WO2017135758A1 - 음극 활물질, 이를 포함하는 음극 및 리튬 이차전지 - Google Patents

음극 활물질, 이를 포함하는 음극 및 리튬 이차전지 Download PDF

Info

Publication number
WO2017135758A1
WO2017135758A1 PCT/KR2017/001224 KR2017001224W WO2017135758A1 WO 2017135758 A1 WO2017135758 A1 WO 2017135758A1 KR 2017001224 W KR2017001224 W KR 2017001224W WO 2017135758 A1 WO2017135758 A1 WO 2017135758A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
lithium
secondary battery
particles
lithium secondary
Prior art date
Application number
PCT/KR2017/001224
Other languages
English (en)
French (fr)
Inventor
전혜림
이동훈
박성빈
정왕모
강성훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201780003412.2A priority Critical patent/CN108140825B/zh
Priority to JP2018539884A priority patent/JP6719760B2/ja
Priority to EP17747803.9A priority patent/EP3336938B1/en
Priority to US15/761,649 priority patent/US10784510B2/en
Priority claimed from KR1020170015471A external-priority patent/KR101847769B1/ko
Publication of WO2017135758A1 publication Critical patent/WO2017135758A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material, a negative electrode and a lithium secondary battery including the same, which can achieve an improved output and a higher capacity.
  • Such electric vehicles (EVs) and hybrid electric vehicles (HEVs) use nickel-metal hydride (Ni-MH) secondary batteries or lithium secondary batteries with high energy density, high discharge voltage, and output stability as power sources.
  • Ni-MH nickel-metal hydride
  • lithium secondary batteries lithium secondary batteries with high energy density, high discharge voltage, and output stability as power sources.
  • When used in electric vehicles it must be able to be used for 10 years or more under severe conditions as well as high energy density and high output in a short time. Therefore, superior safety and long life characteristics are inevitably superior to conventional small lithium secondary batteries. Is required.
  • secondary batteries used in electric vehicles (EVs) and hybrid electric vehicles (HEVs) require excellent rate characteristics and power characteristics according to vehicle operating conditions.
  • Lithium titanium composite oxide As an active material of a lithium secondary battery, in recent years, the lithium titanium composite oxide with a high Li occlusion
  • Lithium titanium composite oxide has been used conventionally as a positive electrode active material, and can also be used as a negative electrode active material, and thus its future is expected as a positive electrode and negative electrode active material of a battery, and in particular, the expansion and contraction during charge-discharge can be ignored. It is an electrode material to be noted when increasing the size of the electrode.
  • the spinel type lithium titanate (composition formula Li 4 + x Ti 5 O 12 (0 ⁇ x ⁇ 3)) is attracting attention because of its small volume change during charge and discharge, and reversibly excellent.
  • the lithium titanium composite oxide is a secondary particle formed by aggregating primary particles, and the secondary particles include pores.
  • the secondary particles are collapsed, the voids disappear and difficult to diffuse lithium in the active material layer, the charge rate characteristics are deteriorated There is this.
  • the present inventors have made an effort to solve the above problems, and as a result, by introducing a specific metal into the lithium titanium composite oxide, the particle size of the primary particles of the lithium titanium composite oxide is adjusted, and thereby secondary particles
  • the present invention has been completed to develop a method for securing the strength of.
  • the problem to be solved by the present invention is to reduce the particle size of the primary particles by introducing a metal element, while ensuring the pore volume of the secondary particles, while ensuring the strength of the secondary particles can be adjusted to the appropriate pore volume during rolling It is to provide a negative electrode active material for a rechargeable lithium secondary battery.
  • Another object of the present invention is to provide a negative electrode and a lithium secondary battery for a lithium secondary battery including the active material.
  • Another object of the present invention is to provide a method of manufacturing the negative active material for the lithium secondary battery.
  • M is Na, K, Rb, Zr, W, Mg, Mo or Ta.
  • the present invention provides a lithium secondary battery negative electrode and a lithium secondary battery comprising the same, in order to solve the other problem, the negative electrode active material for the lithium secondary battery.
  • step (i) solid phase mixing of the lithium-containing compound, the titanium oxide and the doped metal-containing compound; (ii) dispersing the solid mixture of step (i) in a solvent to prepare a slurry; And (iii) spray drying the slurry prepared in step (ii), wherein the primary particle forming step does not include a separate grinding step for the solid mixture and the slurry; And
  • a method of manufacturing a negative electrode active material for a lithium secondary battery comprising the step of firing the primary particles formed in step 1) to form secondary particles,
  • the doping metal is at least one selected from the group consisting of Na, K, Rb, Zr, W, Mg, Mo and Ta, the pore volume of the secondary particles is 0.001 to 0.05 cm 3 / g, a negative electrode for a lithium secondary battery It provides a method for producing an active material.
  • the manufacturing method of the negative electrode active material for a lithium secondary battery according to the present invention can adjust the particle size of the primary particles by adjusting the amount of introduction of metal elements, thereby improving the strength of the secondary particles and thereby maintaining the void volume during rolling Since it can be planned, it can be usefully used in the production of a negative electrode active material for a lithium secondary battery.
  • Example 3 is a result of measuring the PSD of each of the lithium titanium composite oxide prepared in Example 1 and Comparative Example 1.
  • FIG. 5 shows the resistance value per frequency using the electrochemical impedance spectroscopy (EIS) after performing charge and discharge twice for the secondary batteries manufactured in Comparative Examples 5 and 6, respectively. After measurement, the trend is converted into semi-circle.
  • EIS electrochemical impedance spectroscopy
  • Figure 6 is a graph showing the results of measuring the voltage drop at this time by performing two charge and discharge for the secondary battery manufactured in Example 6 and Comparative Example 5, and then discharged at 10 C for 3 minutes from a fully charged state to be.
  • the negative electrode active material for a lithium secondary battery according to the present invention is secondary particles formed by aggregating primary particles including a lithium titanium composite oxide represented by the following Chemical Formula 1 or the following Chemical Formula 2, and the void volume of the secondary particles is 0.001 cm 3. / g to 0.05 cm 3 / g.
  • M is Na, K, Rb, Zr, W, Mg, Mo or Ta, specifically K, Rb, Mg or Ta.
  • the average particle diameter (D 50 ) of the primary particles may be 0.05 ⁇ m to 2 ⁇ m, specifically 0.07 ⁇ m to 1 ⁇ m, and more specifically 0.1 ⁇ m to 0.7 ⁇ m.
  • the pores formed in the secondary particles may have an appropriate size
  • the average particle diameter (D 50 ) of the primary particles is 2 ⁇ m or less
  • the secondary particles have an appropriate strength while the pores formed in the secondary particles have an appropriate size
  • the secondary particles Even during rolling, the particle shape can be maintained to maintain an appropriate pore volume.
  • the adjustment of the average particle diameter (D 50 ) size of the primary particles may be achieved by controlling the content of the doping metal included in the lithium titanium composite oxide, that is, the metal represented by M in the manufacturing process of the primary particles. .
  • the average particle diameter (D 50 ) of the primary particles is 0.5% to 2%, specifically in so reduced by 0.7% to 2%, it is possible according to the particle size of the average particle diameter (D 50) of a suitable primary particle adjust the first average particle diameter of primary particles (D 50) size by adjusting the doping amount of the dopant metal.
  • the primary particles produced by the method do not undergo a grinding process, which is a method commonly used to prepare particles having an appropriate average particle diameter, so that the primary particles are damaged in the grinding process, and thus the strength is decreased, Alternatively, the problem of uneven particle size can be prevented. Therefore, in the active material for a lithium secondary battery according to the present invention, the primary particles are not subjected to a separate grinding process for controlling the particle size, and according to the doping amount of the doped metal of the lithium titanium composite oxide contained in the primary particles. Since the particle size is controlled, it can have a uniform particle size.
  • the first average particle size (D 10) of the primary particle may be a 105% to 140% of the average particle diameter (D 50) 60% to 95% while the average particle diameter (D 90) the average particle diameter (D 50) of the , average particle size of the primary particles and more specifically (D 10) is the average particle diameter of 65% to 95% while the mean particle size (D 50) (D 90) can be 105% to 135% of the average particle diameter (D 50) and, more than 110% to 130% of the concrete to the primary particle average particle size (D 10) is the average particle diameter (D 50) 70% to 90% while the average particle diameter (D 90) the average particle diameter (D 50) of the work Can be.
  • the secondary particles may have an appropriate pore volume.
  • the "grinding” refers to a process of applying a physical force to reduce the size of the particles or solids having a particle shape to the desired particle size, for example, including grinding, cutting, breaking, grinding, and the like. to be.
  • the secondary particles may have a pore volume of 0.001 cm 3 / g to 0.05 cm 3 / g, specifically 0.005 cm 3 / g to 0.02 cm 3 / g.
  • the specific surface area of the secondary particles may be 1 m 2 / g to 10 m 2 / g, specifically 3 m 2 / g to 7 m 2 / g, more specifically 4 m 2 / g to 6 m 2 / g have.
  • the average particle diameter (D 50 ) of the secondary particles may be 1 ⁇ m to 30 ⁇ m, specifically 1 ⁇ m to 25 ⁇ m, and more specifically 2 ⁇ m to 15 ⁇ m.
  • the density of the electrode may be prevented from being lowered to have an appropriate volume / volume, and when the average particle size is 25 ⁇ m or less, the slurry for forming the electrode may have a uniform thickness. It can coat suitably.
  • the average particle diameter (D 10 ) may be defined as the particle size at 10% of the particle size distribution
  • the average particle diameter (D 50 ) may be defined as the particle size at 50% of the particle size distribution
  • the average The particle size (D 90 ) may be defined as the particle size based on 90% of the particle size distribution.
  • the average particle diameter is not particularly limited, but may be measured using, for example, a laser diffraction method or a scanning electron microscope (SEM) photograph. In general, the laser diffraction method can measure a particle diameter of about several mm from the submicron region, and a result having high reproducibility and high resolution can be obtained.
  • the secondary particles may have a pore volume of 70% to 99% by volume based on 100% by volume of the void volume before applying the pressure when 2,000 kgf / cm 2 is applied to the secondary particles. And specifically may have a pore volume of 75% to 90% by volume.
  • the volume of the voids included in the secondary particle particles may not be greatly reduced by the pressure.
  • the size of primary particles is uniform, and when they aggregate to form secondary particles, the contact between the primary particles may be uniform, so that the strength of the secondary particles may increase.
  • a pressure of 2,000 kgf / cm 2 is applied to the secondary particles, when the pore volume before applying the pressure is 100% by volume, the pore volume of 70% by volume to 99% by volume can be maintained.
  • the secondary particles when the secondary particles to form a layer having a thickness of 10 ⁇ m to 100 ⁇ m and applying a pressure of 2,000 kgf / cm 2 to the layer, the secondary particles contained in the layer Since 70% by volume to 99% by volume can be maintained based on the pore volume of 0.001 cm 3 / g to 0.05 cm 3 / g before applying the pressure, increase in lithium diffusion resistance can be suppressed and excellent rate characteristics can be suppressed. Can be exercised.
  • M may be specifically K, Rb, Mg, or Ta.
  • the negative electrode active material for a lithium secondary battery includes: (1) solid-phase mixing a lithium-containing compound, a titanium oxide, and a doped metal-containing compound; (2) dispersing the solid mixture of step (1) in a solvent to prepare a slurry; (3) spray drying the slurry prepared in step (2) to prepare secondary particles formed by aggregating primary particles; And (4) firing the secondary particles formed by the aggregation of the primary particles, and do not include a separate grinding process for the solid mixture and the slurry. Can be.
  • the doping metal may be at least one selected from the group consisting of Na, K, Rb, Zr, W, Mg, Mo, and Ta, specifically, at least one selected from the group consisting of K, Rb, Mg, or Ta. .
  • the pore volume of the secondary particles is 0.001 cm 3 / g to 0.05 cm 3 / g.
  • the lithium-containing compound, the titanium oxide, and the doped metal-containing compound are mixed in solid phase.
  • the lithium-containing compound, the titanium oxide, and the doped metal-containing compound may be mixed in solid phase according to the stoichiometric ratio for producing the lithium titanium composite oxide represented by Formula 1 or Formula 2, specifically, lithium, titanium, and doped metal
  • the molar ratio can be mixed in an amount that can be from 3.7-4: 4.7-5: 0 and above 0.5.
  • the lithium-containing compound may be one or more selected from the group consisting of lithium carbonate, lithium hydroxide and lithium oxide
  • the doping metal-containing compound is one selected from the group consisting of carbonate, hydroxide, and oxide of the doping metal. It may be abnormal.
  • the solid phase mixing step (1) prior to the solid phase mixing, the process of adjusting the content of the doping metal containing compound according to the desired particle size of the primary particles It may further include.
  • the particle size of the primary particles to be formed decreases, so that the content of the doped metal-containing compound may be appropriately adjusted to achieve a desired particle size of the primary particles.
  • the average particle diameter (D 50 ) of the primary particles formed is 0.5% to 2%, Specifically, since 0.7% to 2% is reduced, based on the size of the primary particles of the lithium titanium composite oxide containing no doped metal and then based on the size of the doped metal, the doping metal is appropriately contained.
  • the content of the compound can be controlled.
  • step (2) by dispersing the solid mixture obtained in step (1) in a solvent is prepared a slurry.
  • the solvent may be, for example, water, an organic solvent, or the like, and stirring may be performed as necessary in the dispersion process.
  • the slurry obtained in step (2) is spray dried through step (3) to form secondary particles formed by aggregation (bonding) of primary particles.
  • the spraying may be carried out through a conventional spraying apparatus, such as a rotary sprayer, a pressure nozzle, a pneumatic nozzle, a sonic nozzle, and the like, and is not particularly limited.
  • a conventional spraying apparatus such as a rotary sprayer, a pressure nozzle, a pneumatic nozzle, a sonic nozzle, and the like, and is not particularly limited.
  • the spray drying may be made in a temperature range of 100 °C to 300 °C, the spray and drying may be made through a process of drying by heating after spraying, the spray is made in a temperature range of 100 °C to 300 °C It may be achieved through a single process, in which spraying and drying are performed together.
  • Method for producing a negative active material for a lithium secondary battery according to the present invention does not include a separate grinding process for the solid mixture and slurry.
  • the method of manufacturing a negative electrode active material for a lithium secondary battery according to the present invention is to adjust the content of the doping metal-containing compound without the process of applying a physical force, such as grinding to include the size of the primary particles in the appropriate range.
  • the primary particles may be prepared in a desired particle size range, and because the primary particles are not subjected to a physical force such as pulverization, the primary particles are damaged and the strength is decreased, or the particle size of the primary particles is formed. It is possible to prevent the problem that is generated unevenly.
  • the primary particles formed through the above process may include a lithium titanium composite oxide represented by the following Chemical Formula 1 or the following Chemical Formula 2.
  • M is Na, K, Rb, Zr, W, Mg, Mo or Ta, specifically K, Rb, Mg or Ta.
  • the average particle diameter (D 50 ) of the primary particles is reduced by 0.5% to 2%, specifically 0.7% to 2% decreases, so that the appropriate primary particles
  • the size of the primary particles may be adjusted by adjusting the doping amount of the doped metal according to the particle size average particle diameter (D 50 ).
  • the average particle diameter (D 50 ) of the primary particles prepared as described above may be 0.05 ⁇ m to 2 ⁇ m, specifically 0.07 ⁇ m to 1 ⁇ m, and more specifically 0.1 ⁇ m to 0.7 ⁇ m.
  • the average particle diameter (D 50 ) of the primary particles when the primary particles aggregate to form secondary particles, the voids formed in the secondary particles in the process may have an appropriate size.
  • the average particle diameter (D 50 ) of the primary particles is 2 ⁇ m or less, while the pores formed in the secondary particles have an appropriate size, the secondary particles have an appropriate strength, Even when the primary particles are rolled, the particle shape can be maintained to maintain an appropriate pore volume.
  • the primary particles may have a uniform particle size because the size of the particles is adjusted according to the doping amount of the doped metal of the lithium titanium composite oxide included in the primary particles without grinding.
  • the first average particle size (D 10) of the primary particles is 60% to 95% of the average particle diameter (D 50)
  • the average particle diameter (D 90) can be 105% to 140% of the average particle diameter (D 50) and, more specifically, a 65% to 95% of the average particle diameter (D 10) is the average particle diameter (D 50) of the primary particles
