JPS5919515A - Method for separating and removing splash liquid droplet in gas stream and separator - Google Patents

Method for separating and removing splash liquid droplet in gas stream and separator

Info

Publication number
JPS5919515A
JPS5919515A JP13014382A JP13014382A JPS5919515A JP S5919515 A JPS5919515 A JP S5919515A JP 13014382 A JP13014382 A JP 13014382A JP 13014382 A JP13014382 A JP 13014382A JP S5919515 A JPS5919515 A JP S5919515A
Authority
JP
Japan
Prior art keywords
spiral
gas
liquid
droplets
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13014382A
Other languages
Japanese (ja)
Other versions
JPS6095B2 (en
Inventor
Kumasaku Yoshie
吉江 久楽作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Takaoka Co Ltd
Original Assignee
Takaoka Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takaoka Industrial Co Ltd filed Critical Takaoka Industrial Co Ltd
Priority to JP13014382A priority Critical patent/JPS6095B2/en
Publication of JPS5919515A publication Critical patent/JPS5919515A/en
Publication of JPS6095B2 publication Critical patent/JPS6095B2/en
Expired legal-status Critical Current

Links

Abstract

PURPOSE:To separate splash liquid droplets in good efficiency in a state hardly receiving the influence of the inflow speed of a gas and a particle size, by a method wherein a gas containing splash like liquid droplets is sent into a vortex shaped flowline and liquid droplets are separated by centrifugal separating action and a liquid droplet impinging and receiving plate. CONSTITUTION:A gas is sent into a vortex shaped flowline 22 from each gas inflow pipe 7 through the inlet part 20 of a vortex forming body 6 to be fallen in a revolved state. At this time, splash like liquid droplets are gathered and adhered to the curved inside wall surface of a vortex shaped surface by the action of centrifugal force and directed to a lower bottom plate 23 by gravity. The radius of curvature and the cross sectional area of the vortex shaped wall are gradually reduced and converged and liquid droplets are made susceptible to separation due to strong centrifugal force. The flowed-down separated liquid is collected by a separated liquid collecting member 27 and impinged to a liquid droplet impinging and receiving plate 8. The gas stream is impinged to the inside surface of the vortex shaped wall 21 to separate residual liquid droplets and further injected toward a hollow barrel part 14 from a gas emitting gap part 26.

Description

【発明の詳細な説明】 この発明は、飛沫状液滴を含む管Il【6内気流中から
、遠心分離作用、凝集作用および衝突作用を利用して飛
沫状液滴を分離除去する方法と分離器とに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method and method for separating and removing droplets from an airflow in a tube Il [6] containing droplets by using centrifugation, aggregation, and collision. Concerning vessels.

この神の気液の分離方法および分離器は、化学」−業を
はじめとして多くの産業分野において個用されている。
This divine gas-liquid separation method and separator are used in many industrial fields including the chemical industry.

ミストζ”)の微小粒径の液滴(以下飛沫状液滴という
)やドレーンなとを含む気体が管路内を流れるとき、飛
沫状液滴は相互に凝集するとドレーンとなって管路の低
い部位に集合し、気流に随伴して流下する。このとき気
体の流速か大きいと(おおむねl、 m / Se C
以」、)、流路の低い部位に集合して流下する前記のド
レーンは、管内気体の流速のために再び飛沫化されて気
流°と共い二流下し、このような管路内気流と共にある
飛沫状液滴は気体内において重力による沈降作用を有効
に受けにくいため、気液分離が行われにくいので、飛沫
状液滴の効果的な除去排出か困輔である従来から行われ
ている気流中の散体の分離手段は色々あるか、それらに
おける気液分離作用は次のように大別される基本的原理
に基づいており、これを単独又は腹合して適用している
ものが多い。すなわち (1)重力沈降による気液分離。
When gas containing microscopic droplets (hereinafter referred to as droplets) of mist (hereinafter referred to as droplets) and drain flows through a pipe, the droplets aggregate with each other and become drain, which can cause the flow of water in the pipe. They gather in low areas and flow down with the airflow.At this time, if the gas flow velocity is high (approximately l, m/Se C
The above-mentioned drain, which collects at the lower part of the flow path and flows down, is again turned into droplets due to the flow rate of the gas in the pipe, and flows down with the airflow. Some droplets are difficult to undergo sedimentation due to gravity in a gas, making it difficult to perform gas-liquid separation, making it difficult to effectively remove and discharge the droplets. There are various means for separating particles in an air stream, and their gas-liquid separation effects are based on the following basic principles, which are applied either singly or in combination. many. Namely, (1) gas-liquid separation by gravity sedimentation.

(2)衝突による凝集液滴化と気液分離。(2) Collision into droplets and gas-liquid separation.

(3)遠心力分離と凝集をともなう液滴化による気に受
分離。
(3) Air separation by centrifugal force separation and droplet formation accompanied by agglomeration.

(4)種J突板(ルーバー)なと気流の急激4c方向変
換による気液分離。
(4) Gas-liquid separation due to sudden 4C direction change of airflow using type J louvers.

などである。etc.

」−記の作用原理に基づいて従来から行われている気液
分離器においては、構造か簡便で、機器内圧力損失が少
ない等の特長を有するものがあるが、これはまた、他面
において分離機器か大型化する傾向にあるとか、飛沫状
液滴のよりな(i&小粒径の液滴にk]シては分離能力
が低いとか、および前記のような分離機器の大型化を回
避して小型化すると、気体の流速が増大した時に分離能
力の劣化を来ずなど、何らかの問題が残されている。
Some conventional gas-liquid separators based on the principle of operation described above have features such as a simple structure and low pressure loss within the device. There is a tendency for separation equipment to become larger, separation capacity is lower due to droplet droplets (i & k for small droplets), and avoidance of larger separation equipment as described above. However, when miniaturization is achieved, some problems remain, such as the separation ability not deteriorating when the gas flow rate increases.

機 従って、既存の気液分離器の選択に当っては、△ 上記のような理由からある種の機能−1−の問題は黙視
せさ°るを得ない実状にある。
Therefore, when selecting an existing gas-liquid separator, for the reasons mentioned above, certain function-1 problems cannot be ignored.

さらに、具体的な実例によって考察ずれげ、例えば、液
滴を含む気体を衝突させて気体中の数滴の脱果を促した
うえ、気流を急激に方向変換させて気液を分離し、液滴
陀除去する南突式分F→]f器があり、これは第7図、
第2図に7Yくずように、絣型の分離タンクbのI一部
の左右対称位1:6に、それぞれ気体の流入管a1流出
官Cを設け、この流入管f1、流出管Cの間を遮るよう
に、下MRaに側部0をイーjするバッフルプレートd
を分離タンク1)の14部力・ら吊下し、前記側部0と
の間にHr要の間隔をおいてドレーン管gに通じる切欠
き部りを設けた仕切板fを取付けて構成し、流入自・8
λから送り込まれだ液滴を含む気体をパンフルプレート
dに袖丈させるときの衝突力と、仕切板f′で方向変換
させるときの慣性力とにより気液を分離し、気体は気体
流出管Cから送り出し、分離タンクbの内側壁やパンフ
ルプレートdに何着しだ液滴は、切欠き部すからドレー
ン管gを経て分離タンクb外部に排出するようにしたも
のであるか、これは構造が簡便であるため圧力損失か少
ないという利点を有する反面、他の方式に比べて気液外
部のために比較的大きい空間を必要とし、設H1容hf
に幻するL限側何近の実流入速度においては、分A1[
タンクl)内の液滴の一部か気流によって再び飛沫化し
、気流と共に気体θ;を出情:Cから流出すると刀)、
また、気体中のミストなとの飛沫状液滴は、この方式で
は十分な凝集液滴化が行われないまま気jr1cと共に
流動する等、気液分離除去上の問題点を持っている。
In addition, the discussion is different based on specific examples. There is a Nanto type F→]f device that removes droplets, which is shown in Figure 7.
As shown in Figure 2, an inflow pipe a1 and an outflow port C are provided at 1:6 symmetrical positions in a part of I part of the Kasuri-shaped separation tank b, and between this inflow pipe f1 and outflow pipe C, A baffle plate d that connects the side 0 to the lower MRa so as to block the
is suspended from 14 parts of the separation tank 1), and a partition plate f with a notch communicating with the drain pipe g is attached between it and the side part 0 at a distance of about 1 hour. , inflow origin・8
The gas and liquid are separated by the collision force when the gas containing droplets sent from λ is forced into the panful plate d and the inertial force when the direction is changed by the partition plate f', and the gas is transferred to the gas outflow pipe C. How many droplets are sent out from the separation tank b and land on the inner wall of the separation tank b or the panful plate d? Although it has the advantage of having a simple structure and low pressure loss, it requires a relatively large space for the outside of the gas and liquid compared to other methods, and the installation H1 volume hf
At the actual inflow velocity near the L limit side that appears to be, the minute A1 [
Some of the droplets in the tank l) are turned into droplets again by the airflow, and together with the airflow, gas θ;
Further, in this method, droplets such as mist in the gas flow together with the gas without being sufficiently aggregated into droplets, which poses problems in terms of gas-liquid separation and removal.

