JP2012092201A - Electroconductive resin composition, and semiconductor device using the same - Google Patents

Electroconductive resin composition, and semiconductor device using the same Download PDF

Info

Publication number
JP2012092201A
JP2012092201A JP2010239731A JP2010239731A JP2012092201A JP 2012092201 A JP2012092201 A JP 2012092201A JP 2010239731 A JP2010239731 A JP 2010239731A JP 2010239731 A JP2010239731 A JP 2010239731A JP 2012092201 A JP2012092201 A JP 2012092201A
Authority
JP
Japan
Prior art keywords
resin composition
silver powder
mass
epoxy resin
conductive resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010239731A
Other languages
Japanese (ja)
Other versions
JP5662104B2 (en
Inventor
Hiroki Iwase
裕喜 岩瀬
Masato Tagami
正人 田上
Yoshie Fujimori
美江 藤森
Takeshi Anami
健 阿南
Emi Nishio
映美 西尾
Nobuhiko Uchida
信彦 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Chemical Corp
Original Assignee
Kyocera Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Chemical Corp filed Critical Kyocera Chemical Corp
Priority to JP2010239731A priority Critical patent/JP5662104B2/en
Publication of JP2012092201A publication Critical patent/JP2012092201A/en
Application granted granted Critical
Publication of JP5662104B2 publication Critical patent/JP5662104B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Powder Metallurgy (AREA)
  • Die Bonding (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electroconductive resin composition giving its cured product of high thermal conductivity, good in adhesive strength and excellent in workability as well, and to provide a highly reliable semiconductor device using such an electroconductive resin composition.SOLUTION: The electroconductive resin composition essentially comprises: (A) an epoxy resin based on a flexible epoxy resin with an epoxy equivalent of 200-2,000; (B) a curing agent; (C) a curing promoter; and (D) silver powder; wherein (D) the silver powder is characterized by containing, based on 100 pts.mass of the total amount thereof, (d1) 60 pts.mass or more of amorphous silver powder and (d2) 30 pts.mass or more of flaky silver powder. A semiconductor device using the electroconductive resin composition is also provided.

Description

本発明は、IC、LSIなどの半導体素子(以下、半導体チップまたは単にチップとも称する。)を金属フレームなどへ接着する際に使用される導電性樹脂組成物およびそれを用いた半導体装置に関する。   The present invention relates to a conductive resin composition used when bonding a semiconductor element such as an IC or LSI (hereinafter also referred to as a semiconductor chip or simply a chip) to a metal frame or the like, and a semiconductor device using the same.

従来、IC、LSIなどの半導体素子は、リードフレームと称する金属片にマウントし、Au/Si共晶法あるいはダイボンディングペーストと称する接着剤を用いて固定した後、リードフレームのリード部と半導体素子上の電極とを細線ワイヤ(ボンディングワイヤ)により接続し、次いでこれらをパッケージに収納して半導体製品とすることが一般的であった。ボンディングワイヤとリード部または電極との接合は熱圧着によって行われる。   Conventionally, semiconductor elements such as IC and LSI are mounted on a metal piece called a lead frame and fixed using an adhesive called Au / Si eutectic method or die bonding paste, and then the lead part of the lead frame and the semiconductor element It has been common to connect the upper electrode with a fine wire (bonding wire), and then house these in a package to obtain a semiconductor product. The bonding wire and the lead portion or the electrode are joined by thermocompression bonding.

しかし、近年、半導体素子は集積度の増大に伴い、半導体装置の動作安定性を確保するために、高熱放散性が求められてきている。一方、大型化が進んでおり、これらを搭載するリードフレームには、コストダウンを図る目的で、銅フレームが、従来の高価な42合金フレームに代わって広く用いられるようになってきた。   However, in recent years, semiconductor elements have been required to have high heat dissipation properties in order to ensure the operational stability of semiconductor devices as the degree of integration increases. On the other hand, as the size of the lead frame is increased, a copper frame has been widely used instead of the conventional expensive 42 alloy frame for the purpose of reducing the cost.

高熱伝導性で作業性に優れた導電性樹脂組成物を得る為に、高充填導電フィラー含有樹脂組成物の組成に工夫を加えた方法が多数提案されている。例えば、導電粉としてフレーク銀粉に微細球状銀粉を併用して高充填でもタレを少なくして作業性を改善させるもの(例えば、特許文献1参照)、粒子の90体積%以上を特定範囲の粒子径を有する球状銀粉を使用して分散性を向上させたもの(例えば、特許文献2参照)、アスペクト比2以上4.7以下のフレーク状金属粉と球状の有機フィラーを含む樹脂組成物により作業性を向上させたもの(例えば、特許文献3参照)、導電粉が球状(又は略球状)のフィラーと扁平状の混合粉で特定範囲のタップを有するもの(例えは、特許文献4参照)等が知られている。   In order to obtain a conductive resin composition having high thermal conductivity and excellent workability, many methods have been proposed in which the composition of the highly filled conductive filler-containing resin composition is devised. For example, as a conductive powder, flake silver powder is used in combination with fine spherical silver powder to reduce sagging even with high filling (see, for example, Patent Document 1), 90% by volume or more of particles having a particle diameter in a specific range Workability is improved by using a spherical silver powder having improved dispersibility (for example, see Patent Document 2), a resin composition containing a flaky metal powder having an aspect ratio of 2 or more and 4.7 or less and a spherical organic filler. (For example, refer to Patent Document 3), conductive powder having a spherical (or substantially spherical) filler and flat mixed powder having a specific range of taps (for example, refer to Patent Document 4) Are known.

特開2000−53737号公報JP 2000-53737 A 特開2003−335924号公報JP 2003-335924 A 特開2010−87235号公報JP 2010-87235 A 特開2009−102602号公報JP 2009-102602 A

しかし、導電粉を高充填した樹脂組成物では接着強度が低下したり、作業性が低下したりするなどの新たな問題が発生し、未だ満足し得る特性を備えたものは得られていない。   However, a resin composition highly filled with conductive powder causes new problems such as a decrease in adhesive strength and a decrease in workability, and a resin composition having satisfactory characteristics has not been obtained.

本発明はこのような課題に対処してなされたもので、熱伝導性に優れた硬化物を与え、接着強度が良好で、作業性にも優れる導電性樹脂組成物、および、そのような導電性樹脂組成物を用いた信頼性の高い半導体装置を提供することを目的とする。   The present invention has been made in response to such problems, and provides a cured product having excellent thermal conductivity, good adhesive strength, and excellent workability, and such a conductive resin composition. An object of the present invention is to provide a highly reliable semiconductor device using a conductive resin composition.

本発明者らは、上記の課題を解決するために鋭意研究を重ねた結果、特定の配合とした導電粉と低応力エポキシ樹脂を必須成分として含む樹脂組成物が、上記の目的を達成し得ることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the inventors of the present invention can achieve the above-described object by a resin composition containing a conductive powder and a low-stress epoxy resin having a specific composition as essential components. As a result, the present invention has been completed.

