WO2017135234A1 - カーボンナノチューブ撚糸の製造方法およびカーボンナノチューブ撚糸 - Google Patents

カーボンナノチューブ撚糸の製造方法およびカーボンナノチューブ撚糸 Download PDF

Info

Publication number
WO2017135234A1
WO2017135234A1 PCT/JP2017/003360 JP2017003360W WO2017135234A1 WO 2017135234 A1 WO2017135234 A1 WO 2017135234A1 JP 2017003360 W JP2017003360 W JP 2017003360W WO 2017135234 A1 WO2017135234 A1 WO 2017135234A1
Authority
WO
WIPO (PCT)
Prior art keywords
cnt
carbon nanotube
twisted yarn
laminate
roller
Prior art date
Application number
PCT/JP2017/003360
Other languages
English (en)
French (fr)
Inventor
典史 藤本
井上 鉄也
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Priority to US16/075,177 priority Critical patent/US20190039904A1/en
Priority to EP17747390.7A priority patent/EP3412808A4/en
Priority to CN201780009454.7A priority patent/CN108699734A/zh
Priority to KR1020187022451A priority patent/KR20180104642A/ko
Publication of WO2017135234A1 publication Critical patent/WO2017135234A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/159Carbon nanotubes single-walled
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/164Preparation involving continuous processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/176Cutting
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/16Yarns or threads made from mineral substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/08Aligned nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/34Length
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • D10B2101/122Nanocarbons

Definitions

  • the present invention relates to a method for producing a carbon nanotube twisted yarn and a carbon nanotube twisted yarn.
  • Carbon nanotubes are known to have excellent mechanical strength, thermal conductivity and electrical conductivity. Then, it has been studied to form a plurality of carbon nanotubes in the form of yarns and use them as carbon nanotube yarns as materials for various industrial products.
  • a nanotube-shaped nanofiber can be obtained by pulling out a sheet-like nanotube sheet continuously connected with carbon nanotubes from a nanotube forest grown on a substrate and twisting the nanotube sheet.
  • a method for producing a twisted yarn has been proposed (see, for example, Patent Document 1).
  • the method for producing a nanofiber twisted yarn described in Patent Document 1 has a limit in improving the density of the nanofiber twisted yarn. Therefore, such a nanofiber twisted yarn may not ensure sufficient mechanical strength, thermal conductivity, electrical conductivity, and the like according to the application.
  • an object of the present invention is to provide a carbon nanotube twisted yarn production method and a carbon nanotube twisted yarn capable of improving the density.
  • the present invention [1] includes a step of preparing vertically aligned carbon nanotubes arranged on a substrate and oriented perpendicularly to the substrate, and a plurality of carbon nanotube single yarns arranged in parallel from the vertically aligned carbon nanotubes.
  • a step of pulling out the carbon nanotube web drawn out in such a manner a step of forming a laminate by laminating a plurality of the carbon nanotube webs so that extending directions of the plurality of carbon nanotube single yarns are along each other, and A method of twisting the laminate, and a method of producing a carbon nanotube twisted yarn.
  • the carbon nanotube twisted yarn is produced by twisting a laminated body in which a plurality of carbon nanotube webs are laminated, it is produced by twisting one carbon nanotube web.
  • the density of the carbon nanotube twisted yarn can be improved. Therefore, it is possible to improve the performance of the carbon nanotube twisted yarn such as mechanical strength, thermal conductivity, and electrical conductivity.
  • the carbon nanotube webs are wound around a circumferential surface of a roller a plurality of times, and the wound carbon nanotube webs are cut in the axial direction of the rollers,
  • a plurality of carbon nanotube webs can be smoothly laminated in the radial direction of the roller by winding a plurality of carbon nanotube webs around the circumferential surface of the roller.
  • the laminated body can be detached from the roller by cutting the wound carbon nanotube web in the axial direction of the roller. Therefore, although it is a simple method, a laminated body can be formed smoothly and, as a result, the production efficiency of carbon nanotube twisted yarn can be improved.
  • the present invention [3] further includes a step of supplying a volatile liquid to the laminate before the step of twisting the laminate, wherein the carbon nanotube twisted yarn according to the above [1] or [2] is provided. Includes manufacturing methods.
  • the volatile liquid is supplied to the laminate, the volatile liquid is vaporized, so that the plurality of carbon nanotube webs to be laminated are densely packed together in the lamination direction, and each carbon In the nanotube web, a plurality of carbon nanotubes are densely packed together. Therefore, the density of the stacked body can be improved.
  • the present invention [4] includes the method for producing a carbon nanotube twisted yarn according to the above [3], in which fine particles are dispersed in the liquid, or a metal salt and / or a resin material is dissolved.
  • the fine particles are dispersed in the liquid, or the metal salt and / or the resin material are dissolved, when the liquid is supplied to the laminate, the fine particles or Metal salts and resin materials can be attached. Therefore, the properties of fine particles, metal salt and / or resin material can be imparted to the carbon nanotube twisted yarn formed from the laminate.
  • the present invention [5] further includes a step of pressurizing the laminate in the laminating direction of the carbon nanotube web before the step of twisting the laminate.
  • the manufacturing method of the carbon nanotube twisted-yarn of the term is included.
  • the density of the laminate can be further improved.
  • the present invention [6] includes a carbon nanotube twisted yarn formed by twisting a laminated body in which a plurality of carbon nanotube webs in which a plurality of carbon nanotube single yarns are arranged in parallel are laminated.
  • the carbon nanotube twisted yarn twists the laminated body in which a plurality of carbon nanotube webs are laminated, so that the density of the carbon nanotube twisted yarn can be reliably improved.
  • the density of the carbon nanotube twisted yarn can be improved.
  • the density of the carbon nanotube twisted yarn of the present invention is improved, it is possible to improve performance such as mechanical strength, thermal conductivity and electrical conductivity.
  • FIG. 1A is an explanatory diagram for explaining an embodiment of a process for producing a carbon nanotube twisted yarn (CNT twisted yarn) of the present invention, and shows a step of forming a catalyst layer on a substrate.
