WO2017138340A1 - Demister unit and egr system - Google Patents

Demister unit and egr system Download PDF

Info

Publication number
WO2017138340A1
WO2017138340A1 PCT/JP2017/002160 JP2017002160W WO2017138340A1 WO 2017138340 A1 WO2017138340 A1 WO 2017138340A1 JP 2017002160 W JP2017002160 W JP 2017002160W WO 2017138340 A1 WO2017138340 A1 WO 2017138340A1
Authority
WO
WIPO (PCT)
Prior art keywords
casing
exhaust gas
demister
fluid
baffle plate
Prior art date
Application number
PCT/JP2017/002160
Other languages
French (fr)
Japanese (ja)
Inventor
和久 伊藤
平岡 直大
中川 貴裕
哲司 上田
Original Assignee
三菱重工業株式会社
株式会社ジャパンエンジンコーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 株式会社ジャパンエンジンコーポレーション filed Critical 三菱重工業株式会社
Priority to KR1020187013173A priority Critical patent/KR102133162B1/en
Priority to CN201780004051.3A priority patent/CN108697957B/en
Publication of WO2017138340A1 publication Critical patent/WO2017138340A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/04Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia
    • B01D45/08Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia by impingement against baffle separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/35Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/36Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for adding fluids other than exhaust gas to the recirculation passage; with reformers