すなわち、本発明の導電性樹脂組成物は、(A)エポキシ当量が200〜2000の可とう性エポキシ樹脂を主成分とするエポキシ樹脂と、(B)硬化剤と、(C)硬化促進剤と、(D)銀粉と、を必須成分とする導電性樹脂組成物であって、前記(D)銀粉が、その全量を100質量部としたとき、(d1)不定形銀粉が60質量部以上、(d2)フレーク状銀粉が30質量部以上、を含有してなることを特徴とするものである。   That is, the conductive resin composition of the present invention comprises (A) an epoxy resin mainly composed of a flexible epoxy resin having an epoxy equivalent of 200 to 2000, (B) a curing agent, and (C) a curing accelerator. , (D) silver powder, and an electrically conductive resin composition, wherein (D) when the silver powder has a total amount of 100 parts by mass, (d1) the amorphous silver powder is 60 parts by mass or more, (D2) The flaky silver powder contains 30 parts by mass or more.

本発明の導電性樹脂組成物によれば、熱伝導性に優れた硬化物を与え、接着強度が良好で、作業性にも優れているため、半導体素子の金属フレームなどへの接着に適した樹脂組成物を提供することができる。   According to the conductive resin composition of the present invention, a cured product having excellent thermal conductivity is provided, and the adhesive strength is good and the workability is also excellent. Therefore, the conductive resin composition is suitable for bonding a semiconductor element to a metal frame or the like. A resin composition can be provided.

本発明の半導体装置によれば、上記の特性を有する導電性樹脂組成物を用いて半導体素子を接着しているため、信頼性に優れた半導体装置を提供することができる。   According to the semiconductor device of the present invention, since the semiconductor element is bonded using the conductive resin composition having the above characteristics, a semiconductor device with excellent reliability can be provided.

本発明の半導体装置の一例を示す断面図である。It is sectional drawing which shows an example of the semiconductor device of this invention. ダイシェア強度の試験方法を説明する概略図である。It is the schematic explaining the test method of die shear strength.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の導電性樹脂組成物において、(A)成分であるエポキシ樹脂は、エポキシ当量が200〜2000の範囲の可とう性エポキシ樹脂を主成分として使用するものである。この可とう性エポキシ樹脂の具体例としては、ポリエチレングリコールのジグリシジルエーテル、ポリプロピレングリコールのジグリシジルエーテル、炭素数2〜9(好ましくは2〜4)のアルキレン基を含むポリオキシアルキレングリコールやポリテトラメチレンエーテルグリコールなどを含む長鎖ポリオールのポリグリシジルエーテル、グリシジル(メタ)アクリレートとエチレン、酢酸ビニルもしくは(メタ)アクリル酸エステルなどのラジカル重合性モノマーとの共重合体、共役ジエン化合物の(共)重合体またはその部分水添物の(共)重合体における不飽和炭素結合をエポキシ化したもの、エポキシ基を有するポリエステル樹脂、ウレタン結合やポリカプロラクトン結合を導入したウレタン変性エポキシやポリカプロラクトン変性エポキシ樹脂、ダイマー酸又はその誘導体の分子内にエポキシ基を導入したダイマー酸変性エポキシ樹脂、NBR、CTBN、ポリブタジエン、アクリルゴム等のゴム成分の分子内にエポキシ基を導入したゴム変性エポキシ樹脂などが挙げられる。   In the conductive resin composition of the present invention, the epoxy resin as the component (A) uses a flexible epoxy resin having an epoxy equivalent in the range of 200 to 2000 as a main component. Specific examples of this flexible epoxy resin include diglycidyl ether of polyethylene glycol, diglycidyl ether of polypropylene glycol, polyoxyalkylene glycol and polytetraalkylene containing an alkylene group having 2 to 9 carbon atoms (preferably 2 to 4 carbon atoms). Polyglycidyl ethers of long-chain polyols including methylene ether glycol, copolymers of glycidyl (meth) acrylate and radical polymerizable monomers such as ethylene, vinyl acetate or (meth) acrylate, (co) of conjugated diene compounds Epoxidized unsaturated carbon bond in polymer or its partially hydrogenated (co) polymer, polyester resin having epoxy group, urethane modified epoxy or polycaprolactone modified with urethane bond or polycaprolactone bond introduced Epoxy resin, dimer acid-modified epoxy resin in which epoxy group is introduced into the molecule of dimer acid or derivative thereof, rubber-modified epoxy resin in which epoxy group is introduced into molecule of rubber component such as NBR, CTBN, polybutadiene, acrylic rubber, etc. Can be mentioned.

より具体的な例としては、下記式(1)

Figure 2012092201
(式中、Aは−(CH−,Arは置換又は無置換のフェニル基,Bは−CH−又は−C(CH−を表わし、nは1〜10の整数を、mは6〜14の整数を表わす。)で表わされるエポキシ樹脂が挙げられ、具体例としては、ジャパンエポキシレジン社製YL7175−500(エポキシ当量487)、YL7150−1000(エポキシ当量1000)や、ビスフェノールA型変成エポキシ樹脂であるDIC社製EP−4003S(エポキシ当量412)EP−4000S(エポキシ当量260)などが挙げられる。 As a more specific example, the following formula (1)
Figure 2012092201
(In the formula, A represents — (CH 2 ) m —, Ar represents a substituted or unsubstituted phenyl group, B represents —CH 2 — or —C (CH 3 ) 2 —, and n represents an integer of 1 to 10. , M represents an integer of 6 to 14.), and specific examples include YL7175-500 (epoxy equivalent 487), YL7150-1000 (epoxy equivalent 1000) manufactured by Japan Epoxy Resin, DIC Corporation EP-4003S (epoxy equivalent 412) EP-4000S (epoxy equivalent 260) etc. which are bisphenol A type | mold modified epoxy resins are mentioned.

なお、上記可とう性エポキシ樹脂は単独で用いてもよいが、この可とう性エポキシ樹脂に加えて、他のエポキシ樹脂を併用してもよい。併用するエポキシ樹脂は、1分子中に2個以上のエポキシ基を有するものであれば、いかなるエポキシ樹脂も使用することができる。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、特殊多官能型エポキシ樹脂、脂環式エポキシ樹脂等が挙げられる。必要に応じ、上記可とう性エポキシ樹脂の一部を置き替えて併用することができる。この場合、本発明の効果を阻害しないように、併用する他のエポキシ樹脂は、用いるエポキシ樹脂全量中に30質量%以下の量で配合することが好ましく、上記可とう性エポキシ樹脂を主成分としてエポキシ樹脂全量中に70質量%以上含有することが好ましい。   In addition, although the said flexible epoxy resin may be used independently, in addition to this flexible epoxy resin, you may use together another epoxy resin. Any epoxy resin can be used as long as the epoxy resin used in combination has two or more epoxy groups in one molecule. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, cresol novolac type epoxy resin, glycidyl ester type epoxy resin, special polyfunctional type epoxy resin, alicyclic epoxy resin and the like can be mentioned. If necessary, a part of the flexible epoxy resin can be replaced and used together. In this case, in order not to inhibit the effect of the present invention, the other epoxy resin used in combination is preferably blended in an amount of 30% by mass or less in the total amount of the epoxy resin used, and the above-mentioned flexible epoxy resin as a main component. It is preferable to contain 70% by mass or more in the total amount of the epoxy resin.