  • FIG. 1B shows a process of heating the substrate to agglomerate the catalyst layer into a plurality of granules following FIG. 1A.
  • FIG. 1C shows a process of growing vertically aligned carbon nanotubes (VACNTs) by supplying a raw material gas to a plurality of granular bodies following FIG. 1B.
  • FIG. 1D shows a process of drawing a carbon nanotube web (CNT web) from VACNTs following FIG. 1C.
  • FIG. 2 shows a process of laminating the drawn CNT web on a roller following FIG. 1D.
  • FIG. 3A shows a process of supplying and pressurizing a volatile liquid to a CNT laminate produced by laminating CNT webs, following FIG. 2.
  • FIG. 3B shows the process of developing the CNT stack and separating it from the roller, following FIG. 3A.
  • FIG. 3C shows a process of cutting the CNT stack following FIG. 3B.
  • FIG. 4A shows a state in which twisting of the CNT laminate has started, following FIG. 3C.
  • FIG. 4B shows a state in the middle of twisting of the CNT laminate, as in FIG. 4A.
  • FIG. 4C shows a state where twisting of the CNT laminate is completed.
  • FIG. 4A shows a state in which twisting of the CNT laminate has started, following FIG. 3C.
  • FIG. 4B shows a state in the middle of twisting of the CNT laminate, as in FIG. 4A.
  • FIG. 5A is an explanatory view for explaining another embodiment of the process for producing a carbon nanotube twisted yarn of the present invention (a mode in which CNT webs are laminated one by one), in which a plurality of CNT webs are laminated, and CNT lamination is performed. The process of producing a body is shown.
  • FIG. 5B shows a step of pressurizing the CNT stack following FIG. 5A.
  • 6A is a scanning electron microscope (SEM) photograph of the carbon nanotube twisted yarn (CNT twisted yarn) of Example 1.
  • FIG. FIG. 6B is an enlarged view of the SEM photograph of the CNT twisted yarn shown in FIG. 6A.
  • 7A is a scanning electron microscope (SEM) photograph of the CNT twisted yarn of Comparative Example 1.
  • FIG. FIG. 7B is an enlarged view of the SEM photograph of the CNT twisted yarn shown in FIG. 7A.
  • One embodiment of the method for producing a carbon nanotube twisted yarn of the present invention is to produce a carbon nanotube twisted yarn by twisting a laminate in which a plurality of carbon nanotube webs are laminated.
  • FIGS. 1 to 4C an embodiment of the method for producing a twisted carbon nanotube of the present invention will be described.
  • vertically aligned carbon nanotubes 2 (Vertical Aligned carbon nanotubes; hereinafter referred to as VACNTs 2) disposed on the substrate 1 are used.
  • a step of preparing a step of drawing out the carbon nanotube web 3 (hereinafter referred to as CNT web 3) from the VACNTs 2, a step of forming a CNT laminate 4 as a laminate by laminating a plurality of CNT webs 3, and a CNT And a step of twisting the laminate 4.
  • CNT web 3 carbon nanotube web 3
  • VACNTs 2 is grown on a substrate 1 by chemical vapor deposition (CVD) to prepare VACNTs 2 arranged on the substrate 1. (Preparation process).
  • CVD chemical vapor deposition
  • a substrate 1 is prepared.
  • substrate 1 is not specifically limited, For example, the well-known board
  • Examples of the substrate 1 include a silicon substrate and a stainless steel substrate 5 on which a silicon dioxide film 6 is laminated, and preferably a stainless steel substrate 5 on which a silicon dioxide film 6 is laminated.
  • 1A to 1D and FIG. 2 show a case where the substrate 1 is a stainless steel substrate 5 on which a silicon dioxide film 6 is laminated.
  • a catalyst layer 7 is formed on the substrate 1, preferably on the silicon dioxide film 6.
  • a metal catalyst is formed on the substrate 1 (preferably the silicon dioxide film 6) by a known film forming method.
  • metal catalyst examples include iron, cobalt, nickel and the like, and preferably iron. Such metal catalysts can be used alone or in combination of two or more.
  • film forming method examples include vacuum evaporation and sputtering, and preferably vacuum evaporation.
  • the catalyst layer 7 is disposed on the substrate 1.
  • the substrate 1 is the stainless steel substrate 5 on which the silicon dioxide film 6 is laminated
  • the silicon dioxide film 6 and the catalyst layer 7 are formed of a silicon dioxide precursor as described in, for example, Japanese Patent Application Laid-Open No. 2014-94856.
  • the mixed solution in which the body solution and the metal catalyst precursor solution are mixed is applied to the stainless steel substrate 5, and then the mixed solution is phase-separated and then dried to form the mixed solution at the same time.
  • the substrate 1 on which the catalyst layer 7 is disposed is heated to, for example, 700 ° C. or more and 900 ° C. or less as shown in FIG. 1B.
  • the catalyst layer 7 aggregates and becomes a plurality of granular bodies 7A.
  • the source gas contains a hydrocarbon gas having 1 to 4 carbon atoms (lower hydrocarbon gas).
  • hydrocarbon gas having 1 to 4 carbon atoms include methane gas, ethane gas, propane gas, butane gas, ethylene gas, and acetylene gas, and preferably acetylene gas.
  • the raw material gas can contain hydrogen gas, inert gas (for example, helium, argon, etc.), water vapor, etc., if necessary.
  • inert gas for example, helium, argon, etc.
  • the supply time of the source gas is, for example, 1 minute or more, preferably 5 minutes or more, for example, 60 minutes or less, preferably 30 minutes or less.
  • a plurality of carbon nanotubes 10 grow from each of the plurality of granular bodies 7A as a starting point.
  • CNTs 10 carbon nanotubes 10
  • FIG. 1C for convenience, it is described that one CNT 10 grows from one granular body 7A.
  • the present invention is not limited to this, and even if a plurality of CNTs 10 grow from one granular body 7A. Good.
  • Each of the plurality of CNTs 10 may be a single-walled carbon nanotube or a multi-walled carbon nanotube, and is preferably a multi-walled carbon nanotube.
