JPS6095B2 - Method and separator for separating and removing droplets in airflow - Google Patents

Method and separator for separating and removing droplets in airflow

Info

Publication number
JPS6095B2
JPS6095B2 JP13014382A JP13014382A JPS6095B2 JP S6095 B2 JPS6095 B2 JP S6095B2 JP 13014382 A JP13014382 A JP 13014382A JP 13014382 A JP13014382 A JP 13014382A JP S6095 B2 JPS6095 B2 JP S6095B2
Authority
JP
Japan
Prior art keywords
spiral
gas
separated liquid
droplets
airflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13014382A
Other languages
Japanese (ja)
Other versions
JPS5919515A (en
Inventor
久楽作 吉江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Takaoka Co Ltd
Original Assignee
Takaoka Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takaoka Industrial Co Ltd filed Critical Takaoka Industrial Co Ltd
Priority to JP13014382A priority Critical patent/JPS6095B2/en
Publication of JPS5919515A publication Critical patent/JPS5919515A/en
Publication of JPS6095B2 publication Critical patent/JPS6095B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、飛沫状液滴を含む管路内気流中から、遠心
分離作用、凝集作用および衝突作用を利用して飛沫状液
滴を分離除去する方法と分離器とに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method and a separator for separating and removing droplets from airflow in a pipe containing droplets by using centrifugation, coagulation, and collision. Regarding.

この種の気液の分離方法および分離器は、化学工業をは
じめとして多くの産業分野において適用されている。
This type of gas-liquid separation method and separator are applied in many industrial fields including the chemical industry.

ミスト等の微小粒径の液滴(以下飛沫状液滴という)や
ドレーンなどを含む気体が管路内を流れるとき、飛沫状
液滴は相互に凝集するとドレーンとなって管路の低い部
位に集合し、気流に随伴して流下する。このとき気体の
流速が大きいと(おおむね6m/sec以上)、流路の
低い部位に集合して流下する前記のドレーンは、管内気
体の流速のために再び飛沫化されて気流と共に流下し、
このような管路内気流と共にある飛沫状液滴は気体内に
おいて重力による沈降作用を有効に受けにくいため、気
液分離が行われにくいので、飛沫状液滴の効果的な除去
排出が困難である。従来から行われている気流中の液体
の液体の分離手段は色々あるが、それらにおける気液分
離作用は次のように大別される基本的原理に基づいてお
り、これを単独又は複合して適用しているものが多い。
すなわち‘1’ 重力沈降による気液分離。
When a gas containing microscopic droplets such as mist (hereinafter referred to as droplets) and drain flows through a pipe, the droplets aggregate with each other and become drain, flowing into the lower parts of the pipe. They gather together and flow down with the air currents. At this time, if the flow velocity of the gas is high (approximately 6 m/sec or more), the drains that collect in the lower part of the flow path and flow down are again turned into droplets due to the flow velocity of the gas in the pipe and flow down with the air flow.
These droplets that are present along with the airflow in the pipe are difficult to effectively undergo sedimentation due to gravity within the gas, making it difficult for gas-liquid separation to occur, making it difficult to effectively remove and discharge the droplets. be. There are various conventional means for separating liquid in an air stream, but the gas-liquid separation action in them is based on the following basic principles, which can be used singly or in combination. Many are applied.
Namely '1' Gas-liquid separation by gravity sedimentation.

{2} 衝突による凝集液滴化と気液分離。{2} Collision into droplets and gas-liquid separation.

【3ー 遠心分離と凝集をともなう液滴化による気液分
離。【4ー 衝突板(ルーバ−)など気流の急激な方向
変換による気液分離。
[3- Gas-liquid separation by droplet formation accompanied by centrifugation and coagulation. [4- Gas-liquid separation using a collision plate (louver) or other device that rapidly changes the direction of airflow.

などである。etc.

上記の作用原理に基づいて従来から行われている気流分
離器においては、構造が簡便で、機器内圧力損失が少な
い等の特長を有するものがあるが、これはまた、他面に
おいて分離機器が大型化する傾向にあるとか、飛沫状液
滴のような微小粒径の液滴に対しては分離能力が低いと
か、および前記のような分離機器の大型化を回避して小
型化すると、気体の流速が増大した時に分離能力の劣化
を来すなど、何らかの問題が残されている。
Some of the conventional air separators based on the above-mentioned principle of operation have features such as a simple structure and low pressure loss within the device. There is a tendency to increase the size of the separation equipment, the separation ability is low for small droplets such as droplets, and if the separation equipment is miniaturized to avoid increasing the size of the separation equipment as described above, gas Some problems remain, such as deterioration of separation ability when the flow rate increases.

従って、既存の気液分離機器の選択に当っては、上記の
ような理由からある種の機能上の問題は黙視せざるを得
ない実状にある。さらに、具体的な実例によって考察す
れば、例えば、液滴を含む気体を衝突させて気体中の液
滴の凝集を促したうえ、気流を急激に方向変換させて気
液を分離し、液滴を除去する衝突式分離器があり、これ
らは第1図、第2図に示すように、縦型の分離タンクb
の上部の左右対称位置に、それぞれ気体の流入管a、流
出管cを設け、この流入管a、流出管cの間を遮るよう
に、下端に樋部eを有するバッフルプレートdを分離タ
ンクbの上部から吊下し、前記樋部eとの間に所要の間
隔をおいてドレ−ン管gに通じる切欠き部hを設けた仕
切板fを取付けて構成し、流入管aから送り込まれた液
滴を含む気体をバッフルプレートdに衝突させるときの
衝突力と、仕切板fで方向変換させるときの慣性力とに
より気液を分離し、気体は気体流出管cから送り出し、
分離タンクbの内側壁やバッフルプレートdに付着した
液滴は、切欠き部hからドレーン管gを経て分離タンク
b外部に排出するようにしたものであるが、これは構造
が簡便であるため圧力損失が小ないという利点を有する
反面、他の方式に比べて気液分離のために比較的大きい
空間を必要とし、設計容量に対する上限側付近の実流入
速度においては、分離タンクb内の液滴の一部が気流に
よって再び飛沫化し、気流と共に気体流出管cから流出
するとか、また、気体中のミストなどの飛沫状液滴は、
この方式では十分な凝集液瓶化が行われないまま気流と
共に流動する等、気液分離除去上の問題点を持っている
Therefore, when selecting existing gas-liquid separation equipment, certain functional problems must be ignored for the reasons mentioned above. Furthermore, if we consider a concrete example, for example, we can collide gas containing droplets to promote the agglomeration of droplets in the gas, and then rapidly change the direction of the airflow to separate the gas and liquid. As shown in Figures 1 and 2, there are collision type separators that remove the
Gas inflow pipes a and gas outflow pipes c are provided at symmetrical positions on the upper part of the separation tank b, and a baffle plate d having a gutter part e at the lower end is installed so as to block the gap between the inflow pipe a and the outflow pipe c. A partition plate f is suspended from the upper part of the drain pipe g, and a partition plate f is provided with a notch h communicating with the drain pipe g at a required distance from the gutter part e. The gas and liquid are separated by the collision force when the gas containing the droplets collides with the baffle plate d and the inertial force when the direction is changed by the partition plate f, and the gas is sent out from the gas outflow pipe c.
The liquid droplets adhering to the inner wall of the separation tank b and the baffle plate d are discharged from the notch h to the outside of the separation tank b via the drain pipe g, but this is because the structure is simple. Although it has the advantage of low pressure loss, it requires a relatively large space for gas-liquid separation compared to other methods, and at an actual inflow rate near the upper limit of the design capacity, the liquid in separation tank b Some of the droplets are turned into droplets by the airflow and flow out from the gas outflow tube c along with the airflow, and droplets such as mist in the gas are
This method has problems in terms of gas-liquid separation and removal, such as the flocculating liquid flowing together with the air flow without being sufficiently bottled.