  • 105% to 135% of the average particle diameter (D 90) the average particle diameter (D 50) may be, 110% of the more specifically, the primary average particle size (D 10) of particles is 70% to 90% of the average particle diameter (D 50), the average particle diameter (D 90) the average particle diameter (D 50) to 130%.
  • the 105% to 135% of the primary average particle diameter of the particles (D 10) is a 65% to 95% of the average particle diameter (D 50)
  • the average particle diameter (D 90) the average particle diameter (D 50) a primary
  • the contact between the primary particles is uniform, which may increase the strength of the secondary particles, and may have an appropriate degree of pore volume.
  • step 2) the primary particles formed in step 1) are fired to form secondary particles.
  • the firing may be performed by heating the primary particles formed in step 1) at a temperature of 700 ° C. to 900 ° C., specifically, at a temperature of 700 ° C. to 800 ° C. for 30 minutes to 20 hours, specifically 5 hours to 10 hours.
  • the firing may be performed in an air atmosphere or an inert gas atmosphere such as nitrogen and argon.
  • the secondary particles formed may have a pore volume of 0.001 cm 3 / g to 0.05 cm 3 / g, specifically 0.005 cm 3 / g to 0.02 cm 3 / g.
  • the average particle diameter (D 50 ) of the secondary particles may be 1 ⁇ m to 30 ⁇ m, specifically 2 ⁇ m to 25 ⁇ m, and more specifically 5 ⁇ m to 20 ⁇ m.
  • the density of the electrode may be prevented from being lowered to have an appropriate volume / volume, and when the average particle diameter is 30 ⁇ m or less, the slurry for forming the electrode may have a uniform thickness. It can coat suitably.
  • the secondary particles may have a pore volume of 70% to 99% by volume based on 100% by volume of the pore volume before applying the pressure when a pressure of 2,000 kgf / cm 2 is applied to the secondary particles. In particular, it may have a pore volume of 75% to 90% by volume.
  • the secondary particles included in the layer may be Since 70% by volume to 99% by volume can be maintained based on the pore volume of 0.001 cm 3 / g to 0.05 cm 3 / g before applying the pressure, increase in lithium diffusion resistance can be suppressed and excellent rate characteristics can be suppressed. Can be exercised.
  • the method of manufacturing the negative electrode active material for the lithium secondary battery except that the process of adjusting the content of the doped metal-containing compound according to the desired particle size of the primary particles and does not include the grinding process for the solid mixture and slurry. And, it can be achieved by applying a method for producing a lithium titanium composite oxide known in the art.
  • the negative electrode active material for a lithium secondary battery may be used as a negative electrode active material in the preparation of a negative electrode of a lithium secondary battery, and thus the present invention provides a negative electrode for a lithium secondary battery including the negative electrode active material for a lithium secondary battery.
  • the present invention provides a lithium secondary battery comprising the negative electrode for the lithium secondary battery.
  • the lithium secondary battery may include a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode.
  • the positive electrode can be prepared by conventional methods known in the art. For example, a slurry is prepared by mixing and stirring a solvent, a binder, a conductive material, and a dispersant, if necessary, in a conventional cathode active material, and then applying (coating) to a current collector of a metal material, compressing, and drying the cathode. can do.
  • the current collector of the metal material is a metal having high conductivity, and is a metal to which the slurry of the positive electrode active material can easily adhere, and is particularly limited as long as it has high conductivity without causing chemical change in the battery in the voltage range of the battery.
  • surface treated with carbon, nickel, titanium, silver, or the like on the surface of stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel may be used.
  • fine unevenness may be formed on the surface of the current collector to increase the adhesion of the positive electrode active material.
  • the current collector may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven fabric, and may have a thickness of 3 to 500 ⁇ m.
  • the solvent for forming the positive electrode includes an organic solvent such as NMP (N-methyl pyrrolidone), DMF (dimethyl formamide), acetone, dimethyl acetamide or water, and these solvents alone or in combination of two or more. Can be mixed and used. The amount of the solvent used is sufficient to dissolve and disperse the positive electrode active material, the binder, and the conductive material in consideration of the coating thickness of the slurry and the production yield.
  • NMP N-methyl pyrrolidone
  • DMF dimethyl formamide
  • acetone dimethyl acetamide or water
  • the binder may be polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride (polyvinylidenefluoride), polyacrylonitrile, polymethylmethacrylate, Polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), Sulfonated EPDM, styrene butadiene rubber (SBR), fluorine rubber, poly acrylic acid and polymers in which hydrogen thereof is replaced with Li, Na, or Ca, or Various kinds of binder polymers such as various copolymers can be used.
  • PVDF-co-HFP polyvinylidene fluoride-hexafluoropropylene copolymer
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • Examples of the conductive material include graphite such as natural graphite and artificial graphite; Carbon blacks such as acetylene black, Ketjen black, channel black, farnes black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Conductive tubes such as carbon nanotubes; Metal powders such as fluorocarbon, aluminum and nickel powders; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the conductive material may be used in an amount of 1 wt% to 20 wt% with respect to the total weight of the positive electrode slurry.
  • the dispersant may be an aqueous dispersant or an organic dispersant such as N-methyl-2-pyrrolidone.
  • the negative electrode may be manufactured by a conventional method known in the art, and for example, after mixing and stirring additives such as the negative electrode active material for a lithium secondary battery and a binder and a conductive material to prepare a negative electrode active material slurry, the lithium secondary battery for It may be applied to a current collector, dried and then compressed.
  • the additional negative electrode active material may be a carbon material, lithium metal, silicon, tin, or the like, in which lithium ions may be stored and released.
  • a carbon material may be used, and as the carbon material, both low crystalline carbon and high crystalline carbon may be used.
  • Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is natural graphite, kish graphite, pyrolytic carbon, liquid crystal pitch carbon fiber.
  • High temperature calcined carbon such as (mesophase pitch based carbon fiber), meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch derived cokes.
  • the binder may be used to bind the negative electrode active material particles to maintain the molded body, and is not particularly limited as long as it is a conventional binder used in preparing a slurry for the negative electrode active material.
  • the non-aqueous binder may be polyvinyl alcohol, carboxymethyl cellulose, or hydroxy.
  • Any one or a mixture of two or more selected from the group consisting of ronitrile-butadiene rubber, styrene-butadiene rubber and acrylic rubber can be used.
  • Aqueous binders are economical and environmentally friendly compared to non-aqueous binders, are harmless to the health of workers, and have excellent binding effects compared to non-aqueous binders.
  • Preferably styrene-butadiene rubber may be used.
  • the binder may be included in less than 10% by weight in the total weight of the slurry for the negative electrode active material, specifically, may be included in 0.1% by weight to 10% by weight. If the content of the binder is less than 0.1% by weight, the effect of using the binder is insignificant and undesirable. If the content of the binder is more than 10% by weight, the capacity per volume may decrease due to the decrease in the relative content of the active material due to the increase in the content of the binder. not.
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • Examples of the conductive material include graphite such as natural graphite and artificial graphite; Carbon blacks such as acetylene black, Ketjen black, channel black, furnace black, lamp black and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Or conductive materials such as polyphenylene derivatives.
  • the conductive material may be used in an amount of 1% by weight to 9% by weight based on the total weight of the slurry for the negative electrode active material.
  • the negative electrode current collector used for the negative electrode may have a thickness of 3 ⁇ m to 500 ⁇ m.
  • the negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery, and for example, carbon, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, and carbon on the surface of copper or stainless steel Surface-treated with nickel, titanium, silver, and the like, aluminum-cadmium alloy and the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as films, sheets, foils, nets, porous bodies, foams, and nonwoven fabrics.
  • porous polymer films conventionally used as separators such as polyolefin-based polymers such as ethylene homopolymer, propylene homopolymer, ethylene-butene copolymer, ethylene-hexene copolymer and ethylene-methacrylate copolymer, etc.
  • the porous polymer film prepared by using a single or a lamination thereof may be used, or a conventional porous nonwoven fabric, such as a high melting point glass fiber, polyethylene terephthalate fiber, etc. may be used, but is not limited thereto.
  • Examples of the electrolyte used in the present invention include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery. no.
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be cylindrical, square, pouch type, or coin type using a can.
  • the lithium secondary battery according to the present invention may not only be used in a battery cell used as a power source for a small device, but also preferably used as a unit battery in a medium-large battery module including a plurality of battery cells.
  • Preferred examples of the medium-to-large device include, but are not limited to, electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and electric power storage systems.
  • the average particle diameter (D 50 ) of the primary particles was about 650 nm
  • the average of the secondary particles was K-doped lithium titanium composite oxide having a particle diameter (D 50 ) of 6 ⁇ m was prepared.
  • the pore amount of the lithium titanium composite oxide was 0.018 cm 3 / g
  • the specific surface area measured by the Brunauer-Emmett-Teller (BET) method was 5.2 m 2 / g.
  • the specific surface area was measured by a BET 6-point method by a nitrogen gas adsorption distribution method using a porosimetry analyzer (Bell Japan Inc, Belsorp-II mini).
  • a K-doped lithium titanium composite oxide was prepared in the same manner as in Example 1, except that potassium carbonate was used in an amount of 0.05 mol.
  • the average particle diameter (D 50 ) of the primary particles was about 800 nm
  • the average particle diameter (D 50 ) of the secondary particles was 6 ⁇ m
  • the specific surface area measured by the BET method was 4.5 m 2 / g.
  • a K-doped lithium titanium composite oxide was prepared in the same manner as in Example 1, except that potassium carbonate was used in an amount of 0.2 mol.
  • the average particle diameter (D 50 ) of the primary particles was about 400 nm
  • the average particle diameter (D 50 ) of the secondary particles was 6 ⁇ m
  • the specific surface area measured by the BET method was 5.8 m 2 / g.
  • the slurry was spray dried at a hot air temperature of 200 ° C. and an exhaust hot air temperature of 190 ° C., and heat-treated in an oxygen atmosphere at 800 ° C. for 10 hours to obtain a lithium titanium composite oxide having an average particle diameter (D 50 ) of 6 ⁇ m. Prepared.
  • the pore amount of the lithium titanium composite oxide was 0.006 cm 3 / g.
  • a lithium titanium composite oxide doped with K having a thickness of 6 ⁇ m was prepared.
  • a negative mixture slurry was prepared by addition to pyrrolidone (NMP).
  • NMP pyrrolidone
  • the prepared negative electrode mixture slurry was applied to a thin film of aluminum (Al), which is a negative electrode current collector having a thickness of about 20 ⁇ m, dried, and then subjected to roll press to prepare a negative electrode having an active material layer having a porosity of approximately 33%. It was.
  • a negative electrode was prepared in the same manner as in Example 4, except that roll pressing was performed to form an active material layer having a porosity of approximately 48%.
  • a negative electrode was manufactured in the same manner as in Example 4, except that the lithium titanium composite oxide prepared in Comparative Example 1 was used instead of the lithium titanium composite oxide prepared in Example 1 when preparing the negative electrode.
  • a negative electrode was prepared in the same manner as in Comparative Example 3, except that roll pressing was performed to form an active material layer having a porosity of approximately 48%.
  • the secondary battery was manufactured in a conventional manner with the positive electrode thus prepared and the negative electrode prepared in Example 4 with a separator consisting of three layers of polypropylene / polyethylene / polypropylene (PP / PE / PP), ethylene carbonate (EC ) And diethyl carbonate (DEC) were injected into a solvent in which a volume ratio of 30:70 was mixed to inject an electrolyte in which 1 M LiPF 6 was dissolved to complete the production of a lithium secondary battery.
  • a separator consisting of three layers of polypropylene / polyethylene / polypropylene (PP / PE / PP), ethylene carbonate (EC ) And diethyl carbonate (DEC) were injected into a solvent in which a volume ratio of 30:70 was mixed to inject an electrolyte in which 1 M LiPF 6 was dissolved to complete the production of a lithium secondary battery.
  • a lithium secondary battery was manufactured in the same manner as in Example 6, except that the negative electrode prepared in Example 5 was used instead of the negative electrode prepared in Example 4 in the manufacture of the lithium secondary battery.
  • a lithium secondary battery was manufactured in the same manner as in Example 6, except that the negative electrode prepared in Comparative Example 3 was used instead of the negative electrode prepared in Example 4 in the manufacture of the lithium secondary battery.
  • a lithium secondary battery was manufactured in the same manner as in Example 6, except that the negative electrode prepared in Comparative Example 4 was used instead of the negative electrode prepared in Example 4 in the manufacture of the lithium secondary battery.
  • the negative electrode prepared in Example 4 has a relatively good shape of the lithium titanium composite oxide particles contained in the negative electrode active material layer after rolling compared to the negative electrode prepared in Comparative Example 3 can confirm. This tendency is more prominent in the negative electrode having a porosity of 33%, and the negative electrode prepared in Comparative Example 3 shown in FIG. 2 is crushed by the negative electrode active material in the part where the negative electrode active material layer is in contact with the current collector (lower part of the negative electrode active material layer in the drawing). While the shape was not maintained, the negative electrode prepared in Example 4 shown in FIG. 1 confirmed that the negative electrode active material in the part where the negative electrode active material layer was in contact with the current collector was significantly maintained in shape compared to Comparative Example 3. Can be.
  • the lithium titanium composite oxide particles prepared in Example 1 have a significantly smaller amount of particles having a particle size of 1 ⁇ m or less than the lithium titanium composite oxide particles prepared in Comparative Example 1, and have a particle size distribution of the particles. You can see that it is narrow.
  • Comparative Example 1 includes a separate grinding process for adjusting the particle size of the primary particles, the primary particles are damaged in this process, the strength is reduced, or the problem that the particle size is uneven occurs It seems to be due to having. That is, in Comparative Example 1, since the particle size distribution of the primary particles is uneven, even when the secondary particles are formed using the same, the particle size distribution of the secondary particles is widened, and the amount of fine powder having a small particle size is increased. Judging.
  • the resistance value of the negative electrode interface is relatively small compared to the negative electrode containing the lithium titanium composite oxide of Comparative Example 1 This means that even when the porosity of the active material layer is reduced by rolling the negative electrode active material layer, the lithium titanium composite oxide of Example 1 maintains the shape of the particles and also suppresses an increase in the diffusion resistance of lithium by maintaining the pores of the particles themselves. It is because it is.
  • Example 6 The secondary batteries obtained in Example 6 and Comparative Example 5 were subjected to two charges and discharges, and then discharged at 10 C for 3 minutes from a fully charged state to measure the voltage drop amount at this time.
  • the measurement result up to 30 second is shown in FIG.
  • the secondary battery of Comparative Example 5 has a larger voltage drop than the secondary battery of Example 6, which includes lithium titanium composite oxide particles prepared in Comparative Example 1 included in the secondary battery of Comparative Example 5.
  • the negative electrode Comparative Example 3
  • the secondary battery of Example 6 includes a negative electrode (Example 4) including the lithium titanium composite oxide particles prepared in Example 1, the lithium titanium composite oxide particles prepared in Example 1 has an even particle distribution Since the increase of the electrode resistance is relatively small.
  • the particle size of the primary particles may be adjusted by adjusting the introduction amount of the metal element. Accordingly, the prepared active material for a lithium secondary battery may exhibit an excellent particle strength while maintaining an appropriate pore volume, and maintain an appropriate pore volume, and may have a uniform particle size distribution to exhibit excellent electrochemical performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 화학식 1 또는 화학식 2로 표시되는 리튬 티타늄 복합 산화물을 포함하는 1차 입자가 집합하여 형성된 2차 입자이며, 공극 부피가 0.001 cm3/g 내지 0.05 cm3/g인, 리튬 이차전지용 활물질 및 그 제조방법에 관한 것으로, 본 발명에 따른 리튬 이차전지용 활물질은 금속 원소가 도입되어 1차 입자의 입경이 조절되어 2차 입자의 강도가 향상됨으로써, 압연시에도 적절한 공극 부피를 유지할 수 있으며, 본 발명에 따른 상기 리튬 이차전지용 활물질의 제조방법은 금속 원소가 도입량을 조절하여 1차 입자의 입경을 조절할 수 있고, 이를 통해 2차 입자의 강도 향상 및 이에 의한 압연시의 공극 부피 유지를 도모할 수 있으므로, 리튬 이차전지용 활물질의 제조에 유용하게 사용될 수 있다.