  • the plurality of CNTs 10 may include only one of single-walled carbon nanotubes and multi-walled carbon nanotubes, or may include both single-walled carbon nanotubes and multi-walled carbon nanotubes.
  • the average outer diameter of the CNT 10 is, for example, 1 nm or more, preferably 5 nm or more, for example, 100 nm or less, preferably 50 nm or less, and more preferably 20 nm or less.
  • the average length (average axial direction dimension) of the CNT 10 is, for example, 1 ⁇ m or more, preferably 100 ⁇ m or more, more preferably 200 ⁇ m or more, for example, 1000 ⁇ m or less, preferably 500 ⁇ m or less, more preferably 400 ⁇ m or less.
  • the number of layers, average outer diameter, and average length of CNT10 are measured by well-known methods, such as a Raman spectroscopic analysis and electron microscope observation, for example.
  • Each of the plurality of CNTs 10 extends in the thickness direction of the substrate 1 so as to be substantially parallel to each other on the substrate 1. As a result, VACNTs 2 including a plurality of CNTs 10 grow on the substrate 1.
  • the plurality of CNTs 10 are oriented (orientated perpendicularly) to be orthogonal to the substrate 1, and the VACNTs 2 are oriented perpendicularly to the substrate 1.
  • VACNTs 2 disposed on the substrate 1 is prepared.
  • the VACNTs 2 has a substantially rectangular shape in plan view extending in a plane direction (vertical direction and horizontal direction) orthogonal to the thickness direction (vertical direction) of the substrate 1.
  • the VACNTs 2 includes a plurality of rows 2A in the horizontal direction in which a plurality of CNTs 10 are linearly arranged in the vertical direction.
  • the plurality of CNTs 10 are densely packed together in the plane direction (vertical direction and horizontal direction).
  • the bulk density of the plurality of CNTs 10 is, for example, 10 mg / cm 3 or more, preferably 20 mg / cm 3 or more, for example, 60 mg / cm 3 or less, preferably 50 mg / cm 3 or less.
  • the bulk density of the CNT 10 is, for example, the mass per unit area (weight per unit: mg / cm 2 ) and the length of the carbon nanotube (SEM (manufactured by JEOL Ltd.) or non-contact film thickness meter (manufactured by Keyence Corporation). (Measured by).
  • the CNT web 3 is pulled out from the VACNTs 2 (drawing step).
  • the CNTs 10 located at one end in the longitudinal direction of each row 2A of the VACNTs 2 are collectively held by a drawing tool (not shown), and the substrate 1 It is pulled along the direction that intersects (intersects) the thickness direction, preferably the longitudinal direction.
  • the pulled CNT 10 is pulled out from the corresponding granular material 7A as shown in FIG. 1D.
  • one end (lower end) of the CNT 10 that is vertically adjacent to the CNT 10 to be pulled out is attached to one end (lower end) of the CNT 10 to be pulled out due to frictional force and van der Waals force with the CNT 10 to be pulled out.
  • the CNT 10 with the CNT 10 attached to one end (lower end) is tilted so that the other end (upper end) of the CNT 10 is directed upstream in the extraction direction by pulling one end (lower end) downstream in the extraction direction. , And adheres to the other end (upper end) of the adjacent CNT 10.
  • CNT single yarns 8 carbon nanotube single yarns 8 in which the plurality of CNTs 10 are continuously connected in a straight line.
  • the continuous CNTs 10 have one end (lower end) or the other end (upper end) of the CNTs 10 attached to each other, and are oriented along the extending direction of the CNT single yarn 8. Yes.
  • FIG. 1D for convenience, it is described that the CNTs 10 are continuously connected one by one to form the CNT single yarn 8, but in reality, a bundle of a plurality of CNTs 10 is continuously formed. They are connected to form a CNT single yarn 8.
  • Such a CNT single yarn 8 is a non-twisted yarn that is not twisted, and the twist angle is approximately 0 °.
  • the outer diameter of the CNT single yarn 8 is, for example, 5 nm or more, preferably 8 nm or more, for example, 100 nm or less, preferably 80 nm or less, and more preferably 50 nm or less.
  • such CNT single yarn 8 intersects (intersects) the extending direction of the CNT single yarn 8 because the CNTs 10 of each row 2A are simultaneously and parallelly drawn out.
  • a plurality are arranged in parallel in the direction.
  • the plurality of CNT single yarns 8 extend in the longitudinal direction and are arranged in parallel in the lateral direction.
  • the plurality of CNT single yarns 8 arranged in parallel have a substantially sheet shape and are formed as the CNT web 3. That is, the CNT web 3 is drawn out such that a plurality of CNT single yarns 8 are arranged in parallel.
  • the lateral dimension of the CNT web 3 is, for example, 0.5 mm or more, preferably 1 cm or more, for example, 500 cm or less, preferably 100 cm or less.
  • a plurality of CNT webs 3 are stacked to form a CNT stack 4 (stacking step).
  • a roller 20 is prepared.
  • the roller 20 has a cylindrical shape extending in the lateral direction, and is rotatable about an axis line as a rotation center. Further, a resin film is preferably provided on the peripheral surface of the roller 20.
  • the outer diameter of the roller 20 is, for example, 1 cm or more, preferably 3 cm or more, for example, 500 cm or less, preferably 100 cm or less.
  • the horizontal dimension (axial direction) of the roller 20 is, for example, 3 cm or more, preferably 5 cm or more, for example, 500 cm or less, preferably 100 cm or less.
  • the CNT web 3 is continuously drawn out from one VACNTs 2, wound around the circumferential surface of the roller 20, and laminated in the radial direction of the roller 20.
  • the moving speed of the drawn CNT web 3 is, for example, 0.01 m / min or more, preferably 0.1 m / min or more, for example, 200 m / min or less, preferably 100 m / min or less.
  • the plurality of CNT single yarns 8 extend along the circumferential direction of the roller 20, as shown in FIG. 3A. That is, a plurality of CNT webs 3 are stacked so that the extending directions of the plurality of CNT single yarns 8 are along each other.