また、遠心分離法を利用するサイクロン分離器は種々の
形状のものが実用されており、例えば、第3図、第4図
に示す形状のものにおいて、円筒状の胴体部Bの下部側
に下向きの中空円錐部Cを一体状に形成し、その下端部
に分離液排出口Lを設けるとともに胴体部Bの上端には
底板を形成し、その中央部に排気筒Dがその下部側を胴
体部B内に突出するように固定保持させてあり、また、
胴体部Bの上部側の外周壁に沿って胴体部B外周壁を囲
むように気体流入管Aが配設され、この気体流入管Aは
胴体部B内に気流を旋回流入させるように胴体部Bに連
接された構成とされ、気体導入管Aから液滴を含む気体
が胴体部B内に吹き込まれると、これによる気流は胴体
部B内をEで示す下降回流となって旋回しながら下降し
、中空円錐部Cの下端付近に達して反転し、Fで示す上
昇旋回流となって旋回上昇し、排気筒Dを通って排気さ
れ、他方、気流の旋回反転等により分離された液滴は中
空円錐部C下部の分離液排出口Lから排出される。
In addition, cyclone separators that use centrifugal separation are in various shapes. For example, in the shapes shown in Figures 3 and 4, there is a A hollow conical part C is integrally formed, a separated liquid discharge port L is provided at the lower end thereof, a bottom plate is formed at the upper end of the body part B, and an exhaust pipe D is provided at the center of the body part B, and an exhaust pipe D connects the lower part of the part to the body part B. It is fixedly held so as to protrude into B, and
A gas inflow pipe A is arranged along the outer peripheral wall of the upper side of the body part B so as to surround the outer peripheral wall of the body part B. When gas containing droplets is blown into the body part B from the gas introduction pipe A, the resulting airflow turns into a downward circular flow shown by E within the body part B and descends while swirling. Then, it reaches near the lower end of the hollow conical part C and reverses, becomes an upward swirling flow shown by F, swirls upward, and is exhausted through the exhaust pipe D. On the other hand, droplets are separated by the swirling reversal of the airflow, etc. is discharged from the separated liquid outlet L at the bottom of the hollow conical part C.

このサイクロン分離器の分離能力を評価するのに「50
%捕捉平均粒径」という概念があるように、サイクロン
分離器による液滴の捕捉能力は、一つには、気体中の液
滴粒径に依存するものである。この場合、サイクロン分
離器の胴体部内で遠心分離作用を充分に受けられない程
度の微小粒径の飛沫状液滴は、分離除去されないまま気
体と共にサイクロン分離器を通過して排出される。 し
かし、サイクロン分離器内で分離されないで流出する飛
沫状液滴量は、サイクロン分離器内に流入する前記飛沫
状液滴を含む気体の流入速度にも依存し、気体の流入速
度が設計速度を超えると、飛沫状液滴が排気筒Dを経て
サイクロン分離器外に流出すると割合が増加するが、こ
れは第4図に示すように、排気筒Dの入口付近における
排気筒Dの入口に向かう上昇旋回流Fが大きくなり、こ
のとき胴体部B内の遠心分離作用を充分に受けていない
微小粒径の飛沫状液滴が短絡流Sとして前記上昇旋回流
Fに乗るためである。また、サイクロン分離器への気体
の流入速度が設計速度より小さくなっても飛沫状液滴が
排気筒Dへ流出する量は増大するが、これは主として遠
心力による分離効果が劣ってくるためであるとされ、こ
れらのことから管路内の気流速度の変化が大きいものへ
のサイクロン式の気液分離器の適用は不向きであること
がわかる。サイクロン分離器の機能を左右する作動理論
に関する調査、研究が従来から多岐にわたって行われて
おり、その結果、理論の解明と適用方法が明らかにされ
ており、上記のようなサィク。
To evaluate the separation ability of this cyclone separator,
The ability of a cyclone separator to capture droplets depends, in part, on the droplet size in the gas, as expressed in the concept of "% trapped average particle size." In this case, droplets that are so small that they cannot be sufficiently centrifuged within the body of the cyclone separator are discharged through the cyclone separator together with the gas without being separated and removed. However, the amount of droplets flowing out without being separated in the cyclone separator also depends on the inflow speed of the gas containing the droplets flowing into the cyclone separator, and the inflow speed of the gas exceeds the design speed. If the droplet exceeds the cyclone separator, the proportion increases as the droplets flow out of the cyclone separator through the exhaust stack D, but as shown in Figure 4, these droplets flow toward the entrance of the exhaust stack D near the entrance of the exhaust stack D. This is because the upward swirling flow F becomes larger, and at this time, droplets in the form of minute particles that have not been sufficiently subjected to centrifugal separation within the body portion B ride on the upward swirling flow F as a short-circuit flow S. Furthermore, even if the gas inflow speed into the cyclone separator becomes lower than the design speed, the amount of droplets flowing into the exhaust stack D will increase, but this is mainly due to the deterioration of the separation effect due to centrifugal force. From these facts, it can be seen that the cyclone type gas-liquid separator is not suitable for applications where there are large changes in air velocity within the pipe. A wide range of investigations and research have been conducted on the operating theory that affects the function of cyclone separators, and as a result, the elucidation of the theory and its application methods have been clarified.

ン分離器の機能に関する見解も、これら作動理論の研究
成果から導かれている。以上を要するに、サイクロン分
離器への気体の流入速度が設計値に対して低すぎても、
また、高すぎても捕捉率が劣化し、また、飛沫状液滴の
ような微小粒径のものは概して捕捉されにくいものであ
り、捕捉すべき平均粒径の大小に対応して8同径の大き
さを変更する必要がある。このような機能上の特徴的事
項を構造上の観点から説明すれば、遠心分離作用を発生
する胴体部Bに気体流入管Aが連接してあり、胴体部B
と同心的にその内側に排気筒Dが配段され、さらに、胴
体部Bの下位に中空円錐部Cが連接されている典型的な
サイクロン分離器の構造は極めて簡素であるけれども、
一方において、胴体部Bと気体流入管Aの流入口T、な
らびに排気筒Dの入口とが直接的に隣接しており、また
、胴体部B内および中空円錐部C内の外側寄りの下降旋
回流Eと中心の上昇旋回流Fとの間に介在する構造物が
なく、ここにおいても直接的に隣接している構造であり
、これらのことが前述のような気液分離機能の劣化を発
生させる要因ともなっている。
Views regarding the function of the separator are also derived from the results of these working theory studies. In summary, even if the gas inflow velocity into the cyclone separator is too low relative to the design value,
In addition, if it is too high, the capture rate will deteriorate, and small particles such as droplets are generally difficult to capture. It is necessary to change the size of . To explain these functional characteristics from a structural point of view, a gas inflow pipe A is connected to a body part B that generates centrifugal separation, and a gas inflow pipe A is connected to a body part B that generates centrifugal separation.
Although the structure of a typical cyclone separator is extremely simple, in which an exhaust pipe D is arranged concentrically inside the body part B, and a hollow conical part C is connected to the lower part of the body part B,
On the one hand, the body part B, the inlet T of the gas inflow pipe A, and the inlet of the exhaust pipe D are directly adjacent to each other, and the downward spiral toward the outside inside the body part B and the hollow conical part C There is no structure intervening between the flow E and the central upward swirling flow F, and the structures are directly adjacent to each other, which causes the deterioration of the gas-liquid separation function as described above. It is also a contributing factor.

上記したように衝突式分離器ならびにサイクロン分離器
の従来実施例は管路内への配設が比較的容易な構造であ
るけれども、また、それぞれの構造に基づく本質的液滴
分離除去上の機能的弱点をもっている。
As mentioned above, conventional examples of impingement type separators and cyclone separators have structures that are relatively easy to install in pipes, but they also have essential functions for separating and removing droplets based on their respective structures. It has certain weaknesses.

この発明は、従来の実施例における前記のような欠点の
実状にかんがみてなされたもので、この発明の目的は、
サイクロン方式や衝突方式などよりも、気体の流入速度
の影響および粒径の影響などを受けにくくて分離効率が
良く、同一処理容量に対して分離器を小型化できる、気
流中の飛沫状液瓶を分離除去する方法と分離器とを提供
することにある。
This invention was made in view of the above-mentioned drawbacks in the conventional embodiments, and the purpose of the invention is to:
A droplet-like liquid bottle in an air flow that is less susceptible to the effects of gas inflow velocity and particle size than the cyclone method or collision method, has better separation efficiency, and allows for a smaller separator for the same processing capacity. An object of the present invention is to provide a method and a separator for separating and removing.