Definitions

  • the present invention relates to a demister unit that removes mist from exhaust gas, and an EGR system to which this demister unit is applied.
  • FIG. 1 In the demister unit described in Patent Document 1, a baffle plate is disposed to face the inlet in the casing, thereby forming a bent upstream flow path and providing a demister main body on the downstream side thereof. It is a thing.
  • the demister unit removes the mist contained in the exhaust gas by passing the exhaust gas therethrough. If the flow velocity of the exhaust gas passing through the demister main body is too fast, the mist removal performance is degraded. Therefore, in order to improve the mist removal performance, it is effective to reduce the flow velocity of the exhaust gas passing through the demister main body by lengthening the flow path length of the demister main body. However, when the flow path length of the demister main body is increased, the demister main body becomes large, and the demister unit itself is increased in size. When the demister unit is increased in size, there is a problem that the demister unit can not be installed at a desired position due to restrictions imposed by the installation position of the demister unit.
  • the present invention solves the above-mentioned problems, and an object of the present invention is to provide a demister unit and an EGR system which aim to improve the mist removal performance and to suppress the enlargement of the apparatus.
  • a baffle plate forming a passage, and a demister main body disposed in the casing downstream of the bending flow passage in the fluid flow direction to remove mist from the fluid, the inlet portion being horizontal in the casing It is characterized in that it is disposed to be shifted to one side in the horizontal direction from the middle position in the direction.
  • the fluid introduced into the casing from the inlet collides with the baffle plate, and the contained mist forms droplets and adheres to the baffle plate and flows down. Then, the fluid from which a part of the mist has been removed flows through the bending flow path, whereby the mist is further removed by centrifugal force, and finally the remaining mist is removed by the demister main body.
  • the inlet portion of the fluid is disposed on one side in the horizontal direction in the casing, the fluid introduced into the casing from the inlet portion collides with the baffle plate and flows to the other side in the horizontal direction, After flowing through the flexing channel, it turns horizontally before reaching the demister main body. As a result, the flow path of the fluid becomes long and the flow velocity decreases, so that the mist removal performance can be improved, and the enlargement of the apparatus can be suppressed.
  • the inlet portion is disposed on one side in the horizontal direction from the horizontal intermediate position in the casing at a half or more of the horizontal opening length in the inlet portion. It is characterized.
  • the fluid after colliding with the baffle plate can be properly turned horizontally, and the fluid flow path is lengthened to The flow rate can be reduced.
  • the baffle plate is provided so as to be suspended from the ceiling portion of the casing so that a passage opening is provided downward, and the demister main body is the ceiling from the passage opening in the casing.
  • a detour flow path is provided between the bottom of the casing and the demister supporting plate so as to be in fluid communication with the passage opening to horizontally turn fluid by being fixed on the demister supporting plate fixed on the part side. It is characterized by
  • bypass flow passage communicating with the passage opening between the bottom of the casing and the demister support plate to horizontally swirl the fluid
  • the flow path can be lengthened to reduce the flow rate of the fluid.
  • the demister unit according to the present invention is characterized in that a perforated plate is disposed at the passage opening at a predetermined distance from the bottom of the casing, and the perforated plate is provided up to the middle of the fluid flow direction.
  • the space part on the downstream side of the fluid can be expanded, and the flow path of the fluid can be lengthened to reduce the flow velocity.
  • the demister unit according to the present invention is characterized in that a receiving member is provided for receiving droplets generated by the collision of the fluid with the baffle plate.
  • the fluid introduced into the casing from the inlet collides with the baffle plate so that the contained mist drops as droplets and adheres to the baffle plate, and flows down the flat portion of the baffle plate by its own weight, and the receiving member It is received by Therefore, the fluid flowing through the curved flow channel does not again take in droplets as mist, and it is possible to improve the mist removal efficiency by suppressing the reintroduction of the mist removed from the fluid into the fluid.
  • the exhaust gas recirculation line recirculates a part of the exhaust gas discharged from the engine to the engine as a combustion gas, and the liquid for the combustion gas flowing in the exhaust gas recirculation line It is characterized by comprising a scrubber to be injected, and the demister unit to which the combustion gas discharged from the scrubber is introduced.
  • the scrubber removes the harmful substances by injecting a liquid to the combustion gas flowing through the exhaust gas recirculation line, After the mist contained by the demister unit is removed, it is supplied to the engine. And, in the demister unit, since the inlet portion of the fluid is arranged to be shifted to one side in the horizontal direction in the casing, the fluid introduced into the casing from the inlet portion collides with the baffle plate and the other side in the horizontal direction And, after flowing through the bending channel, turn horizontally before reaching the demister main body. As a result, the flow path of the fluid becomes long and the flow velocity decreases, so that the mist removal performance can be improved, and the enlargement of the apparatus can be suppressed.
  • the mist removal performance can be improved, and the enlargement of the device can be suppressed.
  • FIG. 1 is a schematic view showing a diesel engine equipped with an EGR system to which the demister unit of the present embodiment is applied.
  • FIG. 2 is a schematic block diagram showing the EGR system of the present embodiment.
  • FIG. 3 is a longitudinal sectional view showing the demister unit of the present embodiment.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG. 3 showing a horizontal cross section of the demister unit.
  • FIG. 5 is a cross-sectional view taken along the line VV of FIG. 3 showing the inlet of the demister unit.
  • FIG. 6 is a perspective view with a part of the demister unit cut away.
  • FIG. 1 is a schematic view showing a diesel engine provided with an EGR system to which the demister unit of the first embodiment is applied
  • FIG. 2 is a schematic configuration view showing an EGR system according to the first embodiment.
  • the marine diesel engine 10 includes an engine body 11, a supercharger 12, and an EGR system 13.
  • the engine body 11 is a propulsion engine (main engine) that drives and rotates a propulsion propeller via a propeller shaft.
  • the engine body 11 is a uniflow scavenging diesel engine, which is a two-stroke diesel engine, in which the flow of intake and exhaust in the cylinder is one direction from the lower side to the upper side, and the residual of the exhaust is eliminated. It is.
  • the engine body 11 includes a plurality of cylinders (combustion chambers) 21 in which pistons move up and down, a scavenging air trunk 22 in communication with the cylinders 21, and an exhaust manifold 23 in communication with the cylinders 21.
  • the scavenging ports 24 are provided between the cylinders 21 and the scavenging trunk 22, and the exhaust flow path 25 is provided between the cylinders 21 and the exhaust manifold 23.
  • the engine body 11 has the scavenging air trunk 22 connected to the air supply line G1 and the exhaust manifold 23 connected to the exhaust line G2.
  • the turbocharger 12 is configured by connecting a compressor 31 and a turbine 32 so as to rotate integrally with a rotating shaft 33.
  • the turbine 32 is rotated by the exhaust gas discharged from the exhaust line G2 of the engine body 11, the rotation of the turbine 32 is transmitted by the rotation shaft 33, and the compressor 31 is rotated. And / or compresses the recirculated gas and supplies it to the engine body 11 from the air supply line G1.
  • the compressor 31 is connected to a suction line G6 for drawing air from the outside (atmosphere).
  • the turbocharger 12 is connected to an exhaust line G3 for discharging the exhaust gas that has rotated the turbine 32, and the exhaust line G3 is connected to a chimney (funnel) not shown. Further, an EGR system 13 is provided between the exhaust line G3 and the air supply line G1.
  • the EGR system 13 includes exhaust gas recirculation lines G4, G5, G7, a scrubber 42, a demister unit 14, and an EGR blower (blower) 47.
  • the EGR system 13 mixes a part of the exhaust gas discharged from the marine diesel engine 10 with air, and then compresses the mixture by the turbocharger 12 and recycles it to the marine diesel engine 10 as a combustion gas, thereby causing combustion. It suppresses the formation of NOx.
  • the EGR system is installed to extract a part of the exhaust gas from the downstream side of the turbine 32 here, the EGR system may be installed to extract a part of the exhaust gas from the upstream side of the turbine 32 .
  • the exhaust gas recirculation line G4 is connected to the middle of the exhaust line G3.
  • the exhaust gas recirculation line G4 is provided with an EGR inlet valve (opening / closing valve) 41A, and the other end is connected to the scrubber 42.
  • the EGR inlet valve 41A opens / closes the exhaust gas branched from the exhaust line G3 to the exhaust gas recirculation line G4 by opening / closing the exhaust gas recirculation line G4.
  • the EGR inlet valve may be a flow rate adjusting valve, and the flow rate of the exhaust gas passing through the exhaust gas recirculation line G4 may be adjusted.
  • the scrubber 42 is a Venturi-type scrubber, and includes a hollow throat 43, a venturi 44 into which exhaust gas is introduced, and an enlarged portion 45 that gradually returns to the original flow velocity.
  • the scrubber 42 includes a water injection unit 46 that injects water (liquid) to the exhaust gas introduced into the venturi unit 44.
  • the scrubber 42 is connected to an exhaust gas recirculation line G5 for discharging waste water containing harmful substances and exhaust gases from which harmful substances such as SOx and particulates (PM) such as dust are removed.
  • a Venturi type is employ
  • the exhaust gas recirculation line G5 is provided with a demister unit 14 and an EGR blower 47.
  • the demister unit 14 separates the waste gas and the waste gas from which harmful substances have been removed by water injection.
  • the demister unit 14 is provided with a drainage circulation line W1 that circulates the drainage to the water injection unit 46 of the scrubber 42.
  • the drainage circulation line W1 is provided with a hold tank 49 and a pump 50 for temporarily storing drainage.
  • the EGR blower 47 guides the exhaust gas in the scrubber 42 to the demister unit 14 from the exhaust gas recirculation line G5.
  • the exhaust gas recirculation line G7 has one end connected to the EGR blower 47 and the other end connected to the compressor 31 via a mixer (not shown), and the exhaust gas is sent to the compressor 31 by the EGR blower 47.
  • the exhaust gas recirculation line G7 is provided with an EGR outlet valve (on-off valve or flow control valve) 41B.
  • the air from the suction line G6 and the exhaust gas (recirculation gas) from the exhaust gas recirculation line G7 are mixed in a mixer to generate a combustion gas.
  • this mixer may be provided separately from the silencer, or the silencer may be configured to have a function of mixing exhaust gas and air without separately providing a mixer.
  • the supercharger 12 can supply the combustion gas compressed by the compressor 31 from the air supply line G1 to the engine body 11, and an air cooler (cooler) 48 is provided on the air supply line G1.
  • the air cooler 48 cools the combustion gas by exchanging heat between the combustion gas compressed by the compressor 31 and having a high temperature and the cooling water.
  • FIG. 3 is a longitudinal sectional view showing the demister unit of this embodiment
  • FIG. 4 is a sectional view taken along the line IV-IV in FIG. 3 showing the horizontal section of the demister unit
  • FIG. 5 is a diagram showing the inlet of the demister unit in FIG.
  • FIG. 6 is a perspective view in which a part of the demister unit is cut away.
  • the demister unit 14 includes a casing 51, a baffle plate 52, a demister support plate 54, and a demister main body 55, as shown in FIGS.
  • the casing 51 has a hollow rectangular box shape, and is configured as a container that forms an internal space. That is, the casing 51 has a ceiling 51a located on the upper side in the vertical direction, a left wall 51b and a right wall 51c located on the left and right sides in the horizontal direction, and a bottom 51d located on the lower side in the vertical direction. It is formed of an upstream wall 51e located on the near side in the horizontal direction and a downstream wall 51f located on the far side in the horizontal direction. In the casing 51, an inlet portion 61 into which exhaust gas and drainage are introduced is formed on the upper side of the upstream wall 51e located at one end (right end in FIG. 3) on the front side. Further, the casing 51 is provided with an outlet 62 through which exhaust gas (fluid) is discharged to the ceiling 51 a at the other end (left end in FIG. 3) on the back side.
  • the inlet portion 61 is disposed at a predetermined distance L on one side in the horizontal direction (right side in FIG. 5) from an intermediate position in the width direction (horizontal direction) of the casing 51. In this case, it is desirable that the inlet portion 61 be disposed on one side in the width direction from the middle position of the casing 51 at a half or more of the horizontal opening length D in the inlet portion 61.
  • the inlet portion 61 since the inlet portion 61 has a cylindrical shape, the inlet portion 61 is disposed on one side in the width direction from the middle position of the casing 51 so as to be displaced by a radius (1/2 of D) or more of the inlet portion 61. It will be.
  • the outlet portion 62 is provided at an intermediate position in the width direction (horizontal direction, left and right direction in FIG. 5) of the casing 51.
  • the inlet 61 and the outlet 62 have a cylindrical shape, and are cylindrical or rectangular.
  • the baffle plate 52 is disposed in the casing 51 along the vertical direction so as to face the inlet 61 and be parallel to the upstream wall 51e.
  • the baffle plate 52 is formed of a flat plate through which exhaust gas and droplets can not pass, and the upper end portion thereof is closely fixed to the ceiling portion 51a and the left and right side portions are the left wall portion 51b and the right
  • the passage opening 63 is formed by positioning the lower end portion at a predetermined interval with respect to the bottom portion 51d while being fixed in close contact with the wall 51c.
  • the exhaust gas introduced from the inlet portion 61 flows downward between the upstream wall portion 51 e and the baffle plate 52 in the vertical direction, is bent through the passage opening portion 63, and then flows horizontally as a bent flow passage flowing in the horizontal direction.
  • a flow path 64 is formed.
  • the distance from the inlet 61 opened to the upstream wall 51 e of the casing 51 to the flat surface 52 a of the baffle plate 52 is set to be equal to or less than the inner diameter of the inlet 61. Therefore, the exhaust gas introduced into the casing 51 from the inlet portion 61 collides with the baffle plate 52 and then flows along the upstream side flow path 64. That is, the exhaust gas introduced into the casing 51 from the inlet portion 61 flows downward in the vertical direction by the baffle plate 52, and then flows horizontally bent through the passage opening 63.
  • the flow passage area of the passage opening 63 in the baffle plate 52 is the flow passage area when introduced into the casing 51 from the inlet 61, that is, the upstream wall 51e, the left wall 51b, and the right wall 51c. It is set larger than the flow passage area divided by the baffle plate 52. Therefore, the exhaust gas introduced into the casing 51 from the inlet 61 is not reaccelerated after passing through the passage opening 63.
  • the porous plate 53 is horizontally fixed so as to be parallel to the bottom 51d at a predetermined distance from the bottom 51d.
  • the porous plate 53 is formed of a flat plate in which a large number of through holes (not shown) are formed so that exhaust gas and droplets can pass therethrough, and the middle portion in the fluid flow direction in the casing 51 Are provided up to.
  • the porous plate 53 is disposed horizontally at a predetermined height above the bottom 51 d of the casing 51 at a predetermined height in the vertical direction, and one end thereof is closely fixed to the upstream wall 51 e and Are fixed in close contact with the left wall 51b and the right wall 51c, respectively, while the other end is located at a predetermined distance from the downstream wall 51f.
  • a reservoir 65 is formed between the porous plate 53 and the bottom 51 d of the casing 51.
  • the storage portion 65 temporarily stores the water removed from the exhaust gas, and a drainage flow path 66 is provided in the lower portion of the casing 51.
  • the demister support plate 54 is located on the downstream wall 51 f side of the baffle plate 52 and the porous plate 53, and is disposed horizontally above the porous plate 53 by a predetermined height.
  • the demister supporting plate 54 is formed of a flat plate through which exhaust gas and droplets can not pass, and one end thereof is fixed in close contact with the downstream wall 51f of the casing 51, and the left and right sides are left wall 51b. The other end portion is positioned at a predetermined distance from the baffle plate 52 while being fixed in close contact with the right wall portion 51c. Therefore, in the casing 51, a space communicating with the passage opening 63 is provided between the bottom 51d and the demister support plate 54, and this space horizontally discharges the exhaust gas flowing from the upstream channel 64. It becomes a detour flow path 67 detoured along 180 degrees.
  • the lower end of the baffle plate 52 is located below the lower surface of the demister support plate 54 in the vertical direction.
  • the demister main body 55 removes mist from the exhaust gas by being disposed on the downstream side of the flow direction of the exhaust gas from the upstream side flow passage 64 and the detour flow passage 67 in the casing 51.
  • the demister main body 55 is disposed along the vertical direction such that the inlet side faces the baffle plate 52 side. That is, in the upright state of the demister main body 55, the upper end portion is closely supported on the lower surface of the ceiling portion 51a, and the lower end portion is closely supported on the demister supporting plate 54.
  • the demister main body 55 is provided with a plurality of channels which are bent a plurality of times so that the exhaust gas can pass therethrough, and is configured as a linear plate as a whole. Although one demister main body 55 is provided, a plurality of demister main bodies may be disposed.
  • the demister main body 55 is disposed to face the baffle plate 52, and the upstream side of the demister main body 55 is the upstream side flow path 64 and the bypass flow path 67, and the downstream side of the demister main body 55 is the downstream side flow path 68.
  • the upstream side flow path 64 is configured to be separated by the upstream wall portion 51 e, the left wall portion 51 b, the right wall portion 51 c, the baffle plate 52, and the porous plate 53 of the casing 51.
  • the bypass flow passage 67 is configured to be separated by the bottom 51 d of the casing 51, the left wall 51 b, the right wall 51 c, the downstream wall 51 f, and the demister support plate 54.
  • the downstream flow passage 68 is configured to be separated by the ceiling 51a, the left wall 51b, the right wall 51c, the downstream wall 51f, and the demister support plate 54 of the casing 51. Therefore, the exhaust gas introduced into the casing 51 from the inlet portion 61 is bent through the upstream side flow path 64, and then horizontally turned by the detouring path 67 and detoured before reaching the demister main body 55, and the demister main body After passing through 55, the fluid is discharged from the outlet 62 through the downstream channel 68.
  • a receiving member 57 is provided on the flat portion 52a.
  • the receiving member 57 receives droplets generated when the exhaust gas introduced into the casing 51 from the inlet portion 61 collides with the baffle plate 52.
  • the receiving member 57 is a flat portion 52 a facing the inlet portion 61 of the baffle plate 52 and is fixed to the flat portion 52 a so as to be positioned below the inlet portion 61 in the vertical direction.
  • the receiving member 57 is provided along the width direction (left and right direction) on the flat portion 52a of the baffle plate 52, and extends from an intermediate position in the width direction of the baffle plate 52 toward the wall portions 51b and 51c. And slope downward. Further, the receiving member 57 has an L-shaped cross section, so that the exhaust gas introduced into the casing 51 from the inlet portion 61 collides with the baffle plate 52 to generate droplets, and the droplets are Since it flows down along the flat portion 52a of the baffle plate 52, the receiving member 57 can receive the droplets in the groove. Then, since each end of the receiving member 57 is positioned at a predetermined distance from each of the wall portions 51 b and 51 c, the droplet received by the groove flows downward at each end, and the storage portion 65 is dropped. Can be
  • the receiving member 57 shall make L-shaped cross-sectional shape in the above-mentioned description, it is not limited to this structure.
  • the receiving member may be configured of a horizontal plate, an inclined plate, or a bent or curved plate.
  • the receiving members 57 have left and right ends inclined downward toward the wall surfaces 51b and 51c, but only one end may incline downward to the wall surfaces 51b and 51c.
  • the receiving member 57 may be divided into a plurality of pieces, or may be arranged in a plurality of upper and lower stages.
  • the receiving member 57 may be provided below the baffle plate 52 instead of the flat portion 52 a of the baffle plate 52.
  • the demister main body 55 is provided with a projecting piece 58 which protrudes toward the bypass flow path 67 side.
  • the projecting piece 58 is formed of a flat plate through which exhaust gas and droplets can not pass, is disposed so as to hang from the lower portion of the demister main body 55, and is fixed so as to closely contact the end of the demister supporting plate 54. ing.
  • the demister main body 55 is constructed by assembling a plurality of flat plate members into a frame shape, and a large number of bellows plates are assembled therein, and the projecting piece 58 is a component forming the demister main body 55.
  • the end of the flat plate on the inlet side is formed to project toward the bypass flow passage 67 side.
  • the projecting piece 58 is disposed along the vertical direction in the same manner as the demister main body 55, so that the flat portion is disposed flush with the flat portion on the inlet side of the demister supporting plate 54 without any step.
  • the lower end of the projecting piece 58 is positioned at the same position in the vertical direction with respect to the lower end of the baffle plate 52, or in the upper direction in the vertical direction. Therefore, the exhaust gas flowing through the upstream side flow passage 64 is guided by the projecting piece 58 so as to flow upward from the area under the demister support plate 54, that is, from the bypass flow passage 67 upward to the flat portion on the inlet side of the demister main body 55. Be done.
  • the EGR inlet valve 41A when the EGR inlet valve 41A is open, a part of the exhaust gas flows from the exhaust line G3 to the exhaust gas recirculation line G4.
  • the exhaust gas flowing into the exhaust gas recirculation line G4 is removed by the scrubber 42 from harmful substances such as contained SOx and dust. That is, when the exhaust gas passes through the venturi portion 44 at a high speed, the scrubber 42 injects water from the water injection portion 46 to cool the exhaust gas with this water, and also waters fine particles (PM) such as SOx and dust. Drop along with and remove. Then, water containing SOx, dust and the like flows into the demister unit 14 together with the EGR gas.
  • PM fine particles
  • the exhaust gas from which harmful substances have been removed by the scrubber 42 is discharged to the exhaust gas recirculation line G5, and after the scrubber wash water is separated by the demister unit 14, the exhaust gas is sent to the turbocharger 12 by the exhaust gas recirculation line G7. Then, this exhaust gas is mixed with the air taken in from the suction line G6 to become a combustion gas, and after being compressed by the compressor 31 of the supercharger 12, it is cooled by the air cooler 48 and the engine main body 11 from the air supply line G1. Supplied to
  • the exhaust gas introduced into the casing 51 from the inlet 61 collides with the flat portion 52 a of the baffle plate 52 in the front, and along the flat portion 52 a of the baffle plate 52.
  • the spread, the contained mist becomes droplets and adheres to the flat portion 52 a of the baffle plate 52.
  • the droplets attached to the flat portion 52 a of the baffle plate 52 flow downward along the flat portion 52 a by their own weight, and are received by the receiving member 57.
  • the droplets received by the receiving member 57 flow along the width direction of the baffle plate 52, are drained from the end to the storage portion 65, and are discharged to the outside by the drainage flow path 66.
  • the exhaust gas from which a part of the mist has been removed becomes a downward flow by the flat portion 52a of the baffle plate 52, the ceiling 51a of the casing 51, the walls 51b and 51c, and the upstream wall 51e.
  • Flow into The exhaust gas flowing into the upstream side channel 64 is bent by the porous plate 53 to be a horizontal flow, and is detoured while horizontally circling the bypass channel 67 by 180 degrees, and is an upward flow by the projecting piece 58 as a demister
  • the main body 55 is reached.
  • the exhaust gas flowing in the upstream side channel 64 passes below the baffle plate 52, but the droplets adhering to the baffle plate 52 are received by the receiving member 57 and drained to the storage portion 65. Therefore, it does not fall into the upstream channel 64. Therefore, the exhaust gas flowing through the upstream side flow path 64 is prevented from being in contact with water, and the recapture of the mist removed from the exhaust gas into the exhaust gas is suppressed.
  • the exhaust gas flows from the bent upstream side flow passage 64 into the bypass flow passage 67 and then horizontally swirls, whereby the mist is removed by the centrifugal force. That is, since the inlet portion 61 is shifted to one side of the casing 51 (upper side in FIG. 4), the exhaust gas introduced from the shifted inlet portion 61 is guided by the baffle plate 52 and the other side of the casing 51 It becomes a horizontal flow by the upstream channel 64 while flowing to the lower side of FIG. Then, the exhaust gas flows while being guided by the left wall 51b, the downstream wall 51f, and the right wall 51c of the casing 51 so that a spiral is drawn from the other side of the casing 51 to the one side in the bypass flow path 67. Swirling flow.
  • the exhaust gas passes through the demister main body 55, the remaining mist condenses to form droplets, and falls into the storage portion 65. Thereafter, the exhaust gas from which the mist has been removed is discharged from the outlet 62 through the downstream flow passage 68 to the outside.
  • the casing 51 having the hollow portion to be provided with the inlet portion 61 and the outlet portion 62 of the exhaust gas, and the inlet portion 61 disposed in the casing 51
  • a baffle plate 52 that forms the upstream side flow passage 64 bent at a side, and a demister main body 55 disposed on the downstream side of the flow direction of the exhaust gas with respect to the upstream side flow passage 64 in the casing 51 to remove mist from the exhaust gas;
  • the inlet portion 61 is disposed on one side in the horizontal direction from an intermediate position in the horizontal direction in the casing 51.
  • the fluid introduced into the casing 51 from the inlet portion 61 is disposed so that the inlet portion 61 is shifted to one side in the horizontal direction of the casing 51. And, after flowing through the upstream side flow path 64, turn horizontally in the bypass flow path 67 and then reach the demister main body 55. As a result, the flow path of the exhaust gas becomes long and the flow velocity decreases, and while the mist removal performance can be improved, the enlargement of the casing 51 can be suppressed.
  • the inlet portion 61 is disposed on one side in the horizontal direction from the middle position in the horizontal direction of the casing 51 with a half or more of the horizontal opening length of the inlet portion 61 shifted. Therefore, the exhaust gas after having collided with the baffle plate 52 can be properly turned horizontally, and the flow path of the exhaust gas can be lengthened to reduce the flow velocity of the exhaust gas.
  • the baffle plate 52 is provided so as to depend from the ceiling portion 51 a of the casing 51 to provide the passage opening 63 below, and the demister main body 55 is made from the passage opening 63 in the casing 51.
  • a detouring channel 67 is provided between the bottom 51 d of the casing 51 and the demister supporting plate 54 to communicate with the passage opening 63 to horizontally swirl the exhaust gas. There is. Therefore, the exhaust gas can be properly turned horizontally in the bypass channel 67, and the flow channel of the exhaust gas can be lengthened to reduce the flow velocity of the exhaust gas.
  • the porous plate 53 is disposed at the passage opening 63 at a predetermined distance from the bottom 51d of the casing 51, and the porous plate 53 is provided up to the middle of the exhaust gas flow direction. Therefore, the bypass flow path 67 as the lower space portion of the demister support plate 54 can be expanded, and the flow path of the exhaust gas can be lengthened to reduce the flow velocity.
  • the baffle plate 52 is provided with a receiving member 57 for receiving droplets generated by collision of the exhaust gas. Therefore, the exhaust gas introduced into the casing 51 from the inlet portion 61 collides with the baffle plate 52, so that the contained mist becomes droplets and adheres to the baffle plate 52, and the flat portion 52a of the baffle plate 52 by its own weight. And is received by the receiving member 57. Therefore, the exhaust gas flowing through the upstream flow path 64 does not again take in droplets as mist, and it is possible to improve the mist removal efficiency by suppressing the reintroduction of the mist removed from the exhaust gas into the exhaust gas.
  • an exhaust gas recirculation line G4 that recirculates a part of the exhaust gas discharged from the engine body 11 to the engine body as a part of the combustion gas
  • an exhaust gas recirculation line G4 The scrubber 42 for removing harmful substances by injecting water to the exhaust gas flowing through and the demister unit 14 into which the exhaust gas discharged from the scrubber 42 is introduced are provided.
  • the inlet 61 is disposed on one side in the horizontal direction from the horizontal intermediate position in the casing 51, whereby the fluid introduced into the casing 51 from the inlet 61 is By colliding with the baffle plate 52, it flows to the other side in the horizontal direction, and after flowing through the upstream side channel 64, it turns horizontally in the bypass channel 67 and then reaches the demister main body 55.
  • the flow path of the exhaust gas becomes long and the flow velocity decreases, and while the mist removal performance can be improved, the enlargement of the casing 51 can be suppressed.
  • the baffle plate 52 is disposed along the vertical direction, but may be inclined.
  • main engine as a marine diesel engine, it is applicable also to the diesel engine used as a generator.