  • the number of windings (the number of layers) of the CNT web 3 is, for example, 5 times or more, preferably 10 times or more, more preferably 50 times or more, particularly preferably 100 times or more, for example, 2000 times or less, preferably 500 times or less, more preferably 300 times or less, particularly preferably 150 times or less.
  • a plurality of CNT webs 3 are laminated to form a CNT laminate 4.
  • the CNT laminate 4 wound around the roller 20 is cut and developed in the axial direction of the roller 20 with a cutting blade (for example, a razor, a cutter blade, etc.) and separated from the roller 20 as it is.
  • a cutting blade for example, a razor, a cutter blade, etc.
  • it can be used for production of the carbon nanotube twisted yarn 100 (described later), it is preferably subjected to a densification treatment (density increasing step) from the viewpoint of improving the performance of the carbon nanotube twisted yarn 100 (described later).
  • Examples of the densification process include a method of supplying a volatile liquid to the CNT stack 4 and a method of pressurizing the CNT stack 4.
  • the carbon nanotube twisted-yarn manufacturing method of the present embodiment sequentially performs a step of supplying a volatile liquid to the CNT laminate 4 (liquid supply step) and a step of pressurizing the CNT laminate 4 (pressurization step). Contains. In addition, these processes are implemented before the twisting process mentioned later.
  • a volatile liquid is supplied by the sprayer 24 to the CNT stack 4 wound around the roller 20 while rotating the roller 20.
  • the sprayer 24 is a known sprayer, and is arranged with a space from the roller 20.
  • the sprayer 24 is configured to spray a volatile liquid onto the CNT stack 4 wound around the roller 20.
  • Examples of the volatile liquid include water and an organic solvent, and preferably an organic solvent.
  • Examples of the organic solvent include lower (C1-3) alcohols (for example, methanol, ethanol, propanol, etc.), ketones (for example, acetone), ethers (for example, diethyl ether, tetrahydrofuran, etc.), alkyl esters ( For example, ethyl acetate etc.), halogenated aliphatic hydrocarbons (eg chloroform, dichloromethane etc.), polar aprotics (eg N-methylpyrrolidone, dimethylformamide etc.) and the like.
  • C1-3 lower (C1-3) alcohols (for example, methanol, ethanol, propanol, etc.), ketones (for example, acetone), ethers (for example, diethyl ether, tetrahydrofuran, etc.), alkyl esters ( For example, ethyl acetate etc.), halogenated
  • volatile liquids lower alcohols are preferable, and ethanol is more preferable.
  • Such volatile liquids can be used alone or in combination of two or more.
  • fine particles can be dispersed, and a metal salt and / or a resin material can be dissolved.
  • the fine particles are particles having an average primary particle diameter of, for example, 0.001 ⁇ m or more, preferably 0.01 ⁇ m or more, for example, 100 ⁇ m or less, preferably 50 ⁇ m or less.
  • the fine particles include organic fine particles and inorganic fine particles.
  • organic fine particles examples include silicone fine particles and acrylic fine particles.
  • inorganic fine particles include carbon fine particles and metal fine particles (for example, aluminum, titanium, chromium, iron, cobalt, nickel, copper, zinc, silver, tin, platinum, gold, rhodium, palladium, and alloys containing them). Etc.
  • fine particles inorganic fine particles are preferable, and carbon fine particles are more preferable.
  • Such fine particles can be used alone or in combination of two or more.
  • metal salt examples include the above-mentioned metal nitrates, sulfates, chlorides, hydroxides, and the like, preferably nitrates, and more preferably cobalt nitrate (Co (NO 3 ) 2 ). Such metal salts can be used alone or in combination of two or more.
  • the resin material examples include thermoplastic resins (for example, polyester resins, polycarbonate resins, and fluororesins), thermosetting resins (for example, silicone resins, epoxy resins, and urethane resins).
  • thermoplastic resins for example, polyester resins, polycarbonate resins, and fluororesins
  • thermosetting resins for example, silicone resins, epoxy resins, and urethane resins
  • a conductive polymer such as polyaniline or polypyrrole can also be used as the resin material.
  • the fine particles can be dispersed in the volatile liquid, and the metal salt and / or the resin material can be dissolved.
  • a volatile liquid uniformly adheres to the CNT laminate 4 on the roller 20. Further, in the CNT laminate 4, when particles are dispersed in a volatile liquid, fine particles are attached, and when a metal salt and / or a resin material is dissolved in the volatile liquid, the metal salt and / or Or a resin material adheres.
  • the stacked CNT webs 3 are densely packed together in the stacking direction (the radial direction of the roller 20), and in each CNT single yarn 8, a plurality of CNTs 10 are densely packed together. Therefore, the density of the CNT laminate 4 is improved.
  • the laminate 4 supplied with the liquid is pressurized by the pressure roller 21.
  • the pressure roller 21 has a substantially cylindrical shape extending along the roller 20 and is rotatable around the axis.
  • the pressure roller 21 is disposed at a distance from the sprayer 24 on the downstream side in the rotation direction of the roller 20, and the roller 20 is sandwiched between the roller 20 and the CNT stack 4. On the other hand, they are arranged facing each other in the radial direction. Further, the pressure roller 21 is movable along the radial direction of the roller 20.
  • the outer diameter of the pressure roller 21 is smaller than the outer diameter of the roller 20, for example, 1 cm or more, preferably 3 cm or more, for example, 100 cm or less, preferably 50 cm or less.
  • the dimension in the axial direction of the pressure roller 21 is longer than the dimension in the axial direction of the roller 20, for example, 3 cm or more, preferably 5 cm or more, for example, 500 cm or less, preferably 100 cm or less.
  • the pressure roller 21 is driven to rotate as the roller 20 rotates.
  • the CNT laminate 4 supplied with the liquid reaches between the roller 20 and the pressure roller 21 as the roller 20 rotates.
  • the pressure roller 21 presses the CNT stack 4 in the radial direction of the roller 20 (that is, the stacking direction of the CNT stack 4).