この発明の方法の要旨は、分離タンク本体内に設置され
ている渦巻形状体の上部に形成される渦巻状流路の入口
部から前記渦巻流路内に飛沫状液滴を含有する気体を送
入し、この渦巻状流路内を上記の気体が進行するときに
、遠心分離作用によつて渦巻形状体の壁の湾曲内側面に
飛沫状液滴を集合させて気液分離させるとともに、渦巻
状流路が先行するのに従ってその断面積を漸減させて気
流中の飛沫状液滴の凝集を促進させ、ならびに、曲率半
径を4・さくすることにより遠心力による分離作用を受
けやすくし、気流から遠心分離した分離液は渦巻状流路
の外側壁内面に沿って流下させたのち収集し、液滴衝突
受板に導いて衝突させ、一方、気流は渦巻状流路の終端
部付近で渦巻状壁に衝突させ、これにより気流中に残留
する飛沫状液滴を分離して前記渦巻状壁を経て液滴衝突
受板へ衝突させ、これらの分離液は分離タンク本体下方
の仕切板の切欠部から分離タンク本体下部に流下させて
排出し、また、前記気流は方向転換させて分離タンク本
体内の広い空洞都下部に流出させ、該空洞都内を上昇さ
せて気液分離のうえ分離タンク本体の上部位にある気体
流出管より排気させることにより気液を分離するもので
あり、また、この発明の方法を実施するのに適した分離
器の要旨は、平面上の渦巻曲線をこの平面に直角方向に
移動して形成される2個の渦巻形状体を分離タンク本体
内に片寄せて設置し、これらの渦巻形状体の渦巻方向は
互に反対方向をなすように形成するとともに、それぞれ
の入口部の壁面を相互に背中合せに粗合せて渦巻部がそ
れぞれの両側に相対する構造とし、前記入口部を分離タ
ンク本体の周壁上方に臨ませた気体流入管に蓮設し、ま
た、分離タンク本体内の前記渦巻形状体の下部に分離液
を導く液滴衝突受板を酉己設し、かつ、分離液と気体を
隔離する仕切板を分離タンク本体下方に設けるとともに
前記仕切板に分離液を流下させる切欠部を形成し、この
分離液を排出するための排出管を分離タンク本体下端に
蓮設し、さらに、分離タンク本体の気体流入管の反対側
位置に気体流出管を取付け、この気体流出管と前記渦巻
形状体との間における分離タンク本体内の空洞部に複数
個のバツフルボードを設けてなるものである。
The gist of the method of the present invention is to send gas containing droplets into the spiral flow path from the inlet of the spiral flow path formed at the upper part of the spiral shaped body installed in the separation tank main body. When the gas moves through this spiral flow path, the centrifugal action collects droplets on the curved inner surface of the wall of the spiral shape, separating the gas and liquid. The cross-sectional area of the flow channel is gradually reduced as it advances, promoting the aggregation of droplets in the airflow, and the radius of curvature is reduced by 4 mm to make it more susceptible to separation by centrifugal force. The separated liquid centrifuged from the spiral flow path is collected after flowing down along the inner surface of the outer wall of the spiral flow path, and is guided to the droplet collision plate and collided with the droplet collision receiving plate. The droplets are caused to collide with a shaped wall, thereby separating the droplets remaining in the airflow, passing through the spiral wall and colliding with a droplet collision receiving plate. The airflow is discharged by flowing down from the lower part of the separation tank main body, and the direction of the air flow is changed to flow out into the lower part of a wide cavity inside the separation tank main body, and the hollow space is raised to perform gas-liquid separation and discharge into the separation tank main body. Gas and liquid are separated by exhausting the gas from the gas outflow pipe located in the upper part, and the gist of the separator suitable for carrying out the method of this invention is to convert a spiral curve on a plane into this plane. Two spiral bodies that are formed by moving in a right angle direction are installed side by side inside the separation tank body, and the spiral directions of these spiral bodies are formed in opposite directions. The wall surfaces of the inlet portions are roughly aligned back to back to each other so that the spiral portions face each other on both sides, and the inlet portion is connected to a gas inflow pipe facing above the peripheral wall of the separation tank main body. A droplet collision receiving plate for guiding the separated liquid is provided at the bottom of the spiral shaped body in the main body, and a partition plate for separating the separated liquid and gas is provided below the separation tank main body, and the separated liquid is placed on the partition plate. A notch is formed to allow the separated liquid to flow down, and a discharge pipe for discharging this separated liquid is installed at the bottom end of the separation tank body.Furthermore, a gas outflow pipe is attached to the opposite side of the gas inflow pipe in the separation tank body. A plurality of buffful boards are provided in a cavity inside the separation tank main body between the gas outflow pipe and the spiral shaped body.

以下この発明による実施例の構成を図によって詳細に説
明する。第5図、第6図において、1は円筒状の分離タ
ンク本体で、該分離タンク本体1はその円筒部の軸心を
垂直として設置され、上部には上部旨板2が取付けてあ
るとともに下部には液体が自然流下可能な勾配を有する
下部官板3が取付けてあり、下部富板3の下端には分離
液を排出するための排出管4が蓮設してあり、また、分
離タンク本体1の周壁の上方には後記する気体流入管7
,7aに適合する寸法の閉口部5,5aが形成してある
。6,6aは渦巻形状体で、それぞれは平面上の渦巻曲
線をこの平面に直角方向に移動して形成される渦巻形状
よりなり、それぞれの渦巻方向は左勝手と右勝手のよう
に互に反対方向をなして形成し、各渦巻形状体6,6a
の上部に形成される入口部20,20aの壁に関し、そ
れぞれの渦巻部が両側に相対するように入口部20,2
0aの壁面を相互に背中合せに組合せ、分離タンク本体
1の気体流入管7,7a側の内側壁に片寄せて位置させ
て、渦巻形状体6,6aの渦中心文を通る渦軸心を分離
タンク本体1の軸心と平行にして取付部材等により固定
して設けるとともに、それぞれの入口部20,20aは
前記各開□部5,5aを貫通して分離タンク本体1内に
臨ませた気体流入管7,7aの一端に蓮設されて気体流
入管7,7aからそれぞれ気体が送入可能とされている
Hereinafter, the configuration of an embodiment according to the present invention will be explained in detail with reference to the drawings. 5 and 6, reference numeral 1 denotes a cylindrical separation tank body. The separation tank body 1 is installed with the axis of its cylindrical portion perpendicular, and an upper plate 2 is attached to the upper part, and an upper part plate 2 is attached to the lower part. A lower plate 3 is attached to the lower plate 3 having a slope that allows the liquid to flow down by gravity, and a discharge pipe 4 for discharging the separated liquid is installed at the lower end of the lower plate 3. Above the peripheral wall of No. 1 is a gas inflow pipe 7 to be described later.
, 7a are formed. 6 and 6a are spiral shaped bodies, each of which is formed by moving a spiral curve on a plane in a direction perpendicular to this plane, and the spiral directions of each are opposite to each other such as left-handed and right-handed. Each spiral shaped body 6, 6a is formed in a direction.
Regarding the walls of the inlet parts 20, 20a formed in the upper part of the inlet parts 20, 20a, the inlet parts 20, 2
The walls of 0a are combined back to back and positioned one-sidedly against the inner wall of the separation tank body 1 on the side of the gas inflow pipes 7, 7a to separate the vortex axis passing through the vortex centers of the spiral bodies 6, 6a. The gas inlet portions 20 and 20a are provided parallel to the axis of the tank body 1 and fixed by a mounting member, etc., and each inlet portion 20, 20a passes through each of the openings 5, 5a and faces into the separation tank body 1. The inflow pipes 7 and 7a are provided at one end so that gas can be introduced from the gas inflow pipes 7 and 7a, respectively.