Abstract

A demister unit and an EGR system that have provided therein: a hollow casing (51) having an exhaust gas inlet (61) and outlet (62); a baffle plate (52) forming a curved upstream-side flowpath (64) as a result of being arranged facing the inlet (61) inside the casing (51); and a demister main body (55) arranged further on the downstream side in the exhaust gas flow direction than the upstream-side flowpath (64), inside the casing (51), and removing mist from the exhaust gas. The inlet (61) is arranged displaced toward one side in the horizontal direction, from the intermediate position in the horizontal direction in the casing (51).

Description

デミスタユニット及びEGRシステムDemister unit and EGR system
 本発明は、排ガスからミストを除去するデミスタユニット、このデミスタユニットが適用されるEGRシステムに関するものである。 The present invention relates to a demister unit that removes mist from exhaust gas, and an EGR system to which this demister unit is applied.
 湿式排ガス処理装置を介してボイラから排出される排ガスは、ミストを含んでいることから、この排ガスに含まれるミストを除去する必要がある。排ガスに含まれるミストを除去するものとして、デミスタユニットがあり、例えば、下記特許文献1に記載されたものがある。この特許文献1に記載されたデミスタユニットは、ケーシング内の入口に対向するように邪魔板を配置することで、屈曲している上流側流路を形成すると共に、その下流側にデミスタ本体を設けるものである。 Since the exhaust gas discharged from the boiler via the wet exhaust gas treatment apparatus contains mist, it is necessary to remove the mist contained in the exhaust gas. There exists a demister unit as what removes the mist contained in waste gas, for example, there exist some which were described in following patent document 1. FIG. In the demister unit described in Patent Document 1, a baffle plate is disposed to face the inlet in the casing, thereby forming a bent upstream flow path and providing a demister main body on the downstream side thereof. It is a thing.
特開2015-165103号公報JP, 2015-165103, A
 デミスタユニットは、内部に排ガスを通過させることで、この排ガスに含まれるミストを除去するものであり、デミスタ本体を通過する排ガスの流速が速すぎると、ミストの除去性能が低下してしまう。そのため、ミストの除去性能を向上させるためには、デミスタ本体の流路長を長くすることで、デミスタ本体を通過する排ガスの流速を低下させることが有効である。ところが、デミスタ本体の流路長を長くすると、デミスタ本体が大きくなり、デミスタユニット自体の大型化を招いてしまう。デミスタユニットが大型化すると、デミスタユニットの設置位置に制約を受け、所望の位置へ設置することができないという問題がある。 The demister unit removes the mist contained in the exhaust gas by passing the exhaust gas therethrough. If the flow velocity of the exhaust gas passing through the demister main body is too fast, the mist removal performance is degraded. Therefore, in order to improve the mist removal performance, it is effective to reduce the flow velocity of the exhaust gas passing through the demister main body by lengthening the flow path length of the demister main body. However, when the flow path length of the demister main body is increased, the demister main body becomes large, and the demister unit itself is increased in size. When the demister unit is increased in size, there is a problem that the demister unit can not be installed at a desired position due to restrictions imposed by the installation position of the demister unit.
 本発明は上述した課題を解決するものであり、ミスト除去性能の向上を図ると共に装置の大型化を抑制するデミスタユニット及びEGRシステムを提供することを目的とする。 The present invention solves the above-mentioned problems, and an object of the present invention is to provide a demister unit and an EGR system which aim to improve the mist removal performance and to suppress the enlargement of the apparatus.
 上記の目的を達成するための本発明のデミスタユニットは、中空形状をなして流体の入口部と出口部を有するケーシングと、前記ケーシング内で前記入口部に対向して配置されることで屈曲流路を形成する邪魔板と、前記ケーシング内で前記屈曲流路より流体の流動方向の下流側に配置されて流体からミストを除去するデミスタ本体と、を備え、前記入口部は、前記ケーシングにおける水平方向の中間位置から水平方向の一方側にずれて配置される、ことを特徴とするものである。 A demister unit according to the present invention for achieving the above object comprises a casing having a hollow shape and having a fluid inlet and outlet, and a bending flow by being disposed in the casing opposite to the inlet. A baffle plate forming a passage, and a demister main body disposed in the casing downstream of the bending flow passage in the fluid flow direction to remove mist from the fluid, the inlet portion being horizontal in the casing It is characterized in that it is disposed to be shifted to one side in the horizontal direction from the middle position in the direction.
 従って、入口部からケーシング内に導入された流体は、邪魔板に衝突することで、含まれるミストが液滴となって邪魔板に付着して流れ落ちる。そして、ミストの一部が除去された流体は、屈曲流路を流れることで、遠心力により更にミストが除去され、最終的にデミスタ本体により残存するミストが除去される。ここで、流体の入口部がケーシングにおける水平方向の一方側にずれて配置されるため、入口部からケーシング内に導入された流体は、邪魔板に衝突することで水平方向の他方側に流れ、屈曲流路を流れた後に水平旋回してからデミスタ本体に到達する。その結果、流体の流路が長くなって流速が低下することとなり、ミスト除去性能の向上を図ることができると共に、装置の大型化を抑制することができる。 Therefore, the fluid introduced into the casing from the inlet collides with the baffle plate, and the contained mist forms droplets and adheres to the baffle plate and flows down. Then, the fluid from which a part of the mist has been removed flows through the bending flow path, whereby the mist is further removed by centrifugal force, and finally the remaining mist is removed by the demister main body. Here, since the inlet portion of the fluid is disposed on one side in the horizontal direction in the casing, the fluid introduced into the casing from the inlet portion collides with the baffle plate and flows to the other side in the horizontal direction, After flowing through the flexing channel, it turns horizontally before reaching the demister main body. As a result, the flow path of the fluid becomes long and the flow velocity decreases, so that the mist removal performance can be improved, and the enlargement of the apparatus can be suppressed.
 本発明のデミスタユニットでは、前記入口部は、前記ケーシングにおける水平方向の中間位置から水平方向の一方側に、前記入口部における水平方向の開口長さの1/2以上ずれて配置されることを特徴としている。 In the demister unit of the present invention, the inlet portion is disposed on one side in the horizontal direction from the horizontal intermediate position in the casing at a half or more of the horizontal opening length in the inlet portion. It is characterized.
 従って、流体の入口部を適量以上水平方向の一方側にずらして配置することで、邪魔板に衝突した後の流体を適正に水平旋回させることができ、流体の流路を長くして流体の流速を低下させることができる。 Therefore, by displacing the inlet portion of the fluid to one side in the horizontal direction by an appropriate amount or more, the fluid after colliding with the baffle plate can be properly turned horizontally, and the fluid flow path is lengthened to The flow rate can be reduced.
 本発明のデミスタユニットでは、前記邪魔板は、前記ケーシングの天井部から垂下して設けられることで下方に通過開口部が設けられ、前記デミスタ本体は、前記ケーシング内における前記通過開口部より前記天井部側に固定されたデミスタ支持板上に固定されることで、前記ケーシングの底部と前記デミスタ支持板との間に前記通過開口部に連通して流体を水平旋回させる迂回流路が設けられることを特徴としている。 In the demister unit of the present invention, the baffle plate is provided so as to be suspended from the ceiling portion of the casing so that a passage opening is provided downward, and the demister main body is the ceiling from the passage opening in the casing. A detour flow path is provided between the bottom of the casing and the demister supporting plate so as to be in fluid communication with the passage opening to horizontally turn fluid by being fixed on the demister supporting plate fixed on the part side. It is characterized by
 従って、ケーシングの底部とデミスタ支持板との間に通過開口部に連通して流体を水平旋回させる迂回流路を設けることで、流体を迂回流路で適正に水平旋回させることができ、流体の流路を長くして流体の流速を低下させることができる。 Therefore, by providing a bypass flow passage communicating with the passage opening between the bottom of the casing and the demister support plate to horizontally swirl the fluid, the fluid can be properly horizontally swirled in the bypass flow passage. The flow path can be lengthened to reduce the flow rate of the fluid.
 本発明のデミスタユニットでは、前記通過開口部に前記ケーシングの底部から所定距離を空けて多孔板が配置され、前記多孔板は、流体の流れ方向の中途部まで設けられることを特徴としている。 The demister unit according to the present invention is characterized in that a perforated plate is disposed at the passage opening at a predetermined distance from the bottom of the casing, and the perforated plate is provided up to the middle of the fluid flow direction.
 従って、多孔板を流体の流れ方向の中途部まで設けることで、流体の下流側の空間部を拡大することができ、流体の流路を長くして流速を低下することができる。 Therefore, by providing the porous plate up to the middle part in the fluid flow direction, the space part on the downstream side of the fluid can be expanded, and the flow path of the fluid can be lengthened to reduce the flow velocity.
 本発明のデミスタユニットでは、前記邪魔板に流体が衝突することによって生じた液滴を受け止める受止部材が設けられることを特徴としている。 The demister unit according to the present invention is characterized in that a receiving member is provided for receiving droplets generated by the collision of the fluid with the baffle plate.
 従って、入口部からケーシング内に導入された流体は、邪魔板に衝突することで、含まれるミストが液滴となって邪魔板に付着し、自重により邪魔板の平面部を流れ落ち、受止部材に受け止められる。そのため、屈曲流路を流れる流体が再び液滴をミストとして取り込むことはなく、流体から除去したミストの流体への再度の取込みを抑制してミスト除去効率の向上を図ることができる。 Therefore, the fluid introduced into the casing from the inlet collides with the baffle plate so that the contained mist drops as droplets and adheres to the baffle plate, and flows down the flat portion of the baffle plate by its own weight, and the receiving member It is received by Therefore, the fluid flowing through the curved flow channel does not again take in droplets as mist, and it is possible to improve the mist removal efficiency by suppressing the reintroduction of the mist removed from the fluid into the fluid.
 また、本発明のEGRシステムは、エンジンから排出された排ガスの一部を燃焼用気体として前記エンジンに再循環する排ガス再循環ラインと、前記排ガス再循環ラインを流れる燃焼用気体に対して液体を噴射するスクラバと、前記スクラバから排出された燃焼用気体が導入される前記デミスタユニットと、を備えることを特徴とするものである。 In the EGR system according to the present invention, the exhaust gas recirculation line recirculates a part of the exhaust gas discharged from the engine to the engine as a combustion gas, and the liquid for the combustion gas flowing in the exhaust gas recirculation line It is characterized by comprising a scrubber to be injected, and the demister unit to which the combustion gas discharged from the scrubber is introduced.
 従って、エンジンから排出された排ガスは、その一部が排ガス再循環ラインを通るとき、スクラバによりこの排ガス再循環ラインを流れる燃焼用気体に対して液体が噴射されることで有害物質が除去され、デミスタユニットにより含有するミストが除去された後、エンジンに供給される。そして、デミスタユニットでは、流体の入口部がケーシングにおける水平方向の一方側にずれて配置されるため、入口部からケーシング内に導入された流体は、邪魔板に衝突することで水平方向の他方側に流れ、屈曲流路を流れた後に水平旋回してからデミスタ本体に到達する。その結果、流体の流路が長くなって流速が低下することとなり、ミスト除去性能の向上を図ることができると共に、装置の大型化を抑制することができる。 Therefore, when a part of the exhaust gas discharged from the engine passes through the exhaust gas recirculation line, the scrubber removes the harmful substances by injecting a liquid to the combustion gas flowing through the exhaust gas recirculation line, After the mist contained by the demister unit is removed, it is supplied to the engine. And, in the demister unit, since the inlet portion of the fluid is arranged to be shifted to one side in the horizontal direction in the casing, the fluid introduced into the casing from the inlet portion collides with the baffle plate and the other side in the horizontal direction And, after flowing through the bending channel, turn horizontally before reaching the demister main body. As a result, the flow path of the fluid becomes long and the flow velocity decreases, so that the mist removal performance can be improved, and the enlargement of the apparatus can be suppressed.
 本発明のデミスタユニット及びEGRシステムによれば、ミスト除去性能の向上を図ることができると共に、装置の大型化を抑制することができる。 According to the demister unit and the EGR system of the present invention, the mist removal performance can be improved, and the enlargement of the device can be suppressed.
図1は、本実施形態のデミスタユニットが適用されたEGRシステムを備えたディーゼルエンジンを表す概略図である。FIG. 1 is a schematic view showing a diesel engine equipped with an EGR system to which the demister unit of the present embodiment is applied. 図2は、本実施形態のEGRシステムを表す概略構成図である。FIG. 2 is a schematic block diagram showing the EGR system of the present embodiment. 図3は、本実施形態のデミスタユニットを表す縦断面図である。FIG. 3 is a longitudinal sectional view showing the demister unit of the present embodiment. 図4は、デミスタユニットの水平断面を表す図3のIV-IV断面図である。FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG. 3 showing a horizontal cross section of the demister unit. 図5は、デミスタユニットの入口部を表す図3のV-V断面図である。FIG. 5 is a cross-sectional view taken along the line VV of FIG. 3 showing the inlet of the demister unit. 図6は、デミスタユニットの一部を切欠いた斜視図である。FIG. 6 is a perspective view with a part of the demister unit cut away.
 以下に添付図面を参照して、本発明に係るデミスタユニット及びEGRシステムの好適な実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。 Hereinafter, preferred embodiments of a demister unit and an EGR system according to the present invention will be described in detail with reference to the attached drawings. Note that the present invention is not limited by the embodiments, and in the case where there are a plurality of embodiments, the present invention also includes those configured by combining the respective embodiments.
[第1実施形態]
 図1は、第1実施形態のデミスタユニットが適用されたEGRシステムを備えたディーゼルエンジンを表す概略図、図2は、第1実施形態のEGRシステムを表す概略構成図である。
First Embodiment
FIG. 1 is a schematic view showing a diesel engine provided with an EGR system to which the demister unit of the first embodiment is applied, and FIG. 2 is a schematic configuration view showing an EGR system according to the first embodiment.
 第1実施形態にて、図1に示すように、舶用ディーゼルエンジン10は、エンジン本体11と、過給機12と、EGRシステム13を備えている。 In the first embodiment, as shown in FIG. 1, the marine diesel engine 10 includes an engine body 11, a supercharger 12, and an EGR system 13.