また、本発明においては、応力緩和性や密着性などをさらに改善する目的で、(A)成分以外の樹脂成分を配合してもよい。併用可能な樹脂としては、例えば、(A)成分以外のアクリル樹脂、ポリエステル樹脂、ポリブタジエン樹脂、フェノール樹脂、ポリイミド樹脂、シリコーン樹脂、ポリウレタン樹脂、キシレン樹脂などが挙げられる。これらの樹脂は1種を単独で使用してもよく、2種以上を混合して使用してもよい。   Moreover, in this invention, you may mix | blend resin components other than (A) component in order to improve stress relaxation property, adhesiveness, etc. further. Examples of resins that can be used in combination include acrylic resins other than the component (A), polyester resins, polybutadiene resins, phenol resins, polyimide resins, silicone resins, polyurethane resins, xylene resins, and the like. These resins may be used alone or in combination of two or more.

このようにエポキシ樹脂以外の他の樹脂を併用する場合、可とう性エポキシ樹脂100質量部に対して、他の樹脂を50質量部まで混合することができる。   Thus, when using other resin together than an epoxy resin, another resin can be mixed to 50 mass parts with respect to 100 mass parts of flexible epoxy resins.

(B)成分の硬化剤としては、公知のエポキシ樹脂の硬化剤であれば特に限定されるものではないが、ジシアンアミド又はフェノール樹脂が好ましい。硬化剤は1種を単独で使用してもよく、2種以上を混合して使用してもよい。なかでも多官能フェノールノボラック樹脂が好ましい。   (B) Although it will not specifically limit if it is a hardening agent of a well-known epoxy resin as a hardening | curing agent of a component, A dicyanamide or a phenol resin is preferable. A hardening | curing agent may be used individually by 1 type, and 2 or more types may be mixed and used for it. Of these, polyfunctional phenol novolac resins are preferred.

この(B)成分の配合量は、(A)成分であるエポキシ樹脂の合計100質量部に対して、ジシアンジアミドでは0.1〜5質量部の範囲が好ましく、また、多官能フェノールノボラックでは(A)成分であるエポキシ樹脂の合計100質量部に対して、30〜70質量部が好ましい。さらに、これら硬化剤成分に硬化剤としてビスフェノール樹脂を併用することもでき、この場合、ビスフェノール樹脂を(A)成分であるエポキシ樹脂の合計100質量部に対して、0〜20質量部配合することが好ましい。   The blending amount of the component (B) is preferably in the range of 0.1 to 5 parts by mass for dicyandiamide and 100 parts by mass for polyfunctional phenol novolacs with respect to 100 parts by mass of the epoxy resin as component (A). ) 30 to 70 parts by mass is preferable with respect to 100 parts by mass in total of the epoxy resins as components. Furthermore, a bisphenol resin can be used in combination with these curing agent components as a curing agent. In this case, 0 to 20 parts by mass of the bisphenol resin is added to 100 parts by mass of the epoxy resin as the component (A). Is preferred.

(C)成分の硬化促進剤としては、従来、エポキシ樹脂の硬化促進剤として使用されているものであれば特に制限されることなく使用することができるが、イミダゾール系硬化促進剤、アミン系硬化促進剤が好ましく、イミダゾール系硬化促進剤であることがより好ましい。   The (C) component curing accelerator can be used without particular limitation as long as it is conventionally used as a curing accelerator for epoxy resins, but an imidazole curing accelerator or an amine curing agent. An accelerator is preferable, and an imidazole-based curing accelerator is more preferable.

イミダゾール系硬化促進剤の具体例としては、2−メチルイミダゾール、2−エチルイミダゾール、2−イソプロピルイミダゾール、2−n−プロピルイミダゾール、2−ウンデシル−1H−イミダゾール、2−ヘプタデシル−1H−イミダゾール、1,2−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニル−1H−イミダゾール、4−メチル−2−フェニル−1H−イミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾリウムトリメリテイト、1−シアノエチル−2−ウンデシルイミダゾリウムトリメリテイト、1−シアノエチル−2−フェニルイミダゾリウムトリメリテイト、2,4−ジアミノ−6−[2′−メチルイミダゾリル−(1′)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2′−ウンデシルイミダゾリル−(1′)]−エチル−S−トリアジン、2,4−ジアミノ−6−[2′−エチル−4−メチルイミダゾリル−(1′)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2′−メチルイミダゾリル−(1′)]−エチル−s−トリアジンイソシアヌル酸付加物、2−フェニル−イミダゾールイソシアヌル酸付加物、2−メチルイミダゾールイソシアヌル酸付加物、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、1−シアノエチル−2−フェニル−4,5−ジ(2−シアノエトキシ)メチルイミダゾール、1−ドデシル−2−メチル−3−ベンジルイミダゾリウムクロライド、1−ベンジル−2−フェニルイミダゾール塩酸塩、1−ベンジル−2−フェニルイミダゾリウムトリメリテイトなどが挙げられる。   Specific examples of the imidazole curing accelerator include 2-methylimidazole, 2-ethylimidazole, 2-isopropylimidazole, 2-n-propylimidazole, 2-undecyl-1H-imidazole, 2-heptadecyl-1H-imidazole, 1 , 2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-1H-imidazole, 4-methyl-2-phenyl-1H-imidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2- Methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2- Ethyl-4- Tyrimidazolium trimellitate, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6- [2'-methylimidazolyl- ( 1 ')]-ethyl-s-triazine, 2,4-diamino-6- [2'-undecylimidazolyl- (1')]-ethyl-S-triazine, 2,4-diamino-6- [2 ' -Ethyl-4-methylimidazolyl- (1 ')]-ethyl-s-triazine, 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s-triazine isocyanuric acid adduct 2-phenyl-imidazole isocyanuric acid adduct, 2-methylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxyme Ruimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 1-cyanoethyl-2-phenyl-4,5-di (2-cyanoethoxy) methylimidazole, 1-dodecyl-2-methyl-3-benzyl Examples include imidazolium chloride, 1-benzyl-2-phenylimidazole hydrochloride, 1-benzyl-2-phenylimidazolium trimellitate, and the like.