8,8aは渦巻形状体6,6aの渦中心部下側にそれぞ
れ傾斜して配設される液滴衝突受板で、それぞれの先端
側は分離タンク本体1内を後記の分離液室11と空洞部
14とに区画して分離液と気体とを隔離するように、下
方に水平状に設けられた仕切板9に形成される切欠部1
0,10aに蓮適するように臨ませてあって、液瓶衝突
受板8,8aからその傾斜により分離液を仕切板9下側
の分離液室11に流出可能な構成とし、また、仕切板9
の中心に関して前記切欠部10,10aの反対側にドレ
ーン孔を兼ねる通気孔12を形成し、さらに、分離タン
ク本体1の軸心に関して前記気体流入管7,7aの反対
側位置でこの分離タンク本体1の周壁外面の上方に気体
流出管13を取付け、該取付部における壁面を開口して
、気体流出管13と分離タンク本体1内における渦巻形
状体6,6a等を除いた仕切板9上の広い空間より形成
される空洞部14とを蓬通させ、このような空洞部14
の液滴衝突受板8,8a付近から気体流出管13の流入
開□端に至る間には、気流の短絡を防止する垂直バッフ
ルボード15,15a、第1バッフルボード16および
第2バッフルボード17がそれぞれ配設してある。次に
、前記渦巻形状体6,6a、液滴衝突受板8,8aおよ
び各バッフルボード15等についてさらに詳述する。2
1,21aはそれぞれ渦巻形状体6,6aを形成する渦
巻状壁で、この渦巻状壁21,21aのそれぞれにおい
て相対する渦巻状壁面間を板状部材からなる下底板23
,23aでそれぞれ接続して気流の通る渦巻状流路22
,22aの下底部を形成し、前記下底板23,23aは
前記渦巻状空間を先進方向に所要の下り勾配の渦巻状を
なして延設し、渦巻状壁21,21aにおける前記の相
対する渦巻状壁面間をそれぞれ接続して渦中心部へ向か
い、所要数の旋回後、渦巻形状体6,6aへの気体の流
入向きと反対向きになった位置で、下底板23,23a
の前記延設を停止してそれぞれ終端部24,24aを形
成する。
Reference numerals 8 and 8a denote droplet collision receiving plates which are inclinedly disposed below the vortex centers of the spiral bodies 6 and 6a, and the tip sides of each are arranged to connect the inside of the separation tank body 1 to a separated liquid chamber 11 and a cavity described below. A notch 1 formed in the partition plate 9 horizontally provided below so as to separate the separated liquid and the gas into two parts 14 and 14.
0 and 10a, and is configured so that separated liquid can flow out from the liquid bottle collision receiving plates 8 and 8a into the separated liquid chamber 11 below the partition plate 9 by the slope thereof, and the partition plate 9
A vent hole 12 that also serves as a drain hole is formed on the opposite side of the notch 10, 10a with respect to the center of the separation tank body 1, and a vent hole 12 that also serves as a drain hole is formed on the opposite side of the gas inflow pipes 7, 7a with respect to the axis of the separation tank body 1. The gas outflow pipe 13 is attached above the outer surface of the peripheral wall of the separation tank body 1, and the wall surface at the mounting part is opened, and the gas outflow pipe 13 and the parting plate 9, excluding the spiral shaped bodies 6, 6a, etc. in the separation tank body 1, are The cavity 14 formed from a wide space is communicated with the cavity 14.
Vertical baffle boards 15, 15a, a first baffle board 16, and a second baffle board 17 are installed between the vicinity of the droplet collision receiving plates 8, 8a and the inflow opening end of the gas outflow pipe 13 to prevent short circuits in the airflow. are arranged respectively. Next, the spiral shaped bodies 6, 6a, droplet collision receiving plates 8, 8a, each baffle board 15, etc. will be described in further detail. 2
Reference numerals 1 and 21a denote spiral walls forming spiral bodies 6 and 6a, respectively, and a lower bottom plate 23 made of a plate-like member is connected between the opposing spiral wall surfaces of the spiral walls 21 and 21a, respectively.
, 23a, and are connected to each other through spiral flow paths 22 through which air flows.
, 22a, and the lower bottom plates 23, 23a extend the spiral space in the forward direction in a spiral shape with a required downward slope, and the opposite spirals in the spiral walls 21, 21a After the required number of turns, the lower bottom plates 23, 23a connect the shaped wall surfaces to each other and move toward the center of the vortex.
The extension is stopped to form terminal portions 24 and 24a, respectively.

また、終端部24,24aの位置からなお渦中心部に向
かって延びる渦巻状壁21,21aは、さらに一旋回す
る位置まで延設されて渦巻形状の形成を終り、この終端
部24,24aから延設された一旋回分の渦巻状壁21
,21aはこの渦巻形状を保持して禍軸D‘こ平行に垂
下し、その下端側は前記液滴衝突受板8,8aの上部に
それぞれ臨ませてある。さらに、下底板23,23aの
それぞれの上方部位において、同様な板状部材よりなる
上底板25,25aにより渦巻状壁21,21aのそれ
ぞれにおける相対する渦巻状壁面間を接続して渦巻状流
路22,22aの上底部を形成し、それぞれの下底板2
3,23aに沿って同様な延設要領の下に延設して前記
終機部24,24aの上方部に達し、さらに、渦中心部
付近の空洞部を横断するとともに、渦巻状壁21,21
aの一旋回延設されたそれぞれの壁面に達するまで拡張
して前記壁面に接続することにより渦中心部付近の上端
部を閉塞する。前記下底板23,23aからそれぞれに
対応する上底板25,25aに至る高さは、それぞれの
渦巻状壁21,21aと前記下底板23,23aおよび
上底板25,25aとによって区画形成されるそれぞれ
の渦巻状流路22,22aがその流入気体の流量に対し
て所要の断面積を画定する大きさとし、次に、前記下底
板23,23a並びに上底板25,25aのそれぞれの
渦巻状壁2!,21aとの接続部外郭に沿って該渦巻状
壁21,21aの下底板23,23a下方部渦巻状壁と
上底板25,25aの上方部渦巻状壁とを切除すること
により、下流へ向かって断面積が漸減する先細の渦巻状
流路22,22aが完成されるが、下底板23,23a
の下方部の渦巻状壁の切除は前記終端部24,24a位
置までとし、これら終端部24,24aから先の渦巻状
壁21,21aの壁面部分は、前記したように液滴衝突
受板8,8aに向かって蚤下延設されていることはもち
ろんであり、このような下底板23,23aの下方部に
相当する渦巻状壁21,21aの切除と、該渦巻状壁2
1,21aの一部華下延設とにより、渦巻状流路22,
22aの終機を開放する気体吐出間隙部26,26aが
前記華下延設された渦巻状壁21,21aのそれぞれに
おける相対する壁面間に形成され、かつ、下庭坂23,
23aのそれぞれの終端部24,24a部位直における
流路断面部により、渦巻状流路22,22aの終端部付
近が構成される。次に、それぞれの終端部24,24a
位置における渦巻状壁21,21aの外側壁から、それ
ぞれの渦巻状流路22,22a内に向かってこの部位に
おける渦巻状壁21,21aの各曲率半径よりも小さく
、かつ、同じ湾曲方向の曲面を有して半円筒状に巻き込
んで形成した分離液収集部材27,27aをそれそれ延
設し、この分離液収集部材27,27aの半円筒下端部
には分離液導管28,28aの上端が蓮設されるととも
に、この各分離液導管28,28aの下端はそれぞれ液
滴衝突受板8,8aの上面部に臨ませて配談してある。
Further, the spiral walls 21, 21a, which extend toward the center of the vortex from the positions of the terminal ends 24, 24a, are further extended to the position where they make one turn, completing the formation of the spiral shape, and from the terminal ends 24, 24a. Extended spiral wall 21 for one turn
, 21a maintain this spiral shape and hang down parallel to the disaster axis D', and their lower ends face the upper portions of the droplet collision receiving plates 8 and 8a, respectively. Further, in the upper portion of each of the lower bottom plates 23, 23a, upper bottom plates 25, 25a made of similar plate-like members connect the opposing spiral wall surfaces of each of the spiral walls 21, 21a to form a spiral flow path. 22, 22a, and each lower bottom plate 2
3, 23a in a similar manner to reach the upper part of the terminal parts 24, 24a, and further cross the hollow part near the vortex center, and the spiral walls 21, 21
The upper end near the center of the vortex is closed by expanding until it reaches each wall surface that has been extended in one turn and connecting to the wall surface. The heights from the lower base plates 23, 23a to the corresponding upper base plates 25, 25a are defined by the respective spiral walls 21, 21a, the lower base plates 23, 23a and the upper base plates 25, 25a. The spiral passages 22, 22a are sized to define a required cross-sectional area for the flow rate of the incoming gas, and then the spiral walls 2! , 21a, the lower spiral walls of the lower bottom plates 23, 23a and the upper spiral walls of the upper bottom plates 25, 25a of the spiral walls 21, 21a are cut out along the outer edges of the connection parts with the spiral walls 21, 21a, and the upper spiral walls of the upper bottom plates 25, 25a are The tapered spiral channels 22, 22a whose cross-sectional area gradually decreases are completed, but the lower bottom plates 23, 23a
The spiral wall at the lower part of the spiral wall is removed up to the terminal end portions 24, 24a, and the wall surface portion of the spiral wall 21, 21a beyond the terminal end portions 24, 24a is removed by the droplet collision receiving plate 8, as described above. , 8a, and the spiral walls 21, 21a corresponding to the lower parts of the lower bottom plates 23, 23a are cut out, and the spiral walls 2
1 and 21a, the spiral flow path 22,
A gas discharge gap 26, 26a for opening the terminal end of 22a is formed between the opposing wall surfaces of each of the spiral walls 21, 21a extending downward, and
The vicinity of the terminal end of the spiral flow passages 22, 22a is constituted by the flow passage cross section directly at the terminal end 24, 24a of each of the spiral flow passages 22, 22a. Next, each terminal end 24, 24a
A curved surface that is smaller than each radius of curvature of the spiral walls 21, 21a at this position and in the same direction of curvature from the outer wall of the spiral walls 21, 21a at this position toward the inside of each spiral flow path 22, 22a. Separated liquid collecting members 27, 27a formed by winding the separated liquid collecting members 27, 27a into a semi-cylindrical shape are extended, and the upper ends of separated liquid conduits 28, 28a are connected to the lower ends of the semi-cylindrical cylinders of the separated liquid collecting members 27, 27a. The lower ends of the separated liquid conduits 28, 28a are arranged so as to face the upper surfaces of the droplet collision receiving plates 8, 8a, respectively.