 図2に示すように、エンジン本体11は、図示しないが、プロペラ軸を介して推進用プロペラを駆動回転させる推進用の機関(主機関)である。このエンジン本体11は、ユニフロー掃排気式のディーゼルエンジンであって、2ストロークディーゼルエンジンであり、シリンダ内の吸排気の流れを下方から上方への一方向とし、排気の残留を無くすようにしたものである。エンジン本体11は、ピストンが上下移動する複数のシリンダ(燃焼室)21と、各シリンダ21に連通する掃気トランク22と、各シリンダ21に連通する排気マニホールド23とを備えている。そして、各シリンダ21と掃気トランク22との間に掃気ポート24が設けられ、各シリンダ21と排気マニホールド23との間に排気流路25が設けられている。そして、エンジン本体11は、掃気トランク22に給気ラインG1が連結され、排気マニホールド23に排気ラインG2が連結されている。 As shown in FIG. 2, although not shown, the engine body 11 is a propulsion engine (main engine) that drives and rotates a propulsion propeller via a propeller shaft. The engine body 11 is a uniflow scavenging diesel engine, which is a two-stroke diesel engine, in which the flow of intake and exhaust in the cylinder is one direction from the lower side to the upper side, and the residual of the exhaust is eliminated. It is. The engine body 11 includes a plurality of cylinders (combustion chambers) 21 in which pistons move up and down, a scavenging air trunk 22 in communication with the cylinders 21, and an exhaust manifold 23 in communication with the cylinders 21. The scavenging ports 24 are provided between the cylinders 21 and the scavenging trunk 22, and the exhaust flow path 25 is provided between the cylinders 21 and the exhaust manifold 23. The engine body 11 has the scavenging air trunk 22 connected to the air supply line G1 and the exhaust manifold 23 connected to the exhaust line G2.
 過給機12は、コンプレッサ31とタービン32とが回転軸33により一体に回転するように連結されて構成されている。この過給機12は、エンジン本体11の排気ラインG2から排出された排ガスによりタービン32が回転し、タービン32の回転が回転軸33により伝達されてコンプレッサ31が回転し、このコンプレッサ31が空気及び/または再循環ガスを圧縮して給気ラインG1からエンジン本体11に供給する。コンプレッサ31は外部(大気)から空気を吸入する吸入ラインG6に接続されている。 The turbocharger 12 is configured by connecting a compressor 31 and a turbine 32 so as to rotate integrally with a rotating shaft 33. In the turbocharger 12, the turbine 32 is rotated by the exhaust gas discharged from the exhaust line G2 of the engine body 11, the rotation of the turbine 32 is transmitted by the rotation shaft 33, and the compressor 31 is rotated. And / or compresses the recirculated gas and supplies it to the engine body 11 from the air supply line G1. The compressor 31 is connected to a suction line G6 for drawing air from the outside (atmosphere).
 過給機12は、タービン32を回転した排ガスを排出する排気ラインG3が連結されており、この排気ラインG3は、図示しない煙突(ファンネル)に連結されている。また、排気ラインG3から給気ラインG1までの間にEGRシステム13が設けられている。 The turbocharger 12 is connected to an exhaust line G3 for discharging the exhaust gas that has rotated the turbine 32, and the exhaust line G3 is connected to a chimney (funnel) not shown. Further, an EGR system 13 is provided between the exhaust line G3 and the air supply line G1.
 EGRシステム13は、排ガス再循環ラインG4,G5,G7と、スクラバ42と、デミスタユニット14と、EGRブロワ(送風機)47とを備えている。このEGRシステム13は、舶用ディーゼルエンジン10から排出された排ガスの一部を空気と混合した後、過給機12により圧縮して燃焼用気体として舶用ディーゼルエンジン10に再循環させることで、燃焼によるNOxの生成を抑制するものである。なお、ここでは、タービン32の下流側から排ガスの一部を抽気するようにEGRシステムを設置したが、タービン32の上流側から排ガスの一部を抽気するようにEGRシステムを設置してもよい。 The EGR system 13 includes exhaust gas recirculation lines G4, G5, G7, a scrubber 42, a demister unit 14, and an EGR blower (blower) 47. The EGR system 13 mixes a part of the exhaust gas discharged from the marine diesel engine 10 with air, and then compresses the mixture by the turbocharger 12 and recycles it to the marine diesel engine 10 as a combustion gas, thereby causing combustion. It suppresses the formation of NOx. Although the EGR system is installed to extract a part of the exhaust gas from the downstream side of the turbine 32 here, the EGR system may be installed to extract a part of the exhaust gas from the upstream side of the turbine 32 .
 排ガス再循環ラインG4は、一端が排気ラインG3の中途部に接続されている。排ガス再循環ラインG4は、EGR入口バルブ(開閉弁)41Aが設けられており、他端がスクラバ42に接続されている。EGR入口バルブ41Aは、排ガス再循環ラインG4を開閉することで、排気ラインG3から排ガス再循環ラインG4に分流する排ガスをON/OFFする。なお、EGR入口バルブを流量調整弁とし、排ガス再循環ラインG4を通過する排ガスの流量を調整するようにしてもよい。 One end of the exhaust gas recirculation line G4 is connected to the middle of the exhaust line G3. The exhaust gas recirculation line G4 is provided with an EGR inlet valve (opening / closing valve) 41A, and the other end is connected to the scrubber 42. The EGR inlet valve 41A opens / closes the exhaust gas branched from the exhaust line G3 to the exhaust gas recirculation line G4 by opening / closing the exhaust gas recirculation line G4. The EGR inlet valve may be a flow rate adjusting valve, and the flow rate of the exhaust gas passing through the exhaust gas recirculation line G4 may be adjusted.
 スクラバ42は、ベンチュリ式のスクラバであり、中空形状をなすスロート部43と、排ガスが導入されるベンチュリ部44と、元の流速に段階的に戻す拡大部45とを備えている。スクラバ42は、ベンチュリ部44に導入された排ガスに対して水(液体)を噴射する水噴射部46を備えている。スクラバ42は、SOxや煤塵などの微粒子(PM)といった有害物質が除去された排ガスおよび有害物質を含む排水を排出する排ガス再循環ラインG5が連結されている。なお、本実施形態では、スクラバとしてベンチュリ式を採用しているが、この構成に限定されるものではない。 The scrubber 42 is a Venturi-type scrubber, and includes a hollow throat 43, a venturi 44 into which exhaust gas is introduced, and an enlarged portion 45 that gradually returns to the original flow velocity. The scrubber 42 includes a water injection unit 46 that injects water (liquid) to the exhaust gas introduced into the venturi unit 44. The scrubber 42 is connected to an exhaust gas recirculation line G5 for discharging waste water containing harmful substances and exhaust gases from which harmful substances such as SOx and particulates (PM) such as dust are removed. In addition, in this embodiment, although a Venturi type is employ | adopted as a scrubber, it is not limited to this structure.
 排ガス再循環ラインG5は、デミスタユニット14とEGRブロワ47が設けられている。 The exhaust gas recirculation line G5 is provided with a demister unit 14 and an EGR blower 47.
 デミスタユニット14は、水噴射により有害物質が除去された排ガスと排水を分離するものである。デミスタユニット14は、排水をスクラバ42の水噴射部46に循環する排水循環ラインW1が設けられている。そして、この排水循環ラインW1は、排水を一時的に貯留するホールドタンク49とポンプ50が設けられている。 The demister unit 14 separates the waste gas and the waste gas from which harmful substances have been removed by water injection. The demister unit 14 is provided with a drainage circulation line W1 that circulates the drainage to the water injection unit 46 of the scrubber 42. The drainage circulation line W1 is provided with a hold tank 49 and a pump 50 for temporarily storing drainage.
 EGRブロワ47は、スクラバ42内の排ガスを排ガス再循環ラインG5からデミスタユニット14に導くものである。 The EGR blower 47 guides the exhaust gas in the scrubber 42 to the demister unit 14 from the exhaust gas recirculation line G5.
 排ガス再循環ラインG7は、一端がEGRブロワ47に接続されるとともに、他端が混合器(図示略)を介してコンプレッサ31に接続されており、EGRブロワ47により排ガスがコンプレッサ31に送られる。排ガス再循環ラインG7は、EGR出口バルブ(開閉弁または流量調整弁)41Bが設けられている。吸入ラインG6からの空気と、排ガス再循環ラインG7からの排ガス(再循環ガス)は、混合器で混合されることで燃焼用気体が生成される。なお、この混合器は、サイレンサと別に設けられてもよいし、混合器を別途設けることなく、排ガスと空気を混合する機能を付加するようにサイレンサを構成してもよい。そして、過給機12は、コンプレッサ31が圧縮した燃焼用気体を給気ラインG1からエンジン本体11に供給可能であり、給気ラインG1にエアクーラ(冷却器)48が設けられている。このエアクーラ48は、コンプレッサ31により圧縮されて高温となった燃焼用気体と冷却水とを熱交換することで、燃焼用気体を冷却するものである。 The exhaust gas recirculation line G7 has one end connected to the EGR blower 47 and the other end connected to the compressor 31 via a mixer (not shown), and the exhaust gas is sent to the compressor 31 by the EGR blower 47. The exhaust gas recirculation line G7 is provided with an EGR outlet valve (on-off valve or flow control valve) 41B. The air from the suction line G6 and the exhaust gas (recirculation gas) from the exhaust gas recirculation line G7 are mixed in a mixer to generate a combustion gas. Note that this mixer may be provided separately from the silencer, or the silencer may be configured to have a function of mixing exhaust gas and air without separately providing a mixer. The supercharger 12 can supply the combustion gas compressed by the compressor 31 from the air supply line G1 to the engine body 11, and an air cooler (cooler) 48 is provided on the air supply line G1. The air cooler 48 cools the combustion gas by exchanging heat between the combustion gas compressed by the compressor 31 and having a high temperature and the cooling water.
 以下、上述したデミスタユニット14について詳細に説明する。図3は、本実施形態のデミスタユニットを表す縦断面図、図4は、デミスタユニットの水平断面を表す図3のIV-IV断面図、図5は、デミスタユニットの入口部を表す図3のV-V断面図、図6は、デミスタユニットの一部を切欠いた斜視図である。 Hereinafter, the demister unit 14 described above will be described in detail. 3 is a longitudinal sectional view showing the demister unit of this embodiment, FIG. 4 is a sectional view taken along the line IV-IV in FIG. 3 showing the horizontal section of the demister unit, and FIG. 5 is a diagram showing the inlet of the demister unit in FIG. FIG. 6 is a perspective view in which a part of the demister unit is cut away.
 デミスタユニット14は、図3から図6に示すように、ケーシング51と、邪魔板52と、デミスタ支持板54と、デミスタ本体55とを備えている。 The demister unit 14 includes a casing 51, a baffle plate 52, a demister support plate 54, and a demister main body 55, as shown in FIGS.
 ケーシング51は、中空の矩形の箱型形状をなし、内部空間を形成する容器として構成されている。即ち、ケーシング51は、鉛直方向の上方側に位置する天井部51aと、水平方向の左右側に位置する左壁部51b及び右壁部51cと、鉛直方向の下方側に位置する底部51dと、水平方向の手前側に位置する上流壁部51eと、水平方向の奥側に位置する下流壁部51fにより形成されている。ケーシング51は、手前側となる一端部(図3にて、右端部)に位置する上流壁部51eの上部側に排ガス及び排水が導入される入口部61が形成される。また、ケーシング51は、奥側となる他端部(図3にて、左端部)における天井部51aに排ガス(流体)が排出される出口部62が形成されている。 The casing 51 has a hollow rectangular box shape, and is configured as a container that forms an internal space. That is, the casing 51 has a ceiling 51a located on the upper side in the vertical direction, a left wall 51b and a right wall 51c located on the left and right sides in the horizontal direction, and a bottom 51d located on the lower side in the vertical direction. It is formed of an upstream wall 51e located on the near side in the horizontal direction and a downstream wall 51f located on the far side in the horizontal direction. In the casing 51, an inlet portion 61 into which exhaust gas and drainage are introduced is formed on the upper side of the upstream wall 51e located at one end (right end in FIG. 3) on the front side. Further, the casing 51 is provided with an outlet 62 through which exhaust gas (fluid) is discharged to the ceiling 51 a at the other end (left end in FIG. 3) on the back side.
 ここで、入口部61は、ケーシング51における幅方向(水平方向)の中間位置から水平方向の一方側(図5にて右方側)に所定距離Lだけずれて配置されている。この場合、入口部61は、ケーシング51の中間位置から幅方向の一方側に入口部61における水平方向の開口長さDの1/2以上ずれて配置されることが望ましい。ここで、入口部61は、円筒形状をなすことから、入口部61は、ケーシング51の中間位置から幅方向の一方側に入口部61の半径(Dの1/2)以上ずれて配置されることとなる。一方、出口部62は、ケーシング51の幅方向(水平方向、図5の左右方向)における中間位置に設けられている。なお、入口部61と出口部62は、筒形状であって、円筒形状または角筒形状をなしている。 Here, the inlet portion 61 is disposed at a predetermined distance L on one side in the horizontal direction (right side in FIG. 5) from an intermediate position in the width direction (horizontal direction) of the casing 51. In this case, it is desirable that the inlet portion 61 be disposed on one side in the width direction from the middle position of the casing 51 at a half or more of the horizontal opening length D in the inlet portion 61. Here, since the inlet portion 61 has a cylindrical shape, the inlet portion 61 is disposed on one side in the width direction from the middle position of the casing 51 so as to be displaced by a radius (1/2 of D) or more of the inlet portion 61. It will be. On the other hand, the outlet portion 62 is provided at an intermediate position in the width direction (horizontal direction, left and right direction in FIG. 5) of the casing 51. The inlet 61 and the outlet 62 have a cylindrical shape, and are cylindrical or rectangular.
 邪魔板52は、ケーシング51内にて、入口部61に対向して上流壁部51eと平行をなすように鉛直方向に沿って配置されている。この邪魔板52は、排ガスや液滴が通過することができない平坦な板から形成されており、上端部が天井部51aに密着して固定されると共に、左右側部が左壁部51bと右壁部51cにそれぞれ密着して固定される一方、下端部が底部51dに対して所定間隔を空けて位置することで、ここに通過開口部63が形成される。そのため、入口部61から導入された排ガスが上流壁部51eと邪魔板52の間を鉛直方向の下方に流れ、通過開口部63を通って屈曲した後に水平方向に流れる屈曲流路としての上流側流路64が形成される。 The baffle plate 52 is disposed in the casing 51 along the vertical direction so as to face the inlet 61 and be parallel to the upstream wall 51e. The baffle plate 52 is formed of a flat plate through which exhaust gas and droplets can not pass, and the upper end portion thereof is closely fixed to the ceiling portion 51a and the left and right side portions are the left wall portion 51b and the right The passage opening 63 is formed by positioning the lower end portion at a predetermined interval with respect to the bottom portion 51d while being fixed in close contact with the wall 51c. Therefore, the exhaust gas introduced from the inlet portion 61 flows downward between the upstream wall portion 51 e and the baffle plate 52 in the vertical direction, is bent through the passage opening portion 63, and then flows horizontally as a bent flow passage flowing in the horizontal direction. A flow path 64 is formed.
 本実施形態では、ケーシング51の上流壁部51eに開口する入口部61から邪魔板52の平面部52aまでの距離が、入口部61の内径以下になるように設定されている。そのため、入口部61からケーシング51内に導入された排ガスは、邪魔板52に衝突した後、上流側流路64に沿って流れる。即ち、入口部61からケーシング51内に導入された排ガスは、邪魔板52により、鉛直方向の下方に流れた後、通過開口部63を通って水平方向に屈曲して流れることとなる。また、邪魔板52における通過開口部63の流路面積が、入口部61からケーシング51内に導入されたときの流路面積、つまり、上流壁部51eと左壁部51bと右壁部51cと邪魔板52により区画された流路面積より大きく設定されている。そのため、入口部61からケーシング51内に導入された排ガスが、通過開口部63を通った後に再加速されることがない。 In the present embodiment, the distance from the inlet 61 opened to the upstream wall 51 e of the casing 51 to the flat surface 52 a of the baffle plate 52 is set to be equal to or less than the inner diameter of the inlet 61. Therefore, the exhaust gas introduced into the casing 51 from the inlet portion 61 collides with the baffle plate 52 and then flows along the upstream side flow path 64. That is, the exhaust gas introduced into the casing 51 from the inlet portion 61 flows downward in the vertical direction by the baffle plate 52, and then flows horizontally bent through the passage opening 63. The flow passage area of the passage opening 63 in the baffle plate 52 is the flow passage area when introduced into the casing 51 from the inlet 61, that is, the upstream wall 51e, the left wall 51b, and the right wall 51c. It is set larger than the flow passage area divided by the baffle plate 52. Therefore, the exhaust gas introduced into the casing 51 from the inlet 61 is not reaccelerated after passing through the passage opening 63.