また、遠心分離法を利用するサイクロン分離’tKは種
々の形状のものが実用されており、例えば、第3図、第
7図に示す形状のものにおいて、円ri’ij状の胴体
部1)の下部側に不同きの中空円師部0を一体状に形成
し、その下端部に分離液抽出口■ヨを設けるとともに胴
体’ft1l t3の−[−!/:jaには底板を形成
し、その中央部に排気筒1つがその下部側を胴体部I(
内に突出するように固定保持させてあり・また・胴体部
13の上部側の外周壁に沿って胴体部13り[開運を囲
むように気体流入管Aが配役され、この気体流入管Aは
胴体部B内に気流を旋回流人させるように胴体部13に
連接された(1′4成とされ、気体4人管Aから数滴を
含む気体が胴体部F3内に吹き込まれると、これによる
気流は胴体部B内E k’+で示す下降旋回流となって
旋回しなから下降し、中空円卸8部Cの下端イツ近に達
して反転し、1(゛で示ずI−昇旋回流となって旋回ト
昇し、排気筒1つを通って排気され、他方、気流の旋回
、反転等により分離された液滴は中空円錐部C下部の分
離液排出01゜から排出される。このサイクロン分離器
の分離能力を評価するのに1=o%捕捉平均粒径」とい
う概念があるように、サイクロン分離器Gこよる液層の
捕捉能力は、一つQこけ、気体中の液滴粒径に依存する
ものである。この場合、サイクロン分離器の胴体部内で
遠心分離作用を充分に受けられない程度の微小粒径の飛
沫状液滴は、分mfff除去されないまま気体と共にサ
イクロン分km kwを逓過して排出される。
In addition, various shapes of cyclone separation 'tK using centrifugal separation have been put into practical use.For example, in the shapes shown in Figs. 3 and 7, the body part 1) has a circular shape. An uneven hollow circular phloem 0 is integrally formed on the lower side of the body, and a separated liquid extraction port ■Yo is provided at the lower end of the body. A bottom plate is formed on /:ja, and one exhaust pipe is located in the center of the bottom plate, and the lower side is connected to the body part I (
A gas inflow pipe A is arranged so as to surround the body part 13 along the outer peripheral wall on the upper side of the body part 13, and this gas inflow pipe A is It is connected to the body part 13 so as to circulate the airflow in the body part B (1'4 configuration), and when a few drops of gas are blown into the body part F3 from the gas tube A, this The airflow inside the body part B turns into a downward swirling flow shown by Ek'+, and descends without turning, reaches near the lower end of the hollow circular shell 8 part C, and reverses. It becomes an ascending swirling flow, swirls upward, and is exhausted through one exhaust pipe.On the other hand, the droplets separated due to the swirling, reversal, etc. of the airflow are discharged from the separated liquid discharge 01° at the bottom of the hollow conical part C. In order to evaluate the separation ability of this cyclone separator, there is a concept of 1=o% captured average particle size. In this case, droplets that are so small that they cannot be sufficiently centrifuged in the body of the cyclone separator are left unremoved by the minute mfff along with the gas. It is discharged after passing through the cyclone km/kw.

しかし、サイクロン分離器内で分離されないで流出する
飛沫状液滴量は、サイクロン分離器内に流入する前記飛
沫状液滴を含む気体の流入速度にも依存し、気体の流入
速度か設i1速度を超えると、飛沫状液滴か排気@Dを
経てサイクロン分離器外に流出する割合か増加するか、
これは第7図に示すように、排気筒りの入口付近におけ
る排気筒りの入口に向かう上昇旋回流Fか大きくなり、
このとき胴体部B内の遠心分離作用を充分に受けていな
い微小粒径の飛沫状液滴か短絡流5″)として前記」−
昇旋回流ト“に乗るためである。
However, the amount of droplets flowing out without being separated in the cyclone separator also depends on the inflow rate of the gas containing the droplets flowing into the cyclone separator, and the rate of gas inflow or the set speed is If it exceeds , the proportion of droplets flowing out of the cyclone separator through the exhaust gas @D will increase.
As shown in Fig. 7, this means that the upward swirling flow F toward the entrance of the exhaust pipe near the entrance of the exhaust pipe becomes larger.
At this time, droplets of minute size that have not been sufficiently subjected to centrifugal separation within the body part B or short-circuit flow 5'' are generated as described above.
This is to ride the ascending flow.

また、サイクロン分離器への気体の流入速度か設計速量
より小さくなっても飛沫状液層か排気筒l〕へ流出する
量は増大するか、これは主としてXr心力による分離効
果か劣ってくるためであるとされ、これらのことから管
路内の気流速度の変化か大きいものへのサイクロン式の
気液分離器の適用は不同きであることがわかる。
Also, even if the inflow velocity of gas into the cyclone separator becomes lower than the designed velocity, the amount flowing out into the droplet liquid layer or the exhaust stack will increase, or will this be due to the separation effect mainly due to Xr centrifugal force? From these facts, it can be seen that the application of the cyclone type gas-liquid separator to cases where the air flow velocity within the pipe is subject to large changes is inconsistent.

サイクロン分離器の機能を左右する作動理論に関する調
査、研究が従来から多岐にわたって行われており、その
結果、理論の解明と適用方法か明らかにされており、に
記のようなサイクロン分離器の機能に関する見解も、こ
れら作動理論の研究成果から4力・れている。以」二を
要するに、サイクロン分離器への気体の流入速度か設H
J値に対して低ずぎても、また、高すぎても捕捉率が劣
化し、また、飛沫状液滴のような微小粒径のものは概し
A wide variety of investigations and research have been conducted on the operating theory that affects the function of cyclone separators, and as a result, the theory and its application methods have been clarified. The opinions regarding this are also based on the research results of these theories of operation. In short, the speed of gas inflow to the cyclone separator
If the J value is too low or too high, the capture rate will deteriorate, and in general, the capture rate will deteriorate if the J value is too low or too high.

て捕捉されにくいものであり、捕捉すべき平均粒径の大
小に対応して胴径の大きさを変更する必要がある。
Therefore, it is necessary to change the size of the body diameter in accordance with the size of the average particle size to be captured.

このような機能上の特徴的事項を構造Hの観点から説明
すれば、遠心分離作用を発生する胴体部13に気体流入
管Aが連接してめり、胴体部Bと同心的にその内側に排
気筒りが配役され、さらに、胴体部Bの下位に中空円錐
部Cが連接されている典型的なサイクロン分離器の構造
は極めて簡素であるけれども、一方において、胴体部B
と気体流入管Aの流入口゛■゛、ならびに排気筒りの入
口とが直接的Qこ隣接しており、また、胴体部B内およ
び中空円錐部C内の外側寄りの下降旋回流IEと中心の
に昇旋回流Fとの間に介在する構造物がなく、ここにお
いても直接的に隣接している構造であり、これらのこと
が前述のような気液分離機能の劣化を発生させる要因と
もなっている。
To explain these functional characteristics from the perspective of structure H, the gas inflow pipe A is connected to the body part 13 that generates centrifugal separation and is inserted into the body part B concentrically. Although the structure of a typical cyclone separator is extremely simple, in which an exhaust pipe is provided and a hollow conical part C is connected to the lower part of the body part B, on the other hand, the body part B
The inlet of the gas inlet pipe A and the inlet of the exhaust pipe are directly adjacent to each other, and the downward swirling flow IE in the body part B and the hollow conical part C is located closer to the outside. There is no structure intervening between the center and the ascending swirling flow F, and the structure is also directly adjacent to the center, and these are the factors that cause the deterioration of the gas-liquid separation function as described above. It is also accompanied by

」二記したように衝突式分離器ならびにサイクロン分離
器の従来実施例は管路内への配役か比較的容易な構造で
あるけれども、また、それぞれの構造に基づく本質的液
滴分離除去上の機能的弱点をもっている。
As mentioned in Section 2, although conventional impingement separators and cyclone separators have structures that are relatively easy to install in pipelines, they also have disadvantages in terms of droplet separation and removal based on their respective structures. It has functional weaknesses.

この発明は、従来の実施例における前記のような欠点の
実状にかんがみてなされたもので、この発明の目的は、
サイクロン方式や衝突方式なとよりも、気体の流入速度
の影響および粒径の影響などを受けにくくて分離効率が
良く、同一処理容量に対して分離器を小型化できる、気
流中の飛沫状液滴を分離除去する方法と分離器とを提供
することにある。
This invention was made in view of the above-mentioned drawbacks in the conventional embodiments, and the purpose of the invention is to:
Compared to the cyclone method or collision method, this method is less susceptible to the effects of gas inflow velocity and particle size, resulting in better separation efficiency, and allows the separator to be smaller for the same processing capacity. An object of the present invention is to provide a method and a separator for separating and removing droplets.