前記液滴衝突受板8,8aには、上向き側が凹部になる
トラフ状の湾曲面からなり、この湾曲方向の両端部は、
その湾曲面の曲率半径よりも小さい曲率半径をもって湾
曲面の内側に向けて波返し状に巻き込んで、それぞれ緑
部31,31aを形成し、また、液滴衝突受板8,8a
の湾曲面によるトラフ軸方向の一端側には、湾曲面によ
るトラフ部を堰止めるとともに分離液満の飛散を防止す
るために所要の高さに形成した平板部村32,32aを
付設するが、この平板部材32,32aは、液滴衝突受
板8,8aの湾曲面を前記のように分離液室11へ分離
液を流出可能とする所要の鏡斜状態に配設したとき、平
板部材32,32aの面が鉛直をなすように前記トラフ
部横断面に対して煩斜して設け、このような平板部材3
2,32aをそれぞれ付設した液滴衝突受板8,8aは
、前記平板部材32,32aを渦巻形状体6,6aのそ
れぞれの渦中心部を通る渦軸心間において背中合せにし
、煩斜面を反対向きとして配設されている。
The droplet collision receiving plates 8, 8a have a trough-shaped curved surface with a concave portion on the upward side, and both ends in the curved direction are as follows.
The green portions 31 and 31a are formed by winding the curved surface inward with a radius of curvature smaller than the radius of curvature of the curved surface, respectively, and the droplet collision receiving plates 8 and 8a
At one end in the axial direction of the trough formed by the curved surface, a flat plate portion 32, 32a formed at a required height is attached in order to dam the trough portion formed by the curved surface and to prevent the separation liquid from scattering. When the curved surfaces of the droplet collision receiving plates 8, 8a are arranged in the required mirror oblique state that allows the separated liquid to flow out into the separated liquid chamber 11 as described above, the flat plate members 32, 32a , 32a are obliquely arranged with respect to the cross section of the trough portion so that the surfaces of the flat plate members 3 are vertical.
The droplet collision receiving plates 8, 8a to which the droplet collision receiving plates 2, 32a are attached are arranged so that the flat plate members 32, 32a are placed back to back between the vortex axes passing through the respective vortex centers of the spiral shaped bodies 6, 6a, and the turbulent surfaces are opposite to each other. It is placed in the direction.

次に、垂直バッフルボード15,15a、第1バッフル
ボード16および第2バッフルボード17の構成につい
て詳述する。
Next, the configurations of the vertical baffle boards 15, 15a, the first baffle board 16, and the second baffle board 17 will be described in detail.

垂直バッフルボード15,15aは渦巻状壁21,21
aの外周壁面に沿って、それぞれ密着するよう水平方向
に弧状をなすとともに垂直方向に所要の長さを有する形
状の板状部材からなり、このような垂直バッフルボード
15,15aはそれぞれ前記気体吐出間隙部26,26
aから吐出する気体の噴流方向に対時する位置に、渦巻
状壁21,21aの外周壁面にそれぞれ密着して配設さ
れ、また、垂直バッフルボード15,15aの前記弧状
方向の長さは、気体吐出間隙部26,26aからそれそ
れ吐出する気流の広がり城をカバー可能な長さとし、か
つ、前記弧状方向に垂直の前記長さは、垂下した下端部
が前記仕切板9との間にそれぞれの気体吐出間隙部26
,26aから吐出する気体を流通させるための所要の間
隔を保持する長さに形成する。
Vertical baffle boards 15, 15a are spiral walls 21, 21
The vertical baffle boards 15, 15a are made of plate-like members shaped like an arc in the horizontal direction so as to be in close contact with each other along the outer circumferential wall surface of a, and have a required length in the vertical direction. Gap portions 26, 26
The vertical baffle boards 15, 15a are disposed in close contact with the outer peripheral wall surfaces of the spiral walls 21, 21a, respectively, at positions corresponding to the jet direction of the gas discharged from the a, and the lengths of the vertical baffle boards 15, 15a in the arcuate direction are as follows: The length is set to cover the spread of the airflow discharged from the gas discharge gaps 26 and 26a, and the length perpendicular to the arcuate direction is such that the lower end thereof is between the partition plate 9 and the partition plate 9. gas discharge gap 26
, 26a are formed to have a length that maintains a required interval to allow the gas discharged from 26a to flow.

次に、第1バッフルボード16を前記垂直バッフルボ−
ド15,15aの両外側端間にわたる長さをパネル幅と
して、分離タンク本体1の内壁と垂直バッフルボード1
5,15a外壁との間に架設し、同様にして、第2バツ
フルボード17を前記第1バッフルボード16の上位側
に所要の間隔を置いて架設し、第1バッフルボード16
、第2バッフルボード17のそれぞれには、気流通過に
必要な断面積を有する第1バッフルボード孔41、第2
バッフルボード孔42を穿設し、これらは前記空洞部1
4内を気体流出管13の入口に向かう気流をジグザグに
偏向させる関係位置に配設してある。
Next, the first baffle board 16 is inserted into the vertical baffle board.
The inner wall of the separation tank body 1 and the vertical baffle board 1
Similarly, a second baffle board 17 is installed above the first baffle board 16 at a required interval, and the first baffle board 16
, the second baffle board 17 has a first baffle board hole 41 and a second baffle board hole 41 each having a cross-sectional area necessary for airflow passage.
Baffle board holes 42 are drilled, and these are connected to the cavity 1.
4 is disposed at a position that deflects the airflow toward the inlet of the gas outflow pipe 13 in a zigzag manner.

次に、この発明による実施例の作用を説明する。Next, the operation of the embodiment according to the present invention will be explained.

飛沫状液滴を含有する気体(以下単に気体という)は分
離タンク本体1のそれぞれの気体流入管7,了aより渦
巻形状体6,6aの入口部20,20aを経て渦巻状流
路22,22a内にそれそれ送入され、該渦巻状流路2
2,22aに沿って旋回下降する。
The gas containing droplets (hereinafter simply referred to as gas) flows from each gas inlet pipe 7, a of the separation tank body 1, through the inlets 20, 20a of the spiral bodies 6, 6a, and then into the spiral flow path 22, 22a, and the spiral flow path 2
2, 22a.

