたピニオンギヤ716の両側に左右一対のサイドギヤ717を噛合させたベベルギヤ機構にて、差動ギヤ機構702を構成している。また、差動ギヤ機構702は、一端にサイドギヤ717を相対回転不能に被嵌させた左右一対の旋回用出力軸718を左右側方に向けて延設している。左右一対の旋回用出力軸718それぞれの他端に、左右一対の遊星ギヤ機構703に動力伝達させる旋回出力ギヤ719を、相対回転不能に被嵌させている。
 モータ軸709から出力される油圧モータ部705からの回転動力(旋回回転動力)は、差動ギヤ機構702により、正逆回転動力に分岐して左右一対の旋回用出力軸718を介して、左右一対の遊星ギヤ機構703に伝達される。すなわち、差動ギヤ機構702において、左サイドギヤ717を被嵌させた左旋回用出力軸718を介して逆転回転動力として、左遊星ギヤ機構703に伝達される一方、右サイドギヤ717を被嵌させた右旋回用出力軸718を介して正転回転動力として、右遊星ギヤ機構703に伝達される。
 旋回用油圧式無段変速機701の油圧モータ部705に、旋回用ピックアップ回転センサ(旋回車速センサ)824を設けて、旋回用ピックアップ回転センサ824によって、旋回出力の回転数(旋回車速)を検出するように構成している。例えば、モータ軸709上に旋回用パルス発生回転輪体を設け、旋回用パルス発生回転輪体に旋回用ピックアップ回転センサ824を対向させて配置し、旋回用パルス発生回転輪体の回転数により、直進出力の回転数(旋回車速)を検出する。
 旋回用ミッションケース13内において、直進用ミッションケース17からの回転動力が伝達される直進用入力カウンタ軸508上に、ブレーキペダル35の動作にあわせて連動するブレーキ機構751を設けている。そして、直進用入力カウンタ軸508前端に、直進用入力ギヤ720を相対回転不能に被嵌させている。また、直進用中継軸721を直進用入力カウンタ軸508と平行に配置しており、直進用入力ギヤ720と常時噛合させた直進用中継ギヤ722を直進用中継軸721に対して相対回転不能に被嵌している。
 直進用中継軸721後端に相対回転不能に被嵌させたピニオンギヤ723にリングギヤ724を噛合させたベベルギヤ機構を設けており、左右に延設させた直進用出力軸725にリングギヤ724を相対回転不能に被嵌させている。直進用出力軸725の両端がそれぞれ、左右一対の遊星ギヤ機構703それぞれと連結している。直進用入力カウンタ軸508に入力される直進用ミッションケース17からの回転動力(直進回転動力)は、直進用出力軸725を介して、左右一対の遊星ギヤ機構703に伝達される。また、ブレーキペダル35の操作に応じてブレーキ機構751が制動作動することで、直進用出力軸725の回転動力を減衰又は停止させる。
 左右各遊星ギヤ機構703は、1つのサンギヤ726と、サンギヤ726に噛合する複数の遊星ギヤ727と、旋回出力ギヤ719に噛合させたリングギヤ728と、複数の遊星ギヤ727を同一円周上に回転可能に配置するキャリア729とをそれぞれ備えている。左右の遊星ギヤ機構703のキャリア729は、同一軸線上において適宜間隔を設けて相対向させて配置されている。左右の各サンギヤ726は、中途部にリングギヤ724を被嵌させた直進用出力軸725の両端に固着している。
 左右の各リングギヤ728は、直進用出力軸725に回転可能に被嵌しているとともに、その外周面の外歯を左右の各旋回出力ギヤ719に噛合させて、旋回用出力軸718と連結している。リングギヤ728に固定されたキャリア729は、遊星ギヤ727を回転可能に軸支している。左右の各キャリア729が、左右の各差動出力軸730に回転可能に被嵌している。また、左右の各遊星ギヤ727と一体回転する左右の各出力側伝動ギヤ731は、左右の各差動出力軸730に対して回転不能に被嵌している左右の差動入力ギヤ732に噛合している。左右の差動出力軸730が、中継ギヤ733,734を介して左右の中継軸735と連結しており、左右の中継軸735が、ファイナルギヤ736,737を介して左右の車軸16に連結している。
 左右の各遊星ギヤ機構703は、直進用中継軸721及び直進用出力軸725を介して、直進用ミッションケース17からの回転動力を受けて、サンギヤ726を同方向の同一回転数にて回転させる。即ち、左右のサンギヤ726は、直進用ミッションケース17からの回転動力を直進回転として受け、遊星ギヤ727及び出力側伝道ギヤ731を介して、差動出力軸730に伝達する。従って、直進用ミッションケース17から左右の遊星ギヤ機構703に伝達された回転動力は、左右の車軸16から各駆動スプロケット62に同方向の同一回転数にて伝達され、左右の走行クローラ3を同方向の同一回転数にて駆動して、走行機体2を直進(前進、後退)移動させる。
 一方、左右の各遊星ギヤ機構703は、差動ギヤ機構702及び旋回用出力軸718を介して、油圧モータ部705からの回転動力を受けて、リングギヤ728を同一回転数にて互いに逆方向で回転させる。即ち、左右のリングギヤ728は、油圧モータ部705からの回転動力を旋回回転として受け、キャリア729によりサンギヤ726からの直進回転に旋回回転を重畳させ、遊星ギヤ727及び出力側伝道ギヤ731を回転させる。これにより、左右の差動出力軸730の一方には、遊星ギヤ727及び出力側伝道ギヤ731を介して、直進回転に旋回回転を加算させた回転動力が伝達され、左右の差動出力軸730の他方には、遊星ギヤ727及び出力側伝道ギヤ731を介して、直進回転に旋回回転を減算させた回転動力が伝達される。
 直進用入力カウンタ軸508及びモータ軸709からの変速出力は、左右の各遊星ギヤ機構703を経由して、左右の走行クローラ3の駆動スプロケット62にそれぞれ伝達され、走行機体2の車速(走行速度)及び進行方向が決定される。すなわち、油圧式無段変速機701の油圧モータ部705を停止させて左右リングギヤ728を静止固定させた状態で、直進用ミッションケース17からの回転動力が直進用入力カウンタ軸508に入力されると、直進用入力カウンタ軸508の回転が左右サンギヤ726に左右同一回転数で伝達され、左右の走行クローラ3が同方向の同一回転数にて駆動され、走行機体2が直進走行する。
 逆に、直進用ミッションケース17の直進用出力軸30による回転が停止して左右サンギヤ726が静止固定した状態で、油圧式無段変速機701の油圧モータ部705を駆動させると、モータ軸709からの回転動力にて、左のリングギヤ728が正回転(逆回転)し、右のリングギヤ728は逆回転(正回転)する。その結果、左右の走行クローラ3の駆動スプロケット62のうち、一方が前進回転し、他方が後退回転し、走行機体2はその場で方向転換(信地旋回スピンターン)される。
 また、直進用ミッションケース17からの直進回転によって左右サンギヤ726を駆動しながら、油圧式無段変速機701の油圧モータ部705の旋回回転によって左右リングギヤ728を駆動することによって、左右の走行クローラ3の速度に差が生じ、走行機体2は前進又は後退しながら信地旋回半径より大きい旋回半径で左又は右に旋回(Uターン)する。このときの旋回半径は左右の走行クローラ3の速度差に応じて決定される。
 次に、PTO変速機構505を介して実行するPTO軸25の駆動速度の切換構造(正転三段及び逆転一段)について説明する。直進用ミッションケース17には、エンジン5からの動力をPTO軸25に伝達するPTO変速機構505を配置している。この場合、主変速入力軸511の後端側に、動力伝達継断用のPTO油圧クラッチ590を介して、主変速入力軸511と同軸状に延びるPTO入力軸591を連結している。また、直進用ミッションケース17には、PTO入力軸591と平行状に延びるPTO変速軸592、PTOカウンタ軸593及びPTO軸25を配置している。PTO軸25は直進用ミッションケース17後面から後方に突出している。
 PTOクラッチスイッチ53を動力接続操作すると、PTO油圧クラッチ590が動力接続状態となって、主変速入力軸511とPTO入力軸591とが相対回転不能に連結される。その結果、主変速入力軸511からPTO入力軸591に向かって回転動力が伝達される。PTO入力軸591には、前側から順に、中速入力ギヤ597、低速入力ギヤ595、高速入力ギヤ596及び逆転シフタギヤ598を設けている。中速入力ギヤ597、低速入力ギヤ595及び高速入力ギヤ596は、PTO入力軸591に相対回転不能に被嵌している。逆転シフタギヤ598は、PTO入力軸591に相対回転不能で且つ軸線方向にスライド可能にスプライン嵌合している。
 一方、PTO変速軸592には、中速入力ギヤ597に噛み合うPTO中速ギヤ601、低速入力ギヤ595に噛み合うPTO低速ギヤ599、及び高速入力ギヤ596に噛み合うPTO高速ギヤ600を回転可能に被嵌している。PTO変速軸592には、前後一対のPTO変速シフタ602,603を相対回転不能で且つ軸線方向にスライド可能にスプライン嵌合している。第一PTO変速シフタ602はPTO中速ギヤ601とPTO低速ギヤ599との間に配置している。第二PTO変速シフタ603はPTO高速ギヤ600よりも後端側に配置している。前後一対のPTO変速シフタ602,603は、PTO変速レバー46の操作に伴い連動して軸線方向にスライド移動するように構成している。PTO変速軸592のうちPTO低速ギヤ599とPTO高速ギヤ600との間にPTO伝動ギヤ604を固着している。
 PTOカウンタ軸593には、PTO伝動ギヤ604に噛み合うPTOカウンタギヤ605と、PTO軸25に相対回転不能に被嵌したPTO出力ギヤ608に噛み合うPTO中継ギヤ606と、PTO逆転ギヤ607とを相対回転不能に被嵌している。PTO変速レバー46を中立操作した状態で副PTOレバー48を入り操作することによって、逆転シフタギヤ598がスライド移動して、逆転シフタギヤ598とPTOカウンタ軸593のPTO逆転ギヤ607とが噛み合うように構成している。