Description

음극 활물질, 이를 포함하는 음극 및 리튬 이차전지
[관련출원과의 상호 인용]
본 출원은 2016년 02월 05일자 한국 특허 출원 제10-2016-0015029호 및 2017년 02월 03일자 한국 특허 출원 제10-2017-0015471호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
[기술분야]
본 발명은 출력 향상과 고용량을 달성할 수 있는 음극 활물질, 이를 포함하는 음극 및 리튬 이차전지에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지에 대한 수요가 급격히 증가하고 있고, 그러한 이차전지 중에서도 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
또한, 최근에는 환경문제에 대한 관심이 커짐에 따라 대기오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석연료를 사용하는 차량을 대체할 수 있는 전기자동차(EV), 하이브리드 전기자동차(HEV) 등에 대한 연구가 많이 진행되고 있다.
이러한 전기자동차(EV), 하이브리드 전기자동차(HEV) 등은 동력원으로서 니켈 수소금속(Ni-MH) 이차전지 또는 높은 에너지 밀도, 높은 방전 전압 및 출력 안정성의 리튬 이차전지를 사용하고 있는데, 리튬 이차전지를 전기 자동차에 사용할 경우에는 높은 에너지 밀도와 단시간에 큰 출력을 발휘할 수 있는 특성과 더불어, 가혹한 조건 하에서 10년 이상 사용될 수 있어야 하므로, 기존의 소형 리튬 이차전지보다 월등히 우수한 안전성 및 장기 수명 특성이 필연적으로 요구된다. 또한, 전기자동차(EV), 하이브리드 전기자동차(HEV) 등에 사용되는 이차전지는 차량의 작동 조건에 따라 우수한 레이트(rate) 특성과 파워(power) 특성이 요구된다.
리튬 이차전지의 활물질로서, 최근, Li 흡장 방출 전위가 높은 리튬 티타늄 복합 산화물이 주목받고 있다. 리튬 티타늄 복합 산화물은 리튬 흡장방출 전위에서는 원리적으로 금속 리튬이 석출되지 않아 급속 충전이나 저온 성능이 우수하다는 장점이 있다.
리튬 티타늄 복합 산화물은 양극 활물질로서 종래로부터 사용되어 왔고, 음극 활물질로서도 활용할 수 있어서, 전지의 양극 및 음극 활성물로서 그의 장래가 기대되고 있으며, 특히 충전-방전시의 팽창 및 수축을 무시할 수 있으므로 전지의 대형화시에 주목되는 전극 재료이다. 특히 스피넬(spinel)형 티타늄산 리튬(조성식 Li4 xTi5O12(0≤x≤3))은 충방전시의 부피 변화가 작고, 가역적으로 우수하기 때문에 주목받고 있다.
상기 리튬 티타늄 복합 산화물은 1차 입자가 집합하여 형성된 2차 입자로서, 2차 입자는 공극을 포함하고 있다. 그러나, 상기 리튬 티타늄 복합 산화물을 전극에 도포하여 활물질 층을 만든 뒤, 압연하는 과정에서, 2차 입자가 붕괴되면서 상기 공극이 소멸되어 활물질 층에서의 리튬 확산이 곤란하여 충전 레이트 특성이 저하된다는 문제점이 있다.
이에, 본 발명자는 상기 문제점을 해결하기 위한 기술 개발을 위하여 노력한 결과, 상기 리튬 티타늄 복합 산화물에 특정 금속을 도입함으로써, 상기 리튬 티타늄 복합 산화물의 1차 입자의 입경을 조절하고, 이를 통해 2차 입자의 강도를 확보하는 방법을 개발하여, 본 발명을 완성하게 되었다.
본 발명의 해결하고자 하는 과제는 금속 원소를 도입하여 1차 입자의 입경을 줄임으로써 2차 입자의 공극 부피를 확보할 수 있으면서도, 2차 입자의 강도를 확보할 수 있어 압연시에도 적절한 공극 부피를 유지할 수 있는 리튬 이차전지용 음극 활물질을 제공하는 것이다.
본 발명의 다른 해결하고자 하는 과제는 상기 활물질을 포함하는 리튬 이차전지용 음극 및 리튬 이차전지를 제공하는 것이다.
본 발명의 또 다른 해결하고자 하는 과제는 상기 리튬 이차전지용 음극 활물질의 제조방법을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은
하기 화학식 1 또는 화학식 2로 표시되는 리튬 티타늄 복합 산화물을 포함하는 1차 입자가 집합하여 형성된 2차 입자이며, 상기 2차 입자의 공극 부피가 0.001 내지 0.05 cm3/g인, 리튬 이차전지용 음극 활물질을 제공한다.
[화학식 1]
Li(4-x)MxTi5O12
[화학식 2]
Li4Ti(5-x)MxO12
상기 화학식 1 또는 화학식 2에서,
0<x≤0.5이고,
M은 Na, K, Rb, Zr, W, Mg, Mo 또는 Ta이다.
또한, 본 발명은 상기 다른 과제를 해결하기 위하여, 상기 리튬 이차전지용 음극 활물질을 포함하는 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지를 제공한다.
또한, 본 발명은 상기 또 다른 과제를 해결하기 위하여,
1) (i) 리튬 함유 화합물, 티타늄 산화물 및 도핑 금속 함유 화합물을 고상 혼합하는 과정; (ii) 상기 과정 (i)의 고상 혼합물을 용매에 분산시켜 슬러리를 제조하는 과정; 및 (iii) 상기 과정 (ii)에서 제조된 슬러리를 분무 건조하는 과정을 포함하고, 상기 고상 혼합물 및 슬러리에 대한 별도의 분쇄 과정을 포함하지 않는, 1차 입자 형성 단계; 및
2) 상기 단계 1)에서 형성된 1차 입자를 소성하여 2차 입자를 형성하는 단계를 포함하는, 리튬 이차전지용 음극 활물질의 제조방법으로서,
상기 도핑 금속이 Na, K, Rb, Zr, W, Mg, Mo 및 Ta로 이루어진 군으로부터 선택된 1종 이상이고, 상기 2차 입자의 공극 부피가 0.001 내지 0.05 cm3/g인, 리튬 이차전지용 음극 활물질의 제조방법을 제공한다.
본 발명에 따른 리튬 이차전지용 음극 활물질은 금속 원소가 도입되어 1차 입자의 입경을 줄임으로써 2차 입자의 공극 부피를 확보할 수 있으면서도, 2차 입자의 강도를 확보할 수 있어 압연시에도 적절한 공극 부피를 유지할 수 있다. 또한, 본 발명에 따른 상기 리튬 이차전지용 음극 활물질의 제조방법은 금속 원소의 도입량을 조절하여 1차 입자의 입경을 조절할 수 있고, 이를 통해 2차 입자의 강도 향상 및 이에 의한 압연시의 공극 부피 유지를 도모할 수 있으므로, 리튬 이차전지용 음극 활물질의 제조에 유용하게 사용될 수 있다.
도 1은 실시예 4 및 5에서 각각 제조된 리튬 이차전지용 음극에 대한 SEM 사진이다.
도 2는 비교예 3 및 4에서 각각 제조된 리튬 이차전지용 음극에 대한 SEM 사진이다.
도 3은 실시예 1 및 비교예 1에서 제조된 리튬 티타늄 복합 산화물 각각의 PSD를 측정한 결과이다.
도 4는 실시예 6 및 7에서 각각 제조된 이차전지에 대해 2회 충전 및 방전을 수행한 후, 이차전지의 임피던스를 전기화학 임피던스 스펙트로스코피(EIS)를 이용하여 진동수(frequency)당 저항 값을 측정한 뒤, 그 성향을 semi-circle로 변환하여 나타낸 그래프이다.
도 5는 비교예 5 및 6에서 각각 제조된 이차전지에 대해 2회 충전 및 방전을 수행한 후, 이차전지의 임피던스를 전기화학 임피던스 스펙트로스코피(EIS)를 이용하여 진동수(frequency)당 저항 값을 측정한 뒤, 그 성향을 semi-circle로 변환하여 나타낸 그래프이다.
도 6은 실시예 6 및 비교예 5에서 각각 제조된 이차전지에 대해 2회의 충전 및 방전을 수행한 후, 만충전 상태로부터 3분간 10 C로 방전하여 이때의 전압 강하량을 측정한 결과를 나타낸 그래프이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에 따른 리튬 이차전지용 음극 활물질은 하기 화학식 1 또는 하기 화학식 2로 표시되는 리튬 티타늄 복합 산화물을 포함하는 1차 입자가 집합하여 형성된 2차 입자이며, 상기 2차 입자의 공극 부피가 0.001 cm3/g 내지 0.05 cm3/g인 것이다.
[화학식 1]
Li(4-x)MxTi5O12
[화학식 2]
Li4Ti(5-x)MxO12
상기 화학식 1 또는 화학식 2에서,
0<x≤0.5이고,
M은 Na, K, Rb, Zr, W, Mg, Mo 또는 Ta이고, 구체적으로 K, Rb, Mg 또는 Ta일 수 있다.
상기 1차 입자의 평균 입경(D50)은 0.05 ㎛ 내지 2 ㎛일 수 있고, 구체적으로 0.07 ㎛ 내지 1 ㎛일 수 있으며, 더욱 구체적으로 0.1 ㎛ 내지 0.7 ㎛일 수 있다.
상기 1차 입자의 평균 입경(D50)이 0.05 ㎛ 이상일 경우, 상기 1차 입자를 집합시켜 2차 입자를 형성하는 과정에서 상기 2차 입자에 형성되는 공극이 적절한 정도의 크기를 가질 수 있고, 상기 1차 입자의 평균 입경(D50)이 2 ㎛ 이하일 경우, 상기 2차 입자에 형성되는 공극이 적절한 정도의 크기를 가지면서도, 상기 2차 입자가 적절한 강도를 갖게 되어, 상기 2차 입자가 압연시에도 입자 형상을 유지하여 적절한 공극 부피를 유지할 수 있다.
상기 1차 입자의 평균 입경(D50) 크기의 조절은, 상기 1차 입자의 제조 과정에서 상기 리튬 티타늄 복합 산화물에 포함되는 도핑 금속, 즉 상기 M으로 나타내는 금속의 함량을 조절하여 달성될 수 있다. 구체적으로 상기 화학식 1 또는 화학식 2로 표시되는 리튬 티타늄 복합 산화물에 있어서, M의 함량, 즉 x 값이 0.01 증가할 경우, 상기 1차 입자의 평균 입경(D50)이 0.5% 내지 2%, 구체적으로 0.7% 내지 2% 감소하게 되므로, 적절한 1차 입자의 입경 평균 입경(D50)에 맞추어 상기 도핑 금속의 도핑량을 조절함으로써 상기 1차 입자의 평균 입경(D50) 크기를 조절할 수 있다. 상기 화학식 1 또는 화학식 2에서, 0<x≤0.5이고, 구체적으로 0<x<0.3, 더욱 구체적으로 0.002<x<0.05일 수 있다.
상기 방법에 의해 제조되는 상기 1차 입자는, 적절한 평균 입경을 갖는 입자를 제조하기 위해 통상적으로 사용되는 방법인 분쇄 과정을 거치지 않으므로, 상기 분쇄 과정에서 상기 1차 입자가 손상되어 강도가 떨어지게 되거나, 또는 입도가 불균일 하게 되는 문제를 방지할 수 있다. 따라서, 본 발명에 따른 리튬 이차전지용 활물질에 있어서, 상기 1차 입자는 입자 크기의 조절을 위한 별도의 분쇄 과정을 거치지 않고, 1차 입자에 포함되는 리튬 티타늄 복합 산화물의 도핑 금속의 도핑량에 따라 입자의 크기가 조절되므로, 균일한 입자 크기를 가질 수 있다.
구체적으로, 상기 1차 입자의 평균입경(D10)은 평균입경(D50)의 60% 내지 95%이면서 평균입경(D90)이 평균입경(D50)의 105% 내지 140%일 수 있고, 더욱 구체적으로 상기 1차 입자의 평균입경(D10)은 평균입경(D50)의 65% 내지 95%이면서 평균입경(D90)이 평균입경(D50)의 105% 내지 135%일 수 있으며, 보다 구체적으로 상기 1차 입자의 평균입경(D10)은 평균입경(D50)의 70% 내지 90%이면서 평균입경(D90)이 평균입경(D50)의 110% 내지 130%일 수 있다.
상기 1차 입자의 평균입경(D10)이 평균입경(D50)의 60% 내지 95%이면서 평균입경(D90)이 평균입경(D50)의 105% 내지 140%인 경우, 1차 입자의 크기가 전체적으로 고르게 되어, 이들이 집합하여 2차 입자를 형성할 경우, 1차 입자 간의 접촉이 균일하여 2차 입자의 강도가 증가할 수 있고, 2차 입자가 적절한 정도의 공극 부피를 가질 수 있다.