このとき気体に比べて慣性の大きし、飛沫状液滴は、遠
心力作用により渦巻状流路22,22aの外側壁を形成
する渦巻状壁21,21aの湾曲内側壁面に集合付着し
た状態で移行するが、さらに、前記液滴は重力の影響も
受けて渦巻状流路22,22aの下底板23,23aに
向かう成分も持って移行する。このように気体が渦巻状
流路22,22a内を旋回下降しながら進行するに従っ
て、渦巻状流路22,22aの渦巻状壁21,21aの
曲率半径は漸減するから、微粒のため気流中からまだ分
離されていない飛沫状液滴が受ける遠心力作用は漸減し
、また、このとき渦巻状流路22,22aの断面種も漸
減するため、気流中に分散している前記飛沫状液滴は相
互に接触して凝集する機会が増加し、この凝集によって
飛沫状液滴の粒径が大となる結果、遠心分離作用を受け
やすくなってこれらは気流中より分離し、前記同様に渦
巻状壁21,21aの湾曲内側壁面に付着集合し、前記
液滴と共に分離液となって、渦巻状流路22,22aの
前記湾曲内側壁面に続くそれぞれの下底板23,23a
の外側隅部を渦中心部へ向かって流下する。次いで、こ
のように流下してきた前記分離液は下底板23,23a
のそれぞれの終端部24,24aに達し、該終端部24
,24aにおいて分離液収集部材27,27aに収集さ
れ、続いて分離液収集部材27,27aに蓮設した分離
液導管28,28aへ誘導されて流下し、液滴衝突受板
8.8aに衝突する。また、前記分離液の除去された気
流は渦中心部付近の渦巻状流路22,22aの終端部2
4,24a付近において噴出して、前記の一旋回延設し
た渦巻状壁21,21aの内側面に衝突し、これにより
微粒のためなお気流中に残留している飛沫状液滴は分離
されて分離液となり、該分離液は前記渦巻状壁21,2
1aに沿って流下して各液滴衝突受板8,8aに衝突す
る。次いで、前記の延設された渦巻状壁21,21aの
内側面に衝突した気流は方向を逆方向に転換して気体吐
出間隙部26,26aから空洞部14へ向かう斜め下方
へ噴出し、垂直バッフルボード15,15a下端と仕切
板9との間隙を経て空洞部14の下部に達する。上記の
ように、渦巻状流路22,22aのそれぞれの渦巻状壁
21,21aへの飛沫状液滴の分離集合、および渦巻状
流路22,22aの終端部付近における延設された渦巻
状壁21,21aの内側面への気流の衝突による飛沫状
液滴の分離、ならびに後記する空洞部14内への気流の
流入によって該気流中より飛沫状液滴の分離が行われ、
一方、分離液導管28,28aを経て流下した分離液と
、延設された渦巻状壁21,21aの内側面に沿って流
下した分離液とは共に液滴衝突受板8,8a上に落下衝
突して合流分離液となり、該液滴衝突受板8,8a面上
をその凹状の湾曲面と両側の縁部31,31aおよび傾
斜により正しく案内されて流下し、仕切板9のそれぞれ
の切欠部10.10aを経て分離液室11へ流下貯留さ
れ、下部盲板3下端の排出管4から適宜外部へ排出され
る。
At this time, the droplets, which have a larger inertia than gas, collect and adhere to the curved inner wall surfaces of the spiral walls 21, 21a forming the outer walls of the spiral channels 22, 22a due to the action of centrifugal force. However, under the influence of gravity, the droplet also migrates with a component directed toward the lower bottom plates 23, 23a of the spiral channels 22, 22a. As the gas progresses through the spiral channels 22, 22a while descending, the radius of curvature of the spiral walls 21, 21a of the spiral channels 22, 22a gradually decreases. The centrifugal force exerted on the unseparated droplets gradually decreases, and at this time, the cross-sectional type of the spiral channels 22, 22a also gradually decreases, so the droplets dispersed in the air flow The chances of them coming into contact with each other and agglomerating increase, and as a result of this aggregation, the particle size of the droplets increases, making them more susceptible to centrifugal action and separating from the airflow, forming a spiral wall as described above. It adheres and collects on the curved inner wall surfaces of the spiral channels 22, 21a, becomes a separated liquid together with the liquid droplets, and continues to the respective lower bottom plates 23, 23a on the curved inner wall surfaces of the spiral channels 22, 22a.
Flows down the outer corner of the vortex toward the center of the vortex. Next, the separated liquid that has flowed down in this way is transferred to the lower bottom plates 23, 23a.
reaches each terminal end 24, 24a of the terminal end 24, 24a.
, 24a, the liquid is collected in the separated liquid collecting members 27, 27a, and then guided to the separated liquid conduits 28, 28a disposed in the separated liquid collecting members 27, 27a, flowing down, and colliding with the droplet collision receiving plate 8.8a. do. Further, the airflow from which the separated liquid has been removed is transmitted to the terminal end portion 2 of the spiral flow path 22, 22a near the center of the vortex.
4, 24a, and collides with the inner surfaces of the spiral walls 21, 21a, which have been extended in one turn, whereby the droplets that remain in the airflow due to fine particles are separated. The separated liquid becomes a separated liquid, and the separated liquid flows through the spiral walls 21, 2.
1a and collides with each droplet collision receiving plate 8, 8a. Next, the airflow that collided with the inner surfaces of the extended spiral walls 21, 21a changes its direction in the opposite direction and is ejected obliquely downward from the gas discharge gaps 26, 26a toward the cavity 14, and then vertically. It reaches the lower part of the cavity 14 through the gap between the lower ends of the baffle boards 15, 15a and the partition plate 9. As described above, the droplets are separated and collected on the respective spiral walls 21, 21a of the spiral channels 22, 22a, and the extended spirals near the terminal ends of the spiral channels 22, 22a. The droplets are separated by the collision of the airflow against the inner surfaces of the walls 21 and 21a, and the droplets are separated from the airflow by the inflow of the airflow into the cavity 14, which will be described later.
On the other hand, the separated liquid that has flown down through the separated liquid conduits 28, 28a and the separated liquid that has flowed down along the inner surfaces of the extended spiral walls 21, 21a fall onto the droplet collision receiving plates 8, 8a. The liquid collides to form a combined and separated liquid, which flows down on the droplet collision receiving plates 8, 8a while being correctly guided by the concave curved surfaces, the edges 31, 31a on both sides, and the slope, and flows down into the respective notches of the partition plate 9. It flows down and is stored in the separated liquid chamber 11 through the section 10.10a, and is appropriately discharged to the outside from the discharge pipe 4 at the lower end of the lower blind plate 3.

また、空洞部14下部に達した前記気流は、多4・でも
まだ飛沫状液滴が気流中に残留しておれば、広い空洞部
14内において第1バッフルボード16、第2バッフル
ボード17の第1バッフルボード孔41および第2バッ
フルボード孔42によりゆっくりとした減速状態で上昇
し、この間に気液沈降分離作用を受けて飛沫状液滴が最
終的に除去され、続いて気体流出管13より飛沫状液滴
を含有しない状態として排気される。なお、空洞部14
内で沈降した気流中の飛沫状液滴は、仕切板9の切欠部
10,10aならびに通気孔12から分離液室11内に
流下し、前記合流分離液と同様に貯留され、排出される
。この発明の構成および作用は以上のようであるから、
次のような効果を発揮する。
Further, the airflow that has reached the lower part of the cavity 14 may be blown up by the first baffle board 16 and the second baffle board 17 within the wide cavity 14 if there are still droplets remaining in the airflow. It rises in a slow deceleration state through the first baffle board hole 41 and the second baffle board hole 42, and during this time, the droplets are finally removed by the gas-liquid sedimentation separation action, and then the gas outflow pipe 13 The air is exhausted in a state containing no more droplets. Note that the cavity 14
The droplets in the airflow that have settled inside the chamber flow down into the separated liquid chamber 11 from the notches 10, 10a of the partition plate 9 and the vent holes 12, and are stored and discharged in the same manner as the combined separated liquid. Since the structure and operation of this invention are as described above,
It has the following effects:

〔1} 渦巻形状体によって飛沫状液滴を遠0分離する
ものであるから、サイクロン分離器の中空円錐部と同様
の遠心力加速作用をもっているが、渦巻形状体内では気
液分離は気流の旋回下降による流下と共に逐次進行し、
この間に分離液が気流内に拡散して気体流出管に流出す
る現象が起きない。
[1] Since the volute separates droplets by distance, it has the same centrifugal acceleration effect as the hollow cone of a cyclone separator, but in the volute, gas-liquid separation occurs due to the swirling of the airflow. Progressing gradually as the flow descends,
During this time, a phenomenon in which the separated liquid diffuses into the airflow and flows out into the gas outflow pipe does not occur.

■ 流入する気流を2分割にして遠心分離することを目
的として、渦巻形状体を分離タンク本体内に2個内蔵し
た構成であるから、他のサイクロン分離方式よりも分離
器の外郭寸法が小さい割に遠心分離作用の効果が大きい
■ The purpose of centrifugal separation by dividing the incoming airflow into two is to incorporate two spiral shaped bodies into the separation tank body, so the outer dimensions of the separator are smaller than other cyclone separation methods. The effect of centrifugal separation is large.

{3} 流入気体を2分割して処理するから、渦巻形状
体を小形にすることができ、従って分離タンク本体内で
の占有体積が小さくなり、分離タンク本体内の空洞部の
容積を相対的に大きく取ることができる。
{3} Since the incoming gas is divided into two parts for processing, the spiral shape body can be made smaller, and therefore the volume occupied within the separation tank body is reduced, and the volume of the cavity inside the separation tank body can be made relatively smaller. can be taken significantly.

このため液滴衝突受坂部で気液分離された液滴が気流に
乗って再混入するのを防止できる。‘4)渦巻形状体内
で遠心分離された液滴は、分離液収集部材に収集された
後、分離液導管内に誘導されて液滴衝突受板に至り、渦
中心部付近の渦巻状流路の狭い部分において渦巻状壁に
衝突しないから分離液の再飛珠化が防止でき、従って高
い気液淵酸効果が確保できる。
Therefore, the droplets separated into gas and liquid at the droplet collision receiving slope can be prevented from being mixed in again by riding on the airflow. '4) The droplets centrifuged inside the spiral body are collected in the separated liquid collecting member, and then guided into the separated liquid conduit and reach the droplet collision receiving plate, and are guided through the spiral flow path near the center of the vortex. Since the liquid does not collide with the spiral wall in the narrow part of the liquid, it is possible to prevent the separated liquid from becoming beads again, thereby ensuring a high gas-liquid oxidation effect.

【51 渦巻形状体内の渦巻状流路は流入口部から渦中
心部に向かうのに従ってその断面積が縮小するから、気
流中の飛沫状液滴の相互凝集を促進して粒径を粗大化し
、遠心分離作用を受けやすい液粒径を形成するとともに
、気流速が加速されて遠心力作用も増加し、これらによ
り飛沫状液滴の分離がよくなる。
[51] Since the cross-sectional area of the spiral flow path in the spiral body decreases as it goes from the inlet to the center of the vortex, it promotes mutual aggregation of droplets in the airflow and coarsens the particle size. In addition to forming a droplet size that is susceptible to centrifugal separation, the air velocity is accelerated and centrifugal force is also increased, which improves the separation of droplets.