この発明の方法の要旨は、分離タンク本体内に設置され
ている渦巻形状体の上部に形成される渦巻状流路の入口
部から前記渦巻流路内に飛沫状液滴を含有する気体を送
入し、この渦巻状流路内を上記の気体が進行するときに
、遠心分離作用によって渦巻形状体の壁の湾曲内側面に
飛沫状液滴を集合させて気液分離させるとともに、渦巻
状流路か先行するのに従ってその断面積を漸減させて気
流中の飛沫状液滴の凝集を促進させ、ならびに、曲率半
径を小さくすることにより遠心力による分離作用を受け
やずくし、気流から遠心分離した分離液は渦巻状流路の
外側壁内面に沿って流下させたのち収集し、液滴衝突受
板に尊いて衝突させ、一方、気流は渦巻状流路の終端部
付近で渦巻状壁に使i突させ、これにより気流中に残留
する飛沫状液滴を分離して前記渦巻状壁を経て液滴衝突
受板へ衝突させ、これらの分離液は分離タンク本体下刃
の仕切板の切欠部から分離タンク本体下部に流下させて
排出し、また、前記気流は方向転換させて分離タンク本
体内の広い空洞部下部に流出させ、該空洞部内を−1・
、昇させて気液分離のうえ分離タンク本体の上部位にあ
る気体流出管より排気させることにより気液を分離する
ものであり、また、この発明の方法を実施するのに適し
た分離器の要旨は、平面にの渦巻曲線をこの平面に直角
方向に移動して形成される2個の渦巻形状体を分離タン
ク本体内に片寄せて設置し、これらの渦巻形状体の渦巻
方向は互に反対方向をなすように形成するとともに、そ
れぞれの入口部の壁面を相互に背中合せに組谷せて渦巻
部がそれぞれの両側に相対する構造とし、前記人口部を
分離タンク本体の周壁上方に臨ませた気体流入管に連設
し、また、分離タンク本体内の前記渦巻形状体の下部に
分離液を導く液滴衝突受板を配設し、かつ、分離液と気
体を隔離する仕切板を分離タンク本体下方に設けるとと
もに前記仕切板に分離液全流下させる切欠部を形成し、
この分離液を排出するための排出雀1を分離タンク本体
下端に連設し、さらに、分離タンク本体の気体流入管の
反対側位置に気体流出管を取付け、この気体流出管と前
記渦巻形状体との間における分離タンク本体内の空洞部
に複数個のバッフルボードを設けてなるものである。
The gist of the method of the present invention is to send gas containing droplets into the spiral flow path from the inlet of the spiral flow path formed at the upper part of the spiral shaped body installed in the separation tank main body. When the gas moves through this spiral flow path, droplets are collected on the curved inner surface of the wall of the spiral shape by centrifugal separation, causing gas and liquid separation, and the spiral flow is The cross-sectional area of the road gradually decreases as the airflow advances, promoting the aggregation of droplets in the airflow, and by reducing the radius of curvature, they are less susceptible to the separation action of centrifugal force, resulting in centrifugal separation from the airflow. The separated liquid flows down along the inner surface of the outer wall of the spiral flow path, is collected, and collides with the droplet collision receiving plate, while the air flow flows against the spiral wall near the end of the spiral flow path. This separates the droplets remaining in the airflow and causes them to collide with the droplet collision receiving plate through the spiral wall, and these separated liquids enter the notch in the partition plate of the lower blade of the separation tank main body. The airflow is discharged from the bottom of the separation tank main body by changing its direction and flowing out into the bottom of a wide cavity inside the separation tank main body.
The method of this invention separates gas and liquid by evacuation from the upper part of the separation tank main body. The gist is that two spiral bodies, which are formed by moving a spiral curve on a plane in a direction perpendicular to this plane, are placed side by side in the separation tank body, and the spiral directions of these spiral bodies are mutually aligned. At the same time, the wall surfaces of the respective inlet portions are arranged back-to-back with each other so that the spiral portions face each other on both sides, and the artificial portions are made to face above the peripheral wall of the separation tank main body. A droplet collision receiving plate that guides the separated liquid is installed at the bottom of the spiral shaped body in the separation tank body, and a partition plate that separates the separated liquid and the gas is separated. A notch is provided below the tank body and the partition plate is provided with a notch through which the entire separated liquid flows down;
A discharge sparrow 1 for discharging this separated liquid is connected to the lower end of the separation tank main body, and a gas outflow pipe is attached to the opposite side of the gas inflow pipe of the separation tank main body, and this gas outflow pipe and the spiral shape A plurality of baffle boards are provided in the cavity inside the separation tank body between the main body and the main body of the separation tank.

以下この発明による実施例の構成を図によって詳細に説
明する。
Hereinafter, the configuration of an embodiment according to the present invention will be explained in detail with reference to the drawings.

第j図、第乙図において、/け円筒状の分離タンク本体
で、該分離タンク本体lはその円筒部の輔・し・を垂直
として設置され、j・部には上部盲板2が取イづけであ
るとともに下部には液体か自然流下Frf能な勾配を冶
する下部盲板3か取付けてあり、下部盲板3の下端には
分離液を排出するための排出式′ψが連設してあり、ま
た、分離タンク不休/の周壁の」一方には後記する気体
流入管7.7aに適合−する寸法の開口部、t、5aか
形成しである。
In Figures J and O, the main body of the separation tank is a cylindrical one, and the separation tank main body L is installed with the cylindrical part of the main body vertical, and the upper blind plate 2 is attached to the part J. At the same time, a lower blind plate 3 is installed at the bottom to create a gradient that allows liquid or gravity flow, and a discharge type 'ψ for discharging the separated liquid is connected to the lower end of the lower blind plate 3. Furthermore, an opening t, 5a having a size compatible with a gas inflow pipe 7.7a, which will be described later, is formed on one side of the peripheral wall of the separation tank.

乙、ga5は渦巻形状体で、それぞれは平面上の渦巻曲
線をこの平面に直角方向に移動して形成される渦巻形状
よりなり、それぞれの渦巻方向は左勝手と右勝手のよう
に互に反対方間をなして形成し、各渦巻形状体乙、乙a
の上部に形成される人口部20.20(JLの壁に関し
、それぞれの渦巻部か両側に相対するように入口部20
.20υ、の壁面を相互に背中合せに組合せ、分離タン
ク本体/の気体流入管7,7銭側の内側壁に片寄せて位
置させて、渦巻形状体乙、乙aの渦中心部を通る渦輔心
を分離タンク本体/の軸心と平行にして取付部材等によ
り固定して設けるとともに、それぞれの人口部20,2
0aは前記各開口部5.jaをぽ通して分離タンク本俸
/内に臨ませた気体流入管7.7FLの一端に連設され
て気体流入管7 、771からそれぞれ気体か送入用能
とされている。ざ。
B, ga5 is a spiral shaped body, each of which is formed by moving a spiral curve on a plane in a direction perpendicular to this plane, and the spiral directions of each are opposite to each other such as left-handed and right-handed. Each spiral shape body B, Otsu a
The artificial part 20.20 formed at the top of the wall (with respect to the JL wall, the entrance part 20 is
.. The walls of 20υ are assembled back-to-back and placed one side against the inner wall on the side of the gas inflow pipes 7 and 7 of the separation tank main body/to form a vortex that passes through the center of the vortex of the spiral bodies B and Oa. The center is parallel to the axis of the separation tank body/ and is fixed with a mounting member etc., and the respective artificial parts 20, 2
0a is each opening 5. It is connected to one end of a gas inflow pipe 7.7FL which faces the inside of the separation tank through the ja, and is capable of feeding gas from the gas inflow pipes 7 and 771, respectively. The.

gaは渦巻形状体g、gaの渦中心部下側にそれぞれ傾
斜して配設される液層衝突受板で、それぞれの先端側は
分離タンク本体/内を後記の分離液室//と空洞部/1
1とに区画して分離液と気体とを隔離するように、下方
に水平状に1投けらねた仕切板9Gこ形成される切欠部
10,100に連通ずるように臨ませてあって、液層衝
突受板ざ、gry。
ga is a liquid layer collision receiving plate which is arranged at an angle below the vortex center of the spiral shaped body g and ga, and the tip side of each is a separation tank main body/inside is a separated liquid chamber// to be described later and a cavity. /1
The partition plate 9G is arranged horizontally downward so as to separate the separated liquid from the gas, and the partition plate 9G is arranged so as to communicate with the notches 10 and 100 formed therein. Liquid layer collision plate, gry.

からその傾斜により分離液を仕切板部下側の分離液室/
/に流出可能な構成とし、また、仕切板9の中心に関し
て前記切欠部10.10r工の反対側にドレーン孔を兼
ねる通気孔7.2を形成し、さらに、分離タンク本体/
の軸心に関して前記気体流入管7,7aの反対側位置で
この分離タンク本体/の周壁外面の上方に気体流出管/
3を取(Jけ、該取付部における壁面を開口して、気体
流出管/3と分離タンク本体/内における渦巻形゛1)
(体乙。
Due to its slope, the separated liquid is transferred to the separated liquid chamber below the partition plate.
The separation tank main body /
A gas outflow pipe is installed above the outer surface of the peripheral wall of the separation tank body at a position opposite to the gas inflow pipes 7 and 7a with respect to the axis of the separation tank body.
3 (J), open the wall surface at the mounting part and connect the gas outflow pipe/3 and the spiral shape inside the separation tank body/
(Body O.

ga等を除いた仕切板?上の広い空間より形成される空
洞部/4’とを連通させ、このような空洞部/qの液滴
衝突受板ざ1ga付近から気体流出管/3の流入開口端
に至る間には、気流の短絡を防止する垂直パンフルポー
ド/!;、/3a、第1)<゛ンフルボード/乙および
第2パン7ルボート/7がそれぞれ配設しである。次に
、前記渦巻形状体乙、乙は、液滴衝突受板g 、 g 
a、および各ノくツフルホード73等についてさらに詳
述する。
Partition board excluding ga etc? It communicates with the cavity /4' formed from the wide space above, and from the vicinity of the droplet collision receiving plate 1ga of such cavity /q to the inflow opening end of the gas outflow pipe /3, Vertical pan full port to prevent airflow short circuit/! ;, /3a, 1st)<full board/B and 2nd pan7 board/7 are respectively arranged. Next, the spiral shaped bodies B and B are droplet collision receiving plates g and g.
a, and each node full hoard 73, etc. will be explained in further detail.