본 명세서에 있어서, 상기 "분쇄"는 입자 또는 입자 형상을 가지는 고형물을 원하는 입자 크기가 되도록 크기를 줄이기 위하여 물리적인 힘을 가하는 과정을 말하며, 예컨대 분쇄, 절단, 파괴, 및 연마 등을 포함하는 개념이다.
상기 2차 입자는 그 공극 부피가 0.001 cm3/g 내지 0.05 cm3/g일 수 있고, 구체적으로 0.005 cm3/g 내지 0.02 cm3/g일 수 있다.
상기 2차 입자의 비표면적은 1 m2/g 내지 10 m2/g, 구체적으로 3 m2/g 내지 7 m2/g, 더욱 구체적으로 4 m2/g 내지 6 m2/g일 수 있다.
상기 2차 입자의 평균 입경(D50)은 1 ㎛ 내지 30 ㎛일 수 있고, 구체적으로 1 ㎛ 내지 25 ㎛일 수 있으며, 더욱 구체적으로 2 ㎛ 내지 15 ㎛일 수 있다.
상기 2차 입자의 평균 입경이 0.1 ㎛ 이상일 경우, 전극의 밀도가 낮아지는 것을 방지하여 적절한 부피당 용량을 가질 수 있고, 또한 평균 입경이 25 ㎛ 이하일 경우, 전극을 형성하기 위한 슬러리를 균일한 두께로 적절히 코팅할 수 있다.
본 발명에 있어서, 평균 입경(D10)은 입경 분포의 10% 기준에서의 입경으로 정의할 수 있고, 평균 입경(D50)은 입경 분포의 50% 기준에서의 입경으로 정의할 수 있으며, 평균 입경(D90)은 입경 분포의 90% 기준에서의 입경으로 정의할 수 있다. 상기 평균 입경은 특별히 제한되지 않지만, 예컨대 레이저 회절법(laser diffraction method) 또는 주사전자현미경(SEM) 사진을 이용하여 측정할 수 있다. 상기 레이저 회절법은 일반적으로 서브미크론(submicron) 영역에서부터 수 mm 정도의 입경의 측정이 가능하며, 고 재현성 및 고 분해성을 가지는 결과를 얻을 수 있다.
상기 2차 입자는, 상기 2차 입자에 대하여 2,000 kgf/cm2의 압력을 가했을 때, 상기 압력을 가하기 전의 공극 부피 100 부피%를 기준으로, 70 부피% 내지 99 부피%의 공극 부피를 가질 수 있고, 구체적으로 75 부피% 내지 90 부피%의 공극 부피를 가질 수 있다.
이와 같이, 본 발명에 따른 리튬 이차전지용 음극 활물질은 일정 압력, 즉 2,000 kgf/cm2의 압력이 가해져도 상기 압력에 의해 상기 2차 입자 입자가 포함하는 공극의 부피가 크게 줄어들지 않는 것일 수 있다. 본 발명의 일례에 따른 리튬 이차전지용 음극 활물질은 1차 입자의 크기가 전체적으로 고르고, 이들이 집합하여 2차 입자를 형성할 경우, 1차 입자 간의 접촉이 균일하여 2차 입자의 강도가 증가할 수 있으므로, 2차 입자에 대하여 2,000 kgf/cm2의 압력을 가했을 때에도 상기 압력을 가하기 전의 공극 부피를 100 부피%로 했을 때, 70 부피% 내지 99 부피%의 공극 부피를 유지할 수 있다.
따라서, 상기 2차 입자는, 상기 2차 입자를 이용하여 두께 10 ㎛ 내지 100 ㎛의 층을 형성하고 상기 층에 2,000 kgf/cm2의 압력을 가했을 경우, 상기 층에 포함된 상기 2차 입자가 상기 압력을 가하기 전의 0.001 cm3/g 내지 0.05 cm3/g의 공극 부피를 기준으로 70 부피% 내지 99 부피%를 유지할 수 있으므로, 리튬 확산 저항이 증가하는 것을 억제할 수 있으며, 우수한 레이트 특성을 발휘할 수 있다.
상기 화학식 1로 표시되는 리튬 티타늄 복합 산화물에 있어서, 상기 M은 구체적으로 K, Rb, Mg 또는 Ta일 수 있다.
상기 리튬 이차전지용 음극 활물질은, (1) 리튬 함유 화합물, 티타늄 산화물 및 도핑 금속 함유 화합물을 고상 혼합하는 단계; (2) 상기 단계 (1)의 고상 혼합물을 용매에 분산시켜 슬러리를 제조하는 단계; (3) 상기 단계 (2)에서 제조된 슬러리를 분무 건조하여 1차 입자가 집합하여 형성된 2차 입자를 제조하는 단계; 및 (4) 상기 1차 입자가 집합하여 형성된 2차 입자를 소성하는 단계를 포함하고, 상기 고상 혼합물 및 슬러리에 대한 별도의 분쇄 과정을 포함하지 않는, 리튬 이차전지용 음극 활물질의 제조방법에 의해 제조될 수 있다.
이때, 상기 도핑 금속은 Na, K, Rb, Zr, W, Mg, Mo 및 Ta로 이루어진 군으로부터 선택된 1종 이상이고, 구체적으로 K, Rb, Mg 또는 Ta로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 2차 입자의 공극 부피는 0.001 cm3/g 내지 0.05 cm3/g이다.
상기 단계 (1)에서는 우선적으로 리튬 함유 화합물, 티타늄 산화물 및 도핑 금속 함유 화합물을 고상 혼합하게 된다.
상기 리튬 함유 화합물, 티타늄 산화물 및 도핑 금속 함유 화합물은 상기 화학식 1 또는 화학식 2로 표시되는 리튬 티타늄 복합 산화물을 제조하기 위한 양론비에 따라 고상 혼합될 수 있으며, 구체적으로 리튬, 티타늄, 및 도핑금속의 몰비가 3.7~4:4.7~5:0초과~0.5가 될 수 있는 양으로 혼합될 수 있다.
상기 리튬 함유 화합물은 탄산 리튬, 수산화 리튬 및 산화 리튬으로 이루어지는 군으로부터 선택되는 1종 이상일 수 있고, 상기 도핑 금속 함유 화합물은 상기 도핑 금속의 탄산염, 수산화염, 및 산화물로 이루어지는 군으로부터 선택되는 1종 이상일 수 있다.
본 발명의 일례에 따른 제조방법에 있어서, 상기 (1)의 고상 혼합하는 단계는, 상기 고상 혼합에 앞서, 상기 1차 입자의 목적하는 입경 크기에 따라 상기 도핑 금속 함유 화합물의 함량을 조절하는 과정을 추가로 포함할 수 있다.
상기 도핑 금속 함유 화합물의 함량이 증가할수록 형성되는 상기 1차 입자의 입경이 줄어들게 되므로, 상기 1차 입자의 목적하는 입경 크기를 달성하기 위하여 상기 도핑 금속 함유 화합물의 함량은 적절히 조절될 수 있다.
구체적으로, 상기 리튬 함유 화합물, 티타늄 산화물 및 도핑 금속 함유 화합물 중, 상기 도핑 금속 함유 화합물의 몰비가 0.01 증가할 때, 형성되는 상기 1차 입자의 평균 입경(D50)은 0.5% 내지 2%, 구체적으로 0.7% 내지 2% 감소하게 되므로, 상기 도핑 금속을 포함하지 않는 리튬 티타늄 복합 산화물의 1차 입자를 제조한 후 이의 크기를 기준으로 하여, 목적하는 1차 입자의 크기에 따라 적절히 도핑 금속 함유 화합물의 함량을 조절할 수 있다.
상기 단계 (2)에서는 단계 (1)에서 얻어진 고상 혼합물을 용매에 분산시켜 러리를 제조하게 된다. 상기 용매는, 예컨대 물, 또는 유기용매 등일 수 있으며, 상기 분산 과정에서 필요에 따라 교반 등이 이루어질 수 있다.
상기 단계 (2)에서 얻어진 슬러리는 단계 (3)을 통하여 분무 건조되어 1차 입자가 집합(결합)하여 형성된 2차 입자를 형성한다.
상기 단계 (3)에서 상기 분무는 통상적인 분무 장치를 통해 이루어질 수 있으며, 예컨대 회전식 분무기, 압력 노즐, 공기식 노즐, 소닉 노즐 등을 들 수 있고, 특별히 제한되지 않는다.
상기 분무 건조는 100℃ 내지 300℃의 온도 범위에서 이루어질 수 있으며, 상기 분무와 건조는 분무 후 별도로 가열하여 건조하는 과정을 통해 이루어질 수도 있고, 상기 분무가 100℃ 내지 300℃의 온도 범위에서 이루어짐으로써, 분무와 건조가 함께 이루어지는, 하나의 과정을 통해 이루어질 수도 있다.
본 발명에 따른 리튬 이차전지용 음극 활물질의 제조방법은, 상기 1차 입자 형성 단계에 있어서, 상기 고상 혼합물 및 슬러리에 대한 별도의 분쇄 과정을 포함하지 않는다.
즉, 본 발명에 따른 리튬 이차전지용 음극 활물질의 제조방법은 1차 입자의 크기를 적절한 범위 내로 포함시키기 위한 분쇄 등의 물리적인 힘을 가하는 과정 없이 상기 도핑 금속 함유 화합물의 함량을 조절하는 과정을 통하여, 상기 1차 입자를 목적하는 입경 크기 범위로 제조할 수 있으며, 분쇄 등의 물리적인 힘을 가하는 과정을 거치지 않으므로, 상기 1차 입자가 손상되어 강도가 떨어지게 되거나, 또는 형성되는 1차 입자의 입도가 균일하지 않게 생성되는 문제를 방지할 수 있다.
상기 과정을 통하여 형성된, 상기 1차 입자는 하기 화학식 1 또는 하기 화학식 2로 표시되는 리튬 티타늄 복합 산화물을 포함할 수 있다.
[화학식 1]
Li(4-x)MxTi5O12
[화학식 2]
Li4Ti(5-x)MxO12
상기 화학식 1 또는 화학식 2에서,
0<x≤0.5이고,
M은 Na, K, Rb, Zr, W, Mg, Mo 또는 Ta이고, 구체적으로 K, Rb, Mg 또는 Ta일 수 있다.
상기 화학식 1에서, x 값이 0.01 증가할 경우, 상기 1차 입자의 평균 입경(D50)이 0.5% 내지 2% 감소하게 되고, 구체적으로 0.7% 내지 2% 감소하게 되므로, 적절한 1차 입자의 입경 평균 입경(D50)에 맞추어 상기 도핑 금속의 도핑량을 조절함으로써 상기 1차 입자의 크기를 조절할 수 있다.
이와 같이 제조된, 상기 1차 입자의 평균 입경(D50)은 0.05 ㎛ 내지 2 ㎛일 수 있고, 구체적으로 0.07 ㎛ 내지 1 ㎛일 수 있으며, 더욱 구체적으로 0.1 ㎛ 내지 0.7 ㎛일 수 있다.
상기 1차 입자의 평균 입경(D50)이 0.05 ㎛ 이상일 경우, 상기 1차 입자가 집합하여 2차 입자를 형성했을 때, 그 과정에서 상기 2차 입자에 형성되는 공극이 적절한 정도의 크기를 가질 수 있고, 상기 1차 입자의 평균 입경(D50)이 2 ㎛ 이하일 경우, 상기 2차 입자에 형성되는 공극이 적절한 정도의 크기를 가지면서도, 상기 2차 입자가 적절한 강도를 갖게 되어, 상기 2차 입자가 압연시에도 입자 형상을 유지하여 적절한 공극 부피를 유지할 수 있다.
상기 1차 입자는 분쇄 과정을 거치지 않고, 1차 입자에 포함되는 리튬 티타늄 복합 산화물의 도핑 금속의 도핑량에 따라 입자의 크기가 조절된 것이므로, 균일한 입자 크기를 가질 수 있다. 구체적으로, 상기 1차 입자의 평균입경(D10)은 평균입경(D50)의 60% 내지 95%이고, 평균입경(D90)이 평균입경(D50)의 105% 내지 140%일 수 있고, 더욱 구체적으로 상기 1차 입자의 평균입경(D10)은 평균입경(D50)의 65% 내지 95%이고, 평균입경(D90)이 평균입경(D50)의 105% 내지 135%일 수 있으며, 보다 구체적으로 상기 1차 입자의 평균입경(D10)은 평균입경(D50)의 70% 내지 90%이고, 평균입경(D90)이 평균입경(D50)의 110% 내지 130%일 수 있다.
상기 1차 입자의 평균입경(D10)이 평균입경(D50)의 65% 내지 95%이고, 평균입경(D90)이 평균입경(D50)의 105% 내지 135%인 경우, 1차 입자의 크기가 전체적으로 고르게 되어, 이들이 집합하여 2차 입자를 형성할 경우, 1차 입자 간의 접촉이 균일하여 2차 입자의 강도가 증가할 수 있고, 적절한 정도의 공극 부피를 가질 수 있다.
상기 단계 2)에서는, 상기 단계 1)에서 형성된 1차 입자를 소성하여 2차 입자를 형성하게 된다.
상기 소성은 단계 1)에서 형성된 1차 입자를 700℃ 내지 900℃의 온도, 구체적으로 700℃ 내지 800℃의 온도에서 30분 내지 20 시간, 구체적으로 5 시간 내지 10 시간 동안 가열하여 이루어질 수 있다. 상기 소성은 공기 분위기, 또는 질소 및 아르곤 등의 비활성 가스 분위기에서 이루어질 수 있다.
형성된 상기 2차 입자는 그 공극 부피가 0.001 cm3/g 내지 0.05 cm3/g일 수 있고, 구체적으로 0.005 cm3/g 내지 0.02 cm3/g일 수 있다.
상기 2차 입자의 평균 입경(D50)은 1 ㎛ 내지 30 ㎛일 수 있고, 구체적으로 2 ㎛ 내지 25 ㎛일 수 있으며, 더욱 구체적으로 5 ㎛ 내지 20 ㎛일 수 있다.
