WO2017137011A1 - 开关磁阻电动机及其应用 - Google Patents

开关磁阻电动机及其应用 Download PDF

Info

Publication number
WO2017137011A1
WO2017137011A1 PCT/CN2017/073440 CN2017073440W WO2017137011A1 WO 2017137011 A1 WO2017137011 A1 WO 2017137011A1 CN 2017073440 W CN2017073440 W CN 2017073440W WO 2017137011 A1 WO2017137011 A1 WO 2017137011A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
tooth
oil
mover
motor
Prior art date
Application number
PCT/CN2017/073440
Other languages
English (en)
French (fr)
Inventor
张春
Original Assignee
郑州吉田专利运营有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2016/073744 external-priority patent/WO2017136965A1/zh
Priority claimed from CN201611268381.7A external-priority patent/CN108270314A/zh
Priority claimed from CN201710069979.1A external-priority patent/CN108400679A/zh
Application filed by 郑州吉田专利运营有限公司 filed Critical 郑州吉田专利运营有限公司
Priority to JP2018536236A priority Critical patent/JP6691969B2/ja
Priority to KR1020187024056A priority patent/KR102153121B1/ko
Priority to EP17749902.7A priority patent/EP3416269A4/en
Priority to US16/077,700 priority patent/US10658911B2/en
Publication of WO2017137011A1 publication Critical patent/WO2017137011A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • H02K19/103Motors having windings on the stator and a variable reluctance soft-iron rotor without windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/14Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing the motor of fluid or electric gearing being disposed in or adjacent to traction wheel
    • B60K17/145Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing the motor of fluid or electric gearing being disposed in or adjacent to traction wheel the electric gearing being disposed in or adjacent to traction wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/356Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having fluid or electric motor, for driving one or more wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/12Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C2/14Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C2/16Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/12Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C2/14Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C2/16Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • F04C2/165Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type having more than two rotary pistons with parallel axes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/246Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/06Magnetic cores, or permanent magnets characterised by their skew
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention belongs to the field of electric motors, and is specifically a novel structure of a thyristor reluctance motor and its application.
  • Switched Reluctance Drive is the latest generation of stepless speed regulation system developed after the variable frequency speed control system and brushless DC motor speed control system. It is a collection of modern microelectronic technology and digital Technology, power electronics technology, infrared photoelectric technology and modern electromagnetic theory, design and production technology as one of the integrated high-tech optical, machine and electricity.
  • the Shaoguan reluctance motor speed control system is mainly composed of four parts: the Shaoguan reluctance motor (SRM), the power converter, the controller and the rotor position detector.
  • the controller contains the control circuit and the power converter, and the rotor position detector is mounted at one end of the motor.
  • the thyristor reluctance motor (SRM) used in the slewing reluctance motor speed control system is the component that realizes the energy conversion of the machine in the SRD, and is also the main sign that the SRD is different from other motor drive systems.
  • the existing SRM system is a doubly salient variable reluctance motor, in which the salient poles of the stator and the rotor are laminated by ordinary silicon steel sheets.
  • the rotor has neither winding nor permanent magnets.
  • the stator pole is wound with concentrated windings, and the two opposite radial windings are connected. It is called "one phase".
  • the SR motor can be designed into many different phase numbers, and the rotor is fixed. There are many different combinations of poles. The number of phases is large and the step angle is small, which is beneficial to reduce torque ripple, but the structure is complicated, and there are many main switching devices and high cost.
  • four-phase (8/6) structure and three-phase (12/) are used. 8)
  • the Shaoxi reluctance motor drive system combines the advantages of induction motor drive system and DC electric motor drive system, and is a strong competitor of these drive systems.
  • the main advantages are as follows:
  • Shaoguan reluctance motor has a larger motor utilization coefficient, which can be the utilization coefficient of the induction motor.
  • the structure of the motor is simple, there is no winding of any kind on the rotor; there is only a simple concentrated winding on the stator, the end is short, and there is no phase jumper. Therefore, it has the characteristics of low manufacturing process, low cost, reliable operation, and small maintenance.
  • the torque of the thyristor motor is independent of the polarity of the current. Only one-way current excitation is required. Ideally, only one switching element can be used for each phase in the conversion circuit. In series with the motor windings, there is no danger of two pass-through components coming straight through like the PWM inverter power supply.
  • the SED circuit of the reluctance motor drive system is simple, highly reliable, and the cost is lower than the PWM AC speed control system.
  • the structure of the rotor of the reluctance motor has a small speed limit and can be made into a high-speed motor, and the rotor has a small moment of inertia.
  • the current can change the magnitude and direction of the phase-turn torque with each change. Therefore, the system has a good dynamic response.
  • the SRD system can obtain the mechanical characteristics that meet the requirements of different loads by controlling the conduction, breaking and amplitude of the current. It is easy to realize the functions of soft start and four-quadrant operation of the system, and the control is flexible.
  • the SRD system Since the SRD system is a self-synchronizing system, it does not suffer from instability and oscillation problems at low frequencies like the variable frequency power supply induction motor. 6. Because SR's singular reluctance motor adopts unique structure and design method and corresponding control skills, its unit processing can be comparable to induction motor, and even slightly superior. The efficiency and power density of the SRD system can be maintained at the teaching level over a wide range of speeds and loads.
  • the three-screw pump is formed by the pump body and the screw.
  • the driving screw rotates and drives the driven screw that meshes with it, the screw meshing space at one end of the suction chamber gradually increases, and the pressure decreases.
  • the liquid enters the volume of the meshing space under the pressure differential.
  • the volume is increased to a maximum to form a sealed chamber, the liquid is continuously moved axially in the sealed chamber until it exits the chamber.
  • the volume of the screw engagement space at one end of the discharge chamber is gradually reduced, and the liquid is discharged.
  • the working principle of the three-screw pump is similar to that of a gear pump, except that the gear is replaced by a screw in the structure.
  • the table shows the characteristics and application range of various screw pumps.
  • the three-screw pump has a small flow and pressure pulse, low noise and vibration, and self-priming capability, but the screw processing is difficult.
  • the pump has a single suction type and a double suction type, but the single screw pump has only a single suction type.
  • Three screw pump must Equipped with a safety valve (single-screw pump does not have to be equipped with a belt) to prevent damage to the pump or prime mover due to some reason such as clogging of the discharge pipe causing the pump outlet pressure to exceed the allowable value.
  • the three-screw pump utilizes the rotation of the screw to suck and drain the liquid.
  • the intermediate screw is the active screw, which is rotated by the prime mover, and the screw on both sides is the driven screw, which rotates in reverse with the active screw.
  • the threads of the main and driven screws are double-ended threads.
  • the three screw pump is a screw type positive displacement pump.
  • a dynamic sealing chamber can be formed between the inlet and the outlet of the pump. The chamber will continuously move the liquid axially from the pump inlet to the pump outlet and boost the delivered liquid step by step. Thereby forming a continuous, smooth, axially moving pressure liquid.
  • the liquid delivered by the three-screw pump is a lubricating liquid containing no solid particles, no corrosive oil and similar oil, viscosity 1.2 ⁇ 100oE (3.0 ⁇ 760cst), high viscosity liquid can also be transported by heating and viscosity reduction, its temperature Not more than 150 ° C
  • the driven screw is driven by the hydraulic torque of the medium in the sealed cavity. It can be known that the operation of the cycloidal meshed three-screw pump is reversible, and the screw diameter is small, which can be reduced. The turning moment has a small flywheel effect, so that full load torque can be generated immediately after starting, and it can be quickly turned and the noise is small.
  • the high-pressure three-screw pump is continuously started at full load (parking restart), starting up to 10 times per minute. When the pump is stopped, due to the reverse flow of the high-pressure medium, the pump immediately reverses the rotation, and then the pump is reversed and rotated in the opposite direction.
  • the operation is reliable: Therefore, if the medium of the pressure source is input into the pump, the three-screw pump becomes a hydraulic motor. This three-screw pump became the prime mover.
  • the difference between a hydraulic motor and a three-screw pump is only the exchange of imports and exports.
  • the hydraulic motor is the high pressure medium entering the pump, three
  • the screw pump is a high-pressure medium that is discharged from the pump, so the rotation directions of the two are opposite. The efficiency of such a hydraulic motor will remain high over a considerable load range.
  • a pump with a large screw helix angle, that is, a pump with a large lead, is particularly advantageous as a hydraulic motor.
  • the present invention provides a new structure of the thyristor reluctance motor SRM, specifically a thyristor reluctance motor, comprising a stator tooth pole and a mover tooth pole, the mover tooth pole is rotated and matched with respect to the stator tooth pole.
  • the number of teeth of the stator tooth is 2m, and the number of teeth of the mover tooth is m; the teeth of the stator are fixedly connected in layers along the direction of the rotation axis, and the number of teeth of each layer is the number of teeth, and the thickness of the stator teeth corresponds to
  • the thickness range of the sub-tooth is called the mover tooth unit, and the stator tooth is composed of the stator tooth core and the stator tooth coil which is externally sleeved, and the stator tooth core and the mover tooth form an air gap end.
  • the arc-shaped surface is a concave-convex matching plane, and the matching relationship between the stator tooth pole and the moving element tooth pole is that at least one layer of the stator tooth center line and the corresponding mover tooth are rotated regardless of the stator tooth pole to any angle of the stator tooth pole.
  • the center line of the pole unit forms an angle ⁇ , 0 ⁇ ⁇ ⁇ ⁇ , where ⁇ is the angle of the arc corresponding to the center of the cross section of the stator pole core or the mover tooth along the direction of the rotation axis, ⁇ ⁇ 360/2 ⁇ .
  • a gap can be formed between the arcuate faces of adjacent stator tooth cores disposed circumferentially, which avoids a magnetic short circuit between the arc faces of adjacent stator tooth cores.
  • a gap is also formed along the direction of the rotation axis, which avoids a magnetic short circuit between the arcuate faces of adjacent stator tooth cores.
  • the ⁇ reluctance motor, the mover tooth pole rotates to any angle with respect to the stator tooth pole, at least one layer of the stator tooth center line and the mover tooth center of the corresponding mover tooth unit
  • the line forms an angle ⁇ , 0 ⁇ ⁇ ⁇ ⁇
  • the number of layers of the designated sub-tooth is ⁇ layer
  • the length of the corresponding tooth tooth unit is also the length of the ⁇ layer
  • the number of teeth arranged along the circumference of the mover tooth is m.
  • the angle between the center line of the first stator tooth and the center line of the mover tooth is 360/(nm)
  • the second layer is 2*360/(nm)
  • the nth layer is n*360/(nm).
  • the plane of the first layer of stator teeth is xy plane
  • the axis of the rotation axis is the z-axis direction
  • the teeth of the other layers are sequentially along the z-axis.
  • the angle between the center line of the first layer of stator teeth and the y axis is 360/(nm)
  • the second layer is 2*360/(nm)
  • ... the nth layer is n*360
  • the center line of the mover tooth of each layer of the mover tooth unit coincides in the z direction.
  • the plane of the first layer of stator teeth is xy plane
  • the axis of the rotation axis is the z-axis direction
  • the other stator teeth are sequentially along the z-axis.
  • the center line of the stator teeth of each layer coincides with the y axis in the z direction
  • the angle between the center line of the mover tooth of the first layer of the mover tooth unit and the y axis is 360/(nm)
  • the second The layer is 2*360/(nm)
  • ... the nth layer is n*360/(nm).
  • the plane of the first layer of stator teeth is xy plane
  • the axis of the rotation axis is the z-axis direction
  • the teeth of the other layers are sequentially along the z-axis.
  • the angle between the center line of the first layer of the stator teeth and the y axis is 360/(2*nm)
  • the second layer is 2*360/(2*nm)
  • ... the nth layer is n*3
  • the angle between the center line of the mover tooth of the first mover tooth unit and the y axis is -360/(2nm), and the second layer is -2*360/(2nm). Across the nth layer is -n*360/(2nm), which constitutes a reverse spiral.
  • the number of stator pole layers is sequentially extended in the z-axis direction to form a straight strip stator tooth or a spiral strip stator tooth pole, corresponding to the straight strip stator tooth pole
  • the mover teeth are extremely spiral strip-shaped mover teeth; the mover teeth corresponding to the spiral strip-shaped stator teeth are extremely reverse spiral-shaped mover teeth or straight-type mover teeth, and the number of teeth is m greater than or equal to a natural number of 1, n is a natural number greater than or equal to 2
  • the yoke reluctance motor, the yoke portion of the straight strip stator pole or the spiral strip stator tooth pole is connected by a straight strip magnetic conductive material or a spiral strip magnetic permeable material to form a straight strip U-shaped electromagnet in series Or a u-shaped electromagnet in series with a spiral strip.
  • the slewing reluctance motor, the arc-shaped surface of the straight strip-shaped stator tooth or the spiral strip-shaped stator tooth pole points to the center of the circle, and constitutes an outer straight strip-shaped stator tooth pole or an outer spiral strip-shaped stator tooth pole
  • the straight strip-shaped mover tooth pole, the spiral strip-shaped mover tooth pole and the reverse spiral strip-shaped mover tooth pole correspond to an inner straight strip-shaped mover tooth pole, an inner spiral strip-shaped mover tooth pole and an inner reverse To the spiral strip of mover teeth.
  • the ⁇ -perfoil motor, the arc-shaped surface of the straight strip-shaped stator tooth or the spiral strip-shaped stator tooth is away from the center of the circle, and constitutes an inner straight strip stator tooth or an inner spiral strip-shaped stator tooth pole
  • the straight strip-shaped mover tooth pole, the spiral strip-shaped mover tooth pole and the reverse spiral strip-shaped mover tooth pole correspond to an outer straight strip-shaped mover tooth pole, an outer spiral strip-shaped mover tooth pole and an outer reverse To the spiral strip of mover teeth.
  • the yoke reluctance motor, the yoke portion of each of the stator teeth is connected by a magnetically permeable material to form a closed frame stator tooth pole, and a frame coil is placed on the magnetic material frame between the stator teeth .
  • the sleek reluctance motor, the circular arc surface of the closed frame stator tooth pole points to the center of the circle, and constitutes the outer closed frame stator tooth pole; the straight strip mover tooth pole, the spiral strip mover tooth
  • the pole and reverse spiral strip mover teeth correspond to an inner straight strip mover tooth pole, an inner spiral strip mover tooth pole and an inner reverse spiral strip mover tooth pole.
  • the sleek reluctance motor, the arc surface of the stator tooth of the closed frame faces away from the center of the circle, and constitutes an inner closed frame stator tooth; the straight strip tooth dent, the spiral strip mover tooth
  • the pole and reverse spiral strip mover teeth correspond to an outer straight strip mover tooth pole, an outer spiral strip mover tooth pole and an outer reverse spiral strip mover tooth pole.
  • the ⁇ ⁇ reluctance motor the m is an even number
  • the yoke of each layer of the stator teeth is connected by a magnetically permeable material to form a closed frame stator tooth, on the magnetic material frame between the stator teeth
  • the yoke portion of the straight strip stator tooth or the spiral strip stator tooth pole is reconnected by a straight strip magnetic material or a spiral strip magnetic material, and the strip strip magnetic material or
  • the spiral strip-shaped magnetic conductive material is used as a yoke iron, and a straight strip yoke or a spiral strip yoke is formed to form a straight straight strip tooth or a spiral strip stator pole stator.
  • stator tooth pole of the ⁇ reluctance motor wherein the stator teeth are in the shape of straight teeth or spiral teeth.
  • a composite pump of a three-screw pump and a screw-gear-per-reluctance motor includes a three-screw pump, and at least one of the three screws of the three-screw pump is a spiral of a rhyme-switched reluctance motor Mop, the spiral
  • the bush of the three-screw pump corresponding to the sub-spindle is a stator bushing composed of a stator of a screw-gear-peristor reluctance motor, and the spiral mover and the stator bushing constitute a spiral mover-switched reluctance motor.
  • a synchronizing gear is disposed between the three screws.
  • the outer surface of the screw is provided with a thin layer of rubber.
  • the middle screw of the three screws is a screw mover, and the intermediate screw is an active screw.
  • the synchronous gear between the bearing supporting the three screws and the three screw is disposed outside the working chamber formed by the screw and the bushing.
  • an electric vehicle using the composite pump of the three-screw pump and the screw-gear reluctance motor wherein the composite pump is used as a wheel-side motor of an electric vehicle, and the wheel-side motors are connected by an oil passage, so that the wheel The side motors can transfer energy to each other through the oil path.
  • the wheel motor is a front or rear drive of the electric vehicle, and the two wheel motors of the front or rear drive and the oil storage tank and the energy storage tank are connected by an oil passage; and the two wheel sides are controlled by the valve.
  • the motors After the motors are connected in parallel, they are placed between the oil storage tank and the energy storage tank, and the three are connected in series to make the brakes store energy, start or accelerate the ⁇ to release the energy storage; 2 after the two wheel motors are connected in series, the two ends respectively and the energy storage The tank and the oil storage tank are connected in series to make the brakes store energy, start or accelerate the ⁇ to release the energy storage; 3
  • the two wheel motors are connected in series, that is, the two wheel motors are connected end to end.
  • the wheel motor is a wheel motor of a four-wheel drive electric vehicle, and the four wheel motors and the oil storage tank and the energy storage tank are connected by an oil passage, and the four wheel motors are connected in parallel by a valve control. Cycle, disconnected from the storage tank and the energy storage tank; 2Any three wheel motors are connected in parallel and then connected in series with another wheel motor to form a cycle, which is disconnected from the oil storage tank and the energy storage tank; 3 four wheel motors Forming a bridge path and forming a cycle, breaking with the oil storage tank and the energy storage tank; 4 four wheel motors in series or any three wheel motors in parallel and then connected in series with another wheel motor or four wheel motors After the passage, it is placed between the oil storage tank and the energy storage tank, and the three are connected in series, so that the brakes can store energy, start or accelerate the release of energy storage.
  • a two-way twin-screw pump motor includes a first spiral strip-shaped mover-off reluctance motor, and the mover of the first spiral strip-shaped mover-off reluctance motor is used as the first active of the twin-screw pump Screw, the ring of the motor
  • the sub-side mouth portion is combined with the first driving screw and the other screw, which constitutes a two-way twin-screw pump motor, and the inside of the stator is filled with resin to form an inner surface of the ring.
  • the other screw is a second spiral strip-shaped mover-resistance reluctance motor as a second active screw, and the second spiral strip-shaped mover is connected to a corresponding side of the reluctance motor to make the first active
  • the screw is engaged with the second driving screw, that is, the spiral direction of the second driving screw is opposite to the spiral direction of the first driving screw.
  • the other screw is a driven screw.
  • the spiral strip-shaped mover reluctance motor has one of the number of teeth of 1-8 teeth, and the ends of the two screws are provided with gears that mesh with each other.
  • the twin-screw pump motor is used as a wheel-side motor of an electric vehicle, and the motors are connected by an oil circuit, so that the motors can mutually transfer energy through the two-way twin-screw pump.
  • the two-way twin-screw pump motor is one of the front, rear or four-wheel drive of the electric vehicle.
  • the two-way twin-screw pump between the electric vehicle motors is connected in series through the oil passage to realize mutual energy transfer, and the series connection between the two-way twin-screw pumps is: the output end of the first motor passes through the oil passage and the lower The input ends of one motor are connected, and then connected in series.
  • the output end of the last motor is connected to the input end of the first motor through an oil circuit; the oil storage tank and the energy storage tank are connected to the oil circuit between the two motors, and the storage is performed.
  • the oil tank is provided with an oil inlet pipe and an oil discharge pipe connected to the oil passage.
  • the energy storage tank is provided with an energy storage pipe and a discharge energy pipe connected to the oil circuit; the oil circulation is forwarded in the forward direction, on the interface with the oil pipe
  • the oil delivery pipe is arranged in front of the energy storage pipe, and the energy release pipe is arranged in front of the oil inlet pipe, and a shut-off valve is arranged on the oil inlet pipe, the oil discharge pipe, the energy storage pipe, the energy release pipe and the oil pipe connected to the branch oil pipe.
  • the motor In the brake of the automobile, the motor is de-energized, the outlet pipe of the oil storage tank and the shut-off valve on the energy storage pipe of the energy storage tank are both smashed, and the shut-off valve on the oil line connected to the branch oil circuit is closed, the vehicle inertia
  • the motor is operated as an oil pump, and the output high-pressure oil enters the accumulator for energy storage, and the hydraulic oil lacking in the oil pipe is replenished by the oil storage tank;
  • the helium can be used to release the shut-off valve on the discharge pipe and the oil pipe, the energy stored in the energy storage tank is released, and the motor is used as a motor to provide starting power, reducing the motor.
  • the electricity consumption if the energy storage is exhausted, is driven by the motor, and the excess hydraulic oil in the oil passage enters the oil storage tank;
  • the two-way twin-screw pump has a faulty power failure, and the hydraulic oil circulating between the other motors drives the screw rotation of the motor to realize energy supply.
  • the front drive, the rear drive or the four drive includes each two-way twin-screw pump motor, a high-pressure oil concentrator, an accumulator and a storage tank, and each motor is provided with a self-circulating oil circuit, and the output of each motor is
  • the high-pressure oil concentrator is connected by an energy storage tube, and the input end of each motor is connected to the high-pressure oil concentrator through a discharge tube, and the output end of each motor is connected to the oil storage tank through an oil discharge pipe, and the input end of each motor passes through the oil inlet pipe and
  • the oil storage tank is connected, the high pressure oil collector is connected with the energy storage tank, and the shut-off valve is arranged on the oil inlet pipe, the oil outlet pipe, the energy storage pipe, the energy release pipe, the self-circulating oil circuit of each motor and the high-pressure oil collecting pipe, and the high-pressure oil is collected.
  • the device is a cavity.
  • the two-way twin-screw pump is in normal working state, and each motor and each connected oil pipe are filled with oil.
  • shut-off valves of the self-circulating oil lines of the respective motors are smashed, and the remaining shut-off valves are closed, and the respective motors are normally operated through the respective circulation loops;
  • the energy storage tank is connected to the high-pressure oil concentrator due to the large power required, and the high-pressure oil concentrator is smashed with the shut-off valve on the discharge tube connected to each motor, and each motor and the oil storage tank
  • the shut-off valve on the connected oil discharge pipe is smashed, the energy in the energy storage tank is released, the starting power is provided to the motor as a motor, and the power consumption of the motor is reduced. If the energy storage is exhausted, the motors are separately cycled. Excess hydraulic oil in the oil passage enters the storage tank;
  • some of the two-way twin-screw pump has a faulty power failure, and the remaining motors are connected to the high-pressure oil collector.
  • the shut-off valve on the pipe is smashed, the shut-off valve on the oil inlet pipe connected to the oil storage tank is smashed, the high-pressure oil oil collector is smashed with the shut-off valve on the discharge pipe connected to the faulty motor, and the oil discharge pipe of the faulty motor Connected to the oil storage tank, if the pressure in the high pressure oil collector is lower than the pressure required by the faulty motor, the high pressure oil collector is connected to the energy storage tank, and the energy storage tank releases the pressure for energy replenishment, if the high pressure oil collector The pressure in the medium is higher than the pressure required by the faulty motor.
  • the high-pressure oil collector is connected to the energy storage tank, and the energy storage tank is used for energy storage.
  • the beneficial effects of the present invention are:
  • the present invention increases the power density of the motor due to the magnetic superposition of the magnetic field; in addition, the number of teeth of the stator is twice the number of teeth of the mover, and the performance is doubled, and the arc of the tooth is curved.
  • the angle is close to 90°, the torque ripple is reduced.
  • the angle between the center lines of the teeth between the adjacent layers is smaller, increasing the number of layers applying the magnetic torque, due to the increase in the number of layers.
  • the number of layers applying the magnetic torque is also increased.
  • the two-way twin-screw pump motor of the present invention acts as a pump at the same time as the motor.
  • the utility model not only solves the structure that the hydraulic motor and the motor are not arranged in the prior art, but also has the advantages of simple structure and easy manufacture.
  • FIG. 1 is a schematic view showing a combined structure of an outer single spiral tooth pole linearly arranged reluctance motor.
  • FIG. 2 is a schematic view showing a combined structure of an outer single spiral tooth pole linear arrangement of a reluctance motor.
  • FIG. 3-1 is a schematic diagram of a combined structure of a four-outer spiral outer stator member in-line thyristor reluctance motor.
  • FIG. 3-2 is a schematic view of the transparent end portion of the arcuate surface of the outer spiral stator tooth core 10231 of FIG. 3-1.
  • FIG. 4 is a schematic view showing a combined structure of a spiral strip stator toothed member.
  • FIG. 5 is a schematic view showing the combined structure of the stator-teeth linearly arranged motor members in the sheet-like four-helix.
  • FIG. 6 is a schematic view showing a combined structure of a stator-teeth helically arranged motor component in a sheet-like four-helix.
  • FIG. 7 is a schematic view showing a combined structure of a four-spiral external toothed stator member in-line motor component.
  • FIG. 8 is a schematic view showing a combined structure of four outer spiral outer tooth pole spiral array motor members.
  • FIG. 9 is a schematic view showing a combined structure of four straight-tooth external teeth linearly arranged motor members.
  • 10 is a schematic view showing a combined structure of four straight-tooth outer spiral-arranged stator-side reluctance motor members.
  • FIG. 11 is a schematic view showing the combined structure of the stator-teeth linearly arranged motor members in the eight-helix.
  • FIG. 12 is a schematic view showing the combined structure of the stator-teeth helically arranged motor members in the eight-helix.
  • FIG. 13 is a schematic view showing the combined structure of the inner eight-spiral ring stator tooth pole linearly arranged motor members.
  • FIG. 14 is a schematic view showing the combined structure of the stator-teeth helically arranged motor components in the eight-helix.
  • FIG. 15 is a schematic view showing a combined structure of an eight-spiral outer stator tooth pole linearly arranged motor member.
  • FIG. 16 is a schematic view showing a combined structure of an eight-spiral outer stator tooth pole linearly arranged motor member.
  • 17 is a schematic view showing a combined structure of eight straight-tooth outer stator teeth linearly arranged motor members.
  • 18 is a schematic structural view of a combination of eight straight-tooth outer stator teeth linearly arranged motor members.
  • 19 is a schematic view showing a combined structure of eight straight-tooth outer stator-teeth helically arranged motor members.
  • 20 is a schematic view showing a combined structure of an eight-spiral outer stator tooth pole linearly arranged motor member.
  • 21 is a schematic view showing a combined structure of an eight-spiral outer stator toothed helically arranged motor member.
  • FIG. 22 is a schematic view showing the combined structure of the eight-spiral outer stator tooth pole linearly arranged motor members.
  • FIG. 23 is a schematic view showing a combined structure of a sixteen-spiral outer stator toothed helically arranged motor member.
  • FIG. 24 is a schematic view showing the combined structure of the reverse spiral motor members in the spiral-tooth spiral arrangement.
  • FIG. 25 is a schematic view of the engagement of the twin screw.
  • 26 is a schematic structural view of a twin-screw pump motor.
  • 27 is an axial cross-sectional view of a twin screw pump motor.
  • 29 is a schematic view of a housing of a twin screw pump motor of an active screw.
  • 30 is a radial cross-sectional view 2 of a twin-screw pump motor.
  • FIG. 31 is a first schematic view showing the installation of a twin-screw pump motor on a frame.
  • FIG. 32 is a schematic view of the oil circuit cycle between the twin-screw pump motors of FIG.
  • FIG. 33 is a second schematic view showing the installation of a twin-screw pump motor on a frame.
  • FIG. 34 is a schematic view of the oil circuit cycle between the twin-screw pump motors of FIG.
  • FIG. 35 is a schematic diagram 1 of a cycle of a screw pump motor.
  • FIG. 36 is a schematic diagram 2 of the screw pump motor cycle.
  • FIG. 37 is a schematic diagram 3 of a screw pump motor cycle.
  • FIG. 38 is a schematic diagram 4 of a screw pump motor cycle.
  • FIG. 39 is a schematic diagram 5 of the screw pump motor cycle.
  • FIG. 40 is a schematic diagram 6 of a screw pump motor cycle.
  • FIG. 41 is a schematic diagram of the oil circuit connection of the four-wheel drive wheel motor.
  • FIG. 42 is a schematic structural view of a composite pump of a three-screw pump and a screw-gear-gate reluctance motor.
  • FIG. 43 is a cross-sectional view of a compound pump of a three-screw pump and a screw-gear-gate reluctance motor.
  • FIG. 3-1 shows a four-outer spiral outer stator member in-line thyristor motor, an outer spiral stator tooth core 10231, and an outer spiral stator tooth core 10231 outer sleeve spiral coil 0232 to form an outer spiral stator tooth.
  • the six outer spiral stator teeth are linearly stacked and fixedly arranged to form an outer spiral stator tooth straight stator member 0239, and four outer spiral stator tooth straight stator members 0239 are evenly arranged along the circumference to form a four outer spiral outer stator 272.
  • the number of teeth of the outer outer stator of each of the four outer spirals is four, and at the end of the arcuate surface of the adjacent outer spiral stator tooth core 10231, a space 2734 is formed along the circumferential direction to avoid the formation of a magnetic short circuit, and the direction along the rotation axis is also Forming an interval 2735 for avoiding the formation of a magnetic short circuit, the outer outer stator 272 is sleeved with a mover tooth pole 273, and the mover tooth pole 273 is spirally arranged by the spiral mover unit to form an integral double helix mover 0331, and the overall double helix mover 0331 Supported by support member 0332.
  • the spiral core 0231 has a pitch of 660 mm and a length of 50 mm, a spiral coil 0232 has a thickness of 2.5 mm, a single spiral tooth length of 55 mm, and six single spiral tooth poles are linearly arranged along the rotation axis direction, and the length is 3 30 mm.
  • the yoke portion is connected by the yoke 0233, the yoke 0223 and the 6 spiral iron cores 0231 are integrally formed or the whole silicon steel sheet is stacked on the circumference, and the movable teeth are extremely circumferentially arranged with the stator core.
  • a double helix structure in which an annular arc angle of 45 degrees is spirally formed in the axial direction.
  • the pitch is 660mm and the length is 330mm.
  • the six helical toothed cells are arranged in a spiral structure, and the moving teeth are placed in the outer stator of the four outer spirals.
  • the arc formed by the interval 2734 has an angle of 2° corresponding to the center of the circle, and since the thickness of the spiral coil 0232 is 2.5 mm, the length of the interval 2735 between the adjacent spiral cores 0231 in the direction of the rotation axis to avoid the formation of the magnetic short circuit is 5 mm, or less.
  • the interval between avoiding the formation of a magnetic short is set.
  • FIG. 3-2 is a schematic view of the transparent end portion of the arc surface of the outer spiral stator tooth core 10231 except that most of the outer spiral outer stator is removed, and the four outer spiral stator teeth are straight.
  • the stator members 0239 are respectively referred to as eight, B, C, D ⁇ ij; as shown in Fig.
  • the center line of the stator tooth pole of the first layer A column and the center line of the corresponding mover tooth unit are 8°, and then, 0231A1 , 0231A2, 0231A3, and 0231B4, 0231B5, 0231B6 six outer helical stator teeth generate a magnetic field, so that one tooth of the whole double-spiral mover 0331 is forced to drive, the whole double-spiral mover 0331 rotates in the direction of the reverse pin, the same The ⁇ C and D columns generate the same force, causing the overall double-spiral mover 0331 to rotate in the direction of the counter-twist.
  • 0231A1, 0231B4 do not generate magnetic field
  • 0231A2, 0231A3, and 0231B5
  • 0231B6 four external spiral stator teeth generate magnetic field, when the whole double-coil mover 0331 rotates through the interval 2734, there are six external spiral stator teeth generating magnetic field ,
  • the first layer A column stator tooth center line coincides with the corresponding mover tooth unit center line
  • the second layer A column stator tooth center The angle between the line and the center line of the corresponding mover tooth unit is 30°
  • the angle between the center line of the stator tooth pole of the third layer A and the center line of the corresponding mover tooth unit is 60°
  • the center of the stator tooth of the fourth layer A column The angle between the line and the center line of the corresponding mover tooth unit is 90°
  • the fourth layer A is an equilibrium position
  • the fourth layer B column stator tooth center line coincides with the corresponding mover tooth unit center line
  • the angle between the center line of the five-layer B-column stator pole and the center line of the corresponding mover-tooth unit is 30°
  • the angle between the center line of the sixth-pole column B stator and the center line of the corresponding mover-tooth unit is 60°
  • the second and third layers of column A need to be generated separately or together.
  • Magnetic force the fifth and sixth layers of column B generate magnetic force alone or together, so that the fourth layer of column A is out of balance.
  • the first layer of the B column is out of the equilibrium position.
  • the fourth layer of the A column and the first layer of the B column can be magnetically generated in the equilibrium position, that is, 6 layers can be arranged and combined to generate a magnetic force, and there are many This type of control is repeated after 30° rotation.
  • the upper and lower teeth of the same layer are opposite to the opposite ends of the axial center, and the magnetic lines of the stator teeth pass through the air gap and enter the upper mover teeth, and then enter the lower mover teeth through the support plate on both sides in the axial direction.
  • Torque is generated by passing through an air gap between the lower mover tooth and a certain sub-tooth to the lower stator tooth core.
  • stator teeth When two layers of the same magnetically conductive turns, the magnetic directions of the adjacent two stator teeth are opposite, such that the magnetic lines of force pass from the stator teeth through the air gap into the corresponding mover tooth unit, and then enter the adjacent motion in the axial direction. After the sub-tooth unit enters the adjacent stator teeth through the air gap, the stator teeth form a closed loop through the yoke to the magnetic field line.
  • the above support plate can be deleted, and the mover tooth is supported by the non-magnetic material. Due to the large specific gravity of the magnetic conductive material, the present invention not only has the illustrated example, but other examples use less magnetic conductive material, which can greatly reduce the weight of the motor.
  • the magnetic circuit is generated by magnetic flux leakage. If the weight is not considered, the moving tooth can be solid as shown in Fig. 7.
  • the yoke can be a tubular yoke, so that the magnetic circuit can be formed according to the principle of minimum magnetoresistance. For the motor, the number of lines of magnetic force entering the stator teeth from the stator teeth is roughly equivalent to the number of magnetic lines entering the stator teeth from the stator teeth.
  • Embodiment 3 The technical solution of Embodiment 3 is as follows: The technical solution that the number of stator teeth is equal to the number of mover teeth, the number of stator teeth and the number of mover teeth are two; this embodiment is: stator tooth
  • the technical solution is to increase the number of stator teeth 2 to 4, and the number of stator teeth is constant, that is, the number of stator teeth and the number of mover teeth
  • An equal technical solution is redesigned as a solution in which the number of stator teeth is twice the number of mover teeth.
  • the following embodiments 1-2 and 5-29 are technical solutions in which the number of stator teeth is equal to the number of mover teeth.
  • the technical solutions of the embodiments 1-2 and 5-29 are redesigned as follows according to the above manner.
  • the number of stator teeth is twice the number of mover teeth, which is the technical solution of the present invention, and the performance is nearly doubled.
  • Embodiment 1 As shown in FIG. 1 , an outer single spiral toothed linear arrangement of a reluctance motor 011, and an outer single spiral core 021 1 is provided with an outer single spiral coil 0212 to form an outer single spiral stator toothed member 0219, two The outer single spiral stator toothed member 0219 is linearly arranged in the axial direction to form an outer single spiral tooth pole linearly arranged stator 021, which is provided with a mover tooth pole 031, and the mover tooth is a semicircular ring spiral body along the rotation axis direction, and the pitch is The length of the two outer spiral stator teeth.