また、アミン系硬化促進剤の具体例としては、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジプロピレンジアミン、ジメチルアミノプロピルアミン、ジエチルアミノプロピルアミン、トリメチルヘキサメチレンジアミン、ペンタンジアミン、ビス(2−ジメチルアミノエチル)エーテル、ペンタメチルジエチレントリアミン、アルキル−t−モノアミン、1,4−ジアザビシクロ(2,2,2)オクタン(トリエチレンジアミン)、N,N,N′,N′−テトラメチルヘキサメチレンジアミン、N,N,N′,N′−テトラメチルプロピレンジアミン、N,N,N′,N′−テトラメチルエチレンジアミン、N,N−ジメチルシクロヘキシルアミン、ジメチルアミノエトキシエトキシエタノール、ジメチルアミノヘキサノールなどの脂肪族アミン類;ピペリジン、ピベラジン、メンタンジアミン、イソホロンジアミン、メチルモルホリン、エチルモルホリン、N,N′,N″−トリス(ジアミノプロピル)ヘキサヒドロ−s−トリアジン、3,9−ビス(3−アミノプロピル)−2,4,8,10−テトラオキシスピロ(5,5)ウンデカンアダクト、N−アミノエチルピベラジン、トリメチルアミノエチルピベラジン、ビス(4−アミノシクロヘキシル)メタン、N,N′−ジメチルピベラジン、1,8−ジアザビシクロ(4.5.0)ウンデセン−7などの脂環式および複素環式アミン類;o−フェニレンジアミン、m−フェニレンジアミン、p−フェニレンジアミン、ジアミノジフェニルメタン、m−キシレンジアミン、ピリジン、ピコリン等の芳香族アミン類;エポキシ化合物付加ポリアミン、マイケル付加ポリアミン、マンニッヒ付加ポリアミン、チオ尿素付加ポリアミン、ケトン封鎖ポリアミン等の変性ポリアミン類;ジシアンジアミド;グアニジン;有機酸ヒドラジド;ジアミノマレオニトリル;アミンイミド;三フッ化ホウ素−ピペリジン錯体;三フッ化ホウ素−モノエチルアミン錯体などが挙げられる。   Specific examples of the amine curing accelerator include ethylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, dipropylenediamine, dimethylaminopropylamine, diethylaminopropylamine. , Trimethylhexamethylenediamine, pentanediamine, bis (2-dimethylaminoethyl) ether, pentamethyldiethylenetriamine, alkyl-t-monoamine, 1,4-diazabicyclo (2,2,2) octane (triethylenediamine), N, N , N ′, N′-tetramethylhexamethylenediamine, N, N, N ′, N′-tetramethylpropylenediamine, N, N, N ′, N′-tetramethylethylenediamine, , N-dimethylcyclohexylamine, dimethylaminoethoxyethoxyethanol, dimethylaminohexanol and other aliphatic amines; piperidine, piperazine, menthanediamine, isophoronediamine, methylmorpholine, ethylmorpholine, N, N ′, N ″ -tris (diamino) Propyl) hexahydro-s-triazine, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraoxyspiro (5,5) undecane adduct, N-aminoethylpiverazine, trimethylaminoethyl Cycloaliphatic and heterocyclic amines such as piverazine, bis (4-aminocyclohexyl) methane, N, N'-dimethylpiverazine, 1,8-diazabicyclo (4.5.0) undecene-7; o-phenylenediamine, m-phenylenediamine, -Aromatic amines such as phenylenediamine, diaminodiphenylmethane, m-xylenediamine, pyridine, picoline; modified polyamines such as epoxy compound-added polyamine, Michael-added polyamine, Mannich-added polyamine, thiourea-added polyamine, ketone-capped polyamine; dicyandiamide Guanidine; organic acid hydrazide; diaminomaleonitrile; amine imide; boron trifluoride-piperidine complex; boron trifluoride-monoethylamine complex;

これらの硬化促進剤は1種を単独で使用してもよく、2種以上を混合して使用してもよい。なかでも、イミダゾール系硬化促進剤の2−フェニル−4−メチルイミダゾール(2P4MZ)、2−フェニル−4,5−ジヒドロキシメチルイミダゾール(2PHZ)、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール(2P4MHZ)が好ましい。   These curing accelerators may be used alone or in combination of two or more. Among them, imidazole curing accelerators 2-phenyl-4-methylimidazole (2P4MZ), 2-phenyl-4,5-dihydroxymethylimidazole (2PHZ), 2-phenyl-4-methyl-5-hydroxymethylimidazole ( 2P4MHZ) is preferred.

この(C)成分の硬化促進剤の配合量は、(A)〜(C)成分の合計100質量部に対して、0.1〜10質量部の範囲が好ましく、0.2〜7.0質量部の範囲がより好ましい。0.1質量部未満では、十分な硬化促進効果が得られず、10質量部を超えると、硬化促進効果はさほど変わらずに、耐熱性が低下してしまう。   The blending amount of the curing accelerator of component (C) is preferably in the range of 0.1 to 10 parts by mass with respect to 100 parts by mass in total of components (A) to (C), and is 0.2 to 7.0. The range of parts by mass is more preferable. If it is less than 0.1 parts by mass, a sufficient curing acceleration effect cannot be obtained, and if it exceeds 10 parts by mass, the curing acceleration effect does not change so much and the heat resistance decreases.

(D)成分の銀粉は、樹脂組成物に良好な導電性を付与するための成分であり、(d1)不定形銀粉と(d2)フレーク状銀粉とを含有しており、本発明においては、(D)銀粉100質量部中において、(d1)不定形銀粉を60質量部以上、かつ、(d2)フレーク状銀粉を30質量部以上含むものである。   The silver powder of component (D) is a component for imparting good conductivity to the resin composition, and contains (d1) amorphous silver powder and (d2) flaky silver powder. (D) In 100 parts by mass of silver powder, (d1) 60 parts by mass or more of amorphous silver powder and (d2) 30 parts by mass or more of flaky silver powder are included.

このうち(d1)不定形銀粉は液中還元法で製造される銀粉である。これは、酸に溶解した銀を、アルカリで中和した後、還元剤を加えて液中で還元して微粉末にする方法である。これにより製造された形状は一定ではなく塊状の不定形となる。本発明の(d1)不定形銀粉の数平均粒子径は3〜12μmであり、形状は真球状ではなく、数平均の長径/短径比は1.2〜2.0であることが好ましい。この範囲内であれば熱伝導率が高く接着力の強い導電性樹脂組成物を得ることができる。なお、銀粉の平均粒子径はレーザー回折式粒度分布測定装置により求める。また、数平均の長径/短径は、銀粉の4000倍の顕微鏡写真から任意の50個の銀粉を抽出し、それぞれの長径および短径を測定して長径/短径平均値を求める。   Among these, (d1) amorphous silver powder is silver powder manufactured by a submerged reduction method. This is a method in which silver dissolved in an acid is neutralized with an alkali, then a reducing agent is added and reduced in a liquid to form a fine powder. As a result, the manufactured shape is not constant, but becomes an indeterminate shape. The number average particle diameter of the (d1) amorphous silver powder of the present invention is 3 to 12 μm, the shape is not true spherical, and the number average major axis / minor axis ratio is preferably 1.2 to 2.0. Within this range, a conductive resin composition having high thermal conductivity and strong adhesive strength can be obtained. In addition, the average particle diameter of silver powder is calculated | required with the laser diffraction type particle size distribution measuring apparatus. In addition, the number average major axis / minor axis is obtained by extracting arbitrary 50 silver powders from a micrograph of the silver powder 4000 times, and measuring the major axis and minor axis of each to obtain the major axis / minor axis average value.

(d2)フレーク状銀粉は数平均粒子径が3〜20μm程度でタップ密度が2.0〜5.0g/cm程度のものであれば市販のものが使用できる。(d2)フレーク状銀粉の数平均粒径が3μm以上であれば、組成物は適度な粘度を有し、平均粒径が20μm以下であれば、組成物の塗付時または硬化時における樹脂成分のブリードが抑制される。(d2)フレーク状銀粉のタップ密度は5.0g/cm以下であれば、組成物は適度な粘度を有し、タップ密度が2.0g/cm以上であれば、組成物の塗付時または硬化時における樹脂成分のブリードが抑制される。 (D2) As the flaky silver powder, a commercially available product can be used as long as the number average particle diameter is about 3 to 20 μm and the tap density is about 2.0 to 5.0 g / cm 3 . (D2) If the number average particle diameter of the flaky silver powder is 3 μm or more, the composition has an appropriate viscosity, and if the average particle diameter is 20 μm or less, the resin component at the time of application or curing of the composition Bleed is suppressed. (D2) If the tap density of the flaky silver powder is 5.0 g / cm 3 or less, the composition has an appropriate viscosity, and if the tap density is 2.0 g / cm 3 or more, the composition is applied. The bleeding of the resin component at the time of curing or curing is suppressed.