상기 2차 입자의 평균 입경이 1 ㎛ 이상일 경우, 전극의 밀도가 낮아지는 것을 방지하여 적절한 부피당 용량을 가질 수 있고, 또한 평균 입경이 30 ㎛ 이하일 경우, 전극을 형성하기 위한 슬러리를 균일한 두께로 적절히 코팅할 수 있다.
상기 2차 입자는 상기 2차 입자에 대하여 2,000 kgf/cm2의 압력을 가했을 때, 상기 압력을 가하기 전의 공극 부피 100 부피%를 기준으로, 70 부피% 내지 99 부피%의 공극 부피를 가질 수 있고, 구체적으로 75 부피% 내지 90 부피%의 공극 부피를 가질 수 있다.
또한, 상기 2차 입자는, 상기 2차 입자를 이용하여 두께 10 ㎛ 내지 100 ㎛의 층을 형성하고 상기 층에 2,000 kgf/cm2의 압력을 가했을 경우, 상기 층에 포함된 상기 2차 입자가 상기 압력을 가하기 전의 0.001 cm3/g 내지 0.05 cm3/g의 공극 부피를 기준으로 70 부피% 내지 99 부피%를 유지할 수 있으므로, 리튬 확산 저항이 증가하는 것을 억제할 수 있으며, 우수한 레이트 특성을 발휘할 수 있다.
상기 리튬 이차전지용 음극 활물질을 제조하는 방법은, 상기 1차 입자의 목적하는 입경 크기에 따라 상기 도핑 금속 함유 화합물의 함량을 조절하는 과정 및 상기 고상 혼합물 및 슬러리에 대한 분쇄 과정을 포함하지 않는 것을 제외하고는, 당 분야에 알려져 있는 리튬 티타늄 복합 산화물의 제조 방법을 응용하여 달성될 수 있다.
상기 리튬 이차전지용 음극 활물질은 리튬 이차전지의 음극의 제조에 음극 활물질로서 사용될 수 있으며, 따라서 본 발명은 상기 리튬 이차전지용 음극 활물질을 포함하는 리튬 이차전지용 음극을 제공한다.
또한, 본 발명은 상기 리튬 이차전지용 음극을 포함하는 리튬 이차전지를 제공한다. 상기 리튬 이차전지는 양극, 음극, 상기 양극과 음극 사이에 개재된 세퍼레이터를 포함하는 것일 수 있다.
상기 양극은 당 분야에 알려져 있는 통상적인 방법으로 제조할 수 있다. 예를 들면, 통상의 양극 활물질에 용매, 필요에 따라 바인더, 도전재, 분산제를 혼합 및 교반하여 슬러리를 제조한 후 이를 금속 재료의 집전체에 도포(코팅)하고 압축한 뒤 건조하여 양극을 제조할 수 있다.
상기 금속 재료의 집전체는 전도성이 높은 금속으로서, 상기 양극 활물질의 슬러리가 용이하게 접착할 수 있는 금속으로 전지의 전압 범위에서 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예컨대 스테인레스 스틸, 알루미늄, 니켈, 티타늄, 소성 탄소, 또는 알루미늄이나 스테리인레스 스틸의 표면에 카본, 니켈, 티타늄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또한, 집전체 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 집전체는 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용 가능하며, 3 내지 500 ㎛의 두께를 갖는 것일 수 있다.
상기 양극 활물질은, 예컨대 리튬 코발트 산화물(LiCoO2); 리튬 니켈 산화물(LiNiO2); Li[NiaCobMncM1 d]O2(상기 식에서, M1은 Al, Ga 및 In으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 원소이고, 0.3≤a<1.0, 0≤b≤0.5, 0≤c≤0.5, 0≤d≤0.1, a+b+c+d=1이다); Li(LieM2 f-e-f'M3 f')O2 - gAg(상기 식에서, 0≤e≤0.2, 0.6≤f≤1, 0≤f'≤0.2, 0≤g≤0.2이고, M2는 Mn과, Ni, Co, Fe, Cr, V, Cu, Zn 및 Ti로 이루어진 군에서 선택되는 1종 이상을 포함하며, M3은 Al, Mg 및 B로 이루어진 군에서 선택되는 1종 이상이고, A는 P, F, S 및 N로 이루어진 군에서 선택되는 1종 이상이다) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; Li1 + hMn2 - hO4(상기 식에서 0≤h≤0.33), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1 - iM4 iO2(상기 식에서, M4 = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga이고, 0.01≤i≤0.3)로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2 - jM5 jO2 (상기 식에서, M5 = Co, Ni, Fe, Cr, Zn 또는 Ta이고, 0.01≤j≤0.1) 또는 Li2Mn3M6O8(상기 식에서, M6 = Fe, Co, Ni, Cu 또는 Zn)로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; LiFe3O4, Fe2(MoO4)3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
상기 양극을 형성하기 위한 용매로는 NMP(N-메틸 피롤리돈), DMF(디메틸 포름아미드), 아세톤, 디메틸 아세트아미드 등의 유기 용매 또는 물 등이 있으며, 이들 용매는 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다. 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 활물질, 바인더, 도전재를 용해 및 분산시킬 수 있는 정도이면 충분하다.
상기 바인더로는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 폴리 아크릴산(poly acrylic acid) 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 고분자, 또는 다양한 공중합체 등의 다양한 종류의 바인더 고분자가 사용될 수 있다.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예컨대 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 탄소 나노 튜브 등의 도전성 튜브; 플루오로카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티타늄산 칼륨 등의 도전성 위스커; 산화 티타늄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. 상기 도전재는 양극 슬러리 전체 중량에 대해 1 중량% 내지 20 중량%의 양으로 사용될 수 있다.
상기 분산제는 수계 분산제 또는 N-메틸-2-피롤리돈 등의 유기 분산제를 사용할 수 있다.
상기 음극은 당 분야에 알려져 있는 통상적인 방법으로 제조될 수 있으며, 예컨대 상기 리튬 이차전지용 음극 활물질 및 바인더 및 도전재 등의 첨가제들을 혼합 및 교반하여 음극 활물질 슬러리를 제조한 후, 이를 상기 리튬 이차전지용 집전체에 도포하고 건조한 후 압축하여 제조할 수 있다.
상기 음극이 상기 리튬 이차전지용 활물질이 아닌 다른 음극 활물질을 추가적으로 포함할 경우, 상기 추가적인 음극 활물질로는 통상적으로 리튬 이온이 흡장 및 방출될 수 있는 탄소재, 리튬 금속, 규소 또는 주석 등을 사용할 수 있다. 바람직하게는 탄소재를 사용할 수 있는데, 탄소재로는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소(soft carbon) 및 경화탄소(hard carbon)가 대표적이며, 고결정성 탄소로는 천연 흑연, 키시흑연(kish graphite), 열분해 탄소(pyrolytic carbon), 액정피치계 탄소섬유(mesophase pitch based carbon fiber), 탄소 미소구체(meso-carbon microbeads), 액정피치(mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
상기 바인더는 음극 활물질 입자들을 결착시켜 성형체를 유지하기 위하여 사용될 수 있으며, 음극 활물질용 슬러리 제조 시 사용되는 통상적인 바인더라면 특별히 제한되지 않으나, 예컨대 비수계 바인더인 폴리비닐알코올, 카르복시메틸셀룰로즈, 히드록시프로필렌셀룰로즈, 디아세틸렌셀룰로즈, 폴리비닐클로라이드, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌(PTFE), 폴리비닐리덴플루오라이드(PVdF), 폴리에틸렌 또는 폴리프로필렌 등을 사용할 수 있고, 또한 수계 바인더인 아크릴로나이트릴-부타디엔고무, 스티렌-부타디엔 고무 및 아크릴 고무로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있다. 수계 바인더는 비수계 바인더에 비해 경제적, 친환경적이고, 작업자의 건강에도 무해하며, 비수계 바인더에 비하여 결착 효과가 우수하므로, 동일 체적당 활물질의 비율을 높일 수 있어 고용량화가 가능하며, 수계 바인더로는 바람직하게는 스티렌-부타디엔 고무가 사용될 수 있다.
상기 바인더는 음극 활물질용 슬러리 전체 중량 중에 10 중량% 이하로 포함될 수 있으며, 구체적으로 0.1 중량% 내지 10 중량%로 포함될 수 있다. 상기 바인더의 함량이 0.1 중량% 미만이면 바인더 사용에 따른 효과가 미미하여 바람직하지 않고, 10 중량%를 초과하면 바인더 함량 증가에 따른 활물질의 상대적인 함량 감소로 인해 체적당 용량이 저하될 우려가 있어 바람직하지 않다.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 상기 도전재의 예로서는 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티타늄산 칼륨 등의 도전성 위스커; 산화 티타늄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 도전성 소재 등을 들 수 있다. 상기 도전재는 음극 활물질용 슬러리 전체 중량에 대해 1 중량% 내지 9 중량%의 양으로 사용될 수 있다.
상기 음극에 사용되는 음극 집전체는 3 ㎛ 내지 500 ㎛의 두께를 갖는 것일 수 있다. 상기 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예컨대 구리, 스테인리스 스틸, 알루미늄, 니켈, 티타늄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티타늄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
또한, 세퍼레이터로는 종래에 세퍼레이터로 사용된 통상적인 다공성 고분자 필름, 예컨대 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌-부텐 공중합체, 에틸렌-헥센 공중합체 및 에틸렌-메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예컨대 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 발명에서 사용되는 전해질로서 포함될 수 있는 리튬염은 리튬 이차전지용 전해질에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예컨대 상기 리튬염의 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택된 어느 하나일 수 있다.