‘61 遠心分離作用を行うための渦巻状流路と気体流
出管の入口部とは渦巻形状体を形成する渦巻状壁により
区画されていて、相互間に短絡流を生じない構造である
から、サィク。
'61 The spiral flow path for centrifugal separation and the inlet of the gas outflow pipe are separated by a spiral wall forming a spiral shape, and have a structure that does not cause short-circuit flow between them. Psych.

ン分離方式にみられるような旋回気流の内側領域部にあ
る微粒の飛沫状液滴が短絡流に乗り移って気体流出管に
流出する現象がない。従って、気液の分離効率が高い。
(7} 気液分離して最終的に分離液を排出する部位は
分離タンク本体の底部に近い位置にあって、斜め上方部
位にある気体流出管口から落差をもって離隔しているた
め、流出気流中に飛沫状液滴を再混入することがない。
There is no phenomenon in which fine droplets in the inner region of the swirling airflow transfer to the short-circuit flow and flow out into the gas outflow pipe, which occurs in the air separation method. Therefore, the gas-liquid separation efficiency is high.
(7) The part where gas and liquid are separated and the separated liquid is finally discharged is located near the bottom of the separation tank body, and is separated by a head from the gas outlet pipe located diagonally above, so the outflow airflow is There is no chance of re-mixing of droplets inside.

{8’分離液が除去されたのちの気流は、最初に分離タ
ンク本体内の空洞部の広い空間に導入されるため、この
部位における気流速度は大きくないから飛沫状液滴を再
び気流に乗せることがない。{9} 気流中から分離さ
れた飛沫状液滴は、分離液として仕切板下方の分離液室
内に直ちに隔離されるから、斜昇して流出する気流中へ
再混入することがない。
{8' After the separated liquid is removed, the airflow is first introduced into the wide cavity inside the separation tank body, so the airflow velocity in this area is not high, so the droplets are carried back into the airflow. Never. {9} Since the droplets separated from the airflow are immediately isolated as separated liquid in the separated liquid chamber below the partition plate, they are not remixed into the airflow that rises obliquely and flows out.

00) 分離液導管内に収集された分離液は、懐斜して
いる液滴衝突受板に衝突したのち分離液室に流下するが
、液滴衝突受板の凹部の弧状方向に向く分離液は綾部に
よって捕捉されて飛沫化と気流中への再混入が防止され
る。
00) The separated liquid collected in the separated liquid conduit collides with the oblique droplet collision receiving plate and then flows down into the separated liquid chamber. is captured by the ayabe, preventing it from becoming droplets and re-entering the airstream.

0l) 2個の液瓶衝突受板は対称的に反対向きに傾斜
面を有するように配設されているから、分離液室内に分
離液が流入するとき分離液室の鞠心を中心とする旋回運
動を起さない。
0l) Since the two liquid bottle collision receiving plates are symmetrically arranged to have sloped surfaces in opposite directions, when the separated liquid flows into the separated liquid chamber, it is centered on the center of the separated liquid chamber. Does not cause rotational movement.

このため中心部にある排出管部に渦流による空洞を生ず
るおそれがない。この発明は、前記の実施例による説明
および図例にのみ限定されるものではなく、この発明の
技術的思想から逸脱しない範囲において種々変更し、変
形して実施することが可能である。
Therefore, there is no risk of creating a cavity in the central discharge pipe section due to the eddy current. This invention is not limited only to the description and illustrations of the embodiments described above, and can be implemented with various changes and modifications without departing from the technical idea of the invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の衝突式分離器の水平断面概略図、第2図
は同じく垂直断面概略図、第3図は従来のサイクロン分
離器の平面概略図、第4図は同じく一部切欠側面概略図
、第5図はこの発明による分離器の実施例における一部
切欠平面図、第6図は同じく一部切欠側面図である。 1・・・分離タンク本体、2…上部盲板、3…下部旨板
、4…排出管、6,6a…渦巻形状体、7,7a・・・
気体流入管、8,8a・・・液滴衝突受板、9・・・仕
切板、10,10a・・・切欠部、11・・・分離液室
、12・・・通気孔、13・・・気体流出管、14…空
洞部、15,15a…垂直バッフルボード、16…第1
バッフルボード、17…第2バツフルボ−ド、20,2
0a・・・入口部、21,21a・・・渦巻状壁、22
,22a…渦巻状流路、23,23a・・・下底板、2
4,24a…終端部、25,25a・・。 上底板、267 26a・・・気体吐出間隙部、27,
27a…分離液収集部材、28,28a・・・分離液導
管。第1図 第2図 第3図 第4図 第5図 第6図
Fig. 1 is a schematic horizontal cross-sectional view of a conventional impingement separator, Fig. 2 is a schematic vertical cross-sectional view, Fig. 3 is a schematic plan view of a conventional cyclone separator, and Fig. 4 is a schematic side view with a partial cutaway. FIG. 5 is a partially cutaway plan view of an embodiment of the separator according to the present invention, and FIG. 6 is a partially cutaway side view of the separator according to the embodiment. DESCRIPTION OF SYMBOLS 1... Separation tank body, 2... Upper blind plate, 3... Lower plate, 4... Discharge pipe, 6, 6a... Spiral shaped body, 7, 7a...
Gas inflow pipe, 8, 8a... Droplet collision receiving plate, 9... Partition plate, 10, 10a... Notch, 11... Separated liquid chamber, 12... Ventilation hole, 13...・Gas outflow pipe, 14...Cavity part, 15, 15a...Vertical baffle board, 16...First
Baffle board, 17...Second baffle board, 20,2
0a... Inlet part, 21, 21a... Spiral wall, 22
, 22a... spiral flow path, 23, 23a... lower bottom plate, 2
4, 24a...Terminal part, 25, 25a... Upper bottom plate, 267 26a... gas discharge gap, 27,
27a...Separated liquid collecting member, 28, 28a... Separated liquid conduit. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1 飛沫状液滴を含有する気流を分離タンク本体内に形
成されて下り勾配を有する先細の渦巻状流路へ送入して
旋回下降させながら飛沫状液滴を相互に凝集させるとと
もに遠心力により気流中より分離し、この分離液を前記
渦巻状流路に沿つて流下させたのち収集して液滴衝突受
板へ衝突させ、また、前記分離液の除去された気流を渦
巻状流路の終端部付近において渦巻状壁に衝突させて気
流中になお残留する飛沫状液滴を分離し、この分離液を
渦巻状壁に沿つて流下させたのち前記液滴衝突受板に衝
突させることにより前記分離液と合流させ、この合流分
離液を液滴衝突板を経て分離タンク本体底部へ流下させ
て外部へ排出するとともに、渦巻状壁に衝突させた前記
気流を分離タンク本体内の広い空洞部へ流入させたのち
上方より排気して気流中の飛沫状液滴を分離除去する方
法。 2 軸心を垂直として設置した分離タンク本体1の上部
に上部盲板2を取付けるとともに下部に分離液の排出管
4を連設した下部盲板3を取付け、この分離タンク本体
1内の上方に気体流入管7,7aの一端を臨ませ、また
、分離タンク本体1内の下方に内部を分離液室11と空
洞部14とに区画する仕切板9を水平状に設け、さらに
分離タンク本体1の気体流入管7,7aの反対側上方に
空洞部14と連通する気体流出管13を取付け、この分
離タンク本体1内の気体流入管7,7a側に2個の渦巻
形状体6,6aをそれぞれの渦軸心が分離タンク本体1
の軸心と平行になるように設け、前記宇巻状体6,6a
はそれぞれの渦巻方向が互に反対方向をなすとともに、
それぞれの入口部20,20aの壁に関してそれぞれの
渦巻部が両側に相対するように入口部20,20aの壁
面を相互に背中合せに組合せて気体流入管7,7aにそ
れぞれ連設し、この渦巻形状体6,6aを形成する渦巻
状壁21,21aの相対する間を下底板23,23aで
接続し、前記下底板23,23aは下方へ向かう先進方
向に所要の下り勾配の渦巻状をなして延設され、所要数
の旋回後に渦巻形状体6,6aへの気体の流入向きと反
対向きの位置で終端部24,24aを形成し、また、下
底板23,23aの上方に沿つてそれぞれの渦巻状壁2
1,21aの相対する間を上底板25,25aによつて
所要の断面積の渦巻状流路22,22aを形成するよう
な高さで接続し、さらに前記下底板23,23aの下方
部のそれぞれの渦巻状壁21,21aを前記終端部24
,24a位置まで切除することによりなお一旋回延設さ
れる渦巻状壁21,21aのそれぞれにおいて相対する
壁面の間に気体吐出間隙部26,26aをそれぞれ形成
するとともに、前記の垂下延設された渦巻状壁21,2
1aの下端側を分離タンク本体1に傾斜面をそれぞれ反
対向きとして配設される液滴衝突受板8,8aの上部に
臨ませ、また、終端部24,24a位置における渦巻状
壁21,21aの外側壁からそれぞれ半円筒状の分離液
収集部材27,27aを渦巻状流路22,22a内に延
設し、それぞれの分離液収集部材27,27aの下端部
に分離液導管28,28aを連設するとともに、これら
分離液導管28,28aの下端を液滴衝突受板8,8a
の上部にそれぞれ臨ませ、前記仕切板9に各液滴衝突受
板8,8aの先端側と前記分離液室11とを連通する切
欠部10,10aならびにドレーン孔を兼ねる通気孔1
2を形成し、また、前記気体吐出間隙部26,26aよ
り吐出される気体の噴流方向に対峙する位置に垂直バツ
フルボード15,15aを配設するとともに、液滴衝突
受板8,8aと気体流出管13との間の空洞部14に第
1バツフルボード16、第2バツフルボード17を架設
してなる気流中の飛沫状液滴を分離除去する分離器。
[Scope of Claims] 1. Airflow containing droplets is sent into a tapered spiral flow path formed in the separation tank body and has a downward slope, and while swirling and descending, the droplets are exchanged with each other. The separated liquid is aggregated and separated from the air stream by centrifugal force, and the separated liquid is allowed to flow down along the spiral flow path, and then collected and collided with the droplet collision receiving plate, and the air stream from which the separated liquid has been removed is collides with the spiral wall near the end of the spiral flow path to separate droplets still remaining in the airflow, and the separated liquid is allowed to flow down along the spiral wall before passing through the droplet collision receiver. By colliding with the plate, the liquid is merged with the separated liquid, and the combined liquid is caused to flow down through the droplet collision plate to the bottom of the separation tank body and discharged to the outside. A method of separating and removing droplets in the airflow by letting it flow into a wide cavity inside the main body and then exhausting it from above. 2. Attach an upper blind plate 2 to the upper part of the separation tank body 1, which is installed with its axis vertically, and also attach a lower blind plate 3 with a separated liquid discharge pipe 4 connected to the lower part. One end of the gas inflow pipes 7, 7a is exposed, and a partition plate 9 is provided horizontally below the separation tank main body 1 to partition the interior into a separated liquid chamber 11 and a cavity 14. A gas outflow pipe 13 communicating with the cavity 14 is installed above the opposite side of the gas inflow pipes 7, 7a, and two spiral shaped bodies 6, 6a are installed on the side of the gas inflow pipes 7, 7a in the separation tank body 1. Each vortex axis center is the separation tank body 1
The spiral-shaped bodies 6, 6a are provided so as to be parallel to the axis of the
The spiral directions are opposite to each other, and
The wall surfaces of the inlet portions 20, 20a are connected back to back to each other so that the respective spiral portions face each other on both sides with respect to the walls of the respective inlet portions 20, 20a, and are connected to the gas inflow pipes 7, 7a, respectively, and this spiral shape is formed. The opposing spiral walls 21, 21a forming the bodies 6, 6a are connected by lower bottom plates 23, 23a, and the lower bottom plates 23, 23a form a spiral shape with a required downward slope in the downward forward direction. After the required number of turns, the end portions 24, 24a are formed at positions opposite to the direction of gas inflow into the spiral shaped bodies 6, 6a, and each spiral wall 2
1 and 21a are connected to each other by upper bottom plates 25 and 25a at a height that forms spiral channels 22 and 22a with a required cross-sectional area, and furthermore, the lower parts of the lower bottom plates 23 and 23a are Each spiral wall 21, 21a is connected to the terminal end 24.
, 24a, gas discharge gaps 26, 26a are respectively formed between the opposing wall surfaces of the spiral walls 21, 21a which are extended by one turn, and the above-mentioned drooping extensions are formed. Spiral wall 21, 2
The lower end side of 1a faces the upper part of the droplet collision receiving plates 8, 8a which are arranged in the separation tank main body 1 with their inclined surfaces facing oppositely, and the spiral walls 21, 21a at the end portions 24, 24a position. Separate liquid collecting members 27, 27a each having a semi-cylindrical shape extend into the spiral flow paths 22, 22a from the outer wall of the outer wall thereof, and separating liquid conduits 28, 28a are connected to the lower ends of the respective separated liquid collecting members 27, 27a. In addition, the lower ends of these separated liquid conduits 28, 28a are connected to droplet collision receiving plates 8, 8a.
Notches 10, 10a are provided in the partition plate 9 to communicate the distal end sides of the droplet collision receiving plates 8, 8a with the separated liquid chamber 11, and a vent hole 1 also serves as a drain hole.
In addition, vertical bump-full boards 15, 15a are arranged at positions facing each other in the jet direction of the gas discharged from the gas discharge gaps 26, 26a, and the droplet collision receiving plates 8, 8a and the gas outflow A separator for separating and removing droplets in airflow, which is constructed by installing a first buttful board 16 and a second btsful board 17 in a cavity 14 between a pipe 13 and a pipe 13.
JP13014382A 1982-07-26 1982-07-26 Method and separator for separating and removing droplets in airflow Expired JPS6095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13014382A JPS6095B2 (en) 1982-07-26 1982-07-26 Method and separator for separating and removing droplets in airflow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13014382A JPS6095B2 (en) 1982-07-26 1982-07-26 Method and separator for separating and removing droplets in airflow