  • the spiral core 0211 has a pitch of 1000 mm and a length of 460 mm and a spiral arc surface for matching with the mover to form a magnetic circuit in the direction of the rotation axis.
  • the yoke of the spiral core 0211 is with two spiral irons.
  • the spiral core 0211 is a spiral silicon steel sheet integrally formed with the yoke 0213, and is integrally formed with a spiral monodentate core 0211 and a yoke 0213 in the circumferential direction, not shown in the figure, and the pitch of the mover tooth It is 1000mm and the length is 1000mm, that is, two single helical toothed pole units with a length of 500mm are spirally arranged together, and are placed in a single helical tooth pole linearly arranged stator.
  • the single helical tooth member linearly aligns the stator in two layers, when the first layer stator tooth center line coincides with the corresponding mover tooth unit center line, the second layer stator tooth center line is in the opposite position, During the rotation process, due to the rotation inertia, the mover continues to rotate, so that the other single spiral tooth pole generates a magnetic pulling force on the single spiral toothed spiral arrangement mover, so that the mover rotates, thereby reciprocating, so that the mover continues to rotate, when After the rotation is stopped, the permanent magnet disposed at a position offset from the stator teeth attracts the mover such that the center line thereof is offset from the center of the corresponding stator tooth, so that the activated stator tooth can rotate the mover tooth.
  • Embodiment 2 As shown in FIG. 2, the outer single-spiral tooth pole linearly arranged the reluctance motor 012, the spiral iron core 0221, the spiral coil 0222 constitutes the stator toothed member 0219, and the stator toothed member 0229 is along the axis.
  • the outer single spiral teeth linearly arranged stator 022 is arranged in a straight line, and the mover tooth 032 is sleeved therein, and the mover tooth 032 is spirally arranged by the three spiral mover units 0321.
  • each single spiral core core plus the thickness of the coil is 3 33.3mm
  • the side of the iron core can be grooved
  • the coil can be arranged around the groove on the side of the iron core
  • the three layers of single spiral teeth are arranged in a straight line.
  • the single helical tooth poles are linearly arranged, and the yoke of the stator is provided with a yoke connection.
  • the third layer does not generate magnetic pull force
  • the second layer Continue to generate magnetic tension, rotate 60 °, the center line of the two coincide, the angle between the third layer is 60 °, in the second cycle, the mover can continue to rotate; 2 the third layer produces magnetic pull, and The three layers rotate the mover 60° together, and the cycle is repeated. Then the 60° torque is greater than the torque of 1; 3 the third layer generates the magnetic pull force, the second layer stops the magnetic pull force, and the mover rotates 60°.
  • the torque of ° is the smallest, and in this reciprocating cycle, three different strengths of torque can be produced, which are suitable for different needs.
  • the above method is also applicable to a structure in which the stator is a spiral arrangement of a single helical toothed stator member, and a single helical toothed pole unit is arranged in a straight line.
  • the above-mentioned outer stator structure with the structure of the single-screw tooth inner stator and the single-tooth unit outer mover.
  • FIG. 4 is a spiral strip-shaped stator toothed member, and a total of four-layer helical tooth poles 100 are spirally arranged in a rotating shaft direction to form a spiral strip-shaped spiral stator tooth pole, and a yoke portion of a spiral strip-shaped spiral stator tooth pole
  • the yoke 101 is used as a yoke 101, and the yoke portion of the spiral strip-shaped spiral stator teeth formed by the four helical tooth poles 100 is connected to form a magnetic U-shaped electromagnet.
  • the helical tooth pole 100 is provided with teeth.
  • the pole coil 103 and the yoke 102 between the helical tooth poles 100 are provided with a spiral yoke coil 104 and a spiral strip spiral toothed stator member.
  • Such members are uniformly disposed circumferentially to form a spiral strip-shaped helical toothed stator.
  • FIG. 5 is a sheet-shaped four-spiral inner stator pole linear arrangement motor 015, and a sheet-shaped four-helical stator pole core 0251 outer-tooth pole coil 0252 constitutes a sheet-shaped inner four-helical stator tooth member 025,
  • the stator toothed members are linearly arranged in the axial direction to form a four-helical stator tooth pole linearly arranged stator, the center portion of the stator is a yoke portion, and the yoke portion of the six chip-shaped four-helical inner stator tooth cores may be made of a magnetic conductive material. Connected, but generally do not need to be connected.
  • the outer sleeve is matched with the integral double-spiral mover tooth 1035, the spiral mover unit is spirally arranged as a spiral mover strip 0351, and the two spiral mover strips 0351 are supported by the bracket 10352 to form a double-spiral mover tooth 1035.
  • the inner four-helical stator toothed member 025 is referred to as a column B, C, and D, respectively; the center line of the stator tooth pole of the first layer A and the center line of the corresponding mover tooth unit are ⁇ , ⁇ > 0°, this ⁇ , 0251 ⁇ 1, 0251 ⁇ 2, 0251 ⁇ 3, and 0251 ⁇ 4, 0251 ⁇ 5, 0251B6 six helical stator teeth generate a magnetic field, so that one tooth of the whole double-spiral mover tooth 1035 is forced to drive the double-spiral mover tooth The 1035 rotates in the direction of the counter-twisting needle, and the same force is generated in the columns C and D, which drives the overall double-spiral mover tooth pole 1035 to rotate in the direction of the counter-twisting needle.
  • 0251A1, 0251B4 do not generate magnetic field
  • 0251A2, 0251A3, and 0251B5 four spiral stator teeth generate magnetic field, when the overall double-helical tooth pole 1035 turns over the interval, there are six spiral stator teeth generating magnetic field.
  • the first layer A column stator tooth center line coincides with the corresponding mover tooth unit center line
  • the second layer A column stator tooth center line and the corresponding mover tooth unit center line angle are 30°
  • the angle between the center line of the stator teeth of the three-layer A column and the center line of the corresponding mover tooth unit is 60°
  • the angle between the center line of the stator teeth of the fourth layer A and the center line of the corresponding mover tooth unit is 90°.
  • the fourth layer A column is the equilibrium position
  • the fourth layer B column stator tooth center line coincides with the corresponding mover tooth unit center line
  • the fifth layer B column stator tooth center line and the corresponding mover tooth unit center The line angle is 30°
  • the sixth layer B column stator tooth center line and the corresponding mover tooth unit The angle of the center line is 60°
  • the angle between the center line of the stator teeth of the first layer B and the center line of the corresponding mover tooth unit is 90 °
  • the first layer B is the equilibrium position.
  • the fifth and sixth layers of column B generate magnetic force alone or together, so that the fourth layer of column A is out of equilibrium position, and the first layer of column B is out of equilibrium position. After rotation, it can be The equilibrium position causes the fourth layer of column A and the first layer of column B to magnetically generate magnetic force, that is, six layers can be arranged and combined to generate magnetic force, and there are various control modes. After rotating 30°, the cycle is repeated.
  • the upper and lower teeth of the same layer point to opposite polarities of the axial end, and the magnetic flux lines of the stator teeth pass through the air gap and enter the upper mover tooth, and then enter the lower mover through the magnetic support I on both sides of the axial direction.
  • the tooth pole passes through the air gap between the lower mover tooth and the fixed sub-tooth to enter the lower stator tooth core to generate torque.
  • the magnetic directions of the adjacent two stator teeth are opposite, so that the magnetic lines of force pass from the stator teeth through the air gap into the corresponding mover tooth unit, and then enter the adjacent motion along the axis direction. After the sub-tooth unit enters the adjacent stator teeth through the air gap, the magnetic field lines are reached to form a closed loop of the stator teeth.
  • FIG. 6 is a sheet-shaped four-helical inner stator-teeth helically arranged motor 016, and a sheet-shaped four-helical stator pole core 12261 outer-coil pole coil 0262 constitutes a sheet-shaped inner four-helical stator tooth member 0269,
  • the stator toothed member 0269 is spirally arranged in the axial direction to form a sheet-like four-helical stator-teeth spiral-arranged stator 026, and the outer sleeve of the stator-shaped helical-arc tooth stator 11036 is arranged, and the helical mover unit 0361 is linearly arranged as a whole.
  • the ⁇ 0362 support constitutes the double-spiral mover tooth pole 11036, and the others are the same as in the example of FIG.
  • the four-helical stator-teeth spiral-arranged stators 026 are respectively referred to as B, C, D ⁇ ij; the first-layer A-column stator tooth center line and the corresponding mover tooth unit center line angle are ⁇ , ⁇ >0°, this ⁇ , 0261 ⁇ 1, 02 61 ⁇ 2, 0261 ⁇ 3, and 0261 ⁇ 4, 0261 ⁇ 5, 0261B6 six helical stator teeth generate a magnetic field, so that one tooth of the double-spiral mover tooth ⁇ 036 is forced to drive the double-spiral mover The tooth pole ⁇ 036 rotates in the direction of the counter-twisting needle, and the same force is generated in the columns C and D, which drives the double-spiral mover tooth pole II036 to rotate in the direction of the counter-twisting needle.
  • 0261A1, 0261B4 do not generate magnetic field
  • 0261A2, 0261 A3 ⁇ and 0261B5, 0261B6 four snails
  • the rotating stator teeth generate a magnetic field.
  • six spiral stator teeth generate a magnetic field.
  • the first layer A column stator tooth center line coincides with the corresponding mover tooth unit center line
  • the second layer A column stator tooth center line and the corresponding mover tooth unit center line angle are 30°
  • the angle between the center line of the stator teeth of the three-layer A column and the center line of the corresponding mover tooth unit is 60°
  • the angle between the center line of the stator teeth of the fourth layer A and the center line of the corresponding mover tooth unit is 90°.
  • the fourth layer A column is the equilibrium position
  • the fourth layer B column stator tooth center line coincides with the corresponding mover tooth unit center line
  • the angle of the line is 30°
  • the angle between the center line of the stator teeth of the sixth layer B and the center line of the corresponding mover tooth unit is 60°
  • the angle of the line is 90 °
  • the first layer B is the equilibrium position.
  • the fourth layer of column A is out of equilibrium position, and the first layer of column B is out of equilibrium position. After turning, it can be A column equilibrium position so that the fourth layer, B the column through the first magnetic layer generates a magnetic force, that is, there are 6 possible permutations generated magnetic layer, there are a variety of control, after rotation of 30 °, this cycle is repeated.
  • the upper and lower teeth of the same layer point to opposite polarities of the axial end, and the magnetic lines of the stator teeth pass through the air gap and enter the upper mover tooth, and then enter the lower mover through the magnetic support II on both sides of the axial direction.
  • the tooth pole passes through the air gap between the lower mover tooth and the fixed sub-tooth to enter the lower stator tooth core to generate torque.
  • the magnetic directions of the adjacent two stator teeth are opposite, such that the magnetic lines of force pass from the stator teeth through the air gap into the corresponding mover tooth unit, and then enter the adjacent motion along the axis direction. After the sub-tooth unit enters the adjacent stator teeth through the air gap, the magnetic field lines are reached to form a closed loop of the stator teeth.
  • the core of the middle portion of the spiral stator toothed member may be connected by a yoke.
  • the tooth core of the present patent is connected to the yoke.
  • the tooth core and the yoke are integrally formed.
  • the silicon steel sheet is circumferentially, of course, the single tooth core can be closely attached to the yoke and fixed together, such as bundling, bonding, and the like.
  • FIG. 7 is a four-spiral external toothed stator member in-line motor 017, and the stator is circumferentially opposite
  • the four outer spiral stator pole cores 0211 are connected by an annular yoke 10273 to the outer spiral stator pole cores 0 271 and the outer spiral coils 0272 are provided, the movers are solid, and the other structures are the same as the outer spiral outer stator members.
  • In-line reluctance motor as shown in Figure 3-1, 3-2.
  • FIG. 8 is a four-outer helical external-teeth helically arranged motor 018.
  • the stator is four circumferentially arranged helical tooth cores 110281 which are circumferentially disposed opposite each other, and are connected by an annular yoke ⁇ 0283, and the outer spiral stator
  • the tooth core I 10281 is provided with an outer spiral coil 0282, which constitutes a four outer spiral stator tooth pole, and six of the members are spirally arranged in the direction of the rotating shaft to form a four-helical outer tooth pole spiral array stator 028, and the movable tooth tooth 1038 is sleeved therein.
  • the mover tooth tip I 038 is linearly arranged by the straight tooth mover unit 0381 to form an integral linear mover.
  • the four-helix outer tooth-pole spiral arrangement stators 028 are respectively referred to as B, C, D ⁇ ij; the first layer A column stator tooth center line and the corresponding mover tooth unit center line angle are ⁇ , ⁇ > 0°, this ⁇ , 0281 ⁇ 1, 0281 ⁇ 2, 0281 ⁇ 3, and 0281 ⁇ 4, 0281 ⁇ 5, 0281B6 six helical stator teeth generate a magnetic field, so that one tooth of the whole mover tooth 1038 is stressed, and the whole mover tooth 1038 is reversed. Rotating in the direction of the needle, the same force is generated in the columns C and D, and the integral mover tooth 1038 is rotated in the direction of the reverse needle.
  • 0281A1, 0281B4 do not generate magnetic field
  • 0281A2, 0281 ⁇ 3 and 028185, 0281B6 four spirals
  • the stator tooth generates a magnetic field.
  • six spiral stator teeth generate a magnetic field.
  • the first layer A column stator tooth center line coincides with the corresponding mover tooth unit center line
  • the second layer A column stator tooth center line and the corresponding mover tooth unit center line angle are 30°
  • the angle between the center line of the stator teeth of the three-layer A column and the center line of the corresponding mover tooth unit is 60°
  • the angle between the center line of the stator teeth of the fourth layer A and the center line of the corresponding mover tooth unit is 90°.
  • the fourth layer A column is the equilibrium position
  • the fourth layer B column stator tooth center line coincides with the corresponding mover tooth unit center line
  • the angle of the line is 30°
  • the angle between the center line of the stator teeth of the sixth layer B and the center line of the corresponding mover tooth unit is 60°
  • the angle of the line is 90 °
  • the first layer B is the equilibrium position.
  • the fourth layer of column A is out of equilibrium position, and the first layer of column B is out of equilibrium position. After turning, it can be A column equilibrium position so that the fourth layer, B the column through the first magnetic layer generates a magnetic force, that is, there are 6 possible permutations generated magnetic layer, there are a variety of control This method is repeated after turning 30°.
  • the upper and lower teeth of the same layer point to opposite polarities of the axial end, and the magnetic flux of the stator teeth passes through the air gap and enters the upper mover tooth, and then passes through the mover and enters the lower mover after the radial direction. Then, the air gap between the lower mover tooth and the fixed sub-tooth reaches the lower stator tooth core to generate torque.
  • the magnetic directions of the adjacent two stator teeth are opposite, such that the magnetic lines of force pass from the stator teeth through the air gap into the corresponding mover tooth unit, and then enter the adjacent motion along the axis direction. After the sub-tooth unit enters the adjacent stator teeth through the air gap, the magnetic field lines are reached to form a closed loop of the stator teeth.
  • Embodiment 9 As shown in FIG. 9, the four straight-tooth outer stator tooth cores 0291 disposed opposite each other are connected by a ring-shaped yoke shank 0293 to a four-tooth outer stator tooth core 0291 outer coil 0292, and constitute Four straight tooth outer stator row stator member 0299, the member is linearly arranged in the axial direction to form a four straight tooth outer straight row stator member 029, and the straight teeth formed by the inner and outer edges of the mover teeth having a 45 degree arc form a double straight tooth inner mover
  • the tooth pole unit, six double straight tooth inner mover tooth pole units are arranged spirally in the axial direction, forming an integral double straight tooth inner mover tooth pole unit spiral arrangement mover 039, and the double straight tooth inner mover tooth pole unit spirally arranged
  • the sub-039 has a pitch of 660 mm and a length of 330 mm.
  • the outer casing of the four-toothed stator teeth is linearly arranged to form
  • Embodiment 10 is a four-toothed outer helically arranged stator yoke reluctance motor. As shown in Fig. 10, only the teeth of the mover and the stator are straight teeth, and the others are the same as those of Fig. 8.
  • FIG. 11 is an eight-spiral inner stator pole linear alignment motor 111, and an eight-spiral inner stator pole core 2111 is provided with a tooth pole coil 2112 to form an eight-helical stator tooth member 2119, six eight-helical stators.
  • the tooth pole members 2119 are linearly arranged in the axial direction to form an eight inner spiral stator tooth pole linearly arranged stator 211, which is provided with a spiral mover tooth pole 311, and the spiral outer mover tooth strip 13111 is fixed by a cylindrical bracket 3112 to form an integral body.
  • the eight-helix inner stator pole core 2111 has a pitch of 816 mm, a width of 30 mm, a toothed coil 2112 having a thickness of 2 mm, and a helical outer mover strip 1311 having a pitch of 816 mm and a length of 204 mm.
  • the angle between the center lines of the outer mover tooth unit is 15°.
  • the eight inner spiral stator teeth linearly arranged stators 211 are respectively referred to as B, C, D, E, F, G, H columns; the first layer A column stator tooth center line and the corresponding mover tooth unit center The angle of the line is ⁇ , ⁇ >0°, and the two helical stator teeth of 2111 ⁇ 1, 2111 ⁇ 2, 2111 ⁇ 3, and 2111B4, 2111B5, and 2111B6 generate a magnetic field, so that one tooth of the whole helical mover tooth 311 is stressed.
  • the integral helical mover tooth pole 31 1 is rotated in the direction of the counter-twisting direction, and the same force is generated in the same row C, D, E, F, G, and H, and the integral mover tooth pole 1038 is rotated in the direction of the reverse click.
  • 2111A1, 2111B4 do not generate magnetic field
  • 2111A2, 2111A3 2111B5, 2111B6 four spiral stator teeth generate magnetic field, when the whole helical mover tooth 311 turns over the interval, there are six spiral stator teeth to generate magnetic field.
  • the first layer A column stator tooth center line coincides with the corresponding mover tooth unit center line
  • the second layer A column stator tooth center line and the corresponding mover tooth unit center line angle is 15°
  • the angle between the center line of the stator teeth of the three-layer A column and the center line of the corresponding mover tooth unit is 30°
  • the angle between the center line of the stator teeth of the fourth layer A and the center line of the corresponding mover tooth unit is 45°.
  • the fourth layer A column is the equilibrium position, and the fourth layer B column stator tooth center line coincides with the corresponding mover tooth unit center line, and the fifth layer B column stator tooth center line and the corresponding mover tooth unit center
  • the angle of the line is 15°
  • the angle between the center line of the stator teeth of the sixth layer B and the center line of the corresponding mover tooth unit is 30°
  • the angle of the line is 45°
  • the first layer B is in the equilibrium position.
  • the fourth layer of column A is out of equilibrium, and the first layer of column B is out of equilibrium.
  • the fourth layer of column A and the first layer of column B can be magnetically generated in the equilibrium position, that is, there are six layers that can be arranged and combined to generate magnetic force.
  • the upper and lower teeth of the same layer point to opposite polarities of the axial end.
  • the magnetic lines are divided according to the principle of minimum magnetic reluctance, when the other two opposite teeth are not islands.
  • Magnetic enthalpy After the magnetic flux passes through the air gap and enters the upper mover tooth pole, both sides of the axial direction pass through the magnetic guide bracket and enter the lower mover tooth pole through the air gap between the lower mover tooth pole and the certain sub-tooth pole to enter the lower stator tooth pole.
  • the iron core produces torque.
  • the magnetic directions of the adjacent two stator teeth are opposite, such that the magnetic lines of force pass from the stator teeth through the air gap into the corresponding mover tooth unit, and then enter the adjacent motion along the axis direction. After the sub-tooth unit enters the adjacent stator teeth through the air gap, the magnetic field lines are reached to form a closed loop of the stator teeth.
  • Embodiment 12 The stator of Embodiment 12 is an inner octapole stator which is not easily formed into a ring-shaped ferroniobium, and is preferably made of solid ferroniobium, which is the same as that of Embodiment 11.
  • Embodiment 13 The stator of Embodiment 13 is an inner octapole stator which is not easily formed into a ring-shaped ferroniobium, and is preferably made into a solid ferroniobium, which is the same as that of Embodiment 14.
  • FIG. 12 is an eight-spiral inner stator toothed helical arrangement motor 114, and an eight-helical stator toothed core 2 141 is provided with a toothed pole coil 2142 to form an eight-helical stator toothed member, and six eight-helical stator teeth.
  • the pole members are spirally arranged in the direction of the rotating shaft to form an eight-in-one helical stator-teeth spiral-arranged stator 214, the outer casing of which is provided with a linear mover toothed pole 314, and the spiral outer mover toothed strip II3141 is fixed by the bracket V3142.
  • the eight inner spiral stator tooth spiral array stators 214 are respectively referred to as B, C, D, E, F, G, H columns; the first layer A column stator tooth center line and the corresponding mover tooth unit center
  • the angle of the line is ⁇ , ⁇ >0°
  • the two helical stator teeth of 2141A1, 2141A2, 2141A3, and 2141B4, 2141B5, and 2141B6 generate a magnetic field, so that one tooth of the integral linear mover tooth 314 is forced.
  • the integral linear mover tooth 314 rotates in the direction of the reverse pin, and the same force is generated in the C, D, E, F, G, and H columns, and the integral linear mover tooth 314 is rotated in the reverse pin direction.
  • 2141A1, 2141B4 do not generate magnetic field
  • 2141A2, 2141A3 and 2141B5 four spiral stator teeth generate magnetic field, when the whole linear mover tooth 314 turns over the interval, there are six spiral stator teeth to generate magnetic field.
  • the first layer A column stator tooth center line coincides with the corresponding mover tooth unit center line
  • the second layer A column stator tooth center line and the corresponding mover tooth unit center line angle are 15°
  • the angle between the center line of the stator teeth of the three-layer A column and the center line of the corresponding mover tooth unit is 30°
  • the angle between the center line of the stator teeth of the fourth layer A and the center line of the corresponding mover tooth unit is 45°.
  • the four-layer A column is the equilibrium position, and the fourth layer B column stator tooth center line coincides with the corresponding mover tooth unit center line, and the fifth layer B column stator tooth center line and corresponding movement
  • the center line angle of the sub-tooth pole unit is 15°, and the angle between the center line of the stator teeth of the sixth layer B and the center line of the corresponding mover tooth unit is 30°, and the center line of the stator teeth of the first layer B column and the corresponding movement
  • the center line of the sub-tooth unit is 45°, and the first layer B is in the equilibrium position.
  • the second and third layers of column A need to generate magnetic force separately or together, and the fifth and sixth layers of column B are alone or Co-generating magnetic force, the fourth layer of column A is out of equilibrium position, and the first layer of column B is out of equilibrium position.
  • the fourth layer of column A and the first layer of column B can be magnetically generated at the equilibrium position, that is, There are 6 layers that can be arranged and combined to generate magnetic force. There are a variety of control methods. After 15° rotation, repeat this cycle.
  • the upper and lower teeth of the same layer point to the opposite polarity of the axial end.
  • the magnetic lines are divided according to the principle of minimum magnetic reluctance, when the other two opposite teeth are not islands.
  • Magnetic ⁇ the magnetic flux of the stator tooth pole enters the upper mover tooth pole through the air gap, and then enters the lower mover tooth pole through the magnetic guide bracket V on both sides in the axial direction, and passes through the lower mover tooth pole and the certain sub-tooth pole The inter-air gap enters the lower stator pole core to generate torque.
  • the magnetic directions of the adjacent two stator teeth are opposite, such that the magnetic lines of force pass from the stator teeth through the air gap into the corresponding mover tooth unit, and then enter the adjacent motion along the axis direction. After the sub-tooth unit enters the adjacent stator teeth through the air gap, the magnetic field lines are reached to form a closed loop of the stator teeth.
  • FIG. 13 is an inner eight-spiral ring stator pole linear arrangement motor 115.
  • the stator is eight spur tooth stator cores 12151 uniformly arranged along the circumference, and is connected by a solid yoke 2153, a straight tooth stator.
  • the tooth core 12 151 is provided with a toothed pole coil 2152, and constitutes an inner eight-spiral ring stator toothed member 2159.
  • the member is linearly arranged along the direction of the rotating shaft to form an inner eight-spiral ring stator tooth linearly arranged stator 215, and the outer casing is provided with an outer spiral.
  • the subtooth pole 315 and the straight toothed pole strip 3151 are fixed by the bracket VI3152 to constitute the outer helical mover tooth pole 315.
  • the inner eight-spiral ring stator tooth linear alignment stator 215 is respectively called B, C, D, E, F, G, H columns; the first layer A column stator tooth center line and the corresponding mover tooth unit The angle of the center line is ⁇ , ⁇ >0°.
  • the six spiral stator teeth of 2151A1, 2151A2, 2151A3 and 2151B4, 2151B5 and 2151B6 generate a magnetic field, so that one tooth of the whole outer helical mover tooth 315 is stressed.
  • 2151A1, 2151B4 do not generate magnetic field
  • 2151A2, 2151A3 and 2151B5 four spiral stator teeth generate magnetic field, when the whole outer helical mover tooth 315 turns over the interval, there are six spiral stator teeth generating magnetic field.
  • the first layer A column stator tooth center line coincides with the corresponding mover tooth unit center line
  • the second layer A column stator tooth center line and the corresponding mover tooth unit center line angle is 15°
  • the angle between the center line of the stator teeth of the three-layer A column and the center line of the corresponding mover tooth unit is 30°
  • the angle between the center line of the stator teeth of the fourth layer A and the center line of the corresponding mover tooth unit is 45°.
  • the fourth layer A column is the equilibrium position, and the fourth layer B column stator tooth center line coincides with the corresponding mover tooth unit center line, and the fifth layer B column stator tooth center line and the corresponding mover tooth unit center
  • the angle of the line is 15°
  • the angle between the center line of the stator teeth of the sixth layer B and the center line of the corresponding mover tooth unit is 30°
  • the angle of the line is 45°
  • the first layer B is in the equilibrium position.
  • the fourth layer of column A is out of equilibrium, and the first layer of column B is out of equilibrium.
  • the fourth layer of column A and the first layer of column B can be magnetically generated in the equilibrium position, that is, there are six layers that can be arranged and combined to generate magnetic force.
  • the upper and lower teeth of the same layer point to opposite polarities of the axial end.
  • the magnetic lines are divided according to the principle of minimum magnetic reluctance, when the other two opposite teeth are not islands.
  • Magnetic ⁇ the magnetic flux of the stator tooth pole enters the upper mover tooth pole through the air gap, and then enters the lower mover tooth pole through the magnetic guide bracket VI through the magnetic guide bracket VI, and passes through the lower mover tooth pole and the certain sub-tooth pole.
  • the inter-air gap enters the lower stator pole core to generate torque.
  • the stator of the embodiment 16 is an inner octapole stator which is not easily formed into a ring-shaped ferroniobium, and is preferably made of solid ferroniobium, which is the same as that of the embodiment 17.
  • FIG. 14 is an eight-spiral inner stator toothed helical arrangement motor 117, and an eight-helical stator toothed core 2 171 is provided with a toothed pole coil 2172 to form an eight-helical stator toothed member, and six eight-helical stator teeth.
  • the pole members are spirally arranged in the direction of the rotating shaft to form an eight-in-one helical stator-teeth helically arranged stator 217, which is provided with a linear mover toothed pole 317, and the straight-toothed outer mover-toothed pole strip 3171 is fixed by the bracket DG172.
  • the eight-helical stator pole core 2171 has a pitch of 816 mm, a width of 30 mm, a toothed coil 2172 having a thickness of 2 mm, and a straight-tooth outer mover pole strip 3171 having a length of 204 mm.
  • the eight inner spiral stator tooth spiral array stators 217 are respectively referred to as B, C, D, E, F, G, H columns; the first layer A column stator tooth center line and the corresponding mover tooth unit center The angle of the line is ⁇ , ⁇ >0°.
  • the six helical stator teeth of 2171A1, 2171A2, 2171A3 and 2171B4, 2171B5, and 2171B6 generate a magnetic field, so that one tooth of the integral linear mover tooth 317 is forced.
  • the integral linear mover toothed pole 317 rotates in the direction of the counter-twisting needle, and the same force is generated in the same row of C, D, E, F, G, and H, and the whole linear mover toothed pole 317 is rotated in the direction of the reverse twisting needle.
  • 2171A1, 2171B4 do not generate magnetic field
  • 2171A2, 2171A3 and 2171B5 four spiral stator teeth generate magnetic field, when the whole linear mover tooth 317 turns over the interval, there are six spiral stator teeth to generate magnetic field.
  • the first layer A column stator tooth center line coincides with the corresponding mover tooth unit center line
  • the second layer A column stator tooth center line and the corresponding mover tooth unit center line angle is 15°
  • the angle between the center line of the stator teeth of the three-layer A column and the center line of the corresponding mover tooth unit is 30°
  • the angle between the center line of the stator teeth of the fourth layer A and the center line of the corresponding mover tooth unit is 45°.
  • the fourth layer A column is the equilibrium position, and the fourth layer B column stator tooth center line coincides with the corresponding mover tooth unit center line, and the fifth layer B column stator tooth center line and the corresponding mover tooth unit center
  • the angle of the line is 15°
  • the angle between the center line of the stator teeth of the sixth layer B and the center line of the corresponding mover tooth unit is 30°
  • the angle of the line is 45°
  • the first layer B is in the equilibrium position.
  • the fourth layer of column A is out of equilibrium position, and the first layer of column B is out of equilibrium position. After turning, it can be A column equilibrium position so that the fourth layer, B
  • the first layer of the magnetic field generates magnetic force, that is, there are 6 layers that can be arranged and combined to generate magnetic force. There are various control modes, and after 15° rotation, the cycle is repeated.
  • the upper and lower teeth of the same layer point to opposite polarities of the axial end.
  • the magnetic lines are divided according to the principle of minimum magnetic reluctance, when the other two opposite teeth are not islands.
  • Magnetic ⁇ the magnetic field lines of the stator teeth pass through the air gap into the upper mover teeth, and then pass through the magnetic support IX to enter the lower mover teeth through the lower mover teeth and the certain sub-tooth The inter-air gap enters the lower stator pole core to generate torque.
  • the magnetic directions of the adjacent two stator teeth are opposite, so that the magnetic lines of force pass from the stator teeth through the air gap into the corresponding mover tooth unit, and then enter the adjacent motion along the axis direction. After the sub-tooth unit enters the adjacent stator teeth through the air gap, the magnetic field lines are reached to form a closed loop of the stator teeth.
  • FIG. 15 is an eight-spiral outer stator tooth pole linear arrangement motor 118.
  • the stator is eight spiral stator tooth cores 1112181 uniformly arranged along the circumference, and is connected by a ring yoke VIII2183, a spiral stator tooth pole.
  • the core III2181 is provided with a toothed pole coil 2182, which constitutes a stator toothed member 2189, and the six members are linearly arranged in the axial direction to form a spiral outer stator tooth pole linearly arranged stator 218, which is provided with a mover tooth pole 111318, a mover tooth
  • the pole III318 is a spiral arrangement of the cross four-helical tooth unit 3181 to form an integral quadrupole mover.
  • the spiral outer stator teeth linearly arranged stators 218 are respectively referred to as B, C, D, E, F, G, H columns; the first layer A column stator tooth center line and the corresponding mover tooth unit center line The angle is ⁇ , ⁇ >0°.
  • the magnetic poles of the six spiral stator teeth of 2 181A1, 2181A2, 2181A3 and 2181B4, 2181B5 and 2181B6 generate a magnetic force, which causes one tooth of the whole mover tooth III318 to be forced, which drives the whole
  • the mover toothed pole III318 rotates in the direction of the counter-twisting needle, and the same force is generated in the same row of C, D, E, F, G, and H, and the whole mover toothed pole III318 is rotated in the direction of the reverse twisting needle.
  • 2181A1, 2181B4 do not generate magnetic field
  • 2181A2, 2181A3 and 2181B5 four spiral stator teeth generate magnetic field, when the whole mover tooth pole III318 turns over the interval, there are six spiral stator teeth to generate magnetic field.
  • the first layer A column stator tooth center line coincides with the corresponding mover tooth unit center line
  • the second layer A column stator tooth center line and the corresponding mover tooth unit center line angle are 15°
  • the angle between the center line of the stator teeth of the three-layer A column and the center line of the corresponding mover tooth unit is 30°
  • the angle between the center line of the stator teeth of the fourth layer A and the center line of the corresponding mover tooth unit is 45°.
  • the fourth layer A column is the equilibrium position, and the fourth layer B column stator tooth center line coincides with the corresponding mover tooth unit center line, and the fifth layer B column stator tooth center line and the corresponding mover tooth unit center
  • the angle of the line is 15°
  • the angle between the center line of the stator teeth of the sixth layer B and the center line of the corresponding mover tooth unit is 30°
  • the angle of the line is 45°
  • the first layer B is in the equilibrium position.
  • the fourth layer of column A is out of equilibrium position, and the first layer of column B is out of equilibrium position. After turning, it can be A column equilibrium position so that the fourth layer, B the column through the first magnetic layer generates a magnetic force, that is, there are 6 possible permutations generated magnetic layer, there are a variety of control, after rotation of 15 °, this cycle is repeated.
  • the upper and lower teeth of the same layer point to opposite polarities of the axial end.
  • the magnetic lines are divided according to the principle of minimum magnetic reluctance, when the other two opposite teeth are not islands.
  • Magnetic ⁇ the magnetic flux of the stator tooth passes through the air gap into the upper mover tooth and then passes through the mover in the radial direction into the lower mover tooth, passing through the gas between the lower mover tooth and the certain sub tooth The gap enters the lower stator pole core to generate torque.
  • FIG. 16 is an eight-spiral outer stator tooth pole linear arrangement motor 119.
  • the stator is eight spiral stator tooth cores IV2191 uniformly arranged along the circumference, and is connected by a ring yoke K2193, a spiral stator tooth pole.
  • the iron core I V2191 is provided with a toothed pole coil 2192, and constitutes a stator toothed member 2199.
  • the six members are linearly arranged in the axial direction to form a spiral outer stator tooth pole linearly arranged stator 219, and the movable tooth tooth pole IV319 is placed therein.
  • the tooth pole I V319 is a helical toothed pole unit 3191 spirally arranged to constitute an integral four-turning mover, and the helical toothed pole unit 3191 is composed of The ring-shaped mover yoke iron 3192 is connected.
  • the spiral outer stator tooth pole linear array stator 219 is respectively called B, C, D, E, F, G, H columns; the first layer A column stator tooth center line and the corresponding mover tooth unit center line
  • the angle is ⁇ , ⁇ >0°.
  • the magnetic poles of the six spiral stator teeth of 2 191A1, 2191A2, 2191A3 and 2191B4, 2191B5 and 2191B6 generate a magnetic force, so that one tooth of the whole mover tooth tip IV319 is forced to drive the whole
  • the mover tooth tip IV319 rotates in the direction of the counter-twisting needle, and the same force is generated in the C, D, E, F, G, and H columns, and the whole mover tooth tip IV319 is rotated in the direction of the counter-twisting needle.
  • 2191A1, 2191B4 do not generate magnetic field
  • 2191A2, 2191A3 and 2191B5 four spiral stator teeth generate magnetic field, when the whole mover tooth IV319 turns over the interval, there are six spiral stator teeth to generate magnetic field.
  • the first layer A column stator tooth center line coincides with the corresponding mover tooth unit center line
  • the second layer A column stator tooth center line and the corresponding mover tooth unit center line angle is 15°
  • the angle between the center line of the stator teeth of the three-layer A column and the center line of the corresponding mover tooth unit is 30°
  • the angle between the center line of the stator teeth of the fourth layer A and the center line of the corresponding mover tooth unit is 45°.
  • the fourth layer A column is the equilibrium position, and the fourth layer B column stator tooth center line coincides with the corresponding mover tooth unit center line, and the fifth layer B column stator tooth center line and the corresponding mover tooth unit center
  • the angle of the line is 15°
  • the angle between the center line of the stator teeth of the sixth layer B and the center line of the corresponding mover tooth unit is 30°
  • the angle of the line is 45°
  • the first layer B is in the equilibrium position.
  • the fourth layer of column A is out of equilibrium, and the first layer of column B is out of equilibrium.
  • the fourth layer of column A and the first layer of column B can be magnetically generated in the equilibrium position, that is, there are six layers that can be arranged and combined to generate magnetic force.
  • the upper and lower teeth of the same layer point to opposite polarities of the axial end, and when the other two opposite teeth conduct magnetic yoke, the magnetic force
  • the line is divided according to the principle of minimum reluctance.
  • the magnetic lines of the stator teeth pass through the air gap and enter the upper mover teeth.