、!/、 2/a、はそれぞれ渦巻形状体1.4aを形
成する渦巻状壁で、この渦巻状壁、!/、、2/aのそ
れぞれにおいて相対する渦巻状壁面間を板状部材からな
る下底板23 、23 aでそれぞれ接続して気流の通
る渦巻状流路、2.21.22a、の下底部を形成し、
前記下底板23,23aけ前記渦巻状空間を先進方向に
所要の下り勾配の渦巻状をなして延設し、渦巻状壁2/
、2/Hにおける前記の相対する渦巻状壁面間全それぞ
れ接続して渦中心部へ向かい、所要数の旋回後、渦巻形
状体乙、乙i1.への気体の流入向きと反対向きになっ
た位置で、下底板23.23ELの前記延設を停+1し
てそれぞれ終端部2グ、 、:l 11 aを形成する
。また、終端部2ゲ、J’7aの位置からなお渦中心部
に向かって延びる渦巻状壁2/、、2/aは、さらに−
旋回する位置まで延設されて渦巻形状の形成を終り、こ
の終端部、2グ、、?Ila、から延設された一旋回分
の渦巻状壁j / 、 、2/ a、はこの渦巻形状を
保持して渦軸心に平行に垂下し、その下端側は前記液滴
衝突受板ざ1gaの」二部にそれぞれ臨ませである。さ
らに、下底板、231.23aのそれぞれの1一方部位
において、同様な板状部材よりなる−1−底板23、、
?jaにより渦巻状壁2/、27B、のそれぞれにおけ
る相対する渦巻状壁面間を接続して渦巻状流路22..
22a、の上底部を形成し、それぞれの下底板23.2
3aに沿って同様な延設要領の下に延設して前記終端部
、!ゲ、jlIaの−I一方部に達し、さらに、渦中各
部付近の空洞部を横断するとともに、渦巻状壁j/、、
2/+1の一旋回勉設されたそれぞれの壁面に達するま
で拡張して前記壁面に接続することにより渦中心部下側
の七’j:M部を閉塞する。前記下底板、23.23h
からそれぞれにヌ・]応する1−1底板23,23FL
に糸る高さは、そノしそれの渦巻状壁j / 、 、:
2/ rl、とtjiJ記下底版下底板、23tLおよ
び−1−底板λ5.λ5;)、とによって区+1Iji
形成されるそれぞれの渦巻状流路22,2.2rlかそ
の流入気体の流ktに対して所要の断面積を画定する大
きさとし、次に、目IJ記下底板、23,23J)、並
びに1°底板、2 K 、 、2 !;υ、のそれぞれ
の渦巻状壁2/、、、2/aとの接続部外郭に沿って該
渦巻状壁2/、2/τ丸の下底板、23.23r1.上
方部渦巻状壁と1−底板23..23r)、の上方部渦
巻状壁とを切除することにより、下流へ向かって断面積
がi+li減する先細の渦巻状流路、22,22rLが
完成されるが、下底板23..23ξ尤の下方部の渦巻
状壁の切除は前記終端部2t、!グa1位置までとし、
これら終端部2’l、2/IO5から先の渦巻状壁2/
,! /, 2/a, respectively, are spiral walls forming the spiral body 1.4a, and this spiral wall, ! /, , 2/a, opposite spiral wall surfaces are connected by lower bottom plates 23, 23a made of plate-like members, respectively, to form a lower bottom part of the spiral flow path, 2.21.22a, through which the airflow passes. form,
The lower bottom plates 23 and 23a extend the spiral space in the forward direction in a spiral shape with a required downward slope, and the spiral wall 2/
, 2/H, the opposing spiral wall surfaces are all connected and headed toward the center of the vortex, and after the required number of turns, the spiral shaped bodies B, B and i1. At a position opposite to the gas inflow direction, the extension of the lower bottom plates 23 and 23EL is stopped to form the terminal portions 2g, , :l 11a, respectively. Further, the spiral walls 2/, 2/a extending from the position of the terminal end 2ge, J'7a toward the vortex center are further -
It extends to the turning position and finishes forming a spiral shape, and this terminal part, 2g...? The spiral wall j/, 2/a, extending from Ila, for one turn, maintains this spiral shape and hangs down parallel to the vortex axis, and its lower end side is connected to the droplet collision receiving plate. I will be attending the two parts of ``1ga''. Further, at one portion of each of the lower bottom plates 231.23a, a -1-bottom plate 23 made of a similar plate-like member,
? ja connects the opposing spiral wall surfaces of each of the spiral walls 2/, 27B, to form a spiral flow path 22. ..
22a, forming the upper base of each lower base plate 23.2.
3a under the same extension method, and the said terminal part,! ge reaches one part of -I of jlIa, further crosses the hollow part near each part of the vortex, and the spiral wall j/,,
2/+1 turns until it reaches each wall surface and connects to the wall surface, thereby closing the 7'j:M section below the vortex center. Said lower bottom plate, 23.23h
1-1 bottom plate 23, 23FL that corresponds to
The height of the thread is that of the spiral wall j / , , :
2/rl, and tjiJ lower bottom plate, 23tL and -1-bottom plate λ5. λ5;), and ku+1Iji
Each of the spiral channels 22, 2.2rl to be formed is sized to define the required cross-sectional area for the flow kt of the incoming gas, and then the lower bottom plate 23, 23J) and 1 °Bottom plate, 2K, ,2! 23.23r1. Upper spiral wall and 1-bottom plate 23. .. By cutting off the upper part of the spiral wall of the lower bottom plate 23. .. The excision of the spiral wall in the lower part of 23ξ is the terminal part 2t,! up to the a1 position,
The spiral wall 2/ beyond these terminal parts 2'l, 2/IO5
.

2/J1の壁面部分は、前記したように液滴衝突受板g
 、 g aに向かって垂下延設されていることはもち
ろんであり、このような下底板23.23t1゜の下方
部に相当する渦巻状壁2/、21r上の切除と、該渦巻
状壁2 / 、 、2/ +1.の一部垂下延設とによ
り、渦巻状流路12..2Qllの終端を開放する気体
吐出間隙部、、!i、24iJか+′4ij記垂下延設
された渦巻状1)’i’)、2/、、2/+1のそれぞ
れにおける相対する壁面間に形成され、かつ、下底板、
23..23J」、のそれぞれの終1:i5 fils
 24’ 、 2を社部位置における流路1iUi u
’+i部ニヨウニヨリ状IAt路、2.2 、.2.2
 rr (7)終端部(J近か昂ソ成される。
2/J1 wall part is the droplet collision receiving plate g as mentioned above.
, ga, and the spiral walls 2/, 21r corresponding to the lower part of the bottom plate 23.23t1° are cut out, and the spiral walls 2 / , , 2/ +1. By extending a portion of the spiral flow path 12. .. Gas discharge gap that opens the end of 2Qll,,! i, 24iJ or +'4ij hanging downwardly extending spiral 1) 'i'), 2/, 2/+1 formed between the opposing wall surfaces of each, and a lower bottom plate,
23. .. 23J'', each ending 1:i5 fils
24', 2 is the flow path 1iUiu at the shaft position
'+i section Niyoyori-like IAt tract, 2.2, . 2.2
rr (7) Terminal part (made near J).

