WO2017138266A1 - Clamping jig, method for manufacturing clamping jig, and resin - Google Patents

Clamping jig, method for manufacturing clamping jig, and resin Download PDF

Info

Publication number
WO2017138266A1
WO2017138266A1 PCT/JP2016/088126 JP2016088126W WO2017138266A1 WO 2017138266 A1 WO2017138266 A1 WO 2017138266A1 JP 2016088126 W JP2016088126 W JP 2016088126W WO 2017138266 A1 WO2017138266 A1 WO 2017138266A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
receiving jig
weight
manufacturing
epoxy resin
Prior art date
Application number
PCT/JP2016/088126
Other languages
French (fr)
Japanese (ja)
Inventor
広幸 村上
徳村 啓雨
巧 能見
Original Assignee
株式会社ナノマテックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナノマテックス filed Critical 株式会社ナノマテックス
Publication of WO2017138266A1 publication Critical patent/WO2017138266A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering

Definitions

  • the present invention is a receiving jig for supporting an object having a convex shape (an electronic board on which a component is mounted or various industrial products) on a convex surface having the convex shape, a manufacturing method thereof, and these. It relates to resin.
  • a substrate (hereinafter also referred to as a substrate) on which electronic components are mounted, generally, electronic components (hereinafter also referred to as components) are mounted on both sides of a substrate in a substrate used in a high-performance electronic device.
  • components electronic components
  • the component is mounted on one side of the both sides, and then the component is mounted on the opposite side.
  • the mounted surface is supported by the receiving jig.
  • FIG. 1A is a diagram illustrating an example of a substrate 100 on which a component 112 is mounted on one side.
  • the object (substrate 100) having a convex shape (the convex shape of the component 112) is supported by the receiving jig on the convex surface having the convex shape (the mounting surface 110 on which the component 112 is mounted). Is done. Thereby, the component 112 is mounted on the opposite surface 120 while the opposite surface 120 on which the component 112 is not yet mounted is kept horizontal.
  • a metal jig or a hard resin containing carbon cut is used as the receiving jig so that the mounted component 112 does not contact the metal or the like constituting the receiving jig.
  • the tip of the support pin may be a cushion such as a spring or rubber, or the tip of the tip disclosed in Patent Document 1 may be used. In this way, unnecessary stress is not applied to the mounted component 112.
  • the receiving jig needs to have antistatic performance.
  • the receiving jig needs to be configured to receive the object at a portion other than the portion where the object is easily damaged, or to be flexible so that the object is not subjected to stress even if it hits the receiving jig.
  • a demerit of a commonly used receiving jig will be described.
  • a method of supporting an object with support pins is a method often used as an object in mounting or inspection on the substrate 100.
  • FIG. 1B is a side view showing a state where the receiving jig 200 including the support pins 202 supports the substrate 100. In FIG. 1B, only three components 112 among the components 112 mounted on the substrate 100 are shown.
  • the substrate 100 is supported by the support pins 202 of the receiving jig 200 in the dead space between the adjacent components 112.
  • the support pins 202 in the substrate 100 are supported by increasing the density of mounting of the component 112 on the substrate 100 by making the smartphone light and thin. There is a tendency for dead space to disappear.
  • the object when the object is supported by the support pins 202, the object is likely to be distorted, tilted, or vibrated because it is supported by a point, and an error is likely to occur in the work performed on the object (such as mounting or inspection).
  • the support pins 202 when the object is supported by the support pins 202, the support pins 202 must be erected in accordance with the convex shape of the object (for example, the mounting position of the component 112 on the board 100). If a mistake is made, the object becomes defective in the manufacturing process of the object, resulting in a loss. Moreover, since the manufacturing process is operating every day, it is difficult to visually manage the deterioration of the support pins 202. Therefore, the quality such as mounting failure due to deterioration of parts constituting the support pin 202 (for example, parts such as a spring or rubber at the tip of the support pin 202 to prevent the object from being damaged by impact or pressure). It is difficult to suppress loss in advance.
  • the receiving jig 200 provided with the support pins 202 has the disadvantages described above, the method using the receiving jig 200 provided with the support pins 202 is not used.
  • NC Genetic Control
  • a metal for example, aluminum
  • a carbon kneading resin a resin in which carbon is kneaded in ABS or the like
  • FIG. 1C is a cross-sectional view showing a state in which the receiving jig 300 having the processing hole 302 supports the substrate 100 as an object.
  • FIG. 1C a cross section of a portion where the three components 112 of the substrate 100 are fitted in the processing hole 302 is shown.
  • the receiving jig 300 is made of metal or carbon-containing hard resin, and is not flexible and hard. Therefore, if the object is displaced when the object is mounted on the receiving jig 300, there is a high possibility that the object is damaged or damaged. Therefore, the processing range of the processing hole 302 of the receiving jig 300 is widened. Therefore, the processing time becomes long, which causes an increase in processing cost and an increase in cost for responding to short delivery date production.
  • the receiving jig 300 may be changed due to, for example, an increase in the number of components 112 or a change in the mounting position of the components 112, but each change requires cost and lead time.
  • the receiving jig 300 is costly, it is more costly to create the receiving jig 300 for each production of the object. Therefore, it is necessary to store the created receiving jig 300 for a long period of time. For example, a large storage space is required in a factory.
  • the receiving jig 300 is made of metal, it is heavy and difficult to handle.
  • the receiving jig 300 is made of a hard resin containing carbon in order to make the receiving jig 300 lighter, the carbon is easily peeled off, and the carbon adheres to an object such as the substrate 100, resulting in a market failure such as a short circuit.
  • a hard resin containing carbon in order to make the receiving jig 300 lighter, the carbon is easily peeled off, and the carbon adheres to an object such as the substrate 100, resulting in a market failure such as a short circuit.
  • the receiving jig 300 cut by using a hard resin containing metal or carbon has a demerit that it cannot be easily formed as described above and is expensive.
  • an object of the present invention is to provide a receiving jig, a manufacturing method of the receiving jig, and a resin that can be easily created and can suppress the influence and stress due to static electricity on the object to be supported.
  • the receiving jig which concerns on 1 aspect of this invention is a receiving jig for supporting the target object which has a convex shape in the convex surface with the said convex shape, Comprising: From resin which has the recessed part corresponding to the said convex-shaped outline The concave portion has a concave shape obtained when the convex mold is taken, and the resin has a hardness of 60 degrees to 90 degrees as measured by an Asker C-type hardness meter, and has a volume resistivity. A resin having a resistance of 10 2 ⁇ ⁇ cm to 10 7 ⁇ ⁇ cm.
  • the manufacturing method of the receiving jig which concerns on 1 aspect of this invention is a manufacturing method of the receiving jig for supporting the target object which has a convex shape in the convex surface with the said convex shape, Comprising:
  • the said convex surface is upwards on a base. Placing the object so as to face, covering the at least one of a release film and a cloth from the convex side of the object placed on the base, the release film and the cloth
  • a frame-shaped outer mold having a height relative to the base higher than the height of the convex portion of the convex surface on the base so as to surround the target object covered with at least one of the convex shape when viewed from above.
  • the post-curing Asker C-type hardness tester has a hardness of 60 to 90 degrees and a volume resistivity of 10 2 ⁇ ⁇ cm to 10 7 ⁇ in the frame of the outer mold in which the resin is put, the step of pressing an inner mold having an outer diameter corresponding to the inner diameter of the outer mold against the resin, and the inner mold Heating the resin while pressed against the resin.
  • the manufacturing method of the receiving jig which concerns on 1 aspect of this invention is a manufacturing method of the receiving jig for supporting the target object which has a convex shape in the convex surface with the said convex shape, Comprising: A step of installing a frame-shaped outer mold having an inner diameter surrounding the object in top view, and a hardness by an Asker C-type hardness meter after curing in the outer mold frame installed on the base from 60 degrees At least one of a release film and a cloth on the resin placed in the frame of the outer mold; and a step of adding a resin having a volume resistivity of 10 2 ⁇ ⁇ cm to 10 7 ⁇ ⁇ cm.
  • a step of placing the object on at least one of the release film and the cloth covered with the resin such that the convex surface faces downward, and the object is the release film and Of the cloth A step of pressing an inner mold having an outer diameter corresponding to an inner diameter of the outer mold against the object in a frame of the outer mold placed on at least one of the steps; and a step of heating the resin Including.
  • the resin according to one embodiment of the present invention is a resin in which a conductive material is blended in one of a thermosetting resin and a thermoplastic resin, and is one of the thermosetting resin and the thermoplastic resin.
  • the weight part of the conductive material is 0.3 to 20 parts by weight.
  • a receiving jig a manufacturing method thereof, and a resin used in these, which can be easily created and can suppress the influence and stress due to static electricity on the object to be supported.
  • FIG. 1A is a diagram illustrating an example of a board on which components are mounted on one side.
  • FIG. 1B is a side view showing a state in which a receiving jig including support pins supports a substrate.
  • FIG. 1C is a cross-sectional view showing a state where a receiving jig having a processed hole supports a substrate.
  • FIG. 2 is a diagram illustrating an example of a receiving jig according to the embodiment.
  • FIG. 3 is a diagram illustrating a state in which the receiving jig according to the embodiment supports the substrate.
  • FIG. 4 is a cross-sectional view showing a state where the receiving jig according to the embodiment supports the substrate.
  • FIG. 1A is a diagram illustrating an example of a board on which components are mounted on one side.
  • FIG. 1B is a side view showing a state in which a receiving jig including support pins supports a substrate.
  • FIG. 1C is a cross-section
  • FIG. 5 is a flowchart showing an example of a method of manufacturing a receiving jig according to the embodiment.
  • FIG. 6A is a diagram for describing the placing step according to the embodiment.
  • FIG. 6B is a diagram for explaining the steps to be covered according to the embodiment.
  • FIG. 6C is a diagram for explaining the installation step according to the embodiment.
  • FIG. 6D is a diagram for explaining the steps to be performed according to the embodiment.
  • FIG. 6E is a diagram for explaining a pressing step according to the embodiment.
  • FIG. 7 is a cross-sectional view showing a state in which a release film is covered on the substrate in the covering step according to the embodiment.
  • FIG. 8 is a cross-sectional view showing a state in which the release film and the cloth are covered on the substrate in the covering step according to the embodiment.
  • FIG. 9 is a cross-sectional view showing a state in which the resin in the pressing step according to the embodiment is pressed against the release film and the cloth.
  • FIG. 10A is a diagram illustrating an example of a blending amount of a resin blending material according to the embodiment.
  • FIG. 10B is a diagram illustrating another example of the compounding amount of the resin compounding material according to the embodiment.
  • FIG. 11: A is a figure which shows the compounding quantity of the compounding material of the resin which concerns on an Example.
  • FIG. 11B is a diagram illustrating conditions when the resin according to the example is cured.
  • FIG. 11C is a diagram illustrating physical properties of a resin constituting the receiving jig according to the example.
  • the object supported by the receiving jig is often described as the substrate 100.
  • the object is not limited to the substrate 100, and may be a workpiece used in general manufacturing processes such as various industrial products. There may be.
  • FIG. 2 is a diagram illustrating an example of the receiving jig 10 according to the embodiment.
  • FIG. 2 also shows a substrate 100 supported by the receiving jig 10 in addition to the receiving jig 10. Although six components 112 are mounted on the substrate 100 shown in FIG. 2, 1 to 5 components 112 may be mounted, or seven or more components 112 may be mounted.
  • the receiving jig 10 is a receiving jig for supporting an object having a convex shape on a convex surface having the convex shape.
  • the object is a substrate on which at least one component 112 is mounted, and the convex shape is the shape of the component 112 mounted on the substrate 100. Therefore, the receiving jig 10 supports the substrate 100 on the mounting surface 110 on which the component 112 is mounted.
  • the object is not limited to the substrate 100 but may be a workpiece used in general manufacturing processes such as various industrial products.
  • the receiving jig 10 is made of a resin having a concave portion 12 corresponding to the contour of the convex shape (the convex shape of the component 112). That is, the receiving jig 10 itself is a resin.
  • the resin will be described in detail with reference to FIGS. 10A and 10B, which will be described later.
  • the hardness measured by the Asker C-type hardness meter is 60 degrees to 90 degrees, and the volume resistivity is 10 2 ⁇ ⁇ cm to 10 7 ⁇ ⁇ It is a resin that is cm. In other words, this resin is a resin having high conductivity and flexibility.
  • the concave portion 12 has a concave shape obtained when a mold having a convex shape (the convex shape of the component 112) is taken.
  • the recess 12 is not formed by cutting, but is formed by taking the mold of the component 112 mounted on the mounting surface 110. Therefore, as shown in FIG. 2, the concave portion 12 has a concave shape corresponding to the contour of the component 112.
  • the receiving jig 10 has the component 112 on the mounting surface 110 fitted in the recess 12. In this state, the substrate 100 is supported.
  • FIG. 3 is a diagram illustrating a state in which the receiving jig 10 according to the embodiment supports the substrate 100.
  • the receiving jig 10 supports the substrate 100 on the mounting surface 110, so that the component 112 is mounted on the opposite surface 120 of the mounting surface 110 or the substrate 100 is inspected on the opposite surface 120. Etc. Further, since the receiving jig 10 supports the multi-sided substrate, the multi-sided substrate can be divided.
  • FIG. 4 is a cross-sectional view illustrating a state where the receiving jig 10 according to the embodiment supports the substrate 100.
  • FIG. 4 shows a cross section taken along the IV-IV plane shown in FIG.
  • the recess 12 Since the recess 12 is formed by taking the mold of the component 112, the receiving jig 10 supports the substrate 100 while wrapping the component 112 in the recess 12, as shown in FIG. As shown in FIGS. 2 and 4, the recess 12 has a bottom surface smaller than the opening of the recess 12 and has a wall surface inclined from the opening toward the bottom. That is, the recess 12 has an inverted frustum shape.
  • the recess 12 may have an inverted truncated pyramid shape or an inverted truncated cone shape depending on the shape of the component 112.
  • the bottom surface of the recess 12 is the same size as the top surface of the component 112 (the lower surface of the component 112 in FIGS. 2 and 4) fitted in the recess 12, and the recess 12 is directed from the bottom surface toward the opening. It has an expanding shape.
  • the receiving jig 10 has a hardness of 60 to 90 degrees as measured by an Asker C-type hardness meter, and is made of a resin having a volume resistivity of 10 2 ⁇ ⁇ cm to 10 7 ⁇ ⁇ cm. It is a tool and is not obtained by cutting, but has a concave recess 12 obtained by taking a convex mold of the object.
  • FIG. 5 is a flowchart showing an example of a method for manufacturing the receiving jig 10 according to the embodiment.
  • a person performs a method for manufacturing the receiving jig 10, but a machine for manufacturing the receiving jig 10 may be used. Details of step S11 to step S15 will be described with reference to FIGS. 6A to 6E.
  • the object 100, the convex surface, and the convex shape portion are mounted on the substrate 100 shown in FIG. A surface 110 and a part 112 are provided.
  • Step S11 the object is placed on the base so that the convex surface of the object faces upward (step S11). Step S11 will be described with reference to FIG. 6A.
  • FIG. 6A is a diagram for explaining the placing step according to the embodiment.
  • the base 50 has, for example, a substantially rectangular parallelepiped shape, and the substrate 100 is placed on the surface of the base 50. At this time, the substrate 100 is placed on the base 50 so that the mounting surface 110, which is the surface supported by the receiving jig 10, faces upward.
  • Step S12 At least one of the release film and the cloth is put on the convex surface side of the object placed on the base 50 (step S12). Step S12 will be described with reference to FIG. 6B.
  • FIG. 6B is a diagram for explaining the steps to be covered according to the embodiment.
  • FIG. 6B shows a state where the release film 20 is placed on the substrate 100.
  • the release film 20 used in step S12 needs to be a film that satisfies a plurality of conditions shown below. Although details will be described later, since the receiving jig 10 is formed by taking a mold through the release film 20, when the release film 20 expands and contracts, the surface of the receiving jig 10 becomes the release film 20. It becomes a wavy shape due to the expansion and contraction of. Therefore, the release film 20 needs to be a film with a small amount of expansion and contraction due to heat and pressure. Moreover, when the resin put in step S14 described later adheres to the release film 20, the shape of the receiving jig 10 such as the recess 12 may be collapsed when the release film 20 and the resin are peeled off.
  • the mold film 20 needs to be a film that is difficult to adhere. Further, when the resin penetrates into the release film 20, the object is contaminated. Therefore, the release film 20 needs to be a film in which the resin does not easily penetrate. Further, the release film 20 needs to be a film that can withstand the heating of the resin in step S16 described later.
  • the heat resistant temperature of the release film 20 is preferably about 100 to 400 degrees, and more preferably 200 degrees or more. Further, the release film 20 needs to be a film that can clearly mold the part 112 on the mounting surface 110 even through the release film 20.
  • fills the conditions mentioned above may be used instead of the release film 20 by step S12.
  • a fluororesin film, a silicon resin film, a heat-resistant film coated with a release agent, or the like is used as the release film 20 that satisfies these conditions.
  • the resin is put without the release film 20 being placed on the substrate 100, the substrate 100 is contaminated by the resin, and adheres to the substrate 100 when the resin is cured. In order to prevent these, the release film 20 is placed on the substrate 100. Step S12 will be described in more detail with reference to FIG.
  • Step S13 a frame-shaped outer portion whose height relative to the base 50 is higher than the height of the convex portion of the convex surface so as to surround the target object covered with at least one of the release film 20 and the cloth in a top view of the target object.
  • the mold is installed on the base 50 (step S13). Step S13 will be described with reference to FIG. 6C.
  • FIG. 6C is a diagram for explaining the installation steps according to the embodiment.
  • the outer mold 60 which is a frame-shaped mold, is used to copy the shape of the component 112 mounted on the mounting surface 110 of the substrate 100 with the resin put in step S14.
  • the outer mold 60 has, for example, a rectangular tube shape, and the size in the frame of the outer mold 60 in a top view is substantially the same as or slightly larger than the size of the substrate 100, so that the substrate 100 can be surrounded by the outer mold 60. .
  • the outer mold 60 is installed on the base 50 while surrounding the substrate 100.
  • the height of the outer mold 60 from the base 50 when the outer mold 60 is installed on the base 50 is higher than the height of the component 112 from the base 50 when the substrate 100 is placed on the base 50.
  • Step S14 resin is put in the frame of the outer mold 60 installed on the base 50 (step S14). Step S14 will be described with reference to FIG. 6D.
  • FIG. 6D is a diagram for explaining the steps to be performed according to the embodiment.
  • the resin 40 is put on the release film 20 in the frame of the outer mold 60.
  • the resin 40 is a resin having a hardness of 60 degrees to 90 degrees as measured by an Asker C-type hardness meter and a volume resistivity of 10 2 ⁇ ⁇ cm to 10 7 ⁇ ⁇ cm after curing.
  • the resin 40 is, for example, a liquid resin.
  • the amount in which the resin 40 is put is an amount corresponding to 20% to 95% of the volume in the frame of the outer mold 60.
  • the resin 40 may be a plate-like, particle-like (particle size is not particularly limited), pellet-like, or gel-like resin.
  • the resin 40 is in the form of particles, a larger amount of the resin 40 is added than in the case where the resin 40 is in the form of gel.
  • the resin 40 is cured in a state in which the concave portion 12 corresponding to the convex contour of the object is formed when the receiving jig 10 is formed.
  • Step S15 an inner mold having an outer diameter corresponding to the inner diameter of the outer mold 60 is pressed against the resin 40 within the frame of the outer mold 60 in which the resin 40 is placed (step S15). Step S15 will be described with reference to FIG. 6E.
  • FIG. 6E is a diagram for explaining the pressing step according to the embodiment.
  • an inner mold 70 having an outer diameter matching the inner diameter of the outer mold 60 is used, and in order to clarify the convex shape of the component 112 of the substrate 100 when the resin 40 is cured, within the frame of the mold 60, pressure is applied to the resin 40 from above by the inner mold 70.
  • a lid 80 is provided on the upper part of the inner mold 70.
  • the size of the lid 80 when viewed from above is, for example, a size corresponding to the outer diameter of the outer mold 60. Step S15 will be described in more detail with reference to FIG.
  • the base 50, the outer mold 60, and the inner mold 70 are less deformed even in a temperature environment of 80 ° C. or higher, such as metal or wood, and do not burn, burn, or produce contaminants.
  • the material is used.
  • the mold is subjected to non-adhesive surface treatment so that the resin 40 put in step S14 does not stick to the mold when cured.
  • Non-adhesive surface treatment is, for example, fluorine resin coating treatment, silicon resin coating treatment, non-adhesive composite coating treatment, or the like.
  • the thickness of the non-adhesive surface treatment is, for example, 200 ⁇ m or less.
  • the resin 40 is heated in a state where the inner mold 70 is pressed against the resin 40 (step S16).
  • the resin 40 is, for example, a liquid resin that is a thermosetting resin
  • the resin 40 is cured by being heated.
  • the resin 40 is heated at a temperature of 70 to 360 degrees, for example, according to the heat-resistant temperature of the substrate 100 or the like. Moreover, it heats for 10 minutes to 70 minutes according to heating temperature, for example.
  • the relationship between the heating time and the heating temperature is, for example, 100 to 120 degrees for 60 minutes and 200 to 260 degrees for about 30 minutes, but there are variations in the environment around the furnace body. Further, the heating temperature and the heating time are controlled by the type of the curing agent included in the resin 40.
  • the resin 40 is a resin having thermoplasticity, for example, a resin in a plate shape, a particle shape, or a pellet shape
  • the resin 40 is heated and semi-molten (including softening) in a state where the inner mold 70 is pressed against the resin 40. For example, it is cooled at room temperature and cured.
  • the heating furnace for heating the resin 40 may be a reflow furnace for mounting electronic components.
  • a heating furnace is an apparatus which can heat the resin 40, it will not specifically limit.
  • the resin 40 is a resin having thermoplasticity
  • the resin 40 is heated and semi-molten before the step of putting it into the frame of the outer mold 60. May be entered.
  • the resin 40 is cooled and cured at room temperature, for example, with the inner mold 70 pressed against the resin 40.
  • the cured resin 40 is taken out from the mold, and the cured resin 40 becomes the receiving jig 10.
  • step S12 will be described with reference to FIG.