この(D)成分である銀粉の配合量は、(A)〜(D)成分の合計100質量部に対して、84〜92質量部の範囲が好ましく、85〜90質量部の範囲がより好ましい。84質量部未満では、高熱伝導率が達成できず、92質量部を超えると、接着強度が低くなる。   The compounding amount of the silver powder as the component (D) is preferably in the range of 84 to 92 parts by mass and more preferably in the range of 85 to 90 parts by mass with respect to 100 parts by mass in total of the components (A) to (D). . If the amount is less than 84 parts by mass, high thermal conductivity cannot be achieved.

また、本発明の導電性樹脂組成物には、作業性を改善する目的で、希釈剤を配合することができる。その具体例としては、ジエチレングリコールジエチルエーテル、n−ブチルグリシジルエーテル、t−ブチルフェニルグリシジルエーテル、アリルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル、スチレンオキシド、フェニルグリシジルエーテル、クレジルグリシジルエーテルなどが挙げられる。これらは1種を単独で使用してもよく、2種以上を混合して使用してもよい。この希釈剤は、導電性樹脂組成物100質量部に対して、1〜10質量部添加し、25℃における粘度を50〜200Pa・sの範囲とすることが好ましい。   In addition, a diluent can be blended with the conductive resin composition of the present invention for the purpose of improving workability. Specific examples thereof include diethylene glycol diethyl ether, n-butyl glycidyl ether, t-butylphenyl glycidyl ether, allyl glycidyl ether, 2-ethylhexyl glycidyl ether, styrene oxide, phenyl glycidyl ether, and cresyl glycidyl ether. These may be used individually by 1 type, and may mix and use 2 or more types. This diluent is preferably added in an amount of 1 to 10 parts by mass with respect to 100 parts by mass of the conductive resin composition, and the viscosity at 25 ° C. is preferably in the range of 50 to 200 Pa · s.

この導電性樹脂組成物には、以上の各成分の他、本発明の効果を阻害しない範囲で、この種の組成物に一般に配合される、粘度調整剤、酸無水物などの接着力向上剤、消泡剤、着色剤、難燃剤などを、必要に応じて配合することができる。粘度調整剤としては、例えば酢酸セロソルブ、エチルセロソルブ、ブチルセロソルブ、ブチルセロソルブアセテート、ブチルカルビトールアセテート、プロピレングリコールフェニルエーテル、ジエチレングリコールジメチルエーテル、ジアセトンアルコールなどが挙げられる。これらは1種を単独で使用してもよく、2種以上を混合して使用してもよい。   In this conductive resin composition, in addition to the above components, an adhesive strength improver such as a viscosity modifier and an acid anhydride generally blended in this type of composition within a range not impairing the effects of the present invention. An antifoaming agent, a coloring agent, a flame retardant, etc. can be mix | blended as needed. Examples of the viscosity modifier include cellosolve acetate, ethyl cellosolve, butyl cellosolve, butyl cellosolve acetate, butyl carbitol acetate, propylene glycol phenyl ether, diethylene glycol dimethyl ether, diacetone alcohol and the like. These may be used individually by 1 type, and may mix and use 2 or more types.

この導電性樹脂組成物は、上記した(A)可とう性エポキシ樹脂、(B)硬化剤、(C)硬化促進剤、(D)銀粉、および、必要に応じて配合される反応性希釈剤、溶剤などの成分を、高速混合機などを用いて均一に混合した後、ディスパース、ニーダ、三本ロールなどにより混練し、次いで、脱泡することにより、容易に調製することができる。   This conductive resin composition comprises the above-described (A) flexible epoxy resin, (B) curing agent, (C) curing accelerator, (D) silver powder, and a reactive diluent that is blended as necessary. It can be easily prepared by mixing components such as a solvent uniformly using a high-speed mixer or the like, then kneading with a disperser, kneader, three-roll, etc., and then defoaming.

本発明の導電性樹脂組成物は、糸引き性や広がり性が少なく作業性に優れている。また、大型の半導体チップと銅フレームの組み合わせにおいても、熱伝導率が高く、半導体素子にクラックや反りが発生することはなく、接着強度が低下することもない。すなわち、本発明の導電性樹脂組成物は、熱伝導性が高く応力緩和性に優れた硬化物を与え、また、接着強度が大きく、作業性も良好であり、さらに、可使時間が長く、硬化物においてボイドが発生することもない。   The conductive resin composition of the present invention has low workability and spreadability and is excellent in workability. Further, even in the combination of a large semiconductor chip and a copper frame, the thermal conductivity is high, the semiconductor element is not cracked or warped, and the adhesive strength is not reduced. That is, the conductive resin composition of the present invention gives a cured product having high thermal conductivity and excellent stress relaxation properties, has a high adhesive strength, good workability, and has a long pot life, Voids are not generated in the cured product.

より具体的な特性としては、導電性樹脂組成物の25℃における粘度が50〜200Pa・sであり、その硬化物の熱伝導率が8W/m・K以上、接着強度が18N以上の範囲を全て満たすことが好ましく、本発明の樹脂組成物はこれを達成可能とするものである。なお、これら特性の試験条件は、実施例中の特性試験の条件によるものである。   More specifically, the conductive resin composition has a viscosity of 50 to 200 Pa · s at 25 ° C., the cured product has a thermal conductivity of 8 W / m · K or more, and an adhesive strength of 18 N or more. It is preferable to satisfy all, and the resin composition of the present invention can achieve this. The test conditions for these characteristics are based on the characteristics test conditions in the examples.

本発明の半導体装置は、本発明の導電性樹脂組成物により、半導体素子が支持部材上に接着、固定されてなることを特徴とするものであり、例えば、本発明の導電性樹脂組成物を介して半導体素子をリードフレームにマウントし、導電性樹脂組成物を加熱硬化させた後、リードフレームのリード部と半導体素子上の電極とを常温で超音波によるワイヤボンディングにより接続し、次いで、これらを封止用樹脂により封止することにより製造することができる。   The semiconductor device of the present invention is characterized in that a semiconductor element is bonded and fixed on a support member with the conductive resin composition of the present invention. For example, the conductive resin composition of the present invention is After the semiconductor element is mounted on the lead frame and the conductive resin composition is heated and cured, the lead portion of the lead frame and the electrode on the semiconductor element are connected by ultrasonic wire bonding at room temperature, and then Can be manufactured by sealing with a sealing resin.

ここで、ボンディングワイヤとしては、例えば鋼、金、アルミ、金合金、アルミ−シリコンなどからなるワイヤが例示されるが、コストおよびボンディング性の観点からはアルミワイヤが好ましい。また、ボンディングの際の超音波の出力、荷重などの条件は、特に限定されるものではなく、常法の範囲で適宜選択されてよい。 図1は、このようにして得られた本発明の半導体装置の一例を示したものであり、銅フレームなどのリードフレーム1と半導体素子2の間に、本発明の導電性樹脂組成物の硬化物である接着剤層3が介在されている。また、半導体素子2上の電極4とリードフレーム1のリード部5とがボンディングワイヤ6により接続されており、さらに、これらが封止用樹脂7により封止されている。なお、接着剤層3の厚さとしては、10〜30μm程度が好ましい。   Here, examples of the bonding wire include a wire made of steel, gold, aluminum, gold alloy, aluminum-silicon, and the like, but an aluminum wire is preferable from the viewpoint of cost and bonding properties. The conditions such as the output of ultrasonic waves and the load at the time of bonding are not particularly limited, and may be appropriately selected within the range of ordinary methods. FIG. 1 shows an example of the semiconductor device of the present invention obtained as described above, and the conductive resin composition of the present invention is cured between a lead frame 1 such as a copper frame and a semiconductor element 2. The adhesive layer 3 which is a thing is interposed. Further, the electrode 4 on the semiconductor element 2 and the lead portion 5 of the lead frame 1 are connected by a bonding wire 6, and these are further sealed by a sealing resin 7. In addition, as thickness of the adhesive bond layer 3, about 10-30 micrometers is preferable.