본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다.
상기 중대형 디바이스의 바람직한 예로는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템 등을 들 수 있지만, 이들 만으로 한정되는 것은 아니다.
실시예
이하, 본 발명을 구체적으로 설명하기 위해 실시예 및 실험예를 들어 더욱 상세하게 설명하나, 본 발명이 이들 실시예 및 실험예에 의해 제한되는 것은 아니다. 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예 1 : 리튬 티타늄 복합 산화물의 제조
출발 물질로서 수산화리튬 4.1 몰, 아나타제형 산화티타늄 4.9 몰, 및 탄산 칼륨 0.1 몰을 고상 혼합하고, 물에 교반하며 용해하여 슬러리를 제조하였다.
열풍 온도를 200℃, 배기 열풍 온도를 190℃로 분무 건조하고, 800℃의 산소 분위기 하에서 10시간 동안 열처리함으로써, 1차 입자의 평균 입경(D50)이 약 650 nm이고, 2차 입자의 평균 입경(D50)이 6 ㎛인, K가 도핑된 리튬 티타늄 복합 산화물을 제조하였다. 상기 리튬 티타늄 복합 산화물의 공극량은 0.018 cm3/g이었으며, BET(Brunauer-Emmett-Teller; BET)법으로 측정한 비표면적은 5.2 m2/g이었다. 상기 비표면적은 기공분포 측정기(Porosimetry analyzer; Bell Japan Inc, Belsorp-II mini)를 사용하여 질소 가스 흡착 유통법에 의해 BET 6점법으로 측정하였다.
실시예 2 : 리튬 티타늄 복합 산화물의 제조
탄산칼륨을 0.05 몰의 양으로 사용한 것을 제외하고는, 실시예 1과 마찬가지의 방법으로 K가 도핑된 리튬 티타늄 복합 산화물을 제조하였다. 1차 입자의 평균 입경(D50)은 약 800 nm이고, 2차 입자의 평균 입경(D50)은 6 ㎛이며, BET법으로 측정한 비표면적은 4.5 m2/g이었다.
실시예 3 : 리튬 티타늄 복합 산화물의 제조
탄산칼륨을 0.2 몰의 양으로 사용한 것을 제외하고는, 실시예 1과 마찬가지의 방법으로 K가 도핑된 리튬 티타늄 복합 산화물을 제조하였다. 1차 입자의 평균 입경(D50)은 약 400 nm이고, 2차 입자의 평균 입경(D50)은 6 ㎛이며, BET법으로 측정한 비표면적은 5.8 m2/g이었다.
비교예 1 : 리튬 티타늄 복합 산화물의 제조
출발 물질로서 수산화리튬 4.1 몰 및 아나타제형 산화티타늄 4.9 몰을 고상 혼합하고, 물에 교반하며 용해하여 슬러리를 제조한 다음, 지르코니아 비드를 사용하여 3,000 rpm으로 습식 분쇄하여 포함된 1차 입자의 크기가 300 내지 700 nm가 되도록 하였다.
상기 슬러리를 열풍 온도를 200℃, 배기 열풍 온도를 190℃로 분무건조하고, 800℃ 산소 분위기 하에서 10시간 동안 열처리함으로써, 2차 입자의 평균 입경(D50)이 6 ㎛인 리튬 티타늄 복합 산화물을 제조하였다. 상기 리튬 티타늄 복합 산화물의 공극량은 0.006 cm3/g였다.
비교예 2 : 리튬 티타늄 복합 산화물의 제조
출발 물질로서 수산화리튬 4.1 몰 및 아나타제형 산화티타늄 4.9 몰을 고상 혼합하고, 물에 교반하며 용해하여 슬러리를 제조하였다.
열풍 온도를 200℃, 배기 열풍 온도를 190℃로 분무건조하고, 800℃ 산소 분위기 하에서 10시간 동안 열처리하고, 지르코니아 비드를 사용하여 3000 rpm으로 습식 분쇄하여, 2차 입자의 평균 입경(D50)이 6 ㎛인 K가 도핑된 리튬 티타늄 복합 산화물을 제조하였다.
실시예 4 : 음극의 제조
상기 실시예 1에서 제조된 리튬 티타늄 복합 산화물 92 중량%, 도전재로서 카본 블랙(carbon black) 4 중량%, 및 바인더로서 폴리비닐리덴 플루오라이드(PVdF) 4 중량%를 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 음극 혼합물 슬러리를 제조하였다. 제조된 상기 음극 혼합물 슬러리를 두께 20 ㎛ 정도의 음극 집전체인 알루미늄(Al) 박막에 도포하고, 건조한 다음 롤 프레스(roll press)를 실시하여 대략 33%의 공극률을 갖는 활물질 층이 형성된 음극을 제조하였다.
실시예 5 : 음극의 제조
대략 48%의 공극률을 갖는 활물질 층이 형성되도록 롤 프레스를 실시한 것을 제외하고는, 실시예 4와 마찬가지의 방법으로 음극을 제조하였다.
비교예 3 : 음극의 제조
음극의 제조시 실시예 1에서 제조된 리튬 티타늄 복합 산화물을 대신하여 상기 비교예 1에서 제조된 리튬 티타늄 복합 산화물을 사용한 것을 제외하고는, 상기 실시예 4와 마찬가지의 방법으로 음극을 제조하였다.
비교예 4 : 음극의 제조
대략 48%의 공극률을 갖는 활물질 층이 형성되도록 롤 프레스를 실시한 것을 제외하고는, 비교예 3과 마찬가지의 방법으로 음극을 제조하였다.
실시예 6 : 리튬 이차전지의 제조
<양극의 제조>
양극 활물질로서 LiMn2O4 및 Li(Ni0.33Co0.33Mn0.33)O2의 혼합물 96 중량%, 도전제로 카본 블랙(carbon black) 2 중량%, 바인더로 폴리비닐리덴 플루오라이드(PVdF) 2 중량%를 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 혼합물 슬러리를 제조하였다. 상기 양극 혼합물 슬러리를 두께가 20 ㎛ 정도의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
<리튬 이차전지의 제조>
이와 같이 제조된 양극과 상기 실시예 4에서 제조된 음극을 폴리프로필렌/폴리에틸렌/폴리프로필렌 (PP/PE/PP) 3층으로 이루어진 분리막과 함께 통상적인 방법으로 이차 전지를 제작 후, 에틸렌 카보네이트(EC) 및 디에틸 카보네이트(DEC)를 30:70의 부피비로 혼합한 용매에 1M LiPF6가 용해된 전해질을 주입하여 리튬 이차전지의 제조를 완성하였다.
실시예 7: 리튬 이차전지의 제조
리튬 이차전지의 제조에서 실시예 4에서 제조된 음극을 대신하여 상기 실시예 5에서 제조된 음극을 사용한 것을 제외하고는, 실시예 6과 마찬가지의 방법으로 리튬 이차전지를 제조하였다.
비교예 5 : 리튬 이차전지의 제조
리튬 이차전지의 제조에서 실시예 4에서 제조된 음극을 대신하여 상기 비교예 3에서 제조된 음극을 사용한 것을 제외하고는, 실시예 6과 마찬가지의 방법으로 리튬 이차전지를 제조하였다.
비교예 6 : 리튬 이차전지의 제조
리튬 이차전지의 제조에서 실시예 4에서 제조된 음극을 대신하여 상기 비교예 4에서 제조된 음극을 사용한 것을 제외하고는, 실시예 6과 마찬가지의 방법으로 리튬 이차전지를 제조하였다.
실험예 1 : SEM
상기 실시예 4 및 5, 및 비교예 3 및 4에서 각각 제조된 음극을 SEM을 이용하여 촬영하여 각각 도 1(실시예 4 및 5) 및 2(비교예 3 및 4)에 나타내었다.
구체적으로, 상기 음극에 대해 8회의 롤 프레스(roll press)를 실시하여 활물질 층이 대략 33% 공극률을 갖도록 하고, 1회의 롤 프레스를 실시하여 활물질 층이 대략 48% 공극률을 갖도록 해서 음극의 제조를 완성하고, 이를 SEM을 이용하여 촬영하여 각각 도 1 및 2에 나타내었다(도 1 및 2에서 33% 및 48%는 음극의 공극률을 나타낸다).
도 1 및 2를 참조하면, 실시에 4에서 제조된 음극은 비교예 3에서 제조된 음극에 비해, 음극 활물질층에 포함되어 있는 리튬 티타늄 복합 산화물 입자가 압연 이후에도 상대적으로 그 형상을 잘 유지하고 있음을 확인할 수 있다. 이러한 경향은 33% 공극률을 갖는 음극에서 더욱 두드러지며, 도 2에 나타낸 비교예 3에서 제조된 음극은 음극 활물질층이 집전체와 접하는 부분(도면에서 음극 활물질 층의 하단 부)의 음극 활물질이 분쇄되어 그 형상이 유지되지 못하고 있는 반면, 도 1에 나타낸 실시예 4에서 제조된 음극은 음극 활물질층이 집전체와 접하는 부분의 음극 활물질이 비교예 3에 비해 현저히 그 형상을 잘 유지하고 있음을 확인할 수 있다.
실험예 2 : PSD(Particle Size Distribution) 측정
CILAS 사의 'CILAS920, France'와 MALVERN 사의 'Mastersizer2000, USA'를 이용하여 실시예 1 및 비교예 1에서 제조된 리튬 티타늄 복합 산화물 각각의 PSD를 측정하여 하기 도 3에 나타내었다.
도 3을 참조하면, 실시예 1에서 제조된 리튬 티타늄 복합 산화물 입자는 비교예 1에서 제조된 리튬 티타늄 복합 산화물 입자에 비해 1 ㎛ 이하의 입경을 가지는 입자의 양이 현저히 적고, 입자의 입경 분포가 좁다는 점을 확인할 수 있다. 이러한 차이점은, 비교예 1은 1차 입자의 입경을 조절하기 위한 별도의 분쇄 과정을 포함하므로, 이 과정에서 상기 1차 입자가 손상되어 강도가 떨어지게 되거나, 또는 입도가 불균일 하게 되는 문제가 발생하는 데에 기인하는 것으로 판단된다. 즉, 비교예 1은 1차 입자의 입경 분포가 고르지 못하므로, 이를 이용하여 2차 입자를 형성하는 경우에도 2차 입자의 입경 분포가 넓어지게 되고, 작은 입경을 가지는 미분량이 증가하게 된 것으로 판단된다.
실험예 3 : EIS에 의한 임피던스 측정>
2회의 충전 및 방전을 수행한 이차전지의 임피던스를 전기화학 임피던스 스펙트로스코피(EIS)를 이용하여 진동수(frequency)당 저항 값을 측정한 뒤, 그 성향을 semi-circle로 변환하여 각각 도 4(실시예 6 및 7) 및 도 5(비교예 5 및 6)에 나타내었다.
도 4 및 5를 참조하면, 실시예 1의 리튬 티타늄 복합 산화물을 포함하는 음극의 경우, 비교예 1의 리튬 티타늄 복합 산화물을 포함하는 음극에 비해 음극 계면의 저항 값이 상대적으로 작음을 확인할 수 있으며, 이는 음극 활물질 층을 압연하여 활물질 층의 공극률을 감소시킨 경우에도, 실시예 1의 리튬 티타늄 복합 산화물은 입자의 형상을 유지하고, 또한 입자 자체의 공극을 유지함으로써 리튬의 확산 저항의 증가를 억제하기 때문인 것으로 판단된다.
실험예 4: <DC-IR 시험>
실시예 6 및 비교예 5에서 얻은 이차전지를 2회의 충전 및 방전을 수행한 후, 만충전 상태로부터 3분간 10 C로 방전하여 이때의 전압 강하량을 측정하였다. 30초까지의 측정 결과를 도 6에 나타내었다.
도 6을 참조하면, 실시예 6의 이차전지에 비해 비교예 5의 이차전지는 전압 강하량이 컸으며, 이는 비교예 5의 이차전지가 포함하는 비교예 1에서 제조된 리튬 티타늄 복합 산화물 입자를 포함하는 음극(비교예 3)의 경우, 상기 비교예 1에서 제조된 리튬 티타늄 복합 산화물 입자에 포함된 미분량이 많아 이들이 전극의 전체적인 저항을 높이기 때문인 것으로 판단된다. 반면, 실시예 6의 이차전지는 실시예 1에서 제조된 리튬 티타늄 복합 산화물 입자를 포함하는 음극(실시예 4)을 포함하고 있고, 상기 실시예 1에서 제조된 리튬 티타늄 복합 산화물 입자는 고른 입자 분포를 가지므로 전극 저항의 증가가 상대적으로 크지 않은 것으로 판단된다.
이와 같이, 본 발명의 일례에 따른 리튬 이차전지용 활물질의 제조방법은 금속 원소의 도입량을 조절하여 1차 입자의 입경을 조절할 수 있다. 이에 따라, 제조된 리튬 이차전지용 활물질은 적절한 공극 부피를 가지고 있으면서도, 우수한 입자 강도를 나타내어 적절한 공극 부피를 유지할 수 있으며, 균일한 입경 분포를 가져 우수한 전기 화학적 성능을 나타낼 수 있다.