  • the pressure of the pressure roller 21 against the CNT laminate 4 is, for example, 10 kg / cm 2 or more, preferably 100 kg / cm 2 or more, for example, 1000 kg / cm 2 or less, preferably 500 kg / cm 2 or less.
  • a volatile liquid is supplied to the CNT laminate 4 wound around the roller 20 over the entire circumferential direction of the roller 20 and pressure is applied to complete the densification process of the CNT laminate 4. . Thereafter, the CNT laminate 4 is dried as necessary.
  • the CNT laminate 4 is composed of a plurality of CNT webs 3 laminated in the thickness direction, and preferably has a flat belt shape. That is, the thickness direction of the CNT stack 4 is the same as the stacking direction of the plurality of CNT webs 3. Moreover, the longitudinal direction of the CNT laminate 4 is along the direction in which the CNT single yarn 8 extends in each CNT web 3, and the longitudinal direction of the CNT laminate 4 and the direction in which the CNT single yarn 8 extend are the same direction. Moreover, the width direction of the CNT laminate 4 is an orthogonal direction orthogonal to both the lamination direction of the plurality of CNT webs 3 and the direction in which the CNT single yarn 8 extends.
  • the number of laminated CNT webs 3 is, for example, 5 layers or more, preferably 10 layers or more, more preferably 50 layers or more, particularly preferably 100 layers or more, for example, 2000 layers or less, preferably Is 400 layers or less, more preferably 300 layers or less, and particularly preferably 150 layers or less.
  • the number of stacked CNT webs 3 is equal to or greater than the above lower limit, the improvement in the handleability of the CNT laminate 4 can be ensured, and if the number of stacked CNT webs 3 is equal to or less than the above upper limit, the carbon nanotube twisted yarn 100 It is possible to reliably improve the density (described later).
  • the thickness L1 (stacking direction of the CNT web 3) of the CNT laminate 4 is, for example, 0.5 ⁇ m or more, preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, for example, 100 ⁇ m or less, preferably 50 ⁇ m or less, and more preferably. Is 30 ⁇ m or less, particularly preferably 10 ⁇ m or less.
  • the CNT laminate 4 is cut as necessary so that the dimension L2 in the width direction is within a predetermined range.
  • the CNT laminate 4 is cut into a plurality along the direction in which the CNT single yarn 8 extends (longitudinal direction of the CNT laminate 4) by the cutting blade.
  • the dimension L2 in the width direction of the CNT laminate 4 is, for example, 0.05 cm or more, preferably 0.1 cm or more, more preferably 0.5 cm or more, for example, 10 cm or less, preferably 5 cm or less, more preferably 1 cm or less.
  • the thickness L1) of the body 4 is, for example, 5 or more, preferably 10 or more, more preferably 100 or more, particularly preferably 4000 or more, particularly preferably 5000 or more, for example 10 5 or less, preferably 50000.
  • it is more preferably 40000 or less, and particularly preferably 30000 or less.
  • the ratio of the dimension L2 in the width direction of the CNT laminate 4 to the thickness L1 of the CNT laminate 4 is not less than the above lower limit, the handling property of the CNT laminate 4 can be improved, and the thickness L1 of the CNT laminate 4 can be improved. If the ratio of the dimension L2 in the width direction of the CNT laminate 4 to the upper limit is not more than the above upper limit, the density of the carbon nanotube twisted yarn 100 (described later) formed by twisting the CNT laminate 4 can be improved.
  • the CNT laminate 4 is twisted to produce a carbon nanotube twisted yarn 100 (hereinafter referred to as CNT twisted yarn 100) (twisting step).
  • both ends of the CNT laminate 4 in the longitudinal direction are gripped.
  • the other end portion of the CNT stack 4 fixed the one end portion of the CNT stack 4 is centered on a virtual line along the longitudinal direction of the CNT stack 4. Rotate.
  • the rotational speed of the one side end portion of the CNT laminate 4 is, for example, 10 rpm or more, preferably 50 rpm or more, for example, 1000 rpm or less, preferably 100 rpm or less.
  • the rotation time of the one side edge part of the CNT laminated body 4 is 0.2 minutes or more, for example, Preferably, it is 0.5 minutes or more, for example, 100 minutes or less, Preferably, it is 10 minutes or less.
  • the CNT laminate 4 is twisted, and a plurality of CNT single yarns 8 included in the CNT laminate 4 are twisted together to produce the CNT twisted yarn 100. That is, the CNT twisted yarn 100 is formed by twisting a CNT laminate 4 in which a plurality of CNT webs 3 each having a plurality of CNT single yarns 8 arranged in parallel are twisted so that the plurality of CNT single yarns 8 are twisted together. It becomes.
  • both ends in the longitudinal direction of the gripped CNT twisted yarn 100 are cut and removed.
  • the number of twists of the CNT twisted yarn 100 is, for example, 100 T / m or more, preferably 500 T / m or more, for example, 10000 T / m or less, preferably 5000 T / m or less.
  • the outer diameter of the CNT twisted yarn 100 is, for example, 30 ⁇ m or more, preferably 80 ⁇ m or more, more preferably 100 ⁇ m or more, for example, 1000 ⁇ m or less, preferably 200 ⁇ m or less.
  • the bulk density of the CNT twisted yarn 100 is, for example, 0.2 g / cm 3 or more, preferably 0.6 g / cm 3 or more, more preferably 1.0 g / cm 3 or more, for example, 1.7 g / cm 3 or less. Preferably, it is 1.5 g / cm 3 or less, more preferably 1.4 g / cm 3 or less.
  • the tensile strength of the CNT twisted yarn 100 is, for example, 0.3 GPa or more, preferably 0.5 GPa or more, more preferably 0.8 GPa or more, particularly preferably 1.0 GPa or more, for example, 3.0 GPa or less, preferably 2.0 GPa or less.
  • tensile strength is measured by the method as described in the Example mentioned later.