 PTO変速レバー46を変速操作すると、前後一対のPTO変速シフタ602,603がPTO変速軸592に沿ってスライド移動し、PTO低速ギヤ599、PTO中速ギヤ601、及びPTO高速ギヤ600がPTO変速軸592に択一的に連結される。その結果、低速~高速の各PTO変速出力が、PTO変速軸592からPTO伝動ギヤ604及びPTOカウンタギヤ605を介してPTOカウンタ軸593に伝達され、更に、PTO中継ギヤ606及びPTO出力ギヤ608を介してPTO軸25に伝達される。
 副PTOレバー48を入り操作すると、逆転シフタギヤ598がPTO逆転ギヤ607と噛み合い、PTO入力軸591の回転動力が、逆転シフタギヤ598及びPTO逆転ギヤ607を介してPTOカウンタ軸593に伝達される。そして、逆転のPTO変速出力が、PTOカウンタ軸593からPTO中継ギヤ606及びPTO出力ギヤ608を介してPTO軸25に伝達される。
 次に、図12を参照しながら、トラクタ1の油圧回路620構造について説明する。トラクタ1の油圧回路620は、エンジン5の回転動力によって駆動する作業機用油圧ポンプ481及び走行用油圧ポンプ482を備えている。実施形態では、直進用ミッションケース17が作業油タンクとして利用されていて、直進用ミッションケース17内の作動油が作業機用油圧ポンプ481及び走行用油圧ポンプ482に供給される。走行用油圧ポンプ482は、直進用の油圧機械式無段変速機500における油圧ポンプ部521と油圧モータ部522とをつなぐ閉ループ油路623に接続している。エンジン5の駆動中は、走行用油圧ポンプ482からの作動油が閉ループ油路623に常に補充される。
 また、走行用油圧ポンプ482は、油圧機械式無段変速機500の主変速油圧シリンダ524に対する主変速油圧切換弁624と、PTO油圧クラッチ590に対するPTOクラッチ電磁弁627及びこれによって作動する切換弁628とに接続している。更に、走行用油圧ポンプ482は、前進低速油圧クラッチ537を作動させる前進低速クラッチ電磁弁632と、前進高速油圧クラッチ539を作動させる前進高速クラッチ電磁弁633と、後進油圧クラッチ541を作動させる後進クラッチ電磁弁634と、前記各クラッチ電磁弁632~634への作動油供給を制御するマスター制御電磁弁635とに接続している。
 また、作業機用油圧ポンプ481が、直進用ミッションケース17の上面後部側にある油圧式昇降機構22の上面に積層配置した複数の油圧外部取出バルブ430と、油圧式昇降機構22における油圧リフトシリンダ117下側への作動油供給を制御する複動制御電磁弁432と右リフトロッド121に設けた水平シリンダ122への作動油供給を制御する傾斜制御電磁弁647と、油圧式昇降機構22における油圧リフトシリンダ117下側への作動油供給を制御する上昇油圧切換弁648及び下降油圧切換弁649と、上昇油圧切換弁648を切換作動させる上昇制御電磁弁650と、下降油圧切換弁649を作動させる下降制御電磁弁651とに接続している。なお、複動バルブ機構431が、複動制御電磁弁432を含む油圧回路で構成されており、昇降バルブ機構652が、上昇油圧切換弁648及び下降油圧切換弁649と上昇制御電磁弁650及び下降制御電磁弁651による油圧回路で構成される。
 傾斜制御電磁弁647を切換駆動させると、水平シリンダ122が伸縮動して、前部側にあるロワーリンクピンを支点にして右側のロワーリンク23が上下動する。その結果、左右両ロワーリンク23を介して対地作業機が走行機体2に対して左右に傾動して、対地作業機の左右傾斜角度が変化する。複動制御電磁弁432を切換制御することにより、油圧リフトシリンダ117の駆動方式として、単動式又は複動式のいずれかを選択できる。すなわち、単複動切換スイッチ56の切換動作に従って、複動制御電磁弁432を切り換えることで、油圧リフトシリンダ117の駆動方式が設定される。
 油圧リフトシリンダ117を単動式で駆動させる場合、上昇油圧切換弁648又は下降油圧切換弁649を切換作動させると、油圧リフトシリンダ117が伸縮動し、リフトアーム120及び左右両ロワーリンク23が共に上下動する。その結果、対地作業機が昇降動し、対地作業機の昇降高さ位置が変化する。一方、油圧リフトシリンダ117を複動式で駆動させる場合、上昇油圧切換弁648又は下降油圧切換弁649を切換作動させると同時に複動制御電磁弁432を切換駆動させて、油圧リフトシリンダ117を伸縮動させる。これにより、対地作業機が昇降動させることができるとともに、対地作業機を下降させたときに地面に向かって加圧し、対地作業機を下降位置に保持できる。
 また、トラクタ1の油圧回路620は、エンジン5の回転動力によって駆動するチャージポンプ707を備え、チャージポンプ707が、旋回用の油圧式無段変速機701における油圧ポンプ部704と油圧モータ部705とをつなぐ閉ループ油路740に接続している。実施形態では、直進用ミッションケース17が作業油タンクとして利用されていて、直進用ミッションケース17内の作動油がチャージポンプ707に供給される。また、エンジン5の駆動中は、チャージポンプ707からの作業油が閉ループ油路740に常に補充される。トラクタ1の油圧回路620は、油圧式無段変速機701における油圧ポンプ部704のポンプ斜板708の角度を変更させる旋回油圧シリンダ741と、旋回油圧シリンダ741に対する旋回油圧切換弁742とを備える。
 トラクタ1の油圧回路620は、前述の作業機用油圧ポンプ481及び走行用油圧ポンプ482以外に、エンジン5の回転動力で駆動する潤滑油ポンプ518も備えている。潤滑油ポンプ518には、PTO油圧クラッチ590の潤滑部に作動油(潤滑油)を供給するPTOクラッチ油圧切換弁641と、油圧機械式無段変速機500を軸支する主変速入力軸511の潤滑部と、前進低速油圧クラッチ537の潤滑部に作動油(潤滑油)を供給する前進低速クラッチ油圧切換弁642と、前進高速油圧クラッチ539の潤滑部に作動油(潤滑油)を供給する前進高速クラッチ油圧切換弁643と、後進油圧クラッチ541の潤滑部に作動油(潤滑油)を供給する後進クラッチ油圧切換弁644とに接続している。なお、油圧回路620には、リリーフ弁や流量調整弁、チェック弁、オイルクーラ、オイルフィルタ等を備えている。
 次に、図13~図16を参照しながら、トラクタ1の走行制御を実行するための構成について説明する。図13に示す如く、トラクタ1は、エンジン5の駆動を制御するエンジンコントローラ811と、ダッシュボード33搭載の操作表示盤(メーターパネル)39の表示動作を制御するメータコントローラ812と、走行機体2の速度制御等を行う直進コントローラ813及び旋回コントローラ814とを備えている。
 上記コントローラ811~814及び操作用モニタ55はそれぞれ、各種演算処理や制御を実行するCPUの他、制御プログラムやデータを記憶させるためのROM、制御プログラムやデータを一時的に記憶させるためのRAM、時間計測用のタイマ、及び入出力インターフェース等を備えており、CAN通信バス815を介して相互に通信可能に接続されている。エンジンコントローラ811及びメータコントローラ812は、電源印加用キースイッチ816を介してバッテリ817に接続されている。
 エンジンコントローラ811による制御に基づき、エンジン5では、燃料タンクの燃料が燃料ポンプによってコモンレールに圧送され、高圧の燃料としてコモンレールに蓄えられる。そして、エンジンコントローラ811が、各燃料噴射バルブをそれぞれ開閉制御(電子制御)することで、不図示のコモンレール内の高圧の燃料が、噴射圧力、噴射時期、噴射期間(噴射量)を高精度にコントロールされた上で、各インジェクタ(図示せず)からエンジン5の各気筒に噴射される。
 メータコントローラ812の出力側には、メータパネル39における液晶パネルや各種警報ランプなどを接続している。そして、メータコントローラ812は、メータパネル39に各種信号を出力し、警報ランプの点消灯動作及び点滅動作、液晶パネルの表示動作、警報ブザーの発報動作などを制御する。
 直進コントローラ813の入力側には、主変速レバー50の操作位置を検出する主変速センサ(主変速ポテンショ)822、直進出力の回転数(直進車速)を検出する直進用ピックアップ回転センサ(直進車速センサ)823、前後進切換レバー36の操作位置を検出する前後進センサ(前後進ポテンショ)825、副変速レバー45の操作位置を検出する副変速センサ826、超低速レバー44の操作位置を検出するクリープセンサ827、ブレーキペダル35の踏み込み量を検出するブレーキ位置センサ828、クラッチペダル37の踏み込み量検出するクラッチ位置センサ829、ブレーキペダル35の踏み込みを検出するブレーキスイッチ851、クラッチペダル37の踏み込みを検出するクラッチスイッチ852、及び、駐車ブレーキレバー43の操作を検出する駐車ブレーキスイッチ853を接続している。
 直進コントローラ813の出力側には、前進低速油圧クラッチ537を作動させる前進低速クラッチ電磁弁632、前進高速油圧クラッチ539を作動させる前進高速クラッチ電磁弁633、後進油圧クラッチ541を作動させる後進クラッチ電磁弁634、及び、主変速レバー50の傾動操作量に応じて主変速油圧シリンダ524を作動させる主変速油圧切換弁624を接続している。
 旋回コントローラ814の入力側には、操縦ハンドル9の回動量(操舵角度)を検出する操舵角センサ(操舵ポテンショ)821、及び、旋回出力の回転数(旋回車速)を検出する旋回用ピックアップ回転センサ(旋回車速センサ)824を接続している。一方、旋回コントローラ814の出力側には、操縦ハンドル9の回転操作量に応じて旋回油圧シリンダ741を作動させる旋回油圧切換弁742を接続している。