  • FIG. 7 is a cross-sectional view showing a state in which the release film 20 is covered on the substrate 100 in the covering step according to the embodiment.
  • FIG. 7 shows a cross section at a location where three parts 112 on the near side in FIG. 6B are arranged. 7 and the subsequent drawings will be described using the substrate 100, the mounting surface 110, and the component 112 shown in FIG. 2 as the object, the convex surface, and the convex shape portion, respectively.
  • the mold release film 20 placed on the substrate 100 enters between the components 112 as shown in FIG. There is a need.
  • the release film 20 should be thin and easy to bend.
  • the thickness of the release film 20 is, for example, 25 ⁇ m to 500 ⁇ m.
  • a cloth may be used instead of the release film 20.
  • the thickness of the cloth is, for example, 500 ⁇ m to 1000 ⁇ m.
  • the release film 20 is placed on the substrate 100 while the space 22 is provided outside the side surface of the component 112. That is, the release film 20 is placed on the substrate 100 so that the side surface of the component 112 and the release film 20 do not adhere to each other. Thereby, the part which has wrapped the components 112 of the release film 20 becomes a frustum shape. Therefore, as described with reference to FIG. 4, the recess 12 has an inverted frustum shape formed by taking a frustum-shaped mold.
  • the release film 20 covered on the substrate 100 may be one sheet or a plurality of sheets. A plurality of types of films having different properties may be laminated on the substrate 100 in order to reduce expansion and contraction of the release film 20 due to heating in step S16. Moreover, the release film 20 having the same property may be laminated on the substrate 100. Even when a cloth is used instead of the release film 20, the cloth covered on the substrate 100 may be one sheet or plural sheets. In order to reduce the expansion and contraction of the cloth due to heating in step S16, a plurality of types of cloth having different properties may be laminated on the substrate 100. A cloth having the same property may be laminated on the substrate 100.
  • both the release film 20 and the cloth may be put on the substrate 100.
  • FIG. 8 is a cross-sectional view showing a state in which the release film 20 and the cloth 30 are covered with the substrate 100 in the covering step according to the embodiment.
  • FIG. 8 shows a cross section at a position where three parts 112 on the near side in FIG. 6B are arranged when both the release film 20 and the cloth 30 are covered with the substrate 100.
  • Resin 40 may shrink after being cured. That is, the size of the recess 12 of the receiving jig 10 may be reduced. Therefore, a cloth 30 having a thickness corresponding to the shrinkage amount of the resin 40 is placed on the substrate 100. In addition, when both the release film 20 and the cloth 30 are covered on the substrate 100, the release film 20 may be covered after the cloth 30 is covered on the substrate 100. Thereby, it is not necessary to use a cloth having the property that the resin 40 is difficult to adhere as the cloth 30.
  • step S15 Details of step S15 will be described with reference to FIG.
  • FIG. 9 is a cross-sectional view showing a state where the resin 40 is pressed against the release film 20 and the cloth 30 in the pressing step according to the embodiment.
  • a screw 90 and a spring 92 not shown in FIG. 6E are shown.
  • the screws 90 are provided through the lid 80 at four corners in the top view of the lid 80, and the spring 92 is provided between the lid 80 and the screw head of the screw 90.
  • FIG. 9 for the sake of explanation, a cross section of a part where three parts 112 are arranged and a part where a screw 90 and a spring 92 are provided is shown on one drawing.
  • a clearance a is provided between the outer peripheral surface of the mold 70.
  • the resin 40 is pressed against the inner mold 70 in a state where the clearance a is 50 ⁇ m to 300 ⁇ m.
  • the size of the clearance a is selected from the above range depending on the viscosity of the resin 40 and the like.
  • the receiving jig 10 mounting or inspection is performed on the substrate 100 while the substrate 100 is supported by the receiving jig 10, so that the surface that supports the mounting surface 110 of the receiving jig 10 and the opposite surface are horizontal. There must be. Therefore, when the receiving jig 10 is created, the resin 40 needs to be pressed against the inner mold 70 with the bottom surface of the inner mold 70 being horizontal with respect to the surface of the base 50 on which the substrate 100 is placed. Moreover, when the resin 40 is heated in a state where it is pressed against the inner mold 70, it is necessary to keep the respective surfaces horizontal.
  • the method of keeping each surface horizontal is not particularly limited, but for example, a screw, a ball screw, a belt, a weight, or a spring is used.
  • screws 90 and springs 92 are used to keep the respective surfaces horizontal.
  • a plurality of screws 90 (for example, screws 90 provided at the four corners of the lid 80) passing through the lid 80 are screwed into the outer mold 60 while adjusting the screwing amounts, so that each surface is kept horizontal.
  • the resin 40 is pressed against the inner mold 70.
  • a spiral spring 92 is used as a buffer between the screw head of the screw 90 and the lid 80. This further improves the horizontal accuracy.
  • the hardness of the Asker C-type hardness tester is 60 to 90 degrees and the volume resistivity is 10 2 ⁇ ⁇ cm to 10 7 ⁇ ⁇ cm.
  • a receiving jig 10 having a concave recess 12 obtained by taking a convex mold of the object is created.
  • the receiving jig 10 can be cut by a router or the like, and the shape of the recess 12 can be easily corrected after the receiving jig 10 is formed.
  • FIG. 10A is a diagram illustrating an example of the blending amount of the blending material of the resin 40 according to the embodiment.
  • the resin 40 is a resin in which at least a conductive material is blended in one of a thermosetting resin and a thermoplastic resin (uniform dispersion blending: hereinafter also referred to as uniform blending). As shown in FIG. 10A, the weight of the conductive material is 0.3 to 20 parts by weight with respect to one of the thermosetting resin and the thermoplastic resin. Thus, the resin 40 becomes a resin having a volume resistivity of 10 2 ⁇ ⁇ cm to 10 7 ⁇ ⁇ cm after curing.
  • thermosetting resin is, for example, an epoxy resin, a urethane resin, a silicon resin, a fluorine resin, a polyimide resin, an acrylic resin, or a phenol resin.
  • Thermoplastic resins include, for example, low molecular weight polyethylene resin, thermoplastic urethane resin, vinyl chloride resin, polypropylene resin, acrylonitrile styrene resin, styrene resin, acrylic resin, methacrylic resin, polyethylene terephthalate resin, polyvinylidene chloride resin, polyvinylidene fluoride, Polyamide resin, acetal resin, polycarbonate resin or polybutylene terephthalate resin.
  • the conductive material is a carbon allotrope containing carbon nanotubes, graphene, or graphite.
  • FIG. 10B is a diagram illustrating another example of the blending amount of the blending material of the resin 40 according to the embodiment.
  • the resin 40 when an epoxy resin is included as a blending material for the resin 40, the resin 40 is obtained by blending a carbon allotrope that is a conductive material, a curing agent, and a curing accelerator in the epoxy resin.
  • the part by weight of the curing agent is 100 to 800 parts by weight
  • the part by weight of the curing accelerator is 1 to 20 parts by weight.
  • the resin 40 has a volume resistivity of 10 2 ⁇ ⁇ cm ⁇ 10 7 ⁇ ⁇ cm next after heat curing, and comprises a resin hardness in Asker C hardness meter is 90 degrees 60 degrees.
  • Curing agents are acid anhydride compounds, diamine compounds, and dialcohol compounds.
  • the curing accelerator is an amine compound.
  • the resin 40 blended in this way becomes the receiving jig 10 by being heated and cured by the method for manufacturing the receiving jig 10 described above.
  • FIG. 11A is a diagram showing a blending amount of the blending material of the resin 40 according to the example.
  • the epoxy resin (flexible epoxy resin) shown in FIG. 11A is an epoxy resin in Example 1, and is a flexible epoxy resin in Examples 2 and 3.
  • thermosetting resin is a bisphenol F type epoxy resin.
  • the curing agent is a mixture in which a polyacid polyanhydride having a long-chain alkyl group and tetrahydromethylphthalic anhydride are mixed.
  • the curing accelerator is 1.8 azabicycloundecene.
  • the conductive material is a multi-walled carbon nanotube.
  • thermosetting resin is a mixture of a bisphenol F-type epoxy resin and a modified epoxy resin.
  • the curing agent is a polyacid polyanhydride having a long chain alkyl group.
  • the curing accelerator is 1.8 azabicycloundecene.
  • the conductive material is a multi-walled carbon nanotube.
  • thermosetting resin is a mixture of a bisphenol F type epoxy resin and a modified epoxy resin.
  • the curing agent is a mixture in which a polyacid polyanhydride having a long-chain alkyl group and tetrahydromethylphthalic anhydride are mixed.
  • the curing accelerator is 1.8 azabicycloundecene.
  • the conductive material is a multi-walled carbon nanotube.
  • Resin 40 is a resin that includes the above-described blending materials in Examples 1 to 3 and is blended in the blending amount shown in FIG. 11A.
  • FIG. 11B is a diagram illustrating conditions when the resin 40 according to the example is cured.
  • Step S16 in the heating step in Examples 1 to 3 (Step S16), all were cured under the same conditions.
  • the resin 40 was cured by heating at a temperature of 120 ° C. for 60 minutes in a thermostatic bath.
  • Examples 1 to 3 aluminum, which is lightweight, low-cost, and has good workability, was used as the material for the mold (base 50, outer mold 60, and inner mold 70).
  • a fluororesin coating treatment was performed with an accuracy of 100 ⁇ m or less.
  • the release film 20 was covered with a fluororesin film (heat-resistant temperature 220 degrees) and the cloth 30.
  • FIG. 11C the physical properties of the resin constituting the receiving jig 10 manufactured under the conditions of Examples 1 to 3 described in FIGS. 11A and 11B are shown in FIG. 11C.
  • FIG. 11C is a diagram illustrating physical properties of the resin constituting the receiving jig 10 according to the example.
  • the volume resistivity is 10 2 ⁇ ⁇ cm to 10 7 ⁇ ⁇ cm as the physical properties of the resin constituting the receiving jig 10, and the Asker C type.
  • the hardness measured by a hardness meter is 60 degrees to 90 degrees.
  • the receiving jig 10 is a receiving jig for supporting an object having a convex shape on a convex surface having the convex shape, and has a recess 12 corresponding to the contour of the convex shape. Consists of.
  • the recess 12 has a concave shape obtained when a convex mold is taken.
  • the resin is a resin having a hardness of 60 to 90 degrees as measured by an Asker C-type hardness meter and a volume resistivity of 10 2 ⁇ ⁇ cm to 10 7 ⁇ ⁇ cm.
  • the receiving jig 10 is easily produced only by taking a type
  • the receiving jig 10 is made of a resin having a volume resistivity of 10 2 ⁇ ⁇ cm to 10 7 ⁇ ⁇ cm, even when the object is the substrate 100 on which the component 112 is mounted, the leakage current due to static electricity In addition, it is possible to suppress contamination of the target object with dust. In this way, it is possible to provide the receiving jig 10 that can be easily created and can suppress the influence and stress due to static electricity on the object to be supported.
  • the object is the substrate 100 or the workpiece on which at least one component 112 is mounted.
  • the influence and stress due to static electricity on the workpiece used in the general manufacturing process such as the substrate 100 or various industrial products can be suppressed.
  • the substrate 100 is supported on the mounting surface 110 on which the component 112 is mounted, and can easily be applied to the opposite surface 120 of the mounting surface 110 while suppressing the influence and stress due to static electricity on the object. Parts can be mounted.
  • the substrate 100 can be easily inspected on the opposite surface 120 of the substrate 100. Further, when the substrate 100 is a multi-sided substrate, the substrate 100 can be easily divided.
  • the recess 12 has a bottom surface smaller than the opening of the recess 12 and has a wall surface inclined from the opening toward the bottom.
  • the convex shape of the object fits into the concave portion 12 by sliding the inclined wall surface of the concave portion 12 from the opening side to the bottom surface side, so that the target object can be easily set on the jig 10.
  • the resin constituting the receiving jig 10 is a resin in which a conductive material is blended with one of a thermosetting resin and a thermoplastic resin, and one of the thermosetting resin and the thermoplastic resin.
  • the weight part of the conductive material is 0.3 to 20 parts by weight.
  • the volume resistivity of the resin constituting the receiving jig 10 can be 10 2 ⁇ ⁇ cm to 10 7 ⁇ ⁇ cm.
  • the thermosetting resin is an epoxy resin, a urethane resin, a silicon resin, a fluorine resin, a polyimide resin, an acrylic resin, or a phenol resin.
  • Thermoplastic resin is low molecular weight polyethylene resin, thermoplastic urethane resin, vinyl chloride resin, polypropylene resin, acrylonitrile styrene resin, styrene resin, acrylic resin, methacrylic resin, polyethylene terephthalate resin, polyvinylidene chloride resin, polyvinylidene fluoride, polyamide resin An acetal resin, a polycarbonate resin or a polybutylene terephthalate resin.
  • the conductive material is a carbon allotrope containing carbon nanotubes, graphene, or graphite.
  • the resin constituting the receiving jig 10 can be selected and blended from the above materials.
  • the conductive material is a carbon allotrope such as carbon nanotube, graphene, or graphite
  • the strength against peeling is higher than when the resin constituting the receiving jig 10 is a carbon-containing resin. Therefore, it is difficult for dust due to carbon peeling to occur, and when the target is the substrate 100 or the like, it is possible to suppress the occurrence of a market defect such as an unnecessary short circuit on the substrate 100 due to dust.
  • the resin constituting the receiving jig 10 is a resin in which a conductive material, a curing agent, and a curing accelerator are blended with an epoxy resin as a thermosetting resin.
  • the curing agent is an acid anhydride compound, a diamine compound, or a dialcohol compound
  • the curing accelerator is an amine compound.
  • the weight part of the curing agent is 100 parts by weight to 800 parts by weight and the weight part of the curing accelerator is 1 part by weight to 20 parts by weight with respect to the thermosetting resin.
  • tool 10 is made flexible by mix
  • the Asker C-type hardness of the resin that constitutes the receiving jig 10 by blending 100 parts by weight to 800 parts by weight of the curing agent and 1 part by weight to 20 parts by weight of the curing accelerator. The hardness by the meter can be changed from 60 degrees to 90 degrees.
  • the epoxy resin is a bisphenol F type epoxy resin.
  • the epoxy resin is a flexible epoxy resin in which a bisphenol F-type epoxy resin and one of an aliphatic epoxy resin and a modified epoxy resin are mixed.
  • the curing agent is a polyacid polyanhydride having a long chain alkyl group or a mixture of a polyacid polyanhydride having a long chain alkyl group and tetrahydromethylphthalic anhydride.
  • the curing accelerator is 1.8 azabicycloundecene.
  • the conductive material is a multi-walled carbon nanotube.
  • the characteristics of the resin constituting the receiving jig 10 can be made as shown in FIG. 11C.
  • the manufacturing method of the receiving jig 10 is a manufacturing method of a receiving jig for supporting an object having a convex shape on a convex surface having a convex shape.
  • the manufacturing method includes a step of placing an object such that the convex surface faces upward on the base 50, and at least one of the release film 20 and the cloth 30 from the convex surface side of the object placed on the base 50. Covering the step.
  • the said manufacturing method is higher than the said height of the convex-shaped part of a convex surface so that the target with which at least one of the release film 20 and the cloth 30 was covered may be enclosed in the top view of a target object.
  • the hardness of the hardened Asker C-type hardness meter is 60 to 90 degrees and the volume resistivity is 10 2 ⁇ ⁇ cm in the frame of the outer mold 60 installed on the base 50.
  • the manufacturing method also includes a step of pressing an inner mold 70 having an outer diameter corresponding to the inner diameter of the outer mold 60 against the resin 40 in a frame of the outer mold 60 in which the resin 40 is placed, and a step of heating the resin 40. And including.
  • the receiving jig 10 can be easily created simply by taking a mold as compared to the supporting pin or cutting receiving jig. Further, since the receiving jig 10 is made of a flexible resin having a hardness of 60 degrees to 90 degrees as measured by an Asker C type hardness tester, scratches or stress is given to the object supported by the receiving jig 10. Absent. Furthermore, since the receiving jig 10 has the recessed part 12 which took the type
  • the volume resistivity is a resin which is 10 2 ⁇ ⁇ cm ⁇ 10 7 ⁇ ⁇ cm, even if the substrate 100 where the object is mounted in the component 112, the leakage current due to static electricity It is possible to suppress the contamination of the object due to dust. In this way, it is possible to provide the receiving jig 10 that can be easily created and can suppress the influence and stress due to static electricity on the object to be supported. Moreover, since the convex mold
  • the resin 40 is heated in a state where the inner mold 70 is pressed against the resin 40 after the pressing step. Further, in the heating step, the resin 40 may be heated before the adding step, and in the adding step, the resin 40 heated in the heating step may be put in the frame of the outer mold 60.
  • the receiving jig 10 can be created even if the order of heating the resin 40 is changed.
  • the object is the substrate 100 or the workpiece on which at least one component 112 is mounted.
  • the release film 20 is a film in which a release agent is coated on a fluororesin film, a silicon resin film, or a heat-resistant film.
  • the surface of the receiving jig 10 is suppressed from being wavy due to the expansion and contraction of the release film 20.
  • the cured resin 40 is less likely to adhere to the release film 20
  • the shape of the receiving jig 10 such as the recess 12 is prevented from collapsing when the release film 20 and the cured resin are peeled off.
  • the release film 20 can withstand the heating temperature when the resin 40 is heated.
  • a convex mold on the convex surface of the object can be clearly obtained even through the release film 20.
  • the outer mold 60 and the inner mold 70 are molds that have been subjected to fluorine resin coating treatment, silicon resin coating treatment, or non-adhesive composite coating treatment.
  • the cured resin 40 is less likely to adhere to the outer mold 60 and the inner mold 70, so that the shape of the receiving jig 10 may collapse when the outer mold 60, the inner mold 70 and the cured resin 40 are peeled off. It is suppressed.
  • the inner mold 70 is pressed in a state where the clearance a between the inner peripheral surface of the outer mold 60 and the outer peripheral surface of the inner mold 70 is 50 ⁇ m to 300 ⁇ m.
  • the resin 40 is heated at a temperature of 70 to 360 degrees.
  • the resin 40 is heated at a temperature of 70 to 360 degrees, so that the resin 40 is cured when the resin 40 is a thermosetting resin, and is semi-molten when the resin 40 is a thermoplastic resin. Then it is cooled and hardened. Then, the resin 40 is 90 degrees from the hardness of 60 degrees due to curing after the Asker-C hardness meter, and the volume resistivity is in the resin is 10 2 ⁇ ⁇ cm ⁇ 10 7 ⁇ ⁇ cm.
  • the resin 40 is a resin in which a conductive material is blended with one of a thermosetting resin and a thermoplastic resin, and the weight part of the conductive material with respect to one of the thermosetting resin and the thermoplastic resin. Is 0.3 to 20 parts by weight.
  • the volume resistivity of the resin 40 can be set to 10 2 ⁇ ⁇ cm to 10 7 ⁇ ⁇ cm.
  • the thermosetting resin is an epoxy resin, a urethane resin, a silicon resin, a fluorine resin, a polyimide resin, an acrylic resin, or a phenol resin.
  • Thermoplastic resin is low molecular weight polyethylene resin, thermoplastic urethane resin, vinyl chloride resin, polypropylene resin, acrylonitrile styrene resin, styrene resin, acrylic resin, methacrylic resin, polyethylene terephthalate resin, polyvinylidene chloride resin, polyvinylidene fluoride, polyamide resin An acetal resin, a polycarbonate resin or a polybutylene terephthalate resin.
  • the conductive material is a carbon allotrope containing carbon nanotubes, graphene, or graphite.
  • the resin 40 can be selected and blended from the above materials.
  • the conductive material is a carbon allotrope such as carbon nanotube, graphene, or graphite
  • the strength against peeling is higher than when the resin constituting the receiving jig 10 is a carbon-containing resin. Therefore, it is difficult for dust due to carbon peeling to occur, and when the target is the substrate 100 or the like, it is possible to suppress the occurrence of a market defect such as an unnecessary short circuit on the substrate 100 due to dust.
  • the resin 40 is a resin in which an electrically conductive material, a curing agent, and a curing accelerator are blended with an epoxy resin as a thermosetting resin.
  • the curing agent is an acid anhydride compound, a diamine compound, or a dialcohol compound
  • the curing accelerator is an amine compound.
  • the weight part of the curing agent is 100 parts by weight to 800 parts by weight and the weight part of the curing accelerator is 1 part by weight to 20 parts by weight with respect to the thermosetting resin.
  • tool 10 is made flexible by mix
  • the Asker C-type hardness of the resin that constitutes the receiving jig 10 by blending 100 parts by weight to 800 parts by weight of the curing agent and 1 part by weight to 20 parts by weight of the curing accelerator. The hardness by the meter can be changed from 60 degrees to 90 degrees.
  • the epoxy resin is a bisphenol F type epoxy resin.
  • the epoxy resin is a flexible epoxy resin in which a bisphenol F-type epoxy resin and one of an aliphatic epoxy resin and a modified epoxy resin are mixed.
  • the curing agent is a polyacid polyanhydride having a long chain alkyl group or a mixture of a polyacid polyanhydride having a long chain alkyl group and tetrahydromethylphthalic anhydride.
  • the curing accelerator is 1.8 azabicycloundecene.
  • the conductive material is a multi-walled carbon nanotube.
  • the characteristics of the resin constituting the receiving jig 10 can be made as shown in FIG. 11C.
  • the receiving jig 10 is created by the method in which the resin 40 is pressed against the object placed on the base 50 shown in the above-described steps S11 to S16, but is not limited thereto.
  • the receiving jig 10 may be created by the following method.
  • a frame-shaped outer mold 60 having an inner diameter that surrounds the object in the top view of the object is installed on the base 50.
  • the hardness by the Asker C-type hardness meter after curing is changed from 60 degrees to 90 degrees, and the volume resistivity is 10 2 ⁇ ⁇ cm to 10 7 ⁇ . ⁇ Put resin 40 to be cm.
  • at least one of the release film 20 and the cloth 30 is put on the resin 40 put in the frame of the outer mold 60.
  • an object is placed on at least one of the release film 20 and the cloth 30 covered with the resin 40 so that the convex surface faces downward.
  • the inner mold 70 having an outer diameter corresponding to the inner diameter of the outer mold 60 is pressed against the object.
  • the resin 40 put in the frame of the outer mold 60 is heated in a state where the inner mold 70 is pressed against the object.
  • the temperature at which the resin 40 is heated is 70 degrees to 360 degrees.
  • the inner mold 70 is pressed in a state where the clearance a between the inner peripheral surface of the outer mold 60 and the outer peripheral surface of the inner mold 70 is 50 ⁇ m to 300 ⁇ m.
  • the receiving jig 10 can be easily created.
  • the resin 40 may be heated in advance before being put into the frame of the outer mold 60. Moreover, after the resin 40 is put in the frame of the outer mold 60, it may be heated before at least one of the release film 20 and the cloth 30 is covered. Specifically, in the case where the resin 40 is a resin having thermoplasticity, for example, a resin in the form of a plate, a particle, or a pellet, the resin 40 is heated in advance before the resin 40 is put into the frame of the outer mold 60. Then, after being semi-melted, it may be put in the frame of the outer mold 60.
  • the resin 40 is a resin having thermoplasticity, for example, a resin in the form of a plate, a particle, or a pellet
  • the resin 40 is heated in advance before the resin 40 is put into the frame of the outer mold 60. Then, after being semi-melted, it may be put in the frame of the outer mold 60.
  • the resin 40 instead of heating the resin 40 put in the frame of the outer mold 60 with the inner mold 70 pressed against the object, the resin 40 is pressed with the inner mold 70 pressed against the object. For example, it is cooled at room temperature and cured. Further, the resin 40 may be heated after being put in the frame of the outer mold 60, and at least one of the release film 20 and the cloth 30 may be covered with the heated resin 40. Thus, the receiving jig 10 can be created even if the order of heating the resin 40 is changed.
  • the present invention can be applied to a jig for mounting or inspecting a substrate or the like as an object, or a support jig for stably supporting an intermediate workpiece having various complex structures.