  • the electrical resistivity of the CNT twisted yarn 100 is, for example, 0.1 m ⁇ ⁇ cm or more, preferably 0.3 m ⁇ ⁇ cm or more, for example, 5.0 m ⁇ ⁇ cm or less, preferably 3. It is 0 m ⁇ ⁇ cm or less, more preferably 2.0 m ⁇ ⁇ cm or less, and particularly preferably 1.0 m ⁇ ⁇ cm or less.
  • an electrical resistivity is measured by the method as described in the Example mentioned later.
  • Such a CNT twisted yarn 100 is used for various industrial products such as a woven fabric (sheet) using carbon fiber and a conductive wire of an electric device (for example, a motor, a transformer, a sensor, etc.).
  • a woven fabric sheet
  • a conductive wire of an electric device for example, a motor, a transformer, a sensor, etc.
  • the method for manufacturing the CNT twisted yarn 100 is continuously performed by the twisted yarn manufacturing apparatus 30 as shown in FIGS. 2 to 4C, for example.
  • the twisted yarn manufacturing apparatus 30 includes a supply unit 31 (see FIG. 2), a stacking unit 32 (see FIG. 3A), and a twisting unit 33 (see FIG. 4A).
  • a supply unit 31 see FIG. 2
  • a stacking unit 32 see FIG. 3A
  • a twisting unit 33 see FIG. 4A.
  • members similar to those described above are denoted by the same reference numerals, and description thereof is omitted.
  • the supply unit 31 is configured to supply the CNT web 3 to the lamination unit 32.
  • the supply unit 31 includes VACNTs 2 disposed on the substrate 1 and a drawing tool (not shown).
  • the stacking unit 32 includes a roller 20, a sprayer 24, a pressure roller 21, and a cutting blade (not shown).
  • the roller 20 is arranged at an interval on one side in the vertical direction with respect to the VACNTs 2.
  • the sprayer 24 is arranged at an interval on one side in the longitudinal direction with respect to the roller 20.
  • the pressure roller 21 faces the roller 20 from the diagonally lower side on the other side in the longitudinal direction with respect to the roller 20.
  • the twisting portion 33 includes a first sandwiching portion 34 and a second sandwiching portion 35 that are opposed to each other with a space therebetween.
  • the first clamping unit 34 includes two first plates 36. Each of the two first plates 36 has a substantially flat plate shape. The two first plates 36 are arranged so as to face each other in the thickness direction thereof. Further, the first clamping unit 34 is rotatable around a virtual line along the facing direction of the first clamping unit 34 and the second clamping unit 35 as a rotation center.
  • the second clamping unit 35 includes two second plates 37.
  • Each of the two second plates 37 has a substantially flat plate shape.
  • the two second plates 37 are arranged so as to face each other in the thickness direction thereof.
  • a drawing tool pulls out the CNTs 10 in each row 2A of the VACNTs 2 simultaneously and in parallel toward one side in the longitudinal direction.
  • the substantially sheet-shaped CNT web 3 in which the plurality of CNT single yarns 8 are arranged in parallel in the horizontal direction is drawn out from the VACNTs 2.
  • the tip of the CNT web 3 is fixed to the peripheral surface of the roller 20, and the roller 20 is rotated clockwise as viewed from the other side in the lateral direction.
  • the pressure roller 21 is retracted to the outer side in the radial direction of the roller 20 so as to be separated from the roller 20, and is disposed with a gap in the radial direction with respect to the roller 20.
  • the CNT web 3 is continuously drawn out from the VACNTs 2 and wound around the peripheral surface of the roller 20 a plurality of times to form the CNT stack 4.
  • the moving speed of the CNT web 3 due to the rotation of the roller 20 is, for example, 0.1 m / min or more, preferably 5 m / min or more, for example, 100 m / min or less, preferably 10 m / min or less.
  • the volatile liquid is sprayed onto the CNT stack 4 by the sprayer 24, and the pressure roller 21 is moved inward in the radial direction of the roller 20 to stack the CNTs.
  • the body 4 is sandwiched between the roller 20 and the CNT stack 4 is pressurized.
  • the CNT stack 4 wound around the roller 20 is cut along the axial direction of the roller 20 by a cutting blade (not shown) and separated from the roller 20.
  • a flat-band CNT stack 4 is formed.
  • the flat strip-shaped CNT stack 4 is cut along the longitudinal direction of the CNT stack 4 by a cutting blade (not shown) so that the dimension L2 in the width direction becomes a predetermined value. .
  • the two first plates 36 of the first sandwiching section 34 sandwich the one end of the cut CNT stack 4, and the other end of the CNT stack 4. Are sandwiched between the two second plates 37 of the second clamping part 35. And the 1st clamping part 34 rotates in the counterclockwise direction seeing from the longitudinal direction one side centering
  • the CNT laminate 4 is twisted so that the plurality of CNT single yarns 8 are twisted together.
  • the range of the rotational speed (circumferential speed) of the first clamping unit 34 is the same as the range of the rotational speed of the one end portion of the CNT stack 4 described above.
  • the CNT twisted yarn 100 is manufactured by the twisted yarn manufacturing apparatus 30.
  • the CNT twisted yarn 100 is manufactured by twisting a CNT laminate 4 in which a plurality of CNT webs 3 are laminated as shown in FIGS. 4A to 4C. Therefore, compared with the case where the CNT twisted yarn 100 is manufactured by twisting one CNT web 3, the density of the CNT twisted yarn 100 can be improved. As a result, the performance of the CNT twisted yarn 100 such as mechanical strength, thermal conductivity, and electrical conductivity can be improved.
  • a plurality of CNT webs 3 are wound around the circumferential surface of the roller 20 to be laminated in the radial direction of the roller 20 to form a CNT laminate 4. Then, the CNT laminate 4 can be detached from the roller 20 by cutting the wound CNT laminate 4 in the axial direction of the roller 20. Therefore, although it is a simple method, the CNT laminated body 4 can be formed smoothly and, as a result, the production efficiency of the CNT twisted yarn 100 can be improved.
  • the dimension L2 in the width direction of the CNT laminate 4 with respect to the thickness L1 of the CNT laminate 4 is 4000 or more. Therefore, the handleability of the CNT laminate 4 can be improved, and the CNT laminate 4 can be easily twisted.