 図14に示す如く、直進コントローラ813は、油圧機械式無段変速機(第1無段変速機)500を有する直進系伝動経路の出力を制御する直進走行演算部831と、操縦ハンドル9の操舵角に対する直進車速の減速率を格納した減速率テーブルTAを記憶するメモリ832と、CAN通信バス815と接続する通信インターフェース833とを備える。メモリ832内の減速率テーブルTAは、図15に示す如く、後述する「スピンターンモード(第1モード)」、「ブレーキターンモード(第2モード)」、「緩旋回モード(第3モード)」、及び「走行モード(第4モード)」の4モードに対して、操縦ハンドル9の操舵角に対する直進車速の減速率TA1~TA4を記憶している。
 なお、図15に示す減速率テーブルTAは、各モードにおける操縦ハンドル9を右側に回転させたとき(トラクタ1の右旋回時)の減速率を示しているが、操縦ハンドル9を左側に回転させたとき(トラクタ1の左旋回時)の減速率についても同様である。即ち、操縦ハンドル9を左右方向それぞれに回転させたとき(トラクタ1を左右旋回させたとき)、指定されたモードによる減速率を、操縦ハンドル9の中立位置(0°)から回転させた操舵角により減速率テーブルTAから読み取って、直進車速の減速率を設定する。また、減速率は、直進速度に乗算される比率であり、減速率が100%のときは、直進速度は減速されず、減速率が低くなるほど、直進速度が減速される。また、操縦ハンドル9は、操舵角検出機構(ステアリングボックス)880により、中立位置となる0°から左右にθe(例えば、250°)以上の回転が規制されている。
 図15に示す如く、減速率テーブルTAは、操縦ハンドル9の操舵角が0°(中立位置)からθmi(例えば、15°)であるとき、操縦ハンドル9の中立領域(いわゆる遊びの領域であり、不感帯)とし、各モードの減速率TA1~TA4を100%とする。そして、操縦ハンドル9の操舵角がθmiからθma(例えば、245°)であるとき、操縦ハンドル9の操作領域とし、スピンターンモード、ブレーキターンモード、及び走行モードそれぞれの減速率TA1,TA2,TA4を操舵角に応じて単調減少させる一方、緩旋回モードの減速率TA3を100%で一定とする。すなわち、操舵角θmiが制御上における中立位置(0°)であり、操舵角θmaが制御上における最大操舵角となる。このとき、走行モード、ブレーキターンモード、スピンターンモードの順で、操舵角に対する減速率の変化率が大きくなっている。また、操縦ハンドル9の操舵角がθmaからθeであるとき、操縦ハンドル9の最大領域とし、スピンターンモード、ブレーキターンモード、及び走行モードにおいては、減速率TA1,TA2,TA4が最小値De1~De3(0<De1<De2<De3<100)%となる。
 図14に示す如く、旋回コントローラ814は、油圧式無段変速機(第2無段変速機)701を有する旋回系伝動経路の出力を制御する旋回走行演算部841と、操縦ハンドル9の操舵角に対する直進車速と旋回車速との旋回/直進比を格納した旋回/直進比テーブルTB(図17参照)を記憶するメモリ842と、CAN通信バス815と接続する通信インターフェース843とを備える。メモリ842内の旋回/直進比テーブルTBは、図15に示す如く、後述する「スピンターンモード(第1モード)」、「ブレーキターンモード(第2モード)」、「緩旋回モード(第3モード)」、及び「走行モード(第4モード)」の4モードに対して、操縦ハンドル9の操舵角に対する旋回/直進比TB1~TB4を記憶している。
 なお、図15に示す旋回/直進比テーブルTBは、各モードにおける操縦ハンドル9を右側に回転させたとき(トラクタ1の右旋回時)を正とするものとした旋回/直進比を示している。また、旋回/直進比は、減速率により減速された直進速度に乗算される比率であり、旋回/直進比が0のときは、旋回速度がなく、左右の走行クローラ3がともに同一の直進速度で駆動し、旋回/直進比が高くなるほど、旋回速度が大きくなるため、左右の走行クローラ3の速度差が大きくなる。以下では、主に、操縦ハンドル9を右側に回転させた場合(右旋回時)の旋回/直進比について説明するものとし、操縦ハンドル9を左側に回転させた場合(左旋回時)の旋回/直進比については、括弧書きで補足する。
 図15に示す如く、旋回/直進比テーブルTBは、操縦ハンドル9の操舵角が0°~θmi(-θmi~0°)となる中立領域では、各モードの旋回/直進比TB1~TB4を0とする。そして、操縦ハンドル9の操舵角がθmi~θma(-θma~-θmi)となる操縦ハンドル9の操作領域では、スピンターンモード、ブレーキターンモード、緩旋回モード、及び走行モードそれぞれの旋回/直進比TB1~TB4を操舵角に応じて単調増加させる。このとき、緩旋回モード、走行モード、ブレーキターンモード、スピンターンモードの順で、操舵角に対する旋回/直進比の変化率が大きくなっている。
 また、操縦ハンドル9の操舵角がθma~θe(-θe~-θma)となる最大領域では、各モードにおいて、旋回/直進比が最大値Ra1~Ra4(最小値-Ra1~-Ra4)となる。なお、図15に示す如く、最大旋回/直進比Ra1~Ra4(-Ra1~-Ra4)は、0<Ra1<Ra2<Ra3<Ra4(-Ra4<-Ra3<-Ra2<-Ra1<0)の関係となっており、操縦ハンドル9の操舵角を最大領域としたとき、緩旋回モードにおいて最大旋回/直進比Ra1(-Ra1)となり、走行モードにおいて最大旋回/直進比Ra2(-Ra2)となり、ブレーキターンモードにおいて最大旋回/直進比Ra3(-Ra3)となり、スピンターンモードにおいて最大旋回/直進比Ra4(-Ra4)となる。
 直進コントローラ813において、図16に示す如く、直進走行演算部831は、前後進センサ825からの信号を受けて、「前進」「中立」「後進」のいずれが指定されているかを認識し、副変速センサ826及びクリープセンサ827からの信号を受けて、「高速」「低速」「超低速」「中立」のいずれが指定されているかを認識する(STEP1)。直進走行演算部831は、主変速センサ822からの信号を受けて、直進状態(操舵角が0°の状態)における直進車速の目標値(以下、「直進基準目標値」とする。)を算出する(STEP2)。
 直進コントローラ813は、旋回コントローラ814を通じて、操舵角センサ821からの信号を通信インターフェース833で受信し、直進走行演算部831に操舵角センサ821からの信号を与える(STEP3)。直進走行演算部831は、操舵角センサ821からの信号を受けて、操縦ハンドル9の操舵角を認識すると、メモリ832内の減速率テーブルTAを参照して、指定されたモードにおける操縦ハンドル9の操舵角に応じた直進車速の減速率を読み出す(STEP4)。
 そして、直進走行演算部831は、主変速センサ822からの信号に基づく直進基準目標値に、読み出した減速率を乗算することにより、操舵角に応じた直進車速の目標値(以下、「直進目標値」とする。)を算出する(STEP5)。なお、直進基準目標値及び直進目標値における「直進車速」は、エンジン5の回転速度に対する直進用ミッションケース17における走行伝動軸536の回転速度の相対速度とする。
 直進走行演算部831は、ブレーキ位置センサ828、クラッチ位置センサ829からの信号を受けて、ブレーキペダル35及びクラッチペダル37それぞれの踏み込みの有無を確認する(STEP6)。そして、直進走行演算部831は、ブレーキペダル35への機体停止操作の有無、クラッチペダル37への操作の有無、前後進切換レバー36又は副変速レバー45が中立位置にあるか否かを確認する(STEP7)。
 直進走行演算部831は、機体停止操作があった場合、又は、クラッチペダル37に踏み込み操作がある場合、又は、前後進切換レバー36又は副変速レバー45が中立位置にある場合(STEP7でYes)、直進用ピックアップ回転センサ823からの信号(以下、「直進実測値」とする)を、通信インターフェース833から旋回コントローラ814に送信する(STEP8)。その後、直進走行演算部831は、前進の場合は、前進低速クラッチ電磁弁632、前進高速クラッチ電磁弁633、及び、後進クラッチ電磁弁634の動作を制御して、前進低速油圧クラッチ537、前進高速油圧クラッチ539、及び後進油圧クラッチ541を切断する(STEP9)。
 一方、直進走行演算部831は、機体停止操作がなく、且つ、クラッチペダル37両方に踏み込み操作がなく、且つ、前後進切換レバー36が前進位置又は後進位置にあり、且つ、副変速レバー45が超低速位置、低速位置又は高速位置のいずれかにある場合(STEP7でNo)、算出した直進目標値を、通信インターフェース833から旋回コントローラ814に送信する(STEP10)。その後、直進走行演算部831は、算出した直進目標値に基づき、前進の場合は、前進低速クラッチ電磁弁632、前進高速クラッチ電磁弁633、及び主変速油圧切換弁624の動作を制御する一方、後進の場合は、後進クラッチ電磁弁634、及び主変速油圧切換弁624の動作を制御する(STEP11)。これにより、全ての油圧クラッチ537,539,541がいずれも動力切断状態となり、主変速出力軸512からの走行駆動力が略ゼロ(主クラッチ切りの状態)になる。
 すなわち、STEP11において、直進走行演算部831は、直進実測値(直進用ピックアップ回転センサ823からの信号)と直進目標値とに基づき、直進系伝動経路の出力(直進用出力軸30による回転速度)をフィードバック制御(主変速制御)する。なお、副変速センサ826及びクリープセンサ827からの信号により指定される変速ギヤ比に基づき、直進用ピックアップ回転センサ823からの信号から走行伝動軸536の回転速度を確認し、直進目標値と比較することで、直進系伝動経路の出力を制御する。
 旋回コントローラ814において、図16に示す如く、旋回走行演算部841は、操舵角センサ821からの信号を受けて、操縦ハンドル9の操舵角を認識する(STEP51)。旋回走行演算部841は、メモリ842内の旋回/直進比テーブルTBを参照して、指定されたモードにおける操縦ハンドル9の操舵角に応じた旋回/直進比を読み出す(STEP52)。
 また、旋回コントローラ814は、直進コントローラ813を通じて、副変速センサ826及びクリープセンサ827からの信号を通信インターフェース843で受信し、旋回走行演算部841に与える(STEP53)。旋回走行演算部841は、副変速センサ826及びクリープセンサ827からの信号により、副変速として「高速」「低速」「超低速」のいずれが指定されているかを認識する。旋回走行演算部841は、指定された副変速に基づいて旋回/直進比の補正値をメモリ842から読み出し、指定された副変速に基づいて旋回/直進比を補正する(STEP54)。
 また、旋回コントローラ814は、直進コントローラ813で算出された直進目標値又は直進実測値(直進用ピックアップ回転センサ823からの信号)を、通信インターフェース843で受信し、旋回走行演算部841に与える(STEP55)。旋回走行演算部841は、直進目標値又は直進実測値より直進車速を確認し、当該直進車速に補正後の旋回/直進比を乗算することで、旋回車速となる旋回目標値を算出する(STEP56)。なお、旋回目標値における「旋回車速」は、エンジン5の回転速度に対する旋回用ミッションケース13におけるモータ軸709の回転速度の相対速度とする。
 旋回走行演算部841は、旋回目標値を算出すると、旋回油圧切換弁742の動作を制御する。このとき、旋回走行演算部841は、旋回用ピックアップ回転センサ824からの信号(以下、「旋回実測値」とする)と旋回目標値とに基づき、旋回系伝動経路の出力(モータ軸709による回転速度)をフィードバック制御(旋回制御)する(STEP57)。
 直進コントローラ813は、主変速制御を実行している際に、前後進センサ825からの信号が「前進から後進」又は「後進から前進」に切り換えられたとき、前進低速クラッチ電磁弁632及び後進クラッチ電磁弁634を制御して、前進低速油圧クラッチ537及び後進油圧クラッチ541を切り換える。このように、前進低速油圧クラッチ537及び後進油圧クラッチ541を切り換える際、直進コントローラ813は、前進低速油圧クラッチ537及び後進油圧クラッチ541のいずれか一方が必ずつながっているように制御する。
 このとき、直進基準目標値(又は直進目標値)を変化させることで、主変速油圧切換弁624を制御して、主変速出力軸512や走行中継軸535は最低速回転状態にした後に、再び、元の回転数となるように、主変速出力軸512や走行中継軸535の回転数を増速させる。従って、旋回コントローラ814は、直進コントローラ813からの直進目標値を受けることによって、旋回目標値を直進目標値と同様に変化させることができる。これにより、旋回コントローラ814は、走行機体2の前進時と後進時で操縦ハンドル9の操作に対する旋回系伝動経路の出力(旋回車速)を逆転させて、オペレータに円滑な操縦性を寄与できる。
 直進コントローラ813は、主変速制御を実行している際に、前後進センサ825からの信号が「前進」の状態で主変速レバー50により高速側又は低速側に操作された場合、前進低速クラッチ電磁弁632及び前進高速クラッチ電磁弁633を制御して、前進低速油圧クラッチ537及び前進高速油圧クラッチ539を切り換える。このように、前進低速油圧クラッチ537及び前進高速油圧クラッチ539を切り換える際、直進コントローラ813は、前進低速油圧クラッチ537及び前進高速油圧クラッチ539のいずれか一方が必ずつながっているように制御する。
 このとき、直進コントローラ813は、直進目標値に合わせて、主変速油圧切換弁624を制御する。また、旋回コントローラ814は、直進コントローラ813からの直進目標値を受けることによって、操縦ハンドル9の操作に対する旋回系伝動経路の出力(旋回車速)を設定させるため、前進低速油圧クラッチ537及び前進高速油圧クラッチ539の切換に影響なく、複雑な演算を行うことなく、直進系伝動経路の出力(直進車速)に応じた旋回系伝動経路の出力(旋回車速)をできる。
 直進コントローラ813は、クラッチペダル37等が踏み込まれるなどして、前進低速油圧クラッチ537、前進高速油圧クラッチ539、及び、後進油圧クラッチ541のそれぞれを切った状態に制御する場合、直進実測値(直進用ピックアップ回転センサ823からの信号)を旋回コントローラ814に送信する。そして、旋回コントローラ814は、直進実測値(直進用ピックアップ回転センサ823からの信号)により旋回系伝動経路の出力(旋回車速)を設定する。従って、前進高速油圧クラッチ539、及び、後進油圧クラッチ541の全てが切れており、直進系伝動経路の出力(直進車速)が直進目標値に対応していない場合でも、旋回系伝動経路の出力(旋回車速)を最適に設定できるため、オペレータは違和感なく車両を操作できる。
 直進コントローラ813は、ブレーキペダル35が踏み込まれて、急ブレーキ操作などによる機体停止操作がなされたとき、走行速度(直進車速)が所定速度以上の高速領域では、前進低速油圧クラッチ537、前進高速油圧クラッチ539、及び、後進油圧クラッチ541のそれぞれを切った状態に制御する。このとき、旋回コントローラ814は、直進実測値(直進用ピックアップ回転センサ823からの信号)により旋回系伝動経路の出力(旋回車速)を設定する。従って、ブレーキペダル35操作による制動制御が実行されている際に、直進系伝動経路の出力(直進車速)が直進目標値に対応していない場合でも、旋回系伝動経路の出力(旋回車速)を直進系伝動経路の出力(直進車速)に合わせて減速できるため、オペレータは違和感なく車両を操作できる。
 一方で、ブレーキペダル35に対して機体停止操作がなされた状態であっても、走行速度(直進車速)が所定速度未満の低速領域となる場合は、直進コントローラ813は、車両の前後進に合わせて、前進低速油圧クラッチ537又は後進油圧クラッチ541を繋いだ状態で、油圧機械式無段変速機500のポンプ斜板523が中立状態(0°)となるように直進目標値を設定し、主変速制御(フィードバック制御)を実行する。このとき、旋回コントローラ814は、直進実測値により旋回系伝動経路の出力(旋回車速)を設定するものとしてもよいし、直進目標値により旋回系伝動経路の出力を設定するものとしてもよい。
 旋回コントローラ814は、直進系伝動経路の出力(直進車速)の減速に伴って旋回系伝動経路の出力(旋回車速)を減速させる。そして、操縦ハンドル9が操作された場合、旋回コントローラ814が、旋回系伝動経路の出力(旋回車速)を増速させ、旋回コントローラ814が、直進系伝動経路(直進車速)の出力を減速させて、操縦ハンドル9の切れ角(操舵角)に基づいて旋回時の左右の走行クローラ3の速度比を決定する。
 また、オペレータは、操作用モニタ55を操作することにより、ハンドル切れ角が大きい場合に旋回内側を逆転させて小回り(スピンターン)ができる「スピンターンモード(第1モード)」と、スピンターンモードに比べて切れが鈍くハンドル切れ角が最大近くとなったときに旋回内側を停止させるブレーキターンまで実行できる「ブレーキターンモード(第2モード)」と、ブレーキターンモードに比べて更に切れが鈍い「緩旋回モード(第3モード)」と、高速車速に対応可能な「走行モード(第4モード)」とを選択できる。なお、超低速レバー44及び副変速レバー45により超低速走行又は低速走行が指定されている場合、「スピンターンモード」、「ブレーキターンモード」、及び「緩旋回モード」のいずれかによる旋回動作が許可される。一方、超低速レバー44により高速走行が指定される場合、「走行モード」による旋回動作のみが許可される。
 更に、オペレータは、操作用モニタ55を操作することにより、旋回時の旋回力を複数段階に調節できる。従って、オペレータは、操作用モニタ55を操作することにより、複数のモードから択一的に選択できる上、段階的な調節も可能なため、圃場状況等に見合った適切な走行特性(旋回特性)を手軽に選定できる。
 「スピンターンモード」を指定した場合、図18に示すように、操縦ハンドル9の切れ角が角度θt1(θmi<θt1<θma)となったときに、内側の走行クローラ3を停止させて、走行機体2をブレーキターンにより旋回させ、操縦ハンドル9の切れ角が角度θt1を超えると、内側の走行クローラ3を逆回転させて、走行機体2をスピンターンにより旋回させる。すなわち、操縦ハンドル9の切れ角が角度θt1未満の場合、内側の走行クローラ3を減速させ、操縦ハンドル9の切れ角が角度θt1の場合、内側の走行クローラ3を停止させ、操縦ハンドル9の切れ角が角度θt1を超える場合、内側の走行クローラ3を逆回転させる。これにより、操縦ハンドル9の操作量に合わせて、走行機体2の旋回中心及び旋回半径を変えることができる。従って、操縦ハンドル9への操作感覚に近い状態で走行機体2を旋回させることができ、結果、走行機体2を安定して走行させることができる。
 また、「ブレーキターンモード」を指定した場合、図19に示すように、操縦ハンドル9の切れ角を制御上の最大角θmaに近い角度θt2(θt1<θt2<θma)となったとき、走行機体2をブレーキターンにより旋回させる。「緩旋回モード」を指定した場合、図19に示すように、操縦ハンドル9の切れ角を制御上の最大角θma以上としても、内側の走行クローラ3は停止にいたらず、走行機体2を緩旋回させる。また、「走行モード」においても、ブレーキターン及びスピンターンによる旋回動作を実行できない。
 旋回コントローラ814は、STEP56で旋回目標値を算出する際、直進用ミッションケース17(直進系伝動経路)内の動力継断機構により油圧機械式無段変速機500からの出力が遮断されている場合、内側の走行クローラ3による逆回転動作を禁止する。これにより、直進用ミッションケース17内での動力伝達が遮断された際に、旋回用ミッションケース13から走行クローラ3へ出力される反転動力を制限でき、走行機体2による信地旋回が連続して実行されることを防止できる。以下に、旋回コントローラ814における旋回目標値の設定動作(図16におけるSTEP56の動作)について、図20のフローチャートを参照して説明する。
 図20に示す如く、旋回コントローラ814は、STEP55で直進コントローラ813からの信号を受信すると、クラッチペダル37への操作の有無、前後進切換レバー36又は副変速レバー45が中立位置にあるか否かを確認する(STEP301~STEP303)。そして、クラッチペダル37が踏み込まれている場合(STEP301でYes)、又は、前後進切換レバー36が中立位置にある場合(STEP302でYes)、又は、副変速レバー45が中立位置にある場合(STEP303でYes)、旋回コントローラ814は、直進実測値と旋回/直進比とにより内側の走行クローラ3の進行速度Vinを算出する(STEP304)。
 そして、算出した内側走行クローラ3の進行速度Vinが、直進実測値に基づく直進車速と逆方向(走行機体2の進行方向)となる場合(STEP305でYes)、旋回コントローラ814は、旋回/直進比を制限値±Ralimに置換する(STEP306)。なお、旋回/直進比の制限値±Ralimは、1より小さい値に設定され、旋回目標値(旋回速度)の絶対値が、直進実測値(直進速度)の絶対値より小さくなるように設定される。一方、クラッチペダル37の踏み込みがなく、且つ、前後進切換レバー36及び副変速レバー45が共に中立位置にない場合(STEP301~STEP303それぞれでNo)、旋回コントローラ814は、ブレーキペダル35への操作の有無を確認する(STEP307)。
 ブレーキペダル35への操作がない場合は(STEP307でNo)、旋回コントローラ814は、STEP54で補正した旋回/直進比を直進目標値による直進車速に乗算することで、旋回車速となる旋回目標値を算出する(STEP308)。また、左右の走行クローラ3の進行速度が直進速度と同一方向となる場合(STEP305でNo)、又は、ブレーキペダル35への操作がある場合(STEP307でYes)、旋回コントローラ814は、STEP54で補正した旋回/直進比を直進実測値による直進車速に乗算することで、旋回車速となる旋回目標値を算出する(STEP309)。更に、左右の走行クローラ3の進行速度が互いに逆方向となり(STEP305でYes)、旋回コントローラ814が、旋回/直進比を制限値に設定すると(STEP306)、制限値となる旋回/直進比を直進実測値による直進車速に乗算することで、旋回車速となる旋回目標値を算出する(STEP310)。
 本実施形態では、直進用ミッションケース17(直進系伝動経路)内の動力継断機構である油圧クラッチ537,539,541又は副変速シフタ557が非連結とされて、油圧機械式無段変速機500から直進用出力軸30への動力伝達が遮断される。このように、油圧機械式無段変速機500から直進用出力軸30への動力伝達が遮断された場合には、旋回コントローラ814が、旋回/直進比を制限値で制限することによって、左右の走行クローラ3による逆転動作を禁止できる。従って、直進用出力軸30が慣性で回転動作している際に、旋回用ミッションケース13からの差動出力が制限される。そのため、ブレーキターンモードやスピンターンモードで操縦ハンドル9の操舵角度が大きい場合であっても、走行機体2の旋回半径を大きくして(旋回曲率を小さくして)、走行機体2が連続して信地旋回することを防止できる。
 また、本実施形態では、油圧機械式無段変速機500から直進用出力軸30への動力伝達が遮断された状態であっても、左右の走行クローラ3が互いに逆方向に回転する場合にのみ、旋回/直進比を制限値で制限している。すなわち、左右の走行クローラ3が逆方向に回転し、左右の走行クローラ3が互いに逆方向となる摩擦力を地面から受ける場合に、旋回/直進比を制限値で制限している。更に、ブレーキ機構751による制動動作が実行されるときには、旋回/直進比を制限することなく、直進実測値に基づく旋回目標値の算出を実行している。従って、走行機体2の走行状態に最適な旋回用ミッションケース13への旋回目標値を常に設定することができる。これにより、直進系伝動経路の出力側(直進用出力軸30)に制動作用が機能していない場合に、走行機体2が連続して信地旋回を実行することを防止するとともに、走行クローラ3に対する地面からの摩擦力などの反力による制動作用を機能させて、安全に走行できる。
 旋回コントローラ814は、減速率を100%とするとともに旋回/直進比を0とする操縦ハンドル9の不感帯幅(中立領域)-θmi~θmiを変更可能とすべく、メモリ842に複数記憶している。以下では、旋回コントローラ814における不感帯幅の切換による操向感度設定制御について、図21及び図22などを参照して説明する。図21は、操向感度設定制御の動作を示すフローチャートであり、図22は、不感帯幅の変更に基づいて設定される減速率及び旋回/直進比の関係を示す図である。
 なお、本実施形態では、メモリ842に記憶される不感帯幅(中立領域)は、狭い不感帯幅-θmi1~θmi1と広い不感帯幅-θmi2~θmi2の2種類が記憶されるものとするがが、3種類以上の不感帯幅が記憶されるものとしてもよい。また、メモリ842に記憶される不感帯幅は、オペレータが、例えば、操作用モニタ55を操作することにより、オペレータの希望する値に変更できる。これにより、走行機体2の走行状態、圃場や道路などの路面状態などに最適な不感帯幅を複数メモリ842に記憶させることができるだけでなく、個々のオペレータの運転操作に最適な操向操作が可能となる。
 図21に示す如く、旋回コントローラ814は、直進用ピックアップ回転センサ823からの信号(直進実測値)を受けて、直進車速を確認するとともに(STEP601)、前後進センサ825からの信号を受けて、走行機体2の走行方向(前後進)を確認する(STEP602)。そして、走行機体2の直進車速が所定速度未満であり、走行機体2が低速走行中であり(STEP603でNo)、走行機体2が前進走行中であり(STEP604でNo)、操作用モニタ55などへの操作による感度変更の要求がない場合(STEP606でNo)、旋回コントローラ814は、狭い不感帯幅-θmi1~θmi1に設定する(STEP608)。
 一方、走行機体2の直進車速が所定速度以上であり、走行機体2が高速走行中である場合に(STEP603でYes)、操作用モニタ55などへの操作による感度変更の要求がないとき(STEP609でNo)、旋回コントローラ814は、広い不感帯幅-θmi2~θmi2に設定する(STEP609)。また、走行機体2が後進走行中である場合(STEP603でYes)、旋回コントローラ814は、まず、旋回半径を大きくする設定を行った後(STEP605)、操作用モニタ55などへの操作による感度変更の要求がないとき(STEP609でNo)、旋回コントローラ814は、広い不感帯幅-θmi2~θmi2に設定する(STEP609)。
 また、STEP606で感度変更の要求がなされている場合は(Yes)、旋回コントローラ814は、広い不感帯幅-θmi2~θmi2に設定する一方(STEP609)、STEP607で感度変更の要求がなされている場合は(Yes)、旋回コントローラ814は、狭い不感帯幅-θmi1~θmi1に設定する(STEP608)。なお、感度変更の要求については、運転中の操作に限らず、走行機体2の停止時に、オペレータが圃場や路面の状態や作業の種類に応じて、操作用モニタ55などにより入力操作し、予め、旋回コントローラ814にメモリ832内のフラグなどで記憶させているものとしてもよい。
 旋回コントローラ814は、不感帯幅を設定すると(STEP608又はSTEP609)、メモリ832の減速率テーブルTA及び旋回/直進比テーブルTBそれぞれを参照して、設定後の不感帯幅に合わせて、現在指定されているモードに応じた減速率及び旋回/直進比をそれぞれ設定する(STEP610~STEP611)。
 本実施形態では、図22に示す如く、例えば、スピンターンモードを選択されている場合、狭い不感帯幅-θmi1~θmi1に設定した際には、操舵角θma1(-θma1)に減速率が最小値De1となるように減速率テーブルTA11が設定される一方、操舵角θma1(-θma1)に旋回/直進比が最大値Ra4となるように旋回/直進比テーブルTB12が設定される。一方、広い不感帯幅-θmi2~θmi2に設定した際には、操舵角θma2(-θma2)に減速率が最小値De1となるように減速率テーブルTA12が設定される一方、操舵角θma2(-θma2)に旋回/直進比が最大値Ra4となるように旋回/直進比テーブルTB12が設定される。なお、θmi1、θmi2、θma1、θma2はそれぞれ、0<θmi1<θmi2<θma1<θma2<θeの関係となる。
 すなわち、広い不感帯幅-θmi2~θmi2の減速率テーブルTA12は、狭い不感帯幅-θmi1~θmi1の減速率テーブルTA11に対して、正転側(操舵角が正の値であり右旋回)については、θmi2-θmi1だけ正の方向へオフセット(平行移動)させる一方、逆転側(操舵角が負の値であり左旋回)については、θmi2-θmi1だけ負の方向へオフセットさせるようにして設定される。また、広い不感帯幅-θmi2~θmi2の旋回/直進比テーブルTB12についても、狭い不感帯幅-θmi1~θmi1の旋回/直進比テーブルTB11に対して、正転側(操舵角が正の値であり右旋回)については、θmi2-θmi1だけ正の方向へオフセット(平行移動)させる一方、逆転側(操舵角が負の値であり左旋回)については、θmi2-θmi1だけ負の方向へオフセットさせるようにして設定される。