本発明の半導体装置は、熱伝導性が高く応力緩和性に優れた硬化物を与え、しかも、接着強度が良好で、作業性にも優れる導電性樹脂組成物により、半導体素子が接着固定されているので、高い信頼性を具備している。   The semiconductor device of the present invention provides a cured product having high thermal conductivity and excellent stress relaxation, and has a semiconductor element bonded and fixed by a conductive resin composition having good adhesive strength and excellent workability. Therefore, it has high reliability.

本発明の導電性樹脂組成物は、半導体素子を半導体素子支持部材上に接着するための接着剤として広く使用することができ、半導体素子の接着剤に適用した場合に特に有用である。   The conductive resin composition of the present invention can be widely used as an adhesive for bonding a semiconductor element onto a semiconductor element support member, and is particularly useful when applied to an adhesive for a semiconductor element.

次に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples at all.

(実施例1〜6、比較例1〜5)
下記に示す材料を用い、表1に示す配合割合で各成分を十分に混合し、さらに三本ロールで混練して導電性樹脂組成物を調製した。
(Examples 1-6, Comparative Examples 1-5)
Using the materials shown below, the respective components were sufficiently mixed at the blending ratios shown in Table 1, and further kneaded with three rolls to prepare a conductive resin composition.

エポキシ樹脂1:式1の可とう性エポキシ樹脂(エポキシ当量 487)
ジャパンエポキシレジン(株)製、商品名 YL−7175−500
エポキシ樹脂2:ビスフェノールA型骨格可とう性エポキシ樹脂(エポキシ当量 412)
DIC(株)製、商品名 EP−4003S
エポキシ樹脂3:式1の可とう性エポキシ樹脂(エポキシ当量 1000)
ジャパンエポキシレジン(株)製、商品名 YL−7175−1000
エポキシ樹脂4:ビスフェノールF型エポキシ樹脂(エポキシ当量 180)
DIC(株)製、商品名 EXA−830CTR
フェノール硬化剤1:ビスフェノールF
本州化学社製、商品名 ビスフェノールA
フェノール硬化剤2:フェノールノボラック
明和化成(株)製、商品名 MEH−8000H
フェノール硬化剤3:フェノールノボラック
明和化成(株)製、商品名 MEH−7841−4H
潜在性硬化剤:ジシアンアミド
ジャパンエポキシレジン(株)製、商品名 DICY7
Epoxy resin 1: flexible epoxy resin of formula 1 (epoxy equivalent 487)
Product name YL-7175-500, manufactured by Japan Epoxy Resin Co., Ltd.
Epoxy resin 2: bisphenol A type skeleton flexible epoxy resin (epoxy equivalent 412)
Product name EP-4003S, manufactured by DIC Corporation
Epoxy resin 3: flexible epoxy resin of formula 1 (epoxy equivalent 1000)
Product name YL-7175-1000, manufactured by Japan Epoxy Resin Co., Ltd.
Epoxy resin 4: bisphenol F type epoxy resin (epoxy equivalent 180)
Product name EXA-830CTR, manufactured by DIC Corporation
Phenol hardener 1: bisphenol F
Product name, Bisphenol A, manufactured by Honshu Chemical Co., Ltd.
Phenol hardener 2: Phenol novolak Meiwa Kasei Co., Ltd., trade name MEH-8000H
Phenol curing agent 3: Phenol novolak Meiwa Kasei Co., Ltd., trade name MEH-7841-4H
Latent curing agent: Dicyanamide Japan Epoxy Resin Co., Ltd., trade name DICY7

硬化促進剤:イミダゾール
四国化成(株)製、商品名 C11ZA
銀粉1:不定形銀粉(平均粒径 7.2μm、平均長径/平均短径=1.5)
徳力化学(株)製、商品名 シルベストF−201
銀粉2:フレーク状銀粉(平均粒径6.6μm、タップ密度3.3g/m
福田金属箔工業(株)製、商品名 AgC−221A
銀粉3:フレーク状銀粉(平均粒径4.6μm、タップ密度3.5g/m
福田金属箔工業(株)製、商品名 Ag−HWF−6
銀粉4:球状銀粉(平均粒径6.5μm、タップ密度6.5g/m
福田金属箔工業(株)製、商品名 Ag−HWQ−5
希釈剤:ジエチレングリコールジエチルエーテル
関東化学(株)製、商品名 D.G.D.E
Curing accelerator: Imidazole Shikoku Kasei Co., Ltd., trade name C11ZA
Silver powder 1: irregular silver powder (average particle diameter 7.2 μm, average major axis / average minor axis = 1.5)
Tokiki Chemical Co., Ltd., trade name Sylbest F-201
Silver powder 2: flaky silver powder (average particle size 6.6 μm, tap density 3.3 g / m 3 )
Product name AgC-221A, manufactured by Fukuda Metal Foil Industry Co., Ltd.
Silver powder 3: flaky silver powder (average particle size 4.6 μm, tap density 3.5 g / m 3 )
Product name Ag-HWF-6, manufactured by Fukuda Metal Foil Industry Co., Ltd.
Silver powder 4: spherical silver powder (average particle size 6.5 μm, tap density 6.5 g / m 3 )
Product name Ag-HWQ-5, manufactured by Fukuda Metal Foil Industry Co., Ltd.
Diluent: Diethylene glycol diethyl ether, manufactured by Kanto Chemical Co., Ltd., trade name G. D. E

上記各実施例および各比較例で得られた導電性樹脂組成物について、粘度、チキソ性、接着強度、弾性率、体積抵抗率、熱伝導率、パッケージ信頼性についてそれぞれ調べて評価し、その結果を併せて表1に示した。   About the conductive resin compositions obtained in the above examples and comparative examples, the viscosity, thixotropy, adhesive strength, elastic modulus, volume resistivity, thermal conductivity, and package reliability were examined and evaluated, respectively. Are also shown in Table 1.