次に、それぞれの終端部2グ、、24’・°]位置にお
ける渦巻状1’L2/、−27aの外側壁から、それそ
れの渦巻状流路、2.2..22u内に同かつてこの部
位における渦巻状壁2/、2/ilの各曲率半径よりも
小さく、かつ、同じ湾曲方向の曲面をイ1して半円筒状
に巻き込んで形成した分離液収集部′1A−27、;l
 7 aをそれぞれ延設し、この分1碓液117集部利
27..27+1の半円筒下端部には分離液導電21 
、2 ga、の+η′Mが連設されるとともに、この各
分離液導管2g、2ga、の下端はそれぞれ液滴衝突受
板g 、 g Llの1−面部に臨ませて配設しである
前記液滴衝突受板ざ7gaは、+−rrすき側が凹部に
なるトラフ状の湾曲面からなり、この湾曲方向の両端部
は、その湾曲面の曲率半径よりも小さい曲率半径をもっ
て湾曲面の内側に向けて波返し状に巻き込んで、それぞ
れ縁部3/、3/cUを形成し、また、液滴衝突受板ざ
7g−の湾曲面によるトラフ軸力向の一端側には、湾曲
面によるトラフ部を堰止めるとともに分離液滴の飛散を
防止するために所要の高さに形成した平板部材3.2.
32乱を付設するが、この平板部’lA’32.3.2
t−1は、液11ニ衝突受板g、gaの湾曲ハ4Jをn
lJ記のように分離液室//へ分離液を流出口1能とす
る所要の傾斜状態に配役したとき、平板部材32,3.
2+hの1fJjが鉛直をなすように前記トラフ部横断
面に対して傾斜して設け、このような平板部材3.2,
328をそれぞれ付設しだ液滴衝突受板1j 、 g 
;Uは、前記平板部材32,320、を渦巻形状体乙、
乙Z〕、のそれぞれの渦中心部を通る渦輔心間において
背中合せにし、傾斜面全反対向きとして配設されている
0 次に、垂直バッフルボード/3./、!υ5.第5.ン
フルポード/乙および第2パンフルボ−ド/7の構成に
ついて81’述する。
Then, from the outer wall of the spiral 1'L2/, -27a at each end 2g,, 24'·°], the respective spiral channel 2.2. .. Inside 22u, there is a separated liquid collection part' formed by rolling a curved surface into a semi-cylindrical shape, which is smaller than each radius of curvature of the spiral walls 2/ and 2/il in this part and in the same direction of curvature. 1A-27, ;l
7a respectively, and 1 Usui 117 collection and 27. .. 27+1 semi-cylindrical lower end has a separated liquid conductor 21
. The droplet collision receiving plate 7ga has a trough-shaped curved surface with a recess on the +-rr side, and both ends in the curved direction have a radius of curvature smaller than that of the curved surface. The droplets are rolled up in a wave pattern toward the edges to form edges 3/ and 3/cU, respectively, and on one end side in the trough axis force direction due to the curved surface of the droplet collision receiving plate 7g-, a curved surface is formed. A flat plate member formed to a required height to dam the trough and prevent the separated droplets from scattering 3.2.
32 is attached, but this flat plate part 'lA'32.3.2
t-1 is the liquid 11, the collision plate g, and the curve of ga 4J is n
When the flat plate members 32, 3.
A flat plate member 3.2,
328 are attached to the droplet collision receiving plates 1j and g, respectively.
; U represents the flat plate member 32, 320 as a spiral-shaped body B;
Next, the vertical baffle boards/3. /,! υ5. Fifth. The configurations of the first full board/B and the second full board/7 will be described 81'.

垂直バッフルボード/!;、/3iLは渦巻状壁ノ/、
、、2/υの外周壁面に沿って、それぞれ’M着するよ
う水平方間に弧状をなすとともに十的力向に所要の長さ
を有する形状の板状部材からなり、このような垂直バッ
フルボ−ド/、!;、/3:Jはそれぞれ前記気体吐出
間隙sl!−2乙9.2乙i、l乃)ら吐出する気体の
噴流方向に対峙する位;6に、渦巻状壁!’ + −2
/ +1の外周壁面にそれぞれ密着して配設され、また
、垂直パンフルポード/3./3;Hの前記弧状方向の
長さは、気体吐出間隙?d’+、21r 、 2 Is
aからそれぞれ吐出する気流の広かり域をカバー可能な
長さとし、かつ、前記弧状方向に垂直の前記長さは、垂
下した下端部が前記仕[i’J板9との間にそれぞれの
気体吐出間隙部)乙、2乙マ1から吐出する気体を流通
させるための所要の間隔を保持する長さに形成する。
Vertical baffle board/! ;, /3iL is a spiral wall /,
, 2/υ along the outer circumferential wall surface, each having an arc shape in the horizontal direction and having a required length in the direction of force, such a vertical baffle box -do/,! ;, /3:J are the gas discharge gaps sl!, respectively. -2 Otsu 9.2 Otsu i, lno) The place facing the direction of the jet of gas discharged; 6, a spiral wall! ' + -2
/3. /3; Is the length of H in the arcuate direction the gas discharge gap? d'+, 21r, 2Is
The length is such that it can cover a wide area of the airflow discharged from a, and the length perpendicular to the arcuate direction is such that the lower end thereof is connected to the plate [i'J plate 9]. (Discharge gap part) B, 2 It is formed to a length that maintains the required gap for circulating the gas discharged from the gap 1.

次に、第1バツフルボード/乙を目IJ記垂直パンフル
ポード/3. /!;a、の両外側端間にわたる長さを
パネル幅として、分離タンク本体/の内壁と垂直バッフ
ルボード/、3−、/!;u外壁との間に架設し、同様
にして、第2パンフルポード/7を前記第1バツフルボ
ード/乙の」−位置に所要のf7jJ Mをfitいて
架設し、第1バッフルボード/乙、第2パンフルポード
/7のそれぞれには、気流通過に必要な断面積を而する
第1バツフルボード孔/l/、第2パンフルポード孔4
’、!を穿設し、これらけn+J記空洞部/ll内を気
体流出盾′/3の入口に向かう気流をジグザグに偏向さ
せる関係位置に配設しである。
Next, the 1st Batsuful Board / B is the vertical panful board / 3. /! The panel width is the length spanning between both outer edges of ;a, and the inner wall of the separation tank body /, and the vertical baffle board /, 3-, /! ;In the same way, install the second baffle board/7 by fitting the required f7jJM at the "-" position of the first baffle board/B, and then install it between the first baffle board/B and the second baffle board/B. Each pan full port /7 has a first full board hole /l/ and a second pan full board hole 4 having a cross-sectional area necessary for airflow passage.
',! are bored, and these are arranged at positions in which the air flow toward the entrance of the gas outflow shield'/3 is deflected in a zigzag manner inside the n+J cavity part/ll.

次に、この発明による実施例の作用を説明する飛沫状液
滴を含有する気体(以下単に気体という)は分離タンク
本体/のそれぞれの気体流入管7.7aより渦巻形状体
乙、乙L1の入1」部、2o。
Next, gas containing droplets (hereinafter simply referred to as gas) to explain the operation of the embodiment according to the present invention is introduced into the spiral shaped bodies B and L1 from each gas inflow pipe 7.7a of the separation tank main body. Part 1, 2o.

、20aを経て渦巻状流路2.2,2.2E3、内にそ
れぞれ送入され、該渦巻状流路、22,22a、に沿っ
て旋回下降する。このとき気体に比べて慣性の大きい飛
沫状液滴は、遠心力作用により渦巻状流路22、.22
a、の外側壁を形成する渦巻状壁、2/、、2/aの湾
曲内側壁面に集合(=1着した状態で移行するが、さら
に、11j記液滴は重力の影響も受けて渦巻状流路、2
.2..22Bの下底板、23..238に回かう成分
も持って移行する。このように気体か渦巻状流路、2.
2 、 、;2.2a、内を旋回下降しながら進行する
に従って、渦巻状流路、2.2,2.2vの渦巻状壁2
/、2/a、の曲率半径は漸減するから、微粒のため気
流中からまた分離されていない飛沫状液滴が受ける遠心
力作用は漸増し、捷だ、このとき渦巻状流W’62.2
 、2 、! a(7)断ujJ積% 1ilil百1
112するため、気流中に分散している前記飛沫状液滴
はl’+4互に接触して凝集する機会が増加し、この凝
集によって飛沫状液層の粒径刀・犬となる結果、遠心分
離作用を受けやすくなってこれらは気流中より分離し、
前記同様に渦巻状壁j/、、2/aの湾曲内側壁面に伺
着集合し、前記液滴と共に分離液となって、渦巻状流路
j、、2..22aの前記湾曲内側壁面に続くそれぞれ
の下底板23..:z3t’tの外側隅部を渦中心部へ
向かって流下する。次いで、このように流下してきた前
記分+a液は下底板23..23rユのそれぞれの終端
部2’l、24と1に達し、該終端ws、2tx、2グ
2支において分141を液収集部材!7,27aに収集
され、続いて分離液収集部材27,27J)、に連設し
た分離液導管2g、2gυ5へ誘導されて流下し、液滴
衝突受板ざ7gaに種工突する。
, 20a, into the spiral channels 2.2, 2.2E3, respectively, and spirally descend along the spiral channels 22, 22a. At this time, the droplets, which have a larger inertia than gas, move through the spiral flow path 22 due to centrifugal force. 22
The spiral wall forming the outer wall of a, 2/, 2/a, collects on the curved inner wall surface of 2/a. shaped channel, 2
.. 2. .. 22B lower bottom plate, 23. .. Components that go to 238 are also transferred. In this way, the gas or spiral flow path, 2.
2, , ; 2.2a, as the spiral flow path progresses while rotating downward, the spiral wall 2 of 2.2, 2.2v
Since the radius of curvature of /, 2/a gradually decreases, the centrifugal force acting on the droplets that are not separated from the airflow because they are fine particles gradually increases, resulting in a spiral flow W'62. 2
,2,! a(7) UjJ product% 1ilil101
112, the droplets dispersed in the airflow have an increased chance of contacting each other and agglomerating, and this aggregation forms a droplet-like liquid layer, resulting in centrifugation. They become more susceptible to separation effects and separate from the airflow,
Similarly to the above, it gathers on the curved inner wall surfaces of the spiral walls j/, 2/a, becomes a separated liquid together with the droplets, and flows through the spiral channels j, , 2/a. .. Each lower bottom plate 23.22a continues to the curved inner wall surface. .. : Flows down the outer corner of z3t't toward the center of the vortex. Next, the liquid +a that has flowed down in this way flows down to the lower bottom plate 23. .. Reach the respective terminal ends 2'l, 24 and 1 of 23r, and the liquid collection member 141 at the two terminals ws, 2tx, 2g. 7, 27a, and then guided to the separated liquid conduits 2g, 2gυ5 connected to the separated liquid collecting members 27, 27J), flowing down, and colliding with the droplet collision receiving plate 7ga.