Publications (2)

Publication Number Publication Date
JPS5919515A JPS5919515A (en) 1984-02-01
JPS6095B2 true JPS6095B2 (en) 1985-01-05

Family

ID=15026994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13014382A Expired JPS6095B2 (en) 1982-07-26 1982-07-26 Method and separator for separating and removing droplets in airflow

Country Status (1)

Country Link
JP (1) JPS6095B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0512118B2 (en) * 1985-04-05 1993-02-17 Mitsubishi Electric Corp
CN106807103A (en) * 2016-12-27 2017-06-09 青岛卓森纳生物工程有限公司 A kind of MVR vapour liquid separators

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04309997A (en) * 1991-04-08 1992-11-02 Sharp Corp Analog color signal output device
JP6179774B2 (en) * 2014-02-28 2017-08-16 三菱重工業株式会社 Demister unit and EGR system including the same
JP6150835B2 (en) * 2015-03-31 2017-06-21 三菱重工業株式会社 Demister unit and EGR system
JP6150915B1 (en) * 2016-02-10 2017-06-21 三菱重工業株式会社 Demister unit and EGR system
JP6171194B1 (en) * 2016-02-10 2017-08-02 三菱重工業株式会社 Demister unit and EGR system
JP6412977B2 (en) * 2017-03-31 2018-10-24 三菱重工業株式会社 Demister unit and EGR system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0512118B2 (en) * 1985-04-05 1993-02-17 Mitsubishi Electric Corp
CN106807103A (en) * 2016-12-27 2017-06-09 青岛卓森纳生物工程有限公司 A kind of MVR vapour liquid separators
CN106807103B (en) * 2016-12-27 2019-05-17 青岛卓森纳生物工程有限公司 A kind of MVR vapour liquid separator

Also Published As

Publication number Publication date
JPS5919515A (en) 1984-02-01

Similar Documents

Publication Publication Date Title
JP2830618B2 (en) Centrifugal oil separator
EP1458490B1 (en) Cyclone separator, liquid collecting box and pressure vessel
US3989485A (en) Process and apparatus for scrubbing exhaust gas from cyclone collectors
US20050011170A1 (en) Vertically arranged separator for separating liquid from a gas flow
US4756729A (en) Apparatus for separating dust from gases
JP2009530096A (en) Particle separator
US4755194A (en) Method for introducing a mixture of gas and liquid into a separator vessel
JP2011526539A (en) Cyclone separator with two gas outlets and separation method
EP0105273A1 (en) Improvements in or relating to cyclone separators.
EP0468426A2 (en) Classifier for powdery material
JPS6095B2 (en) Method and separator for separating and removing droplets in airflow
CN209997390U (en) dust removing device
US3707068A (en) Multistage liquid and gas separator
JPH11290724A (en) Cyclone separation device and strainer for the same
JP2000254551A (en) Multi-centrifugal separator for floating powder dust control
JPS62213819A (en) Mist removal device
JP2595193B2 (en) Mist removal device
RU2346727C1 (en) Gas separator of vortex type
JPH08299728A (en) Cyclone dust collector
JPH10235123A (en) Pre-dust separator
JPS62129165A (en) Cyclone separator with powder collector
US4247308A (en) Preformed-spray scrubber
CN102872668B (en) Agglomerate cyclone separator
CN219150438U (en) Cyclone separator
RU2006291C1 (en) Cyclone