Figure 2012092201
Figure 2012092201

Figure 2012092201
Figure 2012092201

(1)粘度(η0.5rpm
東機産業社製のE型粘度計(3°コーン)を用い、25℃、0.5rpmの条件で測定した。
(2)チキソ性
東機産業社製のE型粘度計(3°コーン)を用い、25℃、5rpmの条件で粘度(η5rpm)を測定し、上記(1)で測定された粘度(η0.5rpm)との比 η0.5rpm/η5rpmを算出した。
(3)接着強度
樹脂組成物を銀メッキした銅フレーム上に20μm厚に塗布し、その上に4mm×4mmの半導体チップをマウントし、120℃で2時間加熱硬化させ、沖エンジニアリング社製ダイシェア強度測定器により求めた。ここで、ダイシェア強度測定機による測定概念図を図2に示した。半導体チップ21が、銅フレーム22に樹脂組成物23を介して接着、結合されており、この半導体チップ21の側面から治具24により矢印方向に力を加えて接着強度を求める。
(1) Viscosity (η 0.5rpm )
Using an E-type viscometer (3 ° cone) manufactured by Toki Sangyo Co., Ltd., the measurement was performed at 25 ° C. and 0.5 rpm.
(2) Thixotropic Using an E-type viscometer (3 ° cone) manufactured by Toki Sangyo Co., Ltd., the viscosity (η 5 rpm ) was measured under the conditions of 25 ° C. and 5 rpm, and the viscosity measured in the above (1) (η to calculate the ratio η 0.5rpm / η 5rpm with 0.5rpm).
(3) Adhesive strength The resin composition is applied to a silver-plated copper frame to a thickness of 20 μm, and a 4 mm × 4 mm semiconductor chip is mounted thereon and cured by heating at 120 ° C. for 2 hours. It was determined by a measuring instrument. Here, a conceptual diagram of measurement by a die shear strength measuring machine is shown in FIG. The semiconductor chip 21 is bonded and bonded to the copper frame 22 via the resin composition 23, and a bonding strength is obtained by applying a force in the direction of the arrow from the side surface of the semiconductor chip 21 with the jig 24.

(4)弾性率
樹脂組成物をテフロン(登録商標)上に硬化後の厚さ0.25〜0.35mmになるように塗布硬化させた後、5mm×50mmのサンプルとし、DMS(粘弾性スペクトロメータ)にて測定した。
(5)体積抵抗率
樹脂組成物をガラス板上に硬化後の厚さ0.05mmになるように塗布硬化させた後、デジタルマルチメーターにより測定した。
(6)熱伝導率
樹脂組成物をテフロン(登録商標)上に硬化後の厚さ1mmになるように塗布硬化させた後、φ5mmのサンプルとし京都電子産業製 LFA−502により測定した。
(7)パッケージ信頼性
Agメッキ/銅フレーム上に樹脂組成物を20μm厚に塗布し、その上に2mmチップをマウントし、180℃で120分加熱硬化させた後、TCT1000サイクル(−65℃で30sと125℃で30sとを繰り返し行った)後のクラックを観察した。
(4) Elastic modulus The resin composition was applied and cured on Teflon (registered trademark) so as to have a thickness of 0.25 to 0.35 mm after curing, and a sample of 5 mm × 50 mm was prepared as a DMS (Viscoelastic Spectrometer). Meter).
(5) Volume resistivity The resin composition was applied and cured on a glass plate so that the thickness after curing was 0.05 mm, and then measured with a digital multimeter.
(6) Thermal conductivity The resin composition was applied and cured on Teflon (registered trademark) so as to have a thickness of 1 mm after curing, and then measured as a φ5 mm sample by LFA-502 manufactured by Kyoto Electronics Industry.
(7) Package reliability The resin composition was applied to an Ag plating / copper frame to a thickness of 20 μm, a 2 mm chip was mounted thereon, and heat-cured at 180 ° C. for 120 minutes, and then TCT 1000 cycles (at −65 ° C. The crack was observed after 30 seconds and 30 seconds at 125 ° C.).

表1からも明らかなように、実施例の導電性樹脂組成物は、高熱伝導で、作業性に優れ、接着強度も良好で、この導電性樹脂組成物を使用して得られた半導体パッケージは信頼性に優れるものであった。   As is clear from Table 1, the conductive resin compositions of the examples have high thermal conductivity, excellent workability, and good adhesive strength. The semiconductor package obtained using this conductive resin composition is It was excellent in reliability.

1…リードフレーム、2…半導体素子、3…接着剤層、4…電極、5…リード部、6…ボンディングワイヤ、7…封止樹脂   DESCRIPTION OF SYMBOLS 1 ... Lead frame, 2 ... Semiconductor element, 3 ... Adhesive layer, 4 ... Electrode, 5 ... Lead part, 6 ... Bonding wire, 7 ... Sealing resin

Claims (5)

(A)エポキシ当量が200〜2000の可とう性エポキシ樹脂を主成分とするエポキシ樹脂と、(B)硬化剤と、(C)硬化促進剤と、(D)銀粉と、を必須成分とする導電性樹脂組成物であって、
前記(D)銀粉が、その全量を100質量部としたとき、(d1)不定形銀粉が60質量部以上、(d2)フレーク状銀粉が30質量部以上、を含有してなることを特徴とする導電性樹脂組成物。
(A) An epoxy resin whose main component is a flexible epoxy resin having an epoxy equivalent of 200 to 2000, (B) a curing agent, (C) a curing accelerator, and (D) silver powder are essential components. A conductive resin composition comprising:
When the total amount of the (D) silver powder is 100 parts by mass, (d1) the amorphous silver powder contains 60 parts by mass or more, and (d2) the flaky silver powder contains 30 parts by mass or more. Conductive resin composition.
前記可とう性エポキシ樹脂が、次の一般式(1)で示される化合物
Figure 2012092201
(式中、Aは−(CH−,Arは置換又は無置換のフェニル基,Bは−CH−又は−C(CH−を表わし、nは1〜10の整数を、mは6〜14の整数を表わす。)であることを特徴とする請求項1記載の導電性樹脂組成物。
The flexible epoxy resin is a compound represented by the following general formula (1)
Figure 2012092201
(In the formula, A represents — (CH 2 ) m —, Ar represents a substituted or unsubstituted phenyl group, B represents —CH 2 — or —C (CH 3 ) 2 —, and n represents an integer of 1 to 10. , M represents an integer of 6 to 14.) The conductive resin composition according to claim 1, wherein
前記(d1)不定形銀粉は、数平均粒子径が3〜12μmの非球状形状であって、長径と短径のそれぞれの平均値の比が1.2〜2.0であることを特徴とする請求項1又は2記載の導電性樹脂組成物。   The (d1) amorphous silver powder is a non-spherical shape having a number average particle diameter of 3 to 12 μm, and the ratio of the average values of the major axis and the minor axis is 1.2 to 2.0. The conductive resin composition according to claim 1 or 2. 前記(B)硬化剤が多官能フェノールノボラックである請求項1乃至3のいずれか1項記載の導電性樹脂組成物。   The conductive resin composition according to any one of claims 1 to 3, wherein the (B) curing agent is a polyfunctional phenol novolak. 請求項1乃至4のいずれか1項記載の導電性樹脂組成物により、半導体素子が支持部材上に接着、固定されてなることを特徴とする半導体装置。   5. A semiconductor device, wherein a semiconductor element is bonded and fixed on a support member by the conductive resin composition according to claim 1.
JP2010239731A 2010-10-26 2010-10-26 Conductive resin composition and semiconductor device using the same Active JP5662104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010239731A JP5662104B2 (en) 2010-10-26 2010-10-26 Conductive resin composition and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010239731A JP5662104B2 (en) 2010-10-26 2010-10-26 Conductive resin composition and semiconductor device using the same

Publications (2)

Publication Number Publication Date
JP2012092201A true JP2012092201A (en) 2012-05-17
JP5662104B2 JP5662104B2 (en) 2015-01-28