また、前記分離液の除去された気流は渦中心4i71≦
イ」近の渦巻状流路22..2.2i)の終端部、!ゲ
、−2ゲ71 (=J近において噴出して、前記の一旋
回延設した渦巻状壁2 / 、 、2/ aの内側面に
衝突し、これにより微粒のためなお気流中に残留してい
る飛沫状液滴は分離されて分離液となり、該分離液は目
げ記渦巻状壁2/、2/aに沿って流下して各液滴衝突
受板g 、 g (′Lに衝突する。次いで、前記の延
設された渦巻状壁2/、2/aの内側+Njに衝突した
気流は方向を逆方向に転換して気体吐出間隙部!乙、2
乙a、から空洞部/グヘ向かう斜め下方へ噴出し、垂直
パンフルポード/!;、/!;EL下端と仕切板9との
間隙を経て空洞部/lの下部に達する1−記のように、
渦巻状流路22.2.!υのそれぞれの渦巻状壁2/、
2/Fa、への飛沫状液滴の分離集合、および渦巻状流
路、!!、ハ洲上の終端部付近における延設された渦巻
状壁2/、、2/ilの内側面への気流の衝突による飛
沫状液滴の分離、ならびに後記する空洞部/を内への気
流の流入によって該気流中より飛沫状液滴の分離か行わ
れ、一方、分離液導管、2g、2ga、を経て流下した
分離液と、延設された渦巻状壁2/、、2/:iの内側
面に沿って流下した分離液とは共に液滴衝突受板g、ざ
a l−に落下衝突して合流分離液となり、該液滴衝突
受板g、 ga面一1−をその凹状の湾曲…1と両側の
縁部3/、3/Faおよび傾斜によりjl−シく案内さ
れて流下し、仕切板9のそれぞれの切欠部10.10a
、を経て分離液室//へ流下貯留され、下部盲板3下端
の排出管lから適宜外部へ排出される。また、空洞部/
4Z下部に達した前記気流は、多少でもまた飛沫状液滴
が気流中に残留しておれば、広い空洞部/4’内におい
て第1パンフルポード/乙、第2パンフルポード/7の
第7バツフルポード孔グ/および第2バツフルボード孔
4ノによりゆっくりとした減速状態で4二昇し、この間
に気液沈降分離作用を受けて飛沫状液滴が最終的に除去
され、続いて気体流出管/3より飛沫状液滴を含有しな
い状態として排気される。なお、空洞部/グ内で沈降し
た気流中の飛沫状液滴は、仕切板9の切欠部10,10
aならびに通気孔/2から分離液室//内に流下し、前
記合流分離液と同様に貯留され、排出される。
Moreover, the airflow from which the separated liquid has been removed has a vortex center 4i71≦
22. .. 2.2i) Termination part, ! Ge, -2 Ge 71 (=J) is ejected near J and collides with the inner surface of the spiral walls 2/, , 2/a, which have been extended one turn. The droplets are separated and become a separated liquid, and the separated liquid flows down along the spiral walls 2/ and 2/a and collides with each droplet collision receiving plate g, g ('L). Next, the airflow colliding with the inside +Nj of the extended spiral walls 2/, 2/a changes its direction to the opposite direction and flows into the gas discharge gap!B, 2
From Oa, it erupts diagonally downward toward the hollow part/gu, and the vertical pan full port/! ;,/! ; As shown in 1-, reaching the lower part of the cavity /l through the gap between the lower end of the EL and the partition plate 9;
Spiral channel 22.2. ! Each spiral wall 2/ of υ,
2/Fa, separation and collection of droplets into a spiral flow path,! ! , Separation of droplets due to collision of airflow with the inner surface of the extended spiral wall 2/, 2/il near the terminal end on the surface, and airflow into the cavity / to be described later. The droplets are separated from the air stream by the inflow of the air, and on the other hand, the separated liquid flowing down through the separated liquid conduits 2g, 2ga and the extended spiral walls 2/, 2/:i The separated liquid that has flown down along the inner surface of the droplet collision plate g, ga falls together and collides with the droplet collision plate g, a l- to form a combined separated liquid, and the droplet collision plate g, ga is flush with its concave shape. The curve of...1 and the edges 3/, 3/Fa on both sides and the slope guide the flow downward, and each notch 10.10a of the partition plate 9 flows down.
, the liquid flows down and is stored in the separation liquid chamber //, and is appropriately discharged to the outside from the discharge pipe l at the lower end of the lower blind plate 3. In addition, the cavity/
If the airflow that has reached the lower part of 4Z still has some droplets remaining in the airflow, the airflow will pass through the 7th full port hole of the first pan full port/B and the second pan full port/7 in the wide cavity/4'. The gas rises in a slow deceleration state through the second buttful board hole 4, during which the droplets are finally removed by the gas-liquid sedimentation separation action, and then from the gas outflow pipe 3. It is exhausted without containing droplets. Incidentally, the droplets in the airflow that have settled in the cavity/g are removed from the notches 10, 10 of the partition plate 9.
It flows down into the separated liquid chamber // from a and the vent hole /2, and is stored and discharged in the same way as the combined separated liquid.

この発明の構成および作用は以−1−6のようであるか
ら、次のような効果を発揮する。
Since the structure and operation of the present invention are as described in 1-6 below, the following effects are exhibited.

(1)渦巻形状体によって飛沫状液滴を遠心分離するも
のであるから、サイクロン分Alff1 rlの中空円
錐部と同様の遠心力加速作用をもっているが、渦巻形状
体内では気液分離は気流の旋回下降による流下と共に逐
次進行し、この間に分離液か気流内に拡散して気体流出
管に流出する現象が起きない。
(1) Since droplets are centrifugally separated using a spiral body, it has a centrifugal acceleration effect similar to that of the hollow conical part of the cyclone Alff1 rl. The separation liquid progresses sequentially as it flows downward, and during this period, the separated liquid does not diffuse into the airflow and flow out into the gas outflow pipe.

(2)流入する気流を2分割にして遠心分離することを
目的として、渦巻形状体を分離タンク本体内に2個内蔵
した構成であるから、他のサイクロン分離方式よりも分
離器の外郭寸法か小さい割に遠心分離作用の効果が大き
い。
(2) Since the structure has two spiral shaped bodies built into the separation tank body for the purpose of dividing the incoming airflow into two and centrifuging them, the outer dimensions of the separator are smaller than other cyclone separation methods. Despite its small size, its centrifugal separation effect is large.

(3)流入気体を2分割して処理するから、渦巻形状体
を小形にすることができ、従って分離タンク本体内での
占有体積が小さくなり、分離タンク本体内の空洞部の容
積を相対的に大きく取ることができる。このため液滴衝
突受板部で気液分離された液滴か気流に乗って再混入す
るのを防止できる(4)渦巻形状体内で遠心分離された
液層は、分難液収集部材に収集された後、分離液導管内
に誘導されて液滴衝突受板に至り、渦中心部例近の渦巻
状流路の狭い部分において渦巻状壁に律J突しないから
分離液の再飛沫化か防止でき、従って高い気液分離効果
が確保できる。
(3) Since the incoming gas is divided into two parts for processing, the spiral shape body can be made smaller, and therefore the volume occupied within the separation tank body is reduced, and the volume of the cavity inside the separation tank body can be reduced. can be taken significantly. This prevents droplets that have been separated into gas and liquid at the droplet collision receiving plate from being remixed by the air current. (4) The liquid layer centrifuged inside the spiral body is collected in the separating liquid collection member. After that, the droplet is guided into the separated liquid conduit and reaches the droplet collision receiving plate, and the separated liquid does not collide with the spiral wall in the narrow part of the spiral flow path near the center of the vortex, so the separated liquid is re-spattered. Therefore, a high gas-liquid separation effect can be ensured.

(5)渦巻形状体内の渦巻状流路は流入口部力・ら渦中
心部に向かうのに従ってその断[nj積が縮小するから
、気流中の飛沫状液滴の相互凝集を促進して粒径を粗大
化し、遠心分離作用を受けやずい液粒径を形成するとと
もに、気流速が加速されて遠心力作用も増加し、これら
により“飛沫状液滴の分離かよくなる。
(5) The spiral flow path in the spiral shaped body is interrupted by the force at the inlet and the product decreases as it moves toward the center of the vortex. In addition to increasing the diameter and forming liquid droplets that are susceptible to centrifugal separation, the airflow velocity is accelerated and centrifugal force is also increased, which improves the separation of droplets.