Claims (16)

  1. 하기 화학식 1 또는 화학식 2로 표시되는 리튬 티타늄 복합 산화물을 포함하는 1차 입자가 집합하여 형성된 2차 입자이며, 상기 2차 입자의 공극 부피가 0.001 내지 0.05 cm3/g인, 리튬 이차전지용 활물질:
    [화학식 1]
    Li(4-x)MxTi5O12
    [화학식 2]
    Li4Ti(5-x)MxO12
    상기 화학식 1 또는 화학식 2에서,
    0<x≤0.5이고,
    M은 Na, K, Rb, Zr, W, Mg, Mo 또는 Ta이다.
  2. 제 1 항에 있어서,
    상기 1차 입자의 평균 입경(D50)이 0.05 내지 2 ㎛인, 리튬 이차전지용 활물질.
  3. 제 1 항에 있어서,
    상기 1차 입자의 평균입경(D10)이 평균입경(D50)의 60% 내지 95%이고, 평균입경(D90)이 평균입경(D50)의 105% 내지 140%인, 리튬 이차전지용 활물질.
  4. 제 1 항에 있어서,
    상기 2차 입자의 평균 입경(D50)이 1 ㎛ 내지 30 ㎛인, 리튬 이차전지용 활물질.
  5. 제 1 항에 있어서,
    상기 2차 입자는 상기 2차 입자에 대하여 2,000 kgf/cm2의 압력을 가했을 때, 상기 압력을 가하기 전의 공극 부피 100 부피%를 기준으로, 70 내지 99 부피%의 공극 부피를 가지는, 리튬 이차전지용 활물질.
  6. 제 1 항에 있어서,
    M은 K, Rb, Mg 또는 Ta인, 리튬 이차전지용 활물질.
  7. 제 1 항 내지 제 6 항 중 어느 한 항에 따른 리튬 이차전지용 활물질을 포함하는 리튬 이차전지용 전극.
  8. 제 7 항에 따른 리튬 이차전지용 전극을 포함하는 리튬 이차전지.
  9. (1) 리튬 함유 화합물, 티타늄 산화물 및 도핑 금속 함유 화합물을 고상 혼합하는 단계;
    (2) 상기 단계 (1)의 고상 혼합물을 용매에 분산시켜 슬러리를 제조하는 단계;
    (3) 상기 단계 (2)에서 제조된 슬러리를 분무 건조하여 1차 입자가 집합하여 형성된 2차 입자를 제조하는 단계; 및
    (4) 상기 1차 입자가 집합하여 형성된 2차 입자를 소성하는 단계를 포함하고,
    상기 고상 혼합물 및 슬러리에 대한 별도의 분쇄 과정을 포함하지 않는, 리튬 이차전지용 활물질의 제조방법으로서,
    상기 도핑 금속이 Na, K, Rb, Zr, W, Mg, Mo 및 Ta로 이루어진 군으로부터 선택된 1종 이상이고, 상기 2차 입자의 공극 부피가 0.001 내지 0.05 cm3/g인, 리튬 이차전지용 활물질의 제조방법.
  10. 제 9 항에 있어서,
    상기 리튬 함유 화합물은 탄산 리튬, 수산화 리튬 및 산화 리튬으로 이루어지는 군으로부터 선택되는 1종 이상인, 리튬 이차전지용 활물질의 제조방법.
  11. 제 9 항에 있어서,
    상기 도핑 금속 함유 화합물은 상기 도핑 금속의 탄산염, 수산화염, 및 산화물로 이루어지는 군으로부터 선택되는 1종 이상인, 리튬 이차전지용 활물질의 제조방법.
  12. 제 9 항에 있어서,
    상기 단계 (1)의 고상 혼합하는 단계는, 상기 고상 혼합에 앞서 상기 1차 입자의 목적하는 입경 크기에 따라 상기 도핑 금속 함유 화합물의 함량을 조절하는 과정을 추가로 포함하는, 리튬 이차전지용 활물질의 제조방법.
  13. 제 12 항에 있어서,
    상기 리튬 함유 화합물, 티타늄 산화물 및 도핑 금속 함유 화합물 중, 상기 도핑 금속 함유 화합물의 몰비가 0.01 증가할 때, 형성되는 상기 1차 입자의 평균 입경(D50)이 0.5% 내지 2% 감소하는, 리튬 이차전지용 활물질의 제조방법.
  14. 제 9 항에 있어서,
    상기 1차 입자가 하기 화학식 1 또는 화학식 2로 표시되는 리튬 티타늄 복합 산화물을 포함하는, 리튬 이차전지용 활물질의 제조방법:
    [화학식 1]
    Li(4-x)MxTi5O12
    [화학식 2]
    Li4Ti(5-x)MxO12
    상기 화학식 1 또는 화학식 2에서,
    0<x≤0.5이고,
    M은 Na, K, Rb, Zr, W, Mg, Mo 또는 Ta이다.
  15. 제 14 항에 있어서,
    상기 화학식 1 또는 화학식 2에서 x 값이 0.01 증가할 경우, 상기 1차 입자의 평균 입경(D50)이 0.5% 내지 2% 감소하는, 리튬 이차전지용 활물질의 제조방법.
  16. 제 9 항에 있어서,
    상기 1차 입자의 평균입경(D10)이 평균입경(D50)의 60% 내지 95%이고, 평균입경(D90)이 평균입경(D50)의 105% 내지 140%인, 리튬 이차전지용 활물질의 제조방법.
PCT/KR2017/001224 2016-02-05 2017-02-03 음극 활물질, 이를 포함하는 음극 및 리튬 이차전지 WO2017135758A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780003412.2A CN108140825B (zh) 2016-02-05 2017-02-03 负极活性材料、包含其的负极以及锂二次电池
JP2018539884A JP6719760B2 (ja) 2016-02-05 2017-02-03 負極活物質、それを含む負極及びリチウム二次電池
EP17747803.9A EP3336938B1 (en) 2016-02-05 2017-02-03 Negative electrode active material, and negative electrode and lithium secondary battery which include the same
US15/761,649 US10784510B2 (en) 2016-02-05 2017-02-03 Negative electrode active material, and negative electrode and lithium secondary battery which include the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0015029 2016-02-05
KR20160015029 2016-02-05
KR1020170015471A KR101847769B1 (ko) 2016-02-05 2017-02-03 음극 활물질, 이를 포함하는 음극 및 리튬 이차전지
KR10-2017-0015471 2017-02-03