Abstract

An easily producible clamping jig (10) that can minimize static-electricity-derived effects and stresses on a supported object is used for supporting an object having a convex shape on a convex surface to which said convex shape is provided, wherein said jig (10) comprises a resin having a recess (12) that corresponds to the outline of the convex shape, the recess (12) having a recessed shape obtained when a mold of the convex shape is taken, and the clamping jig (10) being a resin that has a hardness of 60 to 90 degrees according to an Asker C hardness meter and a volume resistivity of 102 Ω•cm to 107 Ω•cm.

Description

受け治具、受け治具の製造方法及び樹脂Receiving jig, manufacturing method of receiving jig, and resin
 本発明は、凸形状を有する対象物(部品が実装された電子基板又は各種工業生産品等)を当該凸形状のある凸面において支持するための受け治具、その製造方法及びこれらに使用される樹脂に関する。 INDUSTRIAL APPLICABILITY The present invention is a receiving jig for supporting an object having a convex shape (an electronic board on which a component is mounted or various industrial products) on a convex surface having the convex shape, a manufacturing method thereof, and these. It relates to resin.
 電子部品が実装された基板(以下、基板とも言う)の作成において、一般的に、高機能な電子機器に使用される基板には、基板の両面に電子部品(以下、部品とも言う)が実装されている。両面に部品が実装された基板では、両面のうちの片面に部品が実装された後に、その反対面に部品が実装される。反対面に部品が実装されるときには、実装済みの面が受け治具に支持される。 In creating a substrate (hereinafter also referred to as a substrate) on which electronic components are mounted, generally, electronic components (hereinafter also referred to as components) are mounted on both sides of a substrate in a substrate used in a high-performance electronic device. Has been. In a board on which components are mounted on both sides, the component is mounted on one side of the both sides, and then the component is mounted on the opposite side. When the component is mounted on the opposite surface, the mounted surface is supported by the receiving jig.
 図1Aは、片面に部品112が実装された基板100の一例を示す図である。 FIG. 1A is a diagram illustrating an example of a substrate 100 on which a component 112 is mounted on one side.
 図1Aに示されるように、凸形状(部品112の凸形状)を有する対象物(基板100)は、当該凸形状のある凸面(部品112が実装された実装面110)において受け治具に支持される。これにより、まだ部品112が実装されていない反対面120が水平に保たれながら、反対面120に部品112が実装される。 As shown in FIG. 1A, the object (substrate 100) having a convex shape (the convex shape of the component 112) is supported by the receiving jig on the convex surface having the convex shape (the mounting surface 110 on which the component 112 is mounted). Is done. Thereby, the component 112 is mounted on the opposite surface 120 while the opposite surface 120 on which the component 112 is not yet mounted is kept horizontal.
 このとき、基板100上の実装済みの部品112へ無用なストレス(圧力又は傷等)がかけられたりしないようにする必要がある。例えば、受け治具として金属又はカーボン入り硬質樹脂を切削したものが使用され、実装済み部品112が受け治具を構成する金属等に接触しないようにされている。また、例えば、受け治具としてサポートピンで基板100を支持するものが使用される場合には、サポートピンの先端部をバネ又はゴム等のクッションにしたり、特許文献1に開示された先端部のようにしたりして実装済みの部品112へ無用なストレスがかけられたりしないようにしている。 At this time, it is necessary to prevent unnecessary stress (pressure or scratches) from being applied to the mounted component 112 on the substrate 100. For example, a metal jig or a hard resin containing carbon cut is used as the receiving jig so that the mounted component 112 does not contact the metal or the like constituting the receiving jig. For example, when a support jig that supports the substrate 100 with a support pin is used, the tip of the support pin may be a cushion such as a spring or rubber, or the tip of the tip disclosed in Patent Document 1 may be used. In this way, unnecessary stress is not applied to the mounted component 112.
特許第5746763号公報Japanese Patent No. 5746763
 ところで、基板100又は各種工業生産品等の多くの対象物は、静電気の帯電によって、例えば、静電気の基板100に実装された部品112へのリーク電流等による部品112の破壊、又は、静電気により吸いついたゴミによる対象物の汚染等の静電気による影響を受ける。その為、受け治具は、帯電防止性能を有している必要がある。 By the way, many objects such as the substrate 100 or various industrial products are absorbed by static electricity, for example, destruction of the component 112 due to leakage current to the component 112 mounted on the static electricity substrate 100 or static electricity. It is affected by static electricity such as contamination of the object by the attached garbage. Therefore, the receiving jig needs to have antistatic performance.
 また、対象物が受け治具に支持されているときに、受け治具による対象物への不要な接触により対象物が破壊される事を防ぐ必要がある。その為に、受け治具は、対象物の破損し易い部分以外の部分で対象物を受ける構成か、対象物が受け治具に当たってもストレスを受けないように柔軟性を有する必要がある。このように、対象物へ圧力が掛けられたり傷つけられたりするようなストレスが発生しにくい受け治具が要求されている。ここで、一般的に使用されている受け治具のデメリットについて説明する。 Also, when the object is supported by the receiving jig, it is necessary to prevent the object from being destroyed by unnecessary contact with the object by the receiving jig. For this purpose, the receiving jig needs to be configured to receive the object at a portion other than the portion where the object is easily damaged, or to be flexible so that the object is not subjected to stress even if it hits the receiving jig. Thus, there is a demand for a receiving jig that is unlikely to generate stress that may cause pressure or damage to an object. Here, a demerit of a commonly used receiving jig will be described.
 例えば、サポートピンで対象物を支える方法は対象物として基板100への実装又は検査等においてよく使用される方法である。 For example, a method of supporting an object with support pins is a method often used as an object in mounting or inspection on the substrate 100.
 図1Bは、サポートピン202を備える受け治具200が基板100を支持している状態を示す側面図である。図1Bでは、基板100に実装されている部品112のうちの3つの部品112のみを示している。 FIG. 1B is a side view showing a state where the receiving jig 200 including the support pins 202 supports the substrate 100. In FIG. 1B, only three components 112 among the components 112 mounted on the substrate 100 are shown.
 図1Bに示されるように、隣り合う部品112の間のデッドスペースにおいて、基板100が受け治具200のサポートピン202に支えられている。サポートピン202で基板100を支えるためには多くの点で支える必要があり、基板100に多くのデッドスペースを設ける必要がある。しかし、近年の高機能化された電子機器として例えばスマートフォン等においては、スマートフォン等の軽薄短小化による部品112の基板100への実装の高密度化により、基板100内のサポートピン202で支えるためのデッドスペースが無くなる傾向にある。また、低機能な電子機器に対しても、コストダウンの為に基板100の面積を小さくする努力がされており、高機能な電子機器と同様にデッドスペースが無くなる傾向にある。 As shown in FIG. 1B, the substrate 100 is supported by the support pins 202 of the receiving jig 200 in the dead space between the adjacent components 112. In order to support the substrate 100 with the support pins 202, it is necessary to support the substrate 100 in many points, and it is necessary to provide a lot of dead space in the substrate 100. However, as a highly functional electronic device in recent years, for example, in a smartphone or the like, the support pins 202 in the substrate 100 are supported by increasing the density of mounting of the component 112 on the substrate 100 by making the smartphone light and thin. There is a tendency for dead space to disappear. In addition, efforts have been made to reduce the area of the substrate 100 in order to reduce costs for low-functional electronic devices, and there is a tendency for dead space to be eliminated as with high-functional electronic devices.
 また、サポートピン202で対象物を支える場合、点で支える為に対象物に歪み、傾き又は振動等が発生しやすく、対象物に対して行う作業(実装又は検査等)において誤差が出やすい。 Further, when the object is supported by the support pins 202, the object is likely to be distorted, tilted, or vibrated because it is supported by a point, and an error is likely to occur in the work performed on the object (such as mounting or inspection).
 また、サポートピン202で基板100等が支えられたときには基板100にそり等が発生し、これによる圧力で実装されている電子部品が誤動作することがある。 Also, when the substrate 100 or the like is supported by the support pins 202, warpage or the like occurs in the substrate 100, and an electronic component mounted by the pressure due to this may malfunction.
 また、サポートピン202で対象物を支える場合には、対象物の凸形状(例えば基板100における部品112の実装位置)に合わせてサポートピン202を立てなければならないが、立て間違えが発生しやすい。立て間違えが発生すると、対象物の製造過程において対象物が不良となり、損失となる。また、日々、製造工程が稼働しているため、サポートピン202の劣化を目視で管理することは難しい。したがって、サポートピン202を構成する部品(例えば、対象物に衝撃又は圧力等による傷が発生しないようにするためのサポートピン202の先端のバネ又はゴム等の部品)の劣化による実装不良等の品質ロスの発生を予め抑制することが難しい。 Further, when the object is supported by the support pins 202, the support pins 202 must be erected in accordance with the convex shape of the object (for example, the mounting position of the component 112 on the board 100). If a mistake is made, the object becomes defective in the manufacturing process of the object, resulting in a loss. Moreover, since the manufacturing process is operating every day, it is difficult to visually manage the deterioration of the support pins 202. Therefore, the quality such as mounting failure due to deterioration of parts constituting the support pin 202 (for example, parts such as a spring or rubber at the tip of the support pin 202 to prevent the object from being damaged by impact or pressure). It is difficult to suppress loss in advance.
 このように、サポートピン202を備える受け治具200は、上述したようなデメリットがあるため、サポートピン202を備える受け治具200を使う方法は使用されなくなってきている。 Thus, since the receiving jig 200 provided with the support pins 202 has the disadvantages described above, the method using the receiving jig 200 provided with the support pins 202 is not used.
 一方、金属(例えばアルミニウム)又はカーボン混練樹脂(ABS等にカーボンを混練した樹脂)をNC(Numerical Control)工作機械を使用して対象物を支持するときに、対象物の凸形状に当たらないように大きく深めに切削加工された加工穴を有する受け治具がある。 On the other hand, when supporting an object using a NC (Numerical Control) machine tool with a metal (for example, aluminum) or a carbon kneading resin (a resin in which carbon is kneaded in ABS or the like), it does not hit the convex shape of the object. There is a receiving jig having a machined hole that is machined to a large depth.
 図1Cは、加工穴302を有する受け治具300が対象物として基板100を支持している状態を示す断面図である。図1Cでは、基板100の3つの部品112が加工穴302に嵌っている箇所の断面を示している。 FIG. 1C is a cross-sectional view showing a state in which the receiving jig 300 having the processing hole 302 supports the substrate 100 as an object. In FIG. 1C, a cross section of a portion where the three components 112 of the substrate 100 are fitted in the processing hole 302 is shown.
 受け治具300には、金属又はカーボン入り硬質樹脂等が使用されており、柔軟性はなく硬い。その為に受け治具300に対象物が装着されたときに位置ずれした場合、対象物を破損したり傷つけたりする可能性が高い。その為に受け治具300の加工穴302の加工範囲が広くなっている。したがって、加工時間が長くなり、加工コストの増大、短納期生産の対応のためのコストの増大の要因となっている。基板100等の対象物の試作時には、例えば部品112の増加や部品112の実装位置の変更等により受け治具300の変更をすることがあるが、変更毎にコスト及びリードタイムがかかってしまう。 The receiving jig 300 is made of metal or carbon-containing hard resin, and is not flexible and hard. Therefore, if the object is displaced when the object is mounted on the receiving jig 300, there is a high possibility that the object is damaged or damaged. Therefore, the processing range of the processing hole 302 of the receiving jig 300 is widened. Therefore, the processing time becomes long, which causes an increase in processing cost and an increase in cost for responding to short delivery date production. At the time of prototyping an object such as the substrate 100, the receiving jig 300 may be changed due to, for example, an increase in the number of components 112 or a change in the mounting position of the components 112, but each change requires cost and lead time.
 また、切削加工には特殊な加工機が必要となる。切削加工機を自社の工場内に設置することはコスト及びノウハウ的に難しいため、外部業者に製作委託をすることになり、コスト及びリードタイムがかかってしまう。 Also, a special processing machine is required for cutting. Since it is difficult in terms of cost and know-how to install the cutting machine in its own factory, production is outsourced to an outside contractor, and costs and lead time are required.
 また、上述したように、受け治具300にはコストが掛かるため、対象物の生産毎に受け治具300を作成することはさらにコストがかかってしまう。したがって、作成した受け治具300を長期間にわたり保管する必要があり、例えば工場内に多くの保管スペースを要する。 As described above, since the receiving jig 300 is costly, it is more costly to create the receiving jig 300 for each production of the object. Therefore, it is necessary to store the created receiving jig 300 for a long period of time. For example, a large storage space is required in a factory.
 また、受け治具300が金属によるものの場合、重量が重くハンドリングしにくい。一方、受け治具300を軽くするために受け治具300がカーボン入り硬質樹脂によるものの場合、カーボンが剥離しやすく、基板100等の対象物にカーボンが付着し、短絡等の市場不良が発生することがある。 Also, when the receiving jig 300 is made of metal, it is heavy and difficult to handle. On the other hand, when the receiving jig 300 is made of a hard resin containing carbon in order to make the receiving jig 300 lighter, the carbon is easily peeled off, and the carbon adheres to an object such as the substrate 100, resulting in a market failure such as a short circuit. Sometimes.
 このように、金属又はカーボン入り硬質樹脂等が使用されて切削加工された受け治具300には、上述したような容易に作成できずコストが掛かる等のデメリットがある。 As described above, the receiving jig 300 cut by using a hard resin containing metal or carbon has a demerit that it cannot be easily formed as described above and is expensive.
 そこで、本発明は、容易に作成でき、支持する対象物への静電気による影響及びストレスを抑制できる受け治具、受け治具の製造方法及び樹脂を提供することを目的とする。 Therefore, an object of the present invention is to provide a receiving jig, a manufacturing method of the receiving jig, and a resin that can be easily created and can suppress the influence and stress due to static electricity on the object to be supported.
 本発明の一態様に係る受け治具は、凸形状を有する対象物を当該凸形状のある凸面において支持するための受け治具であって、前記凸形状の輪郭に対応する凹部を有する樹脂からなり、前記凹部は、前記凸形状の型を取った場合に得られる凹形状を有し、前記樹脂は、アスカーC型硬度計による硬度が60度から90度であり、かつ、体積抵抗率が10Ω・cm~10Ω・cmである樹脂である。 The receiving jig which concerns on 1 aspect of this invention is a receiving jig for supporting the target object which has a convex shape in the convex surface with the said convex shape, Comprising: From resin which has the recessed part corresponding to the said convex-shaped outline The concave portion has a concave shape obtained when the convex mold is taken, and the resin has a hardness of 60 degrees to 90 degrees as measured by an Asker C-type hardness meter, and has a volume resistivity. A resin having a resistance of 10 2 Ω · cm to 10 7 Ω · cm.
 本発明の一態様に係る受け治具の製造方法は、凸形状を有する対象物を当該凸形状のある凸面において支持するための受け治具の製造方法であって、ベース上に前記凸面が上方を向くように前記対象物を載置するステップと、前記ベース上に載置された前記対象物の前記凸面側から離型フィルム及び布の少なくとも一方を被せるステップと、前記離型フィルム及び前記布の少なくとも一方が被せられた前記対象物を当該対象物の上面視において囲むように、前記ベースに対する高さが前記凸面の凸形状部分の当該高さよりも高い枠状の外型を前記ベース上に設置するステップと、前記ベース上に設置された前記外型の枠内に、硬化後アスカーC型硬度計による硬度が60度から90度となり、かつ、体積抵抗率が10Ω・cm~10Ω・cmとなる樹脂を入れるステップと、前記樹脂が入れられた前記外型の枠内において、前記外型の内径に対応する外径を有する内型を当該樹脂へ押し付けるステップと、前記内型を前記樹脂に押し付けた状態で、当該樹脂を加熱するステップと、を含む。 The manufacturing method of the receiving jig which concerns on 1 aspect of this invention is a manufacturing method of the receiving jig for supporting the target object which has a convex shape in the convex surface with the said convex shape, Comprising: The said convex surface is upwards on a base. Placing the object so as to face, covering the at least one of a release film and a cloth from the convex side of the object placed on the base, the release film and the cloth A frame-shaped outer mold having a height relative to the base higher than the height of the convex portion of the convex surface on the base so as to surround the target object covered with at least one of the convex shape when viewed from above. In the outer frame installed on the base, the post-curing Asker C-type hardness tester has a hardness of 60 to 90 degrees and a volume resistivity of 10 2 Ω · cm to 10 7 Ω in the frame of the outer mold in which the resin is put, the step of pressing an inner mold having an outer diameter corresponding to the inner diameter of the outer mold against the resin, and the inner mold Heating the resin while pressed against the resin.
 本発明の一態様に係る受け治具の製造方法は、凸形状を有する対象物を当該凸形状のある凸面において支持するための受け治具の製造方法であって、ベース上に前記対象物の上面視において当該対象物を囲む内径を有する枠状の外型を設置するステップと、前記ベース上に設置された前記外型の枠内に、硬化後アスカーC型硬度計による硬度が60度から90度となり、かつ、体積抵抗率が10Ω・cm~10Ω・cmとなる樹脂を入れるステップと、前記外型の枠内に入れられた前記樹脂に離型フィルム及び布の少なくとも一方を被せるステップと、前記樹脂に被せられた前記離型フィルム及び前記布の少なくとも一方上に前記凸面が下方を向くように前記対象物を載置するステップと、前記対象物が前記離型フィルム及び前記布の少なくとも一方上に載置されている前記外型の枠内において、前記外型の内径に対応する外径を有する内型を前記対象物へ押し付けるステップと、前記樹脂を加熱するステップと、を含む。 The manufacturing method of the receiving jig which concerns on 1 aspect of this invention is a manufacturing method of the receiving jig for supporting the target object which has a convex shape in the convex surface with the said convex shape, Comprising: A step of installing a frame-shaped outer mold having an inner diameter surrounding the object in top view, and a hardness by an Asker C-type hardness meter after curing in the outer mold frame installed on the base from 60 degrees At least one of a release film and a cloth on the resin placed in the frame of the outer mold; and a step of adding a resin having a volume resistivity of 10 2 Ω · cm to 10 7 Ω · cm. A step of placing the object on at least one of the release film and the cloth covered with the resin such that the convex surface faces downward, and the object is the release film and Of the cloth A step of pressing an inner mold having an outer diameter corresponding to an inner diameter of the outer mold against the object in a frame of the outer mold placed on at least one of the steps; and a step of heating the resin Including.
 本発明の一態様に係る樹脂は、熱硬化性樹脂及び熱可塑性樹脂のうちの一方に導電材料が配合された樹脂であり、前記熱硬化性樹脂及び前記熱可塑性樹脂のうちの一方に対して、前記導電材料の重量部は、0.3重量部から20重量部である。 The resin according to one embodiment of the present invention is a resin in which a conductive material is blended in one of a thermosetting resin and a thermoplastic resin, and is one of the thermosetting resin and the thermoplastic resin. The weight part of the conductive material is 0.3 to 20 parts by weight.
 本発明によれば、容易に作成でき、支持する対象物への静電気による影響及びストレスを抑制できる受け治具、その製造方法及びこれらに使用される樹脂を提供することができる。 According to the present invention, it is possible to provide a receiving jig, a manufacturing method thereof, and a resin used in these, which can be easily created and can suppress the influence and stress due to static electricity on the object to be supported.
図1Aは、片面に部品が実装された基板の一例を示す図である。FIG. 1A is a diagram illustrating an example of a board on which components are mounted on one side. 図1Bは、サポートピンを備える受け治具が基板を支持している状態を示す側面図である。FIG. 1B is a side view showing a state in which a receiving jig including support pins supports a substrate. 図1Cは、加工穴を有する受け治具が基板を支持している状態を示す断面図である。FIG. 1C is a cross-sectional view showing a state where a receiving jig having a processed hole supports a substrate. 図2は、実施の形態に係る受け治具の一例を示す図である。FIG. 2 is a diagram illustrating an example of a receiving jig according to the embodiment. 図3は、実施の形態に係る受け治具が基板を支持している状態を示す図である。FIG. 3 is a diagram illustrating a state in which the receiving jig according to the embodiment supports the substrate. 図4は、実施の形態に係る受け治具が基板を支持している状態を示す断面図である。FIG. 4 is a cross-sectional view showing a state where the receiving jig according to the embodiment supports the substrate. 図5は、実施の形態に係る受け治具の製造方法の一例を示すフローチャートである。FIG. 5 is a flowchart showing an example of a method of manufacturing a receiving jig according to the embodiment. 図6Aは、実施の形態に係る載置するステップを説明するための図である。FIG. 6A is a diagram for describing the placing step according to the embodiment. 図6Bは、実施の形態に係る被せるステップを説明するための図である。FIG. 6B is a diagram for explaining the steps to be covered according to the embodiment. 図6Cは、実施の形態に係る設置するステップを説明するための図である。FIG. 6C is a diagram for explaining the installation step according to the embodiment. 図6Dは、実施の形態に係る入れるステップを説明するための図である。FIG. 6D is a diagram for explaining the steps to be performed according to the embodiment. 図6Eは、実施の形態に係る押し付けるステップを説明するための図である。FIG. 6E is a diagram for explaining a pressing step according to the embodiment. 図7は、実施の形態に係る被せるステップにおける基板に離型フィルムを被せた状態を示す断面図である。FIG. 7 is a cross-sectional view showing a state in which a release film is covered on the substrate in the covering step according to the embodiment. 図8は、実施の形態に係る被せるステップにおける基板に離型フィルム及び布を被せた状態を示す断面図である。FIG. 8 is a cross-sectional view showing a state in which the release film and the cloth are covered on the substrate in the covering step according to the embodiment. 図9は、実施の形態に係る押し付けるステップにおける樹脂を離型フィルム及び布に押し付けた状態を示す断面図である。FIG. 9 is a cross-sectional view showing a state in which the resin in the pressing step according to the embodiment is pressed against the release film and the cloth. 図10Aは、実施の形態に係る樹脂の配合材料の配合量の一例を示す図である。FIG. 10A is a diagram illustrating an example of a blending amount of a resin blending material according to the embodiment. 図10Bは、実施の形態に係る樹脂の配合材料の配合量の他の例を示す図である。FIG. 10B is a diagram illustrating another example of the compounding amount of the resin compounding material according to the embodiment. 図11Aは、実施例に係る樹脂の配合材料の配合量を示す図である。FIG. 11: A is a figure which shows the compounding quantity of the compounding material of the resin which concerns on an Example. 図11Bは、実施例に係る樹脂を硬化するときの条件を示す図である。FIG. 11B is a diagram illustrating conditions when the resin according to the example is cured. 図11Cは、実施例に係る受け治具を構成する樹脂の物性を示す図である。FIG. 11C is a diagram illustrating physical properties of a resin constituting the receiving jig according to the example.
 以下では、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。従って、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態、並びに、ステップ(工程)及びステップの順序等は、一例であり、本発明を限定する趣旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that each of the embodiments described below shows a preferred specific example of the present invention. Therefore, the numerical values, shapes, materials, components, arrangement and connection forms of components, and steps (processes) and order of steps shown in the following embodiments are examples, and the present invention is limited. is not. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims showing the highest concept of the present invention are described as optional constituent elements.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、同じ構成要素については同じ符号を付している。 Each figure is a schematic diagram and is not necessarily shown strictly. Moreover, in each figure, the same code | symbol is attached | subjected about the same component.