(6)遠心分離作用を行うための渦巻状流路と気体lA
シ出管の人1−」部とは渦巻形状体を形成する渦巻状壁
により区画されていて、相互間に短絡流を生しない+4
1造であるから、サイクロン分離方式にみられるような
旋回気流の内側領域部にある微粒の飛沫状液滴が短絡流
に乗り移って気体流出管に流出する現象がない。従って
、気液の分離効率か高い(7)気液分離して最終的に分
離液を排出する部位は分離タンク本体の底部に近い位i
6にあって、斜め1.方部位にある気体流出管口から落
差全もって離隔しているため、流出気流中に飛沫状液滴
を再混入することがない。
(6) Spiral channel and gas lA for centrifugal separation
The part of the discharge tube is divided by a spiral wall that forms a spiral shape, and does not cause short-circuit flow between them.
Since it is a single structure, there is no phenomenon in which fine droplets in the inner region of the swirling airflow transfer to the short-circuit flow and flow out into the gas outflow pipe, which occurs in the cyclone separation method. Therefore, the gas-liquid separation efficiency is high (7) The part where the gas-liquid is separated and the separated liquid is finally discharged is located near the bottom of the separation tank body.
6, diagonal 1. Since it is separated by a full height from the gas outlet pipe in the opposite direction, droplets will not be mixed into the outflow airflow again.

(8)分離液か除去されたのちの気流は、最初に分離タ
ンク本体内の空洞部の広い空間に導入されるため、この
部位における気流速度は大きくないから飛沫状液滴を再
び気流に乗せることがない。
(8) The airflow after the separated liquid is removed is first introduced into the wide cavity inside the separation tank body, so the airflow velocity in this area is not high, so the droplets are carried back into the airflow. Never.

(9)気流中から分離された飛沫状液滴は、分離液とし
て仕切板下方の分離液室内に直ちに隔冊fされるから、
斜昇して流出する気流中へ再混入することかない。
(9) The droplets separated from the airflow are immediately separated into separated liquid in the separated liquid chamber below the partition plate.
There is no possibility of re-mixing into the airflow that rises obliquely and flows out.

(10)分離液導管内に収集された分離液は、傾斜して
いる液滴衝突受板に衝突したのち分離液室に流下するが
、液滴衝突受板の凹面の弧状方向に向く分離液は縁部に
よって捕捉されて飛沫化と気流中への再混入が防止され
る。
(10) The separated liquid collected in the separated liquid conduit collides with the inclined droplet collision receiving plate and then flows down into the separated liquid chamber. is captured by the edges and prevented from becoming droplets and being reintroduced into the airstream.

(TI)、!個の液滴衝突受板は対称的に反対向きに傾
斜面を有するように配設されているから、分離液室内に
分離液か流入するとき分離液室の11qll・t・を中
心とする旋回運動を起さない。このため中心部にある排
出上・部に渦流による空洞を生ずるおそれがない。
(TI),! Since the droplet collision receiving plates are symmetrically arranged to have inclined surfaces in opposite directions, when the separated liquid flows into the separated liquid chamber, it rotates around 11qll·t of the separated liquid chamber. No movement. For this reason, there is no risk of creating a cavity due to vortex flow in the upper part of the discharge in the center.

この発明は、前記の実施例による説明および図例にのみ
限定されるものではなく、この発明の技術的思想から逸
脱しない範囲において種々変更し、変形して実施するこ
とが可能である。
This invention is not limited only to the description and illustrations of the embodiments described above, and can be implemented with various changes and modifications without departing from the technical idea of the invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の衝突式分離器の水平断面概略図、第2図
は同じ〈垂直断mj(既略図、第3図は従来のサイクロ
ン分離器の平面概略図、第1図は同しく一部切欠側面概
略図、第5図はこの発明による分S器の実h′lIi例
における一部切欠平面図、第3図は同しく一部切欠側面
図である。 / ・分離タンク本体、2 」一部盲板、3−下部盲板
、グ 排出管、乙、乙υ 渦巻形状体、7゜7a、・・
気体流入管、ざ1gυ・液滴衝突受板、9・仕切板、1
0.10EL  切欠部、// 分離液室、/−・通気
孔、/3−・気体流出管、/グ・・空洞部、/ 5 、
 / 5 a  ・垂直)〈ツフルボード、/乙・・・
第1バツフルボード、/ 7−[Jバッフルボード、2
0,20EL  入口部1.2/、、2/f:1.  
渦巻状壁1.22..22a  渦巻状b[を路1.2
3..23h下底板、2’l、2117−)、  終端
部、23..23u];底板、25 Jgi↓ 気体吐
出間隙部1.27.27a 分離液収集部材1.2g、
2gr上・分離夜導管。 #11 図 第2図
Fig. 1 is a schematic horizontal cross-sectional view of a conventional impingement separator, Fig. 2 is a schematic horizontal cross-section of the same <mj (schematic view), Fig. 3 is a schematic plan view of a conventional cyclone separator, FIG. 5 is a partially cutaway plan view of an actual example of the S separator according to the present invention, and FIG. 3 is a partially cutaway side view. / Separation tank body, 2 ”Partially blind plate, 3-lower blind plate, G discharge pipe, Otsu, Otsuυ spiral shaped body, 7゜7a,...
Gas inflow pipe, 1gυ/droplet collision receiving plate, 9/partition plate, 1
0.10EL Notch, // Separated liquid chamber, /-・Vent hole, /3-・Gas outflow pipe, /G・・Cavity, /5,
/ 5 a ・Vertical)〈Tsufuru board, /Otsu...
1st baffle board, / 7-[J baffle board, 2
0,20EL Inlet part 1.2/, 2/f:1.
Spiral wall 1.22. .. 22a spiral b [path 1.2
3. .. 23h lower bottom plate, 2'l, 2117-), terminal end, 23. .. 23u]; Bottom plate, 25 Jgi↓ Gas discharge gap 1.27.27a Separated liquid collection member 1.2g,
2gr upper/separated night conduit. #11 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)飛沫状液滴を含有する気流を分離タンク本体内に
形成されて下り勾配を有する先細の渦巻状流路へ送入し
て旋回下降させながら飛沫状液滴を相反に凝集させると
ともに遠心力により気流中より分離し、この分離液を前
記渦巻状流路に沿って流下させたのち収集して液滴衝突
受板へ衝突させ、また、前記分離液の除去された気流を
渦巻状流路の終’fW部4J近において渦巻状壁に衝突
させて気流中になお残留する飛沫状液滴を分離し、この
分離液を渦巻状壁に沿って流下させたのち41f記液滴
衝突受板に衝突させることにより前記分離液と合流させ
、この合流分離液を液滴衝突受板を経て分離タンク本体
底部へ流下させて外部へ排出するとともに、渦巻状壁に
衝突させたMij記気流を分離タンク本体内の広い空洞
部へ流入させたのち上方より排気して気流中の飛沫状数
滴を分離除去する方法(2)軸心を垂直として設置した
分離タンク7不体/の上部に」一部盲板一を取付けると
ともに下部に分離液の排出管qを連設した下部盲板3を
取(ツけ、この分離タンク本体/内の上方に気体b1し
入管7゜7 a、の一端を臨ませ、また、分層タンク本
<4−/内の下方に内部を分離液室//と空洞部/ll
とに区画する仕切板9を水平状に設け、さらに分離タン
ク本体/の気体流入管7,7aの反対側]1方に空洞部
/Ilと連通ずる気体流出管/3を取付け、この分離タ
ンク本体/内の気体流入管7,7ζ〕側に2個の渦巻形
状体乙、乙aをそれぞれの渦軸心が分離タンク本体/の
軸心と平行になるように設け、前記渦巻ノ1チ状体乙、
乙aはそれぞれの渦巻方向が互に反対方向をなすととも
に、それぞれの人口N(−? 0..20aの壁に関し
てそれぞれの渦巻部が両側に相対するように入口部20
.2Or+の壁面を相互に背中合せに組合せて気体流大
戦’ 7 + 7 ”にそれぞれ連設し、この渦巻形状
体乙、乙)iを形成する渦巻状壁2 / 、 27 F
lの相対する間を下底板、23.、l!3aで接続し、
前記下底板23,23υは下カヘ向かう先進方向にハl
r?の下り勾配の渦巻状をなして延設され、所要数の旋
回後に渦巻形状体乙、乙(iへの気体の流入向きと反対
向きの位ti”i’で終端部j4...24Zaを形成
し、また、下底板、23.23F)Lの]ユ方に沿って
それぞれの渦巻状壁J/、、2/aの相対する間を上底
板23..2!;υ、によって所要の断面積の渦巻状流
路、22..2ノン」を形成するような高さで接1読し
、さらに前記下底板、23,23ELの下方部のそれぞ
れの渦巻状壁!/ 、 2 / i)を前記終端部、2
Il、j/I−a位置まで切除することによりなお一旋
回延設される渦巻状壁−2/、 、2/aのそれぞれに
おいて相対する壁面の間に気体吐出間隙部−乙、2ta
をそれぞれ形成するとともに、前記の垂下延設された渦
巻状壁!/、2/υの下端側を分離タンク本体/に傾斜
囲をそれぞれ反対向きとして配設される液滴衝突受板ざ
、ざt−1,の−)こ部に臨1せ、また、終端部、2ゲ
。 、2#a位置における渦巻状壁2/、2/ELの外側壁
からそれぞれ半円筒状の分離液収集?tll利27゜、
、27 a、を渦巻状流h′l;J 、2 、−2.!
a 内i18.佼L、それぞれの分離液11部集r’+
lI 4オ、27,27υの下gI“14部に分離液淋
”f’:’ 、2g、!了り〕を連設するとともに、こ
れら分離液専管−ざ、 2gaの下!71“Mを液滴慨
突受9に各液衝突受板g、ga、の先’JIJa側とr
jiJ記分馬11夜へ 室//とを連通する切欠部10,10bt、=ら0・に
ドレーン孔を兼ねるjGi気孔/2を形成し、また、前
記気体吐出間隙部!乙、−乙aより吐出される気体の噴
流方間に対峙する位Bcこ垂直ハソフルボード/に、1
5aを配役するとともに、故滴南突受仮g、ざaと気体
流出管/3との間の空洞部/ゲに第1バッフルボード/
乙、第2パンフルホ゛−ド/7を架設してなる気流中の
チ[ヒ沫状血滴を分離除去する分離器。
(1) The airflow containing droplets is sent into the tapered spiral flow path formed in the separation tank body and has a downward slope, and is swirled downward while reciprocally agglomerating the droplets and centrifuged. The separated liquid is separated from the air stream by force, and the separated liquid is caused to flow down along the spiral flow path, and then collected and collided with the droplet collision receiving plate. The droplets that remain in the airflow are separated by colliding with the spiral wall near the end 'fW part 4J of the path, and the separated liquid is allowed to flow down along the spiral wall. By colliding with the plate, the liquid is merged with the separated liquid, and the combined liquid is allowed to flow down to the bottom of the separation tank body through the droplet collision receiving plate and discharged to the outside. A method of separating and removing a few droplets in the airflow by letting it flow into a wide cavity inside the separation tank body and then exhausting it from above. (2) At the top of the separation tank 7, which is installed with its axis vertical. Attach a partially blind plate 1 and install a lower blind plate 3 with a discharge pipe q for the separated liquid connected to the lower part. In addition, the inside of the separating tank is located at the bottom of the main tank, and the inside is separated by a separation liquid chamber // and a cavity /ll.
A partition plate 9 is installed horizontally to divide the separation tank into two parts, and a gas outflow pipe 3 communicating with the cavity part Il is installed on one side opposite to the gas inflow pipes 7 and 7a of the separation tank main body. Two spiral shaped bodies (B) and (B) are provided on the side of the gas inflow pipes (7, 7ζ) inside the main body, so that their respective swirl axes are parallel to the axis of the separation tank body. Condition B,
The inlet part 20a is arranged so that the spiral directions of each are opposite to each other, and each spiral part faces both sides with respect to the wall of each population N(-?0..20a).
.. The walls of 2Or+ are combined back to back and are connected to each other in a gas flow war '7 + 7'', forming spiral walls 2/, 27F, which form this spiral-shaped body B, B)i.
The space between the opposing sides of 1 is the lower bottom plate, 23. , l! Connect with 3a,
The lower bottom plates 23, 23υ are oriented in the forward direction toward the lower part.
r? After turning the required number of turns, the spiral-shaped bodies B, B (i) end at positions ti''i' opposite to the direction of gas inflow into i. 2/a along the [Y] direction of the lower bottom plate, 23. A spiral channel of cross-sectional area, 22..1 reading at a height such that it forms a 2 non", and further spiral walls of each of the lower parts of the lower bottom plate, 23, 23EL! / , 2 / i) the said terminal part, 2
By cutting to the Il,j/I-a position, a gas discharge gap portion-B, 2ta is created between the opposing wall surfaces of each of the spiral walls-2/, 2/a, which are further extended by one turn.
, respectively, and the drooping and extending spiral walls mentioned above! The lower end side of /, 2/υ faces the part of the droplet collision receiving plate zat-1, which is arranged with the inclined walls facing oppositely to the separation tank main body /, and the terminal end Part, 2 games. , semi-cylindrical separated liquid collection from the outer wall of the spiral wall 2/, 2/EL at position 2#a, respectively? tll interest 27°,
, 27 a, as a spiral flow h'l; J , 2 , -2. !
a Inside i18.佼L, 11 parts of each separated liquid r'+
lI 4o, 27,27υ lower gI "Separated liquid in 14 parts"f':', 2g,! At the same time, we will install a separate tank exclusively for these separated liquids, under 2 ga! 71"M to the droplet bumper plate 9, the tip of each liquid collision plate g, ga, 'JIJa side and r
A pore/2 which also serves as a drain hole is formed in the notch 10, 10bt, = 0, which communicates with the chamber //, and the gas discharge gap! B, - Bc is vertical to the full board / facing the direction of the gas jet discharged from A, 1
5a, and the first baffle board/ge in the hollow part/ge between the late Didinan tsuketsu g, a and the gas outflow pipe/3.
B. A separator for separating and removing droplet-like blood droplets in the airflow, which is constructed by installing a second panfluid/7.
JP13014382A 1982-07-26 1982-07-26 Method and separator for separating and removing droplets in airflow Expired JPS6095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13014382A JPS6095B2 (en) 1982-07-26 1982-07-26 Method and separator for separating and removing droplets in airflow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13014382A JPS6095B2 (en) 1982-07-26 1982-07-26 Method and separator for separating and removing droplets in airflow

Publications (2)

Publication Number Publication Date
JPS5919515A true JPS5919515A (en) 1984-02-01
JPS6095B2 JPS6095B2 (en) 1985-01-05

Family

ID=15026994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13014382A Expired JPS6095B2 (en) 1982-07-26 1982-07-26 Method and separator for separating and removing droplets in airflow

Country Status (1)

Country Link
JP (1) JPS6095B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04309997A (en) * 1991-04-08 1992-11-02 Sharp Corp Analog color signal output device
JP2015165103A (en) * 2014-02-28 2015-09-17 三菱重工業株式会社 Demister unit and egr system equipped with the same
WO2016158116A1 (en) * 2015-03-31 2016-10-06 三菱重工業株式会社 Demister unit and egr system
JP2017144432A (en) * 2017-03-31 2017-08-24 三菱重工業株式会社 Demister unit and egr system
KR20180055881A (en) * 2016-02-10 2018-05-25 미츠비시 쥬고교 가부시키가이샤 Demister Unit and EGR System
KR20180063308A (en) * 2016-02-10 2018-06-11 미츠비시 쥬고교 가부시키가이샤 Demister Unit and EGR System

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61230894A (en) * 1985-04-05 1986-10-15 三菱電機株式会社 Hand device for industrial robot
CN106807103B (en) * 2016-12-27 2019-05-17 青岛卓森纳生物工程有限公司 A kind of MVR vapour liquid separator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04309997A (en) * 1991-04-08 1992-11-02 Sharp Corp Analog color signal output device
JP2015165103A (en) * 2014-02-28 2015-09-17 三菱重工業株式会社 Demister unit and egr system equipped with the same
EP3112651A4 (en) * 2014-02-28 2017-08-30 Mitsubishi Heavy Industries, Ltd. Demister unit and egr system provided with same
WO2016158116A1 (en) * 2015-03-31 2016-10-06 三菱重工業株式会社 Demister unit and egr system
JP2016193393A (en) * 2015-03-31 2016-11-17 三菱重工業株式会社 Demister unit and egr system
KR20170120684A (en) * 2015-03-31 2017-10-31 미츠비시 쥬고교 가부시키가이샤 Demister unit and egr system
KR20180055881A (en) * 2016-02-10 2018-05-25 미츠비시 쥬고교 가부시키가이샤 Demister Unit and EGR System
KR20180063308A (en) * 2016-02-10 2018-06-11 미츠비시 쥬고교 가부시키가이샤 Demister Unit and EGR System
JP2017144432A (en) * 2017-03-31 2017-08-24 三菱重工業株式会社 Demister unit and egr system

Also Published As

Publication number Publication date
JPS6095B2 (en) 1985-01-05

Similar Documents

Publication Publication Date Title
US3989485A (en) Process and apparatus for scrubbing exhaust gas from cyclone collectors
CN102438496B (en) Cyclone dust collector
US3641745A (en) Gas liquid separator
US3885934A (en) Centrifugal tuyere for gas separator
US3789585A (en) Apparatus for cleaning gases
US4755194A (en) Method for introducing a mixture of gas and liquid into a separator vessel
US2664966A (en) Dust arrester
US11253874B2 (en) Cyclonic dust filter device
US2515894A (en) Dust collector
US3093468A (en) Gas scrubber
CN209997390U (en) dust removing device
JPS5919515A (en) Method for separating and removing splash liquid droplet in gas stream and separator
US2847087A (en) Dust collectors
CN104941323A (en) Multi-stage agglomeration and rotational flow combined method for removing liquid from gas
CN110835565A (en) Natural gas-liquid separation device
US3771295A (en) Separater apparatus for handling compressed air
US2542549A (en) Apparatus for separating suspended particles from gases
CN202876606U (en) Gas-liquid separator combined with centrifugal separation, baffle plate and filter
JP3690567B2 (en) Swivel gas-liquid separator
US3054244A (en) Gas-material separator
US4285703A (en) Apparatus for cleaning gas
US4247308A (en) Preformed-spray scrubber
RU2346727C1 (en) Gas separator of vortex type
JPS62129165A (en) Cyclone separator with powder collector
JPH0663452A (en) Cyclone separator