  • the sub-clad iron enters the lower mover tooth pole and passes through the air gap between the lower mover tooth pole and the certain sub-tooth pole to enter the lower stator tooth core to generate torque
  • FIG. 17 is an eight-tooth outer stator tooth pole linear arrangement motor 120.
  • the stator is eight spur tooth stator cores 1112201 uniformly arranged along the circumference, and is connected by an annular yoke X2203, a straight tooth.
  • the stator pole core II 12201 is provided with a toothed pole coil 2202, which constitutes a stator toothed member 2209, and the six members are linearly arranged in the axial direction to form a spiral outer stator tooth pole linearly arranged stator 220, and the movable tooth pole V320 is disposed therein.
  • the mover tooth pole V320 is a spiral arrangement of the straight toothed tooth unit 3201 to form an integral four-turn mover, and the straight toothed tooth unit 3201 is connected by the ring mover yoke 13202.
  • the spiral outer stator tooth pole linear array stator 220 is respectively referred to as B, C, D, E, F, G, H columns; the first layer A column stator tooth center line and the corresponding mover tooth unit center line
  • the angle is ⁇ , ⁇ >0°.
  • the two spiral stator teeth of 2 201A1, 2201A2, 2201A3 and 2201B4, 2201B5 and 2201B6 generate a magnetic field, so that one tooth of the whole mover tooth V320 is subjected to force, which drives the whole
  • the mover tooth pole V320 rotates in the direction of the counter-twisting direction, and the same force is generated in the C, D, E, F, G, and H columns, and the integral mover tooth pole V320 is rotated in the direction of the reverse twist pin.
  • 2201A1, 2201B4 do not generate magnetic field
  • 2201A2, 2201 3 and 220185 2201B6 four spiral stator teeth generate magnetic field, when the whole mover tooth V320 turns over the interval, there are six spiral stator teeth to generate magnetic field.
  • the first layer A column stator tooth center line coincides with the corresponding mover tooth unit center line
  • the second layer A column stator tooth center line and the corresponding mover tooth unit center line angle is 15°
  • the angle between the center line of the stator teeth of the three-layer A column and the center line of the corresponding mover tooth unit is 30°
  • the angle between the center line of the stator teeth of the fourth layer A and the center line of the corresponding mover tooth unit is 45°.
  • the four-layer A column is the equilibrium position, and the fourth layer B column stator tooth center line coincides with the corresponding mover tooth unit center line, and the fifth layer B column stator tooth center line and corresponding movement
  • the center line angle of the sub-tooth pole unit is 15°, and the angle between the center line of the stator teeth of the sixth layer B and the center line of the corresponding mover tooth unit is 30°, and the center line of the stator teeth of the first layer B column and the corresponding movement
  • the center line of the sub-tooth unit is 45°, and the first layer B is in the equilibrium position.
  • the second and third layers of column A need to generate magnetic force separately or together, and the fifth and sixth layers of column B are alone or Co-generating magnetic force, the fourth layer of column A is out of equilibrium position, and the first layer of column B is out of equilibrium position.
  • the fourth layer of column A and the first layer of column B can be magnetically generated at the equilibrium position, that is, There are 6 layers that can be arranged and combined to generate magnetic force. There are a variety of control methods. After 15° rotation, repeat this cycle.
  • the upper and lower teeth of the same layer point to opposite polarities of the axial end.
  • the magnetic lines are divided according to the principle of minimum magnetic reluctance, when the other two opposite teeth are not islands.
  • Magnetic ⁇ the magnetic flux of the stator tooth pole passes through the air gap into the upper mover tooth pole, and then passes through the ring-shaped mover ⁇ I into the lower mover tooth through the lower mover tooth pole and the stator The air gap between the tooth poles enters the lower stator tooth core to generate torque
  • the magnetic directions of the adjacent two stator teeth are opposite, so that the magnetic lines of force pass from the stator teeth through the air gap into the corresponding mover tooth unit, and then enter the adjacent motion along the axis direction. After the sub-tooth unit enters the adjacent stator teeth through the air gap, the magnetic field lines are reached to form a closed loop of the stator teeth.
  • FIG. 18 is an eight-tooth outer stator tooth pole linear arrangement motor 121.
  • the stator is an eight straight-tooth stator pole core IV2211 uniformly arranged along the circumference, and is connected by an annular yoke XI2213, a straight tooth.
  • the stator pole core I V2211 is provided with a toothed pole coil 2212, which constitutes a stator toothed member 2219.
  • Six of the members are linearly arranged in the axial direction to form a spiral outer stator tooth pole linearly arranged stator 221, and a movable tooth pole VI321 is disposed therein.
  • the mover tooth pole V 1321 is a spiral straight toothed tooth unit 3211 arranged in a spiral to form an integral four-turn mover.
  • the spiral outer stator teeth linearly arranged stators 221 are respectively referred to as B, C, D, E, F, G, H columns; the first layer A column stator tooth center line and the corresponding mover tooth unit center line
  • the angle is ⁇ , ⁇ >0°, and then the two helical stator teeth of 2 211A1, 2211A2, 2211A3 and 2211 ⁇ 4, 2211 ⁇ 5, 2211B6 generate a magnetic field, so that one tooth of the whole mover tooth pole VI321 is forced to drive the whole
  • 2211A1, 2211B4 do not generate magnetic field
  • 2211A2, 2211A3 2211B5, 2211B6 four spiral stator teeth generate magnetic field, when the whole mover tooth VI321 turns over the interval, there are six spiral stator teeth to generate magnetic field.
  • the first layer A column stator tooth center line coincides with the corresponding mover tooth unit center line
  • the second layer A column stator tooth center line and the corresponding mover tooth unit center line angle are 15°
  • the angle between the center line of the stator teeth of the three-layer A column and the center line of the corresponding mover tooth unit is 30°
  • the angle between the center line of the stator teeth of the fourth layer A and the center line of the corresponding mover tooth unit is 45°.
  • the fourth layer A column is the equilibrium position, and the fourth layer B column stator tooth center line coincides with the corresponding mover tooth unit center line, and the fifth layer B column stator tooth center line and the corresponding mover tooth unit center
  • the angle of the line is 15°
  • the angle between the center line of the stator teeth of the sixth layer B and the center line of the corresponding mover tooth unit is 30°
  • the angle of the line is 45°
  • the first layer B is in the equilibrium position.
  • the fourth layer of column A is out of equilibrium, and the first layer of column B is out of equilibrium.
  • the fourth layer of column A and the first layer of column B can be magnetically generated in the equilibrium position, that is, there are six layers that can be arranged and combined to generate magnetic force.
  • the upper and lower teeth of the same layer point to opposite polarities of the axial end.
  • the magnetic lines are divided according to the principle of minimum magnetic reluctance, when the other two opposite teeth are not islands.
  • Magnetic ⁇ the magnetic flux of the stator tooth passes through the air gap into the upper mover tooth and then passes through the mover in the radial direction into the lower mover tooth, passing through the gas between the lower mover tooth and the certain sub tooth The gap enters the lower stator pole core to generate torque.
  • FIG. 19 is an eight-toothed outer stator-teeth helically arranged motor 122.
  • the stator is an eight-toothed stator-teeth core V2221 uniformly disposed along the circumference, and is connected by an annular yoke iron 2223, a straight tooth.
  • the stator pole core V2221 is provided with a tooth pole coil 2222 to form a stator toothed member 2229, and the six members are spirally arranged to form a spiral outer stator tooth pole spiral array stator 222, which is provided with a mover tooth pole VH322 and a mover tooth pole.
  • the VH322 is a linear arrangement of the straight toothed pole units 3221 to form an integral four linear mover, and the straight toothed toothed pole units 3221 are connected by a ring-shaped mover yoke iron 3222.
  • the spiral outer stator tooth spiral arrangement stator 222 is respectively called B, C, D, E, F, G, H columns; the first layer A column stator tooth center line and the corresponding mover tooth unit center line
  • the angle is ⁇ , ⁇ >0°.
  • the magnetic poles of the six spiral stator teeth of 2 221A1, 2221A2, 2221A3 and 2221B4, 2221B5 and 2221B6 generate a magnetic force, which causes one tooth of the whole mover tooth pole VH322 to be forced to drive the whole.
  • the mover tooth pole VH322 rotates in the direction of the counter-twisting direction, and the same force is generated in the C, D, E, F, G, and H columns, and the whole mover tooth pole VH322 is rotated in the direction of the counter-twisting needle.
  • 2221A1, 2221B4 do not generate magnetic field
  • 2221A2, 2221A3 2221B5, 2221B6 four spiral stator teeth generate magnetic field, when the whole mover tooth VH322 turns over the interval, there are six spiral stator teeth to generate magnetic field.
  • the first layer A column stator tooth center line coincides with the corresponding mover tooth unit center line
  • the second layer A column stator tooth center line and the corresponding mover tooth unit center line angle are 15°
  • the angle between the center line of the stator teeth of the three-layer A column and the center line of the corresponding mover tooth unit is 30°
  • the angle between the center line of the stator teeth of the fourth layer A and the center line of the corresponding mover tooth unit is 45°.
  • the fourth layer A column is the equilibrium position, and the fourth layer B column stator tooth center line coincides with the corresponding mover tooth unit center line, and the fifth layer B column stator tooth center line and the corresponding mover tooth unit center
  • the angle of the line is 15°
  • the angle between the center line of the stator teeth of the sixth layer B and the center line of the corresponding mover tooth unit is 30°
  • the angle of the line is 45°
  • the first layer B is in the equilibrium position.
  • the fourth layer of column A is out of equilibrium position, and the first layer of column B is out of equilibrium position. After turning, it can be A column equilibrium position so that the fourth layer, B the column through the first magnetic layer generates a magnetic force, that is, there are 6 possible permutations generated magnetic layer, there are a variety of control This method is repeated after turning 15°.
  • the upper and lower teeth of the same layer point to opposite polarities of the axial end.
  • the magnetic lines are divided according to the principle of minimum magnetic reluctance, when the other two opposite teeth are not islands.
  • Magnetic ⁇ the magnetic flux of the stator teeth passes through the air gap and enters the upper mover tooth. Both sides of the stator move along the axial direction through the ring-shaped mover ⁇ iron II into the lower mover tooth through the lower mover tooth and the stator The air gap between the tooth poles enters the lower stator tooth core to generate torque
  • the magnetic directions of the adjacent two stator teeth are opposite, such that the magnetic lines of force pass from the stator teeth through the air gap into the corresponding mover tooth unit, and then enter the adjacent motion along the axis direction. After the sub-tooth unit enters the adjacent stator teeth through the air gap, the magnetic field lines are reached to form a closed loop of the stator teeth.
  • FIG. 20 is an eight-spiral outer stator tooth pole linear arrangement motor 123.
  • the stator is eight straight-tooth stator pole cores VI2231 uniformly arranged along the circumference, and is connected by an annular yoke 12233, a straight-tooth stator.
  • the tooth core core VI 2231 is provided with a toothed pole coil 2232, which constitutes a stator toothed member 2239, and six of the members are spirally arranged to form a spiral outer stator toothed pole spiral array stator 223, which is provided with a mover tooth pole VIII323, a mover tooth
  • the pole VIII 323 is a straight straight toothed pole unit 3231 which is linearly arranged to constitute an integral four linear mover 323.
  • the spiral outer stator tooth spiral arrangement stator 223 is respectively called B, C, D, E, F, G, H columns; the first layer A column stator tooth center line and the corresponding mover tooth unit center line
  • the angle is ⁇ , ⁇ >0°, and then the two helical stator teeth of 2 231 ⁇ 1, 2231 ⁇ 2, 2231 ⁇ 3 and 223 4, 2231B5, 2231B6 generate a magnetic field, so that one tooth of the whole mover tooth VIII323 is stressed. , driving the integral mover tooth VIII323 to rotate in the direction of the reverse pin, and the same force is generated in the C, D, E, F, G, and H columns, and the integral mover tooth VIII 323 is rotated in the direction of the reverse pin.
  • 2231A1, 2231B4 do not generate magnetic field
  • 2231B6 four spiral stator teeth generate magnetic field, when the whole mover tooth VIII323 turns over the interval, there are six spiral stator teeth to generate magnetic field.
  • the first layer A column stator tooth center line coincides with the corresponding mover tooth unit center line
  • the second layer A column stator tooth center line and the corresponding mover tooth unit center line angle are 15°
  • the angle between the center line of the stator teeth of the three-layer A column and the center line of the corresponding mover tooth unit is 30°
  • the angle between the center line of the stator teeth of the fourth layer A and the center line of the corresponding mover tooth unit is 45°.
  • the fourth layer A column is the equilibrium position, and the fourth layer B column stator tooth center line coincides with the corresponding mover tooth unit center line, and the fifth layer B column stator tooth center line and the corresponding mover tooth unit center
  • the angle of the line is 15°
  • the angle between the center line of the stator teeth of the sixth layer B and the center line of the corresponding mover tooth unit is 30°
  • the angle of the line is 45°
  • the first layer B is in the equilibrium position.
  • the fourth layer of column A is out of equilibrium position, and the first layer of column B is out of equilibrium position. After turning, it can be A column equilibrium position so that the fourth layer, B the column through the first magnetic layer generates a magnetic force, that is, there are 6 possible permutations generated magnetic layer, there are a variety of control, after rotation of 15 °, this cycle is repeated.
  • the upper and lower teeth of the same layer point to opposite polarities of the axial end.
  • the magnetic lines are divided according to the principle of minimum magnetic reluctance, when the other two opposite teeth are not islands.
  • Magnetic ⁇ the magnetic flux of the stator tooth passes through the air gap into the upper mover tooth and then passes through the mover in the radial direction into the lower mover tooth, passing through the gas between the lower mover tooth and the certain sub tooth The gap enters the lower stator pole core to generate torque.
  • FIG. 21 is an eight-spiral outer stator toothed helical arrangement motor 124.
  • the stator is eight spiral stator tooth cores V2241 uniformly arranged along the circumference, and is connected by a ring yoke iron 2243, and a spiral stator tooth pole
  • the core V 2241 is provided with a toothed pole coil 2242, which constitutes a stator toothed member 2249.
  • the member is spirally arranged to form a spiral outer stator toothed spiral array stator 224, which is provided with a mover tooth pole 1X324, and a mover tooth pole DG24 is a spiral
  • the tooth pole unit 3241 is linearly arranged to form an integral four linear mover, and the spiral toothed pole unit 3241 is constituted by a ring-shaped mover yoke Shovel 3242 is connected.
  • the spiral outer stator tooth spiral arrangement stator 224 is respectively called B, C, D, E, F, G, H columns; the first layer A column stator tooth center line and the corresponding mover tooth unit center line
  • the angle is ⁇ , ⁇ >0°, and then the two helical stator teeth of 2 241A1, 2241A2, 2241A3 and 2241B4, 2241B5, 2241B6 generate a magnetic field, so that one tooth of the whole mover tooth DG24 is subjected to force, which drives the whole
  • the mover tooth DG24 rotates in the direction of the counter-twist, and the same force is generated in the C, D, E, F, G, and H columns, and the whole mover tooth DG24 is rotated in the direction of the reverse pin.
  • 2221A1, 2221B4 do not generate magnetic field
  • 2241A2, 2241A3 2241B5, 2241B6 four spiral stator teeth generate magnetic field, when the whole mover tooth DG24 turns over the interval, there are six spiral stator teeth to generate magnetic field.
  • the first layer A column stator tooth center line coincides with the corresponding mover tooth unit center line
  • the second layer A column stator tooth center line and the corresponding mover tooth unit center line angle is 15°
  • the angle between the center line of the stator teeth of the three-layer A column and the center line of the corresponding mover tooth unit is 30°
  • the angle between the center line of the stator teeth of the fourth layer A and the center line of the corresponding mover tooth unit is 45°.
  • the fourth layer A column is the equilibrium position, and the fourth layer B column stator tooth center line coincides with the corresponding mover tooth unit center line, and the fifth layer B column stator tooth center line and the corresponding mover tooth unit center
  • the angle of the line is 15°
  • the angle between the center line of the stator teeth of the sixth layer B and the center line of the corresponding mover tooth unit is 30°
  • the angle of the line is 45°
  • the first layer B is in the equilibrium position.
  • the fourth layer of column A is out of equilibrium, and the first layer of column B is out of equilibrium.
  • the fourth layer of column A and the first layer of column B can be magnetically generated in the equilibrium position, that is, there are six layers that can be arranged and combined to generate magnetic force.
  • the upper and lower teeth of the same layer point to opposite polarities of the axial end, and when the other two opposite teeth conduct magnetic yoke, the magnetic force
  • the line is divided according to the principle of minimum reluctance.
  • the magnetic lines of the stator teeth pass through the air gap and enter the upper mover teeth.
  • the sub-iron III enters the lower mover tooth to pass through the air gap between the lower mover tooth and the fixed sub-tooth to enter the lower stator tooth core to generate torque.
  • the magnetic directions of the adjacent two stator teeth are opposite, so that the magnetic lines of force pass from the stator teeth through the air gap into the corresponding mover tooth unit, and then enter the adjacent motion along the axis direction. After the sub-tooth unit enters the adjacent stator teeth through the air gap, the magnetic field lines are reached to form a closed loop of the stator teeth.
  • FIG. 22 is an eight-spiral outer stator tooth pole linear alignment motor 125.
  • the stator is eight spiral stator tooth cores VI2251 uniformly arranged along the circumference, and is connected by a ring yoke iron 2253, a spiral stator tooth pole.
  • the iron core VI2251 is provided with a toothed pole coil 2252, which constitutes a stator toothed member 2259, and six of the members are spirally arranged to form a spiral outer stator toothed spiral array stator 225, which is provided with a mover tooth pole X325 and a mover tooth pole X325.
  • the cross spiral tooth unit 3251 is linearly arranged to constitute an integral four linear mover.
  • the spiral outer stator tooth spiral array stator 225 is respectively referred to as B, C, D, E, F, G, H columns; the first layer A column stator tooth center line and the corresponding mover tooth unit center line
  • the angle is ⁇ , ⁇ >0°, and then the two helical stator teeth of 2 251 ⁇ 1, 2251 ⁇ 2, 2251 ⁇ 3 and 225 4, 2251B5, 2251B6 generate a magnetic field, so that one tooth of the whole mover tooth ⁇ 325 is stressed.
  • the whole mover tooth ⁇ 325 is rotated in the direction of the reverse tweezer, and the same force is generated in the C, D, E, F, G, and H columns, and the whole mover tooth pole X325 is rotated in the direction of the reverse tweezer.
  • 2251A1, 2251B4 do not generate magnetic field
  • 2251B6 four spiral stator teeth generate magnetic field, when the whole mover tooth X325 turns over the interval, there are six spiral stator teeth to generate magnetic field.
  • the first layer A column stator tooth center line coincides with the corresponding mover tooth unit center line
  • the second layer A column stator tooth center line and the corresponding mover tooth unit center line angle are 15°
  • the angle between the center line of the stator teeth of the three-layer A column and the center line of the corresponding mover tooth unit is 30°
  • the angle between the center line of the stator teeth of the fourth layer A and the center line of the corresponding mover tooth unit is 45°.
  • the fourth layer A column is the equilibrium position
  • the fourth layer B column stator tooth center line coincides with the corresponding mover tooth unit center line
  • the fifth layer B column stator tooth center line and the corresponding mover tooth unit center The angle of the line is 15°
  • the sixth layer B column stator tooth center line and the corresponding mover tooth unit The angle of the center line is 30°
  • the angle between the center line of the stator teeth of the first layer B and the center line of the corresponding mover tooth unit is 45°
  • the first layer B is the equilibrium position.
  • the third layer generates magnetic force alone or together.
  • the fifth and sixth layers of column B generate magnetic force alone or together, so that the fourth layer of column A is out of equilibrium position, and the first layer of column B is out of equilibrium position.
  • the equilibrium position makes the fourth layer of column A and the first layer of column B magnetically generate magnetic force, that is, there are six layers that can be arranged and combined to generate magnetic force. There are various control modes, and after 15° rotation, the cycle is repeated.
  • the upper and lower teeth of the same layer point to opposite polarities of the axial end.
  • the magnetic lines are divided according to the principle of minimum magnetic reluctance, when the other two opposite teeth are not islands.
  • Magnetic ⁇ the magnetic flux of the stator tooth passes through the air gap into the upper mover tooth and then passes through the mover in the radial direction into the lower mover tooth, passing through the gas between the lower mover tooth and the certain sub tooth The gap enters the lower stator pole core to generate torque.
  • FIG. 23 is a sixteen-spiral outer stator-teeth helically arranged motor 126.
  • the stator is a 16-screw stator tooth core VH2261 uniformly disposed along the circumference, and is connected by a spiral yoke 2263, a spiral stator tooth
  • the iron core VH2261 is provided with a toothed pole coil 2262, and the spiral yoke iron 2263 between the tooth poles is sleeved with a yoke coil 2264 to constitute a stator toothed member, which constitutes a stator toothed member, and the member is spirally arranged to form a spiral outer stator toothed spiral array stator.
  • a mover toothed pole 326 is disposed therein, and the mover toothed pole 326 is a spiral arrangement of the straight toothed tooth unit 3261.
  • the spiral outer stator tooth pitch spiral array stators 226 are respectively referred to as B, C, D, E, F, G, H, I, J, K, L, M, N, 0, P columns;
  • the angle between the center line of the stator teeth of column A and the center line of the corresponding mover tooth unit is ⁇ , ⁇ >0.
  • 2251A1, 2251B4 do not generate magnetic field
  • 2251B6 four spiral stator teeth generate magnetic field, when the whole mover tooth XI326 turns over the interval, there are six spiral stator teeth to generate magnetic field.
  • the first layer A column stator tooth center line coincides with the corresponding mover tooth unit center line
  • the angle between the center line of the stator teeth of the three-layer A column and the center line of the corresponding mover tooth unit is 15°
  • the angle between the center line of the stator teeth of the fourth layer A and the center line of the corresponding mover tooth unit is 22.5°.
  • the fourth layer A column is the equilibrium position
  • the fourth layer B column stator tooth center line coincides with the corresponding mover tooth unit center line
  • the fifth layer B column stator tooth center line and the corresponding mover tooth unit center The angle of the line is 7.5
  • the angle between the center line of the stator teeth of the sixth layer B and the center line of the corresponding mover tooth unit is 15°
  • the center line of the stator teeth of the first layer B column and the center line of the corresponding mover tooth unit The angle is 22.5°
  • the first layer B is the equilibrium position.
  • the fifth and sixth layers of column B generate magnetic force alone or together, so that A The fourth layer of the column is out of equilibrium, and the first layer of column B is out of equilibrium.
  • the fourth layer of the A column and the first layer of the B column can be magnetically generated in the equilibrium position, that is, 6 layers can be arranged and combined to generate a magnetic force, and there are various control modes, after rotating 7.5°, Repeat this loop.
  • the upper and lower teeth of the same layer point to opposite polarities of the axial end.
  • the magnetic lines are divided according to the principle of minimum magnetic reluctance, when the other six opposite teeth are not islands.
  • Magnetic ⁇ the magnetic flux of the stator tooth passes through the air gap into the upper mover tooth, and then passes through the yoke into the lower mover tooth through the air gap between the lower mover tooth and the fixed sub-tooth to enter the lower stator tooth
  • the pole core produces torque.
  • Embodiment 27 As shown in FIG.
  • two spiral tooth cores 2291 are circumferentially disposed opposite to each other, and the yoke portions of the two spiral tooth cores 2291 are connected by a ring yoke IV2293, a spiral tooth core 2291 sets the toothed pole coil 2292, the yoke 2293 yoke coil 2294 between the helical toothed cores 2291, constitutes the schach array helical toothed stator member, and the schach array helical toothed stator members are spirally arranged along the axis of rotation to form a schach array.
  • the spiral toothed spiral arrangement stator 229 is provided with a reverse double helical tooth mover, and the schach array helical toothed spiral array stator 229 is provided with a reverse spiral motor, and the schach array helical tooth spiral arrangement has a pitch of 660 mm.
  • the length is 330mm
  • the pitch of the reverse double-helical tooth mover is 660mm
  • the length is 330mm, but the pitch direction is opposite.
  • the three-layer schach array helical toothed stator member can maintain continuous rotation every time it rotates 60°, six layers.
  • the power converter, the controller, the rotor position detector, and the like of the prior art reluctance motor speed control system can be applied to the present invention by adaptive modification.
  • a bidirectional twin-screw pump motor includes a first spiral strip-shaped mover-off reluctance motor, and the mover of the first spiral strip-shaped mover-off reluctance motor is used as the first active of the twin-screw pump
  • the screw, the annular stator side port portion of the motor and the first driving screw cooperate with the other screw, and the two constitute a two-way twin-screw pump motor, and the stator is filled with resin to form an inner surface of the ring.
  • the resin is not magnetically conductive and has no effect on the operation of the motor.
  • the purpose of adding the resin is to adapt the interior of the stator to the shape of the screw. As shown in Fig.
  • the two ends of the two-way twin-screw pump are provided with an end cover 1005.
  • the end cover 1005 is provided with a hole for matching with the first driving screw and the other screw, and the oil inlet is respectively provided on the two end covers 1005. Oil outlet.
  • the remaining structure of the two-way twin-screw pump motor is the same as that of the existing twin-screw pump.
  • An output shaft 1008 is worn on the mover of the motor.
  • the two-way means that the motor can be used as a motor and a pump.
  • the other screw is a second spiral strip-shaped mover-resistance reluctance motor as a second active screw, and the second spiral strip-shaped mover is connected to the corresponding side of the reluctance motor to make the first active
  • the screw is engaged with the second driving screw, that is, the spiral direction of the second driving screw is opposite to the spiral direction of the first driving screw.
  • the other screw is a driven screw.
  • the number of teeth of the spiral stripper reluctance motor is one of 1-8 teeth.
  • the ends of the two screws are provided with intermeshing synchronizing gears 1009.
  • twin-screw pump motor is used as a wheel-side motor of an electric vehicle, and the motors are connected by an oil circuit, so that the motors can mutually transfer energy through the two-way twin-screw pump.
  • Two-way twin-screw pump The output shaft of the motor is connected to the rotating shaft of the electric vehicle.
  • the two-way twin-screw pump motor is one of the front, rear or four-wheel drive of the electric vehicle.
  • the two-way twin-screw pump between the electric vehicle motors is connected in series through the oil passage to realize mutual energy transmission, and the series connection between the two-way twin-screw pumps is: the output end of the first motor passes through the oil passage and the lower The input ends of one motor are connected, and then connected in series.
  • the output end of the last motor is connected to the input end of the first motor through an oil circuit; the oil storage tank and the energy storage tank are connected to the oil circuit between the two motors, and the storage is performed.
  • the oil tank is provided with an oil inlet pipe 1000 and an oil discharge pipe 1001 connected to the oil passage.
  • the energy storage tank is provided with an energy storage pipe 1002 and an energy release pipe 1003 connected to the oil passage;
  • the oil supply pipe 1001 is disposed in front of the energy storage pipe 1002 at the interface of the oil pipe, and the energy release pipe 1003 is disposed in front of the oil inlet pipe 1000, and the oil inlet pipe 1000, the oil discharge pipe 1001, the energy storage pipe 1002, the energy release pipe 1003, and the oil connected to the branch oil passage.
  • a shut-off valve is provided on the road.
  • Figure 31 is a schematic diagram of the series connection between motors
  • Figure 3 2 is a schematic diagram of the oil circuit cycle of this type of connection.
  • the sputum can smash the release valve 1003 and the shut-off valve on the oil discharge pipe 1001, and the energy stored in the energy storage tank is released, and the motor is provided as a starting power for the motor. Reduce the power consumption of the motor. If the energy storage is exhausted, it will be driven by the motor, and the excess hydraulic oil in the oil passage will enter the oil storage tank; [0264] 2.
  • the two-way twin-screw pump has a faulty power failure, and the hydraulic oil circulating between the other motors drives the screw rotation of the motor to realize energy supply.
  • the front drive, the rear drive or the four drive includes each of the two-way twin-screw pump motors, the high-pressure oil concentrator, the accumulator and the oil storage tank, each of which is provided with a self-circulating oil passage 1010, the output of each motor Connected with the high-pressure oil concentrator through the energy storage tube 1002, the input end of each motor is connected to the high-pressure oil concentrator through the discharge tube 1003, and the output end of each motor is connected to the oil storage tank through the oil discharge pipe 1001, the input end of each motor
  • the oil inlet pipe 1000 is connected to the oil storage tank, and the high pressure oil concentrator is connected to the energy storage tank, and is disposed on the oil inlet pipe 1000, the oil discharge pipe 1001, the energy storage pipe 1002, the energy release pipe 1003, the self-circulating oil passage 1010 of each motor, and the high pressure oil collecting pipe.
  • a shut-off valve is provided.
  • Fig. 33 is a schematic view showing the connection mode between the motors
  • Fig. 34 is a schematic view
  • the high pressure oil concentrator is a cavity, all of the shut-off valves on the pipeline communicating with the high-pressure oil concentrator are smashed, and the hydraulic oil flowing into the high-pressure oil concentrator is collected in the high-pressure oil concentrator, and then by the high pressure The oil collector is split.
  • the two-way twin-screw pump is in normal working state, and each motor and each connected oil pipe are filled with oil.
  • shut-off valves on the self-circulating oil lines of the respective motors are smashed, and the remaining shut-off valves are closed, and the respective motors are normally operated through the respective circulation loops;
  • the valve is snoring, the high pressure oil concentrator is snoring with the shut-off valve on the oil line connected to the energy storage tank, and the other smashing valves on the connecting passage are closed; after that, the vehicle continues to walk under the action of inertia, so that the motor acts as The oil pump works, and the output high-pressure oil enters the energy storage tank through the high-pressure oil concentrator, and the missing oil in the oil pipe is replenished from the oil tank;
  • the energy storage tank is connected to the high pressure oil collector due to the large power required, and the high pressure oil collector is smashed with the shutoff valve on the discharge tube connected to each motor, each motor and the oil storage tank
  • the shut-off valve on the connected oil outlet pipe 1001 is smashed, the energy in the energy storage tank is released, the starting power is provided to the motor as a motor, and the power consumption of the motor is reduced. If the energy storage is exhausted, the motors are separately cycled. , excess hydraulic oil in the oil passage enters the storage tank; [0272] 2.
  • the two-way twin-screw pump has a faulty power failure, and the remaining motor is smashed with the shut-off valve on the energy storage tube 1002 connected to the high-pressure oil collector, and the inlet pipe 1000 connected to the oil storage tank is closed.
  • the valve is hiccuped, the high-pressure oil collector is smashed with the shut-off valve on the discharge tube 1003 connected to the faulty motor, and the oil discharge pipe 1001 of the faulty motor is connected to the oil storage tank, if the pressure in the high-pressure oil collector is lower than the faulty motor
  • the required pressure the high-pressure oil collector is connected to the energy storage tank, and the energy storage tank releases the pressure for energy replenishment. If the pressure in the high-pressure oil collector is higher than the pressure required by the faulty motor, the high-pressure oil collector and the storage The tank can be connected, and the energy storage tank can store energy.
  • the motor includes a motor housing 1004 that cooperates with the stator, and an end cover 1005 is disposed at both ends of the motor housing 1004.
  • the end cover 1005 is provided with a hole that cooperates with the output shaft 1008, and the end cover 1005 is further provided with a tubing.
  • Gears 1009 on the two screw shafts are disposed on the outer side of the end cap 1005, and a gearbox 1006 is sleeved on the outside of the gear 1 009.
  • a holder 1007 is provided on the motor housing 1004, and the holder 1007 is used to mount the stationary motor.
  • one side of the motor casing 1004 is provided with a stator, one spiral mover as a drive shaft, and the other spiral mover as a driven shaft.
  • a stator is uniformly disposed in the motor casing 1004, and both of the spiral movers are used as the drive shaft.
  • the stator has four teeth and the mover has four teeth.
  • a composite pump of a three-screw pump and a screw-gear reluctance motor comprising a three-screw pump, wherein at least one of the three screws of the three-screw pump is a spiral of a screw-on-pole reluctance motor
  • the stator 1099, the bush of the three-screw pump corresponding to the screw mover 1099, is a stator bushing 1098 composed of a stator of a screw-gear reluctance motor, and the screw mover 1099 and the stator bushing 1098 form a helical mover. Turn off the reluctance motor.
  • the stator bushing 1098 is filled with a resin, such as an epoxy resin, for the gap between the teeth of the stator of the screw-gear reluctance motor, and of course, other oil-resistant resin may be used to form the stator bushing, as shown in FIG. 42- 43 shows.
  • a resin such as an epoxy resin
  • a synchronizing gear 1097 is disposed between the three screws.
  • the outer surface of the screw is provided with a thin layer of rubber.
  • the three screws are double-threaded to four-threaded, 1095 double-headed threads are used as mover ⁇ , corresponding to four stators; three-threaded threads are used as mover ⁇ , and also correspond to four- or six-stator; The mover ⁇ , corresponding to eight stators.
  • the intermediate screw of the three screws is a screw mover, and the intermediate screw is an active screw.
  • Two of the three screws are spiral movers, and the two screws on both sides are active screws.
  • the three screws are all screw acts, and the three screws are all active screws.
  • An electric vehicle the composite pump of the three-screw pump and the screw-gear-peristor reluctance motor is used as a wheel-side motor of an electric vehicle, and the wheel-side motors are connected by an oil passage, so that the wheel-side motor Energy can be transferred to each other through the oil path.
  • the wheel motor is a front or rear drive of the electric vehicle, and the two wheel motors of the front or rear drive and the oil storage tank and the energy storage tank are connected by an oil passage; by the valve control, one wheel side is made After the motors are connected in parallel, they are placed between the oil storage tank and the energy storage tank, and the three are connected in series.
  • the brake ⁇ the high-pressure oil flowing out of the compound pump enters the energy storage tank. The missing hydraulic oil in the compound pump is provided by the oil storage tank.
  • the energy storage tank After starting or accelerating, if there is energy storage in the energy storage tank, the energy storage tank The hydraulic oil is released into the composite pump to provide energy, and the excess hydraulic oil enters the storage tank, so that the brakes store energy, start or accelerate the release of energy storage; 2 after the two wheel motors are connected in series, the two ends are respectively stored The energy tank and the oil storage tank are connected in series, so that the brakes can store energy, start or accelerate the ⁇ to release the energy storage; 3 two wheel motors are connected in series, that is, the two wheel motors are connected end to end.
  • the wheel motor is a wheel motor of a four-wheel drive electric vehicle, and the four wheel motors and the oil storage tank and the energy storage tank are connected by an oil passage, and the four wheel motors are connected in parallel by a valve control.
  • the cycle, with the oil storage tank and the energy storage tank is broken, as shown in Figure 35, the thick solid line in Figure 35-45 is the oil circuit through which the hydraulic oil flows, and the thin solid line is the oil circuit in which the hydraulic oil does not flow, box Indicates the wheel motor, the arrow is the flow direction of the hydraulic oil; 2 any three wheel motors are connected in parallel and then connected in series with another wheel motor to form a cycle, which is broken with the oil storage tank and the energy storage tank, as shown in Figure 36;
  • the four wheel motors constitute a bridge passage and constitute a cycle, which is broken with the oil storage tank and the energy storage tank.
  • the bridge passage means dividing the four wheel motors into two groups, and the adjacent two wheels
  • the side motors are a group, and the two wheel motors in each group of wheel motors are connected in parallel, and the two sets of wheel motors are connected in series, as shown in Figure 37; 4 four wheel motors are connected in series or any three wheel motors are connected in parallel. Then in series with another wheel motor or four wheel motors to form a bridge pass
  • the three are connected in series, so that the brakes can store energy, start or accelerate the release of energy storage, as shown in Figure 38-46
  • Figure 38 shows the brakes. ⁇
  • the high-pressure oil produced by the compound pump enters the energy storage tank for energy storage.
  • the actual hydraulic oil in the compound pump is replenished by the oil storage tank.
  • Figure 39 shows the release energy of the energy storage tank after starting or accelerating.
  • the excess hydraulic oil enters the storage tank.
  • the rectangular frame and the arrow are the wheel motors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Synchronous Machinery (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Rotary Pumps (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

一种开关磁阻电动机,包括定子齿极和动子齿极,动子齿极相对于定子齿极转动配合,定子齿极的数目是动子齿极数目的两倍,定子齿极沿转轴方向为层状固定连接,定子齿极厚度对应动子齿极的厚度范围称为动子齿极单元,定子齿极由定子齿极铁芯(0231)及其外部套设的定子齿极线圈(0232)构成,定子齿极铁芯与动子齿极形成气隙的端组为凹凸配合的圆弧面,定子齿极与动子齿极的配合关系为,无论动子齿极相对于定子齿极旋转到任何角度,至少一层定子齿极中心线与对应动子齿极中心线形成夹角α,0<α≤β,β为定子齿极铁芯或者动子齿极沿旋转轴方向的横截面的圆弧对应圆心的角度。

Description

幵关磁阻电动机及其应用
技术领域
[0001] 本发明属于电机领域, 具体就是一种新型结构的幵关磁阻电动机及其应用。
背景技术
[0002] 幵关磁阻电动机系统 (Switched Reluctance Drive: SRD) 是继变频调速系统、 无刷直流电动机调速系统之后发展起来的最新一代无级调速系统, 是集现代微 电子技术、 数字技术、 电力电子技术、 红外光电技术及现代电磁理论、 设计和 制作技术为一体的光、 机、 电一体化高新技术。
[0003] 幵关磁阻电动机调速系统主要由幵关磁阻电动机 (SRM) 、 功率变换器、 控制 器、 转子位置检测器四大部分组成。 控制器内包含控制电路与功率变换器, 而 转子位置检测器则安装在电机的一端。
[0004] 幵关磁阻电动机调速系统所用的幵关磁阻电动机 (SRM) 是 SRD中实现机电能 量转换的部件, 也是 SRD有别于其他电动机驱动系统的主要标志。 现有 SRM系 双凸极可变磁阻电动机, 其定、 转子的凸极均由普通硅钢片叠压而成。 转子既 无绕组也无永磁体, 定子极上绕有集中绕组, 径向相对的两个绕组联接起来, 称为"一相", SR电动机可以设计成多种不同相数结构, 且定、 转子的极数有多 种不同的搭配。 相数多、 步距角小, 有利于减少转矩脉动, 但结构复杂, 且主 幵关器件多, 成本高, 现今应用较多的是四相 (8/6) 结构和三相 (12/8) 结构
[0005] 幵关磁阻电动机传动系统综合了感应电动机传动系统和直流电动汽车电机传动 系统的优点, 是这些传动系统的有力竞争者, 其主要优点如下:
[0006] 1、 幵关磁阻电动机有较大的电动机利用系数, 可以是感应电动机利用系数的 1.
2〜1.4倍。 2、 电动机的结构简单, 转子上没有任何形式的绕组; 定子上只有简 单的集中绕组, 端部较短, 没有相间跨接线。 因此, 具有制造工序少、 成本低 、 工作可靠、 维修量小等特点。 3、 幵关磁阻电动机的转矩与电流极性无关, 只 需要单向的电流激励, 理想上公率变换电路中每相可以只用一个幵关元件, 且 与电动机绕组串联, 不会像 PWM逆变器电源那样, 存在两个幵关元件直通的危 险。 所以, 幵关磁阻电动机驱动系统 SED线路简单, 可靠性高, 成本低于 PWM 交流调速系统。 4、 幵关磁阻电动机转子的结构形式对转速限制小, 可制成高转 速电动机, 而且转子的转动惯量小, 在电流每次换相吋又可以随吋改变相匝转 矩的大小和方向, 因而系统有良好的动态响应。 5、 SRD系统可以通过对电流的 导通、 断幵和对幅值的控制, 得到满足不同负载要求的机械特性, 易于实现系 统的软启动和四象限运行等功能, 控制灵活。 又由于 SRD系统是自同步系统运行 , 不会像变频供电的感应电动机那样在低频吋出现不稳定和振荡问题。 6、 由于 SR幵关磁阻电动机采用了独特的结构和设计方法以及相应的控制技巧, 其单位 处理可以与感应电动机相媲美, 甚至还略占优势。 SRD系统的效率和功率密度在 宽广的速度和负载范围内都可以维持在教导水平。
[0007] 幵关磁阻电动机驱动系统的主要缺点是:
[0008] 1、 有转矩脉动。 从工作原理可知, S幵关磁阻电动机转子上产生的转矩是由一 些列脉冲转矩叠加而成的, 由于双凸极结构和磁路饱和非线性的影响, 合成转 矩不是一个恒定转矩, 而有一定的谐波分量, 这影响了 SR电动机低速运行性能 。 2、 SR电动机传动系统的噪声与震动比一般电动机大。
[0009] 上述缺点, 本质上是幵关磁阻电动机驱动系统即 SRD系统的幵关磁阻电动机 SR M的结构造成的, 要想减小转矩脉动及其引起的噪声与震动, 就要改变幵关磁阻 电动机 SRM的结构。
[0010] 三螺杆泵是依靠泵体与螺杆所形成, 当主动螺杆转动吋, 带动与其啮合的从动 螺杆一起转动, 吸入腔一端的螺杆啮合空间容积逐渐增大, 压力降低。
[0011] 三螺杆泵概念
[0012] 液体在压差作用下进入啮合空间容积。 当容积增至最大而形成一个密封腔吋, 液体就在一个个密封腔内连续地沿轴向移动, 直至排出腔一端。 这吋排出腔一 端的螺杆啮合空间容积逐渐缩小, 而将液体排出。 三螺杆泵的工作原理与齿轮 泵相似, 只是在结构上用螺杆取代了齿轮。 表为各种螺杆泵的特点和应用范围 。 三螺杆泵的流量和压力脉冲很小, 噪声和振动小, 有自吸能力, 但螺杆加工 较困难。 泵有单吸式和双吸式两种结构,但单螺杆泵仅有单吸式。 三螺杆泵必须 配带安全阀 (单螺杆泵不必配带) , 以防止由于某种原因如排出管堵塞使泵的出 口压力超过容许值而损坏泵或原动机。
[0013] 三螺杆泵结构
[0014] 三螺杆泵是利用螺杆的回转来吸排液体的。 中间螺杆为主动螺杆, 由原动机带 动回转, 两边的螺杆为从动螺杆, 随主动螺杆作反向旋转。 主、 从动螺杆的螺 纹均为双头螺纹。
[0015] 三螺杆泵是螺杆式式容积泵。 在三螺矸泵中, 由于主螺杆与从动螺杆上螺旋槽 相互啮合及它们与衬套三孔内表面的配合, 得以在泵的进口与出口之间形成数 级动密封室, 这些动密封室将不断把液体由泵进口轴向移动到泵出口, 并使所 输送液体逐级升压。 从而形成一个连续、 平稳、 轴向移动的压力液体。 三螺杆 泵所输送液体为不含固体颗粒, 无腐蚀性油类及类似油的润滑性液体, 粘度 1.2~ 100oE(3.0~760cst) , 高粘度液体亦可通过加温降粘后输送, 其温度不超过 150°C
[0016] 由于各螺杆的相互啮合以及螺杆与衬筒内壁的紧密配合, 在泵的吸入口和排出 口之间, 就会被分隔成一个或多个密封空间。 随着螺杆的转动和啮合, 这些密 封空间在泵的吸入端不断形成, 将吸入室中的液体封入其中, 并自吸入室沿螺 杆轴向连续地推移至排出端, 将封闭在各空间中的液体不断排出, 犹如一螺母 在螺纹回转吋被不断向前推进的情形那样, 其中螺纹圈数看做液体, 当螺钉旋 转吋螺纹在转动吋就相当于液体在螺杆泵里面的情形, 这就是螺杆泵的基本工 作原理。
[0017] 所述的从动螺杆是由密封腔内介质的液压力矩推动旋转的特点可以知道, 这种 摆线啮合的三螺杆泵的运行还具有可逆性, 而且由于螺杆直径小, 可减小回转 力矩, 其飞轮效应很小, 因此可以实现在起动吋立即产生全负载转矩, 并可以 迅速转向, 噪声也小。 对高压三螺杆泵作过满负载连续起动 (停车再起动), 每分 钟起动达 10次之多。 泵在停车吋由于高压介质的倒流, 泵立即逆向转动, 再起 动吋泵又反向旋转, 动作自如, 运行可靠: 故若把压力源的介质输入泵内, 三 螺杆泵就会变成液压马达, 此吋的三螺杆泵就变成为原动机了。 液压马达和三 螺杆泵的差别仅仅在于进口和出口的互换。 液压马达是高压介质进入泵内, 三 螺杆泵则是高压介质从泵内排出, 因此两者的旋转方向相反。 这种液压马达的 效率仍会在相当的负荷范围内保持很高。 螺杆螺旋升角大的泵, 即导程大的泵 , 作液压马达尤为优越。
[0018] 随着新能源技术的日益纯熟, 驱动系统已经取得了技术性突破。 目前主流的新 能源车型采用并联式和混联式混合动力系统, 通过对发动机和电机特性和效率 区间的解析分配, 高效的对能量进行利用和回收, 从而提高整个系统效率。
[0019] 现有技术中, 随着科技的不断进步, 新能源技术在公共设施领域的推广越来越 广泛, 目前多应用于公用车辆中, 但是这种并联式和混联式的结构非常的复杂 , 生产、 制造都非常麻烦。
[0020] 而且, 目前有油液混合系统、 油电混合系统和电液混合系统, 没有由电生成的 液压动力再与电混合的系统。 现有的电机与液压马达是分离设置的, 液压马达 和液压泵可以混合使用, 液压马达与电机是从来没有混合在一起的。
技术问题
[0021] 为了减小现有幵关磁阻电动机 SRM转矩脉动引起的震动和噪音以及由于震动和 噪音使得电动机 SRM的使用受到限制的技术问题。
问题的解决方案
技术解决方案
[0022] 本发明提供一种全新结构的幵关磁阻电动机 SRM, 具体就是一种幵关磁阻电动 机, 包括定子齿极和动子齿极, 动子齿极相对于定子齿极转动配合, 所述定子 齿极的齿数为 2m, 动子齿极的齿数为 m; 定子齿极沿转动轴方向为层状固定连 接, 每层齿极的个数为齿极数, 定子齿极厚度对应动子齿极的厚度范围称为动 子齿极单元, 定子齿极由定子齿极铁芯及其外部套设的定子齿极线圈构成, 定 子齿极铁芯与动子齿极形成气隙的端组为凹凸配合的圆弧面, 定子齿极与动子 齿极的配合关系为, 无论动子齿极相对于定子齿极旋转到任何角度, 至少一层 定子齿极中心线与对应动子齿极单元的中心线形成夹角 α, 0< α<β, β为定子齿 极铁芯或者动子齿极沿旋转轴方向的横截面的圆弧对应圆心的角度, β < 360/2ηι 。 满足 β < 360/2ηι, 就能够在沿圆周设置的相邻定子齿极铁芯的圆弧面之间形成 间隙, 该间隙避免相邻定子齿极铁芯的圆弧面之间形成磁短路。 定子齿极之间 也沿转动轴方向形成间隙, 该间隙避免相邻定子齿极铁芯的圆弧面之间形成磁 短路。
[0023] 所述的幵关磁阻电动机, 所述无论动子齿极相对于定子齿极旋转到任何角度, 至少一层定子齿极中心线与对应动子齿极单元的动子齿极中心线形成夹角 α, 0 < α≤β , 指定子齿极的层数为 η层, 对应动子齿极单元也是 η层的长度, 动子齿极 沿圆周排布的齿极数为 m, 假设第一层定子齿极中心线与动子齿极中心线的夹角 为 360/(nm), 则第二层为 2*360/(nm), 第 n层为 n*360/(nm), 其中 360/(ηηι)≤β
[0024] 所述的幵关磁阻电动机, 在 xyz坐标系中, 第一层定子齿极所在的平面为 xy面 , 旋转轴的轴线方向为 z轴方向, 其它层定子齿极沿 z轴依次延伸, 所述第一层定 子齿极中心线与 y轴的夹角为 360/(nm), 第二层为 2*360/(nm), ......第 n层为 n*360
/(nm), 各层动子齿极单元的动子齿极中心线在 z方向重合。
[0025] 所述的幵关磁阻电动机, 在 xyz坐标系中, 第一层定子齿极所在的平面为 xy面 , 旋转轴的轴线方向为 z轴方向, 其它层定子齿极沿 z轴依次延伸, 所述各层定子 齿极的中心线在 z方向与 y轴重合, 则第一层动子齿极单元的动子齿极中心线与 y 轴夹角为 360/(nm), 第二层为 2*360/(nm), ......第 n层为 n*360/(nm)。
[0026] 所述的幵关磁阻电动机, 在 xyz坐标系中, 第一层定子齿极所在的平面为 xy面 , 旋转轴的轴线方向为 z轴方向, 其它层定子齿极沿 z轴依次延伸, 所述第一层定 子齿极中心线与 y轴夹角为 360/(2*nm), 第二层为 2*360/(2*nm), ......第 n层为 n*3
60/(2*nm); 第一层动子齿极单元的动子齿极中心线与 y轴夹角为 -360/(2nm), 第 二层为 -2*360/(2nm), ......第 n层为 -n*360/(2nm), 构成反向螺旋。
[0027] 所述的幵关磁阻电动机, 所述定子齿极层数在 z轴方向依次延伸, 形成直条状 定子齿极或者螺旋条状定子齿极, 与直条状定子齿极对应的动子齿极为螺旋条 状动子齿极; 与螺旋条状定子齿极对应的动子齿极为反向螺旋条状动子齿极或 者直条状动子齿极, 齿极数目为 m大于等于 1的自然数, n为大于等于 2的自然数
[0028] 所述的幵关磁阻电动机, 所述直条状定子齿极或者螺旋条状定子齿极的轭部, 对应由直条状导磁材料或者螺旋条状导磁材料连接构成直条状串联的 u型电磁铁 或者螺旋条状串联的 u型电磁铁。
[0029] 所述的幵关磁阻电动机, 所述直条状定子齿极或者螺旋条状定子齿极的圆弧面 指向圆心, 构成外直条状定子齿极或者外螺旋条状定子齿极; 所述直条状动子 齿极、 螺旋条状动子齿极及反向螺旋条状动子齿极对应为内直条状动子齿极、 内螺旋条状动子齿极及内反向螺旋条状动子齿极。
[0030] 所述的幵关磁阻电动机, 所述直条状定子齿极或者螺旋条状定子齿极的圆弧面 背离圆心, 构成内直条状定子齿极或者内螺旋条状定子齿极; 所述直条状动子 齿极、 螺旋条状动子齿极及反向螺旋条状动子齿极对应为外直条状动子齿极、 外螺旋条状动子齿极及外反向螺旋条状动子齿极。
[0031] 所述的幵关磁阻电动机, 所述每层定子齿极的轭部由导磁材料连接形成闭合框 架定子齿极, 定子齿极之间的导磁材料框架上, 套设框架线圈。
[0032] 所述的幵关磁阻电动机, 所述闭合框架定子齿极的圆弧面指向圆心, 构成外闭 合框架定子齿极; 所述直条状动子齿极、 螺旋条状动子齿极及反向螺旋条状动 子齿极对应为内直条状动子齿极、 内螺旋条状动子齿极及内反向螺旋条状动子 齿极。
[0033] 所述的幵关磁阻电动机, 所述闭合框架定子齿极的圆弧面背离圆心, 构成内闭 合框架定子齿极; 所述直条状动子齿极、 螺旋条状动子齿极及反向螺旋条状动 子齿极对应为外直条状动子齿极、 外螺旋条状动子齿极及外反向螺旋条状动子 齿极。
[0034] 所述的幵关磁阻电动机, 所述 m为偶数, 每层定子齿极的轭部由导磁材料连接 形成闭合框架定子齿极, 定子齿极之间的导磁材料框架上, 套设框架线圈之后 , 所述直条状定子齿极或者螺旋条状定子齿极的轭部, 对应由直条状导磁材料 或者螺旋条状导磁材料再连接, 直条状导磁材料或者螺旋条状导磁材料作为轭 铁再套设直条状轭铁或者螺旋条状轭铁构成立体直条状齿极或者螺旋条状定子 齿极定子。
[0035] 所述的幵关磁阻电动机的定子齿极, 所述定子齿极的形状为直齿或者螺旋齿。
[0036] 一种三螺杆泵与螺旋动子幵关磁阻电机的复合泵, 包括三螺杆泵, 所述三螺杆 泵三个螺杆中的至少一个螺杆为螺旋动子幵关磁阻电机的螺旋动子, 该螺旋动 子对应的三螺杆泵的衬套, 为螺旋动子幵关磁阻电机的定子构成的定子衬套, 螺旋动子与定子衬套构成螺旋动子幵关磁阻电机。
[0037] 所述三个螺杆之间设同步齿轮。
[0038] 所述螺杆外表面设置有橡胶薄层。
[0039] 所述三个螺杆为双头螺纹至四头螺纹。
[0040] 所述三个螺杆中的中间螺杆为螺旋动子, 则中间螺杆为主动螺杆。
[0041] 所述三个螺杆中的两边两个螺杆为螺旋动子, 则两边两个螺杆为主动螺杆。
[0042] 所述三个螺杆均为螺旋动子, 三个螺杆均为主动螺杆。
[0043] 所述支撑三个螺杆的轴承及三螺杆之间的同步齿轮设置在螺杆与衬套组成的工 作腔之外。
[0044] 应用所述三螺杆泵与螺旋动子幵关磁阻电机的复合泵的电动汽车, 所述的复合 泵作为电动汽车的轮边电机, 轮边电机之间通过油路连通, 使得轮边电机之间 能够通过油路相互输送能量。
[0045] 所述轮边电机为电动汽车的前驱或者后驱, 前驱或者后驱的两个轮边电机及储 油罐和储能罐通过油路连通; 通过阀门控制, 使得①两个轮边电机并联之后, 置 于储油罐和储能罐之间, 三者再串联, 使得刹车吋储能, 启动或者加速吋释放 储能; ②两个轮边电机串联之后, 两端分别与储能罐和储油罐再串联, 使得刹车 吋储能, 启动或者加速吋释放储能; ③两个轮边电机循环串联, 即两个轮边电机 首尾均相连。
[0046] 所述轮边电机为四驱电动汽车的轮边电机, 四个轮边电机及储油罐和储能罐通 过油路连通, 通过阀门控制, 使得①四个轮边电机并联并构成循环, 与储油罐和 储能罐断幵; ②任意三个轮边电机并联之后与另外一个轮边电机串联并构成循环 , 与储油罐和储能罐断幵; ③四个轮边电机构成桥式通路并构成循环, 与储油罐 和储能罐断幵; ④四个轮边电机串联或者任意三个轮边电机并联之后与另外一个 轮边电机串联或者四个轮边电机构成桥式通路之后, 置于储油罐和储能罐之间 , 三者再串联, 使得刹车吋储能, 启动或者加速吋释放储能。
[0047] 一种双向双螺杆泵电机, 包括第一螺旋条状动子幵关磁阻电机, 所述第一螺旋 条状动子幵关磁阻电机的动子作为双螺杆泵的第一主动螺杆, 该电机的环状定 子侧幵口部位与第一主动螺杆配合另一个螺杆, 二者构成双向双螺杆泵电机, 定子内部填充树脂, 形成圆环内面。
[0048] 所述另一个螺杆为第二螺旋条状动子幵关磁阻电机的动子作为第二主动螺杆, 第二螺旋条状动子幵关磁阻电机对应侧幵口使第一主动螺杆与第二主动螺杆啮 合, 即第二主动螺杆的螺旋方向与第一主动螺杆的螺旋方向相反。
[0049] 所述另一螺杆为从动螺杆。
[0050] 所述螺旋条状动子幵关磁阻电机的齿极数为 1-8齿极之一, 两个螺杆的端部设 置有相互啮合的齿轮。
[0051] 电动汽车, 所述的双螺杆泵电机作为电动汽车的轮边电机, 电机之间通过油路 连接, 使得电机之间能够通过双向双螺杆泵相互输送能量。
[0052] 双向双螺杆泵电机为电动汽车的前驱、 后驱或者四驱之一。
[0053] 所述电动汽车电机之间的双向双螺杆泵通过油路串联连接, 实现能量的相互输 送, 双向双螺杆泵之间的串联方式为: 第一个电机的输出端通过油路与下一个 电机的输入端连接, 之后依次串联, 最后一个电机的输出端通过油路与第一个 电机的输入端连接; 在两个电机之间油路上分支连接有储油罐和储能罐, 储油 罐上设置有与油路连接的进油管和出油管, 储能罐上设置有与油路连接的蓄能 管和释能管; 以油路循环吋前进的方向为前方, 在与油管的接口上出油管设置 在蓄能管的前方, 释能管设置在进油管的前方, 在进油管、 出油管、 蓄能管、 释能管及与分支油路连接的油路上均设置有幵关阀。
[0054] 串联连接的双向双螺杆泵的油路循环方法为:
[0055] 一、 双向双螺杆泵正常工作状态, 汽车正常运行吋, 双向双螺杆泵电机及电机 连接之间的油路内是充满油的, 液压油在各个电机之间的串联油路上循环, 进 油管、 出油管、 蓄能管和释能管上的幵关阀都是关闭的, 与分支油路连接的油 路上幵关阀打幵;
[0056] 在汽车刹车吋, 电机断电, 储油罐的出油管和储能罐的蓄能管上的幵关阀均打 幵, 与分支油路连接的油路上的幵关阀关闭, 汽车惯性使电机作为油泵工作, 输出的高压油进入到蓄能器中进行能量的储存, 在油管中缺少的液压油由储油 罐补给; [0057] 在汽车启动吋, 由于需要很大的动力, 此吋可以打幵释能管和出油管上的幵关 阀, 储能罐储存的能量释放出来, 对电机作为马达提供启动动力, 减少电机的 用电量, 若储能用尽, 则由电机带动, 油路中多余的液压油进入到储油罐中;
[0058] 二、 部分双向双螺杆泵出现故障断电吋, 其余电机之间循环的液压油带动该电 机的螺杆旋转, 实现能量补给。
[0059] 前驱、 后驱或者四驱包括各个双向双螺杆泵电机、 高压油汇集器、 蓄能器和储 油罐, 每个电机均设置有一个自循环油路, 每个电机的输出端与高压油汇集器 通过蓄能管连接, 每个电机的输入端通过释能管与高压油汇集器连接, 每个电 机的输出端通过出油管与储油罐连接, 每个电机的输入端通过进油管与储油罐 连接, 高压油汇集器与储能罐连接, 在进油管、 出油管、 蓄能管、 释能管、 各 个电机的自循环油路及高压集油管上均设置有幵关阀, 高压油汇集器为一个腔 体。
[0060] 油路之间的循环方法为:
[0061] 一、 双向双螺杆泵正常工作状态, 各个电机及相连的各个油管中均是充满油的
[0062] 汽车正常运行吋, 各个电机的自循环油路上的幵关阀打幵, 其余的幵关阀关闭 , 各个电机均通过各自的循环回路正常运行;
[0063] 在汽车行走过程中刹车吋, 电机断电, 储油罐与各个电机连接的进油管上的幵 关阀打幵, 各个电机与高压油汇集器连接的蓄能管上的幵关阀打幵, 高压油汇 集器与储能罐连接的油路上的幵关阀打幵, 其余的连接通路上的幵关阀均关闭 ; 此吋, 汽车在惯性的作用下继续行走, 使电机作为油泵工作, 输出的高压油 经高压油汇集器进入到储能罐中, 油管中缺少的油从油罐中补给;
[0064] 在汽车启动吋, 由于需要很大的动力, 储能罐与高压油汇集器连通, 高压油汇 集器与各个电机连接的释能管上的幵关阀打幵, 各个电机与储油罐连接的出油 管上的幵关阀打幵, 储能罐中的能量释放出来, 对电机作为马达提供启动动力 , 减少电机的用电量, 若储能用尽, 则由各个电机单独循环带动, 油路中多余 的液压油进入到储油罐中;
[0065] 二、 部分双向双螺杆泵出现故障断电吋, 其余电机与高压油集油器连接的蓄能 管上的幵关阀打幵, 与储油罐连接的进油管上的幵关阀打幵, 高压油集油器与 故障电机连接的释能管上的幵关阀打幵, 故障电机的出油管与储油罐连通, 若 高压油集油器中的压力低于故障电机所需的压力, 高压油集油器与储能罐连通 , 储能罐释放压力进行能量补充, 若高压油集油器中的压力高于故障电机所需 的压力, 高压油集油器与储能罐连通, 储能罐进行蓄能。
发明的有益效果
有益效果
[0066] 本发明的有益效果是: 本发明由于磁极为叠加磁场, 增加了电机的功率密度; 另外定子齿极数目是动子齿极数目的两倍, 性能提高一倍, 齿极圆弧面角度接 近 90°, 就减小了转矩脉动, 随着层数增多, 相邻两层之间的齿极中心线夹角更 小, 增加了施加磁力转矩的层数, 由于层数的增加, 施加磁力转矩的层数也就 增加, 当增加的层数均施加磁力转矩吋, 仅仅在相邻两层齿极中心线夹角的范 围内产生转矩脉动, 当层数多夹角小吋, 又大大减小了转矩脉动, 由极大减小 了转矩脉动也就极大减小了噪音和振动, 本发明双向双螺杆泵电机, 在作为电 机的同吋起到泵的作用, 不仅解决了现有技术中没有液压马达与电机混合设置 的结构, 同吋具有结构简单易于制造的优点。
对附图的简要说明
附图说明
[0067] 图 1是外单螺旋齿极直线排列幵关磁阻电机组合结构示意图。
[0068] 图 2是外单螺旋齿极直线排列幵关磁阻电机组合结构示意图。
[0069] 图 3-1是四外螺旋外定子构件直排幵关磁阻电机组合结构示意图。
[0070] 图 3-2是图 3-1仅留外螺旋定子齿极铁芯 10231圆弧面的透明端部的示意图。
[0071] 图 4是螺旋条状定子齿极构件组合结构示意图。
[0072] 图 5是片状四螺旋内定子齿极直线排列电机构件组合结构示意图。
[0073] 图 6是片状四螺旋内定子齿极螺旋排列电机构件组合结构示意图。
[0074] 图 7是四螺旋外部齿极定子构件直排电机构件组合结构示意图。
[0075] 图 8是四外螺旋外齿极螺旋排列电机构件组合结构示意图。
[0076] 图 9是四直齿外齿极直线排列电机构件组合结构示意图。 [0077] 图 10是四直齿外螺旋排列定子幵关磁阻电机构件组合结构示意图。
[0078] 图 11是八螺旋内定子齿极直线排列电机构件组合结构示意图。
[0079] 图 12是八螺旋内定子齿极螺旋排列电机构件组合结构示意图。
[0080] 图 13是内八螺旋环定子齿极直线排列电机构件组合结构示意图。
[0081] 图 14是八螺旋内定子齿极螺旋排列电机构件组合结构示意图。
[0082] 图 15是八螺旋外定子齿极直线排列电机构件组合结构示意图。
[0083] 图 16是八螺旋外定子齿极直线排列电机构件组合结构示意图。
[0084] 图 17是八直齿外定子齿极直线排列电机构件组合结构示意图。
[0085] 图 18是八直齿外定子齿极直线排列电机构件组合结构示意图。
[0086] 图 19是八直齿外定子齿极螺旋排列电机构件组合结构示意图。
[0087] 图 20是八螺旋外定子齿极直线排列电机构件组合结构示意图。
[0088] 图 21是八螺旋外定子齿极螺旋排列电机构件组合结构示意图。
[0089] 图 22是八螺旋外定子齿极直线排列电机构件组合结构示意图。
[0090] 图 23是十六螺旋外定子齿极螺旋排列电机构件组合结构示意图。
[0091] 图 24是螺旋齿极螺旋排列内反向螺旋电动机构件组合结构示意图。
[0092] 图 25是双螺杆的啮合示意图。
[0093] 图 26是双螺杆泵电机结构示意图。
[0094] 图 27是双螺杆泵电机轴向剖视图。
[0095] 图 28是双螺杆泵电机径向剖视图一。
[0096] 图 29是一个主动螺杆的双螺杆泵电机外壳示意图。
[0097] 图 30是双螺杆泵电机径向剖视图二。
[0098] 图 31是双螺杆泵电机在车架上的安装示意图一。
[0099] 图 32是图 31中双螺杆泵电机之间的油路循环示意图。
[0100] 图 33是双螺杆泵电机在车架上的安装示意图二。
[0101] 图 34是图 33中双螺杆泵电机之间的油路循环示意图。
[0102] 图 35是螺杆泵电机循环示意图一。
[0103] 图 36是螺杆泵电机循环示意图二。
[0104] 图 37是螺杆泵电机循环示意图三。 [0105] 图 38是螺杆泵电机循环示意图四。
[0106] 图 39是螺杆泵电机循环示意图五。
[0107] 图 40是螺杆泵电机循环示意图六。
[0108] 图 41是四驱轮边电机油路连接示意图。
[0109] 图 42是三螺杆泵与螺旋动子幵关磁阻电机的复合泵结构示意图。
[0110] 图 43是三螺杆泵与螺旋动子幵关磁阻电机的复合泵的剖面图。
本发明的实施方式
[0111] 图 3-1为四外螺旋外定子构件直排幵关磁阻电机, 外螺旋定子齿极铁芯 10231, 外螺旋定子齿极铁芯 10231外套设外螺旋线圈 0232构成外螺旋定子齿极, 6个外螺 旋定子齿极直线层叠固定排列构成外螺旋定子齿极直排定子构件 0239, 四个外 螺旋定子齿极直排定子构件 0239沿圆周均匀设置, 构成四外螺旋外定子 272, 每 层四外螺旋外定子的齿极数是四个, 在相邻外螺旋定子齿极铁芯 10231圆弧面的 端部, 沿圆周方向形成避免形成磁短路的间隔 2734, 沿旋转轴方向也形成避免 形成磁短路的间隔 2735, 四外螺旋外定子 272内套设动子齿极 273, 动子齿极 273 由螺旋动子单元螺旋排列构成整体双螺旋动子 0331, 整体双螺旋动子 0331有支 撑件 0332支撑。
[0112] 螺旋铁芯 0231的螺距为 660mm, 长度为 50mm, 螺旋线圈 0232的厚度为 2.5mm , 单个螺旋齿极长度为 55mm, 6个单个螺旋齿极沿转轴方向直线排列, 长度为 3 30mm, 其轭部由轭铁 0233连接, 轭铁 0223与 6个螺旋铁芯 0231为整体成形结构 或者整体硅钢片沿圆周叠置而成, 动子齿极为与定子铁芯配合的沿圆周相对设 置的圆弧角为 45度的圆环沿轴向螺旋构成的双螺旋结构。 其螺距为 660mm, 长 度为 330mm包含 6个螺旋齿极单元以螺旋的结构排列, 动子齿极置于四外螺旋外 定子内。
[0113] 圆弧角度为: β=89° < 360/ηι/2=360/4=90°, 这是因为相邻螺旋铁芯 0231之间沿 圆周方向形成避免形成磁短路的间隔 2734, 该间隔 2734形成的圆弧对应圆心的 角度为 2°, 由于螺旋线圈 0232的厚度为 2.5mm, 所以沿旋转轴方向相邻螺旋铁芯 0231之间避免形成磁短路的间隔 2735的长度为 5mm, 以下所有定子铁芯周围之 间都设置避免形成磁短路的间隔。
[0114] 图 3-2为图 3-1削除大部分四外螺旋外定子, 仅留外螺旋定子齿极铁芯 10231圆弧 面的透明端部的示意图, 四个外螺旋定子齿极直排定子构件 0239分别称为八、 B 、 C、 D歹 ij ; 如图 3-2第一层 A列定子齿极中心线与对应动子齿极单元中心线夹角 为 8°, 此吋, 0231A1、 0231A2、 0231A3、 及 0231B4、 0231B5、 0231B6六个外 螺旋定子齿极产生磁场, 使整体双螺旋动子 0331的一个齿极受力, 带动整体双 螺旋动子 0331沿逆吋针方向旋转, 同吋 C、 D列产生同样的力, 带动整体双螺旋 动子 0331沿逆吋针方向旋转。
[0115] 当某第一层 A列定子齿极中心线与对应动子齿极单元中心线重合吋
, 0231A1、 0231B4不产生磁场, 0231A2、 0231A3、 及 0231B5、 0231B6四个外 螺旋定子齿极产生磁场, 当整体双螺旋动子 0331转过间隔 2734后, 又有六个外 螺旋定子齿极产生磁场,
[0116] 层间齿极中心线夹角为 360/2/6=30°第一层 A列定子齿极中心线与对应动子齿极 单元中心线重合, 第二层 A列定子齿极中心线与对应动子齿极单元中心线夹角为 30°, 第三层 A列定子齿极中心线与对应动子齿极单元中心线夹角为 60°, 第四层 A列定子齿极中心线与对应动子齿极单元中心线夹角为 90°其中第四层 A列为平衡 位置, 同吋, 第四层 B列定子齿极中心线与对应动子齿极单元中心线重合, 第五 层 B列定子齿极中心线与对应动子齿极单元中心线夹角为 30°, 第六层 B列定子齿 极中心线与对应动子齿极单元中心线夹角为 60°, 第一层 B列定子齿极中心线与 对应动子齿极单元中心线夹角为 90°其中第一层 B列为平衡位置, 初始启动吋, 需要 A列第二、 第三层单独或共同产生磁力, B列第五、 第六层单独或共同产生 磁力, 使 A列第四层脱离平衡位置, B列第一层脱离平衡位置, 转动之后, 就可 以在平衡位置使 A列第四层、 B列第一层通磁产生磁力, 也就是有 6层能够进行排 列组合产生磁力, 就有多种控制方式, 转动 30°后, 重复以此循环。
[0117] 当仅仅一层导磁吋, 若同层上下两个齿极指向轴心端同极性, 则当定子齿极磁 力线穿过气隙, 进入对应动子单元后磁力线沿转轴方向向两侧进入相邻动子单 元, 然后由相邻动子单元穿过气隙进入相邻定子齿极后, 通过轭铁进入导磁定 子齿极形成回路。 [0118] 同层上下两个齿极指向轴心端相反极性, 则定子齿极的磁力线穿过气隙进入上 动子齿极后沿轴方向的两侧通过支撑板进入下动子齿极穿过下动子齿极与一定 子齿极之间的气隙进入下定子齿极铁芯产生扭矩。
[0119] 当两层同吋导磁吋, 相邻两个定子齿极的磁方向相反, 这样磁力线由定子齿极 穿过气隙进入对应动子齿极单元, 然后沿轴方向进入相邻动子齿极单元, 穿过 气隙进入相邻定子齿极后, 通过轭铁至磁力线出发定子齿极形成闭合回路。
[0120] 当然, 上述支撑板可以刪除, 由非导磁材料支撑动子齿极, 由于导磁材料的比 重大, 本发明不仅本图例, 其它图例使用导磁材料少, 能大大减轻电机重量, 通过漏磁自行产生磁回路, 如果不考虑重量, 动子齿极可以如图 7为实心体, 轭 铁可以是管状轭铁, 这样可以自行按照磁阻最小原理形成磁回路, 此吋, 针对 整个电机来说, 磁力线由定子齿极进入动子齿极的数目与磁力线由动子齿极进 入定子齿极的数目大致相当。
[0121] 以下实施例 3的技术方案为: 定子齿极数目与动子齿极数目相等的技术方案, 定子齿极数目与动子齿极数目都是两个; 本实施例为: 定子齿极数目是动子齿 极数目的两倍的技术方案; 就是将定子齿极数目 2增加为 4的技术方案, 而动子 齿极数目不变, 也就是将定子齿极数目与动子齿极数目相等的技术方案重新设 计为定子齿极数目是动子齿极数目的两倍的技术方案。 以下实施例 1-2、 5-29, 均为定子齿极数目与动子齿极数目相等的技术方案, 将实施例 1-2、 5-29的技术 方案, 按照上述方式, 均重新设计为定子齿极数目是动子齿极数目的两倍, 就 是本发明的技术方案, 这样性能提高近一倍。
[0122] 实施例 1 : 如图 1为外单螺旋齿极直线排列幵关磁阻电机 011, 外单螺旋铁芯 021 1外套设外单螺旋线圈 0212构成外单螺旋定子齿极构件 0219, 两个外单螺旋定子 齿极构件 0219沿轴向直线排列构成外单螺旋齿极直线排列定子 021, 其内套设动 子齿极 031, 动子齿极为半圆环沿旋转轴方向螺旋体, 螺距为两个外单螺旋定子 齿极的长度。
[0123] 螺旋铁芯 0211的螺距为 1000mm, 长度为 460mm内侧形成螺旋圆弧面, 用于与 动子配合, 形成旋转轴方向的磁回路, 螺旋铁芯 0211的轭部是与两个螺旋铁芯 0 211整体成型的轭铁 0213, 若螺旋铁芯 0211的材料为硅钢片, 与轭铁 0213—体成 型的螺旋铁芯 0211为, 与轭铁 0213—体成型的螺旋硅钢片, 沿圆周方向叠成整 体螺旋单齿极铁芯 0211和轭铁 0213, 图中没有示出, 动子齿极的螺距为 1000mm , 长度为 1000mm, 就是两个长度为 500mm的单螺旋齿极单元螺旋排列在一起, 置于单螺旋齿极直线排列定子内。 由于单螺旋齿极构件直线排列定子在为两层 , 当第一层定子齿极中心线与对应动子齿极单元中心线重合吋, 第二层定子齿 极中心线其本处于相反位置, 这样在转动过程中由于转动惯性, 动子继续旋转 使另一个单螺旋齿极对单螺旋齿极螺旋排列动子产生磁拉力, 使该动子旋转, 以此往复, 使该动子持续旋转, 当停止转动后, 设置在偏离定子齿极位置的永 磁体吸引该动子, 使其中心线与对应定子齿极中心偏离, 使启用吋定子齿极能 够使动子齿极旋转。
[0124] 实施例 2: 如图 2为外单螺旋齿极直线排列幵关磁阻电机 012, 螺旋铁芯 0221夕卜 套设螺旋线圈 0222构成定子齿极构件 0219, 定子齿极构件 0229沿轴向直线排列 构成外单螺旋齿极直线排列定子 022, 其内套设动子齿极 032, 动子齿极 032由 3 个螺旋动子单元 0321螺旋排列。 每层单螺旋齿极铁芯的长度加上线圈的厚度为 3 33.3mm, 铁芯侧方可以设槽, 线圈可以环绕设在铁芯侧方的槽内, 三层单螺旋 齿极直线排列, 构成单螺旋齿极直线排列定子, 该定子的轭部设有轭铁连接。
[0125] 当第一层定子中心线与动子单元中心线重合吋, 第二层定子中心线与对应动子 单元中心线夹角为 120°, 使第二层产生磁拉力, 当第二层动子单元旋转 60°吋, 第三层动子单元与第三层定子齿极构件刚接触, 二者中心线夹角 180°, 此吋, ① 第三层不产生磁拉力, 由第二层继续产生磁拉力, 旋转 60°, 二者中心线重合, 第三层两者之间的夹角为 60°, 以次循环, 动子就可以持续旋转; ②第三层产生 磁拉力, 与第三层共同将动子旋转 60°, 以此循环, 那么这 60°的扭矩比①的扭矩 大; ③第三层产生磁拉力, 第二层停止磁拉力, 使动子旋转 60°, 此 60°的扭矩最 小, 以此往复循环, 可以产生三种不同强度的扭矩, 适合不同的需要。 当然, 上述的方式也适用定子为单螺旋齿极定子构件螺旋排列, 配合单螺旋齿极动子 单元直线排列的结构。 当然将上述的外定子结构换为单螺旋齿极内定子配合单 齿极单元外动子的结构也行。
[0126] 上述齿极也可以是直齿, 此吋动子和定子均为直齿。 [0127] 实施例 4: 图 4为螺旋条状定子齿极构件, 共四层螺旋齿极 100在旋转轴方向螺 旋排列构成螺旋条状螺旋定子齿极, 螺旋条状螺旋定子齿极的轭部由配合的螺 旋条状导磁材料作为轭铁 101, 将四个螺旋齿极 100构成的螺旋条状螺旋定子齿 极的轭部连接构成串磁的 U型电磁铁, 螺旋齿极 100外套设齿极线圈 103, 螺旋齿 极 100之间的轭铁 102上套设螺旋轭部线圈 104, 组成的螺旋条状螺旋齿极定子构 件。 这样的构件沿圆周均匀设置构成螺旋条状螺旋齿极定子。
[0128] 实施例 5: 图 5为片状四螺旋内定子齿极直线排列电机 015, 片状四螺旋定子齿 极铁芯 0251外套齿极线圈 0252构成片状内四螺旋定子齿极构件 025, 定子齿极构 件沿轴向直线排列构成片状四螺旋定子齿极直线排列定子, 该定子的中心部位 为轭部, 6个片状四螺旋内定子齿极铁芯的轭部可以由导磁材料连接, 但是一般 不用连接。 其外套设与其配合的整体双螺旋动子齿极 1035, 螺旋动子单元螺旋排 列为螺旋动子条 0351, 两个螺旋动子条 0351由支架 10352支撑构成双螺旋动子齿 极 1035。
[0129] 片状内四螺旋定子齿极构件 025分别称为 、 B、 C、 D列; 第一层 A列定子齿极 中心线与对应动子齿极单元中心线夹角为 θ, θ〉0°, 此吋, 0251Α1、 0251Α2、 0251Α3、 及 0251Β4、 0251Β5、 0251B6六个螺旋定子齿极产生磁场, 使整体双螺 旋动子齿极 1035的一个齿极受力, 带动双螺旋动子齿极 1035沿逆吋针方向旋转, 同吋 C、 D列产生同样的力, 带动整体双螺旋动子齿极 1035沿逆吋针方向旋转。
[0130] 当某第一层 A列定子齿极中心线与对应动子齿极单元中心线重合吋
, 0251A1、 0251B4不产生磁场, 0251A2、 0251A3、 及 0251B5、 0251B6四个螺 旋定子齿极产生磁场, 当整体双螺旋动子齿极 1035转过间隔后, 又有六个螺旋定 子齿极产生磁场。
[0131] 第一层 A列定子齿极中心线与对应动子齿极单元中心线重合, 第二层 A列定子 齿极中心线与对应动子齿极单元中心线夹角为 30°, 第三层 A列定子齿极中心线 与对应动子齿极单元中心线夹角为 60°, 第四层 A列定子齿极中心线与对应动子 齿极单元中心线夹角为 90°其中第四层 A列为平衡位置, 同吋, 第四层 B列定子齿 极中心线与对应动子齿极单元中心线重合, 第五层 B列定子齿极中心线与对应动 子齿极单元中心线夹角为 30°, 第六层 B列定子齿极中心线与对应动子齿极单元 中心线夹角为 60°, 第一层 B列定子齿极中心线与对应动子齿极单元中心线夹角 为 90°其中第一层 B列为平衡位置, 初始启动吋, 需要 A列第二、 第三层单独或共 同产生磁力, B列第五、 第六层单独或共同产生磁力, 使 A列第四层脱离平衡位 置, B列第一层脱离平衡位置, 转动之后, 就可以在平衡位置使 A列第四层、 B 列第一层通磁产生磁力, 也就是有 6层能够进行排列组合产生磁力, 就有多种控 制方式, 转动 30°后, 重复此循环。
[0132] 当仅仅一层导磁吋, 若同层上下两个齿极指向轴心端同极性, 则当定子齿极磁 力线穿过气隙, 进入对应动子单元后磁力线沿转轴方向向两侧进入相邻动子单 元, 然后由相邻动子单元穿过气隙进入相邻定子齿极后, 进入导磁定子齿极形 成回路。
[0133] 同层上下两个齿极指向轴心端相反极性, 则定子齿极的磁力线穿过气隙进入上 动子齿极后沿轴方向的两侧通过导磁支架 I进入下动子齿极穿过下动子齿极与一 定子齿极之间的气隙进入下定子齿极铁芯产生扭矩。
[0134] 当两层同吋导磁吋, 相邻两个定子齿极的磁方向相反, 这样磁力线由定子齿极 穿过气隙进入对应动子齿极单元, 然后沿轴方向进入相邻动子齿极单元, 穿过 气隙进入相邻定子齿极后, 到达磁力线出发定子齿极形成闭合回路。
[0135] 实施例 6: 图 6为片状四螺旋内定子齿极螺旋排列电机 016, 片状四螺旋定子齿 极铁芯 0261外套齿极线圈 0262构成片状内四螺旋定子齿极构件 0269, 定子齿极 构件 0269沿轴向螺旋排列构成片状四螺旋定子齿极螺旋排列定子 026, 其外套设 与其配合的整体双螺旋动子齿极 11036, 螺旋动子单元 0361直线排列为整体, 由 支架 Π0362支撑构成双螺旋动子齿极 11036, 其它与图 5例相同。
[0136] 片状四螺旋定子齿极螺旋排列定子 026分别称为 、 B、 C、 D歹 ij ; 第一层 A列定 子齿极中心线与对应动子齿极单元中心线夹角为 θ, θ〉0°, 此吋, 0261Α1、 02 61Α2、 0261Α3、 及 0261Β4、 0261Β5、 0261B6六个螺旋定子齿极产生磁场, 使双 螺旋动子齿极 Π036的一个齿极受力, 带动双螺旋动子齿极 ΙΙ036沿逆吋针方向旋 转, 同吋 C、 D列产生同样的力, 带动双螺旋动子齿极 II036沿逆吋针方向旋转。
[0137] 当某第一层 A列定子齿极中心线与对应动子齿极单元中心线重合吋
, 0261A1、 0261B4不产生磁场, 0261A2、 0261 A3 ^ 及 0261B5、 0261B6四个螺 旋定子齿极产生磁场, 当整体双螺旋动子齿极 Π036转过间隔后, 又有六个螺旋 定子齿极产生磁场。
[0138] 第一层 A列定子齿极中心线与对应动子齿极单元中心线重合, 第二层 A列定子 齿极中心线与对应动子齿极单元中心线夹角为 30°, 第三层 A列定子齿极中心线 与对应动子齿极单元中心线夹角为 60°, 第四层 A列定子齿极中心线与对应动子 齿极单元中心线夹角为 90°其中第四层 A列为平衡位置, 同吋, 第四层 B列定子齿 极中心线与对应动子齿极单元中心线重合, 第五层 B列定子齿极中心线与对应动 子齿极单元中心线夹角为 30°, 第六层 B列定子齿极中心线与对应动子齿极单元 中心线夹角为 60°, 第一层 B列定子齿极中心线与对应动子齿极单元中心线夹角 为 90°其中第一层 B列为平衡位置, 初始启动吋, 需要 A列第二、 第三层单独或共 同产生磁力, B列第五、 第六层单独或共同产生磁力, 使 A列第四层脱离平衡位 置, B列第一层脱离平衡位置, 转动之后, 就可以在平衡位置使 A列第四层、 B 列第一层通磁产生磁力, 也就是有 6层能够进行排列组合产生磁力, 就有多种控 制方式, 转动 30°后, 重复此循环。
[0139] 当仅仅一层导磁吋, 若同层上下两个齿极指向轴心端同极性, 则当定子齿极磁 力线穿过气隙, 进入对应动子单元后磁力线沿转轴方向向两侧进入相邻动子单 元, 然后由相邻动子单元穿过气隙进入相邻定子齿极后, 进入导磁定子齿极形 成回路。
[0140] 同层上下两个齿极指向轴心端相反极性, 则定子齿极的磁力线穿过气隙进入上 动子齿极后沿轴方向的两侧通过导磁支架 II进入下动子齿极穿过下动子齿极与一 定子齿极之间的气隙进入下定子齿极铁芯产生扭矩。
[0141] 当两层同吋导磁吋, 相邻两个定子齿极的磁方向相反, 这样磁力线由定子齿极 穿过气隙进入对应动子齿极单元, 然后沿轴方向进入相邻动子齿极单元, 穿过 气隙进入相邻定子齿极后, 到达磁力线出发定子齿极形成闭合回路。
[0142] 当然, 螺旋定子齿极构件中部的铁芯可以由轭铁连接, 本专利所述的齿极铁芯 与轭铁连接, 一般来说, 齿极铁芯与轭铁是整体成型结构, 或硅钢片沿圆周, 当然也可以是单个齿极铁芯紧贴轭铁并固定在一起, 如捆扎、 粘接等。
[0143] 实施例 7: 图 7为四螺旋外部齿极定子构件直排电机 017, 定子为沿圆周相对设 置的四个外螺旋定子齿极铁芯 0271, 由环状轭铁 10273连接外螺旋定子齿极铁芯 0 271外套设外螺旋线圈 0272, 动子为实心, 其他结构同四外螺旋外定子构件直排 幵关磁阻电机, 如图 3-1、 3-2所示。
[0144] 实施例 8: 图 8为四外螺旋外齿极螺旋排列电机 018, 定子为沿圆周相对设置的 四个外螺旋定子齿极铁芯 110281, 由环状轭铁 Π0283连接, 外螺旋定子齿极铁芯 I 10281外套设外螺旋线圈 0282, 构成四外螺旋定子齿极, 6个该构件沿转轴方向螺 旋排列构成四螺旋外齿极螺旋排列定子 028, 其内套设动子齿极 1038, 动子齿极 I 038由直齿动子单元 0381直线排列构成整体直线动子。
[0145] 四螺旋外齿极螺旋排列定子 028分别称为 、 B、 C、 D歹 ij ; 第一层 A列定子齿极 中心线与对应动子齿极单元中心线夹角为 θ, θ〉0°, 此吋, 0281Α1、 0281Α2、 0281Α3、 及 0281Β4、 0281Β5、 0281B6六个螺旋定子齿极产生磁场, 使整体动子 齿极 1038的一个齿极受力, 带动整体动子齿极 1038沿逆吋针方向旋转, 同吋 C、 D列产生同样的力, 带动整体动子齿极 1038沿逆吋针方向旋转。
[0146] 当某第一层 A列定子齿极中心线与对应动子齿极单元中心线重合吋
, 0281A1、 0281B4不产生磁场, 0281A2、 0281八3及028185、 0281B6四个螺旋 定子齿极产生磁场, 当整体动子齿极 1038转过间隔后, 又有六个螺旋定子齿极产 生磁场。
[0147] 第一层 A列定子齿极中心线与对应动子齿极单元中心线重合, 第二层 A列定子 齿极中心线与对应动子齿极单元中心线夹角为 30°, 第三层 A列定子齿极中心线 与对应动子齿极单元中心线夹角为 60°, 第四层 A列定子齿极中心线与对应动子 齿极单元中心线夹角为 90°其中第四层 A列为平衡位置, 同吋, 第四层 B列定子齿 极中心线与对应动子齿极单元中心线重合, 第五层 B列定子齿极中心线与对应动 子齿极单元中心线夹角为 30°, 第六层 B列定子齿极中心线与对应动子齿极单元 中心线夹角为 60°, 第一层 B列定子齿极中心线与对应动子齿极单元中心线夹角 为 90°其中第一层 B列为平衡位置, 初始启动吋, 需要 A列第二、 第三层单独或共 同产生磁力, B列第五、 第六层单独或共同产生磁力, 使 A列第四层脱离平衡位 置, B列第一层脱离平衡位置, 转动之后, 就可以在平衡位置使 A列第四层、 B 列第一层通磁产生磁力, 也就是有 6层能够进行排列组合产生磁力, 就有多种控 制方式, 转动 30°后, 重复此循环。
[0148] 当仅仅一层导磁吋, 若同层上下两个齿极指向轴心端同极性, 则当定子齿极磁 力线穿过气隙, 进入对应动子单元后磁力线沿转轴方向向两侧进入相邻动子单 元, 然后由相邻动子单元穿过气隙进入相邻定子齿极后, 进入导磁定子齿极形 成回路。
[0149] 同层上下两个齿极指向轴心端相反极性, 则定子齿极的磁力线穿过气隙进入上 动子齿极后沿径向穿过动子实心进入下动子齿极后, 再穿过下动子齿极与一定 子齿极之间的气隙进入下定子齿极铁芯产生扭矩。
[0150] 当两层同吋导磁吋, 相邻两个定子齿极的磁方向相反, 这样磁力线由定子齿极 穿过气隙进入对应动子齿极单元, 然后沿轴方向进入相邻动子齿极单元, 穿过 气隙进入相邻定子齿极后, 到达磁力线出发定子齿极形成闭合回路。
[0151] 实施例 9: 如图 9所示, 沿圆周相对设置的四直齿外定子齿极铁芯 0291由环状轭 铁 ΠΙ0293连接四直齿外定子齿极铁芯 0291外套线圈 0292, 构成四直齿外定子排 定子构件 0299, 该构件沿轴向直线排列构成四直齿外直排定子构件 029, 动子齿 极为内外缘 45度圆弧形成的直齿构成双直齿内动子齿极单元, 6个双直齿内动子 齿极单元沿轴向螺旋排列, 构成整体双直齿内动子齿极单元螺旋排列动子 039, 双直齿内动子齿极单元螺旋排列动子 039螺距 660mm, 长度 330mm, 其外套设四 外直齿定子齿极直线排列定子构成四直齿外齿极直线排列电机 019, 本实施方式 除直齿不同外其它与图 7实施例相同。
[0152] 实施例 10: 图 10为四直齿外螺旋排列定子幵关磁阻电机, 如图 10, 仅仅动子和 定子的齿极是直齿, 其它与图 8相同。
[0153] 实施例 11 : 图 11为八螺旋内定子齿极直线排列电机 111, 八螺旋内定子齿极铁 芯 2111外套设齿极线圈 2112构成八螺旋定子齿极构件 2119, 6个八螺旋定子齿极 构件 2119沿轴向直线排列构成八内螺旋定子齿极直线排列定子 211, 其外套设螺 旋动子齿极 311, 螺旋外动子齿极条 13111由圆筒支架 3112固定, 形成整体。
[0154] 八螺旋内定子齿极铁芯 2111的螺距为 816mm, 宽度为 30mm, 齿极线圈 2112的 厚度为 2mm, 螺旋外动子齿极条 13111的螺距为 816mm, 长度为 204mm, 两层螺 旋外动子齿极单元中心线之间的夹角为 15°。 [0155] 八内螺旋定子齿极直线排列定子 211分别称为 、 B、 C、 D、 E、 F、 G、 H列; 第一层 A列定子齿极中心线与对应动子齿极单元中心线夹角为 θ, θ〉0°, 此吋 , 2111Α1、 2111Α2、 2111Α3、 及 2111B4、 2111B5、 2111B6六个螺旋定子齿极 产生磁场, 使整体螺旋动子齿极 311的一个齿极受力, 带动整体螺旋动子齿极 31 1沿逆吋针方向旋转, 同吋 C、 D、 E、 F、 G、 H列产生同样的力, 带动整体动子 齿极 1038沿逆吋针方向旋转。
[0156] 当某第一层 A列定子齿极中心线与对应动子齿极单元中心线重合吋
, 2111A1、 2111B4不产生磁场, 2111A2、 2111A3 2111B5、 2111B6四个螺旋 定子齿极产生磁场, 当整体螺旋动子齿极 311转过间隔后, 又有六个螺旋定子齿 极产生磁场。
[0157] 第一层 A列定子齿极中心线与对应动子齿极单元中心线重合, 第二层 A列定子 齿极中心线与对应动子齿极单元中心线夹角为 15°, 第三层 A列定子齿极中心线 与对应动子齿极单元中心线夹角为 30°, 第四层 A列定子齿极中心线与对应动子 齿极单元中心线夹角为 45°其中第四层 A列为平衡位置, 同吋, 第四层 B列定子齿 极中心线与对应动子齿极单元中心线重合, 第五层 B列定子齿极中心线与对应动 子齿极单元中心线夹角为 15°, 第六层 B列定子齿极中心线与对应动子齿极单元 中心线夹角为 30°, 第一层 B列定子齿极中心线与对应动子齿极单元中心线夹角 为 45°其中第一层 B列为平衡位置, 初始启动吋, 需要 A列第二、 第三层单独或共 同产生磁力, B列第五、 第六层单独或共同产生磁力, 使 A列第四层脱离平衡位 置, B列第一层脱离平衡位置, 转动之后, 就可以在平衡位置使 A列第四层、 B 列第一层通磁产生磁力, 也就是有 6层能够进行排列组合产生磁力, 就有多种控 制方式, 转动 15°后, 重复此循环。
[0158] 当仅仅一层导磁吋, 若同层上下两个齿极指向轴心端同极性, 则当定子齿极磁 力线穿过气隙, 进入对应动子单元后磁力线沿转轴方向向两侧进入相邻动子单 元, 然后由相邻动子单元穿过气隙进入相邻定子齿极后, 进入导磁定子齿极形 成回路。
[0159] 同层上下两个齿极指向轴心端相反极性, 当另外两个相对的齿极导磁吋, 磁力 线按磁阻最小原理进行分部, 当另外两个相对的齿极不岛磁吋, 则定子齿极的 磁力线穿过气隙进入上动子齿极后沿轴方向的两侧通过导磁支架进入下动子齿 极穿过下动子齿极与一定子齿极之间的气隙进入下定子齿极铁芯产生扭矩。
[0160] 当两层同吋导磁吋, 相邻两个定子齿极的磁方向相反, 这样磁力线由定子齿极 穿过气隙进入对应动子齿极单元, 然后沿轴方向进入相邻动子齿极单元, 穿过 气隙进入相邻定子齿极后, 到达磁力线出发定子齿极形成闭合回路。
[0161] 实施例 12: 实施例 12的定子为内八齿极定子, 它不容易做成环状扼铁, 最好做 成实心扼铁, 这样就与实施例 11相同。
[0162] 实施例 13: 实施例 13的定子为内八齿极定子, 它不容易做成环状扼铁, 最好做 成实心扼铁, 这样就与实施例 14相同。
[0163] 实施例 14: 图 12为八螺旋内定子齿极螺旋排列电机 114, 八螺旋定子齿极铁芯 2 141外套设齿极线圈 2142构成八螺旋定子齿极构件, 6个八螺旋定子齿极构件沿 转轴方向螺旋排列构成八内螺旋定子齿极螺旋排列定子 214, 其外套设直线动子 齿极 314, 螺旋外动子齿极条 II3141由支架 V3142固定形成整体。
[0164] 八内螺旋定子齿极螺旋排列定子 214分别称为 、 B、 C、 D、 E、 F、 G、 H列; 第一层 A列定子齿极中心线与对应动子齿极单元中心线夹角为 θ, θ〉0°, 此吋 , 2141A1、 2141A2、 2141A3及 2141B4、 2141B5、 2141B6六个螺旋定子齿极产 生磁场, 使整体直线动子齿极 314的一个齿极受力, 带动整体直线动子齿极 314 沿逆吋针方向旋转, 同吋 C、 D、 E、 F、 G、 H列产生同样的力, 带动整体直线 动子齿极 314沿逆吋针方向旋转。
[0165] 当某第一层 A列定子齿极中心线与对应动子齿极单元中心线重合吋
, 2141A1、 2141B4不产生磁场, 2141A2、 2141A3及 2141B5、 2141B6四个螺旋 定子齿极产生磁场, 当整体直线动子齿极 314转过间隔后, 又有六个螺旋定子齿 极产生磁场。
[0166] 第一层 A列定子齿极中心线与对应动子齿极单元中心线重合, 第二层 A列定子 齿极中心线与对应动子齿极单元中心线夹角为 15°, 第三层 A列定子齿极中心线 与对应动子齿极单元中心线夹角为 30°, 第四层 A列定子齿极中心线与对应动子 齿极单元中心线夹角为 45°其中第四层 A列为平衡位置, 同吋, 第四层 B列定子齿 极中心线与对应动子齿极单元中心线重合, 第五层 B列定子齿极中心线与对应动 子齿极单元中心线夹角为 15°, 第六层 B列定子齿极中心线与对应动子齿极单元 中心线夹角为 30°, 第一层 B列定子齿极中心线与对应动子齿极单元中心线夹角 为 45°其中第一层 B列为平衡位置, 初始启动吋, 需要 A列第二、 第三层单独或共 同产生磁力, B列第五、 第六层单独或共同产生磁力, 使 A列第四层脱离平衡位 置, B列第一层脱离平衡位置, 转动之后, 就可以在平衡位置使 A列第四层、 B 列第一层通磁产生磁力, 也就是有 6层能够进行排列组合产生磁力, 就有多种控 制方式, 转动 15°后, 重复此循环。
[0167] 当仅仅一层导磁吋, 若同层上下两个齿极指向轴心端同极性, 则当定子齿极磁 力线穿过气隙, 进入对应动子单元后磁力线沿转轴方向向两侧进入相邻动子单 元, 然后由相邻动子单元穿过气隙进入相邻定子齿极后, 进入导磁定子齿极形 成回路。
[0168] 同层上下两个齿极指向轴心端相反极性, 当另外两个相对的齿极导磁吋, 磁力 线按磁阻最小原理进行分部, 当另外两个相对的齿极不岛磁吋, 则定子齿极的 磁力线穿过气隙进入上动子齿极后沿轴方向的两侧通过导磁支架 V进入下动子齿 极穿过下动子齿极与一定子齿极之间的气隙进入下定子齿极铁芯产生扭矩。
[0169] 当两层同吋导磁吋, 相邻两个定子齿极的磁方向相反, 这样磁力线由定子齿极 穿过气隙进入对应动子齿极单元, 然后沿轴方向进入相邻动子齿极单元, 穿过 气隙进入相邻定子齿极后, 到达磁力线出发定子齿极形成闭合回路。
[0170] 实施例 15: 图 13为内八螺旋环定子齿极直线排列电机 115, 定子为沿圆周均匀 设置的 8个直齿定子齿极铁芯 12151, 由实心轭铁 2153连接, 直齿定子齿极铁芯 12 151外套设齿极线圈 2152, 构成内八螺旋环定子齿极构件 2159, 该构件沿转轴方 向直线排列构成内八螺旋环定子齿极直线排列定子 215, 其外套设外螺旋动子齿 极 315, 直齿齿极条 3151由支架 VI3152固定构成外螺旋动子齿极 315。
[0171] 内八螺旋环定子齿极直线排列定子 215分别称为 、 B、 C、 D、 E、 F、 G、 H列 ; 第一层 A列定子齿极中心线与对应动子齿极单元中心线夹角为 θ, θ〉0°, 此 吋, 2151A1、 2151A2、 2151A3及 2151B4、 2151B5、 2151B6六个螺旋定子齿极 产生磁场, 使整体外螺旋动子齿极 315的一个齿极受力, 带动整体外螺旋动子齿 极 315沿逆吋针方向旋转, 同吋 C、 D、 E、 F、 G、 H列产生同样的力, 带动整体 外螺旋动子齿极 315沿逆吋针方向旋转。
[0172] 当某第一层 A列定子齿极中心线与对应动子齿极单元中心线重合吋
, 2151A1、 2151B4不产生磁场, 2151A2、 2151A3及 2151B5、 2151B6四个螺旋 定子齿极产生磁场, 当整体外螺旋动子齿极 315转过间隔后, 又有六个螺旋定子 齿极产生磁场。
[0173] 第一层 A列定子齿极中心线与对应动子齿极单元中心线重合, 第二层 A列定子 齿极中心线与对应动子齿极单元中心线夹角为 15°, 第三层 A列定子齿极中心线 与对应动子齿极单元中心线夹角为 30°, 第四层 A列定子齿极中心线与对应动子 齿极单元中心线夹角为 45°其中第四层 A列为平衡位置, 同吋, 第四层 B列定子齿 极中心线与对应动子齿极单元中心线重合, 第五层 B列定子齿极中心线与对应动 子齿极单元中心线夹角为 15°, 第六层 B列定子齿极中心线与对应动子齿极单元 中心线夹角为 30°, 第一层 B列定子齿极中心线与对应动子齿极单元中心线夹角 为 45°其中第一层 B列为平衡位置, 初始启动吋, 需要 A列第二、 第三层单独或共 同产生磁力, B列第五、 第六层单独或共同产生磁力, 使 A列第四层脱离平衡位 置, B列第一层脱离平衡位置, 转动之后, 就可以在平衡位置使 A列第四层、 B 列第一层通磁产生磁力, 也就是有 6层能够进行排列组合产生磁力, 就有多种控 制方式, 转动 15°后, 重复此循环。
[0174] 当仅仅一层导磁吋, 若同层上下两个齿极指向轴心端同极性, 则当定子齿极磁 力线穿过气隙, 进入对应动子单元后磁力线沿转轴方向向两侧进入相邻动子单 元, 然后由相邻动子单元穿过气隙进入相邻定子齿极后, 进入导磁定子齿极形 成回路。
[0175] 同层上下两个齿极指向轴心端相反极性, 当另外两个相对的齿极导磁吋, 磁力 线按磁阻最小原理进行分部, 当另外两个相对的齿极不岛磁吋, 则定子齿极的 磁力线穿过气隙进入上动子齿极后沿轴方向的两侧通过导磁支架 VI进入下动子 齿极穿过下动子齿极与一定子齿极之间的气隙进入下定子齿极铁芯产生扭矩。
[0176] 当两层同吋导磁吋, 相邻两个定子齿极的磁方向相反, 这样磁力线由定子齿极 穿过气隙进入对应动子齿极单元, 然后沿轴方向进入相邻动子齿极单元, 穿过 气隙进入相邻定子齿极后, 到达磁力线出发定子齿极形成闭合回路。 [0177] 实施例 16: 实施例 16的定子为内八齿极定子, 它不容易做成环状扼铁, 最好做 成实心扼铁, 这样就与实施例 17相同。
[0178] 实施例 17: 图 14为八螺旋内定子齿极螺旋排列电机 117, 八螺旋定子齿极铁芯 2 171外套设齿极线圈 2172构成八螺旋定子齿极构件, 6个八螺旋定子齿极构件沿 转轴方向螺旋排列构成八内螺旋定子齿极螺旋排列定子 217, 其外套设直线动子 齿极 317, 直齿外动子齿极条 3171由支架 DG172固定形成整体。
[0179] 八螺旋定子齿极铁芯 2171的螺距为 816mm, 宽度为 30mm, 齿极线圈 2172的厚 度为 2mm, 直齿外动子齿极条 3171的长度为 204mm。
[0180] 八内螺旋定子齿极螺旋排列定子 217分别称为 、 B、 C、 D、 E、 F、 G、 H列; 第一层 A列定子齿极中心线与对应动子齿极单元中心线夹角为 θ, θ〉0°, 此吋 , 2171A1、 2171A2、 2171A3及 2171B4、 2171B5、 2171B6六个螺旋定子齿极产 生磁场, 使整体直线动子齿极 317的一个齿极受力, 带动整体直线动子齿极 317 沿逆吋针方向旋转, 同吋 C、 D、 E、 F、 G、 H列产生同样的力, 带动整体直线 动子齿极 317沿逆吋针方向旋转。
[0181] 当某第一层 A列定子齿极中心线与对应动子齿极单元中心线重合吋
, 2171A1、 2171B4不产生磁场, 2171A2、 2171A3及 2171B5、 2171B6四个螺旋 定子齿极产生磁场, 当整体直线动子齿极 317转过间隔后, 又有六个螺旋定子齿 极产生磁场。
[0182] 第一层 A列定子齿极中心线与对应动子齿极单元中心线重合, 第二层 A列定子 齿极中心线与对应动子齿极单元中心线夹角为 15°, 第三层 A列定子齿极中心线 与对应动子齿极单元中心线夹角为 30°, 第四层 A列定子齿极中心线与对应动子 齿极单元中心线夹角为 45°其中第四层 A列为平衡位置, 同吋, 第四层 B列定子齿 极中心线与对应动子齿极单元中心线重合, 第五层 B列定子齿极中心线与对应动 子齿极单元中心线夹角为 15°, 第六层 B列定子齿极中心线与对应动子齿极单元 中心线夹角为 30°, 第一层 B列定子齿极中心线与对应动子齿极单元中心线夹角 为 45°其中第一层 B列为平衡位置, 初始启动吋, 需要 A列第二、 第三层单独或共 同产生磁力, B列第五、 第六层单独或共同产生磁力, 使 A列第四层脱离平衡位 置, B列第一层脱离平衡位置, 转动之后, 就可以在平衡位置使 A列第四层、 B 列第一层通磁产生磁力, 也就是有 6层能够进行排列组合产生磁力, 就有多种控 制方式, 转动 15°后, 重复此循环。
[0183] 当仅仅一层导磁吋, 若同层上下两个齿极指向轴心端同极性, 则当定子齿极磁 力线穿过气隙, 进入对应动子单元后磁力线沿转轴方向向两侧进入相邻动子单 元, 然后由相邻动子单元穿过气隙进入相邻定子齿极后, 进入导磁定子齿极形 成回路。
[0184] 同层上下两个齿极指向轴心端相反极性, 当另外两个相对的齿极导磁吋, 磁力 线按磁阻最小原理进行分部, 当另外两个相对的齿极不岛磁吋, 则定子齿极的 磁力线穿过气隙进入上动子齿极后沿轴方向的两侧通过导磁支架 IX进入下动子 齿极穿过下动子齿极与一定子齿极之间的气隙进入下定子齿极铁芯产生扭矩。
[0185] 当两层同吋导磁吋, 相邻两个定子齿极的磁方向相反, 这样磁力线由定子齿极 穿过气隙进入对应动子齿极单元, 然后沿轴方向进入相邻动子齿极单元, 穿过 气隙进入相邻定子齿极后, 到达磁力线出发定子齿极形成闭合回路。
[0186] 实施例 18: 图 15为八螺旋外定子齿极直线排列电机 118, 定子为沿圆周均匀设 置的 8个螺旋定子齿极铁芯 1112181, 由环状轭铁 VIII2183连接, 螺旋定子齿极铁 芯 III2181外套设齿极线圈 2182, 构成定子齿极构件 2189, 6个该构件沿轴向直线 排列构成螺旋外定子齿极直线排列定子 218, 其内套设动子齿极 111318, 动子齿 极 III318是十字四螺旋齿极单元 3181螺旋排列构成整体四螺旋动子。
[0187] 螺旋外定子齿极直线排列定子 218分别称为 、 B、 C、 D、 E、 F、 G、 H列; 第 一层 A列定子齿极中心线与对应动子齿极单元中心线夹角为 θ, θ〉0°, 此吋, 2 181A1、 2181A2、 2181A3及 2181B4、 2181B5、 2181B6六个螺旋定子齿极产生磁 场, 使整体动子齿极 III318的一个齿极受力, 带动整体动子齿极 III318沿逆吋针 方向旋转, 同吋 C、 D、 E、 F、 G、 H列产生同样的力, 带动整体动子齿极 III318 沿逆吋针方向旋转。
[0188] 当某第一层 A列定子齿极中心线与对应动子齿极单元中心线重合吋
, 2181A1、 2181B4不产生磁场, 2181A2、 2181A3及 2181B5、 2181B6四个螺旋 定子齿极产生磁场, 当整体动子齿极 III318转过间隔后, 又有六个螺旋定子齿极 产生磁场。 [0189] 第一层 A列定子齿极中心线与对应动子齿极单元中心线重合, 第二层 A列定子 齿极中心线与对应动子齿极单元中心线夹角为 15°, 第三层 A列定子齿极中心线 与对应动子齿极单元中心线夹角为 30°, 第四层 A列定子齿极中心线与对应动子 齿极单元中心线夹角为 45°其中第四层 A列为平衡位置, 同吋, 第四层 B列定子齿 极中心线与对应动子齿极单元中心线重合, 第五层 B列定子齿极中心线与对应动 子齿极单元中心线夹角为 15°, 第六层 B列定子齿极中心线与对应动子齿极单元 中心线夹角为 30°, 第一层 B列定子齿极中心线与对应动子齿极单元中心线夹角 为 45°其中第一层 B列为平衡位置, 初始启动吋, 需要 A列第二、 第三层单独或共 同产生磁力, B列第五、 第六层单独或共同产生磁力, 使 A列第四层脱离平衡位 置, B列第一层脱离平衡位置, 转动之后, 就可以在平衡位置使 A列第四层、 B 列第一层通磁产生磁力, 也就是有 6层能够进行排列组合产生磁力, 就有多种控 制方式, 转动 15°后, 重复此循环。
[0190] 当仅仅一层导磁吋, 若同层上下两个齿极指向轴心端同极性, 则当定子齿极磁 力线穿过气隙, 进入对应动子单元后磁力线沿转轴方向向两侧进入相邻动子单 元, 然后由相邻动子单元穿过气隙进入相邻定子齿极后, 通过轭铁进入导磁定 子齿极形成回路。
[0191] 同层上下两个齿极指向轴心端相反极性, 当另外两个相对的齿极导磁吋, 磁力 线按磁阻最小原理进行分部, 当另外两个相对的齿极不岛磁吋, 则定子齿极的 磁力线穿过气隙进入上动子齿极后沿径向穿过动子进入下动子齿极, 穿过下动 子齿极与一定子齿极之间的气隙进入下定子齿极铁芯产生扭矩。
[0192] 当两层同吋导磁吋, 相邻两个定子齿极的磁方向相反, 这样磁力线由定子齿极 穿过气隙进入对应动子齿极单元, 然后沿轴方向进入相邻动子齿极单元, 穿过 气隙进入相邻定子齿极后, 到达磁力线出发定子齿极形成闭合回路。
[0193] 实施例 19: 图 16为八螺旋外定子齿极直线排列电机 119, 定子为沿圆周均匀设 置的 8个螺旋定子齿极铁芯 IV2191 , 由环状轭铁 K2193连接, 螺旋定子齿极铁芯 I V2191外套设齿极线圈 2192, 构成定子齿极构件 2199, 6个该构件沿轴向直线排 列构成螺旋外定子齿极直线排列定子 219, 其内套设动子齿极 IV319, 动子齿极 I V319是螺旋齿极单元 3191螺旋排列构成整体四螺旋动子, 螺旋齿极单元 3191由 环状动子轭铁 3192连接。
[0194] 螺旋外定子齿极直线排列定子 219分别称为 、 B、 C、 D、 E、 F、 G、 H列; 第 一层 A列定子齿极中心线与对应动子齿极单元中心线夹角为 θ, θ〉0°, 此吋, 2 191A1、 2191A2、 2191A3及 2191B4、 2191B5、 2191B6六个螺旋定子齿极产生磁 场, 使整体动子齿极 IV319的一个齿极受力, 带动整体动子齿极 IV319沿逆吋针 方向旋转, 同吋 C、 D、 E、 F、 G、 H列产生同样的力, 带动整体动子齿极 IV319 沿逆吋针方向旋转。
[0195] 当某第一层 A列定子齿极中心线与对应动子齿极单元中心线重合吋
, 2191A1、 2191B4不产生磁场, 2191A2、 2191A3及 2191B5、 2191B6四个螺旋 定子齿极产生磁场, 当整体动子齿极 IV319转过间隔后, 又有六个螺旋定子齿极 产生磁场。
[0196] 第一层 A列定子齿极中心线与对应动子齿极单元中心线重合, 第二层 A列定子 齿极中心线与对应动子齿极单元中心线夹角为 15°, 第三层 A列定子齿极中心线 与对应动子齿极单元中心线夹角为 30°, 第四层 A列定子齿极中心线与对应动子 齿极单元中心线夹角为 45°其中第四层 A列为平衡位置, 同吋, 第四层 B列定子齿 极中心线与对应动子齿极单元中心线重合, 第五层 B列定子齿极中心线与对应动 子齿极单元中心线夹角为 15°, 第六层 B列定子齿极中心线与对应动子齿极单元 中心线夹角为 30°, 第一层 B列定子齿极中心线与对应动子齿极单元中心线夹角 为 45°其中第一层 B列为平衡位置, 初始启动吋, 需要 A列第二、 第三层单独或共 同产生磁力, B列第五、 第六层单独或共同产生磁力, 使 A列第四层脱离平衡位 置, B列第一层脱离平衡位置, 转动之后, 就可以在平衡位置使 A列第四层、 B 列第一层通磁产生磁力, 也就是有 6层能够进行排列组合产生磁力, 就有多种控 制方式, 转动 15°后, 重复此循环。
[0197] 当仅仅一层导磁吋, 若同层上下两个齿极指向轴心端同极性, 则当定子齿极磁 力线穿过气隙, 进入对应动子单元后磁力线沿转轴方向向两侧进入相邻动子单 元, 然后由相邻动子单元穿过气隙进入相邻定子齿极后, 通过轭铁进入导磁定 子齿极形成回路。
[0198] 同层上下两个齿极指向轴心端相反极性, 当另外两个相对的齿极导磁吋, 磁力 线按磁阻最小原理进行分部, 当另外两个相对的齿极不岛磁吋, 则定子齿极的 磁力线穿过气隙进入上动子齿极后沿轴方向的两侧通过环状动子扼铁进入下动 子齿极穿过下动子齿极与一定子齿极之间的气隙进入下定子齿极铁芯产生扭矩
[0199] 当两层同吋导磁吋, 相邻两个定子齿极的磁方向相反, 这样磁力线由定子齿极 穿过气隙进入对应动子齿极单元, 然后沿轴方向进入相邻动子齿极单元, 穿过 气隙进入相邻定子齿极后, 到达磁力线出发定子齿极形成闭合回路。
[0200] 实施例 20: 图 17为八直齿外定子齿极直线排列电机 120, 定子为沿圆周均匀设 置的 8个直齿定子齿极铁芯 1112201, 由环状轭铁 X2203连接, 直齿定子齿极铁芯 II 12201外套设齿极线圈 2202, 构成定子齿极构件 2209, 6个该构件沿轴向直线排列 构成螺旋外定子齿极直线排列定子 220, 其内套设动子齿极 V320, 动子齿极 V320 是直齿齿极单元 3201螺旋排列构成整体四螺旋动子, 直齿齿极单元 3201由环状 动子轭铁 13202连接。
[0201] 螺旋外定子齿极直线排列定子 220分别称为 、 B、 C、 D、 E、 F、 G、 H列; 第 一层 A列定子齿极中心线与对应动子齿极单元中心线夹角为 θ, θ〉0°, 此吋, 2 201A1、 2201A2、 2201A3及 2201B4、 2201B5、 2201B6六个螺旋定子齿极产生磁 场, 使整体动子齿极 V320的一个齿极受力, 带动整体动子齿极 V320沿逆吋针方 向旋转, 同吋 C、 D、 E、 F、 G、 H列产生同样的力, 带动整体动子齿极 V320沿 逆吋针方向旋转。
[0202] 当某第一层 A列定子齿极中心线与对应动子齿极单元中心线重合吋
, 2201A1、 2201B4不产生磁场, 2201A2、 2201 3及220185、 2201B6四个螺旋 定子齿极产生磁场, 当整体动子齿极 V320转过间隔后, 又有六个螺旋定子齿极 产生磁场。
[0203] 第一层 A列定子齿极中心线与对应动子齿极单元中心线重合, 第二层 A列定子 齿极中心线与对应动子齿极单元中心线夹角为 15°, 第三层 A列定子齿极中心线 与对应动子齿极单元中心线夹角为 30°, 第四层 A列定子齿极中心线与对应动子 齿极单元中心线夹角为 45°其中第四层 A列为平衡位置, 同吋, 第四层 B列定子齿 极中心线与对应动子齿极单元中心线重合, 第五层 B列定子齿极中心线与对应动 子齿极单元中心线夹角为 15°, 第六层 B列定子齿极中心线与对应动子齿极单元 中心线夹角为 30°, 第一层 B列定子齿极中心线与对应动子齿极单元中心线夹角 为 45°其中第一层 B列为平衡位置, 初始启动吋, 需要 A列第二、 第三层单独或共 同产生磁力, B列第五、 第六层单独或共同产生磁力, 使 A列第四层脱离平衡位 置, B列第一层脱离平衡位置, 转动之后, 就可以在平衡位置使 A列第四层、 B 列第一层通磁产生磁力, 也就是有 6层能够进行排列组合产生磁力, 就有多种控 制方式, 转动 15°后, 重复此循环。
[0204] 当仅仅一层导磁吋, 若同层上下两个齿极指向轴心端同极性, 则当定子齿极磁 力线穿过气隙, 进入对应动子单元后磁力线沿转轴方向向两侧进入相邻动子单 元, 然后由相邻动子单元穿过气隙进入相邻定子齿极后, 通过轭铁进入导磁定 子齿极形成回路。
[0205] 同层上下两个齿极指向轴心端相反极性, 当另外两个相对的齿极导磁吋, 磁力 线按磁阻最小原理进行分部, 当另外两个相对的齿极不岛磁吋, 则定子齿极的 磁力线穿过气隙进入上动子齿极后沿轴方向的两侧通过环状动子扼铁 I进入下动 子齿极穿过下动子齿极与一定子齿极之间的气隙进入下定子齿极铁芯产生扭矩
[0206] 当两层同吋导磁吋, 相邻两个定子齿极的磁方向相反, 这样磁力线由定子齿极 穿过气隙进入对应动子齿极单元, 然后沿轴方向进入相邻动子齿极单元, 穿过 气隙进入相邻定子齿极后, 到达磁力线出发定子齿极形成闭合回路。
[0207] 实施例 21 : 图 18为八直齿外定子齿极直线排列电机 121, 定子为沿圆周均匀设 置的 8个直齿定子齿极铁芯 IV2211 , 由环状轭铁 XI2213连接, 直齿定子齿极铁芯 I V2211外套设齿极线圈 2212, 构成定子齿极构件 2219, 6个该构件沿轴向直线排 列构成螺旋外定子齿极直线排列定子 221, 其内套设动子齿极 VI321 , 动子齿极 V 1321是十字直齿齿极单元 3211螺旋排列构成整体四螺旋动子。
[0208] 螺旋外定子齿极直线排列定子 221分别称为 、 B、 C、 D、 E、 F、 G、 H列; 第 一层 A列定子齿极中心线与对应动子齿极单元中心线夹角为 θ, θ〉0°, 此吋, 2 211A1、 2211A2、 2211A3及 2211Β4、 2211Β5、 2211B6六个螺旋定子齿极产生磁 场, 使整体动子齿极 VI321的一个齿极受力, 带动整体动子齿极 VI321沿逆吋针 方向旋转, 同吋 C、 D、 E、 F、 G、 H列产生同样的力, 带动整体动子齿极 VI321 沿逆吋针方向旋转。
[0209] 当某第一层 A列定子齿极中心线与对应动子齿极单元中心线重合吋
, 2211A1、 2211B4不产生磁场, 2211A2、 2211A3 2211B5、 2211B6四个螺旋 定子齿极产生磁场, 当整体动子齿极 VI321转过间隔后, 又有六个螺旋定子齿极 产生磁场。
[0210] 第一层 A列定子齿极中心线与对应动子齿极单元中心线重合, 第二层 A列定子 齿极中心线与对应动子齿极单元中心线夹角为 15°, 第三层 A列定子齿极中心线 与对应动子齿极单元中心线夹角为 30°, 第四层 A列定子齿极中心线与对应动子 齿极单元中心线夹角为 45°其中第四层 A列为平衡位置, 同吋, 第四层 B列定子齿 极中心线与对应动子齿极单元中心线重合, 第五层 B列定子齿极中心线与对应动 子齿极单元中心线夹角为 15°, 第六层 B列定子齿极中心线与对应动子齿极单元 中心线夹角为 30°, 第一层 B列定子齿极中心线与对应动子齿极单元中心线夹角 为 45°其中第一层 B列为平衡位置, 初始启动吋, 需要 A列第二、 第三层单独或共 同产生磁力, B列第五、 第六层单独或共同产生磁力, 使 A列第四层脱离平衡位 置, B列第一层脱离平衡位置, 转动之后, 就可以在平衡位置使 A列第四层、 B 列第一层通磁产生磁力, 也就是有 6层能够进行排列组合产生磁力, 就有多种控 制方式, 转动 15°后, 重复此循环。
[0211] 当仅仅一层导磁吋, 若同层上下两个齿极指向轴心端同极性, 则当定子齿极磁 力线穿过气隙, 进入对应动子单元后磁力线沿转轴方向向两侧进入相邻动子单 元, 然后由相邻动子单元穿过气隙进入相邻定子齿极后, 通过轭铁进入导磁定 子齿极形成回路。
[0212] 同层上下两个齿极指向轴心端相反极性, 当另外两个相对的齿极导磁吋, 磁力 线按磁阻最小原理进行分部, 当另外两个相对的齿极不岛磁吋, 则定子齿极的 磁力线穿过气隙进入上动子齿极后沿径向穿过动子进入下动子齿极, 穿过下动 子齿极与一定子齿极之间的气隙进入下定子齿极铁芯产生扭矩。
[0213] 当两层同吋导磁吋, 相邻两个定子齿极的磁方向相反, 这样磁力线由定子齿极 穿过气隙进入对应动子齿极单元, 然后沿轴方向进入相邻动子齿极单元, 穿过 气隙进入相邻定子齿极后, 到达磁力线出发定子齿极形成闭合回路。
[0214] 实施例 22: 图 19为八直齿外定子齿极螺旋排列电机 122, 定子为沿圆周均匀设 置的 8个直齿定子齿极铁芯 V2221 , 由环状轭铁 ΧΠ2223连接, 直齿定子齿极铁芯 V2221外套设齿极线圈 2222构成定子齿极构件 2229, 6个该构件螺旋排列构成螺 旋外定子齿极螺旋排列定子 222, 其内套设动子齿极 VH322, 动子齿极 VH322是 直齿齿极单元 3221直线排列构成整体四直线动子, 直齿齿极单元 3221由环状动 子轭铁 Π3222连接。
[0215] 螺旋外定子齿极螺旋排列定子 222分别称为 、 B、 C、 D、 E、 F、 G、 H列; 第 一层 A列定子齿极中心线与对应动子齿极单元中心线夹角为 θ, θ〉0°, 此吋, 2 221A1、 2221A2、 2221A3及 2221B4、 2221B5、 2221B6六个螺旋定子齿极产生磁 场, 使整体动子齿极 VH322的一个齿极受力, 带动整体动子齿极 VH322沿逆吋针 方向旋转, 同吋 C、 D、 E、 F、 G、 H列产生同样的力, 带动整体动子齿极 VH322 沿逆吋针方向旋转。
[0216] 当某第一层 A列定子齿极中心线与对应动子齿极单元中心线重合吋
, 2221A1、 2221B4不产生磁场, 2221A2、 2221A3 2221B5、 2221B6四个螺旋 定子齿极产生磁场, 当整体动子齿极 VH322转过间隔后, 又有六个螺旋定子齿极 产生磁场。
[0217] 第一层 A列定子齿极中心线与对应动子齿极单元中心线重合, 第二层 A列定子 齿极中心线与对应动子齿极单元中心线夹角为 15°, 第三层 A列定子齿极中心线 与对应动子齿极单元中心线夹角为 30°, 第四层 A列定子齿极中心线与对应动子 齿极单元中心线夹角为 45°其中第四层 A列为平衡位置, 同吋, 第四层 B列定子齿 极中心线与对应动子齿极单元中心线重合, 第五层 B列定子齿极中心线与对应动 子齿极单元中心线夹角为 15°, 第六层 B列定子齿极中心线与对应动子齿极单元 中心线夹角为 30°, 第一层 B列定子齿极中心线与对应动子齿极单元中心线夹角 为 45°其中第一层 B列为平衡位置, 初始启动吋, 需要 A列第二、 第三层单独或共 同产生磁力, B列第五、 第六层单独或共同产生磁力, 使 A列第四层脱离平衡位 置, B列第一层脱离平衡位置, 转动之后, 就可以在平衡位置使 A列第四层、 B 列第一层通磁产生磁力, 也就是有 6层能够进行排列组合产生磁力, 就有多种控 制方式, 转动 15°后, 重复此循环。
[0218] 当仅仅一层导磁吋, 若同层上下两个齿极指向轴心端同极性, 则当定子齿极磁 力线穿过气隙, 进入对应动子单元后磁力线沿转轴方向向两侧进入相邻动子单 元, 然后由相邻动子单元穿过气隙进入相邻定子齿极后, 通过轭铁进入导磁定 子齿极形成回路。
[0219] 同层上下两个齿极指向轴心端相反极性, 当另外两个相对的齿极导磁吋, 磁力 线按磁阻最小原理进行分部, 当另外两个相对的齿极不岛磁吋, 则定子齿极的 磁力线穿过气隙进入上动子齿极后沿轴方向的两侧通过环状动子扼铁 II进入下动 子齿极穿过下动子齿极与一定子齿极之间的气隙进入下定子齿极铁芯产生扭矩
[0220] 当两层同吋导磁吋, 相邻两个定子齿极的磁方向相反, 这样磁力线由定子齿极 穿过气隙进入对应动子齿极单元, 然后沿轴方向进入相邻动子齿极单元, 穿过 气隙进入相邻定子齿极后, 到达磁力线出发定子齿极形成闭合回路。
[0221] 实施例 23: 图 20为八螺旋外定子齿极直线排列电机 123, 定子为沿圆周均匀设 置的 8个直齿定子齿极铁芯 VI2231 , 由环状轭铁 12233连接, 直齿定子齿极铁芯 VI 2231外套设齿极线圈 2232, 构成定子齿极构件 2239, 6个该构件螺旋排列构成螺 旋外定子齿极螺旋排列定子 223, 其内套设动子齿极 VIII323 , 动子齿极 VIII323是 十字直齿齿极单元 3231直线排列构成整体四直线动子 323。
[0222] 螺旋外定子齿极螺旋排列定子 223分别称为 、 B、 C、 D、 E、 F、 G、 H列; 第 一层 A列定子齿极中心线与对应动子齿极单元中心线夹角为 θ, θ〉0°, 此吋, 2 231Α1、 2231Α2、 2231八3及223 4、 2231B5、 2231B6六个螺旋定子齿极产生磁 场, 使整体动子齿极 VIII323的一个齿极受力, 带动整体动子齿极 VIII323沿逆吋 针方向旋转, 同吋 C、 D、 E、 F、 G、 H列产生同样的力, 带动整体动子齿极 VIII 323沿逆吋针方向旋转。
[0223] 当某第一层 A列定子齿极中心线与对应动子齿极单元中心线重合吋
, 2231A1、 2231B4不产生磁场, 2231A2、 2231八3及223185、 2231B6四个螺旋 定子齿极产生磁场, 当整体动子齿极 VIII323转过间隔后, 又有六个螺旋定子齿 极产生磁场。 [0224] 第一层 A列定子齿极中心线与对应动子齿极单元中心线重合, 第二层 A列定子 齿极中心线与对应动子齿极单元中心线夹角为 15°, 第三层 A列定子齿极中心线 与对应动子齿极单元中心线夹角为 30°, 第四层 A列定子齿极中心线与对应动子 齿极单元中心线夹角为 45°其中第四层 A列为平衡位置, 同吋, 第四层 B列定子齿 极中心线与对应动子齿极单元中心线重合, 第五层 B列定子齿极中心线与对应动 子齿极单元中心线夹角为 15°, 第六层 B列定子齿极中心线与对应动子齿极单元 中心线夹角为 30°, 第一层 B列定子齿极中心线与对应动子齿极单元中心线夹角 为 45°其中第一层 B列为平衡位置, 初始启动吋, 需要 A列第二、 第三层单独或共 同产生磁力, B列第五、 第六层单独或共同产生磁力, 使 A列第四层脱离平衡位 置, B列第一层脱离平衡位置, 转动之后, 就可以在平衡位置使 A列第四层、 B 列第一层通磁产生磁力, 也就是有 6层能够进行排列组合产生磁力, 就有多种控 制方式, 转动 15°后, 重复此循环。
[0225] 当仅仅一层导磁吋, 若同层上下两个齿极指向轴心端同极性, 则当定子齿极磁 力线穿过气隙, 进入对应动子单元后磁力线沿转轴方向向两侧进入相邻动子单 元, 然后由相邻动子单元穿过气隙进入相邻定子齿极后, 通过轭铁进入导磁定 子齿极形成回路。
[0226] 同层上下两个齿极指向轴心端相反极性, 当另外两个相对的齿极导磁吋, 磁力 线按磁阻最小原理进行分部, 当另外两个相对的齿极不岛磁吋, 则定子齿极的 磁力线穿过气隙进入上动子齿极后沿径向穿过动子进入下动子齿极, 穿过下动 子齿极与一定子齿极之间的气隙进入下定子齿极铁芯产生扭矩。
[0227] 当两层同吋导磁吋, 相邻两个定子齿极的磁方向相反, 这样磁力线由定子齿极 穿过气隙进入对应动子齿极单元, 然后沿轴方向进入相邻动子齿极单元, 穿过 气隙进入相邻定子齿极后, 到达磁力线出发定子齿极形成闭合回路。
[0228] 实施例 24: 图 21为八螺旋外定子齿极螺旋排列电机 124, 定子为沿圆周均匀设 置的 8个螺旋定子齿极铁芯 V2241 , 由环状轭铁 Π2243连接, 螺旋定子齿极铁芯 V 2241外套设齿极线圈 2242, 构成定子齿极构件 2249, 该构件螺旋排列构成螺旋 外定子齿极螺旋排列定子 224, 其内套设动子齿极 1X324, 动子齿极 DG24是螺旋 齿极单元 3241直线排列构成整体四直线动子, 螺旋齿极单元 3241由环状动子轭 铁 ΠΙ3242连接。
[0229] 螺旋外定子齿极螺旋排列定子 224分别称为 、 B、 C、 D、 E、 F、 G、 H列; 第 一层 A列定子齿极中心线与对应动子齿极单元中心线夹角为 θ, θ〉0°, 此吋, 2 241A1、 2241A2、 2241A3及 2241B4、 2241B5、 2241B6六个螺旋定子齿极产生磁 场, 使整体动子齿极 DG24的一个齿极受力, 带动整体动子齿极 DG24沿逆吋针 方向旋转, 同吋 C、 D、 E、 F、 G、 H列产生同样的力, 带动整体动子齿极 DG24 沿逆吋针方向旋转。
[0230] 当某第一层 A列定子齿极中心线与对应动子齿极单元中心线重合吋
, 2221A1、 2221B4不产生磁场, 2241A2、 2241A3 2241B5、 2241B6四个螺旋 定子齿极产生磁场, 当整体动子齿极 DG24转过间隔后, 又有六个螺旋定子齿极 产生磁场。
[0231] 第一层 A列定子齿极中心线与对应动子齿极单元中心线重合, 第二层 A列定子 齿极中心线与对应动子齿极单元中心线夹角为 15°, 第三层 A列定子齿极中心线 与对应动子齿极单元中心线夹角为 30°, 第四层 A列定子齿极中心线与对应动子 齿极单元中心线夹角为 45°其中第四层 A列为平衡位置, 同吋, 第四层 B列定子齿 极中心线与对应动子齿极单元中心线重合, 第五层 B列定子齿极中心线与对应动 子齿极单元中心线夹角为 15°, 第六层 B列定子齿极中心线与对应动子齿极单元 中心线夹角为 30°, 第一层 B列定子齿极中心线与对应动子齿极单元中心线夹角 为 45°其中第一层 B列为平衡位置, 初始启动吋, 需要 A列第二、 第三层单独或共 同产生磁力, B列第五、 第六层单独或共同产生磁力, 使 A列第四层脱离平衡位 置, B列第一层脱离平衡位置, 转动之后, 就可以在平衡位置使 A列第四层、 B 列第一层通磁产生磁力, 也就是有 6层能够进行排列组合产生磁力, 就有多种控 制方式, 转动 15°后, 重复此循环。
[0232] 当仅仅一层导磁吋, 若同层上下两个齿极指向轴心端同极性, 则当定子齿极磁 力线穿过气隙, 进入对应动子单元后磁力线沿转轴方向向两侧进入相邻动子单 元, 然后由相邻动子单元穿过气隙进入相邻定子齿极后, 通过轭铁进入导磁定 子齿极形成回路。
[0233] 同层上下两个齿极指向轴心端相反极性, 当另外两个相对的齿极导磁吋, 磁力 线按磁阻最小原理进行分部, 当另外两个相对的齿极不岛磁吋, 则定子齿极的 磁力线穿过气隙进入上动子齿极后沿轴方向的两侧通过环状动子扼铁 III进入下 动子齿极穿过下动子齿极与一定子齿极之间的气隙进入下定子齿极铁芯产生扭 矩。
[0234] 当两层同吋导磁吋, 相邻两个定子齿极的磁方向相反, 这样磁力线由定子齿极 穿过气隙进入对应动子齿极单元, 然后沿轴方向进入相邻动子齿极单元, 穿过 气隙进入相邻定子齿极后, 到达磁力线出发定子齿极形成闭合回路。
[0235] 实施例 25: 图 22为八螺旋外定子齿极直线排列电机 125, 定子为沿圆周均匀设 置的 8个螺旋定子齿极铁芯 VI2251 , 由环状轭铁 ΙΠ2253连接, 螺旋定子齿极铁芯 VI2251外套设齿极线圈 2252, 构成定子齿极构件 2259, 6个该构件螺旋排列构成 螺旋外定子齿极螺旋排列定子 225, 其内套设动子齿极 X325 , 动子齿极 X325是十 字螺旋齿极单元 3251直线排列构成整体四直线动子。
[0236] 螺旋外定子齿极螺旋排列定子 225分别称为 、 B、 C、 D、 E、 F、 G、 H列; 第 一层 A列定子齿极中心线与对应动子齿极单元中心线夹角为 θ, θ〉0°, 此吋, 2 251Α1、 2251Α2、 2251八3及225 4、 2251B5、 2251B6六个螺旋定子齿极产生磁 场, 使整体动子齿极 Χ325的一个齿极受力, 带动整体动子齿极 Χ325沿逆吋针方 向旋转, 同吋 C、 D、 E、 F、 G、 H列产生同样的力, 带动整体动子齿极 X325沿 逆吋针方向旋转。
[0237] 当某第一层 A列定子齿极中心线与对应动子齿极单元中心线重合吋
, 2251A1、 2251B4不产生磁场, 2251A2、 2251八3及225185、 2251B6四个螺旋 定子齿极产生磁场, 当整体动子齿极 X325转过间隔后, 又有六个螺旋定子齿极 产生磁场。
[0238] 第一层 A列定子齿极中心线与对应动子齿极单元中心线重合, 第二层 A列定子 齿极中心线与对应动子齿极单元中心线夹角为 15°, 第三层 A列定子齿极中心线 与对应动子齿极单元中心线夹角为 30°, 第四层 A列定子齿极中心线与对应动子 齿极单元中心线夹角为 45°其中第四层 A列为平衡位置, 同吋, 第四层 B列定子齿 极中心线与对应动子齿极单元中心线重合, 第五层 B列定子齿极中心线与对应动 子齿极单元中心线夹角为 15°, 第六层 B列定子齿极中心线与对应动子齿极单元 中心线夹角为 30°, 第一层 B列定子齿极中心线与对应动子齿极单元中心线夹角 为 45°其中第一层 B列为平衡位置, 初始启动吋, 需要 A列第二、 第三层单独或共 同产生磁力, B列第五、 第六层单独或共同产生磁力, 使 A列第四层脱离平衡位 置, B列第一层脱离平衡位置, 转动之后, 就可以在平衡位置使 A列第四层、 B 列第一层通磁产生磁力, 也就是有 6层能够进行排列组合产生磁力, 就有多种控 制方式, 转动 15°后, 重复此循环。
[0239] 当仅仅一层导磁吋, 若同层上下两个齿极指向轴心端同极性, 则当定子齿极磁 力线穿过气隙, 进入对应动子单元后磁力线沿转轴方向向两侧进入相邻动子单 元, 然后由相邻动子单元穿过气隙进入相邻定子齿极后, 通过轭铁进入导磁定 子齿极形成回路。
[0240] 同层上下两个齿极指向轴心端相反极性, 当另外两个相对的齿极导磁吋, 磁力 线按磁阻最小原理进行分部, 当另外两个相对的齿极不岛磁吋, 则定子齿极的 磁力线穿过气隙进入上动子齿极后沿径向穿过动子进入下动子齿极, 穿过下动 子齿极与一定子齿极之间的气隙进入下定子齿极铁芯产生扭矩。
[0241] 当两层同吋导磁吋, 相邻两个定子齿极的磁方向相反, 这样磁力线由定子齿极 穿过气隙进入对应动子齿极单元, 然后沿轴方向进入相邻动子齿极单元, 穿过 气隙进入相邻定子齿极后, 到达磁力线出发定子齿极形成闭合回路。
[0242] 实施例 26: 图 23为十六螺旋外定子齿极螺旋排列电机 126, 定子为沿圆周均匀 设置的 16个螺旋定子齿极铁芯 VH2261, 由螺旋轭铁 2263连接, 螺旋定子齿极铁 芯 VH2261外套设齿极线圈 2262, 齿极之间的螺旋轭铁 2263套设轭铁线圈 2264构 成定子齿极构件, 构成定子齿极构件, 该构件螺旋排列构成螺旋外定子齿极螺 旋排列定子 226, 其内套设动子齿极 ΧΙ326, 动子齿极 ΧΙ326是直齿齿极单元 3261 螺旋排列构成整体八螺旋动子。
[0243] 螺旋外定子齿极螺旋排列定子 226分别称为 、 B、 C、 D、 E、 F、 G、 H、 I、 J 、 K、 L、 M、 N、 0、 P列; 第一层 A列定子齿极中心线与对应动子齿极单元中心 线夹角为 θ, θ〉0。, 此吋, 2261Α1、 2261Α2、 2261Α3 2261Β4、 2261Β5、 226 1B6六个螺旋定子齿极产生磁场, 使整体动子齿极 ΧΙ326的一个齿极受力, 带动 整体动子齿极 ΧΙ326沿逆吋针方向旋转, 同吋 C、 D、 E、 F、 G、 H、 I、 J、 K、 L 、 M、 N、 0、 P列产生同样的力, 带动整体动子齿极 XI326沿逆吋针方向旋转。
[0244] 当某第一层 A列定子齿极中心线与对应动子齿极单元中心线重合吋
, 2251A1、 2251B4不产生磁场, 2251A2、 2251八3及225185、 2251B6四个螺旋 定子齿极产生磁场, 当整体动子齿极 XI326转过间隔后, 又有六个螺旋定子齿极 产生磁场。
[0245] 第一层 A列定子齿极中心线与对应动子齿极单元中心线重合, 第二层 A列定子 齿极中心线与对应动子齿极单元中心线夹角为 7.5°, 第三层 A列定子齿极中心线 与对应动子齿极单元中心线夹角为 15°, 第四层 A列定子齿极中心线与对应动子 齿极单元中心线夹角为 22.5°其中第四层 A列为平衡位置, 同吋, 第四层 B列定子 齿极中心线与对应动子齿极单元中心线重合, 第五层 B列定子齿极中心线与对应 动子齿极单元中心线夹角为 7.5, 第六层 B列定子齿极中心线与对应动子齿极单元 中心线夹角为 15°, 第一层 B列定子齿极中心线与对应动子齿极单元中心线夹角 为 22.5°其中第一层 B列为平衡位置, 初始启动吋, 需要 A列第二、 第三层单独或 共同产生磁力, B列第五、 第六层单独或共同产生磁力, 使 A列第四层脱离平衡 位置, B列第一层脱离平衡位置, 转动之后, 就可以在平衡位置使 A列第四层、 B列第一层通磁产生磁力, 也就是有 6层能够进行排列组合产生磁力, 就有多种 控制方式, 转动 7.5°后, 重复此循环。
[0246] 当仅仅一层导磁吋, 若同层上下两个齿极指向轴心端同极性, 则当定子齿极磁 力线穿过气隙, 进入对应动子单元后磁力线沿转轴方向向两侧进入相邻动子单 元, 然后由相邻动子单元穿过气隙进入相邻定子齿极后, 通过轭铁进入导磁定 子齿极形成回路。
[0247] 同层上下两个齿极指向轴心端相反极性, 当另外六个相对的齿极导磁吋, 磁力 线按磁阻最小原理进行分部, 当另外六个相对的齿极不岛磁吋, 则定子齿极的 磁力线穿过气隙进入上动子齿极后通过轭铁进入下动子齿极穿过下动子齿极与 一定子齿极之间的气隙进入下定子齿极铁芯产生扭矩。
[0248] 当两层同吋导磁吋, 相邻两个定子齿极的磁方向相反, 这样磁力线由定子齿极 穿过气隙进入对应动子齿极单元, 然后沿轴方向进入相邻动子齿极单元, 穿过 气隙进入相邻定子齿极后, 到达磁力线出发定子齿极形成闭合回路。 [0249] 实施例 27: 如图 24所示,两个螺旋齿极铁芯 2291沿圆周相对设置, 两个螺旋齿极 铁芯 2291的轭部由环状轭铁 IV2293连接, 螺旋齿极铁芯 2291套设齿极线圈 2292 , 螺旋齿极铁芯 2291之间的轭铁 2293轭铁线圈 2294, 构成 halbach阵列螺旋齿极 定子构件, halbach阵列螺旋齿极定子构件沿转轴方向螺旋排列, 构成 halbach阵 列螺旋齿极螺旋排列定子 229, 其内设反向双螺旋齿极动子, 构成 halbach阵列螺 旋齿极螺旋排列定子 229内设反螺旋动子电动机, halbach阵列螺旋齿极螺旋排列 的螺距为 660mm, 长度为 330mm, 反向双螺旋齿极动子的螺距为 660mm, 长度 为 330mm,只是螺距方向相反, 这样三层 halbach阵列螺旋齿极定子构件每次转动 6 0°就能够保持持续旋转, 六层相当于两个三层的 halbach阵列螺旋齿极螺旋排列 内反向螺旋电动机串联。
[0250] 现有幵关磁阻电动机调速系统的功率变换器、 控制器、 转子位置检测器等, 通 过适应性修改, 就可以应用于本发明。
[0251] 本专利公幵的数值和数据, 例如螺距、 宽度、 高度等仅仅是说明结构特征, 不 作为对本发明的限制性解释。
[0252] 一种双向双螺杆泵电机, 包括第一螺旋条状动子幵关磁阻电机, 所述第一螺旋 条状动子幵关磁阻电机的动子作为双螺杆泵的第一主动螺杆, 该电机的环状定 子侧幵口部位与第一主动螺杆配合另一个螺杆, 二者构成双向双螺杆泵电机, 定子内部填充树脂, 形成圆环内面。 树脂不导磁, 对电机的运行也没有影响, 添加树脂的目的是为了使定子的内部适合螺杆的形状。 如图 26, 双向双螺杆泵 的两端设置有端盖 1005, 端盖 1005上设置有与第一主动螺杆和另一个螺杆配合 的孔, 在两个端盖 1005上分别设置有进油口和出油口。 双向双螺杆泵电机的其 余结构与现有的双螺杆泵结构相同。 电机的动子上穿有输出轴 1008。 所述的双 向是指电机可以作为马达和泵用。
[0253] 所述另一个螺杆为第二螺旋条状动子幵关磁阻电机的动子作为第二主动螺杆, 第二螺旋条状动子幵关磁阻电机对应侧幵口使第一主动螺杆与第二主动螺杆啮 合, 即第二主动螺杆的螺旋方向与第一主动螺杆的螺旋方向相反。
[0254] 所述另一螺杆为从动螺杆。
[0255] 所述螺旋条状动子幵关磁阻电机的齿极数为 1-8齿极之一。 [0256] 如图 25, 两个螺杆的端部设置有相互啮合的同步齿轮 1009。
[0257] 一种电动汽车, 所述的双螺杆泵电机作为电动汽车的轮边电机, 电机之间通过 油路连接, 使得电机之间能够通过双向双螺杆泵相互输送能量。 双向双螺杆泵 电机的输出轴与电动汽车的转动轴连接。
[0258] 双向双螺杆泵电机为电动汽车的前驱、 后驱或者四驱之一。
[0259] 所述电动汽车电机之间的双向双螺杆泵通过油路串联连接, 实现能量的相互输 送, 双向双螺杆泵之间的串联方式为: 第一个电机的输出端通过油路与下一个 电机的输入端连接, 之后依次串联, 最后一个电机的输出端通过油路与第一个 电机的输入端连接; 在两个电机之间油路上分支连接有储油罐和储能罐, 储油 罐上设置有与油路连接的进油管 1000和出油管 1001, 储能罐上设置有与油路连 接的蓄能管 1002和释能管 1003; 以油路循环吋前进的方向为前方, 在与油管的 接口上出油管 1001设置在蓄能管 1002的前方, 释能管 1003设置在进油管 1000的 前方, 在进油管 1000、 出油管 1001、 蓄能管 1002、 释能管 1003及与分支油路连 接的油路上均设置有幵关阀。 图 31为电机之间串联连接连接方式的示意图, 图 3 2为该种连接方式的油路循环示意图。
[0260] 串联连接的双向双螺杆泵的油路循环方法为:
[0261] 一、 双向双螺杆泵正常工作状态, 汽车正常运行吋, 双向双螺杆泵电机及电机 连接之间的油路内是充满油的, 液压油在各个电机之间的串联油路上循环, 进 油管 1000、 出油管 1001、 蓄能管 1002和释能管 1003上的幵关阀都是关闭的, 与 分支油路连接的油路上幵关阀打幵;
[0262] 在汽车刹车吋, 电机断电, 储油罐的出油管 1001和储能罐的蓄能管 1002上的幵 关阀均打幵, 与分支油路连接的油路上的幵关阀关闭, 汽车惯性使电机作为油 泵工作, 输出的高压油进入到蓄能器中进行能量的储存, 在油管中缺少的液压 油由储油罐补给;
[0263] 在汽车启动吋, 由于需要很大的动力, 此吋可以打幵释能管 1003和出油管 1001 上的幵关阀, 储能罐储存的能量释放出来, 对电机作为马达提供启动动力, 减 少电机的用电量, 若储能用尽, 则由电机带动, 油路中多余的液压油进入到储 油罐中; [0264] 二、 部分双向双螺杆泵出现故障断电吋, 其余电机之间循环的液压油带动该电 机的螺杆旋转, 实现能量补给。
[0265] 前驱、 后驱或者四驱包括各个双向双螺杆泵电机、 高压油汇集器、 蓄能器和储 油罐, 每个电机均设置有一个自循环油路 1010, 每个电机的输出端与高压油汇 集器通过蓄能管 1002连接, 每个电机的输入端通过释能管 1003与高压油汇集器 连接, 每个电机的输出端通过出油管 1001与储油罐连接, 每个电机的输入端通 过进油管 1000与储油罐连接, 高压油汇集器与储能罐连接, 在进油管 1000、 出 油管 1001、 蓄能管 1002、 释能管 1003、 各个电机的自循环油路 1010及高压集油 管上均设置有幵关阀。 图 33为该种电机之间连接方式的示意图, 图 34为该种连 接方式的油路循环示意图。
[0266] 高压油汇集器为一个腔体, 所有与高压油汇集器连通的管道上的幵关阀打幵吋 , 流入高压油汇集器中的液压油在高压油汇集器中汇集, 之后由高压油汇集器 进行分流。
[0267] 油路之间的循环方法为:
[0268] 一、 双向双螺杆泵正常工作状态, 各个电机及相连的各个油管中均是充满油的
[0269] 汽车正常运行吋, 各个电机的自循环油路上的幵关阀打幵, 其余的幵关阀关闭 , 各个电机均通过各自的循环回路正常运行;
[0270] 在汽车行走过程中刹车吋, 电机断电, 储油罐与各个电机连接的进油管 1000上 的幵关阀打幵, 各个电机与高压油汇集器连接的蓄能管 1002上的幵关阀打幵, 高压油汇集器与储能罐连接的油路上的幵关阀打幵, 其余的连接通路上的幵关 阀均关闭; 此吋, 汽车在惯性的作用下继续行走, 使电机作为油泵工作, 输出 的高压油经高压油汇集器进入到储能罐中, 油管中缺少的油从油罐中补给;
[0271] 在汽车启动吋, 由于需要很大的动力, 储能罐与高压油汇集器连通, 高压油汇 集器与各个电机连接的释能管上的幵关阀打幵, 各个电机与储油罐连接的出油 管 1001上的幵关阀打幵, 储能罐中的能量释放出来, 对电机作为马达提供启动 动力, 减少电机的用电量, 若储能用尽, 则由各个电机单独循环带动, 油路中 多余的液压油进入到储油罐中; [0272] 二、 部分双向双螺杆泵出现故障断电吋, 其余电机与高压油集油器连接的蓄能 管 1002上的幵关阀打幵, 与储油罐连接的进油管 1000上的幵关阀打幵, 高压油 集油器与故障电机连接的释能管 1003上的幵关阀打幵, 故障电机的出油管 1001 与储油罐连通, 若高压油集油器中的压力低于故障电机所需的压力, 高压油集 油器与储能罐连通, 储能罐释放压力进行能量补充, 若高压油集油器中的压力 高于故障电机所需的压力, 高压油集油器与储能罐连通, 储能罐进行蓄能。
[0273] 电机包括与定子配合的电机外壳 1004, 在电机外壳 1004的两端设置有端盖 1005 , 端盖 1005上设置有与输出轴 1008配合的孔, 端盖 1005上还设置有与油管连接 的进油口和出油口。 两个螺杆轴上的齿轮 1009设置在端盖 1005的外侧, 在齿轮 1 009外侧套设有齿轮箱 1006。 在电机外壳 1004上设置有支座 1007, 支座 1007用于 安装固定电机。
[0274] 如图 29所示, 电机外壳 1004的一侧设置有定子, 一个螺旋动子作为主动轴, 另 一个螺旋动子作为从动轴,
[0275] 如图 27、 图 28、 图 30所示, 电机外壳 1004内均布有定子, 两个螺旋动子均作为 主动轴。
[0276] 图 30中定子为 4个齿极, 动子为 4个齿极。
[0277] —种三螺杆泵与螺旋动子幵关磁阻电机的复合泵, 包括三螺杆泵, 所述三螺杆 泵三个螺杆中的至少一个螺杆为螺旋动子幵关磁阻电机的螺旋动子 1099, 该螺 旋动子 1099对应的三螺杆泵的衬套, 为螺旋动子幵关磁阻电机的定子构成的定 子衬套 1098, 螺旋动子 1099与定子衬套 1098构成螺旋动子幵关磁阻电机。 所述 定子衬套 1098, 为螺旋动子幵关磁阻电机的定子的齿极之间的间隙填充树脂, 例如环氧树脂, 当然也可以是其它耐油树脂, 构成定子衬套, 如图 42-43所示。
[0278] 所述三个螺杆之间设同步齿轮 1097。
[0279] 所述螺杆外表面设置有橡胶薄层。
[0280] 所述三个螺杆为双头螺纹至四头螺纹, 1095双头螺纹作为动子吋, 对应四定子; 三头螺纹作为动子吋, 也对应四定子或者六定子; 四头螺纹作为动子吋, 对应 八定子。
[0281] 所述三个螺杆中的中间螺杆为螺旋动子, 则中间螺杆为主动螺杆。 [0282] 所述三个螺杆中的两边两个螺杆为螺旋动子, 则两边两个螺杆为主动螺杆。
[0283] 所述三个螺杆均为螺旋动子, 三个螺杆均为主动螺杆。
[0284] 所述支撑三个螺杆的轴承及三螺杆之间的同步齿轮设置在螺杆与衬套组成的工 作腔之外, 这样能够防止摩擦产生的金属屑吸附在螺旋动子及定子衬套上。
[0285] 一种电动汽车, 所述的一种三螺杆泵与螺旋动子幵关磁阻电机的复合泵作为电 动汽车的轮边电机, 轮边电机之间通过油路连通, 使得轮边电机之间能够通过 油路相互输送能量。
[0286] 所述轮边电机为电动汽车的前驱或者后驱, 前驱或者后驱的两个轮边电机及储 油罐和储能罐通过油路连通; 通过阀门控制, 使得①两个轮边电机并联之后, 置 于储油罐和储能罐之间, 三者再串联。 在刹车吋, 复合泵中流出的高压油进入 到储能罐中, 复合泵中缺失的液压油由储油罐提供, 在启动或者加速吋, 若储 能罐中有储能, 储能罐中的液压油释放到复合泵中提供能量, 多余的液压油进 入到储油罐中, 使得刹车吋储能, 启动或者加速吋释放储能; ②两个轮边电机串 联之后, 两端分别与储能罐和储油罐再串联, 使得刹车吋储能, 启动或者加速 吋释放储能; ③两个轮边电机循环串联, 即两个轮边电机首尾均相连。
[0287] 所述轮边电机为四驱电动汽车的轮边电机, 四个轮边电机及储油罐和储能罐通 过油路连通, 通过阀门控制, 使得①四个轮边电机并联并构成循环, 与储油罐和 储能罐断幵, 如图 35所示, 图 35-45中的粗实线为液压油流通的油路, 细实线为 液压油不流通的油路, 方框表示轮边电机, 箭头为液压油的流向; ②任意三个轮 边电机并联之后与另外一个轮边电机串联并构成循环, 与储油罐和储能罐断幵 , 如图 36所示; ③四个轮边电机构成桥式通路并构成循环, 与储油罐和储能罐断 幵, 所述的桥式通路是指: 把四个轮边电机分为两组, 相邻的两个轮边电机为 一组, 每组轮边电机内的两个轮边电机并联, 两组轮边电机之间串联, 如图 37 所示; ④四个轮边电机串联或者任意三个轮边电机并联之后与另外一个轮边电机 串联或者四个轮边电机构成桥式通路之后, 置于储油罐和储能罐之间, 三者再 串联, 使得刹车吋储能, 启动或者加速吋释放储能, 如图 38-46所示, 图 38中显 示的是在刹车吋, 复合泵产生的高压油进入到储能罐中进行储能, 复合泵中确 实的液压油由储油罐补充, 图 39中显示的是在启动或者加速吋, 储能罐释放能 量, 多余的液压油进入到储油罐中。 图中长方形框加箭头即为轮边电机。
以上所述的仅是本发明的优选实施方式, 应当指出, 对于本领域的技术人员来 说, 在不脱离本发明整体构思前提下, 还可以作出若干改变和改进, 这些也应 该视为本发明的保护范围。

Claims

权利要求书
[权利要求 1] 一种幵关磁阻电动机, 包括定子齿极和动子齿极, 动子齿极相对于定 子齿极转动配合, 其特征在于: 所述定子齿极的齿数为 2m, 动子齿 极的齿数为 m; 定子齿极沿转动轴方向为层状固定连接, 定子齿极厚 度对应动子齿极的厚度范围称为动子齿极单元, 定子齿极由定子齿极 铁芯及其外部套设的定子齿极线圈构成, 定子齿极铁芯与动子齿极形 成气隙的端组为凹凸配合的圆弧面, 定子齿极与动子齿极的配合关系 为, 无论动子齿极相对于定子齿极旋转到任何角度, 至少一层定子齿 极中心线与对应动子齿极单元的中心线形成夹角 α, 0 < α≤β, β为定 子齿极铁芯或者动子齿极沿旋转轴方向的横截面的圆弧对应圆心的角 度, β < 360/2ηι。
2.如权利要求 1所述的幵关磁阻电动机, 其特征在于: 所述无论动子 齿极相对于定子齿极旋转到任何角度, 至少一层定子齿极中心线与对 应动子齿极单元的动子齿极中心线形成夹角 α, 0 < α<β , 指定子齿极 的层数为 η层, 对应动子齿极单元也是 η层的长度, 动子齿极沿圆周排 布的齿极数为 m, 假设第一层定子齿极中心线与动子齿极中心线的夹 角为 360/(nm), 则第二层为 2*360/(nm), ......第 n层为 n*360/(nm), 其 中 360/(ηηι)≤β。
3.如权利要求 2所述的幵关磁阻电动机, 其特征在于: 在 xyz坐标系中 , 第一层定子齿极所在的平面为 xy面, 旋转轴的轴线方向为 z轴方向
, 其它层定子齿极沿 z轴依次延伸, 所述第一层定子齿极中心线与 y轴 的夹角为 360/(nm), 第二层为 2*360/(nm), ......第 n层为 n*360/(nm), 各层动子齿极单元的动子齿极中心线在 z方向重合。
4.如权利要求 2所述的幵关磁阻电动机, 其特征在于: 在 xyz坐标系中 , 第一层定子齿极所在的平面为 xy面, 旋转轴的轴线方向为 z轴方向
, 其它层定子齿极沿 z轴依次延伸, 所述各层定子齿极的中心线在 z方 向与 y轴重合, 则第一层动子齿极单元的动子齿极中心线与 y轴夹角为 360/(nm) , 第二层为 2*360/(nm), 第 n层为 n*360/(nm)。
5.如权利要求 2所述的幵关磁阻电动机, 其特征在于: 在 xyz坐标系中 , 第一层定子齿极所在的平面为 xy面, 旋转轴的轴线方向为 z轴方向
, 其它层定子齿极沿 z轴依次延伸, 所述第一层定子齿极中心线与 y轴 夹角为 360/(2*nm), 第二层为 2*360/(2*nm), 第 n层为 n*360/(2*n m) ; 第一层动子齿极单元的动子齿极中心线与 y轴夹角为 -360/(2nm) , 第二层为 -2*360/(2nm), ......第 n层为 -n*360/(2nm), 构成反向螺旋
6.如权利要求 3-5任一所述的幵关磁阻电动机, 其特征在于: 所述定子 齿极层数在 z轴方向依次延伸, 形成直条状定子齿极或者螺旋条状定 子齿极, 与直条状定子齿极对应的动子齿极为螺旋条状动子齿极; 与 螺旋条状定子齿极对应的动子齿极为反向螺旋条状动子齿极或者直条 状动子齿极, 齿极数目为 m大于等于 1的自然数, n为大于等于 2的自 然数。
如权利要求 6所述的幵关磁阻电动机, 其特征在于: 所述直条状定子 齿极或者螺旋条状定子齿极的轭部, 对应由直条状导磁材料或者螺旋 条状导磁材料连接构成直条状串联的 u型电磁铁或者螺旋条状串联的 u 型电磁铁。
如权利要求 7所述的幵关磁阻电动机, 其特征在于: 所述直条状定子 齿极或者螺旋条状定子齿极的圆弧面指向圆心, 构成外直条状定子齿 极或者外螺旋条状定子齿极; 所述直条状动子齿极、 螺旋条状动子齿 极及反向螺旋条状动子齿极对应为内直条状动子齿极、 内螺旋条状动 子齿极及内反向螺旋条状动子齿极。
9.如权利要求 7所述的幵关磁阻电动机, 其特征在于: 所述直条状定 子齿极或者螺旋条状定子齿极的圆弧面背离圆心, 构成内直条状定子 齿极或者内螺旋条状定子齿极; 所述直条状动子齿极、 螺旋条状动子 齿极及反向螺旋条状动子齿极对应为外直条状动子齿极、 外螺旋条状 动子齿极及外反向螺旋条状动子齿极。
10.如权利要求 6所述的幵关磁阻电动机, 其特征在于: 所述每层定子 齿极的轭部由导磁材料连接形成闭合框架定子齿极, 定子齿极之间的 导磁材料框架上, 套设框架线圈。
如权利要求 10所述的幵关磁阻电动机, 其特征在于: 所述闭合框架定 子齿极的圆弧面指向圆心, 构成外闭合框架定子齿极; 所述直条状动 子齿极、 螺旋条状动子齿极及反向螺旋条状动子齿极对应为内直条状 动子齿极、 内螺旋条状动子齿极及内反向螺旋条状动子齿极。
如权利要求 10所述的幵关磁阻电动机, 其特征在于: 所述闭合框架定 子齿极的圆弧面背离圆心, 构成内闭合框架定子齿极; 所述直条状动 子齿极、 螺旋条状动子齿极及反向螺旋条状动子齿极对应为外直条状 动子齿极、 外螺旋条状动子齿极及外反向螺旋条状动子齿极。
13.如权利要求 6所述的幵关磁阻电动机, 其特征在于: 所述 m为偶数
, 每层定子齿极的轭部由导磁材料连接形成闭合框架定子齿极, 定子 齿极之间的导磁材料框架上, 套设框架线圈之后, 所述直条状定子齿 极或者螺旋条状定子齿极的轭部, 对应由直条状导磁材料或者螺旋条 状导磁材料再连接, 直条状导磁材料或者螺旋条状导磁材料作为轭铁 再套设直条状轭铁或者螺旋条状轭铁构成立体直条状齿极或者螺旋条 状定子齿极定子。
14.如权利要求 1-13所述的幵关磁阻电动机, 其特征在于: 所述定子 齿极铁芯的宽度为 d, 定子铁芯之间的间距为 l/10d-l/4d.
15.如权利要求 1-12所述的幵关磁阻电动机的定子齿极, 其特征在于 : 所述定子齿极的形状为直齿或者螺旋齿。
16.使用权利要求 1-13所述的幵关磁阻电动机的电动汽车, 其特征在于 : 所述电动机作为电动汽车驱动电动机。
[权利要求 17] —种三螺杆泵与螺旋动子幵关磁阻电机的复合泵, 包括三螺杆泵, 其 特征在于: 所述三螺杆泵三个螺杆中的至少一个螺杆为螺旋动子幵关 磁阻电机的螺旋动子, 该螺旋动子对应的三螺杆泵的衬套, 为螺旋动 子幵关磁阻电机的定子构成的定子衬套, 螺旋动子与定子衬套构成螺 旋动子幵关磁阻电机。 如权利要求 17所述的三螺杆泵与螺旋动子幵关磁阻电机的复合泵, 其 特征在于: 所述三个螺杆之间设同步齿轮。
如权利要求 17所述的三螺杆泵与螺旋动子幵关磁阻电机的复合泵, 其 特征在于: 所述螺杆外表面设置有橡胶薄层。
如权利要求 18所述的三螺杆泵与螺旋动子幵关磁阻电机的复合泵, 其 特征在于: 所述三个螺杆为双头螺纹至四头螺纹。
如权利要求 20所述的三螺杆泵与螺旋动子幵关磁阻电机的复合泵, 其 特征在于: 所述三个螺杆中的中间螺杆为螺旋动子, 则中间螺杆为主 动螺杆。
如权利要求 20所述的三螺杆泵与螺旋动子幵关磁阻电机的复合泵, 其 特征在于: 所述三个螺杆中的两边两个螺杆为螺旋动子, 则两边两个 螺杆为主动螺杆。
如权利要求 20所述的三螺杆泵与螺旋动子幵关磁阻电机的复合泵, 其 特征在于: 所述三个螺杆均为螺旋动子, 三个螺杆均为主动螺杆。 如权利要求 17-23之一所述的三螺杆泵与螺旋动子幵关磁阻电机的复 合泵, 其特征在于: 所述支撑三个螺杆的轴承及三螺杆之间的同步齿 轮设置在螺杆与衬套组成的工作腔之外。
应用权利要求 17-24中任一权利要求所述三螺杆泵与螺旋动子幵关磁 阻电机的复合泵的电动汽车, 其特征在于: 所述的复合泵作为电动汽 车的轮边电机, 轮边电机之间通过油路连通, 使得轮边电机之间能够 通过油路相互输送能量。
如权利要求 25所述的电动汽车, 其特征在于: 所述轮边电机为电动汽 车的前驱或者后驱, 前驱或者后驱的两个轮边电机及储油罐和储能罐 通过油路连通; 通过阀门控制, 使得 a两个轮边电机并联之后, 置于 储油罐和储能罐之间, 三者再串联, 使得刹车吋储能, 启动或者加速 吋释放储能; b两个轮边电机串联之后, 两端分别与储能罐和储油罐 再串联, 使得刹车吋储能, 启动或者加速吋释放储能; c两个轮边电 机循环串联, 即两个轮边电机首尾均相连。 [权利要求 27] 如权利要求 26所述的电动汽车, 其特征在于: 所述轮边电机为四驱电 动汽车的轮边电机, 四个轮边电机及储油罐和储能罐通过油路连通, 通过阀门控制, 使得 a四个轮边电机并联并构成循环, 与储油罐和储 能罐断幵; b任意三个轮边电机并联之后与另外一个轮边电机串联并 构成循环, 与储油罐和储能罐断幵; c四个轮边电机构成桥式通路并 构成循环, 与储油罐和储能罐断幵; d四个轮边电机串联或者任意三 个轮边电机并联之后与另外一个轮边电机串联或者四个轮边电机构成 桥式通路之后, 置于储油罐和储能罐之间, 三者再串联, 使得刹车吋 储能, 启动或者加速吋释放储能。
28.—种双向双螺杆泵电机, 包括第一螺旋条状动子幵关磁阻电机, 其特征在于: 所述第一螺旋条状动子幵关磁阻电机的动子作为双螺杆 泵的第一主动螺杆, 该电机的环状定子侧幵口部位与第一主动螺杆配 合另一个螺杆, 二者构成双向双螺杆泵电机, 定子内部填充树脂, 形 成圆环内面。
29.如权利要求 28所述的一种双向双螺杆泵电机, 其特征在于: 所述 另一个螺杆为第二螺旋条状动子幵关磁阻电机的动子作为第二主动螺 杆, 第二螺旋条状动子幵关磁阻电机对应侧幵口使第一主动螺杆与第 二主动螺杆啮合, 即第二主动螺杆的螺旋方向与第一主动螺杆的螺旋 方向相反。
30.根据权利要求 28所述的一种双向双螺杆泵电机, 其特征在于: 所 述另一螺杆为从动螺杆。
31.根据权利要求 29或 30所述的一种双向双螺杆泵电机, 其特征在于 : 所述螺旋条状动子幵关磁阻电机的齿极数为 1-8齿极之一, 两个螺 杆的端部设置有相互啮合的齿轮。
32.应用权利要求 28-31中任一权利要求所述的一种双向双螺杆泵电机 的电动汽车, 其特征在于: 所述的双螺杆泵电机作为电动汽车的轮边 电机, 电机之间通过油路连接, 使得电机之间能够通过双向双螺杆泵 相互输送能量。
33.根据权利要求 32所述的电动汽车, 其特征在于: 双向双螺杆泵电 机为电动汽车的前驱、 后驱或者四驱之一。
34.根据权利要求 33所述的电动汽车, 其特征在于: 所述电动汽车电 机之间的双向双螺杆泵通过油路串联连接, 实现能量的相互输送, 双 向双螺杆泵之间的串联方式为: 第一个电机的输出端通过油路与下一 个电机的输入端连接, 之后依次串联, 最后一个电机的输出端通过油 路与第一个电机的输入端连接; 在两个电机之间油路上分支连接有储 油罐和储能罐, 储油罐上设置有与油路连接的进油管和出油管, 储能 罐上设置有与油路连接的蓄能管和释能管; 以油路循环吋前进的方向 为前方, 在与油管的接口上出油管设置在蓄能管的前方, 释能管设置 在进油管的前方, 在进油管、 出油管、 蓄能管、 释能管及与分支油路 连接的油路上均设置有幵关阀。
35.根据权利要求 34所述的电动汽车, 其特征在于: 串联连接的双向 双螺杆泵的油路循环方法为:
一、 双向双螺杆泵正常工作状态, 汽车正常运行吋, 双向双螺杆泵电 机及电机连接之间的油路内是充满油的, 液压油在各个电机之间的串 联油路上循环, 进油管、 出油管、 蓄能管和释能管上的幵关阀都是关 闭的, 与分支油路连接的油路上幵关阀打幵;
在汽车刹车吋, 电机断电, 储油罐的出油管和储能罐的蓄能管上的幵 关阀均打幵, 与分支油路连接的油路上的幵关阀关闭, 汽车惯性使电 机作为油泵工作, 输出的高压油进入到蓄能器中进行能量的储存, 在 油管中缺少的液压油由储油罐补给;
在汽车启动吋, 由于需要很大的动力, 此吋可以打幵释能管和出油管 上的幵关阀, 储能罐储存的能量释放出来, 对电机作为马达提供启动 动力, 减少电机的用电量, 若储能用尽, 则由电机带动, 油路中多余 的液压油进入到储油罐中;
部分双向双螺杆泵出现故障断电吋, 其余电机之间循环的液压油带动
36.根据权利要求 35所述的电动汽车, 其特征在于: 前驱、 后驱或者 四驱包括各个双向双螺杆泵电机、 高压油汇集器、 蓄能器和储油罐, 每个电机均设置有一个自循环油路, 每个电机的输出端与高压油汇集 器通过蓄能管连接, 每个电机的输入端通过释能管与高压油汇集器连 接, 每个电机的输出端通过出油管与储油罐连接, 每个电机的输入端 通过进油管与储油罐连接, 高压油汇集器与储能罐连接, 在进油管、 出油管、 蓄能管、 释能管、 各个电机的自循环油路及高压集油管上均 设置有幵关阀, 高压油汇集器为一个腔体。
37.根据权利要求 34所述的电动汽车, 其特征在于: 油路之间的循环 方法为:
双向双螺杆泵正常工作状态, 各个电机及相连的各个油管中均是充满 油的;
汽车正常运行吋, 各个电机的自循环油路上的幵关阀打幵, 其余的幵 关阀关闭, 各个电机均通过各自的循环回路正常运行;
在汽车行走过程中刹车吋, 电机断电, 储油罐与各个电机连接的进油 管上的幵关阀打幵, 各个电机与高压油汇集器连接的蓄能管上的幵关 阀打幵, 高压油汇集器与储能罐连接的油路上的幵关阀打幵, 其余的 连接通路上的幵关阀均关闭; 此吋, 汽车在惯性的作用下继续行走, 使电机作为油泵工作, 输出的高压油经高压油汇集器进入到储能罐中 , 油管中缺少的油从油罐中补给;
在汽车启动吋, 由于需要很大的动力, 储能罐与高压油汇集器连通, 高压油汇集器与各个电机连接的释能管上的幵关阀打幵, 各个电机与 储油罐连接的出油管上的幵关阀打幵, 储能罐中的能量释放出来, 对 电机作为马达提供启动动力, 减少电机的用电量, 若储能用尽, 贝 1油 各个电机单独循环带动, 油路中多余的液压油进入到储油罐中; 部分双向双螺杆泵出现故障断电吋, 其余电机与高压油集油器连接的 蓄能管上的幵关阀打幵, 与储油罐连接的进油管上的幵关阀打幵, 高 压油集油器与故障电机连接的释能管上的幵关阀打幵, 故障电机的出 油管与储油罐连通, 若高压油集油器中的压力低于故障电机所需的压 力, 高压油集油器与储能罐连通, 储能罐释放压力进行能量补充, 若 高压油集油器中的压力高于故障电机所需的压力, 高压油集油器与储 能罐连通, 储能罐进行蓄能。
PCT/CN2017/073440 2016-02-13 2017-02-13 开关磁阻电动机及其应用 WO2017137011A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018536236A JP6691969B2 (ja) 2016-02-13 2017-02-13 スイッチトリラクタンスモータ及びその応用
KR1020187024056A KR102153121B1 (ko) 2016-02-13 2017-02-13 스위치드 릴럭턴스 전기모터와 그 응용
EP17749902.7A EP3416269A4 (en) 2016-02-13 2017-02-13 SWITCHED RELUCTANCE ENGINE AND APPLICATION THEREOF
US16/077,700 US10658911B2 (en) 2016-02-13 2017-02-13 Switched reluctance motor and application thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
PCT/CN2016/073744 WO2017136965A1 (zh) 2016-02-13 2016-02-13 一种开关磁阻电动机
CNPCT/CN2016/073744 2016-02-13
CN201611268381.7A CN108270314A (zh) 2016-12-31 2016-12-31 一种双向双螺杆泵电机
CN201611268381.7 2016-12-31
CN201710069979.1A CN108400679A (zh) 2017-02-08 2017-02-08 一种三螺杆泵与螺旋动子开关磁阻电机的复合泵
CN201710069979.1 2017-02-08

Publications (1)

Publication Number Publication Date
WO2017137011A1 true WO2017137011A1 (zh) 2017-08-17

Family

ID=59562903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/073440 WO2017137011A1 (zh) 2016-02-13 2017-02-13 开关磁阻电动机及其应用

Country Status (5)

Country Link
US (1) US10658911B2 (zh)
EP (1) EP3416269A4 (zh)
JP (1) JP6691969B2 (zh)
KR (1) KR102153121B1 (zh)
WO (1) WO2017137011A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11940011B2 (en) * 2019-04-17 2024-03-26 TCM Engine Products, LLC Coupling member, pump-priming device, and method of priming an internal combustion engine
WO2021123156A1 (en) * 2019-12-19 2021-06-24 Rift Ip Limited Electric machine
USD982269S1 (en) * 2020-03-05 2023-03-28 Tyler Sanders Pool pole
CN114520615B (zh) * 2020-11-20 2024-07-19 宁波方太厨具有限公司 一种开关磁阻电机的转速调节方法
CN113119713A (zh) * 2021-04-21 2021-07-16 杭州恒业电机制造有限公司 一款高度集成电驱动轮

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4758132A (en) * 1985-11-25 1988-07-19 Institut Cerac S.A. Rotary machine with motor embedded in the rotor
US6481975B1 (en) * 2000-03-07 2002-11-19 Motorola, Inc. Gear pump and switch reluctance motor and method for pumping fluid
CN102035319B (zh) * 2009-09-24 2012-07-04 张世清 双定转子倍极开关磁阻电动机
CN103762780A (zh) * 2014-01-17 2014-04-30 西安交通大学 一种交流伺服直驱型三螺杆电液泵

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9817155D0 (en) * 1998-08-06 1998-10-07 Automotive Motion Tech Ltd Screw pump
WO2000008338A1 (en) 1998-08-06 2000-02-17 Automotive Motion Technology Limited A motor driven pump
US6479959B2 (en) 1999-12-08 2002-11-12 Samsung Kwangju Electronics Co., Ltd. Self-excited reluctance motor
US20030057800A1 (en) 2001-09-26 2003-03-27 Daniel Gizaw Pumping motor with skewed rotor laminations
US7230359B2 (en) * 2002-03-22 2007-06-12 Ebm-Papst St. Georgen Gmbh & Co. Kg Electric motor with poles shaped to minimize cogging torque
JP2008157161A (ja) * 2006-12-26 2008-07-10 Kanzaki Kokyukoki Mfg Co Ltd マルチポンプユニットおよびマルチポンプユニット付車両
JP2008283785A (ja) * 2007-05-10 2008-11-20 Denso Corp スイッチドリラクタンスモータ
JP5543185B2 (ja) 2009-12-09 2014-07-09 株式会社Evモーター・システムズ スイッチドリラクタンスモータ駆動システム
US9647593B2 (en) * 2011-03-30 2017-05-09 Shanshan Dai Switched reluctance motors and excitation control methods for the same
US9231459B2 (en) 2011-05-06 2016-01-05 Qm Power, Inc. Motor topology with exchangeable components to form different classes of motors
KR20130069079A (ko) * 2011-12-16 2013-06-26 삼성전기주식회사 스위치드 릴럭턴스 모터

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4758132A (en) * 1985-11-25 1988-07-19 Institut Cerac S.A. Rotary machine with motor embedded in the rotor
US6481975B1 (en) * 2000-03-07 2002-11-19 Motorola, Inc. Gear pump and switch reluctance motor and method for pumping fluid
CN102035319B (zh) * 2009-09-24 2012-07-04 张世清 双定转子倍极开关磁阻电动机
CN103762780A (zh) * 2014-01-17 2014-04-30 西安交通大学 一种交流伺服直驱型三螺杆电液泵

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3416269A4 *

Also Published As

Publication number Publication date
US20190036431A1 (en) 2019-01-31
JP6691969B2 (ja) 2020-05-13
EP3416269A1 (en) 2018-12-19
KR20180105192A (ko) 2018-09-27
KR102153121B1 (ko) 2020-10-27
US10658911B2 (en) 2020-05-19
EP3416269A4 (en) 2019-11-13
JP2019507568A (ja) 2019-03-14

Similar Documents

Publication Publication Date Title
WO2017137011A1 (zh) 开关磁阻电动机及其应用
CN1738163A (zh) 双转子混合动力复合永磁电机
WO2020232740A1 (zh) 一种基于双绕组混合磁路直线旋转永磁电机作动器的两自由度电磁馈能悬架
CN101286681A (zh) 电动式磁力差速驱动器
EP1685642A1 (de) Stufenlos schaltbares, magnetodynamisches getriebe
CN105743239A (zh) 混合式马达结构
CN104870750A (zh) 具有直接驱动的旋转活塞泵
WO2022000665A1 (zh) 一种高集成度模块化轮毂电机及其冷却系统
CN205566049U (zh) 互逆向双转子双边永磁盘式水力发电机
CN202160059U (zh) 伺服变矩电动机
GB2458187A (en) Motorcycle transmission with permanent magnet type motor/generators
CN102700398B (zh) 无级变速传动机构
CN101087096A (zh) 电磁式谐波驱动作动装置
JP2011239486A (ja) 永久磁石式モータの2分割ロータ間の位相差設定装置
WO2011033245A1 (en) Motorcycle transmission systems
CN102647051A (zh) 伺服变矩电动机
WO2017101033A1 (zh) 开关磁阻电动机
CN108400679A (zh) 一种三螺杆泵与螺旋动子开关磁阻电机的复合泵
CN108270316A (zh) 一种四驱电动汽车
CN102624196B (zh) 一种径向磁场的少极差电磁式偏心磁性齿轮副
CN1684342A (zh) 差动式无级变速电动机
CN206700473U (zh) 一种液体输注驱动装置
WO2017136965A1 (zh) 一种开关磁阻电动机
CN108263316A (zh) 一种四驱电动汽车的油路循环方法
CN108263317A (zh) 一种四驱电动汽车的串联油路循环方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17749902

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018536236

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187024056

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187024056

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2017749902

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017749902

Country of ref document: EP

Effective date: 20180913