Family

ID=46385933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010239731A Active JP5662104B2 (en) 2010-10-26 2010-10-26 Conductive resin composition and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP5662104B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5304932B1 (en) * 2012-07-18 2013-10-02 横浜ゴム株式会社 Conductive composition and solar battery cell
JP2014001354A (en) * 2012-05-25 2014-01-09 Daiso Co Ltd Conductive ink composition
JP2014192328A (en) * 2013-03-27 2014-10-06 Kyocera Chemical Corp Optical semiconductor device
JP2014194013A (en) * 2013-03-01 2014-10-09 Kyocera Chemical Corp Thermosetting resin composition, semiconductor device and electric/electronic component
WO2015019414A1 (en) * 2013-08-06 2015-02-12 千住金属工業株式会社 Electronic component joint material
JP2016040370A (en) * 2012-06-29 2016-03-24 タツタ電線株式会社 Conductive adhesive composition, conductive adhesive film, adhesion method, and circuit board
JP2016065146A (en) * 2014-09-25 2016-04-28 京セラケミカル株式会社 Thermosetting resin composition, semiconductor device and electrical and electronic component
JP2016191043A (en) * 2015-03-30 2016-11-10 株式会社ノリタケカンパニーリミテド Heat-curable conductive paste
EP3144939A4 (en) * 2015-02-27 2017-05-10 Tatsuta Electric Wire & Cable Co., Ltd. Conductive paste and multilayer substrate using same
JP2017143155A (en) * 2016-02-09 2017-08-17 株式会社ナノマテックス Clamping jig, and method for manufacturing clamping jig
WO2022044737A1 (en) * 2020-08-31 2022-03-03 京セラ株式会社 Paste composition and semiconductor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06203627A (en) * 1992-12-28 1994-07-22 Dai Ichi Kogyo Seiyaku Co Ltd Conductive composition
JPH07238269A (en) * 1994-02-28 1995-09-12 Hitachi Chem Co Ltd Adhesive and semi-conductor unit
JPH07238268A (en) * 1994-02-28 1995-09-12 Hitachi Chem Co Ltd Adhesive and semi-conductor unit
JPH1064331A (en) * 1996-08-21 1998-03-06 Hitachi Chem Co Ltd Conductive paste, electric circuit using conductive paste, and manufacture of electric circuit
JPH1166955A (en) * 1997-08-11 1999-03-09 Hitachi Chem Co Ltd Conductive paste
JPH11250736A (en) * 1998-03-04 1999-09-17 Hitachi Chem Co Ltd Conductive paste
JP2009144052A (en) * 2007-12-14 2009-07-02 Sumitomo Bakelite Co Ltd Resin composition for printed circuit board, insulating layer with supporting substrate, laminate, and printed circuit board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06203627A (en) * 1992-12-28 1994-07-22 Dai Ichi Kogyo Seiyaku Co Ltd Conductive composition
JPH07238269A (en) * 1994-02-28 1995-09-12 Hitachi Chem Co Ltd Adhesive and semi-conductor unit
JPH07238268A (en) * 1994-02-28 1995-09-12 Hitachi Chem Co Ltd Adhesive and semi-conductor unit
JPH1064331A (en) * 1996-08-21 1998-03-06 Hitachi Chem Co Ltd Conductive paste, electric circuit using conductive paste, and manufacture of electric circuit
JPH1166955A (en) * 1997-08-11 1999-03-09 Hitachi Chem Co Ltd Conductive paste
JPH11250736A (en) * 1998-03-04 1999-09-17 Hitachi Chem Co Ltd Conductive paste
JP2009144052A (en) * 2007-12-14 2009-07-02 Sumitomo Bakelite Co Ltd Resin composition for printed circuit board, insulating layer with supporting substrate, laminate, and printed circuit board

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014001354A (en) * 2012-05-25 2014-01-09 Daiso Co Ltd Conductive ink composition
JP2016040370A (en) * 2012-06-29 2016-03-24 タツタ電線株式会社 Conductive adhesive composition, conductive adhesive film, adhesion method, and circuit board
WO2014013872A1 (en) * 2012-07-18 2014-01-23 横浜ゴム株式会社 Conductive composition and solar cell
JP5304932B1 (en) * 2012-07-18 2013-10-02 横浜ゴム株式会社 Conductive composition and solar battery cell
JP2014194013A (en) * 2013-03-01 2014-10-09 Kyocera Chemical Corp Thermosetting resin composition, semiconductor device and electric/electronic component
JP2014192328A (en) * 2013-03-27 2014-10-06 Kyocera Chemical Corp Optical semiconductor device
WO2015019414A1 (en) * 2013-08-06 2015-02-12 千住金属工業株式会社 Electronic component joint material
JP2016065146A (en) * 2014-09-25 2016-04-28 京セラケミカル株式会社 Thermosetting resin composition, semiconductor device and electrical and electronic component
EP3144939A4 (en) * 2015-02-27 2017-05-10 Tatsuta Electric Wire & Cable Co., Ltd. Conductive paste and multilayer substrate using same
JP2016191043A (en) * 2015-03-30 2016-11-10 株式会社ノリタケカンパニーリミテド Heat-curable conductive paste
JP2017143155A (en) * 2016-02-09 2017-08-17 株式会社ナノマテックス Clamping jig, and method for manufacturing clamping jig
WO2017138266A1 (en) * 2016-02-09 2017-08-17 株式会社ナノマテックス Clamping jig, method for manufacturing clamping jig, and resin
WO2022044737A1 (en) * 2020-08-31 2022-03-03 京セラ株式会社 Paste composition and semiconductor device

Also Published As

Publication number Publication date
JP5662104B2 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
JP5662104B2 (en) Conductive resin composition and semiconductor device using the same
JP6190653B2 (en) Conductive resin composition and semiconductor device
JP2016088978A (en) Conductive resin composition and electronic component device using the same
JP6420626B2 (en) Conductive resin composition for bonding electronic components
JP5976382B2 (en) Die attach paste, manufacturing method thereof, and semiconductor device
JP2021050329A (en) Recyclable led packaging conductive adhesive composition and method for manufacturing the same
JP2007294712A (en) Die bonding paste, and semiconductor device using it
JP6383183B2 (en) Conductive adhesive and electronic component using the same
JP2017071707A (en) Liquid thermally conductive resin composition and electronic component
JP2008174577A (en) Die bonding paste and semiconductor device using the same
CN110692126B (en) Resin composition for bonding electronic component, method for bonding small chip component, electronic circuit board, and method for manufacturing electronic circuit board
JP2016117869A (en) Resin composition for semiconductor adhesion and semiconductor device
JP6636874B2 (en) Resin composition for bonding electronic components, bonding method for electronic components, and electronic component mounting substrate
JP6134597B2 (en) Die attach agent
JP6283520B2 (en) Adhesive composition for semiconductor and semiconductor device
JP6701039B2 (en) Resin composition for semiconductor adhesion and semiconductor device
JP6549555B2 (en) Conductive adhesive and semiconductor device
JP2005317491A (en) Conductive paste and electronic component mounting substrate using it
JP5027598B2 (en) Adhesive composition and semiconductor device using the same
JP5112089B2 (en) Adhesive composition
WO2023276690A1 (en) Conductive resin composition, material having high thermal conductivity, and semiconductor device
JP3608908B2 (en) Resin paste for semiconductor
WO2016059980A1 (en) Liquid epoxy resin composition
WO2024062904A1 (en) Resin composition, cured product, camera module, and electronic device
JP2016011406A (en) Conductive adhesive and electronic component using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141204

R150 Certificate of patent or registration of utility model

Ref document number: 5662104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350