 (実施の形態)
 以下、実施の形態について、図2から図10Bを用いて説明する。なお、以下では、受け治具が支持する対象物を基板100として説明することが多いが、対象物は基板100に限らず、各種工業生産品等の一般製造工程で使用される工作物等であってもよい。
(Embodiment)
Hereinafter, embodiments will be described with reference to FIGS. 2 to 10B. In the following description, the object supported by the receiving jig is often described as the substrate 100. However, the object is not limited to the substrate 100, and may be a workpiece used in general manufacturing processes such as various industrial products. There may be.
 [受け治具]
 まず、受け治具の構成について、図2から図4を用いて説明する。
[Receiving jig]
First, the configuration of the receiving jig will be described with reference to FIGS.
 図2は、実施の形態に係る受け治具10の一例を示す図である。なお、図2には、受け治具10の他に受け治具10に支持される基板100も示されている。図2に示される基板100には、6つの部品112が実装されているが、1~5個の部品112が実装されてもよく、7個以上の部品112が実装されてもよい。 FIG. 2 is a diagram illustrating an example of the receiving jig 10 according to the embodiment. FIG. 2 also shows a substrate 100 supported by the receiving jig 10 in addition to the receiving jig 10. Although six components 112 are mounted on the substrate 100 shown in FIG. 2, 1 to 5 components 112 may be mounted, or seven or more components 112 may be mounted.
 受け治具10は、凸形状を有する対象物を当該凸形状のある凸面において支持するための受け治具である。本実施の形態では、対象物を少なくとも1つの部品112が実装された基板とし、凸形状を基板100に実装された部品112の形状とする。したがって、受け治具10は、基板100を部品112が実装された実装面110において支持する。なお、対象物は、基板100に限らず、各種工業生産品等の一般製造工程で使用される工作物であってもよい。 The receiving jig 10 is a receiving jig for supporting an object having a convex shape on a convex surface having the convex shape. In the present embodiment, the object is a substrate on which at least one component 112 is mounted, and the convex shape is the shape of the component 112 mounted on the substrate 100. Therefore, the receiving jig 10 supports the substrate 100 on the mounting surface 110 on which the component 112 is mounted. The object is not limited to the substrate 100 but may be a workpiece used in general manufacturing processes such as various industrial products.
 受け治具10は、凸形状(部品112の凸形状)の輪郭に対応する凹部12を有する樹脂からなる。つまり、受け治具10自体が樹脂である。この樹脂については後述する図10A及び図10Bで詳細に説明するが、アスカーC型硬度計による硬度が60度から90度であり、かつ、体積抵抗率が10Ω・cm~10Ω・cmである樹脂である。言い換えると、この樹脂は、高導電性及び柔軟性を有する樹脂である。凹部12は、凸形状(部品112の凸形状)の型を取った場合に得られる凹形状を有する。凹部12は、切削加工されて形成されたものではなく、実装面110に実装されている状態の部品112の型を取って形成される。したがって、図2に示されるように、凹部12は、部品112の輪郭に対応した凹形状を有する。これにより、実装面110が受け治具10側を向いた状態で基板100が受け治具10にセットされたときに、受け治具10は、実装面110上の部品112が凹部12に嵌った状態で、基板100を支持する。 The receiving jig 10 is made of a resin having a concave portion 12 corresponding to the contour of the convex shape (the convex shape of the component 112). That is, the receiving jig 10 itself is a resin. The resin will be described in detail with reference to FIGS. 10A and 10B, which will be described later. The hardness measured by the Asker C-type hardness meter is 60 degrees to 90 degrees, and the volume resistivity is 10 2 Ω · cm to 10 7 Ω · It is a resin that is cm. In other words, this resin is a resin having high conductivity and flexibility. The concave portion 12 has a concave shape obtained when a mold having a convex shape (the convex shape of the component 112) is taken. The recess 12 is not formed by cutting, but is formed by taking the mold of the component 112 mounted on the mounting surface 110. Therefore, as shown in FIG. 2, the concave portion 12 has a concave shape corresponding to the contour of the component 112. Thus, when the substrate 100 is set on the receiving jig 10 with the mounting surface 110 facing the receiving jig 10, the receiving jig 10 has the component 112 on the mounting surface 110 fitted in the recess 12. In this state, the substrate 100 is supported.
 図3は、実施の形態に係る受け治具10が基板100を支持している状態を示す図である。 FIG. 3 is a diagram illustrating a state in which the receiving jig 10 according to the embodiment supports the substrate 100.
 図3に示されるように、受け治具10が実装面110において基板100を支持することで、実装面110の反対面120への部品112の実装、又は、反対面120での基板100の検査等をすることができる。また、受け治具10が多面取り基板を支持することで、多面取り基板の分割をすることができる。 As shown in FIG. 3, the receiving jig 10 supports the substrate 100 on the mounting surface 110, so that the component 112 is mounted on the opposite surface 120 of the mounting surface 110 or the substrate 100 is inspected on the opposite surface 120. Etc. Further, since the receiving jig 10 supports the multi-sided substrate, the multi-sided substrate can be divided.
 図4は、実施の形態に係る受け治具10が基板100を支持している状態を示す断面図である。図4には、図3に示されるIV-IV面における断面が示される。 FIG. 4 is a cross-sectional view illustrating a state where the receiving jig 10 according to the embodiment supports the substrate 100. FIG. 4 shows a cross section taken along the IV-IV plane shown in FIG.
 凹部12は、部品112の型を取って形成されるため、図4に示されるように、受け治具10は、凹部12において部品112を包み込みながら基板100を支持する。また、凹部12は、図2及び図4に示されるように、凹部12の開口よりも小さい底面を有し、開口から底面に向けて傾斜した壁面を有する。つまり、凹部12は、逆錐台形状を有する。なお、凹部12は、部品112の形状に応じて、逆角錐台形状であってもよく、逆円錐台形状であってもよい。例えば、凹部12の底面は、凹部12に嵌められる部品112の上面(図2及び図4での部品112の下側の面)と同じ大きさであり、凹部12は、底面から開口に向けて広がる形状を有する。 Since the recess 12 is formed by taking the mold of the component 112, the receiving jig 10 supports the substrate 100 while wrapping the component 112 in the recess 12, as shown in FIG. As shown in FIGS. 2 and 4, the recess 12 has a bottom surface smaller than the opening of the recess 12 and has a wall surface inclined from the opening toward the bottom. That is, the recess 12 has an inverted frustum shape. The recess 12 may have an inverted truncated pyramid shape or an inverted truncated cone shape depending on the shape of the component 112. For example, the bottom surface of the recess 12 is the same size as the top surface of the component 112 (the lower surface of the component 112 in FIGS. 2 and 4) fitted in the recess 12, and the recess 12 is directed from the bottom surface toward the opening. It has an expanding shape.
 このように、受け治具10は、アスカーC型硬度計による硬度が60度から90度であり、かつ、体積抵抗率が10Ω・cm~10Ω・cmである樹脂からなる受け治具であり、切削により得られるものではなく、対象物の凸形状の型を取ることで得られる凹形状の凹部12を有する。 Thus, the receiving jig 10 has a hardness of 60 to 90 degrees as measured by an Asker C-type hardness meter, and is made of a resin having a volume resistivity of 10 2 Ω · cm to 10 7 Ω · cm. It is a tool and is not obtained by cutting, but has a concave recess 12 obtained by taking a convex mold of the object.
 [受け治具の製造方法]
 次に、対象物の凸形状の型を取った凹部12を有する受け治具10の製造方法について、特に、対象物の凸形状の型を取る方法について図5から図9を用いて説明する。
[Manufacturing method of receiving jig]
Next, a method for manufacturing the receiving jig 10 having the concave portion 12 having the convex shape of the object, particularly a method for taking the convex shape of the object will be described with reference to FIGS.
 図5は、実施の形態に係る受け治具10の製造方法の一例を示すフローチャートである。なお、以下では、例えば人が受け治具10の製造方法を行うが、受け治具10を製造するための機械が行ってもよい。また、ステップS11からステップS15の詳細について、図6Aから図6Eを用いて説明するが、図6Aから図6Eでは、対象物、凸面及び凸形状部分をそれぞれ図2等に示される基板100、実装面110及び部品112としている。 FIG. 5 is a flowchart showing an example of a method for manufacturing the receiving jig 10 according to the embodiment. In the following, for example, a person performs a method for manufacturing the receiving jig 10, but a machine for manufacturing the receiving jig 10 may be used. Details of step S11 to step S15 will be described with reference to FIGS. 6A to 6E. In FIGS. 6A to 6E, the object 100, the convex surface, and the convex shape portion are mounted on the substrate 100 shown in FIG. A surface 110 and a part 112 are provided.
 まず、ベース上に対象物の凸面が上方を向くように対象物を載置する(ステップS11)。ステップS11について、図6Aを用いて説明する。 First, the object is placed on the base so that the convex surface of the object faces upward (step S11). Step S11 will be described with reference to FIG. 6A.
 図6Aは、実施の形態に係る載置するステップを説明するための図である。 FIG. 6A is a diagram for explaining the placing step according to the embodiment.
 図6Aに示されるように、ベース50は、例えば略直方体の形状を有し、ベース50の面上に基板100が載置される。このとき、基板100が受け治具10に支持される面である実装面110が上方を向くように、基板100がベース50上に載置される。 6A, the base 50 has, for example, a substantially rectangular parallelepiped shape, and the substrate 100 is placed on the surface of the base 50. At this time, the substrate 100 is placed on the base 50 so that the mounting surface 110, which is the surface supported by the receiving jig 10, faces upward.
 次に、ベース50上に載置された対象物の凸面側から離型フィルム及び布の少なくとも一方を被せる(ステップS12)。ステップS12について、図6Bを用いて説明する。 Next, at least one of the release film and the cloth is put on the convex surface side of the object placed on the base 50 (step S12). Step S12 will be described with reference to FIG. 6B.
 図6Bは、実施の形態に係る被せるステップを説明するための図である。図6Bでは、離型フィルム20が基板100に被せられた状態が示される。 FIG. 6B is a diagram for explaining the steps to be covered according to the embodiment. FIG. 6B shows a state where the release film 20 is placed on the substrate 100.
 ステップS12で使用される離型フィルム20は、以下に示す複数の条件を満たしたフィルムである必要がある。詳細は後述するが、受け治具10は、離型フィルム20を介して型が取られて作成されるため、離型フィルム20が伸び縮みする場合、受け治具10の表面が離型フィルム20の伸び縮みによって波打った形状になる。したがって、離型フィルム20は、熱及び圧力による伸び縮み量が少ないフィルムである必要がある。また、離型フィルム20に後述するステップS14で入れられる樹脂が粘着する場合、離型フィルム20と樹脂とが剥がされるときに凹部12等の受け治具10の形状が崩れることがあるため、離型フィルム20は、粘着しにくいフィルムである必要がある。また、樹脂が離型フィルム20に浸透する場合、対象物を汚染してしまうため、離型フィルム20は樹脂が浸透しにくいフィルムである必要がある。また、離型フィルム20は、後述するステップS16での樹脂の加熱に耐えられるフィルムである必要がある。離型フィルム20の耐熱温度は、100度から400度程度、特に、200度以上が好ましい。また、離型フィルム20は、離型フィルム20を介しても実装面110上の部品112の型を鮮明に取ることができるフィルムである必要がある。なお、ステップS12で離型フィルム20の代わりに上述した条件を満たす布が使用されてもよい。 The release film 20 used in step S12 needs to be a film that satisfies a plurality of conditions shown below. Although details will be described later, since the receiving jig 10 is formed by taking a mold through the release film 20, when the release film 20 expands and contracts, the surface of the receiving jig 10 becomes the release film 20. It becomes a wavy shape due to the expansion and contraction of. Therefore, the release film 20 needs to be a film with a small amount of expansion and contraction due to heat and pressure. Moreover, when the resin put in step S14 described later adheres to the release film 20, the shape of the receiving jig 10 such as the recess 12 may be collapsed when the release film 20 and the resin are peeled off. The mold film 20 needs to be a film that is difficult to adhere. Further, when the resin penetrates into the release film 20, the object is contaminated. Therefore, the release film 20 needs to be a film in which the resin does not easily penetrate. Further, the release film 20 needs to be a film that can withstand the heating of the resin in step S16 described later. The heat resistant temperature of the release film 20 is preferably about 100 to 400 degrees, and more preferably 200 degrees or more. Further, the release film 20 needs to be a film that can clearly mold the part 112 on the mounting surface 110 even through the release film 20. In addition, the cloth which satisfy | fills the conditions mentioned above may be used instead of the release film 20 by step S12.
 これらの条件を満たす離型フィルム20として、フッ素樹脂系フィルム、シリコン樹脂系フィルム又は耐熱フィルムに離型剤をコーティングしたフィルム等が使用される。離型フィルム20が基板100に被せられないで樹脂が入れられた場合、当該樹脂によって基板100が汚染され、当該樹脂が硬化したときに基板100に粘着する。これらを防ぐために、離型フィルム20は基板100に被せられる。ステップS12については、後述する図7でより詳細に説明する。 As the release film 20 that satisfies these conditions, a fluororesin film, a silicon resin film, a heat-resistant film coated with a release agent, or the like is used. When the resin is put without the release film 20 being placed on the substrate 100, the substrate 100 is contaminated by the resin, and adheres to the substrate 100 when the resin is cured. In order to prevent these, the release film 20 is placed on the substrate 100. Step S12 will be described in more detail with reference to FIG.
 次に、離型フィルム20及び布の少なくとも一方が被せられた対象物を対象物の上面視において囲むように、ベース50に対する高さが凸面の凸形状部分の当該高さよりも高い枠状の外型をベース50上に設置する(ステップS13)。ステップS13について、図6Cを用いて説明する。 Next, a frame-shaped outer portion whose height relative to the base 50 is higher than the height of the convex portion of the convex surface so as to surround the target object covered with at least one of the release film 20 and the cloth in a top view of the target object. The mold is installed on the base 50 (step S13). Step S13 will be described with reference to FIG. 6C.
 図6Cは、実施の形態に係る設置するステップを説明するための図である。 FIG. 6C is a diagram for explaining the installation steps according to the embodiment.
 ステップS13では、基板100の実装面110に実装された部品112の形状をステップS14で入れる樹脂により写しとる為に、枠状の金型である外型60が使用される。外型60は、例えば角筒形状を有し、上面視における外型60の枠内の大きさは、基板100の大きさと略同じ又は少し大きいため、基板100を外型60で囲むことができる。図6Cに示されるように、基板100を囲みながら外型60をベース50上に設置する。外型60がベース50上に設置されたときの外型60のベース50からの高さは、基板100がベース50上に載置されたときの部品112のベース50からの高さよりも高い。これにより、外型60の枠内に樹脂が入れられたときに部品112の天面を樹脂に浸からせることができる。 In step S13, the outer mold 60, which is a frame-shaped mold, is used to copy the shape of the component 112 mounted on the mounting surface 110 of the substrate 100 with the resin put in step S14. The outer mold 60 has, for example, a rectangular tube shape, and the size in the frame of the outer mold 60 in a top view is substantially the same as or slightly larger than the size of the substrate 100, so that the substrate 100 can be surrounded by the outer mold 60. . As shown in FIG. 6C, the outer mold 60 is installed on the base 50 while surrounding the substrate 100. The height of the outer mold 60 from the base 50 when the outer mold 60 is installed on the base 50 is higher than the height of the component 112 from the base 50 when the substrate 100 is placed on the base 50. Thereby, when resin is put in the frame of the outer mold 60, the top surface of the component 112 can be immersed in the resin.
 次に、ベース50上に設置された外型60の枠内に樹脂を入れる(ステップS14)。ステップS14について、図6Dを用いて説明する。 Next, resin is put in the frame of the outer mold 60 installed on the base 50 (step S14). Step S14 will be described with reference to FIG. 6D.
 図6Dは、実施の形態に係る入れるステップを説明するための図である。 FIG. 6D is a diagram for explaining the steps to be performed according to the embodiment.
 図6Dに示されるように、樹脂40は、外型60の枠内の離型フィルム20上に入れられる。樹脂40は、硬化後アスカーC型硬度計による硬度が60度から90度となり、かつ、体積抵抗率が10Ω・cm~10Ω・cmとなる樹脂である。樹脂40は、例えば液体状の樹脂である。樹脂40が入れられる量は、外型60の枠内の体積の20%から95%の体積に相当する量である。なお、樹脂40は、板状、粒子状(粒子の大きさは特に限定されない)、ペレット状又はゲル状の樹脂であってもよい。樹脂40が粒子状の場合、樹脂40がゲル状の場合と比べて樹脂40は多く入れられる。樹脂40は、詳細は後述するが、受け治具10となるときに対象物の凸形状の輪郭に対応する凹部12が形成された状態で硬化させられる。 As shown in FIG. 6D, the resin 40 is put on the release film 20 in the frame of the outer mold 60. The resin 40 is a resin having a hardness of 60 degrees to 90 degrees as measured by an Asker C-type hardness meter and a volume resistivity of 10 2 Ω · cm to 10 7 Ω · cm after curing. The resin 40 is, for example, a liquid resin. The amount in which the resin 40 is put is an amount corresponding to 20% to 95% of the volume in the frame of the outer mold 60. The resin 40 may be a plate-like, particle-like (particle size is not particularly limited), pellet-like, or gel-like resin. In the case where the resin 40 is in the form of particles, a larger amount of the resin 40 is added than in the case where the resin 40 is in the form of gel. Although details will be described later, the resin 40 is cured in a state in which the concave portion 12 corresponding to the convex contour of the object is formed when the receiving jig 10 is formed.
 次に、樹脂40が入れられた外型60の枠内において、外型60の内径に対応する外径を有する内型を樹脂40へ押し付ける(ステップS15)。ステップS15について、図6Eを用いて説明する。 Next, an inner mold having an outer diameter corresponding to the inner diameter of the outer mold 60 is pressed against the resin 40 within the frame of the outer mold 60 in which the resin 40 is placed (step S15). Step S15 will be described with reference to FIG. 6E.
 図6Eは、実施の形態に係る押し付けるステップを説明するための図である。 FIG. 6E is a diagram for explaining the pressing step according to the embodiment.
 図6Eに示されるように、外型60の内径に合わせた外径を有する内型70が使用され、樹脂40が硬化したときに基板100の部品112の凸形状を明確化するために、外型60の枠内において内型70によって樹脂40へ上側から圧力がかけられる。内型70の上部には例えば蓋80が設けられている。上面視における蓋80の大きさは、例えば外型60の外径に対応した大きさとなっている。ステップS15については、後述する図9でより詳細に説明する。 As shown in FIG. 6E, an inner mold 70 having an outer diameter matching the inner diameter of the outer mold 60 is used, and in order to clarify the convex shape of the component 112 of the substrate 100 when the resin 40 is cured, Within the frame of the mold 60, pressure is applied to the resin 40 from above by the inner mold 70. For example, a lid 80 is provided on the upper part of the inner mold 70. The size of the lid 80 when viewed from above is, for example, a size corresponding to the outer diameter of the outer mold 60. Step S15 will be described in more detail with reference to FIG.
 なお、ベース50、外型60及び内型70(これらを合わせて金型とも呼ぶ)として、金属又は木材等の、80度以上の温度環境でも変形が少なく、燃えたり焦げたり汚染物を出さない材質のものが使用される。また、金型は、ステップS14で入れられる樹脂40が硬化したときに金型に粘着しないように、非粘着表面処理がされる。非粘着表面処理は、例えば、フッ素系樹脂コート処理、シリコン樹脂コート処理又は非粘着複合物コート処理等である。非粘着表面処理の厚みは、例えば200μm以下の厚みである。 The base 50, the outer mold 60, and the inner mold 70 (also collectively referred to as a mold) are less deformed even in a temperature environment of 80 ° C. or higher, such as metal or wood, and do not burn, burn, or produce contaminants. The material is used. In addition, the mold is subjected to non-adhesive surface treatment so that the resin 40 put in step S14 does not stick to the mold when cured. Non-adhesive surface treatment is, for example, fluorine resin coating treatment, silicon resin coating treatment, non-adhesive composite coating treatment, or the like. The thickness of the non-adhesive surface treatment is, for example, 200 μm or less.
 次に、内型70を樹脂40に押し付けた状態で、樹脂40を加熱する(ステップS16)。樹脂40が、熱硬化性を有する樹脂である例えば液体状の樹脂の場合、加熱されることで硬化する。樹脂40は、基板100の耐熱温度等に応じて、例えば70度から360度の温度で加熱される。また、加熱温度に応じて例えば10分から70分の時間、加熱される。加熱時間と加熱温度との関係は、例えば、100度から120度で60分、200℃から260度で30分程度であるが、炉体の周辺の環境で変動がある。また、加熱温度と加熱時間とは、樹脂40に含まれる硬化剤等の種類によって制御される。 Next, the resin 40 is heated in a state where the inner mold 70 is pressed against the resin 40 (step S16). When the resin 40 is, for example, a liquid resin that is a thermosetting resin, the resin 40 is cured by being heated. The resin 40 is heated at a temperature of 70 to 360 degrees, for example, according to the heat-resistant temperature of the substrate 100 or the like. Moreover, it heats for 10 minutes to 70 minutes according to heating temperature, for example. The relationship between the heating time and the heating temperature is, for example, 100 to 120 degrees for 60 minutes and 200 to 260 degrees for about 30 minutes, but there are variations in the environment around the furnace body. Further, the heating temperature and the heating time are controlled by the type of the curing agent included in the resin 40.
 なお、樹脂40が熱可塑性を有する樹脂であり例えば板状、粒子状又はペレット状の樹脂の場合、内型70を樹脂40に押し付けた状態で、樹脂40が加熱されて半溶融(軟化を含む)した後に例えば常温で冷やされて硬化させられる。 In addition, in the case where the resin 40 is a resin having thermoplasticity, for example, a resin in a plate shape, a particle shape, or a pellet shape, the resin 40 is heated and semi-molten (including softening) in a state where the inner mold 70 is pressed against the resin 40. For example, it is cooled at room temperature and cured.
 樹脂40を加熱するための加熱炉は、電子部品の実装用のリフロー炉であってもよい。なお、加熱炉は、樹脂40を加熱できる機器であれば特に限定されない。 The heating furnace for heating the resin 40 may be a reflow furnace for mounting electronic components. In addition, if a heating furnace is an apparatus which can heat the resin 40, it will not specifically limit.
 なお、樹脂40が熱可塑性を有する樹脂であり例えば板状、粒子状又はペレット状の樹脂の場合に、入れるステップの前に樹脂40が加熱されて半溶融してから外型60の枠内に入れられてもよい。この場合には、ステップS16の代わりに、内型70を樹脂40に押し付けた状態で、樹脂40が例えば常温で冷やされて硬化させられる。 In the case where the resin 40 is a resin having thermoplasticity, for example, in the case of a plate-like, particle-like, or pellet-like resin, the resin 40 is heated and semi-molten before the step of putting it into the frame of the outer mold 60. May be entered. In this case, instead of step S <b> 16, the resin 40 is cooled and cured at room temperature, for example, with the inner mold 70 pressed against the resin 40.
 そして、硬化した樹脂40が金型から取り出され、当該硬化した樹脂40が受け治具10となる。 Then, the cured resin 40 is taken out from the mold, and the cured resin 40 becomes the receiving jig 10.
 ここで、ステップS12の詳細について、図7を用いて説明する。 Here, the details of step S12 will be described with reference to FIG.
 図7は、実施の形態に係る被せるステップにおける基板100に離型フィルム20を被せた状態を示す断面図である。図7には、図6Bの手前側の部品112が3つ並んだ箇所における断面が示される。なお、図7以降においても対象物、凸面及び凸形状部分としてそれぞれ図2等に示される基板100、実装面110及び部品112を用いて説明する。 FIG. 7 is a cross-sectional view showing a state in which the release film 20 is covered on the substrate 100 in the covering step according to the embodiment. FIG. 7 shows a cross section at a location where three parts 112 on the near side in FIG. 6B are arranged. 7 and the subsequent drawings will be described using the substrate 100, the mounting surface 110, and the component 112 shown in FIG. 2 as the object, the convex surface, and the convex shape portion, respectively.
 離型フィルム20を介しても実装面110上の部品112の型を鮮明に取るために、基板100に被せられた離型フィルム20が、図7に示されるように部品112同士の間に入り込む必要がある。離型フィルム20が部品112同士の間に入り込むためには、離型フィルム20は、薄くて折れ曲がりやすいものであるとよく、離型フィルム20の厚みは、例えば、25μmから500μmである。なお、離型フィルム20の代わりに布が使用されてもよい。布の厚みは、例えば、500μmから1000μmである。 In order to make the mold of the component 112 on the mounting surface 110 clear even through the mold release film 20, the mold release film 20 placed on the substrate 100 enters between the components 112 as shown in FIG. There is a need. In order for the release film 20 to enter between the parts 112, the release film 20 should be thin and easy to bend. The thickness of the release film 20 is, for example, 25 μm to 500 μm. A cloth may be used instead of the release film 20. The thickness of the cloth is, for example, 500 μm to 1000 μm.