Publications (1)

Publication Number Publication Date
WO2017135758A1 true WO2017135758A1 (ko) 2017-08-10

Family

ID=59500384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001224 WO2017135758A1 (ko) 2016-02-05 2017-02-03 음극 활물질, 이를 포함하는 음극 및 리튬 이차전지

Country Status (1)

Country Link
WO (1) WO2017135758A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190107502A (ko) * 2018-03-12 2019-09-20 (주)포스코케미칼 알루미늄으로 코팅된 1차 입자를 포함하는 리튬티탄 복합산화물 및 이의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070047810A (ko) * 2004-08-31 2007-05-07 꼼미사리아 아 레네르지 아토미끄 티타늄 및 조밀 리튬 복합 산화물의 분말상 화합물과, 이화합물의 제조 방법 및 이 혼합물을 포함하는 전극
KR20100136805A (ko) * 2009-06-19 2010-12-29 주식회사 이아이지 리튬 티탄 복합산화물을 포함하는 리튬이차전지 음극, 이를 이용한 리튬이차전지, 전지팩 및 자동차
KR20120076335A (ko) * 2012-05-24 2012-07-09 주식회사 엘지화학 표면이 피복된 리튬티탄산화물 분말, 이를 구비한 전극, 및 이차전지
KR20130116806A (ko) * 2012-04-16 2013-10-24 주식회사 엘지화학 이차전지용 음극
KR20140009921A (ko) * 2012-07-13 2014-01-23 주식회사 엘지화학 고밀도 음극 활물질 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070047810A (ko) * 2004-08-31 2007-05-07 꼼미사리아 아 레네르지 아토미끄 티타늄 및 조밀 리튬 복합 산화물의 분말상 화합물과, 이화합물의 제조 방법 및 이 혼합물을 포함하는 전극
KR20100136805A (ko) * 2009-06-19 2010-12-29 주식회사 이아이지 리튬 티탄 복합산화물을 포함하는 리튬이차전지 음극, 이를 이용한 리튬이차전지, 전지팩 및 자동차
KR20130116806A (ko) * 2012-04-16 2013-10-24 주식회사 엘지화학 이차전지용 음극
KR20120076335A (ko) * 2012-05-24 2012-07-09 주식회사 엘지화학 표면이 피복된 리튬티탄산화물 분말, 이를 구비한 전극, 및 이차전지
KR20140009921A (ko) * 2012-07-13 2014-01-23 주식회사 엘지화학 고밀도 음극 활물질 및 이의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3336938A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190107502A (ko) * 2018-03-12 2019-09-20 (주)포스코케미칼 알루미늄으로 코팅된 1차 입자를 포함하는 리튬티탄 복합산화물 및 이의 제조 방법
KR102090572B1 (ko) 2018-03-12 2020-03-18 (주)포스코케미칼 알루미늄으로 코팅된 1차 입자를 포함하는 리튬티탄 복합산화물 및 이의 제조 방법
JP2021516208A (ja) * 2018-03-12 2021-07-01 ポスコ ケミカル カンパニー リミテッド アルミニウムでコーティングされた一次粒子を含むリチウムチタン複合酸化物及びその製造方法
JP7145225B2 (ja) 2018-03-12 2022-09-30 ポスコ ケミカル カンパニー リミテッド アルミニウムでコーティングされた一次粒子を含むリチウムチタン複合酸化物及びその製造方法

Similar Documents

Publication Publication Date Title
WO2020106024A1 (ko) 리튬 이차전지용 양극 활물질 및 이의 제조 방법
WO2015012651A1 (ko) 양극 활물질 및 이의 제조방법
WO2019194510A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2018101806A1 (ko) 리튬이차전지용 니켈계 활물질 전구체, 그 제조방법, 이로부터 형성된 리튬이차전지용 니켈계 활물질 및 이를 포함하는 양극을 함유한 리튬이차전지
WO2010101395A2 (ko) 고에너지 밀도의 양극 재료와 유/무기 복합 다공성 분리막을 포함하는 리튬 이차전지
WO2017150945A1 (ko) 이차전지용 양극활물질의 전구체 및 이를 이용하여 제조된 양극활물질
WO2019221497A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019164319A1 (ko) 리튬 이차전지용 음극, 이의 제조방법 및 상기 리튬 이차전지용 음극을 포함하는 리튬 이차전지
WO2016032240A1 (ko) 이중 코팅층을 갖는 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2020040586A1 (ko) 실리콘계 복합체, 이를 포함하는 음극, 및 리튬 이차전지
WO2016148441A1 (ko) 리튬 금속 산화물 및 이를 포함하는 리튬 이차전지용 음극 활물질, 및 이의 제조방법
WO2021066584A1 (ko) 구형화된 카본계 음극활물질, 이의 제조방법, 이를 포함하는 음극 및 리튬 이차전지
WO2017095074A1 (ko) 티타늄계 복합체를 포함하는 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019083330A2 (ko) 리튬 이차전지용 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2018160023A1 (ko) 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2020153728A1 (ko) 리튬 이차전지용 음극활물질, 이를 포함하는 음극 및 리튬 이차전지
WO2021125827A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2020040613A1 (ko) 음극 활물질, 이를 포함하는 음극, 및 리튬 이차전지
WO2021187907A1 (ko) 리튬 이차전지용 양극재, 이를 포함하는 양극 및 리튬 이차전지
WO2021154035A1 (ko) 리튬 이차전지용 양극 활물질 및 이의 제조 방법
WO2019235890A1 (ko) 리튬 이차전지용 음극 슬러리, 및 이의 제조방법
WO2014027869A2 (ko) 양극 활물질, 이의 제조 방법 및 이를 포함하는 이차 전지
WO2022060138A1 (ko) 음극 및 이를 포함하는 이차전지
WO2022010225A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2019078685A2 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747803

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017747803

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018539884

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE