WO2017135250A1 - 焼石膏処理装置及び焼石膏処理方法 - Google Patents

焼石膏処理装置及び焼石膏処理方法 Download PDF

Info

Publication number
WO2017135250A1
WO2017135250A1 PCT/JP2017/003418 JP2017003418W WO2017135250A1 WO 2017135250 A1 WO2017135250 A1 WO 2017135250A1 JP 2017003418 W JP2017003418 W JP 2017003418W WO 2017135250 A1 WO2017135250 A1 WO 2017135250A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcined gypsum
wet gas
cooling
gas supply
gypsum
Prior art date
Application number
PCT/JP2017/003418
Other languages
English (en)
French (fr)
Inventor
賢 早瀬
Original Assignee
吉野石膏株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吉野石膏株式会社 filed Critical 吉野石膏株式会社
Priority to CA3012594A priority Critical patent/CA3012594C/en
Priority to JP2017565560A priority patent/JP6794380B2/ja
Priority to CN201780009521.5A priority patent/CN108698925B/zh
Priority to KR1020187021231A priority patent/KR102454646B1/ko
Priority to AU2017214993A priority patent/AU2017214993B2/en
Priority to US16/070,076 priority patent/US10974993B2/en
Publication of WO2017135250A1 publication Critical patent/WO2017135250A1/ja
Priority to PH12018501553A priority patent/PH12018501553B1/en
Priority to SA518392093A priority patent/SA518392093B1/ar

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B11/00Calcium sulfate cements
    • C04B11/007After-treatment of the dehydration products, e.g. aging, stabilisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/20Stationary reactors having moving elements inside in the form of helices, e.g. screw reactors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/46Sulfates
    • C01F11/466Conversion of one form of calcium sulfate to another
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B11/00Calcium sulfate cements
    • C04B11/02Methods and apparatus for dehydrating gypsum
    • C04B11/028Devices therefor characterised by the type of calcining devices used therefor or by the type of hemihydrate obtained
    • C04B11/0285Rotary kilns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D15/00Handling or treating discharged material; Supports or receiving chambers therefor
    • F27D15/02Cooling
    • F27D15/0206Cooling with means to convey the charge
    • F27D15/0273Cooling with means to convey the charge on a rotary hearth
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • C01P2006/82Compositional purity water content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/02Circulating air or gases in closed cycles, e.g. wholly within the drying enclosure
    • F26B21/04Circulating air or gases in closed cycles, e.g. wholly within the drying enclosure partly outside the drying enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B9/00Machines or apparatus for drying solid materials or objects at rest or with only local agitation; Domestic airing cupboards

Definitions

  • the present invention relates to a calcined gypsum processing apparatus and a calcined gypsum processing method. More specifically, the calcined gypsum is preliminarily hydrolyzed to reduce the amount of mixed water required for slurrying the calcined gypsum.
  • the present invention relates to a gypsum processing apparatus and a calcined gypsum processing method (apparatus and method for treating stucco).
  • a calcined gypsum or calcined plaster is produced by a calcining process in which raw gypsum such as chemical gypsum or natural gypsum is calcined alone, or different raw gypsum is mixed and heated (sintered).
  • Dihydrate gypsum (CaSO 4 ⁇ 2H 2 O) which is the main component of raw material gypsum, is transferred to hemihydrate gypsum (CaSO 4 ⁇ 1 / 2H 2 O) by the firing process.
  • the compound water (crystal water) content of dihydrate gypsum and hemihydrate gypsum is 20.9 wt% and 6.2 wt% (theoretical value), respectively.
  • calcined gypsum obtained by the firing process contains type III anhydrous gypsum (CaSO 4 ) and the like in addition to hemihydrate gypsum.
  • calcined gypsum has the property of being slurried (slurry) when added with an appropriate amount of water and kneaded, and then rapidly solidified as a dihydrate by a hydration reaction
  • calcined gypsum is used in various gypsum products. Used as a raw material.
  • a gypsum board is a typical product made from calcined gypsum.
  • gypsum board is a mixture of calcined gypsum and water and slurried by adding an adhesion aid, hardening accelerator, foam, etc., and pouring the gypsum slurry between the upper and lower gypsum board base paper to force it.
  • a board material or plate material for construction work produced by drying and cutting.
  • the type III anhydrous gypsum contained in the calcined gypsum is mixed with the amount of kneaded water required for slurrying the calcined gypsum (hereinafter referred to as “amount of mixed water for calcined gypsum slurry”). Or “mixed water amount”).
  • amount of mixed water for calcined gypsum slurry the amount of mixed water required for slurrying the calcined gypsum slurry.
  • mixed water amount In the gypsum board manufacturing process, an increase in the amount of mixed water tends to increase the heat load of the forced drying process.
  • type III anhydrous gypsum in calcined gypsum is converted to hemihydrate gypsum in advance, thereby reducing the amount of mixed water for calcined gypsum slurry, reducing the environmental burden It is desirable from the viewpoint of energy saving measures.
  • a stabilization zone is provided in front of the cooling zone of the plaster plaster cooler, and the process gas of the calcining apparatus containing a relatively large amount of moisture (water vapor) is introduced into the stabilization zone together with the calcined gypsum.
  • the calcined gypsum modified by supplying water or adding water in the stabilization zone is cooled in a cooling zone equipped with an air-cooled heat exchanger.
  • the above-mentioned reforming technology for calcined gypsum is: (1) the type III anhydrous gypsum in calcined gypsum is converted to hemihydrate gypsum by hydrotreating the calcined gypsum, and (2) the calcined gypsum particles are more than necessary when slurried.
  • the calcined gypsum is modified so as to be water-soluble without being refined, or the calcined gypsum is to be modified by both (1) and (2).
  • the reaction vessel or pipe line that defines or surrounds the contact area of calcined gypsum and moisture, or the calcined gypsum after modification Moisture in the moist atmosphere is condensed on the inner surface of the transfer path and the like, and condensed water is easily generated on the inner surfaces of the reaction vessel, the pipe line, the transfer path and the like.
  • the present invention has been made in view of such a problem, and the object of the present invention is to modify calcined gypsum and moisture in the calcined gypsum reforming process in which calcined gypsum is hydrotreated to modify calcined gypsum.
  • An object of the present invention is to provide a calcined gypsum processing apparatus and a calcined gypsum processing method capable of reliably preventing the formation of condensed water in a contact area, a transport path of the modified calcined gypsum, and the like.
  • the present invention provides a calcined gypsum processing apparatus having a water adding device for adding calcined gypsum and a stirring type cooling device having a cooling zone for cooling the calcined gypsum.
  • the water adding device has a wet gas supply port for directly introducing a jet or discharge flow of wet gas containing moisture or water vapor into the cooling zone
  • the cooling device has a calcined gypsum inlet for introducing the calcined gypsum into the cooling zone
  • the wet gas supply port is disposed in the vicinity of the calcined gypsum inlet so that the jet or discharge flow of the wet gas contacts the calcined gypsum immediately after being introduced into the cooling zone.
  • a gypsum processing apparatus is provided.
  • the present invention also provides a calcined gypsum treatment method in which calcined gypsum before cooling is brought into contact with moisture and cooled by a stirring type cooling device having a cooling zone.
  • a wet gas supply port for discharging or jetting a wet gas containing moisture or water vapor is disposed in the vicinity of the calcined gypsum introduction port of the cooling device, Introducing the calcined gypsum from the calcined gypsum inlet to the cooling zone of the cooling device; Introducing the wet gas directly into the cooling zone from the wet gas supply port;
  • a calcined gypsum treatment characterized by bringing a wet gas jet or a discharge flow of the wet gas supply port into contact with a calcined gypsum immediately after being introduced into the cooling zone to hydrolyze the calcined gypsum in the cooling zone.
  • the wet gas is directly introduced into the cooling zone of the cooling device, and the calcined gypsum is hydrotreated in the cooling zone.
  • the wet gas jet or discharge flows into the cooling zone from the wet gas supply port arranged near the calcined gypsum inlet (gypsum gypsum inlet), so that the wet gas is cooled from the calcined gypsum inlet of the cooling device.
  • Contact calcined gypsum immediately after being introduced into the area. Since the cooling zone of the cooling device also functions as a reforming zone in the calcined gypsum, each action of cooling and reforming simultaneously acts on the calcined gypsum in the cooling zone.
  • the wet gas is directly introduced into the cooling zone, and contacts the calcined gypsum in the cooling zone (therefore, the wet gas is transferred in the transport path of the calcined gypsum and the like. Does not contact calcined gypsum). For this reason, it can prevent reliably that dew condensation water produces
  • the contact area of calcined gypsum and moisture It is possible to reliably prevent the formation of dew condensation water on the calcined gypsum transport path and the like.
  • FIG. 1A is a side view showing the overall configuration of the calcined gypsum processing apparatus
  • FIG. 1B is a cross-sectional view of the calcined gypsum processing apparatus taken along line II in FIG. 1A
  • 1 (C) is a rear view of the calcined gypsum processing apparatus.
  • FIG. 2 is a cross-sectional view schematically showing main components of the calcined gypsum processing apparatus.
  • FIG. 3 is a longitudinal sectional view schematically showing main components of the calcined gypsum processing apparatus.
  • FIG. 4 is a perspective view schematically showing the form of the calcined gypsum dressing inlet and the wet gas supply port visually recognized from the cooling zone.
  • FIG. 4 is a perspective view schematically showing the form of the calcined gypsum dressing inlet and the wet gas supply port visually recognized from the cooling zone.
  • FIG. 5 is a schematic perspective view similar to FIG. 4 showing a modification of the wet gas supply port.
  • FIG. 6 is a cross-sectional view conceptually showing the position of the wet gas supply port.
  • FIG. 7A is a cross-sectional view conceptually showing a configuration in which the position of the calcined gypsum inlet is deviated from the center of the cooling zone, and
  • FIG. 7B is a drawing of the calcined gypsum inlet from the end wall. It is sectional drawing which shows notionally the structure arrange
  • FIG. 8 is a cross-sectional view conceptually showing a configuration in which the calcined gypsum inlet is arranged on the inner peripheral wall surface of the shell.
  • FIG. 9 is a schematic cross-sectional view of a wet gas supply port and a calcined gypsum inlet showing a modification of the wet gas supply port shown in FIG.
  • the wet gas is a high-temperature and high-humidity gas generated in the baking apparatus for baking the calcined gypsum and separated from the calcined gypsum
  • the calcined gypsum feed pipe for feeding the calcined gypsum includes: A wet gas feed pipe connected to a calcined gypsum supply device including a calcined gypsum introduction port for feeding a hot and humid gas separated from the calcined gypsum communicates with the wet gas supply port.
  • the calcined gypsum inlet has a circular contour
  • the wet gas supply port has a plurality of annular openings concentrically surrounding the calcined gypsum inlet, or a plurality of rings arranged around the calcined gypsum inlet. Of the opening.
  • the wet gas supply port directs the jet or discharge flow of the wet gas in a direction substantially parallel to the central axis of the calcined gypsum inlet or in a direction approaching the central axis of the calcined gypsum inlet. Oriented.
  • the cooling device is an inner tube rotary type multi-tube cooling device having an air-cooled heat exchanger.
  • the cooling device includes a rotary stirring type cylindrical shell that forms a cooling zone, and an air-cooled heat exchanger that uses air at ambient temperature as a cooling medium.
  • the rotation center axis of the shell is inclined at a predetermined angle with respect to the horizontal plane and extends in the lateral direction.
  • the calcined gypsum inlet (calcined gypsum inlet) is arranged at the base end or one end of the shell, and the calcined gypsum introduced into the cooling zone corresponds to the slope gradient of the shell. Move to.
  • the calcined gypsum supply device is a screw feeder type calcined gypsum supply device having a screw part that is rotationally driven and extruding the calcined gypsum toward the calcined gypsum inlet.
  • a wet gas supply device constituting the hydration device is disposed so as to surround the cylindrical housing of the screw portion.
  • An annular wet gas flow path that connects the wet gas supply pipe to the wet gas supply port is formed in the outer peripheral region of the screw portion.
  • the calcined gypsum inlet is open to an end wall on the proximal side (upstream in the gradient direction) of the shell and is arranged concentrically with the central axis of the shell, and the wet gas supply port is also located on the proximal side of the shell. Open in the end wall.
  • the position of the wet gas supply port is preferably a circular area having a radius of 1.5 ⁇ (or 1 m) centered on the center ( ⁇ ) of the calcined gypsum inlet or the diameter or maximum dimension ⁇ of the calcined gypsum inlet or It is arranged within a hemispherical region, preferably within a circular region or a hemispherical region having a radius ⁇ (or 65 cm), so that reliable and smooth mixing contact between the wet gas and calcined gypsum is achieved.
  • the wet gas is saturated steam, superheated steam, a mixture of steam and air, or a gas containing moisture at a predetermined weight ratio or more.
  • superheated steam is a kind of dry gas, but it is considered that as a result of a rapid temperature drop and pressure drop immediately after flowing into the cooling zone, it changes into a state in which moisture can be released.
  • superheated steam is included in the wet gas.
  • the wet gas has a moisture content within a range of 0.1 to 2.0 kg / kg ′, and a mass ratio of 0.3 to 6.0 wt% with respect to calcined gypsum introduced into the cooling zone. It is introduced into the cooling zone at a flow rate of a ratio.
  • the wet gas flows into the cooling zone from the wet gas supply port at a flow rate in the range of 5 to 25 m / s.
  • the wet gas is water vapor (or superheated steam) such as process steam used or shared in the factory or plant where the calcined gypsum processing apparatus is installed, or steam and It is an air-fuel mixture.
  • FIG. 1A is a side view showing the overall configuration of the calcined gypsum processing apparatus
  • FIG. 1B is a cross-sectional view of the calcined gypsum processing apparatus taken along line II in FIG. 1A
  • 1 (C) is a rear view of the calcined gypsum processing apparatus.
  • the calcined gypsum processing apparatus is an inner tube rotary type multi-tube in which a large number of cooling pipes 2 constituting an air-cooled heat exchanger are arranged in a cylindrical shell (shell body) 3.
  • a cooling device 1 (hereinafter referred to as “cooling device 1”).
  • the cooling device 1 includes a screw feeder type calcined gypsum supply device 10 that supplies the calcined gypsum G to the cooling zone D of the cooling device 1.
  • the calcined gypsum treatment apparatus further directly introduces a wet gas S containing a relatively large amount of water or a wet gas S (hereinafter referred to as “wet gas S”) such as steam or water vapor into the cooling zone D directly.
  • the wet gas supply device 20 is provided.
  • the central axis XX of the cooling device 1 is inclined at a predetermined angle with respect to the horizontal floor surface or the ground surface J (horizontal plane), and is introduced into the shell 3 at the base end portion 3 a of the shell 3.
  • the relatively high temperature and unmodified calcined gypsum G moves to the tip 3b according to the inclination gradient of the shell 3, and is discharged from the outlet 4 of the tip 3b as cooled and modified calcined gypsum Ga.
  • the cooling device 1 includes a rotation drive device 5 (schematically shown by phantom lines) that rotates the shell 3 about the central axis XX.
  • the rotation drive device 5 rotates the shell 3 at a predetermined rotational speed, and the cooling zone D in the shell 3 moves the calcined gypsum G toward the tip 3b while stirring the calcined gypsum G in the shell 3.
  • the cooling pipe 2 extends in parallel with the central axis XX in the cooling zone D and rotates integrally with the shell 3.
  • the tip 2b of the cooling pipe 2 is opened to the atmosphere at the tip of the shell 3 as shown in FIG.
  • the exhaust manifold 6 is connected to the base end portion 3 a of the shell 3, and the base end portion 2 a of the cooling pipe 2 opens into the flow path of the exhaust manifold 6.
  • the exhaust manifold 6 is connected to an exhaust fan (or exhaust blower) Eb through an exhaust pipe Ea.
  • the suction pressure of the exhaust fan Eb acts on the in-pipe region and the tip 2b of each cooling pipe 2 via the exhaust pipe Ea and the exhaust manifold 6, and each cooling pipe 2 passes from the tip 2b to outside air (outside air).
  • the outside air flowing into the cooling pipe 2 flows through the cooling pipe 2 and flows into the exhaust manifold 6 and is exhausted outside the system by the exhaust fan Eb.
  • the outside air flowing in the cooling pipe 2 exchanges heat with the calcined gypsum G in the cooling zone D via the pipe wall of the cooling pipe 2 to cool the calcined gypsum G. That is, the cooling pipe 2 constitutes an air-cooled heat exchanger using the outside air as a cooling medium, and the outside air (atmosphere) after the temperature rise is exhausted outside the system via the exhaust manifold 6.
  • the exhaust port 7 for exhausting the atmospheric gas in the shell 3 is disposed at the top of the tip 3b.
  • the exhaust port 7 is connected to an exhaust fan or an exhaust blower Fb through an exhaust passage Fa.
  • the suction pressure of the exhaust fan Fb acts on the cooling zone D through the exhaust pipe Fa and the exhaust port 7, and the atmospheric gas in the cooling zone D is exhausted outside the system by the exhaust fan Fb.
  • a dust removing device Fc shown in phantom
  • a bag filter is interposed in the exhaust pipe Fa.
  • the cylindrical casing 11 of the calcined gypsum supply device 10 passes through the exhaust manifold 6 and is connected to the base end portion 3a.
  • the calcined gypsum supply device 10 includes a driving device 12 such as an electric motor, a screw portion 14 connected in series to a rotary drive shaft 13 of the driving device 12, and a hopper-shaped charging portion into which a relatively high-temperature calcined gypsum G is charged. 15 and a calcined gypsum charging inlet 16 having a circular outline that opens into the cooling zone D and feeds the calcined gypsum G into the cooling zone D.
  • the calcined gypsum inlet 16 constitutes the above-mentioned “calcined gypsum inlet” through which the calcined gypsum G is introduced into the cooling zone D.
  • the central axes of the screw portion 14 and the calcined gypsum inlet 16 substantially coincide with the central axis XX of the shell 3.
  • a calcined gypsum feed pipe 17 is connected to the input unit 15.
  • the calcined gypsum feed pipe 17 is connected to a calcining device (not shown) that calcines the raw gypsum.
  • the calcined gypsum G of the calcining apparatus is supplied to the screw unit 14 via the calcined gypsum feed pipe 17 and the charging unit 15.
  • the rotating screw part 14 pushes the calcined gypsum G from the calcined gypsum inlet 16 to the cooling zone D, and the calcined gypsum G is introduced into the cooling zone D as indicated by the arrows.
  • the wet gas supply device 20 supplies the required wet gas directly to the cooling zone D in order to modify the calcined gypsum G by hydration.
  • the modification of the calcined gypsum G by the hydrolysis treatment is for reducing the amount of the kneaded water for calcining gypsum slurry or preventing the amount of the kneaded water for calcining gypsum slurry from increasing.
  • FIG. 2 and 3 are a transverse sectional view and a longitudinal sectional view schematically showing main components of the calcined gypsum processing apparatus.
  • 4 is a schematic perspective view showing the configuration of the calcined gypsum loading inlet 16 and the wet gas supply port 22 visually recognized from the cooling zone D, and FIG. It is the same schematic perspective view.
  • the wet gas supply device 20 includes a cylindrical casing 21 that surrounds the casing 11 of the calcined gypsum supply apparatus 10 and a calcined gypsum inlet 16 that surrounds the calcined gypsum inlet 16. And an annular wet gas supply port 22 arranged on the outside.
  • An annular wet gas flow path 25 communicating with the wet gas supply port 22 is formed between the housing 21 and the housing 11.
  • a wet gas feed pipe 23 is connected to the housing 21 so as to introduce the wet gas S into the wet gas flow path 25.
  • the upstream end of the wet gas supply pipe 23 is connected to a wet gas supply source (not shown).
  • wet gas S wet air or a humid gas (process gas of the calciner) generated in a calciner (not shown), water vapor such as process steam shared by the entire manufacturing facility, or a mixture of water vapor and air, etc.
  • a baking apparatus is used as a wet gas supply source
  • high-temperature and high-humidity gas (process gas) generated in the baking furnace or reaction vessel of the baking apparatus is removed from the calcined gypsum by a dust removing device (not shown) such as a filter unit.
  • the wet gas S is fed as a wet gas S through a flow path or a pipe in the wet gas feed pipe 23 and supplied to the wet gas flow path 25.
  • the flow of air (cooling medium) flowing through the cooling pipe 2 is indicated by a thin solid line arrow (Air).
  • Air the flow direction of the calcined gypsum G that has been input to the input unit 15 is indicated by a thick white arrow (G), and the flow of the wet gas S that has been supplied to the wet gas supply device 20. The direction is indicated by a thick black arrow (S).
  • the air having an atmospheric temperature T1 (for example, 20 ° C.) that flows into each cooling pipe 2 is heat-exchanged with the calcined gypsum G in the cooling zone D, and is heated to a temperature T2 (for example, 60 ° C.).
  • the heated air flows into the exhaust manifold 6 and is exhausted outside the system by the exhaust fan Eb (FIG. 1) as described above.
  • the temperature (article temperature) T3 of the calcined gypsum G charged into the calcined gypsum supply device 10 is about 150 ° C., for example.
  • the calcined gypsum G is cooled by exchanging heat with the air flowing through the cooling pipe 2.
  • the temperature T4 of the calcined gypsum Ga discharged from the discharge port 4 is about 80 ° C., for example.
  • the temperature T5 of the wet gas S supplied to the wet gas supply device 20 is preferably a temperature in the range of 100 to 200 ° C., for example, about 150 ° C.
  • the wet gas S is jetted or discharged from the wet gas supply port 22 to the cooling zone D. That is, the wet gas S is introduced directly into the cooling zone D.
  • the wet gas S has a moisture content (absolute humidity) in the range of 0.1 to 2.0 kg / kg ′, and a mass ratio of 0.3 to 2.0 with respect to calcined gypsum introduced into the cooling zone. It is introduced into the cooling zone at a flow rate ratio in the range of 6.0 wt%.
  • the wet gas S supplies water of 500 to 1500 kg / h (1 to 3 wt%) to the cooling zone D.
  • the wet gas S flows into the cooling zone D from the wet gas supply port 22 at a flow rate in the range of 5 to 25 m / s (for example, a flow rate of 10 m / s or 20 m / s).
  • the fired gypsum G is agitated in the cooling zone D by the rotation of the shell 3, and the wet gas S flowing into the cooling zone D comes into rapid and efficient mixing contact with many of the gypsum particles of the calcined gypsum G.
  • the calcined gypsum G absorbs or absorbs moisture in the wet gas S, and can reduce the amount of mixed water for calcined gypsum slurry (or prevent increase in the amount of mixed water for calcined gypsum slurry). Then, it is reformed into physical properties or properties, and is discharged out of the machine from the outlet 4 in such a modified state.
  • FIG. 4 shows the structure and positional relationship of the calcined gypsum inlet 16 and the wet gas supply port 22.
  • the calcined gypsum inlet 16 and the wet gas supply port 22 both open to the end wall 8 of the cooling zone D.
  • the calcined gypsum inlet 16 is an opening having a circular (true circular) contour having a diameter ⁇ .
  • the wet gas supply port 22 is an annular opening concentrically arranged in the outer peripheral region of the calcined gypsum inlet 16, and extends in a band shape and an annular shape around the central axis XX as a band-shaped opening having a width ⁇ .
  • An annular buffer band 9 is formed between the outer peripheral edge of the calcined gypsum inlet 16 and the inner peripheral edge of the wet gas supply port 22.
  • the width ⁇ of the buffer zone 9 can be preferably set to a value within the range of ⁇ ⁇ 0.3 to 3.0 (preferably a value within the range of ⁇ ⁇ 0.5 to 2.5) with respect to the width ⁇ of the wet gas supply port 22. .
  • the wet gas supply port 22 directly discharges or jets the jet or discharge flow of the wet gas S to the cooling zone D, there is a possibility that moisture (water vapor) in the wet gas S may be condensed in the transport path of the calcined gypsum G. Therefore, it is possible to reliably prevent the generation of condensed water in the transport path of the calcined gypsum G. Further, since the wet gas supply port 22 discharges or jets the wet gas S in the vicinity of the calcined gypsum inlet 16, the wet gas S reliably and smoothly mixes and contacts the gypsum particles of the calcined gypsum G.
  • the wet gas supply port 22 shown in FIG. 4 is an annular and belt-like opening extending around the calcined gypsum inlet 16.
  • a large number of wet gas supply ports 22 may be distributed around the calcined gypsum inlet 16.
  • FIG. 5 shows a large number of wet gas supply ports 22 distributed at equal intervals around the calcined gypsum inlet 16 as a relatively small-diameter circular opening.
  • the wet gas supply port 22 shown in FIG. 5 is connected to a branch pipe 23a formed by branching the wet gas feed pipe 23, respectively. Each wet gas supply port 22 simultaneously discharges or jets a jet or discharge flow of the wet gas S into the cooling zone D.
  • FIG. 6 is a cross-sectional view conceptually showing the position of the wet gas supply port 22.
  • the wet gas supply port 22 is shown as a large number of small-diameter openings dispersedly arranged as shown in FIG. 5, but the wet gas supply port 22 is an annular opening shown in FIG. Other forms of openings may also be used.
  • the wet gas supply port 22 is arranged in the vicinity of the calcined gypsum loading inlet 16.
  • the wet gas supply port 22 is preferably within a circular region with a radius of 1.5 ⁇ centered on the center ⁇ of the calcined gypsum inlet 16, and Preferably, it arrange
  • the wet gas supply port 22 can be disposed at a position protruding from the end wall 8 as indicated by a broken line in FIG.
  • the wet gas supply port 22 is preferably within a hemispherical region having a radius of 1.5 ⁇ centered on the center ⁇ of the calcined gypsum inlet port 16, and more preferably a hemispherical shape having a radius ⁇ . Arranged within the area.
  • FIG. 7A is a sectional view conceptually showing a preferable position of the wet gas supply port 22 in the cooling device 1 in which the central axis X′-X ′ of the calcined gypsum inlet 16 is deviated from the central axis XX. It is.
  • FIG. 7B is a cross-sectional view conceptually showing a preferable position of the wet gas supply port 22 in the cooling device 1 having a configuration in which the calcined gypsum charging inlet 16 is disposed at a position drawn from the end wall 8. It is.
  • the central axis X′-X ′ of the calcined gypsum inlet 16 can be arranged at a position deviated from the central axis XX as shown in FIG.
  • the calcined gypsum entrance 16 is disposed at a position where the end wall 8 is partially retracted toward the base end and the calcined gypsum entrance 16 is retracted from the position of the end wall 8 as shown in FIG. 7B. You may do it.
  • the wet gas supply port 22 is preferably within a circular or hemispherical region having a radius of 1.5 ⁇ centered on the center ⁇ of the gypsum loading inlet 16, and more preferably having a radius ⁇ . Arranged within a circular or hemispherical region.
  • FIG. 8 is a cross-sectional view conceptually showing the position of the wet gas supply port 22 in the cooling device 1 in which the calcined gypsum loading inlet 16 is arranged on the inner peripheral wall surface of the shell 3.
  • the wet gas supply port 22 is preferably within a circular region or hemispherical region having a radius of 1.5 ⁇ centered on the center ⁇ of the calcined gypsum inlet port 16, and more preferably, the radius ⁇ . Are arranged within a circular region or a hemispherical region.
  • FIG. 9 is a cross-sectional view showing a modification of the wet gas supply port 22 shown in FIG.
  • the direction of the straight flow of the wet gas discharged or ejected by the wet gas supply port 22 does not necessarily have to be parallel to the central axes XX and X′-X ′.
  • the central axis of the wet gas supply port 22 is As shown in FIG. 9, it may be oriented in a direction that forms a predetermined angle ⁇ with respect to the central axes XX, X′-X ′.
  • the angle ⁇ is set so that the wet gas straight flow jetted by the wet gas supply port 22 is discharged or jetted in a direction approaching the central axes XX and X′-X ′.
  • the cooling device is a rotary stirring type cooling device that stirs the calcined gypsum in the shell by rotating the shell, but the cooling device is a paddle stirring type, a screw stirring type, or a disk stirring type. Other types of cooling devices may be used.
  • the wet gas is exemplified as the wet gas of the baking apparatus, the process steam, and the like.
  • the wet gas is not limited to the wet gas of such a source.
  • Wet gas from any source can be used, such as wet gas discharged from a predrying oven, wet gas discharged from a gypsum product dryer, and the like.
  • the calcined gypsum calcined by the calcining device is immediately cooled by the cooling device, and the cooling zone is used as a modified gypsum for the calcined gypsum.
  • the calcined gypsum may not necessarily be immediately after firing, for example, calcined gypsum after cooling to a certain level.
  • the cooling device may be configured as a cooling / drying device, and the cooling region may be configured as a cooling / drying region in which the calcined gypsum that has already been cooled to a certain degree is further cooled and dried.
  • the present invention is applied to a calcined gypsum treating apparatus and a calcined gypsum treating method, in particular, to a calcined gypsum treating apparatus and a calcined gypsum treating method for supplying moisture to the calcined gypsum and hydrotreating the calcined gypsum.
  • the present invention in the reforming process in which calcined gypsum is hydrolyzed and reformed, it is ensured that condensed water is generated in the calcined gypsum and moisture contact area, the modified calcined gypsum transport path, and the like. Since it can prevent and improve the efficiency of the hydrotreatment of calcined gypsum, its practical effect is remarkable.
  • Cooling device 2 Cooling pipe 3 Cylindrical shell 4 outlet 5 Rotation drive 6 Exhaust manifold 7 Exhaust port 10 Burned gypsum supply device 11 Cylindrical housing 14 Screw part 16 Burning gypsum entrance 20 Wet gas supply device 21 Cylindrical housing 22 Wet gas supply port 25 Wet gas flow path D Cooling zone G calcined gypsum (before modification) Ga calcined gypsum (after modification) S Wet gas XX, X'-X 'center axis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

【課題】焼石膏を加水処理により改質する焼石膏の改質過程において、焼石膏及び水分の接触域や、改質後の焼石膏の搬送路等に結露水が生成するのを確実に防止する。 【解決手段】焼石膏処理装置は、焼石膏(G)を冷却する冷却域(D)を備えた攪拌式の冷却装置(1)と、焼石膏に加水する加水装置(20)とを有する。加水装置は、水分又は水蒸気を含む湿潤ガス(S)を冷却域に直に導入する湿潤ガス供給口(22)を有する。焼石膏は、冷却装置の焼石膏導入口(16)から冷却域に導入され、冷却域において加水処理され、改質される。湿潤ガス供給口は、焼石膏導入口の近傍に配置され、湿潤ガスの噴流又は吐出流は、焼石膏導入口から冷却域に導入された直後の焼石膏に接触する。

Description

焼石膏処理装置及び焼石膏処理方法
 本発明は、焼石膏処理装置及び焼石膏処理方法に関するものであり、より詳細には、予め焼石膏を加水処理することにより、焼石膏のスラリー化に要する練混水量の低減を可能にする焼石膏処理装置及び焼石膏処理方法(apparatus and method for treating stucco)に関するものである。 
 焼石膏(stucco, calcined gypsum or calcined plaster)は、化学石膏又は天然石膏等の原料石膏を単独で焼成し、或いは、異種の原料石膏を混合して加熱(焼成)する焼成工程により製造される。原料石膏の主成分である二水石膏(CaSO・2HO)は、焼成工程により、半水石膏(CaSO・1/2HO)に転移する。二水石膏及び半水石膏の化合水(結晶水)含有量は夫々、20.9wt%及び6.2wt%(理論値)である。一般に、焼成工程によって得られる焼石膏は、半水石膏の他に、III型無水石膏(CaSO)等を含有する。 
 焼石膏には、適量の水を加えて混練するとスラリー化(泥漿化)し、水和反応により二水和物となって速やかに固化する性質があるので、焼石膏は、様々な石膏製品の原料として使用されている。例えば、焼石膏を原料とした代表的製品として、石膏ボードが挙げられる。一般に、石膏ボードは、焼石膏及び水を混練し且つ接着助剤、硬化促進剤、泡等を添加することよってスラリー化してなる石膏スラリーを上下の石膏ボード用原紙の間に流し込み、これを強制乾燥し且つ切断することにより製造される建築工事用のボード材料又は板材である。 
 このような焼石膏及び水等の混練工程において、焼石膏に含まれるIII型無水石膏は、焼石膏のスラリー化に要する練り水の練混水量(以下、「焼石膏スラリー化用の練混水量」、或いは、「練混水量」という。)を増量させる性質を有する。石膏ボード製造過程では、練混水量の増量は、強制乾燥工程の熱負荷を増大させる傾向がある。このため、焼石膏をスラリー化する前に、焼石膏中のIII型無水石膏を予め半水石膏に転換し、これにより、焼石膏スラリー化用の練混水量を低減させることが、環境負荷軽減及び省エネルギー対策等の観点より望ましい。 
 焼石膏スラリー化用の練混水量を低減させる技術として、焼石膏の結晶内及び表面の欠陥を解消するために、焼成装置の炉内又は反応容器内に生成したプロセスガス(高温多湿ガス)を焼石膏と一緒に同一流路で給送し、焼石膏及びプロセスガスを石膏プラスタークーラーに導入する技術が、特表2013-535401号公報(特許文献1)に記載されている。この技術は、石膏プラスタークーラーの冷却ゾーンの前段に安定化ゾーンを設け、比較的多量の水分(水蒸気)を含む焼成装置のプロセスガスを焼石膏とともに安定化ゾーンに導入し、プロセスガス中の水分によって焼石膏中のIII型無水石膏を安定化ゾーンで半水石膏に転換しようとするものである。安定化ゾーンにおける水分供給又は水分添加により改質された焼石膏は、空冷式熱交換器を備えた冷却ゾーンにおいて冷却される。 
 焼石膏スラリー化用の練混水量の低減を図る他の技術として、混練工程の前に焼石膏を予め加水処理することにより、混練工程における焼石膏スラリー化用の練混水量を低減させる技術が知られている。例えば、スラリー化前の焼石膏に少量の水(重量比約1~10質量%)を加水し、スラリー化時に焼石膏粒子が必要以上に微細化して水溶するのを防止する処理(ヒール処理)が知られている(特公平3-51665号公報(特許文献2)、特許第4847855号公報(特許文献3))。 
特表2013-535401号公報 特公平3-51665号公報 特許第4847855号公報
 上述した焼石膏の改質技術は、焼石膏を加水処理することにより、(1)焼石膏中のIII型無水石膏を半水石膏に転換し、(2)スラリー化時に焼石膏粒子が必要以上に微細化せずに水溶するように焼石膏を改質し、或いは、(1)及び(2)の双方により焼石膏を改質しようとするものである。しかしながら、焼石膏を上記プロセスガス(高温多湿ガス)と一緒に同一流路で給送する場合、或いは、湿潤ガスを焼石膏に添加して改質した後に冷却する場合、加水後の焼石膏収容域の雰囲気は、比較的多量の水分又は水蒸気を保有する湿潤雰囲気であるので、焼石膏及び水分の接触域を画成し又は囲繞する反応容器又は管路等、或いは、改質後の焼石膏の搬送路等の内面において湿潤雰囲気中の水分が凝縮し、反応容器、管路、搬送路等の内面に結露水が生成し易い。
 このような結露水が反応容器、管路、搬送路等の内面に生成すると、焼石膏と結露水とが水和反応して容器内面、管路内面等に付着し且つ固化する結果、焼石膏の反応域、搬送路等の流路断面を十分に確保し難い状況が生じるので、この種の固化物は、適宜除去する必要がある。しかし、このような反応容器、管路等の内面の固化物を確実に除去することは、実務的に極めて困難である。 
 本発明は、このような課題に鑑みてなされたものであり、その目的とするところは、焼石膏を加水処理して焼石膏を改質する焼石膏の改質過程において、焼石膏及び水分の接触域や、改質後の焼石膏の搬送路等に結露水が生成するのを確実に防止することができる焼石膏処理装置及び焼石膏処理方法を提供することにある。 
 上記目的を達成すべく、本発明は、焼石膏に加水する加水装置と、焼石膏を冷却する冷却域を備えた攪拌式の冷却装置とを有する焼石膏処理装置において、 
 前記加水装置は、水分又は水蒸気を含む湿潤ガスの噴流又は吐出流を前記冷却域に直に導入する湿潤ガス供給口を有し、 
 前記冷却装置は、前記焼石膏を前記冷却域に導入する焼石膏導入口を有し、 
 前記湿潤ガス供給口は、前記冷却域に導入された直後の焼石膏に前記湿潤ガスの噴流又は吐出流が接触するように、前記焼石膏導入口の近傍に配置されることを特徴とする焼石膏処理装置を提供する。 
 本発明は又、冷却前の焼石膏を水分と接触させるとともに、冷却域を有する攪拌式の冷却装置によって焼石膏を冷却する焼石膏処理方法において、
 水分又は水蒸気を含む湿潤ガスを吐出し又は噴射する湿潤ガス供給口を前記冷却装置の焼石膏導入口の近傍に配置し、
 前記焼石膏を前記焼石膏導入口から前記冷却装置の冷却域に導入し、
 前記湿潤ガスを前記湿潤ガス供給口から前記冷却域に直に導入し、
 前記冷却域に導入された直後の焼石膏に対して前記湿潤ガス供給口の湿潤ガスの噴流又は吐出流を接触せしめて、該冷却域において焼石膏を加水処理することを特徴とする焼石膏処理方法を提供する。 
 本発明の上記構成によれば、湿潤ガスが冷却装置の冷却域に直に導入され、冷却域で焼石膏が加水処理される。湿潤ガスの噴流又は吐出流は、焼石膏導入口(焼石膏装入口)の近傍に配置された湿潤ガス供給口から冷却域に流入するので、湿潤ガスは、冷却装置の焼石膏導入口から冷却域に導入された直後の焼石膏に接触する。冷却装置の冷却域は、焼石膏中の改質域としても機能するので、冷却及び改質の各作用が冷却域において焼石膏に同時に働く。このような焼石膏処理装置及び焼石膏処理方法においては、湿潤ガスは、冷却域に直に導入され、冷却域において焼石膏に接触する(従って、上記湿潤ガスは、焼石膏の搬送路等においては焼石膏に接触しない)。このため、焼成装置から冷却域に至る焼石膏の搬送路等に結露水が生成するのを確実に防止することができる。また、比較的大容積の冷却域に解放された湿潤ガスの噴流又は吐出流は、迅速且つ効率的に比較的多量の焼石膏に接触する。従って、湿潤ガス中の水分は、効果的に焼石膏に与えられる。このため、焼石膏の加水処理の効率を向上し、余剰の水分が冷却域において結露するのを防止することができる。
 本発明の焼石膏処理装置及び焼石膏処理方法によれば、焼石膏を加水処理して焼石膏を改質する焼石膏の改質過程において、焼石膏及び水分の接触域や、改質後の焼石膏の搬送路等に結露水が生成するのを確実に防止することができる。 
図1(A)は、焼石膏処理装置の全体構成を示す側面図であり、図1(B)は、図1(A)のI-I線における焼石膏処理装置の断面図であり、図1(C)は、焼石膏処理装置の背面図である。 図2は、焼石膏処理装置の主要構成要素を概略的に示す横断面図である。 図3は、焼石膏処理装置の主要構成要素を概略的に示す縦断面図である。 図4は、冷却域より視認した焼石膏装入口及び湿潤ガス供給口の形態を概略的に示す斜視図である。 図5は、湿潤ガス供給口の変形例を示す図4と同様の概略斜視図である。 図6は、湿潤ガス供給口の位置を概念的に示す断面図である。 図7(A)は、焼石膏装入口の位置を冷却域の中心から偏倚せしめた構成を概念的に示す断面図であり、図7(B)は、焼石膏装入口を端壁から引込んだ位置に配置した構成を概念的に示す断面図である。 図8は、焼石膏装入口をシェルの内周壁面に配置した構成を概念的に示す断面図である。 図9は、図5に示す湿潤ガス供給口の変形例を示す湿潤ガス供給口及び焼石膏装入口の概略断面図である。
 本発明の好ましい実施形態によれば、湿潤ガスは、焼石膏を焼成する焼成装置において生成し且つ焼石膏から分離された高温多湿ガスであり、焼石膏を給送する焼石膏給送管が、焼石膏導入口を含む焼石膏供給装置に接続され、焼石膏から分離した高温多湿ガスを給送する湿潤ガス給送管が、湿潤ガス供給口と連通する。好ましくは、焼石膏導入口は、円形輪郭を有し、湿潤ガス供給口は、焼石膏導入口を同心状に囲む環状の開口部、或いは、焼石膏導入口の周囲に環状に配列された複数の開口部からなる。更に好ましくは、湿潤ガス供給口は、焼石膏導入口の中心軸線と実質的に平行な方向、或いは、焼石膏導入口の中心軸線に接近する方向に湿潤ガスの噴流又は吐出流を差し向けるように配向される。
 本発明の好適な実施形態において、冷却装置は、空冷式熱交換器を有するインナーチューブ・ロータリー型の多管式冷却装置である。冷却装置は、冷却域を形成する回転攪拌式の円筒状シェルと、大気温度の空気を冷熱媒体とした空冷式熱交換器とを有する。シェルの回転中心軸線は、水平面に対して所定角度をなして傾斜して横方向に延びる。焼石膏導入口(焼石膏装入口)は、シェルの基端部又は一端部に配置され、冷却域に導入された焼石膏は、シェルの傾斜勾配に相応してシェルの先端部又は他端部に移動する。また、上記焼石膏供給装置は、回転駆動されるスクリュー部を有し且つ焼石膏導入口に向かって焼石膏を押出すスクリューフィーダー式の焼石膏供給装置である。加水装置を構成する湿潤ガス供給装置が、スクリュー部の円筒状筐体を囲むように配置される。湿潤ガス給送管を湿潤ガス供給口と連通させる環状の湿潤ガス流路が、スクリュー部の外周域に形成される。 
 好ましくは、焼石膏装入口は、シェルの基端側(勾配方向上流側)の端壁に開口し、シェルの中心軸線と同心状に配置され、湿潤ガス供給口も又、シェルの基端側端壁に開口する。湿潤ガス供給口の位置は、好適には、焼石膏導入口の直径又は最大寸法αに対し、焼石膏導入口の中心(β)を中心とした半径1.5α(又は1m)の円形領域又は半球形領域の範囲内、好ましくは、半径α(又は65cm)の円形領域又は半球形領域の範囲内に配置され、湿潤ガスと焼石膏との確実且つ円滑な混合接触が図られる。 
 好適には、湿潤ガスは、飽和水蒸気、過熱水蒸気、水蒸気及び空気の混合気、或いは、所定重量比以上の水分を含有する気体である。なお、過熱水蒸気は、乾燥気体の一種であるが、冷却域に流入した直後に急激な温度降下及び圧力降下が生じる結果、水分を放出可能な状態に変化すると考えられるので、本明細書においては、過熱水蒸気を湿潤ガスに含めるものとする。
  好ましくは、湿潤ガスは、0.1~2.0kg/kg’の範囲内の水分量を有し、上記冷却域に導入される焼石膏に対して質量比0.3~6.0wt%の比率の流量で上記冷却域に導入される。好適には、湿潤ガスは、5~25m/sの範囲内の流速で湿潤ガス供給口から冷却域に流入する。
 本発明の他の好ましい実施形態において、湿潤ガスは、焼石膏処理装置が設置された工場内又はプラント内において使用され又は共用されているプロセス蒸気等の水蒸気(又は過熱水蒸気)、或いは、水蒸気及び空気の混合気である。
 以下、添付図面を参照して本発明の好適な実施例について詳細に説明する。 
 図1(A)は、焼石膏処理装置の全体構成を示す側面図であり、図1(B)は、図1(A)のI-I線における焼石膏処理装置の断面図であり、図1(C)は、焼石膏処理装置の背面図である。 
 図1(A)に示す如く、焼石膏処理装置は、空冷式熱交換器を構成する多数の冷却管2を円筒状シェル(殻体)3内に配設したインナーチューブ・ロータリー型の多管式冷却装置1(以下、「冷却装置1」という。)を有する。冷却装置1は、焼石膏Gを冷却装置1の冷却域Dに供給するスクリューフィーダー式の焼石膏供給装置10を備える。焼石膏処理装置は更に、比較的多量の水分を含む湿潤空気や、水蒸気(steam,water vapor)等の湿潤な気体S(以下、「湿潤ガスS」という。)を冷却域Dに直に導入する湿潤ガス供給装置20を有する。 
 冷却装置1の中心軸線X-Xは、水平な床面又は地盤面J(水平面)に対して所定角度をなして傾斜しており、シェル3の基端部3aにおいてシェル3内に導入された比較的高温且つ改質前の焼石膏Gは、シェル3の傾斜勾配に従って先端部3bに移動し、冷却後且つ改質後の焼石膏Gaとして先端部3bの排出口4から排出される。 
 冷却装置1は、中心軸線X-Xを中心にシェル3を回転させる回転駆動装置5(仮想線で概略的に示す。)を備える。回転駆動装置5は、所定の回転数でシェル3を回転駆動し、シェル3内の冷却域Dは、シェル3内の焼石膏Gを攪拌しながら、焼石膏Gを先端部3bに向かって移動させる。 
 冷却管2は、冷却域Dにおいて中心軸線X-Xと平行に延び、シェル3と一体的に回転する。冷却管2の先端部2bは、図1(C)に示す如く、シェル3の先端面において大気に開放される。図1(A)に示す如く、排気マニホールド6がシェル3の基端部3aに連接し、冷却管2の基端部2aが排気マニホールド6の流路に開口する。排気マニホールド6は、排気管Eaを介して排気ファン(又は排気ブロワ)Ebに接続される。排気ファンEbの吸引圧力は、排気管Ea及び排気マニホールド6を介して各冷却管2の管内領域及び先端部2bに作用し、各冷却管2は、先端部2bから大気温度の外気(外界空気)を吸引する。冷却管2内に流入した外気は、冷却管2を流通して排気マニホールド6内に流入し、排気ファンEbによって系外に排気される。冷却管2内を流動する外気は、冷却管2の管壁を介して冷却域Dの焼石膏Gと熱交換し、焼石膏Gを冷却する。即ち、冷却管2は、外気を冷熱媒体とした空冷式熱交換器を構成し、昇温後の外気(大気)は、排気マニホールド6を介して系外に排気される。 
 シェル3内の雰囲気ガスを排気するための排気口7が、先端部3bの頂部に配設される。排気口7は、排気流路Faを介して排気ファン又は排気ブロワFbに接続される。排気ファンFbの吸引圧力は、排気管Fa及び排気口7を介して冷却域Dに作用し、冷却域Dの雰囲気ガスは、排気ファンFbによって系外に排気される。所望により、バグフィルター等の除塵装置Fc(仮想線で示す)が排気管Faに介装される。 
 焼石膏供給装置10の円筒状筐体11が、排気マニホールド6を貫通して基端部3aに接続される。焼石膏供給装置10は、電動モータ等の駆動装置12と、駆動装置12の回転駆動軸13に直列に連結したスクリュー部14と、比較的高温の焼石膏Gが投入されるホッパー形態の投入部15と、冷却域Dに開口して焼石膏Gを冷却域Dに投入する円形輪郭の焼石膏装入口16とから構成される。焼石膏装入口16は、焼石膏Gを冷却域Dに導入する前述の「焼石膏導入口」を構成する。スクリュー部14及び焼石膏装入口16の中心軸線は、シェル3の中心軸線X-Xと実質的に一致する。投入部15には、焼石膏給送管17が接続される。焼石膏給送管17は、原料石膏を焼成する焼成装置(図示せず)に接続される。焼成装置の焼石膏Gは、焼石膏給送管17及び投入部15を介してスクリュー部14に供給される。回転するスクリュー部14は、焼石膏Gを焼石膏装入口16から冷却域Dに押し出し、焼石膏Gは、矢印で示す如く冷却域Dに導入される。 
 湿潤ガス供給装置20は、焼石膏Gを加水処理により改質すべく、所要の湿潤ガスを冷却域Dに直に供給する。前述のとおり、加水処理による焼石膏Gの改質は、焼石膏スラリー化用の練混水量を低減し、或いは、焼石膏スラリー化用の練混水量の増量を防止するためのものである。 
 図2及び図3は、焼石膏処理装置の主要構成要素を概略的に示す横断面図及び縦断面図である。また、図4は、冷却域Dより視認した焼石膏装入口16及び湿潤ガス供給口22の構成を示す概略斜視図であり、図5は、湿潤ガス供給口22の変形例を示す図4と同様の概略斜視図である。
  図2及び図3に示す如く、湿潤ガス供給装置20は、焼石膏供給装置10の筐体11を囲繞する円筒状筐体21と、焼石膏装入口16を囲むように焼石膏装入口16の外側に配置された環状の湿潤ガス供給口22とを備える。筐体21と筐体11との間には、湿潤ガス供給口22と連通する環状の湿潤ガス流路25が形成される。湿潤ガス給送管23が、湿潤ガスSを湿潤ガス流路25に導入するように筐体21に接続される。湿潤ガス給送管23の上流端は、湿潤ガス供給源(図示せず)に接続される。 
 湿潤ガスSとして、焼成装置(図示せず)において生成した湿潤空気又は多湿ガス(焼成装置のプロセスガス)、製造設備全体で共用されるプロセス蒸気等の水蒸気、或いは、水蒸気及び空気の混合気等を好ましく使用し得る。例えば、焼成装置を湿潤ガス供給源として用いる場合、焼成装置の焼成炉内又は反応容器内において発生した高温多湿ガス(プロセスガス)が、フィルターユニット等の除塵装置(図示せず)によって焼石膏から分離され、湿潤ガスSとして湿潤ガス給送管23内の流路又は管路を給送され、湿潤ガス流路25に供給される。
 図2及び図3には、冷却管2を流通する空気(冷熱媒体)の流れが、細い実線の矢印(Air)で示されている。また、図2及び図3には、投入部15に投入された焼石膏Gの流動方向が太い白抜きの矢印(G)で示され、湿潤ガス供給装置20に供給された湿潤ガスSの流動方向が太い黒塗りの矢印(S)で示されている。 
 各冷却管2に流入した大気温度T1(例えば、20℃)の空気は、冷却域Dの焼石膏Gと熱交換して温度T2(例えば、60℃)に昇温する。昇温後の空気は、排気マニホールド6に流入し、前述のとおり、排気ファンEb(図1)によって系外に排気される。焼石膏供給装置10に投入される焼石膏Gの温度(品温)T3は、例えば、約150℃である。焼石膏Gは、冷却管2内を流通する空気と熱交換して冷却する。排出口4から排出される焼石膏Gaの温度T4は、例えば、約80℃である。 
 湿潤ガス供給装置20に供給される湿潤ガスSの温度T5は、好ましくは、  100~200℃の範囲内の温度、例えば、約150℃である。湿潤ガスSは、湿潤ガス供給口22から冷却域Dに噴流し又は吐出する。即ち、湿潤ガスSは、冷却域Dに直に導入される。好ましくは、湿潤ガスSは、0.1~2.0kg/kg’の範囲内の水分量(絶対湿度)を有し、上記冷却域に導入される焼石膏に対して質量比0.3~6.0wt%の範囲内の流量比で上記冷却域に導入される。例えば、焼石膏供給装置10の焼石膏供給量が50t/hであるとき、湿潤ガスSは、500~1500kg/h(1~3wt%)の水分を冷却域Dに供給する。好適には、湿潤ガスSは、5~25m/sの範囲内の流速(例えば、10m/s又は20m/sの流速)で湿潤ガス供給口22から冷却域Dに流入する。
  焼石膏Gは、シェル3の回転により冷却域Dで攪拌され、冷却域Dに流入した湿潤ガスSは、焼石膏Gの石膏粒子の多くと迅速且つ効率的に混合接触する。焼石膏Gは、湿潤ガスS中の水分を吸湿又は吸水し、焼石膏スラリー化用の練混水量を低減(或いは、焼石膏スラリー化用の練混水量の増量を防止)し得る組成、成分、物性又は性状に改質され、このように改質された状態で排出口4から機外に排出される。 
 図4には、焼石膏装入口16及び湿潤ガス供給口22の構成及び位置関係が示されている。焼石膏装入口16及び湿潤ガス供給口22は、いずれも、冷却域Dの端壁8に開口する。焼石膏装入口16は、直径αを有する円形(真円形)輪郭の開口である。湿潤ガス供給口22は、焼石膏装入口16の外周域に同心状に配置された環状開口であり、幅γの帯状開口として中心軸線X-X廻りに帯状且つ環状に延在する。焼石膏装入口16の外周縁と湿潤ガス供給口22の内周縁との間には、環状の緩衝帯9が形成される。緩衝帯9の幅ηは、湿潤ガス供給口22の幅γに対し、γ×0.3~3.0の範囲内の値(好適には、γ×0.5~2.5の範囲内の値)に好ましく設定し得る。 
 湿潤ガス供給口22は、湿潤ガスSの噴流又は吐出流を冷却域Dに直に吐出し又は噴射するので、湿潤ガスS中の水分(水蒸気)が焼石膏Gの搬送経路において凝縮する虞はなく、従って、焼石膏Gの搬送経路における結露水の発生を確実に防止することができる。また、湿潤ガス供給口22は、焼石膏装入口16の近傍において湿潤ガスSを吐出し又は噴射するので、湿潤ガスSは、焼石膏Gの石膏粒子と確実且つ円滑に混合接触する。比較的大容積の冷却域に解放された湿潤ガスSの噴流又は吐出流は、迅速且つ効率的に比較的多量の焼石膏Gに接触するので、湿潤ガスS中の水分は、効果的に焼石膏Gに与えられる。従って、焼石膏Gの加水処理の効率を向上し、余剰の水分が冷却域Dにおいて結露するのを防止することができる。
 上記のとおり、図4に示す湿潤ガス供給口22は、焼石膏装入口16廻りに延びる環状且つ帯状の開口である。変形例として、多数の湿潤ガス供給口22を焼石膏装入口16廻りに分散配置しても良い。図5には、比較的小径の円形開口として焼石膏装入口16廻りに等間隔に分散配置された多数の湿潤ガス供給口22が示されている。 
 図5に示す湿潤ガス供給口22は、湿潤ガス給送管23を分岐してなる分岐管23aに夫々接続される。各々の湿潤ガス供給口22は、湿潤ガスSの噴流又は吐出流を冷却域Dに同時に吐出し又は噴射する。 
 図6は、湿潤ガス供給口22の位置を概念的に示す断面図である。なお、図6においては、湿潤ガス供給口22は、図5に示すように分散配置された多数の小径開口として示されているが、湿潤ガス供給口22は、図4に示す環状開口、或いは、他の形態の開口であっても良い。 
 湿潤ガスSと焼石膏Gとの確実且つ円滑な混合接触を図るには、湿潤ガス供給口22を焼石膏装入口16の近傍に配置することが望ましい。焼石膏装入口16の直径又は最大寸法を寸法αとすると、湿潤ガス供給口22は、好ましくは、焼石膏装入口16の中心βを中心とした半径1.5αの円形領域の範囲内、更に好ましくは、半径αの円形領域の範囲内に配置される。 
 また、湿潤ガス供給口22は、図6に破線で示す如く、端壁8から突出した位置に配置することも可能である。このような構成においては、湿潤ガス供給口22は、好ましくは、焼石膏装入口16の中心βを中心とした半径1.5αの半球形領域の範囲内、更に好ましくは、半径αの半球形領域の範囲内に配置される。 
 図7(A)は、焼石膏装入口16の中心軸線X'-X'が中心軸線X-Xから偏倚した冷却装置1に関し、好適な湿潤ガス供給口22の位置を概念的に示す断面図である。また、図7(B)は、焼石膏装入口16を端壁8から引込んだ位置に配置した構成を有する冷却装置1に関し、好適な湿潤ガス供給口22の位置を概念的に示す断面図である。
 焼石膏装入口16の中心軸線X'-X'は、図7(A)に示す如く、中心軸線X-Xから偏倚した位置に配置することも可能である。また、焼石膏装入口16は、図7(B)に示す如く、端壁8を部分的に基端側に後退させ、焼石膏装入口16を端壁8の位置から引込んだ位置に配置しても良い。このような構成においても、湿潤ガス供給口22は、好ましくは、石膏装入口16の中心βを中心とした半径1.5αの円形領域又は半球形領域の範囲内、更に好ましくは、半径αの円形領域又は半球形領域の範囲内に配置される。 
 図8は、焼石膏装入口16をシェル3の内周壁面に配置した冷却装置1における湿潤ガス供給口22の位置を概念的に示す断面図である。 
 図8に示す如く、焼石膏装入口16をシェル3の内周壁面に配置することも可能である。このような構成においても、湿潤ガス供給口22は、好ましくは、焼石膏装入口16の中心βを中心とした半径1.5αの円形領域又は半球形領域の範囲内、更に好ましくは、半径αの円形領域又は半球形領域の範囲内に配置される。 
 図9は、図5に示す湿潤ガス供給口22の変形例を示す断面図である。 
 湿潤ガス供給口22が吐出し又は噴射する湿潤ガス直進流の方向は、必ずしも、中心軸線X-X、X'-X'と平行でなくとも良く、例えば、湿潤ガス供給口22の中心軸線は、図9に示す如く、中心軸線X-X、X'-X'に対して所定の角度θをなす方向に配向しても良い。好ましくは、角度θは、湿潤ガス供給口22が噴射する湿潤ガス直進流が、中心軸線X-X、X'-X'に接近する方向に吐出し又は噴流するように設定される。 
 以上、本発明の好適な実施形態及び実施例について詳細に説明したが、本発明は上記実施形態又は実施例に限定されるものではなく、特許請求の範囲に記載された本発明の範囲内で種々の変形又は変更が可能である。 
 例えば、上記実施例に係る冷却装置は、シェルの回転によりシェル内の焼石膏を攪拌する回転撹拌式の冷却装置であるが、冷却装置は、パドル撹拌式、スクリュー撹拌式、或いは、デイスク撹拌式等の他の形式の冷却装置であっても良い。 
 また、上記実施例においては、湿潤ガスは、焼成装置の湿潤ガス、プロセス蒸気等として例示したが、湿潤ガスは、このような供給源の湿潤ガスに限られるものではなく、例えば、原料石膏の予備乾燥炉から排出される湿潤ガス、石膏製品乾燥機から排出される湿潤ガス等の如く、任意の供給源の湿潤ガスを用いることができる。 
 更に、上記実施例では、焼成装置によって焼成された焼石膏を直ちに冷却装置によって冷却する装置系において冷却域を焼石膏の改質域として用いた構成のものであるが、改質すべき焼石膏は、必ずしも焼成直後の焼石膏でなくとも良く、例えば、或る程度まで冷却した後の焼石膏でも良い。また、上記冷却装置を冷却・乾燥装置として構成し、或る程度まで既に冷却した焼石膏を更に冷却し且つ乾燥させる冷却・乾燥域として上記冷却域を構成しても良い。 
 本発明は、焼石膏処理装置及び焼石膏処理方法、殊に、焼石膏に水分を供給し、焼石膏を加水処理して改質する焼石膏処理装置及び焼石膏処理方法に適用される。 
 本発明によれば、焼石膏を加水処理して改質する改質過程において、焼石膏及び水分の接触域や、改質後の焼石膏の搬送路等に結露水が生成するのを確実に防止するとともに、焼石膏の加水処理の効率を向上することができるので、その実用的効果は、顕著である。
 1 冷却装置 
 2 冷却管 
 3 円筒状シェル 
 4 排出口 
 5 回転駆動装置 
 6 排気マニホールド 
 7 排気口 
10 焼石膏供給装置 
11 円筒状筐体 
14 スクリュー部 
16 焼石膏装入口 
20 湿潤ガス供給装置 
21 円筒状筐体 
22 湿潤ガス供給口 
25 湿潤ガス流路 
 D 冷却域 
 G 焼石膏(改質前) 
Ga 焼石膏(改質後) 
 S 湿潤ガス 
X-X、X'-X' 中心軸線

Claims (16)

  1.  焼石膏に加水する加水装置と、焼石膏を冷却する冷却域を備えた攪拌式の冷却装置とを有する焼石膏処理装置において、 
     前記加水装置は、水分又は水蒸気を含む湿潤ガスの噴流又は吐出流を前記冷却域に直に導入する湿潤ガス供給口を有し、
     前記冷却装置は、前記焼石膏を前記冷却域に導入する焼石膏導入口を有し、 
     前記湿潤ガス供給口は、前記冷却域に導入された直後の焼石膏に前記湿潤ガスの噴流又は吐出流が接触するように、前記焼石膏導入口の近傍に配置されることを特徴とする焼石膏処理装置。 
  2.  前記湿潤ガスは、前記焼石膏を焼成する焼成装置において生成し且つ前記焼石膏から分離された高温多湿ガスであり、前記冷却装置は、焼石膏導入口を含む焼石膏供給装置を有し、前記焼石膏を給送する焼石膏給送管が、前記焼石膏供給装置に接続され、前記高温多湿ガスを給送する湿潤ガス給送管が、前記湿潤ガス供給口と連通することを特徴とする請求項1に記載の焼石膏処理装置。 
  3.  前記冷却装置は、前記冷却域を形成する回転攪拌式の円筒状シェルと、空気を冷熱媒体とした空冷式熱交換器とを有する多管式冷却装置であり、前記シェルの回転中心軸線は、水平面に対して所定角度をなして傾斜して横方向に延び、前記焼石膏導入口は、前記シェルの基端部又は一端部に配置され、前記冷却域に導入された焼石膏は、前記シェルの傾斜勾配に従って該シェルの先端部又は他端部に移動することを特徴とする請求項1又は2に記載の焼石膏処理装置。 
  4.  前記湿潤ガス供給口は、前記焼石膏導入口の直径又は最大寸法(α)に対し、前記焼石膏導入口の中心(β)を中心とした半径1.5αの円形領域又は半球形領域の範囲内に配置されることを特徴とする請求項1乃至3のいずれか1項に記載の焼石膏処理装置。 
  5.  前記焼石膏導入口は、円形輪郭を有し、前記湿潤ガス供給口は、前記焼石膏導入口を同心状に囲む環状の開口部、或いは、前記焼石膏導入口の周囲に環状に配列された複数の開口部からなることを特徴とする請求項1乃至4のいずれか1項に記載の焼石膏処理装置。 
  6.  前記焼石膏供給装置は、回転駆動されるスクリュー部を有し且つ前記焼石膏導入口に向かって焼石膏を押出すスクリューフィーダー式の焼石膏供給装置であり、前記加水装置は、前記スクリュー部の円筒状筐体を囲むように配置された湿潤ガス供給装置を有し、該湿潤ガス供給装置は、前記湿潤ガス給送管を前記湿潤ガス供給口と連通させる湿潤ガス流路を有し、該湿潤ガス流路は、前記スクリュー部の外周域に形成された環状断面の流路であることを特徴とする請求項2に記載の焼石膏処理装置。 
  7.  前記湿潤ガス供給口は、前記焼石膏導入口の中心軸線と実質的に平行な方向、或いは、該中心軸線に接近する方向に前記噴流又は吐出流を差し向けるように配向されることを特徴とする請求項1乃至6のいずれか1項に記載の焼石膏処理装置。 
  8.  冷却前の焼石膏を水分と接触させるとともに、冷却域を有する攪拌式の冷却装置によって焼石膏を冷却する焼石膏処理方法において、 
     水分又は水蒸気を含む湿潤ガスを吐出し又は噴射する湿潤ガス供給口を前記冷却装置の焼石膏導入口の近傍に配置し、
     前記焼石膏を前記焼石膏導入口から前記冷却装置の冷却域に導入し、
     前記湿潤ガスを前記湿潤ガス供給口から前記冷却域に直に導入し、
     前記冷却域に導入された直後の焼石膏に対して前記湿潤ガスの噴流又は吐出流を接触せしめて、該冷却域において焼石膏を加水処理することを特徴とする焼石膏処理方法。 
  9.  前記湿潤ガスは、前記焼石膏を焼成する焼成装置において生成し且つ前記焼石膏から分離された高温多湿ガス又は水蒸気であり、前記焼石膏は、前記焼石膏導入口を有する焼石膏供給装置に対して焼石膏給送管で給送され、前記焼石膏から分離した前記高温多湿ガス又は水蒸気は、湿潤ガス給送管によって前記湿潤ガス供給口に給送されることを特徴とする請求項8に記載の焼石膏処理方法。 
  10.  前記冷却装置は、前記冷却域を形成する回転攪拌式の円筒状シェルと、空気を冷熱媒体とした空冷式熱交換器とを有し、前記シェルの回転中心軸線は、水平面に対して所定角度をなして傾斜して横方向に延び、前記焼石膏導入口は、前記シェルの基端部又は一端部に配置され、前記冷却域に導入された焼石膏は、前記シェルの傾斜勾配に従って該シェルの先端部又は他端部に移動することを特徴とする請求項8又は9に記載の焼石膏処理方法。 
  11.  前記湿潤ガス供給口は、前記焼石膏導入口の中心軸線と実質的に平行な方向、或いは、該中心軸線に接近する方向に前記噴流又は吐出流を差し向けることを特徴とする請求項8乃至10のいずれか1項に記載の焼石膏処理方法。 
  12.  前記湿潤ガス供給口は、前記焼石膏導入口を同心状に囲む環状の開口部、或いは、前記焼石膏導入口の周囲に環状に配列された複数の開口部からなり、前記噴流又は吐出流は、前記焼石膏導入口を全体的に囲むように前記冷却域に流入することを特徴とする請求項8乃至11のいずれか1項に記載の焼石膏処理方法。 
  13.  前記焼石膏供給装置は、回転駆動されるスクリュー部を有するスクリューフィーダー式の焼石膏供給装置であり、前記湿潤ガス供給口を有する湿潤ガス供給装置が、前記スクリュー部の円筒状筐体を囲むように配置され、前記湿潤ガス給送管を前記湿潤ガス供給口と連通させる環状の湿潤ガス流路が、前記円筒状筐体の外周域に形成され、前記湿潤ガスは、前記湿潤ガス流路を介して前記湿潤ガス供給口に給送されることを特徴とする請求項9に記載の焼石膏処理方法。 
  14.  前記湿潤ガスは、飽和水蒸気、過熱水蒸気、水蒸気及び空気の混合気、或いは、所定重量比以上の水分を含有する気体であることを特徴とする請求項8乃至13のいずれか1項に記載の焼石膏処理方法。
  15.  前記湿潤ガスは、0.1~2.0kg/kg’の範囲内の水分量を有し、前記冷却域に導入される焼石膏に対して質量比0.3~6.0wt%の比率の流量で前記冷却域に導入されることを特徴とする請求項8乃至14のいずれか1項に記載の焼石膏処理方法。
  16.  前記湿潤ガスは、5~25m/sの範囲内の流速で前記湿潤ガス供給口から前記冷却域に流入することを特徴とする請求項8乃至15のいずれか1項に記載の焼石膏処理方法。
PCT/JP2017/003418 2016-02-02 2017-01-31 焼石膏処理装置及び焼石膏処理方法 WO2017135250A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA3012594A CA3012594C (en) 2016-02-02 2017-01-31 Calcined gypsum treatment device and calcined gypsum treatment method
JP2017565560A JP6794380B2 (ja) 2016-02-02 2017-01-31 焼石膏処理装置及び焼石膏処理方法
CN201780009521.5A CN108698925B (zh) 2016-02-02 2017-01-31 熟石膏处理装置及熟石膏处理方法
KR1020187021231A KR102454646B1 (ko) 2016-02-02 2017-01-31 소석고 처리 장치 및 소석고 처리 방법
AU2017214993A AU2017214993B2 (en) 2016-02-02 2017-01-31 Calcined gypsum treatment device and calcined gypsum treatment method
US16/070,076 US10974993B2 (en) 2016-02-02 2017-01-31 Calcined gypsum treatment device and calcined gypsum treatment method
PH12018501553A PH12018501553B1 (en) 2016-02-02 2018-07-19 Calcined gypsum treatment device and calcined gypsum treatment method
SA518392093A SA518392093B1 (ar) 2016-02-02 2018-07-26 جهاز مُعالجة جبس مُكلس وطريقة مُعالجة جبس مُكلس

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-017625 2016-02-02
JP2016017625 2016-02-02

Publications (1)

Publication Number Publication Date
WO2017135250A1 true WO2017135250A1 (ja) 2017-08-10

Family

ID=59499848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003418 WO2017135250A1 (ja) 2016-02-02 2017-01-31 焼石膏処理装置及び焼石膏処理方法

Country Status (9)

Country Link
US (1) US10974993B2 (ja)
JP (1) JP6794380B2 (ja)
KR (1) KR102454646B1 (ja)
CN (1) CN108698925B (ja)
AU (1) AU2017214993B2 (ja)
CA (1) CA3012594C (ja)
PH (1) PH12018501553B1 (ja)
SA (1) SA518392093B1 (ja)
WO (1) WO2017135250A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019193957A1 (ja) 2018-04-02 2019-10-10 吉野石膏株式会社 多管式回転型熱交換器
JP6683339B1 (ja) * 2019-03-22 2020-04-15 ポリマーアソシエイツ合同会社 耐チッピング及び圧縮強度に優れた石膏成形体及びその製造方法
US10974993B2 (en) * 2016-02-02 2021-04-13 Yoshino Gypsum Co., Ltd. Calcined gypsum treatment device and calcined gypsum treatment method
CN113967957A (zh) * 2021-10-26 2022-01-25 昆明理工大学 废石膏除杂转晶一体化挤出式3d打印喷头及方法
WO2023237230A1 (en) 2022-06-08 2023-12-14 Knauf Gips Kg Extruder for producing gypsum moulded articles, process for manufacturing gypsum-based articles and gypsum-based articles

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109911927B (zh) * 2019-04-19 2024-05-10 王焕德 吸水结构、压力容器以及从其内部吸水的方法
CN110818302B (zh) * 2019-12-12 2021-10-22 郑州三迪建筑科技有限公司 一种磷石膏煅烧建筑石膏的生产设备
CN115247009B (zh) * 2022-06-28 2023-08-22 深圳市鸿合创新信息技术有限责任公司 玻璃表面易于书写的粉笔、其制备方法及用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249317A (ja) * 2001-02-20 2002-09-06 Noritake Co Ltd 半水石膏の製造方法
JP2011522766A (ja) * 2008-05-09 2011-08-04 クラウディウス・ペーターズ・テクノロジーズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング か焼方法およびか焼装置
JP2013535401A (ja) * 2010-08-11 2013-09-12 グレンツェバッハ ベーエスハー ゲーエムベーハー 石膏プラスターの安定化、冷却、除湿のための方法及び装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2848210A (en) * 1954-04-16 1958-08-19 Charles E Compton Dehydrating gypsum or the like
DE2200532A1 (de) * 1972-01-07 1973-07-12 Rheinstahl Ag Verfahren und vorrichtung zum herstellen von mehrphasengipsen
GB1496683A (en) * 1974-05-03 1977-12-30 Ici Ltd Manufacture of calcium sulphate alphahemihydrate
US4201595A (en) 1977-03-14 1980-05-06 United States Gypsum Company Process for preparing calcined gypsum and gypsum board
US4485077A (en) * 1983-08-12 1984-11-27 The Badger Company, Inc. Method for conducting wet grinding of phosphate rock in a phosphoric acid production plant
JP3376429B2 (ja) * 1988-11-18 2003-02-10 ユナイテツド ステイツ ジプサム カンパニー 複合ボードの製造法
JPH0718596B2 (ja) 1989-07-20 1995-03-06 松下電器産業株式会社 熱交換器
DE4109743C2 (de) * 1991-03-25 1995-03-23 Escher Wyss Gmbh Verfahren zur thermischen Behandlung von feuchten Hydraten
FR2836913B1 (fr) * 2002-03-08 2006-11-24 Lafarge Platres Dispositif de sechage et/ou cuisson de gypse
ATE336471T1 (de) * 2003-12-19 2006-09-15 Lafarge Platres Verfahren sowie vorrichtung zum stabilisieren von gips
US7765813B2 (en) * 2004-07-15 2010-08-03 United States Gypsum Company Apparatus and process for cooling and de-steaming calcined stucco
JP2006321663A (ja) * 2005-05-17 2006-11-30 Tadano Ltd 半水石膏の製造装置及び半水石膏の連続的製造方法
JP4847855B2 (ja) 2006-12-28 2011-12-28 吉野石膏株式会社 焼石膏及び石膏ボードの製造方法
US8793897B2 (en) * 2010-08-11 2014-08-05 Grenzebach Bsh Gmbh Process and device for stabilising, cooling and dehumidifying gypsum plaster
JP5778831B1 (ja) * 2014-03-31 2015-09-16 月島機械株式会社 被処理物の乾燥方法、および横型回転式乾燥機
JP5847350B1 (ja) * 2015-09-15 2016-01-20 月島機械株式会社 テレフタル酸の乾燥方法および横型回転式乾燥機
CN108698925B (zh) * 2016-02-02 2021-06-15 吉野石膏株式会社 熟石膏处理装置及熟石膏处理方法
EP3284723A1 (de) * 2016-08-17 2018-02-21 Claudius Peters Projects GmbH Zweistufiges kalzinierverfahren sowie anlage hierfür

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249317A (ja) * 2001-02-20 2002-09-06 Noritake Co Ltd 半水石膏の製造方法
JP2011522766A (ja) * 2008-05-09 2011-08-04 クラウディウス・ペーターズ・テクノロジーズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング か焼方法およびか焼装置
JP2013535401A (ja) * 2010-08-11 2013-09-12 グレンツェバッハ ベーエスハー ゲーエムベーハー 石膏プラスターの安定化、冷却、除湿のための方法及び装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10974993B2 (en) * 2016-02-02 2021-04-13 Yoshino Gypsum Co., Ltd. Calcined gypsum treatment device and calcined gypsum treatment method
RU2749019C1 (ru) * 2018-04-02 2021-06-03 Йосино Джипсум Ко., Лтд. Многотрубный ротационный теплообменник
CN112005072A (zh) * 2018-04-02 2020-11-27 吉野石膏株式会社 多管式旋转型换热器
KR20200139133A (ko) 2018-04-02 2020-12-11 요시노 셋고 가부시키가이샤 다관식 회전형 열교환기
JPWO2019193957A1 (ja) * 2018-04-02 2021-04-22 吉野石膏株式会社 多管式回転型熱交換器
JP7194456B2 (ja) 2018-04-02 2022-12-22 吉野石膏株式会社 多管式回転型熱交換器
EP3779344A4 (en) * 2018-04-02 2022-01-19 Yoshino Gypsum Co., Ltd. ROTARY HEAT EXCHANGER WITH MULTIPLE PIPELINES
WO2019193957A1 (ja) 2018-04-02 2019-10-10 吉野石膏株式会社 多管式回転型熱交換器
CN112005072B (zh) * 2018-04-02 2022-03-25 吉野石膏株式会社 多管式旋转型换热器
AU2019248034B2 (en) * 2018-04-02 2022-04-07 Yoshino Gypsum Co., Ltd. Multitubular rotary heat exchanger
US11300357B2 (en) 2018-04-02 2022-04-12 Yoshino Gypsum Co., Ltd. Multitubular rotary heat exchanger
KR102552265B1 (ko) 2018-04-02 2023-07-06 요시노 셋고 가부시키가이샤 다관식 회전형 열교환기
JP6683339B1 (ja) * 2019-03-22 2020-04-15 ポリマーアソシエイツ合同会社 耐チッピング及び圧縮強度に優れた石膏成形体及びその製造方法
CN113967957A (zh) * 2021-10-26 2022-01-25 昆明理工大学 废石膏除杂转晶一体化挤出式3d打印喷头及方法
CN113967957B (zh) * 2021-10-26 2022-10-25 昆明理工大学 废石膏除杂转晶一体化挤出式3d打印喷头及方法
WO2023237230A1 (en) 2022-06-08 2023-12-14 Knauf Gips Kg Extruder for producing gypsum moulded articles, process for manufacturing gypsum-based articles and gypsum-based articles

Also Published As

Publication number Publication date
AU2017214993A1 (en) 2018-08-09
KR102454646B1 (ko) 2022-10-14
US10974993B2 (en) 2021-04-13
US20190016633A1 (en) 2019-01-17
KR20180111811A (ko) 2018-10-11
SA518392093B1 (ar) 2022-03-09
CN108698925B (zh) 2021-06-15
JP6794380B2 (ja) 2020-12-02
PH12018501553A1 (en) 2019-05-20
PH12018501553B1 (en) 2019-05-20
AU2017214993B2 (en) 2020-12-03
CA3012594C (en) 2023-01-03
JPWO2017135250A1 (ja) 2018-11-29
CN108698925A (zh) 2018-10-23
CA3012594A1 (en) 2017-08-10

Similar Documents

Publication Publication Date Title
WO2017135250A1 (ja) 焼石膏処理装置及び焼石膏処理方法
US3834860A (en) Apparatus for heating and calcining of powder and/or pulverized materials
US4120645A (en) System for handling high sulfur materials
CN100372600C (zh) 在流化床内热处理的方法与装置
CN102046557B (zh) 用于煅烧磷石膏的方法和设备
KR102049158B1 (ko) 분산성 원료의 열처리 방법 및 그 시스템
CN207197248U (zh) 一种内热管回转煅烧窑
US20110150755A1 (en) Method and Apparatus for Hydrating Lime
CN1759066A (zh) 由金属化合物生产金属氧化物的方法和装置
US20200141648A1 (en) Device and Method for Drying or Heating and Cooling Bulk Material
CN112393597A (zh) 一种基于纯氧燃烧的水泥烧成系统和方法
US3938949A (en) Method and apparatus for burning pulverulent materials
RU2749019C1 (ru) Многотрубный ротационный теплообменник
CN108571887A (zh) 一种内热管回转煅烧窑
CS199570B2 (en) Apparatus for calcinating and sintering cement-making raw materials
US3653645A (en) Method and furnace for heat treating materials
TWI279511B (en) Fluidized bed dryer and method for drying wet raw material using fluidized bed dryer
GB1598619A (en) Method and a device for thermally treating fine grain material with hot gases
CN209322734U (zh) 基于电厂脱硫石膏的煅烧装置
WO2020134535A1 (zh) 双热源旋流闪速煅烧系统及双热源旋流闪速煅烧方法
CN214361037U (zh) 一种连续式石膏生产设备
CN210332267U (zh) 一种氧化铝熟料窑煅烧烟气脱硝系统
JP2549069B2 (ja) 石灰泥の焼成方法及び装置
CN214772986U (zh) 不定形浇注料生产用搅拌装置
CN207066152U (zh) 炉窑尾气余热原煤烘干系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747406

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017565560

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12018501553

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 20187021231

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 3012594

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017214993

Country of ref document: AU

Date of ref document: 20170131

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17747406

Country of ref document: EP

Kind code of ref document: A1