 また、図7に示されるように、部品112の側面の外側に空間22が設けられながら離型フィルム20は基板100に被せられる。つまり、部品112の側面と離型フィルム20とが密着しないように、離型フィルム20が基板100に被せられる。これにより、離型フィルム20の部品112を包んでいる箇所が錐台形状となる。したがって、図4で説明したように、凹部12は、錐台形状の型を取って形成される逆錐台形状を有することになる。 Further, as shown in FIG. 7, the release film 20 is placed on the substrate 100 while the space 22 is provided outside the side surface of the component 112. That is, the release film 20 is placed on the substrate 100 so that the side surface of the component 112 and the release film 20 do not adhere to each other. Thereby, the part which has wrapped the components 112 of the release film 20 becomes a frustum shape. Therefore, as described with reference to FIG. 4, the recess 12 has an inverted frustum shape formed by taking a frustum-shaped mold.
 なお、基板100に被せられる離型フィルム20は、1枚でもよく複数枚でもよい。ステップS16での加熱による離型フィルム20の伸び縮みを少なくする為に性質の異なる複数種別のフィルムが基板100に積層されてもよい。また、同じ性質の離型フィルム20が基板100に積層されてもよい。なお、離型フィルム20の代わりに布が使用される場合でも基板100に被せられる布は、1枚でもよく複数枚でもよい。ステップS16での加熱による布の伸び縮みを少なくする為に性質の異なる複数種別の布が基板100に積層されてもよい。また、同じ性質の布が基板100に積層されてもよい。 In addition, the release film 20 covered on the substrate 100 may be one sheet or a plurality of sheets. A plurality of types of films having different properties may be laminated on the substrate 100 in order to reduce expansion and contraction of the release film 20 due to heating in step S16. Moreover, the release film 20 having the same property may be laminated on the substrate 100. Even when a cloth is used instead of the release film 20, the cloth covered on the substrate 100 may be one sheet or plural sheets. In order to reduce the expansion and contraction of the cloth due to heating in step S16, a plurality of types of cloth having different properties may be laminated on the substrate 100. A cloth having the same property may be laminated on the substrate 100.
 また、離型フィルム20及び布の両方が基板100に被せられてもよい。 Moreover, both the release film 20 and the cloth may be put on the substrate 100.
 図8は、実施の形態に係る被せるステップにおける基板100に離型フィルム20及び布30を被せた状態を示す断面図である。図8には、離型フィルム20及び布30の両方が基板100に被せられた場合の図6Bの手前側の部品112が3つ並んだ箇所における断面が示される。 FIG. 8 is a cross-sectional view showing a state in which the release film 20 and the cloth 30 are covered with the substrate 100 in the covering step according to the embodiment. FIG. 8 shows a cross section at a position where three parts 112 on the near side in FIG. 6B are arranged when both the release film 20 and the cloth 30 are covered with the substrate 100.
 樹脂40は、硬化した後に収縮することがある。つまり、受け治具10の凹部12の大きさが小さくなることがある。そこで、樹脂40の収縮量に合わせた厚みを有する布30が基板100に被せられる。なお、離型フィルム20及び布30の両方が基板100に被せられる場合、基板100に布30が被せられた後に離型フィルム20が被せられるとよい。これにより、布30として、樹脂40が粘着しにくい性質を有する布を使用しなくてもよくなる。 Resin 40 may shrink after being cured. That is, the size of the recess 12 of the receiving jig 10 may be reduced. Therefore, a cloth 30 having a thickness corresponding to the shrinkage amount of the resin 40 is placed on the substrate 100. In addition, when both the release film 20 and the cloth 30 are covered on the substrate 100, the release film 20 may be covered after the cloth 30 is covered on the substrate 100. Thereby, it is not necessary to use a cloth having the property that the resin 40 is difficult to adhere as the cloth 30.
 また、ステップS15の詳細について、図9を用いて説明する。 Details of step S15 will be described with reference to FIG.
 図9は、実施の形態に係る押し付けるステップにおける樹脂40を離型フィルム20及び布30に押し付けた状態を示す断面図である。図9では、図6Eでは示されていないネジ90及びスプリング92が示されている。ネジ90は、例えば、蓋80の上面視における4隅に蓋80を貫通して設けられ、スプリング92は蓋80とネジ90のネジ頭との間に設けられる。図9では説明のために、部品112が3つ並んだ箇所、並びに、ネジ90及びスプリング92が設けられた箇所の断面が1つの図面上に示されている。 FIG. 9 is a cross-sectional view showing a state where the resin 40 is pressed against the release film 20 and the cloth 30 in the pressing step according to the embodiment. In FIG. 9, a screw 90 and a spring 92 not shown in FIG. 6E are shown. For example, the screws 90 are provided through the lid 80 at four corners in the top view of the lid 80, and the spring 92 is provided between the lid 80 and the screw head of the screw 90. In FIG. 9, for the sake of explanation, a cross section of a part where three parts 112 are arranged and a part where a screw 90 and a spring 92 are provided is shown on one drawing.
 外型60の枠内において内型70が樹脂40に押し付けられるときに、外型60の枠内のガスを逃がす必要があり、図9に示されるように、外型60の内周面と内型70の外周面との間にクリアランスaが設けられる。ただし、樹脂40がクリアランスaに入り込むことを防ぐ為に、クリアランスaが50μmから300μmの状態で樹脂40が内型70に押し付けられる。なお、クリアランスaの大きさは樹脂40の粘性等で上記範囲の中から選択される。 When the inner mold 70 is pressed against the resin 40 in the frame of the outer mold 60, it is necessary to release the gas in the frame of the outer mold 60. As shown in FIG. A clearance a is provided between the outer peripheral surface of the mold 70. However, in order to prevent the resin 40 from entering the clearance a, the resin 40 is pressed against the inner mold 70 in a state where the clearance a is 50 μm to 300 μm. The size of the clearance a is selected from the above range depending on the viscosity of the resin 40 and the like.
 また、例えば、基板100が受け治具10に支持されながら、基板100に対して実装又は検査等が行われるため、受け治具10の実装面110を支持する面とその反対面とは水平である必要がある。したがって、受け治具10が作成されるときに、内型70の底面がベース50の基板100が載置された面に対して水平な状態で樹脂40が内型70に押し付けられる必要がある。また、樹脂40が内型70に押し付けられた状態で加熱されるときもそれぞれの面の水平が保たれる必要がある。 Further, for example, mounting or inspection is performed on the substrate 100 while the substrate 100 is supported by the receiving jig 10, so that the surface that supports the mounting surface 110 of the receiving jig 10 and the opposite surface are horizontal. There must be. Therefore, when the receiving jig 10 is created, the resin 40 needs to be pressed against the inner mold 70 with the bottom surface of the inner mold 70 being horizontal with respect to the surface of the base 50 on which the substrate 100 is placed. Moreover, when the resin 40 is heated in a state where it is pressed against the inner mold 70, it is necessary to keep the respective surfaces horizontal.
 それぞれの面を水平に保つ方法は特に限定されないが、例えば、ネジ、ボールネジ、ベルト、錘又はスプリング等が使用される。図9には、それぞれの面を水平に保つために、ネジ90及びスプリング92が使用されている。蓋80を貫通している複数のネジ90(例えば蓋80の4隅に設けられたネジ90)のねじ込み量が調節されながら外型60にねじ込まれることで、それぞれの面が水平に保たれながら樹脂40が内型70に押し付けられていく。このとき、ネジ90のネジ頭と蓋80との間に螺旋状のスプリング92を緩衝部として使用される。これにより、水平精度が更に良くなる。 The method of keeping each surface horizontal is not particularly limited, but for example, a screw, a ball screw, a belt, a weight, or a spring is used. In FIG. 9, screws 90 and springs 92 are used to keep the respective surfaces horizontal. A plurality of screws 90 (for example, screws 90 provided at the four corners of the lid 80) passing through the lid 80 are screwed into the outer mold 60 while adjusting the screwing amounts, so that each surface is kept horizontal. The resin 40 is pressed against the inner mold 70. At this time, a spiral spring 92 is used as a buffer between the screw head of the screw 90 and the lid 80. This further improves the horizontal accuracy.
 以上のようにして、アスカーC型硬度計による硬度が60度から90度であり、かつ、体積抵抗率が10Ω・cm~10Ω・cmである樹脂からなり、対象物を型原本として対象物の凸形状の型を取ることで得られる凹形状の凹部12を有する受け治具10が作成される。なお、受け治具10は、ルータ等により削ることができ、受け治具10の作成後に、容易に凹部12の形状の修正が行える。 As described above, the hardness of the Asker C-type hardness tester is 60 to 90 degrees and the volume resistivity is 10 2 Ω · cm to 10 7 Ω · cm. As a result, a receiving jig 10 having a concave recess 12 obtained by taking a convex mold of the object is created. The receiving jig 10 can be cut by a router or the like, and the shape of the recess 12 can be easily corrected after the receiving jig 10 is formed.
 [樹脂]
 次に、受け治具10を構成する樹脂及びその製造方法で用いられる樹脂40について図10Aを用いて説明する。
[resin]
Next, the resin constituting the receiving jig 10 and the resin 40 used in the manufacturing method thereof will be described with reference to FIG. 10A.
 図10Aは、実施の形態に係る樹脂40の配合材料の配合量の一例を示す図である。 FIG. 10A is a diagram illustrating an example of the blending amount of the blending material of the resin 40 according to the embodiment.
 樹脂40は、熱硬化性樹脂及び熱可塑性樹脂のうちの一方に少なくとも導電材料が配合(均一分散配合:以下、均一配合とも言う)された樹脂である。図10Aに示されるように、熱硬化性樹脂及び熱可塑性樹脂のうちの一方に対して、導電材料の重量部は、0.3重量部から20重量部である。これにより、樹脂40は、硬化後に体積抵抗率が10Ω・cm~10Ω・cmとなる樹脂になる。 The resin 40 is a resin in which at least a conductive material is blended in one of a thermosetting resin and a thermoplastic resin (uniform dispersion blending: hereinafter also referred to as uniform blending). As shown in FIG. 10A, the weight of the conductive material is 0.3 to 20 parts by weight with respect to one of the thermosetting resin and the thermoplastic resin. Thus, the resin 40 becomes a resin having a volume resistivity of 10 2 Ω · cm to 10 7 Ω · cm after curing.
 熱硬化性樹脂は、例えば、エポキシ樹脂、ウレタン樹脂、シリコン樹脂、フッ素樹脂、ポリイミド樹脂、アクリル樹脂又はフェノール樹脂である。 The thermosetting resin is, for example, an epoxy resin, a urethane resin, a silicon resin, a fluorine resin, a polyimide resin, an acrylic resin, or a phenol resin.
 熱可塑性樹脂は、例えば、低分子量ポリエチレン樹脂、熱可塑性ウレタン樹脂、塩化ビニル樹脂、ポリプロピレン樹脂、アクリロニトリルスチレン樹脂、スチレン樹脂、アクリル樹脂、メタクリル樹脂、ポリエチレンテレフタレート樹脂、ポリ塩化ビニリデン樹脂、ポリフッ化ビニリデン、ポリアミド樹脂、アセタール樹脂、ポリカーボネイト樹脂又はポリブチレンテレフタレート樹脂である。 Thermoplastic resins include, for example, low molecular weight polyethylene resin, thermoplastic urethane resin, vinyl chloride resin, polypropylene resin, acrylonitrile styrene resin, styrene resin, acrylic resin, methacrylic resin, polyethylene terephthalate resin, polyvinylidene chloride resin, polyvinylidene fluoride, Polyamide resin, acetal resin, polycarbonate resin or polybutylene terephthalate resin.
 また、導電材料は、カーボンナノチューブ、グラフェン又はグラファイトを含む炭素同素体である。 The conductive material is a carbon allotrope containing carbon nanotubes, graphene, or graphite.
 次に、樹脂40のより具体的な配合材料について図10Bを用いて説明する。 Next, a more specific blending material of the resin 40 will be described with reference to FIG. 10B.
 図10Bは、実施の形態に係る樹脂40の配合材料の配合量の他の例を示す図である。 FIG. 10B is a diagram illustrating another example of the blending amount of the blending material of the resin 40 according to the embodiment.
 図10Bに示されるように、樹脂40の配合材料としてエポキシ樹脂を含む場合、樹脂40は、エポキシ樹脂に導電材料である炭素同素体と硬化剤と硬化促進剤とが配合されてなる。熱硬化性樹脂(エポキシ樹脂)に対して、硬化剤の重量部は、100重量部から800重量部であり、硬化促進剤の重量部は、1重量部から20重量部である。これにより、樹脂40は、加熱硬化後に体積抵抗率が10Ω・cm~10Ω・cmとなり、かつ、アスカーC型硬度計による硬度が60度から90度となる樹脂になる。 As shown in FIG. 10B, when an epoxy resin is included as a blending material for the resin 40, the resin 40 is obtained by blending a carbon allotrope that is a conductive material, a curing agent, and a curing accelerator in the epoxy resin. With respect to the thermosetting resin (epoxy resin), the part by weight of the curing agent is 100 to 800 parts by weight, and the part by weight of the curing accelerator is 1 to 20 parts by weight. Thus, the resin 40 has a volume resistivity of 10 2 Ω · cm ~ 10 7 Ω · cm next after heat curing, and comprises a resin hardness in Asker C hardness meter is 90 degrees 60 degrees.
 硬化剤は、酸無水物系化合物、ジアミン系化合物、ジアルコール系化合物である。 Curing agents are acid anhydride compounds, diamine compounds, and dialcohol compounds.
 硬化促進剤は、アミン系化合物である。 The curing accelerator is an amine compound.
 このようにして配合された樹脂40は、上述した受け治具10の製造方法によって加熱され硬化することで、受け治具10となる。 The resin 40 blended in this way becomes the receiving jig 10 by being heated and cured by the method for manufacturing the receiving jig 10 described above.
 (実施例)
 次に、受け治具10を製造する際の実施例について、実施例1~3を図11A~図11Cにそれぞれ示して説明する。
(Example)
Next, Examples 1 to 3 for manufacturing the receiving jig 10 will be described with reference to FIGS. 11A to 11C, respectively.
 図11Aは、実施例に係る樹脂40の配合材料の配合量を示す図である。図11Aに示されるエポキシ樹脂(可とう性エポキシ樹脂)は、実施例1の場合にはエポキシ樹脂であり、実施例2及び3の場合には可とう性エポキシ樹脂であることを示している。 FIG. 11A is a diagram showing a blending amount of the blending material of the resin 40 according to the example. The epoxy resin (flexible epoxy resin) shown in FIG. 11A is an epoxy resin in Example 1, and is a flexible epoxy resin in Examples 2 and 3.
 実施例1では、熱硬化性樹脂(エポキシ樹脂)は、ビスフェノールF型エポキシ樹脂である。硬化剤は、長鎖アルキル基を有するポリ酸ポリ無水物とテトラヒドロメチル無水フタル酸とが混合された混合物である。硬化促進剤は、1.8アザビシクロウンデセンである。導電材料は、多層カーボンナノチューブである。 In Example 1, the thermosetting resin (epoxy resin) is a bisphenol F type epoxy resin. The curing agent is a mixture in which a polyacid polyanhydride having a long-chain alkyl group and tetrahydromethylphthalic anhydride are mixed. The curing accelerator is 1.8 azabicycloundecene. The conductive material is a multi-walled carbon nanotube.
 実施例2では、熱硬化性樹脂(可とう性エポキシ樹脂)は、ビスフェノールF型エポキシ樹脂と変性エポキシ樹脂とが混合された混合物である。硬化剤は、長鎖アルキル基を有するポリ酸ポリ無水物である。硬化促進剤は、1.8アザビシクロウンデセンである。導電材料は、多層カーボンナノチューブである。 In Example 2, the thermosetting resin (flexible epoxy resin) is a mixture of a bisphenol F-type epoxy resin and a modified epoxy resin. The curing agent is a polyacid polyanhydride having a long chain alkyl group. The curing accelerator is 1.8 azabicycloundecene. The conductive material is a multi-walled carbon nanotube.
 実施例3では、熱硬化性樹脂(可とう性エポキシ樹脂)は、ビスフェノールF型エポキシ樹脂と変性エポキシ樹脂とが混合された混合物である。硬化剤は、長鎖アルキル基を有するポリ酸ポリ無水物とテトラヒドロメチル無水フタル酸とが混合された混合物である。硬化促進剤は、1.8アザビシクロウンデセンである。導電材料は、多層カーボンナノチューブである。 In Example 3, the thermosetting resin (flexible epoxy resin) is a mixture of a bisphenol F type epoxy resin and a modified epoxy resin. The curing agent is a mixture in which a polyacid polyanhydride having a long-chain alkyl group and tetrahydromethylphthalic anhydride are mixed. The curing accelerator is 1.8 azabicycloundecene. The conductive material is a multi-walled carbon nanotube.
 樹脂40は、実施例1~3においてそれぞれ上述した配合材料を含み、図11Aに示される配合量で配合されてなる樹脂である。 Resin 40 is a resin that includes the above-described blending materials in Examples 1 to 3 and is blended in the blending amount shown in FIG. 11A.
 次に、実施例1~3における樹脂40の硬化条件について図11Bに示す。 Next, the curing conditions for the resin 40 in Examples 1 to 3 are shown in FIG. 11B.
 図11Bは、実施例に係る樹脂40を硬化するときの条件を示す図である。 FIG. 11B is a diagram illustrating conditions when the resin 40 according to the example is cured.
 図11Bに示されるように、実施例1~3において加熱するステップ(ステップS16)では、全て同じ条件で硬化させられた。実施例1~3において、樹脂40は、恒温槽で120度の温度で60分加熱させられて硬化させられた。 As shown in FIG. 11B, in the heating step in Examples 1 to 3 (Step S16), all were cured under the same conditions. In Examples 1 to 3, the resin 40 was cured by heating at a temperature of 120 ° C. for 60 minutes in a thermostatic bath.
 また、実施例1~3では、金型(ベース50、外型60及び内型70)の材料には、軽量で、低コストで、かつ、加工性の良いアルミニウムが使用された。また、金型への非粘着表面処理として、フッ素系樹脂コート処理が厚み100μm以下の精度で行われた。 In Examples 1 to 3, aluminum, which is lightweight, low-cost, and has good workability, was used as the material for the mold (base 50, outer mold 60, and inner mold 70). In addition, as a non-adhesive surface treatment for the mold, a fluororesin coating treatment was performed with an accuracy of 100 μm or less.
 また、実施例1~3において被せるステップ(ステップS12)では、離型フィルム20としてフッ素樹脂系フィルム(耐熱温度220度)及び布30が被せられた。 Further, in the step (step S12) to cover in Examples 1 to 3, the release film 20 was covered with a fluororesin film (heat-resistant temperature 220 degrees) and the cloth 30.
 次に、図11A及び図11Bで説明した実施例1~3の条件で製造された受け治具10を構成する樹脂の物性について、図11Cに示す。 Next, the physical properties of the resin constituting the receiving jig 10 manufactured under the conditions of Examples 1 to 3 described in FIGS. 11A and 11B are shown in FIG. 11C.
 図11Cは、実施例に係る受け治具10を構成する樹脂の物性を示す図である。 FIG. 11C is a diagram illustrating physical properties of the resin constituting the receiving jig 10 according to the example.
 図11Cに示されるように、実施例1~3においてそれぞれ、受け治具10を構成する樹脂の物性として、体積抵抗率が10Ω・cm~10Ω・cmとなり、かつ、アスカーC型硬度計による硬度が60度から90度となる。 As shown in FIG. 11C, in Examples 1 to 3, the volume resistivity is 10 2 Ω · cm to 10 7 Ω · cm as the physical properties of the resin constituting the receiving jig 10, and the Asker C type. The hardness measured by a hardness meter is 60 degrees to 90 degrees.
 [効果等]
 本実施の形態に係る受け治具10は、凸形状を有する対象物を当該凸形状のある凸面において支持するための受け治具であって、前記凸形状の輪郭に対応する凹部12を有する樹脂からなる。凹部12は、凸形状の型を取った場合に得られる凹形状を有する。樹脂は、アスカーC型硬度計による硬度が60度から90度であり、かつ、体積抵抗率が10Ω・cm~10Ω・cmである樹脂である。
[Effects]
The receiving jig 10 according to the present embodiment is a receiving jig for supporting an object having a convex shape on a convex surface having the convex shape, and has a recess 12 corresponding to the contour of the convex shape. Consists of. The recess 12 has a concave shape obtained when a convex mold is taken. The resin is a resin having a hardness of 60 to 90 degrees as measured by an Asker C-type hardness meter and a volume resistivity of 10 2 Ω · cm to 10 7 Ω · cm.
 これにより、受け治具10は、サポートピン又は切削による受け治具と比べて、型を取るだけで容易に作成される。また、受け治具10は、アスカーC型硬度計による硬度が60度から90度である柔軟性のある樹脂からなるため、受け治具10が支持している対象物へ傷又はストレス等を与えない。さらに、受け治具10は、対象物の型を取った凹部12を有するため、対象物の凸形状を含めて包み込むように対象物を支持する。したがって、例えば、対象物が基板100等の場合の部品実装において、はんだ等の印刷精度及び部品実装精度を高めることができ、基板100を高品質なものにすることができる。さらに、受け治具10は、体積抵抗率が10Ω・cm~10Ω・cmである樹脂からなるため、対象物が部品112の実装された基板100等の場合でも、静電気によるリーク電流を抑制でき、また、対象物へのゴミによる汚染を抑制できる。このように、容易に作成でき、支持する対象物への静電気による影響及びストレスを抑制できる受け治具10を提供することができる。 Thereby, the receiving jig 10 is easily produced only by taking a type | mold compared with the receiving jig by a support pin or cutting. Further, since the receiving jig 10 is made of a flexible resin having a hardness of 60 degrees to 90 degrees as measured by an Asker C type hardness tester, scratches or stress is given to the object supported by the receiving jig 10. Absent. Furthermore, since the receiving jig 10 has the recessed part 12 which took the type | mold of the target object, it supports a target object so that it may wrap including the convex shape of a target object. Therefore, for example, in component mounting when the object is the substrate 100 or the like, it is possible to increase the printing accuracy of solder or the like and the component mounting accuracy, and the substrate 100 can be of high quality. Further, since the receiving jig 10 is made of a resin having a volume resistivity of 10 2 Ω · cm to 10 7 Ω · cm, even when the object is the substrate 100 on which the component 112 is mounted, the leakage current due to static electricity In addition, it is possible to suppress contamination of the target object with dust. In this way, it is possible to provide the receiving jig 10 that can be easily created and can suppress the influence and stress due to static electricity on the object to be supported.
 また、対象物は、少なくとも1つの部品112が実装された基板100又は工作物である。 Further, the object is the substrate 100 or the workpiece on which at least one component 112 is mounted.
 これにより、対象物として基板100又は各種工業生産品等の一般製造工程で使用される工作物への静電気による影響及びストレスを抑制できる。また、対象物が基板100の場合、部品112が実装された実装面110において基板100が支持され、対象物への静電気による影響及びストレスを抑制しつつ、実装面110の反対面120に容易に部品を実装できる。また、基板100の反対面120において基板100の検査を容易に行うことができる。また、基板100が多面取り基板の場合、基板100を容易に分割することができる。 Thereby, the influence and stress due to static electricity on the workpiece used in the general manufacturing process such as the substrate 100 or various industrial products can be suppressed. Further, when the object is the substrate 100, the substrate 100 is supported on the mounting surface 110 on which the component 112 is mounted, and can easily be applied to the opposite surface 120 of the mounting surface 110 while suppressing the influence and stress due to static electricity on the object. Parts can be mounted. In addition, the substrate 100 can be easily inspected on the opposite surface 120 of the substrate 100. Further, when the substrate 100 is a multi-sided substrate, the substrate 100 can be easily divided.
 また、凹部12は、凹部12の開口よりも小さい底面を有し、開口から底面に向けて傾斜した壁面を有する。 The recess 12 has a bottom surface smaller than the opening of the recess 12 and has a wall surface inclined from the opening toward the bottom.
 これにより対象物の凸形状が凹部12の傾斜した壁面を開口側から底面側へ滑るようにして凹部12に嵌るため、対象物を受け治具10に容易にセットできる。 Thus, the convex shape of the object fits into the concave portion 12 by sliding the inclined wall surface of the concave portion 12 from the opening side to the bottom surface side, so that the target object can be easily set on the jig 10.
 また、受け治具10を構成する樹脂は、熱硬化性樹脂及び熱可塑性樹脂のうちの一方に導電材料が配合された樹脂であり、熱硬化性樹脂及び前記熱可塑性樹脂のうちの一方に対して、導電材料の重量部は、0.3重量部から20重量部である。 Further, the resin constituting the receiving jig 10 is a resin in which a conductive material is blended with one of a thermosetting resin and a thermoplastic resin, and one of the thermosetting resin and the thermoplastic resin. The weight part of the conductive material is 0.3 to 20 parts by weight.
 これにより、受け治具10を構成する樹脂の体積抵抗率を10Ω・cm~10Ω・cmにすることができる。 Thereby, the volume resistivity of the resin constituting the receiving jig 10 can be 10 2 Ω · cm to 10 7 Ω · cm.
 また、熱硬化性樹脂は、エポキシ樹脂、ウレタン樹脂、シリコン樹脂、フッ素樹脂、ポリイミド樹脂、アクリル樹脂又はフェノール樹脂である。熱可塑性樹脂は、低分子量ポリエチレン樹脂、熱可塑性ウレタン樹脂、塩化ビニル樹脂、ポリプロピレン樹脂、アクリロニトリルスチレン樹脂、スチレン樹脂、アクリル樹脂、メタクリル樹脂、ポリエチレンテレフタレート樹脂、ポリ塩化ビニリデン樹脂、ポリフッ化ビニリデン、ポリアミド樹脂、アセタール樹脂、ポリカーボネイト樹脂又はポリブチレンテレフタレート樹脂である。導電材料は、カーボンナノチューブ、グラフェン又はグラファイトを含む炭素同素体である。 The thermosetting resin is an epoxy resin, a urethane resin, a silicon resin, a fluorine resin, a polyimide resin, an acrylic resin, or a phenol resin. Thermoplastic resin is low molecular weight polyethylene resin, thermoplastic urethane resin, vinyl chloride resin, polypropylene resin, acrylonitrile styrene resin, styrene resin, acrylic resin, methacrylic resin, polyethylene terephthalate resin, polyvinylidene chloride resin, polyvinylidene fluoride, polyamide resin An acetal resin, a polycarbonate resin or a polybutylene terephthalate resin. The conductive material is a carbon allotrope containing carbon nanotubes, graphene, or graphite.
 これにより、受け治具10を構成する樹脂を上記の材料から選択して配合することができる。また、導電材料がカーボンナノチューブ、グラフェン又はグラファイト等の炭素同素体であるため、受け治具10を構成する樹脂がカーボン配合樹脂の場合と比べて、剥離に対する強度が高くなる。したがって、カーボンの剥離によるゴミが発生しにくく、対象物が基板100等の場合に、ゴミによる基板100上の不要な短絡等の市場不良の発生を抑制できる。 Thereby, the resin constituting the receiving jig 10 can be selected and blended from the above materials. In addition, since the conductive material is a carbon allotrope such as carbon nanotube, graphene, or graphite, the strength against peeling is higher than when the resin constituting the receiving jig 10 is a carbon-containing resin. Therefore, it is difficult for dust due to carbon peeling to occur, and when the target is the substrate 100 or the like, it is possible to suppress the occurrence of a market defect such as an unnecessary short circuit on the substrate 100 due to dust.
 また、受け治具10を構成する樹脂は、熱硬化性樹脂としてエポキシ樹脂に導電材料と硬化剤と硬化促進剤とを配合した樹脂である。硬化剤は、酸無水物系化合物、ジアミン系化合物又はジアルコール系化合物であり、硬化促進剤は、アミン系化合物である。熱硬化性樹脂に対して、硬化剤の重量部は、100重量部から800重量部であり、硬化促進剤の重量部は、1重量部から20重量部である。 The resin constituting the receiving jig 10 is a resin in which a conductive material, a curing agent, and a curing accelerator are blended with an epoxy resin as a thermosetting resin. The curing agent is an acid anhydride compound, a diamine compound, or a dialcohol compound, and the curing accelerator is an amine compound. The weight part of the curing agent is 100 parts by weight to 800 parts by weight and the weight part of the curing accelerator is 1 part by weight to 20 parts by weight with respect to the thermosetting resin.
 これにより、熱硬化性樹脂及び熱可塑性樹脂のうちの一方がエポキシ樹脂の場合には、上述した硬化剤と硬化促進剤とが配合されることで、受け治具10を構成する樹脂を、柔軟性を有する樹脂にすることができる。また、硬化剤の重量部が100重量部から800重量部、硬化促進剤の重量部が1重量部から20重量部で配合されることで、受け治具10を構成する樹脂のアスカーC型硬度計による硬度を60度から90度にすることができる。 Thereby, when one of a thermosetting resin and a thermoplastic resin is an epoxy resin, the resin which comprises the receiving jig | tool 10 is made flexible by mix | blending the hardening | curing agent and hardening accelerator which were mentioned above. It can be made into resin which has property. In addition, the Asker C-type hardness of the resin that constitutes the receiving jig 10 by blending 100 parts by weight to 800 parts by weight of the curing agent and 1 part by weight to 20 parts by weight of the curing accelerator. The hardness by the meter can be changed from 60 degrees to 90 degrees.
 また、エポキシ樹脂は、ビスフェノールF型エポキシ樹脂である。また、エポキシ樹脂は、ビスフェノールF型エポキシ樹脂と脂肪族エポキシ樹脂及び変性エポキシ樹脂のうちの一方とが混合された可とう性エポキシ樹脂である。また、硬化剤は、長鎖アルキル基を有するポリ酸ポリ無水物、又は、長鎖アルキル基を有するポリ酸ポリ無水物とテトラヒドロメチル無水フタル酸とが混合された混合物である。また、硬化促進剤は、1.8アザビシクロウンデセンである。また、導電材料は、多層カーボンナノチューブである。 The epoxy resin is a bisphenol F type epoxy resin. The epoxy resin is a flexible epoxy resin in which a bisphenol F-type epoxy resin and one of an aliphatic epoxy resin and a modified epoxy resin are mixed. The curing agent is a polyacid polyanhydride having a long chain alkyl group or a mixture of a polyacid polyanhydride having a long chain alkyl group and tetrahydromethylphthalic anhydride. The curing accelerator is 1.8 azabicycloundecene. The conductive material is a multi-walled carbon nanotube.
 これにより、受け治具10を構成する樹脂の特性を図11Cに示すような特性にすることができる。 Thereby, the characteristics of the resin constituting the receiving jig 10 can be made as shown in FIG. 11C.
 本実施の形態に係る受け治具10の製造方法は、凸形状を有する対象物を凸形状のある凸面において支持するための受け治具の製造方法である。当該製造方法は、ベース50上に凸面が上方を向くように対象物を載置するステップと、ベース50上に載置された対象物の凸面側から離型フィルム20及び布30の少なくとも一方を被せるステップとを含む。また、当該製造方法は、離型フィルム20及び布30の少なくとも一方が被せられた対象物を対象物の上面視において囲むように、ベース50に対する高さが凸面の凸形状部分の当該高さよりも高い枠状の外型60をベース50上に設置するステップを含む。また、当該製造方法は、ベース50上に設置された外型60の枠内に、硬化後アスカーC型硬度計による硬度が60度から90度となり、かつ、体積抵抗率が10Ω・cm~10Ω・cmとなる樹脂40を入れるステップを含む。また、当該製造方法は、樹脂40が入れられた外型60の枠内において、外型60の内径に対応する外径を有する内型70を樹脂40へ押し付けるステップと、樹脂40を加熱するステップと、を含む。 The manufacturing method of the receiving jig 10 according to the present embodiment is a manufacturing method of a receiving jig for supporting an object having a convex shape on a convex surface having a convex shape. The manufacturing method includes a step of placing an object such that the convex surface faces upward on the base 50, and at least one of the release film 20 and the cloth 30 from the convex surface side of the object placed on the base 50. Covering the step. Moreover, the said manufacturing method is higher than the said height of the convex-shaped part of a convex surface so that the target with which at least one of the release film 20 and the cloth 30 was covered may be enclosed in the top view of a target object. A step of installing a high frame-shaped outer mold 60 on the base 50. Further, in the manufacturing method, the hardness of the hardened Asker C-type hardness meter is 60 to 90 degrees and the volume resistivity is 10 2 Ω · cm in the frame of the outer mold 60 installed on the base 50. Including the step of adding a resin 40 of ˜10 7 Ω · cm. The manufacturing method also includes a step of pressing an inner mold 70 having an outer diameter corresponding to the inner diameter of the outer mold 60 against the resin 40 in a frame of the outer mold 60 in which the resin 40 is placed, and a step of heating the resin 40. And including.
 これにより、サポートピン又は切削による受け治具と比べて型を取るだけで容易に受け治具10を作成できる。また、受け治具10は、アスカーC型硬度計による硬度が60度から90度である柔軟性のある樹脂からなるため、受け治具10が支持している対象物へ傷又はストレス等を与えない。さらに、受け治具10は、対象物の型を取った凹部12を有するため、対象物の凸形状を含めて包み込むように対象物を支持する。したがって、例えば、対象物が基板100等の場合の部品実装において、はんだ等の印刷精度及び部品実装精度を高めることができ、基板100を高品質なものにすることができる。さらに、受け治具10は、体積抵抗率が10Ω・cm~10Ω・cmである樹脂からなるため、対象物が部品112の実装された基板100の場合でも、静電気によるリーク電流を抑制でき、また、対象物へのゴミによる汚染を抑制できる。このように、容易に作成でき、支持する対象物への静電気による影響及びストレスを抑制できる受け治具10を提供することができる。また、離型フィルム20又は布30を介して対象物の凸形状の型が取られるため、対象物が樹脂40によって汚染されることを抑制することができる。 As a result, the receiving jig 10 can be easily created simply by taking a mold as compared to the supporting pin or cutting receiving jig. Further, since the receiving jig 10 is made of a flexible resin having a hardness of 60 degrees to 90 degrees as measured by an Asker C type hardness tester, scratches or stress is given to the object supported by the receiving jig 10. Absent. Furthermore, since the receiving jig 10 has the recessed part 12 which took the type | mold of the target object, it supports a target object so that it may wrap including the convex shape of a target object. Therefore, for example, in component mounting when the object is the substrate 100 or the like, it is possible to increase the printing accuracy of solder or the like and the component mounting accuracy, and the substrate 100 can be of high quality. Further, receiving jig 10, the volume resistivity is a resin which is 10 2 Ω · cm ~ 10 7 Ω · cm, even if the substrate 100 where the object is mounted in the component 112, the leakage current due to static electricity It is possible to suppress the contamination of the object due to dust. In this way, it is possible to provide the receiving jig 10 that can be easily created and can suppress the influence and stress due to static electricity on the object to be supported. Moreover, since the convex mold | type of a target object is taken through the mold release film 20 or the cloth 30, it can suppress that a target object is contaminated with the resin 40. FIG.
 また、加熱するステップでは、押し付けるステップの後に内型70を樹脂40に押し付けた状態で樹脂40を加熱する。また、加熱するステップでは、入れるステップの前に樹脂40を加熱し、入れるステップでは、外型60の枠内に加熱するステップで加熱した樹脂40を入れてもよい。 In the heating step, the resin 40 is heated in a state where the inner mold 70 is pressed against the resin 40 after the pressing step. Further, in the heating step, the resin 40 may be heated before the adding step, and in the adding step, the resin 40 heated in the heating step may be put in the frame of the outer mold 60.
 これにより、受け治具10を製造する工程において、樹脂40を加熱する順番を変えても受け治具10を作成することができる。 Thereby, in the process of manufacturing the receiving jig 10, the receiving jig 10 can be created even if the order of heating the resin 40 is changed.
 また、対象物は、少なくとも1つの部品112が実装された基板100又は工作物である。 Further, the object is the substrate 100 or the workpiece on which at least one component 112 is mounted.
 これにより、対象物として基板100又は各種工業生産品等の一般製造工程で使用される工作物への静電気による影響及びストレスを抑制できる受け治具10を作成できる。 Thereby, it is possible to create a receiving jig 10 that can suppress the influence of static electricity and stress on a workpiece used in a general manufacturing process such as a substrate 100 or various industrial products as an object.
 また、離型フィルム20は、フッ素樹脂系フィルム、シリコン樹脂系フィルム又は耐熱フィルムに離型剤がコーティングされたフィルムである。 Moreover, the release film 20 is a film in which a release agent is coated on a fluororesin film, a silicon resin film, or a heat-resistant film.
 これにより、離型フィルム20の熱及び圧力による伸び縮み量が少なくなるため、受け治具10の表面が離型フィルム20の伸び縮みによって波打った形状になることが抑制される。また、離型フィルム20に硬化した樹脂40が粘着しにくくなるため、離型フィルム20と硬化した樹脂とが剥がされるときに凹部12等の受け治具10の形状が崩れることが抑制される。また、離型フィルム20に樹脂40が浸透しにくくなるため、対象物が汚染されることがより抑制される。また、離型フィルム20は、樹脂40を加熱するときの加熱温度に耐えることができる。また、離型フィルム20を介しても対象物の凸面上の凸形状の型を鮮明に取ることができる。 Thereby, since the amount of expansion and contraction due to the heat and pressure of the release film 20 is reduced, the surface of the receiving jig 10 is suppressed from being wavy due to the expansion and contraction of the release film 20. In addition, since the cured resin 40 is less likely to adhere to the release film 20, the shape of the receiving jig 10 such as the recess 12 is prevented from collapsing when the release film 20 and the cured resin are peeled off. Moreover, since it becomes difficult for the resin 40 to penetrate into the release film 20, the contamination of the object is further suppressed. Further, the release film 20 can withstand the heating temperature when the resin 40 is heated. In addition, a convex mold on the convex surface of the object can be clearly obtained even through the release film 20.
 また、外型60及び内型70は、フッ素系樹脂コート処理、シリコン樹脂コート処理又は非粘着複合物コート処理がされた金型である。 The outer mold 60 and the inner mold 70 are molds that have been subjected to fluorine resin coating treatment, silicon resin coating treatment, or non-adhesive composite coating treatment.
 これにより、外型60及び内型70に硬化した樹脂40が粘着しにくくなるため、外型60及び内型70と硬化した樹脂40とが剥がされるときに受け治具10の形状が崩れることが抑制される。 As a result, the cured resin 40 is less likely to adhere to the outer mold 60 and the inner mold 70, so that the shape of the receiving jig 10 may collapse when the outer mold 60, the inner mold 70 and the cured resin 40 are peeled off. It is suppressed.
 また、押し付けるステップでは、外型60の内周面と内型70の外周面との間のクリアランスaが50μmから300μmの状態で内型70が押し付けられる。 In the pressing step, the inner mold 70 is pressed in a state where the clearance a between the inner peripheral surface of the outer mold 60 and the outer peripheral surface of the inner mold 70 is 50 μm to 300 μm.
 これにより、内型70が押し付けられるときにガスを抜きつつ、樹脂40がクリアランスaに入り込むことを抑制できる。 Thereby, it is possible to suppress the resin 40 from entering the clearance a while venting the gas when the inner mold 70 is pressed.
 また、加熱するステップでは、樹脂40を70度から360度の温度で加熱する。 In the heating step, the resin 40 is heated at a temperature of 70 to 360 degrees.
 これにより、樹脂40が70度から360度の温度で加熱されることで、樹脂40が熱硬化性を有する樹脂の場合には硬化し、樹脂40が熱可塑性を有する樹脂の場合には半溶融しその後冷やされて硬化する。そして、樹脂40は、硬化後アスカーC型硬度計による硬度が60度から90度であり、かつ、体積抵抗率が10Ω・cm~10Ω・cmである樹脂になる。 Thus, the resin 40 is heated at a temperature of 70 to 360 degrees, so that the resin 40 is cured when the resin 40 is a thermosetting resin, and is semi-molten when the resin 40 is a thermoplastic resin. Then it is cooled and hardened. Then, the resin 40 is 90 degrees from the hardness of 60 degrees due to curing after the Asker-C hardness meter, and the volume resistivity is in the resin is 10 2 Ω · cm ~ 10 7 Ω · cm.
 また樹脂40は、熱硬化性樹脂及び熱可塑性樹脂のうちの一方に導電材料が配合された樹脂であり、熱硬化性樹脂及び前記熱可塑性樹脂のうちの一方に対して、導電材料の重量部は、0.3重量部から20重量部である。 The resin 40 is a resin in which a conductive material is blended with one of a thermosetting resin and a thermoplastic resin, and the weight part of the conductive material with respect to one of the thermosetting resin and the thermoplastic resin. Is 0.3 to 20 parts by weight.
 これにより、樹脂40の体積抵抗率を10Ω・cm~10Ω・cmにすることができる。 Thereby, the volume resistivity of the resin 40 can be set to 10 2 Ω · cm to 10 7 Ω · cm.
 また、熱硬化性樹脂は、エポキシ樹脂、ウレタン樹脂、シリコン樹脂、フッ素樹脂、ポリイミド樹脂、アクリル樹脂又はフェノール樹脂である。熱可塑性樹脂は、低分子量ポリエチレン樹脂、熱可塑性ウレタン樹脂、塩化ビニル樹脂、ポリプロピレン樹脂、アクリロニトリルスチレン樹脂、スチレン樹脂、アクリル樹脂、メタクリル樹脂、ポリエチレンテレフタレート樹脂、ポリ塩化ビニリデン樹脂、ポリフッ化ビニリデン、ポリアミド樹脂、アセタール樹脂、ポリカーボネイト樹脂又はポリブチレンテレフタレート樹脂である。導電材料は、カーボンナノチューブ、グラフェン又はグラファイトを含む炭素同素体である。 The thermosetting resin is an epoxy resin, a urethane resin, a silicon resin, a fluorine resin, a polyimide resin, an acrylic resin, or a phenol resin. Thermoplastic resin is low molecular weight polyethylene resin, thermoplastic urethane resin, vinyl chloride resin, polypropylene resin, acrylonitrile styrene resin, styrene resin, acrylic resin, methacrylic resin, polyethylene terephthalate resin, polyvinylidene chloride resin, polyvinylidene fluoride, polyamide resin An acetal resin, a polycarbonate resin or a polybutylene terephthalate resin. The conductive material is a carbon allotrope containing carbon nanotubes, graphene, or graphite.
 これにより、樹脂40を上記の材料から選択して配合することができる。また、導電材料がカーボンナノチューブ、グラフェン又はグラファイト等の炭素同素体であるため、受け治具10を構成する樹脂がカーボン配合樹脂の場合と比べて、剥離に対する強度が高くなる。したがって、カーボンの剥離によるゴミが発生しにくく、対象物が基板100等の場合に、ゴミによる基板100上の不要な短絡等の市場不良の発生を抑制できる。 Thereby, the resin 40 can be selected and blended from the above materials. In addition, since the conductive material is a carbon allotrope such as carbon nanotube, graphene, or graphite, the strength against peeling is higher than when the resin constituting the receiving jig 10 is a carbon-containing resin. Therefore, it is difficult for dust due to carbon peeling to occur, and when the target is the substrate 100 or the like, it is possible to suppress the occurrence of a market defect such as an unnecessary short circuit on the substrate 100 due to dust.
 また、樹脂40は、熱硬化性樹脂としてエポキシ樹脂に導電材料と硬化剤と硬化促進剤とを配合した樹脂である。硬化剤は、酸無水物系化合物、ジアミン系化合物又はジアルコール系化合物であり、硬化促進剤は、アミン系化合物である。熱硬化性樹脂に対して、硬化剤の重量部は、100重量部から800重量部であり、硬化促進剤の重量部は、1重量部から20重量部である。 The resin 40 is a resin in which an electrically conductive material, a curing agent, and a curing accelerator are blended with an epoxy resin as a thermosetting resin. The curing agent is an acid anhydride compound, a diamine compound, or a dialcohol compound, and the curing accelerator is an amine compound. The weight part of the curing agent is 100 parts by weight to 800 parts by weight and the weight part of the curing accelerator is 1 part by weight to 20 parts by weight with respect to the thermosetting resin.
 これにより、熱硬化性樹脂及び熱可塑性樹脂のうちの一方がエポキシ樹脂の場合には、上述した硬化剤と硬化促進剤とが配合されることで、受け治具10を構成する樹脂を、柔軟性を有する樹脂にすることができる。また、硬化剤の重量部が100重量部から800重量部、硬化促進剤の重量部が1重量部から20重量部で配合されることで、受け治具10を構成する樹脂のアスカーC型硬度計による硬度を60度から90度にすることができる。 Thereby, when one of a thermosetting resin and a thermoplastic resin is an epoxy resin, the resin which comprises the receiving jig | tool 10 is made flexible by mix | blending the hardening | curing agent and hardening accelerator which were mentioned above. It can be made into resin which has property. In addition, the Asker C-type hardness of the resin that constitutes the receiving jig 10 by blending 100 parts by weight to 800 parts by weight of the curing agent and 1 part by weight to 20 parts by weight of the curing accelerator. The hardness by the meter can be changed from 60 degrees to 90 degrees.
 また、エポキシ樹脂は、ビスフェノールF型エポキシ樹脂である。 The epoxy resin is a bisphenol F type epoxy resin.
 また、エポキシ樹脂は、ビスフェノールF型エポキシ樹脂と脂肪族エポキシ樹脂及び変性エポキシ樹脂のうちの一方とが混合された可とう性エポキシ樹脂である。 The epoxy resin is a flexible epoxy resin in which a bisphenol F-type epoxy resin and one of an aliphatic epoxy resin and a modified epoxy resin are mixed.
 また、硬化剤は、長鎖アルキル基を有するポリ酸ポリ無水物、又は、長鎖アルキル基を有するポリ酸ポリ無水物とテトラヒドロメチル無水フタル酸とが混合された混合物である。 The curing agent is a polyacid polyanhydride having a long chain alkyl group or a mixture of a polyacid polyanhydride having a long chain alkyl group and tetrahydromethylphthalic anhydride.
 また、硬化促進剤は、1.8アザビシクロウンデセンである。 Also, the curing accelerator is 1.8 azabicycloundecene.
 また、導電材料は、多層カーボンナノチューブである。 Also, the conductive material is a multi-walled carbon nanotube.
 これらにより、受け治具10を構成する樹脂の特性を図11Cに示すような特性にすることができる。 Thus, the characteristics of the resin constituting the receiving jig 10 can be made as shown in FIG. 11C.
 (その他の実施の形態)
 以上、実施の形態及び実施例に係る受け治具10、受け治具10の製造方法及び樹脂40について説明したが、本発明は、上記実施の形態等に限定されるものではない。
(Other embodiments)
Although the receiving jig 10, the manufacturing method of the receiving jig 10, and the resin 40 according to the embodiments and examples have been described above, the present invention is not limited to the above-described embodiments and the like.
 例えば、受け治具10は、上述したステップS11からステップS16に示される、ベース50上に載置された対象物に樹脂40が押し付けられる方法で作成されたが、これに限らない。例えば、受け治具10は、以下に示す方法で、作成されてもよい。 For example, the receiving jig 10 is created by the method in which the resin 40 is pressed against the object placed on the base 50 shown in the above-described steps S11 to S16, but is not limited thereto. For example, the receiving jig 10 may be created by the following method.
 まず、ベース50上に対象物の上面視において当該対象物を囲む内径を有する枠状の外型60を設置する。次に、ベース50上に設置された外型60の枠内に、硬化後アスカーC型硬度計による硬度が60度から90度となり、かつ、体積抵抗率が10Ω・cm~10Ω・cmとなる樹脂40を入れる。次に、外型60の枠内に入れられた樹脂40に離型フィルム20及び布30の少なくとも一方を被せる。次に、樹脂40に被せられた離型フィルム20及び布30の少なくとも一方上に凸面が下方を向くように対象物を載置する。そして、対象物が離型フィルム20及び布30の少なくとも一方上に載置されている外型60の枠内において、外型60の内径に対応する外径を有する内型70を対象物へ押し付ける。次に、内型70を対象物へ押し付けた状態で外型60の枠内に入れられた樹脂40を加熱する。なお、樹脂40が加熱される温度は、70度から360度の温度である。また、外型60の内周面と内型70の外周面との間のクリアランスaが50μmから300μmの状態で内型70が押し付けられる。 First, a frame-shaped outer mold 60 having an inner diameter that surrounds the object in the top view of the object is installed on the base 50. Next, in the frame of the outer mold 60 installed on the base 50, the hardness by the Asker C-type hardness meter after curing is changed from 60 degrees to 90 degrees, and the volume resistivity is 10 2 Ω · cm to 10 7 Ω.・ Put resin 40 to be cm. Next, at least one of the release film 20 and the cloth 30 is put on the resin 40 put in the frame of the outer mold 60. Next, an object is placed on at least one of the release film 20 and the cloth 30 covered with the resin 40 so that the convex surface faces downward. Then, in the frame of the outer mold 60 on which the object is placed on at least one of the release film 20 and the cloth 30, the inner mold 70 having an outer diameter corresponding to the inner diameter of the outer mold 60 is pressed against the object. . Next, the resin 40 put in the frame of the outer mold 60 is heated in a state where the inner mold 70 is pressed against the object. The temperature at which the resin 40 is heated is 70 degrees to 360 degrees. Further, the inner mold 70 is pressed in a state where the clearance a between the inner peripheral surface of the outer mold 60 and the outer peripheral surface of the inner mold 70 is 50 μm to 300 μm.
 このような樹脂40に対象物が押し付けられる方法であっても、容易に受け治具10を作成できる。 Even if the object is pressed against the resin 40, the receiving jig 10 can be easily created.
 なお、樹脂40が外型60の枠内に入れられる前に事前に加熱されてもよい。また、樹脂40が外型60の枠内に入れられた後、離型フィルム20及び布30の少なくとも一方が被せられる前に加熱されてもよい。具体的には、樹脂40が熱可塑性を有する樹脂であり例えば板状、粒子状又はペレット状の樹脂の場合に、樹脂40が外型60の枠内に入れられる前に樹脂40が事前に加熱されて半溶融してから外型60の枠内に入れられてもよい。この場合には、内型70を対象物へ押し付けた状態で外型60の枠内に入れられた樹脂40が加熱される代わりに、内型70を対象物に押し付けた状態で、樹脂40が例えば常温で冷やされて硬化させられる。また、樹脂40が外型60の枠内に入れられた後に加熱され、加熱された樹脂40に離型フィルム20及び布30の少なくとも一方が被せられてもよい。このように、樹脂40を加熱する順番を変えても受け治具10を作成することができる。 Note that the resin 40 may be heated in advance before being put into the frame of the outer mold 60. Moreover, after the resin 40 is put in the frame of the outer mold 60, it may be heated before at least one of the release film 20 and the cloth 30 is covered. Specifically, in the case where the resin 40 is a resin having thermoplasticity, for example, a resin in the form of a plate, a particle, or a pellet, the resin 40 is heated in advance before the resin 40 is put into the frame of the outer mold 60. Then, after being semi-melted, it may be put in the frame of the outer mold 60. In this case, instead of heating the resin 40 put in the frame of the outer mold 60 with the inner mold 70 pressed against the object, the resin 40 is pressed with the inner mold 70 pressed against the object. For example, it is cooled at room temperature and cured. Further, the resin 40 may be heated after being put in the frame of the outer mold 60, and at least one of the release film 20 and the cloth 30 may be covered with the heated resin 40. Thus, the receiving jig 10 can be created even if the order of heating the resin 40 is changed.
 その他、実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 Other forms obtained by subjecting the embodiments to various modifications conceived by those skilled in the art, and forms realized by arbitrarily combining the components and functions in the embodiments without departing from the spirit of the present invention. Are also included in the present invention.
 本発明は、対象物として例えば基板等の実装又は検査等をするための治具又は各種複雑構造を有する中間工作物を安定して支えるための支え治具等に適用できる。 The present invention can be applied to a jig for mounting or inspecting a substrate or the like as an object, or a support jig for stably supporting an intermediate workpiece having various complex structures.
 10、200、300 受け治具
 12 凹部
 20 離型フィルム
 22 空間
 30 布
 40 樹脂
 50 ベース
 60 外型
 70 内型
 80 蓋
 90 ネジ
 92 スプリング
 100 基板
 110 実装面
 112 部品
 120 反対面
 202 サポートピン
 302 加工穴
10, 200, 300 Receiving jig 12 Recess 20 Release film 22 Space 30 Cloth 40 Resin 50 Base 60 Outer mold 70 Inner mold 80 Lid 90 Screw 92 Spring 100 Substrate 110 Mounting surface 112 Component 120 Opposite surface 202 Support pin 302 Processing hole

Claims (37)

  1.  凸形状を有する対象物を当該凸形状のある凸面において支持するための受け治具であって、
     前記凸形状の輪郭に対応する凹部を有する樹脂からなり、
     前記凹部は、前記凸形状の型を取った場合に得られる凹形状を有し、
     前記樹脂は、アスカーC型硬度計による硬度が60度から90度であり、かつ、体積抵抗率が10Ω・cm~10Ω・cmである樹脂である
     受け治具。
    A receiving jig for supporting an object having a convex shape on a convex surface having the convex shape,
    It consists of a resin having a recess corresponding to the convex contour,
    The concave portion has a concave shape obtained when taking the convex mold,
    The resin is 90 degrees from the hardness of 60 degrees by Asker-C hardness meter, and the receiving jig of a resin volume resistivity of 10 2 Ω · cm ~ 10 7 Ω · cm.
  2.  前記対象物は、少なくとも1つの部品が実装された基板又は工作物である
     請求項1に記載の受け治具。
    The receiving jig according to claim 1, wherein the object is a substrate or a workpiece on which at least one component is mounted.
  3.  前記凹部は、当該凹部の開口よりも小さい底面を有し、当該開口から当該底面に向けて傾斜した壁面を有する
     請求項1又は2に記載の受け治具。
    The receiving jig according to claim 1, wherein the concave portion has a bottom surface smaller than an opening of the concave portion and has a wall surface inclined from the opening toward the bottom surface.
  4.  前記樹脂は、熱硬化性樹脂及び熱可塑性樹脂のうちの一方に導電材料が配合された樹脂であり、
     前記熱硬化性樹脂及び前記熱可塑性樹脂のうちの一方に対して、前記導電材料の重量部は、0.3重量部から20重量部である
     請求項1~3のいずれか1項に記載の受け治具。
    The resin is a resin in which a conductive material is blended in one of a thermosetting resin and a thermoplastic resin,
    The weight part of the conductive material is 0.3 to 20 parts by weight with respect to one of the thermosetting resin and the thermoplastic resin. Receiving jig.
  5.  前記熱硬化性樹脂は、エポキシ樹脂、ウレタン樹脂、シリコン樹脂、フッ素樹脂、ポリイミド樹脂、アクリル樹脂又はフェノール樹脂であり、
     前記熱可塑性樹脂は、低分子量ポリエチレン樹脂、熱可塑性ウレタン樹脂、塩化ビニル樹脂、ポリプロピレン樹脂、アクリロニトリルスチレン樹脂、スチレン樹脂、アクリル樹脂、メタクリル樹脂、ポリエチレンテレフタレート樹脂、ポリ塩化ビニリデン樹脂、ポリフッ化ビニリデン、ポリアミド樹脂、アセタール樹脂、ポリカーボネイト樹脂又はポリブチレンテレフタレート樹脂であり、
     前記導電材料は、カーボンナノチューブ、グラフェン又はグラファイトを含む炭素同素体である
     請求項4に記載の受け治具。
    The thermosetting resin is an epoxy resin, urethane resin, silicon resin, fluorine resin, polyimide resin, acrylic resin or phenol resin,
    The thermoplastic resin is low molecular weight polyethylene resin, thermoplastic urethane resin, vinyl chloride resin, polypropylene resin, acrylonitrile styrene resin, styrene resin, acrylic resin, methacrylic resin, polyethylene terephthalate resin, polyvinylidene chloride resin, polyvinylidene fluoride, polyamide Resin, acetal resin, polycarbonate resin or polybutylene terephthalate resin,
    The receiving jig according to claim 4, wherein the conductive material is a carbon allotrope containing carbon nanotubes, graphene, or graphite.
  6.  前記樹脂は、前記熱硬化性樹脂としてエポキシ樹脂に前記導電材料と硬化剤と硬化促進剤とを配合した樹脂であり、
     前記硬化剤は、酸無水物系化合物、ジアミン系化合物又はジアルコール系化合物であり、
     前記硬化促進剤は、アミン系化合物であり、
     前記熱硬化性樹脂に対して、
     前記硬化剤の重量部は、100重量部から800重量部であり、
     前記硬化促進剤の重量部は、1重量部から20重量部である
     請求項5に記載の受け治具。
    The resin is a resin in which the conductive material, a curing agent, and a curing accelerator are blended with an epoxy resin as the thermosetting resin,
    The curing agent is an acid anhydride compound, a diamine compound or a dialcohol compound,
    The curing accelerator is an amine compound,
    For the thermosetting resin,
    The weight part of the curing agent is 100 parts by weight to 800 parts by weight,
    The receiving jig according to claim 5, wherein a part by weight of the curing accelerator is 1 part by weight to 20 parts by weight.
  7.  前記エポキシ樹脂は、ビスフェノールF型エポキシ樹脂である
     請求項6に記載の受け治具。
    The receiving jig according to claim 6, wherein the epoxy resin is a bisphenol F-type epoxy resin.
  8.  前記エポキシ樹脂は、ビスフェノールF型エポキシ樹脂と脂肪族エポキシ樹脂及び変性エポキシ樹脂のうちの一方とが混合された可とう性エポキシ樹脂である
     請求項6に記載の受け治具。
    The receiving jig according to claim 6, wherein the epoxy resin is a flexible epoxy resin in which a bisphenol F-type epoxy resin and one of an aliphatic epoxy resin and a modified epoxy resin are mixed.
  9.  前記硬化剤は、長鎖アルキル基を有するポリ酸ポリ無水物、又は、長鎖アルキル基を有するポリ酸ポリ無水物とテトラヒドロメチル無水フタル酸とが混合された混合物である
     請求項6~8のいずれか1項に記載の受け治具。
    The curing agent is a polyacid polyanhydride having a long-chain alkyl group or a mixture of a polyacid polyanhydride having a long-chain alkyl group and tetrahydromethylphthalic anhydride. The receiving jig of any one of Claims.
  10.  前記硬化促進剤は、1.8アザビシクロウンデセンである
     請求項6~9のいずれか1項に記載の受け治具。
    The receiving jig according to any one of claims 6 to 9, wherein the curing accelerator is 1.8 azabicycloundecene.
  11.  前記導電材料は、多層カーボンナノチューブである
     請求項6~10のいずれか1項に記載の受け治具。
    The receiving jig according to any one of claims 6 to 10, wherein the conductive material is a multi-walled carbon nanotube.
  12.  凸形状を有する対象物を当該凸形状のある凸面において支持するための受け治具の製造方法であって、
     ベース上に前記凸面が上方を向くように前記対象物を載置するステップと、
     前記ベース上に載置された前記対象物の前記凸面側から離型フィルム及び布の少なくとも一方を被せるステップと、
     前記離型フィルム及び前記布の少なくとも一方が被せられた前記対象物を当該対象物の上面視において囲むように、前記ベースに対する高さが前記凸面の凸形状部分の当該高さよりも高い枠状の外型を前記ベース上に設置するステップと、
     前記ベース上に設置された前記外型の枠内に、硬化後アスカーC型硬度計による硬度が60度から90度となり、かつ、体積抵抗率が10Ω・cm~10Ω・cmとなる樹脂を入れるステップと、
     前記樹脂が入れられた前記外型の枠内において、前記外型の内径に対応する外径を有する内型を当該樹脂へ押し付けるステップと、
     前記樹脂を加熱するステップと、を含む
     受け治具の製造方法。
    A manufacturing method of a receiving jig for supporting an object having a convex shape on a convex surface having the convex shape,
    Placing the object on the base such that the convex surface faces upward;
    Covering at least one of a release film and cloth from the convex surface side of the object placed on the base;
    A frame-like shape in which the height relative to the base is higher than the height of the convex portion of the convex surface so as to surround the target object covered with at least one of the release film and the cloth in a top view of the target object. Installing an outer mold on the base;
    In the frame of the installed the outer die on the base, the hardness due to curing after Asker C hardness meter is 90 degrees to 60 degrees, and a volume resistivity of the 10 2 Ω · cm ~ 10 7 Ω · cm A step of adding resin,
    In the frame of the outer mold in which the resin is placed, pressing an inner mold having an outer diameter corresponding to the inner diameter of the outer mold against the resin;
    Heating the resin. A method of manufacturing a receiving jig.
  13.  凸形状を有する対象物を当該凸形状のある凸面において支持するための受け治具の製造方法であって、
     ベース上に前記対象物の上面視において当該対象物を囲む内径を有する枠状の外型を設置するステップと、
     前記ベース上に設置された前記外型の枠内に、硬化後アスカーC型硬度計による硬度が60度から90度となり、かつ、体積抵抗率が10Ω・cm~10Ω・cmとなる樹脂を入れるステップと、
     前記外型の枠内に入れられた前記樹脂に離型フィルム及び布の少なくとも一方を被せるステップと、
     前記樹脂に被せられた前記離型フィルム及び前記布の少なくとも一方上に前記凸面が下方を向くように前記対象物を載置するステップと、
     前記対象物が前記離型フィルム及び前記布の少なくとも一方上に載置されている前記外型の枠内において、前記外型の内径に対応する外径を有する内型を前記対象物へ押し付けるステップと、
     前記樹脂を加熱するステップと、を含む
     受け治具の製造方法。
    A manufacturing method of a receiving jig for supporting an object having a convex shape on a convex surface having the convex shape,
    Installing a frame-shaped outer mold having an inner diameter surrounding the object in a top view of the object on the base;
    In the frame of the outer mold placed on the base, the hardness by the Asker C-type hardness meter after curing is 60 degrees to 90 degrees, and the volume resistivity is 10 2 Ω · cm to 10 7 Ω · cm. A step of adding resin,
    Covering the resin placed in the frame of the outer mold with at least one of a release film and cloth;
    Placing the object on at least one of the release film and the cloth covered with the resin so that the convex surface faces downward;
    A step of pressing an inner mold having an outer diameter corresponding to an inner diameter of the outer mold against the object in the outer mold frame in which the object is placed on at least one of the release film and the cloth. When,
    Heating the resin. A method of manufacturing a receiving jig.
  14.  前記加熱するステップでは、前記押し付けるステップの後に前記内型を前記樹脂に押し付けた状態で当該樹脂を加熱する
     請求項12又は13に記載の受け治具の製造方法。
    The method for manufacturing a receiving jig according to claim 12 or 13, wherein, in the heating step, the resin is heated in a state where the inner mold is pressed against the resin after the pressing step.
  15.  前記加熱するステップでは、前記入れるステップの前に前記樹脂を加熱し、
     前記入れるステップでは、前記外型の枠内に前記加熱するステップで加熱した前記樹脂を入れる
     請求項12又は13に記載の受け治具の製造方法。
    In the heating step, the resin is heated before the adding step,
    The method for manufacturing a receiving jig according to claim 12 or 13, wherein in the step of placing, the resin heated in the heating step is placed in a frame of the outer mold.
  16.  前記加熱するステップでは、前記入れるステップで前記外型の枠内に入れられた前記樹脂を加熱し、
     前記被せるステップでは、加熱された前記樹脂に前記離型フィルム及び前記布の少なくとも一方を被せる
     請求項13に記載の受け治具の製造方法。
    In the heating step, the resin put in the outer mold frame in the adding step is heated,
    The method of manufacturing a receiving jig according to claim 13, wherein in the covering step, at least one of the release film and the cloth is covered on the heated resin.
  17.  前記対象物は、少なくとも1つの部品が実装された基板又は工作物である
     請求項12~16のいずれか1項に記載の受け治具の製造方法。
    The method of manufacturing a receiving jig according to any one of claims 12 to 16, wherein the object is a substrate or a workpiece on which at least one component is mounted.
  18.  前記離型フィルムは、フッ素樹脂系フィルム、シリコン樹脂系フィルム又は耐熱フィルムに離型剤がコーティングされたフィルムである
     請求項12~17のいずれか1項に記載の受け治具の製造方法。
    The method for manufacturing a receiving jig according to any one of claims 12 to 17, wherein the release film is a film in which a release agent is coated on a fluororesin film, a silicon resin film, or a heat-resistant film.
  19.  前記外型及び前記内型は、フッ素系樹脂コート処理、シリコン樹脂コート処理又は非粘着複合物コート処理がされた金型である
     請求項12~18のいずれか1項に記載の受け治具の製造方法。
    The receiving jig according to any one of claims 12 to 18, wherein the outer mold and the inner mold are molds that have been subjected to fluorine resin coating treatment, silicon resin coating treatment, or non-adhesive composite coating treatment. Production method.
  20.  前記押し付けるステップでは、前記外型の内周面と前記内型の外周面との間のクリアランスが50μmから300μmの状態で前記内型が押し付けられる
     請求項12~19のいずれか1項に記載の受け治具の製造方法。
    The pressing according to any one of claims 12 to 19, wherein, in the pressing step, the inner mold is pressed in a state where a clearance between the inner peripheral surface of the outer mold and the outer peripheral surface of the inner mold is 50 μm to 300 μm. Manufacturing method of receiving jig.
  21.  前記加熱するステップでは、前記樹脂を70度から360度の温度で加熱する
     請求項12~20のいずれか1項に記載の受け治具の製造方法。
    The receiving jig manufacturing method according to any one of claims 12 to 20, wherein in the heating step, the resin is heated at a temperature of 70 degrees to 360 degrees.
  22.  前記樹脂は、熱硬化性樹脂及び熱可塑性樹脂のうちの一方に導電材料が配合された樹脂であり、
     前記熱硬化性樹脂及び前記熱可塑性樹脂のうちの一方に対して、前記導電材料の重量部は、0.3重量部から20重量部である
     請求項12~21のいずれか1項に記載の受け治具の製造方法。
    The resin is a resin in which a conductive material is blended in one of a thermosetting resin and a thermoplastic resin,
    The weight part of the conductive material is 0.3 part by weight to 20 parts by weight with respect to one of the thermosetting resin and the thermoplastic resin. Manufacturing method of receiving jig.
  23.  前記熱硬化性樹脂は、エポキシ樹脂、ウレタン樹脂、シリコン樹脂、フッ素樹脂、ポリイミド樹脂、アクリル樹脂又はフェノール樹脂であり、
     前記熱可塑性樹脂は、低分子量ポリエチレン樹脂、熱可塑性ウレタン樹脂、塩化ビニル樹脂、ポリプロピレン樹脂、アクリロニトリルスチレン樹脂、スチレン樹脂、アクリル樹脂、メタクリル樹脂、ポリエチレンテレフタレート樹脂、ポリ塩化ビニリデン樹脂、ポリフッ化ビニリデン、ポリアミド樹脂、アセタール樹脂、ポリカーボネイト樹脂又はポリブチレンテレフタレート樹脂であり、
     前記導電材料は、カーボンナノチューブ、グラフェン又はグラファイトを含む炭素同素体である
     請求項22に記載の受け治具の製造方法。
    The thermosetting resin is an epoxy resin, urethane resin, silicon resin, fluorine resin, polyimide resin, acrylic resin or phenol resin,
    The thermoplastic resin is low molecular weight polyethylene resin, thermoplastic urethane resin, vinyl chloride resin, polypropylene resin, acrylonitrile styrene resin, styrene resin, acrylic resin, methacrylic resin, polyethylene terephthalate resin, polyvinylidene chloride resin, polyvinylidene fluoride, polyamide Resin, acetal resin, polycarbonate resin or polybutylene terephthalate resin,
    The method for manufacturing a receiving jig according to claim 22, wherein the conductive material is a carbon allotrope containing carbon nanotubes, graphene, or graphite.
  24.  前記樹脂は、前記熱硬化性樹脂としてエポキシ樹脂に前記導電材料と硬化剤と硬化促進剤とを配合した樹脂であり、
     前記硬化剤は、酸無水物系化合物、ジアミン系化合物又はジアルコール系化合物であり、
     前記硬化促進剤は、アミン系化合物であり、
     前記熱硬化性樹脂に対して、
     前記硬化剤の重量部は、100重量部から800重量部であり、
     前記硬化促進剤の重量部は、1重量部から20重量部である
     請求項23に記載の受け治具の製造方法。
    The resin is a resin in which the conductive material, a curing agent, and a curing accelerator are blended with an epoxy resin as the thermosetting resin,
    The curing agent is an acid anhydride compound, a diamine compound or a dialcohol compound,
    The curing accelerator is an amine compound,
    For the thermosetting resin,
    The weight part of the curing agent is 100 parts by weight to 800 parts by weight,
    The method for manufacturing a receiving jig according to claim 23, wherein a weight part of the curing accelerator is 1 part by weight to 20 parts by weight.
  25.  前記エポキシ樹脂は、ビスフェノールF型エポキシ樹脂である
     請求項24に記載の受け治具の製造方法。
    The method for manufacturing a receiving jig according to claim 24, wherein the epoxy resin is a bisphenol F-type epoxy resin.
  26.  前記エポキシ樹脂は、ビスフェノールF型エポキシ樹脂と脂肪族エポキシ樹脂及び変性エポキシ樹脂のうちの一方とが混合された可とう性エポキシ樹脂である
     請求項24に記載の受け治具の製造方法。
    The method for manufacturing a receiving jig according to claim 24, wherein the epoxy resin is a flexible epoxy resin in which a bisphenol F-type epoxy resin and one of an aliphatic epoxy resin and a modified epoxy resin are mixed.
  27.  前記硬化剤は、長鎖アルキル基を有するポリ酸ポリ無水物、又は、長鎖アルキル基を有するポリ酸ポリ無水物とテトラヒドロメチル無水フタル酸とが混合された混合物である
     請求項24~26のいずれか1項に記載の受け治具の製造方法。
    The curing agent is a polyacid polyanhydride having a long-chain alkyl group or a mixture of a polyacid polyanhydride having a long-chain alkyl group and tetrahydromethylphthalic anhydride. A manufacturing method of a receiving jig given in any 1 paragraph.
  28.  前記硬化促進剤は、1.8アザビシクロウンデセンである
     請求項24~27のいずれか1項に記載の受け治具の製造方法。
    The method of manufacturing a receiving jig according to any one of claims 24 to 27, wherein the curing accelerator is 1.8 azabicycloundecene.
  29.  前記導電材料は、多層カーボンナノチューブである
     請求項24~28のいずれか1項に記載の受け治具の製造方法。
    The method for manufacturing a receiving jig according to any one of claims 24 to 28, wherein the conductive material is a multi-walled carbon nanotube.
  30.  熱硬化性樹脂及び熱可塑性樹脂のうちの一方に導電材料が配合された樹脂であり、
     前記熱硬化性樹脂及び前記熱可塑性樹脂のうちの一方に対して、前記導電材料の重量部は、0.3重量部から20重量部である
     樹脂。
    A resin in which a conductive material is blended in one of a thermosetting resin and a thermoplastic resin,
    The weight part of the conductive material is 0.3 to 20 parts by weight with respect to one of the thermosetting resin and the thermoplastic resin.
  31.  前記熱硬化性樹脂は、エポキシ樹脂、ウレタン樹脂、シリコン樹脂、フッ素樹脂、ポリイミド樹脂、アクリル樹脂又はフェノール樹脂であり、
     前記熱可塑性樹脂は、低分子量ポリエチレン樹脂、熱可塑性ウレタン樹脂、塩化ビニル樹脂、ポリプロピレン樹脂、アクリロニトリルスチレン樹脂、スチレン樹脂、アクリル樹脂、メタクリル樹脂、ポリエチレンテレフタレート樹脂、ポリ塩化ビニリデン樹脂、ポリフッ化ビニリデン、ポリアミド樹脂、アセタール樹脂、ポリカーボネイト樹脂又はポリブチレンテレフタレート樹脂であり、
     前記導電材料は、カーボンナノチューブ、グラフェン又はグラファイトを含む炭素同素体である
     請求項30に記載の樹脂。
    The thermosetting resin is an epoxy resin, urethane resin, silicon resin, fluorine resin, polyimide resin, acrylic resin or phenol resin,
    The thermoplastic resin is low molecular weight polyethylene resin, thermoplastic urethane resin, vinyl chloride resin, polypropylene resin, acrylonitrile styrene resin, styrene resin, acrylic resin, methacrylic resin, polyethylene terephthalate resin, polyvinylidene chloride resin, polyvinylidene fluoride, polyamide Resin, acetal resin, polycarbonate resin or polybutylene terephthalate resin,
    The resin according to claim 30, wherein the conductive material is a carbon allotrope containing carbon nanotubes, graphene, or graphite.
  32.  前記樹脂は、前記熱硬化性樹脂としてエポキシ樹脂に前記導電材料と硬化剤と硬化促進剤とを配合した樹脂であり、
     前記硬化剤は、酸無水物系化合物、ジアミン系化合物又はジアルコール系化合物であり、
     前記硬化促進剤は、アミン系化合物であり、
     前記熱硬化性樹脂に対して、
     前記硬化剤の重量部は、100重量部から800重量部であり、
     前記硬化促進剤の重量部は、1重量部から20重量部である
     請求項31に記載の樹脂。
    The resin is a resin in which the conductive material, a curing agent, and a curing accelerator are blended with an epoxy resin as the thermosetting resin,
    The curing agent is an acid anhydride compound, a diamine compound or a dialcohol compound,
    The curing accelerator is an amine compound,
    For the thermosetting resin,
    The weight part of the curing agent is 100 parts by weight to 800 parts by weight,
    32. The resin according to claim 31, wherein the weight part of the curing accelerator is 1 part by weight to 20 parts by weight.
  33.  前記エポキシ樹脂は、ビスフェノールF型エポキシ樹脂である
     請求項32に記載の樹脂。
    The resin according to claim 32, wherein the epoxy resin is a bisphenol F-type epoxy resin.
  34.  前記エポキシ樹脂は、ビスフェノールF型エポキシ樹脂と脂肪族エポキシ樹脂及び変性エポキシ樹脂のうちの一方とが混合された可とう性エポキシ樹脂である
     請求項32に記載の樹脂。
    The resin according to claim 32, wherein the epoxy resin is a flexible epoxy resin in which a bisphenol F-type epoxy resin and one of an aliphatic epoxy resin and a modified epoxy resin are mixed.
  35.  前記硬化剤は、長鎖アルキル基を有するポリ酸ポリ無水物、又は、長鎖アルキル基を有するポリ酸ポリ無水物とテトラヒドロメチル無水フタル酸とが混合された混合物である
     請求項32~34のいずれか1項に記載の樹脂。
    The curing agent is a polyacid polyanhydride having a long chain alkyl group or a mixture of a polyacid polyanhydride having a long chain alkyl group and tetrahydromethylphthalic anhydride. The resin according to any one of the above.
  36.  前記硬化促進剤は、1.8アザビシクロウンデセンである
     請求項32~35のいずれか1項に記載の樹脂。
    The resin according to any one of claims 32 to 35, wherein the curing accelerator is 1.8 azabicycloundecene.
  37.  前記導電材料は、多層カーボンナノチューブである
     請求項32~36のいずれか1項に記載の樹脂。
    The resin according to any one of claims 32 to 36, wherein the conductive material is a multi-walled carbon nanotube.
PCT/JP2016/088126 2016-02-09 2016-12-21 Clamping jig, method for manufacturing clamping jig, and resin WO2017138266A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016023011A JP6540963B2 (en) 2016-02-09 2016-02-09 Receiving jig and manufacturing method of receiving jig
JP2016-023011 2016-02-09