 また、ケーシング51は、内部の下部にて、底部51dから所定間隔を空けて底部51dと平行をなすように多孔板53が水平をなして固定されている。多孔板53は、排ガスや液滴が通過することができるように、多数の貫通孔(図示略)が形成された平坦な板から形成されており、ケーシング51内で流体の流れ方向の中途部まで設けられている。即ち、多孔板53は、ケーシング51の底部51dから所定高さだけ鉛直方向の上方の位置に水平をなして配置され、一端部が上流壁部51eに密着して固定されると共に、左右側部が左壁部51bと右壁部51cにそれぞれ密着して固定される一方、他端部が下流壁部51fに対して所定間隔を空けて位置している。そして、多孔板53とケーシング51の底部51dとの間に貯留部65が形成されている。この貯留部65は、排ガスから除去された水分を一時的に貯留するものであり、ケーシング51の下部に排水流路66が設けられている。 In the lower part of the casing 51, the porous plate 53 is horizontally fixed so as to be parallel to the bottom 51d at a predetermined distance from the bottom 51d. The porous plate 53 is formed of a flat plate in which a large number of through holes (not shown) are formed so that exhaust gas and droplets can pass therethrough, and the middle portion in the fluid flow direction in the casing 51 Are provided up to. That is, the porous plate 53 is disposed horizontally at a predetermined height above the bottom 51 d of the casing 51 at a predetermined height in the vertical direction, and one end thereof is closely fixed to the upstream wall 51 e and Are fixed in close contact with the left wall 51b and the right wall 51c, respectively, while the other end is located at a predetermined distance from the downstream wall 51f. A reservoir 65 is formed between the porous plate 53 and the bottom 51 d of the casing 51. The storage portion 65 temporarily stores the water removed from the exhaust gas, and a drainage flow path 66 is provided in the lower portion of the casing 51.
 デミスタ支持板54は、邪魔板52及び多孔板53より下流壁部51f側に位置し、この多孔板53より所定高さだけ上方に水平をなして配置されている。デミスタ支持板54は、排ガスや液滴が通過することができない平坦な板から形成され、一端部がケーシング51の下流壁部51fに密着して固定されると共に、左右側部が左壁部51bと右壁部51cにそれぞれ密着して固定される一方、他端部が邪魔板52と所定間隔を空けて位置している。そのため、ケーシング51は、底部51dとデミスタ支持板54との間に通過開口部63に連通する空間部が設けられることとなり、この空間部が上流側流路64から流れてくる排ガスを水平方向に沿って180度迂回される迂回流路67となる。なお、本実施形態では、邪魔板52は、下端がデミスタ支持板54の下面より鉛直方向の下方に位置している。 The demister support plate 54 is located on the downstream wall 51 f side of the baffle plate 52 and the porous plate 53, and is disposed horizontally above the porous plate 53 by a predetermined height. The demister supporting plate 54 is formed of a flat plate through which exhaust gas and droplets can not pass, and one end thereof is fixed in close contact with the downstream wall 51f of the casing 51, and the left and right sides are left wall 51b. The other end portion is positioned at a predetermined distance from the baffle plate 52 while being fixed in close contact with the right wall portion 51c. Therefore, in the casing 51, a space communicating with the passage opening 63 is provided between the bottom 51d and the demister support plate 54, and this space horizontally discharges the exhaust gas flowing from the upstream channel 64. It becomes a detour flow path 67 detoured along 180 degrees. In the present embodiment, the lower end of the baffle plate 52 is located below the lower surface of the demister support plate 54 in the vertical direction.
 デミスタ本体55は、ケーシング51内にて、上流側流路64及び迂回流路67より排ガスの流動方向の下流側に配置されることで、排ガスからミストを除去するものである。デミスタ本体55は、入口側が邪魔板52側を向くように鉛直方向に沿って配置されている。即ち、デミスタ本体55は、直立した状態で、上端部が天井部51aの下面に密着して支持され、下端部がデミスタ支持板54に密着して支持されている。このデミスタ本体55は、図示しないが、内部に排ガスが通過できるような複数回屈曲した流路が設けられ、全体として直線状をなす板状体として構成されている。なお、1個のデミスタ本体55を設けたが、複数個のデミスタ本体を配置してもよい。 The demister main body 55 removes mist from the exhaust gas by being disposed on the downstream side of the flow direction of the exhaust gas from the upstream side flow passage 64 and the detour flow passage 67 in the casing 51. The demister main body 55 is disposed along the vertical direction such that the inlet side faces the baffle plate 52 side. That is, in the upright state of the demister main body 55, the upper end portion is closely supported on the lower surface of the ceiling portion 51a, and the lower end portion is closely supported on the demister supporting plate 54. Although not shown, the demister main body 55 is provided with a plurality of channels which are bent a plurality of times so that the exhaust gas can pass therethrough, and is configured as a linear plate as a whole. Although one demister main body 55 is provided, a plurality of demister main bodies may be disposed.
 デミスタ本体55は、邪魔板52に対向して配置されており、デミスタ本体55より上流側が上流側流路64及び迂回流路67であり、デミスタ本体55より下流側が下流側流路68となっている。即ち、上流側流路64は、ケーシング51の上流壁部51eと左壁部51bと右壁部51cと邪魔板52と多孔板53に隔てられて構成される。迂回流路67は、ケーシング51の底部51dと左壁部51bと右壁部51cと下流壁部51fとデミスタ支持板54に隔てられて構成される。下流側流路68は、ケーシング51の天井部51aと左壁部51bと右壁部51cと下流壁部51fとデミスタ支持板54に隔てられて構成される。そのため、入口部61からケーシング51内に導入された排ガスは、上流側流路64を通って屈曲した後、迂回流路67により水平旋回して迂回してからデミスタ本体55に到達し、デミスタ本体55を通過した後に下流側流路68を通って出口部62から排出される。 The demister main body 55 is disposed to face the baffle plate 52, and the upstream side of the demister main body 55 is the upstream side flow path 64 and the bypass flow path 67, and the downstream side of the demister main body 55 is the downstream side flow path 68. There is. That is, the upstream side flow path 64 is configured to be separated by the upstream wall portion 51 e, the left wall portion 51 b, the right wall portion 51 c, the baffle plate 52, and the porous plate 53 of the casing 51. The bypass flow passage 67 is configured to be separated by the bottom 51 d of the casing 51, the left wall 51 b, the right wall 51 c, the downstream wall 51 f, and the demister support plate 54. The downstream flow passage 68 is configured to be separated by the ceiling 51a, the left wall 51b, the right wall 51c, the downstream wall 51f, and the demister support plate 54 of the casing 51. Therefore, the exhaust gas introduced into the casing 51 from the inlet portion 61 is bent through the upstream side flow path 64, and then horizontally turned by the detouring path 67 and detoured before reaching the demister main body 55, and the demister main body After passing through 55, the fluid is discharged from the outlet 62 through the downstream channel 68.
 邪魔板52は、平面部52aに受止部材57が設けられている。受止部材57は、入口部61からケーシング51内に導入された排ガスが邪魔板52に衝突することで生成された液滴を受け止めるものである。受止部材57は、邪魔板52における入口部61に対向する平面部52aであって、入口部61より鉛直方向の下方に位置するように平面部52aに固定されている。 In the baffle plate 52, a receiving member 57 is provided on the flat portion 52a. The receiving member 57 receives droplets generated when the exhaust gas introduced into the casing 51 from the inlet portion 61 collides with the baffle plate 52. The receiving member 57 is a flat portion 52 a facing the inlet portion 61 of the baffle plate 52 and is fixed to the flat portion 52 a so as to be positioned below the inlet portion 61 in the vertical direction.
 受止部材57は、邪魔板52の平面部52aに幅方向(左右方向)に沿って設けられており、邪魔板52の幅方向における中間位置から各壁部51b,51c側に向けて延出されると共に、下方に向けて傾斜している。また、受止部材57は、断面がL字形状をなし、そのため、入口部61からケーシング51内に導入された排ガスは、邪魔板52に衝突することで液滴が生成され、この液滴が邪魔板52の平面部52aを伝って下方に流れ落ちることから、受止部材57は、溝部にこの液滴を受け止めることができる。そして、受止部材57は、各端部が各壁部51b,51cから所定間隔を空けて位置していることから、溝部が受け止めた液滴は、各端部で下方に流れ落ち、貯留部65に流すことができる。 The receiving member 57 is provided along the width direction (left and right direction) on the flat portion 52a of the baffle plate 52, and extends from an intermediate position in the width direction of the baffle plate 52 toward the wall portions 51b and 51c. And slope downward. Further, the receiving member 57 has an L-shaped cross section, so that the exhaust gas introduced into the casing 51 from the inlet portion 61 collides with the baffle plate 52 to generate droplets, and the droplets are Since it flows down along the flat portion 52a of the baffle plate 52, the receiving member 57 can receive the droplets in the groove. Then, since each end of the receiving member 57 is positioned at a predetermined distance from each of the wall portions 51 b and 51 c, the droplet received by the groove flows downward at each end, and the storage portion 65 is dropped. Can be
 なお、上述の説明にて、受止部材57は、L字状断面形状をなすものとしたが、この構成に限定されるものではない。例えば、水平板や傾斜板や屈曲または湾曲板により受止部材を構成してもよい。また、受止部材57は、左右の端部が壁面51b,51c側に下方傾斜したものとしたが、一方の端部だけが壁面51b,51c側に下方傾斜したものとしてもよい。また、受止部材57を複数に分割したり、上下複数段に配置したりしてもよい。更に、受止部材57を邪魔板52の平面部52aではなく、邪魔板52の下方に設けてもよい。 In addition, although the receiving member 57 shall make L-shaped cross-sectional shape in the above-mentioned description, it is not limited to this structure. For example, the receiving member may be configured of a horizontal plate, an inclined plate, or a bent or curved plate. The receiving members 57 have left and right ends inclined downward toward the wall surfaces 51b and 51c, but only one end may incline downward to the wall surfaces 51b and 51c. Further, the receiving member 57 may be divided into a plurality of pieces, or may be arranged in a plurality of upper and lower stages. Furthermore, the receiving member 57 may be provided below the baffle plate 52 instead of the flat portion 52 a of the baffle plate 52.
 また、デミスタ本体55は、迂回流路67側に突出する突出片58が設けられている。この突出片58は、排ガスや液滴が通過することができない平坦な板から形成され、デミスタ本体55の下部から垂下するように配置され、デミスタ支持板54の端部に密着するように固定されている。本実施形態にて、デミスタ本体55は、複数の平板材を枠状に組み立て、内部に多数の蛇腹板が組付けて構成されており、突出片58は、このデミスタ本体55を構成する構成部材の一部、例えば、入口側の平板材の端部を迂回流路67側に突出して形成される。そのため、突出片58は、デミスタ本体55と同様に鉛直方向に沿って配置されることで、平面部がデミスタ支持板54における入口側の平面部と段差なく面一に沿うように配置される。この場合、突出片58は、下端が邪魔板52の下端に対して鉛直方向で同位置、または、鉛直方向で上方に位置している。そのため、上流側流路64を流れる排ガスは、突出片58によりデミスタ支持板54の下方の領域、つまり、迂回流路67から上方へ流れてデミスタ本体55の入口側の平面部に向かうように案内される。 Further, the demister main body 55 is provided with a projecting piece 58 which protrudes toward the bypass flow path 67 side. The projecting piece 58 is formed of a flat plate through which exhaust gas and droplets can not pass, is disposed so as to hang from the lower portion of the demister main body 55, and is fixed so as to closely contact the end of the demister supporting plate 54. ing. In the present embodiment, the demister main body 55 is constructed by assembling a plurality of flat plate members into a frame shape, and a large number of bellows plates are assembled therein, and the projecting piece 58 is a component forming the demister main body 55. For example, the end of the flat plate on the inlet side is formed to project toward the bypass flow passage 67 side. Therefore, the projecting piece 58 is disposed along the vertical direction in the same manner as the demister main body 55, so that the flat portion is disposed flush with the flat portion on the inlet side of the demister supporting plate 54 without any step. In this case, the lower end of the projecting piece 58 is positioned at the same position in the vertical direction with respect to the lower end of the baffle plate 52, or in the upper direction in the vertical direction. Therefore, the exhaust gas flowing through the upstream side flow passage 64 is guided by the projecting piece 58 so as to flow upward from the area under the demister support plate 54, that is, from the bypass flow passage 67 upward to the flat portion on the inlet side of the demister main body 55. Be done.
 以下、本実施形態のEGRシステムの作用を説明する。図2に示すように、エンジン本体11は、掃気トランク22からシリンダ21内に燃焼用空気が供給されると、ピストンによってこの燃焼用空気が圧縮され、この高温の空気に対して燃料が噴射することで自然着火し、燃焼する。そして、発生した燃焼ガスは、排ガスとして排気マニホールド23から排気ラインG2に排出される。エンジン本体11から排出された排ガスは、過給機12におけるタービン32を回転した後、排気ラインG3に排出され、EGR入口バルブ41Aが閉止しているときは、全量が排気ラインG3から外部に排出される。 Hereinafter, the operation of the EGR system of the present embodiment will be described. As shown in FIG. 2, in the engine body 11, when combustion air is supplied from the scavenging air trunk 22 into the cylinder 21, the combustion air is compressed by the piston and fuel is injected to the high temperature air. It spontaneously ignites and burns. Then, the generated combustion gas is discharged from the exhaust manifold 23 to the exhaust line G2 as an exhaust gas. The exhaust gas discharged from the engine body 11 is discharged to the exhaust line G3 after rotating the turbine 32 in the turbocharger 12, and when the EGR inlet valve 41A is closed, the entire amount is discharged to the outside from the exhaust line G3. Be done.
 一方、EGR入口バルブ41Aが開放しているとき、排ガスは、その一部が排気ラインG3から排ガス再循環ラインG4に流れる。排ガス再循環ラインG4に流れた排ガスは、スクラバ42により、含有するSOxや煤塵などの有害物質が除去される。即ち、スクラバ42は、排ガスがベンチュリ部44を高速で通過するとき、水噴射部46から水を噴射することで、この水により排ガスを冷却すると共に、SOxや煤塵などの微粒子(PM)を水と共に落下させて除去する。そして、SOxや煤塵などを含んだ水は、EGRガスと共にデミスタユニット14に流入する。 On the other hand, when the EGR inlet valve 41A is open, a part of the exhaust gas flows from the exhaust line G3 to the exhaust gas recirculation line G4. The exhaust gas flowing into the exhaust gas recirculation line G4 is removed by the scrubber 42 from harmful substances such as contained SOx and dust. That is, when the exhaust gas passes through the venturi portion 44 at a high speed, the scrubber 42 injects water from the water injection portion 46 to cool the exhaust gas with this water, and also waters fine particles (PM) such as SOx and dust. Drop along with and remove. Then, water containing SOx, dust and the like flows into the demister unit 14 together with the EGR gas.
 スクラバ42により有害物質が除去された排ガスは、排ガス再循環ラインG5に排出され、デミスタユニット14によりスクラバ洗浄水が分離された後、排ガス再循環ラインG7により過給機12に送られる。そして、この排ガスは、吸入ラインG6から吸入された空気と混合されて燃焼用気体となり、過給機12のコンプレッサ31で圧縮された後、エアクーラ48で冷却され、給気ラインG1からエンジン本体11に供給される。 The exhaust gas from which harmful substances have been removed by the scrubber 42 is discharged to the exhaust gas recirculation line G5, and after the scrubber wash water is separated by the demister unit 14, the exhaust gas is sent to the turbocharger 12 by the exhaust gas recirculation line G7. Then, this exhaust gas is mixed with the air taken in from the suction line G6 to become a combustion gas, and after being compressed by the compressor 31 of the supercharger 12, it is cooled by the air cooler 48 and the engine main body 11 from the air supply line G1. Supplied to
 ここで、デミスタユニット14による処理について説明する。図3から図6に示すように、入口部61からケーシング51内に導入された排ガスは、正面にある邪魔板52の平面部52aに衝突することで、邪魔板52の平面部52aに沿って広がり、含まれるミストが液滴となってこの邪魔板52の平面部52aに付着する。すると、邪魔板52の平面部52aに付着した液滴は、自重により平面部52aに沿って下方へ流れ落ち、受止部材57に受け止められる。受止部材57に受け止められた液滴は、邪魔板52の幅方向に沿って流れ、端部から貯留部65に排水され、排水流路66により外部に排出される。 Here, processing by the demister unit 14 will be described. As shown in FIG. 3 to FIG. 6, the exhaust gas introduced into the casing 51 from the inlet 61 collides with the flat portion 52 a of the baffle plate 52 in the front, and along the flat portion 52 a of the baffle plate 52. The spread, the contained mist becomes droplets and adheres to the flat portion 52 a of the baffle plate 52. Then, the droplets attached to the flat portion 52 a of the baffle plate 52 flow downward along the flat portion 52 a by their own weight, and are received by the receiving member 57. The droplets received by the receiving member 57 flow along the width direction of the baffle plate 52, are drained from the end to the storage portion 65, and are discharged to the outside by the drainage flow path 66.
 一方、一部のミストが除去された排ガスは、邪魔板52の平面部52aとケーシング51の天井部51a、各壁部51b,51c、上流壁部51eにより下向きの流れとなり、上流側流路64に流れ込む。上流側流路64に流れ込んだ排ガスは、多孔板53により屈曲されて水平な流れとなり、迂回流路67を水平方向に180度旋回しながら迂回し、突出片58により上向きの流れとなってデミスタ本体55に到達する。このとき、上流側流路64を流れる排ガスは、邪魔板52の下方を通過することになるが、邪魔板52に付着した液滴は、受止部材57に受け止められて貯留部65に排水されることから、この上流側流路64には落下しない。そのため、上流側流路64を流れる排ガスは、水との接触が抑制され、排ガスから除去したミストの排ガスへの再度の取込みが抑制される。 On the other hand, the exhaust gas from which a part of the mist has been removed becomes a downward flow by the flat portion 52a of the baffle plate 52, the ceiling 51a of the casing 51, the walls 51b and 51c, and the upstream wall 51e. Flow into The exhaust gas flowing into the upstream side channel 64 is bent by the porous plate 53 to be a horizontal flow, and is detoured while horizontally circling the bypass channel 67 by 180 degrees, and is an upward flow by the projecting piece 58 as a demister The main body 55 is reached. At this time, the exhaust gas flowing in the upstream side channel 64 passes below the baffle plate 52, but the droplets adhering to the baffle plate 52 are received by the receiving member 57 and drained to the storage portion 65. Therefore, it does not fall into the upstream channel 64. Therefore, the exhaust gas flowing through the upstream side flow path 64 is prevented from being in contact with water, and the recapture of the mist removed from the exhaust gas into the exhaust gas is suppressed.
 また、排ガスは、屈曲した上流側流路64から迂回流路67に流入した後、水平旋回することで、その遠心力によりミストが除去される。即ち、入口部61がケーシング51の一方側(図4の上方側)にずれていることから、このずれた入口部61から導入された排ガスは、邪魔板52にガイドされながらケーシング51の他方側(図4の下方側)に流れながら上流側流路64により水平流となる。そして、排ガスは、ケーシング51の左壁部51b、下流壁部51f、右壁部51cにガイドされながら流れることで、迂回流路67にて、ケーシング51の他方側から一方側に螺旋を書くような旋回流となる。この排ガスの旋回流は、迂回流路67を水平方向に180度迂回することからケーシング51内での排ガスの流れる流路が延長され、流速が低下することでその遠心力によりミストが除去されやすくなる。 Further, the exhaust gas flows from the bent upstream side flow passage 64 into the bypass flow passage 67 and then horizontally swirls, whereby the mist is removed by the centrifugal force. That is, since the inlet portion 61 is shifted to one side of the casing 51 (upper side in FIG. 4), the exhaust gas introduced from the shifted inlet portion 61 is guided by the baffle plate 52 and the other side of the casing 51 It becomes a horizontal flow by the upstream channel 64 while flowing to the lower side of FIG. Then, the exhaust gas flows while being guided by the left wall 51b, the downstream wall 51f, and the right wall 51c of the casing 51 so that a spiral is drawn from the other side of the casing 51 to the one side in the bypass flow path 67. Swirling flow. Since the swirling flow of the exhaust gas detours the detour flow path 67 180 degrees in the horizontal direction, the flow path of the exhaust gas in the casing 51 is extended, and the flow velocity is reduced, and the mist is easily removed by the centrifugal force. Become.
 その後、排ガスは、デミスタ本体55を通過するときに、残存するミストが凝集して液滴となり、貯留部65に落下する。その後、ミストが除去された排ガスは、下流側流路68を通って出口部62から外部に排出される。 Thereafter, when the exhaust gas passes through the demister main body 55, the remaining mist condenses to form droplets, and falls into the storage portion 65. Thereafter, the exhaust gas from which the mist has been removed is discharged from the outlet 62 through the downstream flow passage 68 to the outside.
 このように本実施形態のデミスタユニットにあっては、中空形状をなして排ガスの入口部61と出口部62が設けられるケーシング51と、ケーシング51内で入口部61に対向して配置されることで屈曲した上流側流路64を形成する邪魔板52と、ケーシング51内で上流側流路64より排ガスの流動方向の下流側に配置されて排ガスからミストを除去するデミスタ本体55とを設け、入口部61をケーシング51における水平方向の中間位置から水平方向の一方側にずらして配置している。 As described above, in the demister unit of the present embodiment, the casing 51 having the hollow portion to be provided with the inlet portion 61 and the outlet portion 62 of the exhaust gas, and the inlet portion 61 disposed in the casing 51 A baffle plate 52 that forms the upstream side flow passage 64 bent at a side, and a demister main body 55 disposed on the downstream side of the flow direction of the exhaust gas with respect to the upstream side flow passage 64 in the casing 51 to remove mist from the exhaust gas; The inlet portion 61 is disposed on one side in the horizontal direction from an intermediate position in the horizontal direction in the casing 51.
 従って、入口部61からケーシング51内に導入された流体は、この入口部61がケーシング51における水平方向の一方側にずれて配置されるため、邪魔板52に衝突することで水平方向の他方側に流れ、上流側流路64を流れた後に迂回流路67で水平旋回してからデミスタ本体55に到達する。その結果、排ガスの流路が長くなって流速が低下することとなり、ミスト除去性能の向上を図ることができる一方で、ケーシング51の大型化を抑制することができる。 Therefore, the fluid introduced into the casing 51 from the inlet portion 61 is disposed so that the inlet portion 61 is shifted to one side in the horizontal direction of the casing 51. And, after flowing through the upstream side flow path 64, turn horizontally in the bypass flow path 67 and then reach the demister main body 55. As a result, the flow path of the exhaust gas becomes long and the flow velocity decreases, and while the mist removal performance can be improved, the enlargement of the casing 51 can be suppressed.
 本実施形態のデミスタユニットでは、入口部61をケーシング51における水平方向の中間位置から水平方向の一方側に入口部61における水平方向の開口長さの1/2以上ずらして配置している。従って、邪魔板52に衝突した後の排ガスを適正に水平旋回させることができ、排ガスの流路を長くして排ガスの流速を低下させることができる。 In the demister unit of this embodiment, the inlet portion 61 is disposed on one side in the horizontal direction from the middle position in the horizontal direction of the casing 51 with a half or more of the horizontal opening length of the inlet portion 61 shifted. Therefore, the exhaust gas after having collided with the baffle plate 52 can be properly turned horizontally, and the flow path of the exhaust gas can be lengthened to reduce the flow velocity of the exhaust gas.
 本実施形態のデミスタユニットでは、邪魔板52をケーシング51の天井部51aから垂下して設けることで下方に通過開口部63を設け、デミスタ本体55をケーシング51内における通過開口部63より天井部51a側に固定されたデミスタ支持板54上に固定することで、ケーシング51の底部51dとデミスタ支持板54との間に通過開口部63に連通して排ガスを水平旋回させる迂回流路67を設けている。従って、排ガスを迂回流路67で適正に水平旋回させることができ、排ガスの流路を長くして排ガスの流速を低下させることができる。 In the demister unit of the present embodiment, the baffle plate 52 is provided so as to depend from the ceiling portion 51 a of the casing 51 to provide the passage opening 63 below, and the demister main body 55 is made from the passage opening 63 in the casing 51. By fixing on the demister supporting plate 54 fixed on the side, a detouring channel 67 is provided between the bottom 51 d of the casing 51 and the demister supporting plate 54 to communicate with the passage opening 63 to horizontally swirl the exhaust gas. There is. Therefore, the exhaust gas can be properly turned horizontally in the bypass channel 67, and the flow channel of the exhaust gas can be lengthened to reduce the flow velocity of the exhaust gas.
 本実施形態のデミスタユニットでは、通過開口部63にケーシング51の底部51dから所定距離を空けて多孔板53を配置し、多孔板53を排ガスの流れ方向の中途部まで設けている。従って、デミスタ支持板54の下方空間部としての迂回流路67を拡大することができ、排ガスの流路を長くして流速を低下することができる。 In the demister unit of this embodiment, the porous plate 53 is disposed at the passage opening 63 at a predetermined distance from the bottom 51d of the casing 51, and the porous plate 53 is provided up to the middle of the exhaust gas flow direction. Therefore, the bypass flow path 67 as the lower space portion of the demister support plate 54 can be expanded, and the flow path of the exhaust gas can be lengthened to reduce the flow velocity.
 本実施形態のデミスタユニットでは、邪魔板52に排ガスが衝突することによって生じた液滴を受け止める受止部材57を設けている。従って、入口部61からケーシング51内に導入された排ガスは、邪魔板52に衝突することで、含まれるミストが液滴となって邪魔板52に付着し、自重により邪魔板52の平面部52aを流れ落ち、受止部材57に受け止められる。そのため、上流側流路64を流れる排ガスが再び液滴をミストとして取り込むことはなく、排ガスから除去したミストの排ガスへの再度の取込みを抑制してミスト除去効率の向上を図ることができる。 In the demister unit of the present embodiment, the baffle plate 52 is provided with a receiving member 57 for receiving droplets generated by collision of the exhaust gas. Therefore, the exhaust gas introduced into the casing 51 from the inlet portion 61 collides with the baffle plate 52, so that the contained mist becomes droplets and adheres to the baffle plate 52, and the flat portion 52a of the baffle plate 52 by its own weight. And is received by the receiving member 57. Therefore, the exhaust gas flowing through the upstream flow path 64 does not again take in droplets as mist, and it is possible to improve the mist removal efficiency by suppressing the reintroduction of the mist removed from the exhaust gas into the exhaust gas.
 また、本実施形態のEGRシステムにあっては、エンジン本体11から排出された排ガスの一部を燃焼用気体の一部としてエンジン本体に再循環する排ガス再循環ラインG4と、排ガス再循環ラインG4を流れる排ガスに対して水を噴射することで有害物質を除去するスクラバ42と、スクラバ42から排出された排ガスが導入されるデミスタユニット14とを設けている。 Further, in the EGR system of the present embodiment, an exhaust gas recirculation line G4 that recirculates a part of the exhaust gas discharged from the engine body 11 to the engine body as a part of the combustion gas, and an exhaust gas recirculation line G4 The scrubber 42 for removing harmful substances by injecting water to the exhaust gas flowing through and the demister unit 14 into which the exhaust gas discharged from the scrubber 42 is introduced are provided.
 従って、デミスタユニット14にて、入口部61がケーシング51における水平方向の中間位置から水平方向の一方側にずれて配置されていることで、入口部61からケーシング51内に導入された流体は、邪魔板52に衝突することで水平方向の他方側に流れ、上流側流路64を流れた後に迂回流路67で水平旋回してからデミスタ本体55に到達する。その結果、排ガスの流路が長くなって流速が低下することとなり、ミスト除去性能の向上を図ることができる一方で、ケーシング51の大型化を抑制することができる。 Therefore, in the demister unit 14, the inlet 61 is disposed on one side in the horizontal direction from the horizontal intermediate position in the casing 51, whereby the fluid introduced into the casing 51 from the inlet 61 is By colliding with the baffle plate 52, it flows to the other side in the horizontal direction, and after flowing through the upstream side channel 64, it turns horizontally in the bypass channel 67 and then reaches the demister main body 55. As a result, the flow path of the exhaust gas becomes long and the flow velocity decreases, and while the mist removal performance can be improved, the enlargement of the casing 51 can be suppressed.
 なお、上述した実施形態にて、邪魔板52を鉛直方向に沿って配置したが、傾斜していてもよい。 In the embodiment described above, the baffle plate 52 is disposed along the vertical direction, but may be inclined.
 また、上述した実施形態では、舶用ディーゼルエンジンとして、主機関を用いて説明したが、発電機として用いられるディーゼルエンジンにも適用することができる。 Moreover, in embodiment mentioned above, although demonstrated using the main engine as a marine diesel engine, it is applicable also to the diesel engine used as a generator.
 10 舶用ディーゼルエンジン
 11 エンジン本体
 12 過給機
 13 EGRシステム
 14 デミスタユニット
 41A EGR入口バルブ
 41B EGR出口バルブ
 42 スクラバ
 47 EGRブロワ
 48 エアクーラ(冷却器)
 51 ケーシング
 52 邪魔板
 53 多孔板
 54 デミスタ支持板
 55 デミスタ本体
 57 受止部材
 58 突出片
 61 入口部
 62 出口部
 63 通過開口部
 64 上流側流路(屈曲流路)
 65 貯留部
 67 迂回流路
 68 下流側流路
 G4,G5,G7 排ガス再循環ライン
 G6 吸入ライン
 W1 排水循環ライン
DESCRIPTION OF SYMBOLS 10 Marine diesel engine 11 Engine main body 12 Turbocharger 13 EGR system 14 Demister unit 41A EGR inlet valve 41B EGR outlet valve 42 Scrubber 47 EGR blower 48 Air cooler (cooler)
Reference Signs List 51 casing 52 baffle plate 53 porous plate 54 demister support plate 55 demister main body 57 receiving member 58 projecting piece 61 inlet portion 62 outlet portion 63 passage opening portion 64 upstream side flow passage (bending flow passage)
65 Reservoir 67 Detour Channel 68 Downstream Channel G4, G5, G7 Exhaust gas recirculation line G6 Intake line W1 Waste water circulation line

Claims (6)

  1.  中空形状をなして流体の入口部と出口部を有するケーシングと、
     前記ケーシング内で前記入口部に対向して配置されることで屈曲流路を形成する邪魔板と、
     前記ケーシング内で前記屈曲流路より流体の流動方向の下流側に配置されて流体からミストを除去するデミスタ本体と、
     を備え、
     前記入口部は、前記ケーシングにおける水平方向の中間位置から水平方向の一方側にずれて配置される、
     ことを特徴とするデミスタユニット。
    A casing having a hollow shape and having an inlet and an outlet for the fluid;
    A baffle plate which forms a curved flow path by being disposed opposite to the inlet in the casing;
    A demister main body disposed in the casing on the downstream side of the flow direction of the fluid from the bent flow passage to remove mist from the fluid;
    Equipped with
    The inlet portion is disposed on one side in the horizontal direction from a horizontal intermediate position in the casing.
    A demister unit characterized by
  2.  前記入口部は、前記ケーシングにおける水平方向の中間位置から水平方向の一方側に、前記入口部における水平方向の開口長さの1/2以上ずれて配置されることを特徴とする請求項1に記載のデミスタユニット。 The inlet portion is disposed on one side in the horizontal direction from an intermediate position in the horizontal direction in the casing at a half or more of the horizontal opening length in the inlet portion. Demista unit described.
  3.  前記邪魔板は、前記ケーシングの天井部から垂下して設けられることで下方に通過開口部が設けられ、前記デミスタ本体は、前記ケーシング内における前記通過開口部より前記天井部側に固定されたデミスタ支持板上に固定されることで、前記ケーシングの底部と前記デミスタ支持板との間に前記通過開口部に連通して流体を水平旋回させる迂回流路が設けられることを特徴とする請求項1または請求項2に記載のデミスタユニット。 The baffle plate is provided so as to be suspended from the ceiling of the casing so that a passage opening is provided at the lower side, and the demister main body is a demister fixed to the ceiling from the passage opening in the casing. By being fixed on the support plate, a bypass flow passage is provided between the bottom of the casing and the demister support plate so as to be in fluid communication with the passage opening to horizontally turn the fluid. The demister unit according to claim 2 or 3.
  4.  前記通過開口部に前記ケーシングの底部から所定距離を空けて多孔板が配置され、前記多孔板は、流体の流れ方向の中途部まで設けられることを特徴とする請求項3に記載のデミスタユニット。 The demister unit according to claim 3, wherein a perforated plate is disposed at the passage opening at a predetermined distance from the bottom of the casing, and the perforated plate is provided up to a middle portion in the fluid flow direction.
  5.  前記邪魔板に流体が衝突することによって生じた液滴を受け止める受止部材が設けられることを特徴とする請求項1から請求項4のいずれか一項に記載のデミスタユニット。 The demister unit according to any one of claims 1 to 4, further comprising a receiving member for receiving droplets generated by the collision of the fluid with the baffle plate.
  6.  エンジンから排出された排ガスの一部を燃焼用気体として前記エンジンに再循環する排ガス再循環ラインと、
     前記排ガス再循環ラインを流れる燃焼用気体に対して液体を噴射するスクラバと、
     前記スクラバから排出された燃焼用気体が導入される請求項1から請求項5のいずれか一項に記載のデミスタユニットと、
     を備えることを特徴とするEGRシステム。
    An exhaust gas recirculation line for recirculating a part of exhaust gas discharged from the engine to the engine as a combustion gas;
    A scrubber for injecting a liquid to the combustion gas flowing in the exhaust gas recirculation line;
    The demister unit according to any one of claims 1 to 5, wherein the combustion gas discharged from the scrubber is introduced.
    An EGR system comprising:
PCT/JP2017/002160 2016-02-10 2017-01-23 Demister unit and egr system WO2017138340A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187013173A KR102133162B1 (en) 2016-02-10 2017-01-23 Thermistor unit and EGR system
CN201780004051.3A CN108697957B (en) 2016-02-10 2017-01-23 Demister unit and EGR system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016023978A JP6171194B1 (en) 2016-02-10 2016-02-10 Demister unit and EGR system
JP2016-023978 2016-02-10

Publications (1)

Publication Number Publication Date
WO2017138340A1 true WO2017138340A1 (en) 2017-08-17

Family

ID=59505100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002160 WO2017138340A1 (en) 2016-02-10 2017-01-23 Demister unit and egr system

Country Status (4)

Country Link
JP (1) JP6171194B1 (en)
KR (1) KR102133162B1 (en)
CN (1) CN108697957B (en)
WO (1) WO2017138340A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6849849B1 (en) * 2020-09-08 2021-03-31 株式会社三井E&Sマシナリー Cleaning and wastewater treatment equipment for marine exhaust gas

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516856U (en) * 1978-07-21 1980-02-02
JPS59107966U (en) * 1983-01-11 1984-07-20 スズキ株式会社 Engine air cleaner device
JPS6335410U (en) * 1986-08-25 1988-03-07
JPH0359016U (en) * 1989-10-06 1991-06-10
US6179904B1 (en) * 1997-12-05 2001-01-30 Brasscorp Ltd. Flushing machine with liquid/air separating tank
JP2005023824A (en) * 2003-07-01 2005-01-27 Uchihama Kasei Kk Oil mist collection device
WO2013092458A1 (en) * 2011-12-23 2013-06-27 Valeo Systemes Thermiques Water separator having a filter assembly
JP2013170539A (en) * 2012-02-22 2013-09-02 Mitsubishi Heavy Ind Ltd Exhaust gas recirculation system

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5176868U (en) * 1974-12-16 1976-06-17
JPS6036328Y2 (en) * 1980-04-17 1985-10-29 三菱重工業株式会社 Gas-liquid separation equipment
JPS6095B2 (en) * 1982-07-26 1985-01-05 高丘工業株式会社 Method and separator for separating and removing droplets in airflow
JPH0359017U (en) * 1989-10-06 1991-06-10
JPH05203293A (en) * 1992-01-30 1993-08-10 Hitachi Ltd Oil separator for refrigerating plant
JP3491950B2 (en) * 1994-04-06 2004-02-03 三菱重工業株式会社 Oil mist separator
JPH08254160A (en) * 1995-03-16 1996-10-01 Kawasaki Heavy Ind Ltd Exhaust gas recirculation control device for diesel engine
JP3148980B2 (en) * 1997-11-26 2001-03-26 東急車輛製造株式会社 Track shape detector
JP2002332919A (en) * 2001-02-26 2002-11-22 Mitsubishi Heavy Ind Ltd Exhaust gas recirculation system
SE527104C2 (en) * 2004-05-21 2005-12-20 Alstom Technology Ltd Method and apparatus for separating dust particles
JP2008196721A (en) * 2007-02-08 2008-08-28 Mitsubishi Heavy Ind Ltd Gas-liquid separator
US7842114B2 (en) * 2008-07-18 2010-11-30 Uop Llc Vessel for receiving a fluid including a demister
JP3148980U (en) * 2008-12-24 2009-03-05 栄一 浦谷 Demister device for compressed air dehumidification
ES2393590T3 (en) * 2009-01-07 2012-12-26 Ingersoll-Rand Company Mechanical separation system
CN101476717B (en) * 2009-01-19 2011-01-12 高尔荣 Flue gas processing equipment of boiler
JP5014516B2 (en) * 2009-03-18 2012-08-29 エムエーエヌ・ディーゼル・アンド・ターボ・フィリアル・アフ・エムエーエヌ・ディーゼル・アンド・ターボ・エスイー・ティスクランド Large turbocharged two-cycle diesel engine with exhaust gas or combustion gas recirculation and method for reducing NOx and soot emissions
JP2013044456A (en) * 2011-08-23 2013-03-04 Hitachi Appliances Inc Oil separator and refrigerating cycle apparatus
JP6179774B2 (en) * 2014-02-28 2017-08-16 三菱重工業株式会社 Demister unit and EGR system including the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516856U (en) * 1978-07-21 1980-02-02
JPS59107966U (en) * 1983-01-11 1984-07-20 スズキ株式会社 Engine air cleaner device
JPS6335410U (en) * 1986-08-25 1988-03-07
JPH0359016U (en) * 1989-10-06 1991-06-10
US6179904B1 (en) * 1997-12-05 2001-01-30 Brasscorp Ltd. Flushing machine with liquid/air separating tank
JP2005023824A (en) * 2003-07-01 2005-01-27 Uchihama Kasei Kk Oil mist collection device
WO2013092458A1 (en) * 2011-12-23 2013-06-27 Valeo Systemes Thermiques Water separator having a filter assembly
JP2013170539A (en) * 2012-02-22 2013-09-02 Mitsubishi Heavy Ind Ltd Exhaust gas recirculation system

Also Published As

Publication number Publication date
CN108697957A (en) 2018-10-23
KR20180063308A (en) 2018-06-11
CN108697957B (en) 2021-05-14
JP6171194B1 (en) 2017-08-02
JP2017140582A (en) 2017-08-17
KR102133162B1 (en) 2020-07-13

Similar Documents

Publication Publication Date Title
JP6412976B2 (en) Demister unit and EGR system
CN107427754B (en) Demister unit and EGR system
EP2918803A1 (en) Wet scrubber device, engine system, and ship
JP6150915B1 (en) Demister unit and EGR system
KR101869176B1 (en) Demister unit and egr system provided with same
WO2017138340A1 (en) Demister unit and egr system
JP5131486B2 (en) Blowby gas gas oil separator
KR101991604B1 (en) Demister unit and egr system
JP6412977B2 (en) Demister unit and EGR system
KR101326807B1 (en) Cooler for exhaust gas recirculation
KR102393267B1 (en) Demister unit
CN112879184B (en) EGR system
WO2015129432A1 (en) Mist separator, exhaust-gas treatment device, and ship
JP2022060659A (en) Piping device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750065

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187013173

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17750065

Country of ref document: EP

Kind code of ref document: A1