WO2022000665A1 - 一种高集成度模块化轮毂电机及其冷却系统 - Google Patents

一种高集成度模块化轮毂电机及其冷却系统 Download PDF

Info

Publication number
WO2022000665A1
WO2022000665A1 PCT/CN2020/105128 CN2020105128W WO2022000665A1 WO 2022000665 A1 WO2022000665 A1 WO 2022000665A1 CN 2020105128 W CN2020105128 W CN 2020105128W WO 2022000665 A1 WO2022000665 A1 WO 2022000665A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
board
assembly
stator
cooling system
Prior art date
Application number
PCT/CN2020/105128
Other languages
English (en)
French (fr)
Inventor
李勇
张�成
吴浩
徐兴
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Publication of WO2022000665A1 publication Critical patent/WO2022000665A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/006Structural association of a motor or generator with the drive train of a motor vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Definitions

  • the invention belongs to the technical field of pure electric vehicles, and in particular relates to a highly integrated modular wheel hub motor and a cooling system thereof.
  • In-wheel motor is a motor in the form of inner stator and outer rotor. Its power, transmission and braking devices are integrated in the hub, which greatly simplifies the mechanical parts of electric vehicles. Compared with traditional motors, it has good mobility, high Efficient transmission, high utilization of interior space and good dynamic performance.
  • in-wheel motors are arranged separately from their drive controllers.
  • the drive controllers are arranged on the frame of the electric vehicle, and the drive controllers are connected to the motor for driving.
  • the cooling system used by the current wheel hub motor and its drive controller is a series cooling method.
  • the cooling water flows through the cooling pipeline of the motor and then flows into the cooling pipeline of the drive controller, and finally returns to the cooling water tank to form a cycle, but the cooling water passes through the motor. After that, the temperature rises more, and the heat dissipation effect on the controller becomes very poor; at present, many controllers of the drive system use the most primitive natural air cooling for heat dissipation, and the performance for complex working conditions is even worse.
  • the present invention provides a highly integrated modular wheel hub motor and its cooling system, which have highly integrated and efficient heat dissipation and cooling performance, and improve the adaptability of the entire motor to complex working conditions.
  • the present invention achieves the above technical purpose through the following technical means.
  • a highly integrated modular hub motor and a cooling system thereof comprising an integrated motor and a parallel cooling system, the integrated motor includes a rotating assembly, a stator assembly and a control module assembly, and the stator assembly is located inside the rotating assembly;
  • the control module assembly includes a controller board, a cooling board and an inverter board which are arranged in sequence and fixed together, and the number of the controller board, the cooling board and the inverter board is the same, and all of them are uniformly distributed;
  • the boards are connected in parallel by wires, and the controller board and the inverter board are connected in series by wires; one of the controller boards is provided with an interface assembly board; a cooling pipeline A is provided inside the cooling board;
  • the stator assembly is fixed on the axial outer side of the stator fixing sleeve, and the control module assembly is fixed inside the stator fixing sleeve; a cooling pipeline B is arranged in the stator fixing sleeve, and the cooling pipeline B is connected in parallel with the cooling pipeline A to form a parallel cooling system. system.
  • the side of the stator fixing sleeve is provided with a sleeve water outlet and a sleeve water inlet, and the sleeve water outlet and the sleeve water inlet communicate with the water outlet and the water inlet of the cooling pipeline B, respectively.
  • the cooling pipeline B adopts a circumferential cooling pipeline, an axial cooling pipeline or a spiral cooling pipeline.
  • the sleeve water outlet and the sleeve water inlet are located on the same side of the stator fixing sleeve, and the water outlet and the water inlet of the cooling pipeline B are located on the same side of the cooling pipeline B.
  • the interface assembly plate is provided with a general water outlet of the cooling pipeline and a general water inlet of the cooling pipeline, which are respectively connected to the water inlet and outlet at the end of the cooling pipeline A which are connected.
  • the interface assembly board is further provided with a three-phase electrical interface, which is connected to the general joint of the winding of the stator assembly.
  • the cooling pipeline adopts an F type and is fixed in the grooves of the upper and lower end covers.
  • the controller board, the cooling board and the inverter board are in the shape of a fan ring.
  • the number of the controller board, the cooling board and the inverter board are all six.
  • the control module assembly of the present invention is divided into a plurality of parts, and the control module assembly of each part is composed of a controller board, a cooling board and an inverter board, and the three boards are fixed on the stator fixing sleeve by fastening bolts;
  • a cooling pipeline is arranged inside the board, and the cooling board is arranged between the controller board and the inverter board to cool the two, which can better absorb the heat generated by the two.
  • the present invention divides the stator as a whole into a plurality of stator modules, and the windings are wound separately, which is beneficial to improve work efficiency and reduce winding errors; a plurality of stator modules are connected to the stator fixing sleeve through cylindrical connecting rods, and one stator module fails. It is beneficial to quickly replace faulty parts and speed up maintenance.
  • One stator module and one-sixth control module of the present invention are assembled to form a partial module.
  • the partial module can act independently and is suitable for the working condition of small torque; the partial modules can also be connected together to act together, and can be applied at this time. It is suitable for the working condition of large torque; when a local module fails during operation, it is easy to replace, and other local modules can also ensure the normal operation of the motor.
  • the stator fixing sleeve is provided with a circumferential cooling pipeline, and the cooling pipeline inside the cooling plate and the circumferential cooling pipeline simultaneously cool the inside of the motor, which is beneficial to ensure the high-efficiency and continuous operation of the motor.
  • the present invention adopts a built-in V-shaped permanent magnet, which is installed in the permanent magnet assembly slot, which effectively improves the reluctance torque of the motor, and can adapt to a variety of complex working conditions, such as emergency braking, rapid acceleration and deceleration, and high-speed cruise. , overload climbing, frequent start and stop, low speed and light load conditions.
  • FIG. 1 is an exploded view of the highly integrated modular in-wheel motor according to the present invention
  • FIG. 3 is a schematic diagram of a sixth stator module according to the present invention.
  • FIG. 4 is a schematic structural diagram of the sixth stator module according to the present invention
  • FIG. 4(a) is an assembly diagram of a sixth stator module lamination
  • FIG. 4(b) is a sixth stator module lamination explosion diagram
  • FIG. 6 is an assembly diagram of the cooling plate according to the present invention.
  • FIG. 7 is a schematic diagram of the interface integration of the controller board according to the present invention.
  • FIG. 8 is a schematic diagram of the connection of six F-type cooling pipelines in the control module assembly according to the present invention.
  • FIG. 9 is an assembly diagram of the stator fixing sleeve and the connecting rod according to the present invention.
  • FIG. 10 is a schematic diagram of a circumferential cooling pipeline arranged inside the stator fixing sleeve according to the present invention.
  • FIG. 11 is a schematic diagram of a parallel cooling system of the motor and control module assembly according to the present invention.
  • FIG. 12 is a schematic diagram of six partial modules according to the present invention.
  • a highly integrated modular wheel hub motor and its cooling system of the present invention includes a highly integrated motor and a parallel cooling system.
  • the highly integrated motor includes fastening bolts A1, front closed end cover 2, rotating assembly 3, stator assembly 4, control module assembly 5, rear closed end cover 6, fastening bolts B7, and fastening bolts C11 and spindle 14.
  • the rotating assembly 3 includes a rotor 3-1 and a built-in V-shaped permanent magnet 3-4.
  • Bolt fixing holes 3-3 are evenly provided on both sides of the rotor 3-1, and there are also bolt fixing holes 3-3 on the sides of the rotor 3-1.
  • a permanent magnet assembly groove 3-2 is machined; the front closed end cover 2 is connected to the bolt fixing hole 3-3 on one side of the rotor 3 by tightening bolts A1, and the rear closed end cover 6 is connected to the other side of the rotor 3 by tightening bolts B7.
  • the bolt fixing holes 3-3 on one side are connected into one body; the built-in V-shaped permanent magnet 3-4 is installed in the permanent magnet assembly slot 3-2 to form a salient pole structure, which can provide greater torque and can adapt to multiple A variety of complex working conditions, such as emergency braking, rapid acceleration and deceleration, high-speed cruise, overload climbing, frequent start and stop and other conditions.
  • the stator assembly 4 is located inside the rotating assembly 3.
  • the stator assembly 4 is composed of a stator module 4-1 and a winding 4-2.
  • six stator modules 4-1 are provided; as shown in Figure 4 ( As shown in a) and (b), the stator module 4-1 is formed by stacking a plurality of stator laminations, and three connecting holes 4-3 are opened at the lower end of each stator lamination; as shown in FIG. 3, the stator module 4-1 A winding 4-2 is wound thereon, and winding joints are left at both ends of the stator module 4-1 so as to be connected with the windings on other stator modules 4-1, thereby making the windings a whole.
  • the control module assembly 5 includes a controller board 5-1, an interface assembly board 5-2, a cooling board 5-3 and an inverter board 5-4.
  • the controller boards 5-1 are evenly distributed to form On the first fan ring, and the interface assembly board 5-2 is arranged on a controller board 5-1;
  • the cooling plate 5-3 is evenly distributed in the circumferential direction to form the second fan ring;
  • the inverter board 5-4 is evenly distributed in the circumferential direction distributed to form a third fan ring; the first fan ring, the second fan ring, and the third fan ring are arranged in sequence and fixed as a whole by fastening bolts C11.
  • the cooling plate 5-3 is arranged between the controller board 5-1 and the inverter board 5-4 and in surface-to-surface contact, so that the cooling plate 5-3 can be more Good to dissipate heat from both.
  • the controller boards 5-1 are connected in parallel by wires, and the controller board 5-1 and the inverter board 5-4 are connected in series by wires.
  • the number of the controller board 5-1, the cooling board 5-3 and the inverter board 5-4 is preferably six.
  • an F-type cooling pipe 10-2 is arranged inside the cooling plate 5-3, and the F-type cooling pipe 10 is connected to the upper end cover 10-3 of the cooling plate and the lower end cover 10-1 of the cooling plate by tightening bolts C11. -2 is fixed in the grooves of the upper and lower end caps, which can well suppress the vibration caused by the cooling water rushing into the pipeline.
  • the three-phase electrical interface 8-3, the general water outlet 8-1 of the F-type cooling pipeline and the general water inlet 8-2 of the F-type cooling pipeline are arranged on the interface assembly board 5-2; 8, the water inlet of the F-type cooling pipeline 10-2 is connected to the water outlet of the adjacent F-type cooling pipeline 10-2 through the hose 13, so that the six F-type cooling pipelines 10-2 are connected, and The last group of cooling pipeline water inlets and water outlets are respectively connected to the F-type cooling pipeline general water inlet 8-2 and the F-type cooling pipeline general water outlet 8-1 on the interface assembly board 5-2 through the hose 13. .
  • the three-phase electrical interface 8-3 is connected to the general connection of the winding 4-2.
  • the lower end of the stator module 4-1 is inserted into the fixing hole 9-5 on the axial outer side of the stator fixing sleeve 9-1 through the connecting rod 9-4, so that the stator module 4-1 and the stator fixing sleeve 9-1 are connected to each other.
  • connection is integrated; the side of the stator fixing sleeve 9-1 is provided with a sleeve water outlet 9-2 and a sleeve water inlet 9-3, and the water outlet pipeline interface 9-2 and the water inlet pipeline interface 9-3 are arranged on one side, It is beneficial to the arrangement of the cooling pipeline when connecting with the cooling water pump; the stator fixing sleeve 9-1 is provided with bolt fixing holes 9-6 on the axial inner side, and the controller board 5-1, the interface assembly board 5-2, the cooling plate 5-3 and the inverter board 5-4 are fastened to the inside of the stator fixing sleeve 9-1 by fastening bolts C11; as shown in Figure 1, the stator fixing sleeve 9-1 passes through the main shaft 14 and the rear closed end cover 6 Reserve the center hole connection.
  • the stator fixing sleeve 9-1 is provided with a circumferential cooling pipeline 12-1, and the circumferential cooling pipeline water inlet 12-2 and the circumferential cooling pipeline water outlet 12-3 are arranged on the same side ;
  • the circumferential cooling pipeline 12-1 and the F-type cooling pipeline 10-2 are in parallel mode, that is, the cooling water pump sends the water in the cooling water tank through the sleeve water inlet 9-3 and the F-type cooling pipe
  • the general water inlet 8-2 pumps water to the two cooling pipes, thereby cooling the motor and the control module assembly 5 at the same time, which is beneficial to enhance the heat dissipation inside the motor.
  • the water inlet 12-2 of the circumferential cooling pipeline is communicated with the water inlet 9-3 of the sleeve, and the water outlet 12-3 of the circumferential cooling pipeline is communicated with the water outlet 9-2 of the sleeve.
  • a stator module 4-1 and a sixth control module assembly 5 form a local module 15 as shown in FIG. 12 .
  • the local module 15 can be used alone and is suitable for small torque conditions; the local module 15 It can also be used in multiple connections, which can be applied to the working condition of large torque; when a local module 15 fails during operation, it is easy to replace, and other local modules 15 can also ensure the normal operation of the motor.
  • the above-mentioned F-type cooling pipes 10-2 and circumferential cooling pipes 12-1 form a parallel cooling system.
  • the working process of the highly integrated modular in-wheel motor and its cooling system of the present invention is as follows: when the vehicle is in overloaded climbing, high-speed cruising, rapid acceleration and deceleration and other conditions of large torque demand and high current, the required power is very large. , at this time, the heat generated by the motor and the control module assembly is very large, and the ECU controls the cooling water pump to increase the flow rate through the cooling system pipeline; when the vehicle is in emergency braking, frequent start and stop, low speed and light load conditions, the ECU Control the cooling water pump to reduce the flow velocity in the cooling system pipeline.
  • the F-type cooling pipe 10-2 is not limited to this design, as long as it can achieve good heat dissipation performance for the drive control part, the cooling plate end cover 10-3 and the cooling plate lower end cover 10-1 are also It can be directly combined by slotting, as long as the sealing performance of the cooling plate can meet the requirements; the circumferential cooling pipeline 12-1 is not limited to this design, and an axial cooling pipeline or a spiral cooling pipeline can be used, as long as it can meet the requirements It is enough to dissipate heat inside the motor.
  • the axial cooling pipeline is arranged in the same way as the circumferential cooling pipeline. Since the water inlet and outlet of the spiral cooling pipeline are not on the same side, the cooling pipeline connected to the outside needs to be rearranged.
  • the number of stator modules 4-1 is not limited to this design, and the number can be more or less according to design requirements, as long as the stator function can be realized, the controller board 5-1, the cooling board 5-3 and the inverter
  • the number and shape of the boards 5-4 are not limited to this design, and the shape and number of the boards can be appropriately changed according to design requirements and on the premise of ensuring basic functions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

一种高集成度模块化轮毂电机及其冷却系统,属于纯电动汽车技术领域。该高集成度模块化轮毂电机及其冷却系统包括集成化轮毂电机和并联冷却系统,集成化轮毂电机包括转动总成(3)、定子总装(4)和控制模块总装(5),定子总装(4)位于转动总成(3)内部,定子总装(4)固定在定子固定套筒(9-1)轴向外侧,定子固定套筒(9-1)内部固定控制模块总装(5);控制模块总装(5)的冷却板(5-3)内部设有冷却管路A,定子固定套筒(9-1)中设置有冷却管路B,冷却管路B与冷却管路A并联,形成并联冷却系统。该技术方案具有高度集成化和高效散热冷却的性能,改善整个电机适应复杂工况的适应性。

Description

一种高集成度模块化轮毂电机及其冷却系统 技术领域
本发明属于纯电动汽车技术领域,尤其涉及一种高集成度模块化轮毂电机及其冷却系统。
背景技术
轮毂电机是一种内定子、外转子形式的电机,其动力、传动和制动装置都整合在轮毂内,大量简化了电动汽车的机械部件,与传统电机相比,具有良好的机动性、高效率的传动性、较高的车身内部空间利用性和良好的动力学性能等。
目前大多数轮毂电机与其驱动控制器分离式布置,驱动控制器布置在电动汽车车架上,驱动控制器再连接电机进行驱动,连接线束和接口过多,布置起来较为麻烦。受制于以Protean Electric为代表的国外轮毂电机巨头公司的技术封锁,难以查找模块化轮毂电机的一手文献资料,仅仅通过一些报告宣传查找到有限的信息,再者采用表贴式永磁体轮毂电机不能够提供足够的磁阻转矩,对于复杂工况如过载爬坡、高速巡航、急加减速和频繁启停适应性较差。
当前轮毂电机及其驱动控制器采用的冷却系统为串联冷却方式,冷却水流过电机的冷却管路之后再流入驱动控制器的冷却管路,最后回到冷却水箱形成一个循环,但是冷却水经过电机之后,温度上升较多,对控制器的散热效果变得很差;目前还有很多驱动系统的控制器采用最原始的自然风冷散热,对于复杂工况的表现更差。
发明内容
针对现有技术中存在不足,本发明提供了一种高集成度模块化轮毂电机及其冷却系统,具有高度集成化和高效散热冷却的性能,改善整个电机适应复杂工况的适应性。
本发明是通过以下技术手段实现上述技术目的的。
一种高集成度模块化轮毂电机及其冷却系统,包括集成化电机和并联冷却系统,所述集成化电机包括转动总成、定子总装和控制模块总装,定子总装位于转动总成内部;
所述控制模块总装包括依次设置并固连在一起的控制器板、冷却板和逆变器板,控制器板、冷却板和逆变器板数量相同,且均采用均匀分布的方式;控制器板之间通过导线并联,控制器板和逆变器板通过导线串联;其中一块控制器板上设有接口总成板;冷却板内部设有冷却管路A;
所述定子总装固定在定子固定套筒轴向外侧,定子固定套筒内部固定控制模块总装;定子固定套筒中设置有冷却管路B,冷却管路B与冷却管路A并联,形成并联冷却系统。
上述技术方案中,所述定子固定套筒侧面设有套筒出水口和套筒进水口,套筒出水口、 套筒进水口分别与冷却管路B的出水口、进水口连通。
上述技术方案中,所述冷却管路B采用周向冷却管路或者轴向冷却管路或者螺旋式冷却管路。
上述技术方案中,所述套筒出水口、套筒进水口位于定子固定套筒同一侧,所述冷却管路B的出水口、进水口位于冷却管路B的同一侧。
上述技术方案中,所述接口总成板上设置有冷却管路总出水口和冷却管路总进水口,分别与连通的冷却管路A末端的进出水口连接。
上述技术方案中,所述接口总成板还设有三相电接口,与定子总装的绕组的总接头连接。
上述技术方案中,所述冷却管路采用F型,且固定在上下端盖的凹槽中。
上述技术方案中,所述控制器板、冷却板和逆变器板采用扇环形状。
上述技术方案中,所述控制器板、冷却板和逆变器板的数量均为六个。
上述技术方案中,一组控制器板、冷却板和逆变器板,与一个定子模块组成局部模块,局部模块单独使用或者多个连接起来共同使用。
本发明通过以上技术方案,可以实现如下的有益效果:
1)本发明的控制模块总装分为多个部分,每部分的控制模块总装由控制器板、冷却板以及逆变器板构成,三个板通过紧固螺栓固定在定子固定套筒上;冷却板内部设有冷却管路,且冷却板设置在控制器板与逆变器板中间,对两者进行冷却,能够更好的吸收两者产生的热量。
2)本发明将定子整体分成多个定子模块,分别进行绕组缠绕,有利于提高工作效率、减少缠绕失误;多个定子模块通过圆柱形连接杆与定子固定套筒连接成一体,一个定子模块故障时,有利于快速更换故障件,加快维修速度。
3)本发明的一个定子模块和六分之一控制模块总装组成局部模块,局部模块可以单独作用,适应于小转矩的工况;局部模块也可以多个连接起来共同作用,此时可以应用于较大转矩的工况;在运行中某个局部模块发生故障,便于更换,其它局部模块还可保证电机正常运行。
4)本发明中定子固定套筒设置有周向冷却管路,冷却板内部的冷却管路与周向冷却管路同时对电机内部进行冷却,有利于保证电机高效率持续的运行。
5)本发明采用内置式V型永磁体,安装在永磁体装配槽中,有效的提高电机的磁阻转矩,能够适应多种复杂的工况,比如紧急制动、急加减速、高速巡航、过载爬坡、频繁启停、低速轻载等工况。
附图说明
图1为本发明所述高集成度模块化轮毂电机爆炸图;
图2为本发明所述转动总成爆炸图;
图3为本发明所述六分之一定子模块示意图;
图4为本发明所述六分之一定子模块结构示意图,图4(a)是六分之一定子模块叠片装配图,图4(b)是六分之一定子模块叠片爆炸图;
图5为本发明所述控制模块总装爆炸图;
图6为本发明所述冷却板装配图;
图7为本发明所述控制器板的接口集成示意图;
图8为本发明所述控制模块总装中六个F型冷却管路连接示意图;
图9为本发明所述定子固定套筒和连接杆装配图;
图10为本发明所述定子固定套筒内部设置的周向冷却管路示意图;
图11为本发明所述电机与控制模块总装的并联冷却系统示意图;
图12为本发明所述六个局部模块示意图。
附图标记说明如下:
1-紧固螺栓A,2-前封闭端盖,3-转动总成,3-1-转子,3-2-永磁体装配槽,3-3-螺栓固定孔,3-4-内置式V型永磁体,4-定子总装,4-1-定子模块,4-2-绕组,4-3-连接孔,5-控制模块总装,5-1-控制器板,5-2-接口集成板,5-3-冷却板,5-4-逆变器板,6-后封闭端盖,7-紧固螺栓B,8-1-F型冷却管路总出水口,8-2-F型冷却管路总进水口,8-3-三相电接口ABC,9-1-定子固定套筒,9-2-套筒出水口,9-3-套筒进水口,9-4-连接杆,9-5-固定孔,9-6-螺栓固定孔,10-1-冷却板下端盖,10-2-F型冷却管路,10-3-冷却板上端盖,11-紧固螺栓C,12-1-周向冷却管路,12-2-周向冷却管路进水口,12-3-周向冷却管路出水口,13-软管,14-主轴,15-局部模块。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
本发明的一种高集成度模块化轮毂电机及其冷却系统,包括高度集成化电机和并联冷却系统。
如图1所示,高集成度电机包括紧固螺栓A1、前封闭端盖2、转动总成3、定子总装4、控制模块总装5、后封闭端盖6、紧固螺栓B7、紧固螺栓C11和主轴14。
如图2所示,转动总成3包括转子3-1和内置式V型永磁体3-4,转子3-1两侧面上均匀设有螺栓固定孔3-3,转子3-1侧面上还加工有永磁体装配槽3-2;前封闭端盖2通过紧固螺栓A1与转子3一侧面的螺栓固定孔3-3连接成一体,后封闭端盖6通过紧固螺栓B7与转子3另一侧面的螺栓固定孔3-3连接成一体;内置式V型永磁体3-4安装在永磁体装配槽3-2中,形成凸极式结构,能够提供更大的转矩,可以适应多种复杂工况,比如紧急制动、急加减速、高速巡航、过载爬坡、频繁启停等工况。
定子总装4位于转动总成3内部,如图3所示,定子总装4由定子模块4-1和绕组4-2组成,本实施例中,定子模块4-1设置六个;如图4(a)、(b)所示,定子模块4-1由多个定子叠片叠加而成,每个定子叠片下端开有三个连接孔4-3;如图3所示,定子模块4-1上缠绕有绕组4-2,在定子模块4-1两端留有绕组接头,以便与其他定子模块4-1上的绕组进行连接,进而使得绕组成为一个整体。
如图5所示,控制模块总装5包括控制器板5-1、接口总成板5-2、冷却板5-3和逆变器板5-4,控制器板5-1均匀分布,形成第一扇环上,且接口总成板5-2设置在一块控制器板5-1;冷却板5-3周向均匀分布,形成第二扇环;逆变器板5-4周向均匀分布,形成第三扇环;第一扇环、第二扇环、第三扇环依次布置,并通过紧固螺栓C11固定为一体。由于控制器板5-1和逆变器板5-4发热量很大,将冷却板5-3设置在控制器板5-1和逆变器板5-4中间且面面接触,能够更好的对两者进行散热。控制器板5-1之间通过导线并联,控制器板5-1和逆变器板5-4通过导线串联。本实施例中,控制器板5-1、冷却板5-3和逆变器板5-4均优选为六个。
如图6所示,冷却板5-3内部设有F型冷却管路10-2,冷却板上端盖10-3和冷却板下端盖10-1通过紧固螺栓C11将F型冷却管路10-2固定在上下端盖的凹槽中,可以很好的抑制管路中冲入冷却水时带来的振动。
如图7所示,接口总成板5-2上布置了三相电接口8-3、F型冷却管路总出水口8-1和F型冷却管路总进水口8-2;如图8所示,将F型冷却管路10-2的进水口通过软管13连接到相邻F型冷却管路10-2的出水口,使得6个F型冷却管路10-2连通,且最后一组冷却管路进水口、出水口分别通过软管13连接到接口总成板5-2上的F型冷却管路总进水口8-2、F型冷却管路总出水口8-1。三相电接口8-3与绕组4-2的总接头连接。
如图9所示,定子模块4-1下端通过连接杆9-4插入定子固定套筒9-1轴向外侧的固定孔9-5,使得定子模块4-1与定子固定套筒9-1连接形成一体;定子固定套筒9-1侧面设有套筒出水口9-2和套筒进水口9-3,出水管路接口9-2和进水管路接口9-3设置在一侧,有利于与冷却水泵连接时冷却管路的布置;定子固定套筒9-1轴向内侧设有螺栓固定孔9-6,将控制器板5-1、接口总成板5-2、冷却板5-3和逆变器板5-4通过紧固螺栓C11固连到定子固定套筒 9-1内部;如图1所示,定子固定套筒9-1通过主轴14与后封闭端盖6预留中心孔连接。
如图10所示,定子固定套筒9-1中设置有周向冷却管路12-1,周向冷却管路进水口12-2和周向冷却管路出水口12-3设置在同一侧;如图11所示,周向冷却管路12-1与F型冷却管路10-2采用并联模式,即冷却水泵将冷却水箱中的水通过套筒进水口9-3、F型冷却管路总进水口8-2向两个冷却管路进行泵水,进而同时对电机和控制模块总装5进行冷却,有利于增强电机内部的散热。其中周向冷却管路进水口12-2与套筒进水口9-3连通,周向冷却管路出水口12-3与套筒出水口9-2连通。
本实施例中,一个定子模块4-1和六分之一控制模块总装5组成如图12所示的局部模块15,局部模块15可以单独使用,适应于小转矩的工况;局部模块15也可以多个连接起来共同使用,此时可以应用于较大转矩的工况;在运行中某个局部模块15发生故障,便于更换,其它局部模块15还可保证电机正常运行。
上述F型冷却管路10-2、周向冷却管路12-1组成并联冷却系统。
本发明一种高集成度模块化轮毂电机及其冷却系统的工作过程为:当车辆处于过载爬坡、高速巡航、急加减速等转矩需求大、大电流工况下时,需求功率很大,此时电机和控制模块总装的发热量非常大,ECU控制冷却水泵,使通过冷却系统管路中的流速流量增加;当车辆处于紧急制动、频繁启停、低速轻载工况时,ECU控制冷却水泵,使冷却系统管路中流速流量降低。
在本实施例中,F型冷却管路10-2不局限于本设计,只要能够实现对驱动控制部分有良好散热性能即可,冷却板上端盖10-3和冷却板下端盖10-1也可以开槽直接合并起来,只要保证冷却板密封性能达到要求即可;周向冷却管路12-1也是不局限于本设计,可以采用轴向冷却管路或者螺旋式冷却管路,只要能够满足电机内部散热即可,轴向冷却管路同周向冷却管路布置相同,由于螺旋式散热管路进出水口不在同侧,需要重新布置接入外面的冷却管路。
在本实施例中,定子模块4-1数目不局限于本设计,数目根据设计要求可多可少,只要能够实现定子功能即可,制器板5-1、冷却板5-3和逆变器板5-4的数目和形状不局限于本设计,板子的形状和数目都可以根据设计要求,在保证基础功能前提下,可以进行适当的改变。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (10)

  1. 一种高集成度模块化轮毂电机及其冷却系统,其特征在于,包括集成化电机和并联冷却系统,所述集成化电机包括转动总成(3)、定子总装(4)和控制模块总装(5),定子总装(4)位于转动总成(3)内部;
    所述控制模块总装(5)包括依次设置并固连在一起的控制器板(5-1)、冷却板(5-3)和逆变器板(5-4),控制器板(5-1)、冷却板(5-3)和逆变器板(5-4)数量相同,且均采用均匀分布的方式;控制器板(5-1)之间通过导线并联,控制器板(5-1)和逆变器板(5-4)通过导线串联;其中一块控制器板(5-1)上设有接口总成板(5-2);冷却板(5-3)内部设有冷却管路A;
    所述定子总装(4)固定在定子固定套筒(9-1)轴向外侧,定子固定套筒(9-1)内部固定控制模块总装(5);定子固定套筒(9-1)中设置有冷却管路B,冷却管路B与冷却管路A并联,形成并联冷却系统。
  2. 根据权利要求1所述的高集成度模块化轮毂电机及其冷却系统,其特征在于,所述定子固定套筒(9-1)侧面设有套筒出水口(9-2)和套筒进水口(9-3),套筒出水口(9-2)、套筒进水口(9-3)分别与冷却管路B的出水口、进水口连通。
  3. 根据权利要求2所述的高集成度模块化轮毂电机及其冷却系统,其特征在于,所述冷却管路B采用周向冷却管路或者轴向冷却管路或者螺旋式冷却管路。
  4. 根据权利要求3所述的高集成度模块化轮毂电机及其冷却系统,其特征在于,所述套筒出水口(9-2)、套筒进水口(9-3)位于定子固定套筒(9-1)同一侧,所述冷却管路B的出水口、进水口位于冷却管路B的同一侧。
  5. 根据权利要求1所述的高集成度模块化轮毂电机及其冷却系统,其特征在于,所述接口总成板(5-2)上设置有冷却管路总出水口(8-1)和冷却管路总进水口(8-2),分别与连通的冷却管路A(10-2)末端的进出水口连接。
  6. 根据权利要求1所述的高集成度模块化轮毂电机及其冷却系统,其特征在于,所述接口总成板(5-2)还设有三相电接口(8-3),与定子总装(4)的绕组(4-2)的总接头连接。
  7. 根据权利要求1所述的高集成度模块化轮毂电机及其冷却系统,其特征在于,所述冷却管路A采用F型,且固定在上下端盖的凹槽中。
  8. 根据权利要求1所述的高集成度模块化轮毂电机及其冷却系统,其特征在于,所述控制器板(5-1)、冷却板(5-3)和逆变器板(5-4)采用扇环形状。
  9. 根据权利要求8所述的高集成度模块化轮毂电机及其冷却系统,其特征在于,所述控制器板(5-1)、冷却板(5-3)和逆变器板(5-4)的数量均为六个。
  10. 根据权利要求9所述的高集成度模块化轮毂电机及其冷却系统,其特征在于,一组控 制器板(5-1)、冷却板(5-3)和逆变器板(5-4),与一个定子模块(4-1)组成局部模块(15),局部模块(15)单独使用或者多个连接起来共同使用。
PCT/CN2020/105128 2020-06-28 2020-07-28 一种高集成度模块化轮毂电机及其冷却系统 WO2022000665A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010598108.0A CN111769688B (zh) 2020-06-28 2020-06-28 一种高度集成模块化轮毂电机
CN202010598108.0 2020-06-28

Publications (1)

Publication Number Publication Date
WO2022000665A1 true WO2022000665A1 (zh) 2022-01-06

Family

ID=72722281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105128 WO2022000665A1 (zh) 2020-06-28 2020-07-28 一种高集成度模块化轮毂电机及其冷却系统

Country Status (2)

Country Link
CN (1) CN111769688B (zh)
WO (1) WO2022000665A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114448120A (zh) * 2022-01-29 2022-05-06 南京农业大学 一种减速式轮毂电机

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113965024B (zh) * 2021-10-20 2023-05-09 中国科学院电工研究所 一种电动汽车电机与电机控制器的集成系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204794508U (zh) * 2015-08-10 2015-11-18 陆雄机械(浙江)有限公司 一种带有冷却结构的马达
CN207328119U (zh) * 2017-09-20 2018-05-08 中国第一汽车股份有限公司 一种电动汽车转向轮用直驱式轮毂电机驱动装置
CN109155547A (zh) * 2016-12-14 2019-01-04 普罗蒂恩电子有限公司 用于电机或发电机的定子
JP2020014283A (ja) * 2018-07-13 2020-01-23 本田技研工業株式会社 回転電機のステータ構造及びこれを備えた車両
CN210327236U (zh) * 2019-06-24 2020-04-14 安徽鸿创新能源动力有限公司 一种电动汽车驱动电机冷却结构

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100698923B1 (ko) * 2000-08-30 2007-03-23 아이신에이더블류 가부시키가이샤 구동장치
JP5659770B2 (ja) * 2010-12-17 2015-01-28 トヨタ紡織株式会社 回転電機のコア及び回転電機のコアの製造方法
CN102158013A (zh) * 2011-03-10 2011-08-17 中国科学院电工研究所 风力发电机定子绕组的强迫循环蒸发冷却装置
GB2522021B (en) * 2014-01-08 2018-02-07 Protean Electric Ltd A rotor for an electric motor or generator
JP2015146710A (ja) * 2014-02-04 2015-08-13 日産自動車株式会社 機電一体駆動ユニットの冷却装置
CN105099084B (zh) * 2014-05-15 2017-10-17 中山大洋电机股份有限公司 将牵引电机和逆变器集成的一体化动力系统
CN111049326A (zh) * 2020-01-21 2020-04-21 浙江绿源电动车有限公司 一种内置充电系统的轮毂电机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204794508U (zh) * 2015-08-10 2015-11-18 陆雄机械(浙江)有限公司 一种带有冷却结构的马达
CN109155547A (zh) * 2016-12-14 2019-01-04 普罗蒂恩电子有限公司 用于电机或发电机的定子
CN207328119U (zh) * 2017-09-20 2018-05-08 中国第一汽车股份有限公司 一种电动汽车转向轮用直驱式轮毂电机驱动装置
JP2020014283A (ja) * 2018-07-13 2020-01-23 本田技研工業株式会社 回転電機のステータ構造及びこれを備えた車両
CN210327236U (zh) * 2019-06-24 2020-04-14 安徽鸿创新能源动力有限公司 一种电动汽车驱动电机冷却结构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114448120A (zh) * 2022-01-29 2022-05-06 南京农业大学 一种减速式轮毂电机

Also Published As

Publication number Publication date
CN111769688A (zh) 2020-10-13
CN111769688B (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
US7851954B2 (en) Vehicle drive device
WO2022000665A1 (zh) 一种高集成度模块化轮毂电机及其冷却系统
CN104779758A (zh) 基于单双层混合绕组的模块化多相永磁同步电机
WO2021243871A1 (zh) 一种磁悬浮飞轮储能电机发电机
CN1970359A (zh) 一种充电式混合动力电动汽车的动力系统
CN1738163A (zh) 双转子混合动力复合永磁电机
CN104716786B (zh) 大电流永磁同步电机多驱动控制集成装置
CN109391072A (zh) 一种铁路干线机车车辆及其永磁同步牵引电动机
CN205583964U (zh) 船舶推进用永磁同步电机
CN109774457A (zh) 一种电动汽车用轮毂电机
CN115714517A (zh) 一种磁悬浮电机发电机
CN114498993B (zh) 一种紧凑型半直驱永磁同步风力发电机
CN110203280A (zh) 一种电动转向助力泵总成
CN106992626A (zh) 一种双支承磁悬浮飞轮储能装置
WO2020220834A1 (zh) 冷却系统、电机及风力发电机组
CN105398332B (zh) 电动汽车模块化动力集成系统
CN110171284B (zh) 一种模块化集成式混合动力系统
CN111391646A (zh) 一种带行星减速器的双电机嵌套式行星混联机电一体化系统
CN110239350A (zh) 一种电动汽车用多通道模块化电驱系统
US11967872B2 (en) Electric machine stator and vehicle electric machine containing the same
CN113928345B (zh) 一种混合动力机车车下集成单元用冷却系统
CN108011471B (zh) 直接驱动式双轮毂电机系统
CN213521540U (zh) 一种磁悬浮飞轮储能电机发电机
CN111756173A (zh) 一种双绕组六相电机
CN103516154B (zh) 自动增减功率扭矩发电充电多功能永磁超强超能驱动电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943416

Country of ref document: EP

Kind code of ref document: A1