Publications (1)

Publication Number Publication Date
WO2017138266A1 true WO2017138266A1 (en) 2017-08-17

Family

ID=59563035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088126 WO2017138266A1 (en) 2016-02-09 2016-12-21 Clamping jig, method for manufacturing clamping jig, and resin

Country Status (2)

Country Link
JP (1) JP6540963B2 (en)
WO (1) WO2017138266A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7218891B2 (en) * 2018-11-15 2023-02-07 株式会社ナノマテックス Manufacturing method, resin reel, manufacturing system and receiving jig

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60141725A (en) * 1983-12-29 1985-07-26 Okamura Seiyu Kk Polyacid-polyanhydride powder
JPS6330578A (en) * 1986-07-24 1988-02-09 Shikoku Chem Corp Epoxy-resin-base resist ink composition
JPH07288394A (en) * 1994-04-19 1995-10-31 Matsushita Electric Ind Co Ltd Supporting method of substrate and supporting member used for it, and manufacture of the member and operation device wherein the member is used
JP2002009487A (en) * 2000-06-19 2002-01-11 Sharp Corp Printed board holding jig and manufacturing method thereof
JP2010171069A (en) * 2009-01-20 2010-08-05 Mitsubishi Chemicals Corp Epoxy resin composition for solar battery sealant and solar battery
JP2012092201A (en) * 2010-10-26 2012-05-17 Kyocera Chemical Corp Electroconductive resin composition, and semiconductor device using the same
JP2012097282A (en) * 2004-04-30 2012-05-24 Kureha Corp Resin composition for sealing and semiconductor device sealed with resin

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238820A (en) * 2002-02-20 2003-08-27 Nidec Copal Corp Antistatic resin material for optical instrument
JP5257200B2 (en) * 2009-03-30 2013-08-07 三菱エンジニアリングプラスチックス株式会社 Conductive resin composition and conductive resin molded product
KR101662368B1 (en) * 2013-07-26 2016-10-04 롯데첨단소재(주) Conductive Sheet Composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60141725A (en) * 1983-12-29 1985-07-26 Okamura Seiyu Kk Polyacid-polyanhydride powder
JPS6330578A (en) * 1986-07-24 1988-02-09 Shikoku Chem Corp Epoxy-resin-base resist ink composition
JPH07288394A (en) * 1994-04-19 1995-10-31 Matsushita Electric Ind Co Ltd Supporting method of substrate and supporting member used for it, and manufacture of the member and operation device wherein the member is used
JP2002009487A (en) * 2000-06-19 2002-01-11 Sharp Corp Printed board holding jig and manufacturing method thereof
JP2012097282A (en) * 2004-04-30 2012-05-24 Kureha Corp Resin composition for sealing and semiconductor device sealed with resin
JP2010171069A (en) * 2009-01-20 2010-08-05 Mitsubishi Chemicals Corp Epoxy resin composition for solar battery sealant and solar battery
JP2012092201A (en) * 2010-10-26 2012-05-17 Kyocera Chemical Corp Electroconductive resin composition, and semiconductor device using the same

Also Published As

Publication number Publication date
JP6540963B2 (en) 2019-07-10
JP2017143155A (en) 2017-08-17

Similar Documents

Publication Publication Date Title
CN1620724A (en) Device and method for package warp compensation in an integrated heat spreader
US8399773B2 (en) Substrates having voltage switchable dielectric materials
US20160320142A1 (en) Thin heat dissipation foil and method for manufacturing same
WO2017138266A1 (en) Clamping jig, method for manufacturing clamping jig, and resin
JP3212628U (en) Manufacturing system
US20080142568A1 (en) Circuit carrier board/solder pallett
O'Connell et al. Electrostatic distortion of melt‐electrowritten patterns by 3D objects: Quantification, modeling, and toolpath correction
US20160381833A1 (en) Heat sink, method for making the same, and electronic device having the same
Geczy et al. Investigating and compensating printed circuit board shrinkage induced failures during reflow soldering
JP6902950B2 (en) Metal resin composite molded product and its manufacturing method
JP2021514421A (en) Thermal contact filler and storage battery assembly with thermal contact filler
TWI658766B (en) Corrosion-resistant electronic substrate and coating composition used therefor
US20060226201A1 (en) Circuit board carrier/solder pallet
Zhang et al. Approach on thermoelectricity reliability of board-level backplane based on the orthogonal experiment design
JP5901110B2 (en) Transport tray for surface mount electronic components
Edmund Sek et al. Dynamic warpage simulation of molded PCB under reflow process
Saito et al. Computational prediction of microstructures in α‐alumina/PMMA composites and its experimental verification
JP2009028982A (en) Manufacturing method of carrier plate, and carrier plate
US20140154463A1 (en) Substrate structure and manufacturing method thereof
Yiming et al. Highly Stretchable Bilayer Lattice Structures that Elongate via In‐Plane Deformation
Chen et al. Phosphor settling induced mechanical degradation of silicone/phosphor composite in light emitting diode packages
JP6443715B2 (en) Board inspection jig design method
TWI815736B (en) Method for testing instant hardness of thermal type protection film
CN203801152U (en) Laser manufacturing device for printed circuit board
CN203708747U (en) Heat dissipation structure of vehicle-mounted navigation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889967

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16889967

Country of ref document: EP

Kind code of ref document: A1