 上述の操向感度設定制御を実行することで、走行状態に応じて操縦ハンドル9の回転に対する不感帯幅を変更できるため、走行機体2の姿勢や振動などにより、ハンドル操作に影響があったとしても、意図しない旋回動作を防ぐことができ、操作性を向上できる。また、走行路面(圃場)条件またはオペレータの希望走行フィーリングに適応した操向または変速制御を容易に得ることができ、運転操作性の向上などを容易に図ることができる。
 また、上述の操向感度設定制御を実行することで、高速走行時や後進走行時に不感帯幅を広く設定できるため、オペレータの意図しない旋回動作を防止でき、操作性の向上を図れるだけでなく、高速走行時や後進走行時の不用意な旋回による事故を防止できる。また、後進走行時の旋回半径と前進走行時の旋回半径とを変更できるものとすることで、オペレータが後方を向くことにより運転動作が困難となる後進走行時においても操作性を向上できる。
 本実施形態では、図22に示すように、走行機体2の直進車速(直進系伝動経路の出力)の減速を開始する操縦ハンドル9の操舵角(以下、「直進減速開始操舵角」とする)と、走行機体2の旋回車速(旋回系伝動経路の出力)の増速を開始する操縦ハンドル9の操舵角(以下、「旋回増速開始操舵角」とする)とをθmi1に設定することで、操縦ハンドル9の不感帯幅を狭く設定する。一方、操縦ハンドル9における直進減速開始操舵角と旋回増速開始操舵角とをθmi2に設定することで、操縦ハンドル9の不感帯幅を広く設定する。
 (旋回目標値の設定動作の第2例)
 上述したように、旋回コントローラ814による旋回目標値の設定動作について、図20のフローチャートによる動作例を、本実施形態における第1例として説明したが、当該第1実施例以外の動作例によるものとしても構わない。以下では、図23のフローチャートを参照して、旋回コントローラ814による旋回目標値の設定動作の第2例について説明する。なお、図23のフローチャートにおける動作ステップにおいて、図20のフローチャートと同一の動作ステップについては、同一の符号を付して、その詳細な説明を省略する。
 図23に示す如く、旋回コントローラ814は、STEP55で直進コントローラ813からの信号を受信すると、ブレーキペダル35への操作の有無を確認する(STEP307A)。そして、ブレーキペダル35への踏み込みがない場合に(STEP307AでNo)、クラッチペダル37への操作の有無や、前後進切換レバー36及び副変速レバー45の操作位置を確認する(STEP301~STEP303)。一方、ブレーキペダル35への踏み込みが確認されると(STEP307AでYes)、直進実測値と旋回/直進比とにより旋回目標値を算出する(STEP309)。
 ブレーキペダル35への操作がなく、油圧機械式無段変速機500から直進用出力軸30への動力伝達が遮断されている場合に(STEP301~STEP303のいずれかでYes)、旋回コントローラ814は、左右の走行クローラ3が互いに逆方向に回転することを確認すると(STEP304、STEP305でYes)、旋回/直進比を制限値に置換して、直進実測値から旋回目標値を算出する(STEP306、STEP310)。一方、旋回コントローラ814は、左右の走行クローラ3が同一方向に回転することを確認すると(STEP304、STEP305でNo)、直進実測値と旋回/直進比とにより旋回目標値を算出する(STEP309)。また、油圧クラッチ537,539,541のいずれかと副変速シフタ557が連結されている場合(STEP301~STEP303それぞれでNo)、直進目標値と旋回/直進比とにより旋回目標値を算出する(STEP308)。
 本例では、ブレーキペダル35への操作がある場合、油圧機械式無段変速機500から直進用出力軸30への動力伝達の継断に関わらず、直進実測値と旋回/直進比とにより旋回目標値を設定する。すなわち、直進用出力軸30への制動作用が機能している場合には、直進用出力軸30の回転数に対応する直進実測値に基づいて旋回目標値を設定するため、制動作用による直進速度の減速に合わせて旋回速度も減速し、走行機体2が連続して信地旋回することがない。一方、直進用出力軸30に慣性により回転している際に、走行機体2が信地旋回する可能性がある場合、旋回/直進比を制限することで、信地旋回を禁止することができ、オペレータの予期せぬ挙動を防止でき、運転安全性を向上できる。
 (旋回目標値の設定動作の第3実施例)
 次いで、図24のフローチャートを参照して、旋回コントローラ814による旋回目標値の設定動作の第3例について説明する。なお、図24のフローチャートにおける動作ステップにおいて、図20のフローチャートと同一の動作ステップについては、同一の符号を付して、その詳細な説明を省略する。
 図24に示す如く、旋回コントローラ814は、油圧機械式無段変速機500から直進用出力軸30への動力伝達が遮断されている場合に(STEP301~STEP303のいずれかでYes)、スピンターンモード又はブレーキターンモードのいずれかを選択されているか否かを確認する(STEP351)。スピンターンモード又はブレーキターンモードのいずれかが選択されている場合(STEP351でYes)、旋回コントローラ814は、選択されているモードの旋回/直進比テーブルTBと不感帯幅に応じて、旋回/直進比の制限値±Ralimとなる操縦ハンドル9の操舵角(閾値角)±θlimを算出する(STEP352)。そして、旋回コントローラ814は、操舵角センサ821からの信号に基づいて操縦ハンドル9の操舵角θが閾値角範囲外(θ≦-θlim又はθlim≦θ)であると(STEP353でNo)、旋回/直進比を制限値に置換して、直進実測値から旋回目標値を算出する(STEP306、STEP310)。
 緩旋回モード又は走行モードのいずれかが選択されている場合(STEP351でNo)、又は、スピンターンモード又はブレーキターンモードのいずれかであって、操縦ハンドル9の操舵角θが閾値角範囲内(-θlim<θ<θlim)であると(STEP353でYes)、直進実測値と旋回/直進比とにより旋回目標値を算出する(STEP309)。なお、本例において、第2例と同様に、ブレーキペダル35への操作を確認した後に、クラッチペダル37への操作の有無や、前後進切換レバー36及び副変速レバー45の操作位置を確認するものとしても構わない。
 本例では、信地旋回が実行されるモードを選択している場合に、油圧機械式無段変速機500から直進用出力軸30への動力伝達が切断されると、操縦ハンドル9の操舵角に基づいて旋回/直進比を制限するため、操縦ハンドル9の操作に合わせて信地旋回を禁止でき、その操作応答性が良好なものとなる。また、走行クローラ3の走行方向を予測することなく、旋回/直進比の制限の可否を設定できるため、旋回コントローラ814での演算量を低減できることから、旋回制御における電気的応答性も高くなり、オペレータの予期せぬ挙動を早期に防止でき、運転安全性を向上できる。
 また、本願発明における各部の構成は図示の実施形態に限定されるものではなく、本願発明の趣旨を逸脱しない範囲で種々変更が可能である。
2 走行機体
3 走行クローラ
5 ディーゼルエンジン
8 操縦座席
9 操縦ハンドル
13 旋回用ミッションケース
17 直進用ミッションケース
500 油圧機械式変速機
501 前後進切換機構
502 クリープ変速ギヤ機構
503 副変速ギヤ機構
511 主変速入力軸
512 主変速出力軸
521 油圧ポンプ部
522 油圧モータ部
523 ポンプ斜板
524 主変速油圧シリンダ
526 遊星ギヤ機構
535 走行中継軸
537 前進低速油圧クラッチ
539 前進高速油圧クラッチ
541 後進油圧クラッチ
624 主変速油圧切換弁
642 前進低速クラッチ油圧切換弁
643 前進高速クラッチ油圧切換弁
644 後進クラッチ油圧切換弁
701 油圧式無段変速機(HST)
702 差動ギヤ機構
703 遊星ギヤ機構
704 油圧ポンプ部
705 油圧モータ部
706 ポンプ軸
707 チャージポンプ
708 ポンプ斜板
709 モータ軸
741 旋回油圧シリンダ
742 旋回油圧切換弁
813 直進コントローラ
814 旋回コントローラ
821 操舵角センサ
822 主変速センサ
823 直進用ピックアップ回転センサ
824 旋回用ピックアップ回転センサ
825 前後進センサ
826 副変速センサ
827 クリープセンサ
828 ブレーキ位置センサ
829 クラッチ位置センサ
831 直進走行演算部
832 メモリ
833 通信インターフェース
841 旋回走行演算部
842 メモリ
843 通信インターフェース
880 操舵角(ハンドル切れ角)検出機構
881 ハンドル軸連結用ボス
882 操向入力軸(第1軸)
883 操向入力ギヤ(第1ギヤ)
884 操向出力軸(第2軸)
885 操向出力ギヤ(第2ギヤ)
886 ハンドル操作規制用カム
887 デテントローラ
888 デテントアーム
889 コイルバネ
890 凹部
891 凸部
892 筐体
893 天板
894 壁板
895 底板
896 ボルト
897 スペーサ
916 ブレーキペダル支持ブラケット
917 テレスコ機構
918 チルト機構
919 固定ブラケット
921 ハンドル軸
931 可動ブラケット
TA 減速率テーブル
TB 旋回/直進比テーブル

Claims (5)

  1.  走行機体に搭載するエンジンと、第一無段変速装置を有する直進系伝動経路と、第二無段変速装置を有する旋回系伝動経路を備え、前記直進系伝動経路の出力と前記旋回系伝動経路の出力を合成して左右の走行部を駆動する作業車両において、
     前記直進系伝動経路の出力と前記旋回系伝動経路の出力とを連動的に制御する制御部と、前記直進系伝動経路からの動力伝達を継断する動力継断機構とを備えており、
     前記制御部は、前記動力継断機構により前記直進系伝動経路からの動力伝達が遮断された場合、前記旋回系伝動経路の出力を制限して、前記左右の走行部による相互の逆転動作を禁止することを特徴とする作業車両。
  2.  前記直進系伝動経路の出力を指定する変速用操作具と、前記直進系伝動経路の出力を検出する検出器とを備え、
     前記制御部は、前記変速用操作具からの指令値及び前記検出器からの実測値を択一的に選択して前記旋回系伝動経路の出力を設定するものであって、前記動力継断機構により前記直進系伝動経路からの動力伝達が遮断された場合、前記検出器からの実測値に基づいて、前記旋回系伝動経路の出力を設定することを特徴とする請求項1に記載の作業車両。
  3.  前記制御部は、前記動力継断機構により前記直進系伝動経路からの動力伝達が遮断されている際、前記走行部の一方の進行方向が前記走行機体の進行方向と逆方向となることを認識したとき、前記検出器からの実測値に乗算する係数を制限することで前記旋回系伝動経路の出力を制限することを特徴とする請求項1に記載の作業車両。
  4.  回転操作可能な操縦ハンドルを備え、
     前記制御部は、前記動力継断機構により前記直進系伝動経路からの動力伝達が遮断されている際、前記操縦ハンドルの操舵角が所定角を超えたとき、前記検出器からの実測値に乗算する係数を制限することで前記旋回系伝動経路の出力を制限することを特徴とする請求項1に記載の作業車両。
  5.  前記制御部が、前記直進系伝動経路の出力を制御する第1制御部と、前記旋回系伝動経路の出力を制御する第2制御部とで構成されており、前記第1制御部で設定された前記直進系伝動経路の出力を前記第2制御部が受けることで、前記旋回系伝動経路の出力を設定することを特徴とする請求項1に記載の作業車両。
PCT/JP2017/003897 2016-02-09 2017-02-03 作業車両 WO2017138444A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187011156A KR102050679B1 (ko) 2016-02-09 2017-02-03 작업 차량
US16/076,653 US10926795B2 (en) 2016-02-09 2017-02-03 Work vehicle
EP17750168.1A EP3415404B1 (en) 2016-02-09 2017-02-03 Working vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016022543A JP6473091B2 (ja) 2016-02-09 2016-02-09 作業車両
JP2016-022543 2016-02-09

Publications (1)

Publication Number Publication Date
WO2017138444A1 true WO2017138444A1 (ja) 2017-08-17

Family

ID=59563194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003897 WO2017138444A1 (ja) 2016-02-09 2017-02-03 作業車両

Country Status (5)

Country Link
US (1) US10926795B2 (ja)
EP (1) EP3415404B1 (ja)
JP (1) JP6473091B2 (ja)
KR (1) KR102050679B1 (ja)
WO (1) WO2017138444A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180268696A1 (en) * 2017-03-16 2018-09-20 Toyota Jidosha Kabushiki Kaisha Collision avoidance device
RU2771060C2 (ru) * 2017-11-22 2022-04-25 КЛААС Зельбстфаренде Эрнтемашинен ГмбХ Система управления для сельскохозяйственной рабочей машины

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10604088B2 (en) * 2015-05-22 2020-03-31 Yanmar Co., Ltd. Tractor
JP6514958B2 (ja) * 2015-05-25 2019-05-15 ヤンマー株式会社 作業車両
JP6438368B2 (ja) * 2015-09-18 2018-12-12 ヤンマー株式会社 作業車両
JP7266383B2 (ja) 2018-10-26 2023-04-28 株式会社小松製作所 作業機械およびその制御方法
JP7358164B2 (ja) * 2019-09-30 2023-10-10 株式会社小松製作所 制御システム、作業車両の制御方法、および、作業車両
US11472395B2 (en) 2020-02-28 2022-10-18 Cnh Industrial America Llc System and method for executing multi-mode turns with a work vehicle
US20220136203A1 (en) * 2020-10-30 2022-05-05 Caterpillar Inc. Coordinated actuator control by an operator control

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000025642A (ja) * 1998-07-10 2000-01-25 Yanmar Agricult Equip Co Ltd 移動農機
JP2001163241A (ja) * 1999-12-13 2001-06-19 Yanmar Agricult Equip Co Ltd クローラ走行車
JP2005067606A (ja) * 2004-10-25 2005-03-17 Seirei Ind Co Ltd 作業車
JP2014144008A (ja) * 2014-03-20 2014-08-14 Yanmar Co Ltd 農業用作業車両

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3681871B2 (ja) * 1997-09-16 2005-08-10 ヤンマー農機株式会社 移動農機
JP2002059753A (ja) 2000-08-21 2002-02-26 Seirei Ind Co Ltd 走行車両
JP3950358B2 (ja) * 2002-04-24 2007-08-01 株式会社 神崎高級工機製作所 作業車の操向装置
JP3945698B2 (ja) * 2002-10-23 2007-07-18 ヤンマー農機株式会社 クローラ形トラクタ
JP2004330829A (ja) * 2003-05-02 2004-11-25 Kanzaki Kokyukoki Mfg Co Ltd 走行車両の操向駆動装置
JP4247078B2 (ja) 2003-09-09 2009-04-02 ヤンマー株式会社 油圧装置
JP5435881B2 (ja) * 2008-03-04 2014-03-05 ヤンマー株式会社 走行車両

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000025642A (ja) * 1998-07-10 2000-01-25 Yanmar Agricult Equip Co Ltd 移動農機
JP2001163241A (ja) * 1999-12-13 2001-06-19 Yanmar Agricult Equip Co Ltd クローラ走行車
JP2005067606A (ja) * 2004-10-25 2005-03-17 Seirei Ind Co Ltd 作業車
JP2014144008A (ja) * 2014-03-20 2014-08-14 Yanmar Co Ltd 農業用作業車両

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180268696A1 (en) * 2017-03-16 2018-09-20 Toyota Jidosha Kabushiki Kaisha Collision avoidance device
US10755573B2 (en) * 2017-03-16 2020-08-25 Toyota Jidosha Kabushiki Kaisha Collision avoidance device
RU2771060C2 (ru) * 2017-11-22 2022-04-25 КЛААС Зельбстфаренде Эрнтемашинен ГмбХ Система управления для сельскохозяйственной рабочей машины

Also Published As

Publication number Publication date
JP2017140893A (ja) 2017-08-17
US10926795B2 (en) 2021-02-23
US20190047620A1 (en) 2019-02-14
EP3415404B1 (en) 2020-05-27
EP3415404A4 (en) 2019-02-27
KR102050679B1 (ko) 2019-11-29
KR20180054802A (ko) 2018-05-24
EP3415404A1 (en) 2018-12-19
JP6473091B2 (ja) 2019-02-20

Similar Documents

Publication Publication Date Title
JP6473091B2 (ja) 作業車両
JP6438368B2 (ja) 作業車両
JP6487824B2 (ja) 作業車両
WO2016189917A1 (ja) 作業車両
JP6470158B2 (ja) 作業車両
WO2017057352A1 (ja) 作業車両
JP6487774B2 (ja) 作業車両
JP6487869B2 (ja) 作業車両
JP6435284B2 (ja) 作業車両
JP2017143804A (ja) 作業車両
JP2017074889A (ja) 作業車両
JP6515044B2 (ja) 作業車両
JP6487868B2 (ja) 作業車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750168

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187011156

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017750168

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017750168

Country of ref document: EP

Effective date: 20180910