  • the dimension L2 in the width direction of the CNT laminate 4 with respect to the thickness L1 of the CNT laminate 4 is 50000 or less. Therefore, the density of the CNT twisted yarn 100 formed by twisting the CNT laminate 4 can be improved.
  • the number of stacked CNT webs 3 is 50 or more. Therefore, the handling property of the CNT laminate 4 can be reliably improved, and the CNT laminate 4 can be easily twisted.
  • the number of stacked CNT webs 3 is 400 or less. Therefore, it is possible to reliably improve the density of the CNT twisted yarn 100 formed by twisting the CNT laminate 4.
  • a volatile liquid is supplied to the CNT stack 4. Therefore, when the volatile liquid is vaporized, the plurality of CNT webs 3 stacked in the CNT stack 4 are densely packed in the stacking direction, and the plurality of CNTs 10 are densely packed in each CNT web 3. As a result, the density of the CNT laminate 4 can be improved, and as a result, the density of the CNT twisted yarn 100 can be reliably improved.
  • fine particles are dispersed in a volatile liquid, or a metal salt and / or a resin material is dissolved. Therefore, when a liquid is supplied to the CNT stack 4, fine particles, metal salts, and resin materials can be attached to the plurality of CNTs 10. As a result, the properties of fine particles, metal salt and / or resin material can be imparted to the CNT twisted yarn 100 formed from the CNT laminate 4.
  • the CNT stack 4 is pressed in the stacking direction as shown in FIG. 3A. Therefore, the density of the CNT laminate 4 can be further improved, and as a result, the density of the CNT twisted yarn 100 can be improved more reliably.
  • the CNT twisted yarn 100 is obtained by twisting the CNT laminate 4 in which a plurality of CNT webs 3 are laminated. Therefore, the density of the CNT twisted yarn 100 can be improved.
  • the bulk density of the CNT twisted yarn 100 is 0.6 g / cm 3 or more, it is possible to improve the mechanical strength, thermal conductivity, electrical conductivity and the like of the CNT twisted yarn 100. Moreover, since the bulk density of the CNT twisted yarn 100 is 1.7 g / cm 3 or less, the CNT twisted yarn 100 can be produced smoothly by the above method.
  • a plurality of CNT webs 3 are wound around the circumferential surface of the roller 20 and stacked, but the present invention is not limited to this, and as shown in FIGS. 5A and 5B, a plurality of CNT webs 3 are prepared. These CNT webs 3 may be laminated in the thickness direction to form the CNT laminate 4. In this case, the CNT stack 4 is pressed in the stacking direction by passing between a pair of pressure rollers 40 facing each other.
  • a volatile liquid is supplied to the CNT laminate 4 wound around the roller 20, but the CNT laminate 4 is not limited thereto.
  • the CNT laminate 4 may be sprayed with a volatile liquid, or the CNT laminate 4 may be immersed in the volatile liquid.
  • fine particles may be dispersed or a metal salt and / or a resin material may be dissolved in the same manner as described above.
  • the CNT laminate 4 wound around the roller 20 is pressurized as the pressurizing step of the densification treatment.
  • the present invention is not limited to this, and the CNT laminate 4 is removed from the roller 20. You may pressurize after making it detach
  • the CNT laminate 4 is pressurized after the volatile liquid is supplied to the CNT laminate 4, but is not limited thereto.
  • a volatile liquid may be supplied to the body 4.
  • the manufacturing method of the CNT twisted yarn 100 may include only one of supply of volatile liquid (liquid supply process) and pressurization (pressurization process) to the CNT laminate 4 as the densification process.
  • the densification process may not be included.
  • the manufacturing method of the CNT twisted yarn 100 includes only one of the supply of volatile liquid (liquid supply process) and pressurization (pressurization process) to the CNT laminate 4 as the densification treatment.
  • the laminated portion 32 of the twisted yarn manufacturing apparatus 30 includes either the sprayer 24 or the pressure roller 21.
  • the twisted yarn manufacturing apparatus 30 may not include the sprayer 24 and the pressure roller 21.
  • liquid supply process and the pressurization process are performed after the winding of the CNT laminate 4 around the roller 20 is completed, but the present invention is not limited to this.
  • a volatile liquid may be supplied.
  • the CNT web 3 supplied with the volatile liquid is sequentially wound around the peripheral surface of the roller 20 and laminated. That is, the lamination process and the liquid supply process are performed simultaneously. Also by this, a volatile liquid can be supplied to the CNT stack 4.
  • the pressure may be applied.
  • the CNT web 3 is sequentially wound around the peripheral surface of the roller 20 and pressurized when stacked. That is, the lamination process and the pressurization process are performed simultaneously. This also makes it possible to pressurize the CNT stack 4 in the stacking direction.
  • Example 1 After a silicon dioxide film was laminated on the surface of a stainless steel substrate (stainless steel substrate), iron was deposited as a catalyst layer on the silicon dioxide film.
  • the substrate was heated to a predetermined temperature, and a source gas (acetylene gas) was supplied to the catalyst layer.
  • a source gas acetylene gas
  • a plurality of CNTs extend so as to be substantially parallel to each other, and are aligned (vertically aligned) so as to be orthogonal to the substrate.
  • CNT was a multi-walled carbon nanotube, the average outer diameter of CNT was 10 nm, the average length of CNT was about 300 ⁇ m, and the bulk density of VACNTs was 50 mg / cm 3 .
  • VACNTs a plurality of CNTs arranged at the front end portion were collectively held over the entire width by the drawing tool and pulled to the front side.
  • a CNT web composed of a plurality of CNT single yarns was drawn out from VACNTs.
  • the tip of the CNT web (downstream end in the drawing direction) was fixed to the peripheral surface of a roller having a diameter of 60 mm, and the roller was rotated at 30 rpm for 7 minutes.
  • the CNT web was continuously drawn from the VACNTs, and was wound 210 times around the circumferential surface of the roller.
  • the wound CNT web was cut in the axial direction of the roller, developed, and separated from the roller.
  • a CNT laminate (stacking number: 210) in which a plurality of CNT webs were laminated was obtained.
  • the length (longitudinal direction length) of the CNT laminated body was 190 mm.
  • the dense CNT laminate was 10 ⁇ m thick, and the dense CNT laminate was 0.52 g / cm 3 .
  • the densely packed CNT laminate was cut into a width of 5 mm along the direction in which the CNT single yarn extends. That is, the cut CNT laminate had a ratio of the dimension in the width direction to the thickness (width dimension / thickness) of 5000.
  • the cut CNT laminate was twisted so as to be less than 10,000 T / m. Thereby, a CNT twisted yarn was obtained.
  • the diameter of the CNT twisted yarn was 140 ⁇ m, and the bulk density of the CNT twisted yarn was 1.62 g / cm 3 .
  • Table 1 shows the configurations (number of layers, dimensions, bulk density, etc.) of CNT laminates and CNT twisted yarns in Examples 1 to 14 and Comparative Examples 1 and 2 and the presence or absence of densification treatment.
  • FIGS. 6A and 6B SEM photographs of the CNT twisted yarn of Example 1 are shown in FIGS. 6A and 6B, and SEM photographs of the CNT twisted yarn of Comparative Example 1 are shown in FIGS. 7A and 7B.
  • Example 2 A CNT laminate and a CNT twisted yarn were obtained in the same manner as in Example 1 except that 100 turns of the CNT web were wound around the peripheral surface of the roller and ethanol was not sprayed on the CNT laminate.
  • Example 3 In the same manner as in Example 1, after winding the CNT web 100 times around the peripheral surface of the roller, ethanol was sprayed onto the CNT web wound around the roller. Thereafter, the CNT web was densely dried at 60 ° C.
  • Example 2 the CNT web was separated from the roller to obtain a CNT laminate (number of layers: 100). And the CNT twisted yarn was prepared from the CNT laminated body.
  • Example 4 In the same manner as in Example 3, a CNT laminate (stacking number: 100) was obtained. Thereafter, the CNT laminate was immersed in an ethanol solution of 0.5 mol / L cobalt nitrate for 60 seconds. Then, the CNT laminate, CO (NO 3) pulled from 2 ethanol solution and dried at 60 ° C..
  • Example 5 In the same manner as in Example 1, after winding the CNT web 100 times around the peripheral surface of the roller, the CNT web wound around the roller was sandwiched between a roller and a pressure roller (diameter 20 mm), and the roller was rotated to obtain 10 kg. Pressurization was performed at a pressure of / cm 2 .
  • Example 2 the CNT web was separated from the roller to obtain a CNT laminate (number of layers: 100). And the CNT twisted yarn was prepared from the CNT laminated body.
  • Example 6 A CNT laminate and a CNT twisted yarn were obtained in the same manner as in Example 5 except that the CNT web was wound around the peripheral surface of the roller 200 times.
  • Example 7 In the same manner as in Example 3, ethanol was sprayed onto the CNT web wound around the roller. Next, in the same manner as in Example 5, the CNT web wound around the roller was pressurized at a pressure of 10 kg / cm 2 . Then, it was dried at 60 ° C.
  • Example 2 the CNT web was separated from the roller to obtain a CNT laminate (number of layers: 100). And the CNT twisted yarn was prepared from the CNT laminated body.
  • Example 8 A CNT laminate and a CNT twisted yarn were obtained in the same manner as in Example 7 except that the CNT web was wound 50 times around the peripheral surface of the roller.
  • Example 9 A CNT laminate and a CNT twisted yarn were obtained in the same manner as in Example 7 except that the CNT web was wound around the peripheral surface of the roller 200 times.
  • Example 10 A CNT laminate and a CNT twisted yarn were obtained in the same manner as in Example 7 except that the CNT web was wound around the peripheral surface of the roller 400 times.
  • Example 11 A CNT laminate and CNT twisted yarn were obtained in the same manner as in Example 7 except that the CNT web was wound 10 times around the peripheral surface of the roller.
  • Example 12 A CNT laminate and a CNT twisted yarn were obtained in the same manner as in Example 7 except that the CNT web was wound around the peripheral surface of the roller 500 times.
  • Example 1 In the same manner as in Example 1, VACNTs having a substantially rectangular shape in plan view were formed, and a CNT web composed of a plurality of CNT single yarns was drawn from the VACNTs.
  • the CNT web was continuously drawn from the VACNTs and twisted to 1000 T / m. Thereby, a CNT twisted yarn was obtained. Thereafter, ethanol was sprayed onto the CNT twisted yarn and then dried at 60 ° C.
  • Example 2 In the same manner as in Example 1, VACNTs having a substantially rectangular shape in plan view were formed, and the VACNTs were separated from the substrate by a cutter. And the isolate
  • One end of the CNT twisted yarn was fixed, the other end of the CNT twisted yarn was fixed to a force gauge, and the load that was pulled up and broken at 0.2 mm / sec was defined as the breaking strength. Then, the tensile strength was calculated by dividing the breaking strength by the cross-sectional area of the CNT twisted yarn.
  • the method for producing a carbon nanotube twisted yarn of the present invention can be suitably used for producing a carbon nanotube twisted yarn used for various industrial products.
  • the carbon nanotube twisted yarn of the present invention can be suitably used for various industrial products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

カーボンナノチューブ撚糸の製造方法は、基板(1)上に配置され、前記基板(1)に対して垂直に配向される垂直配向カーボンナノチューブ(2)を準備する工程と、前記垂直配向カーボンナノチューブ(2)から、複数のカーボンナノチューブ単糸(8)が並列配置されるように引き出されてなるカーボンナノチューブウェブ(3)を引き出す工程と、前記カーボンナノチューブウェブ(3)を、前記複数のカーボンナノチューブ単糸(8)の延びる方向が互いに沿うように複数積層して、積層体(4)を形成する工程と、前記積層体(4)に撚りをかける工程と、を含む。

Description

カーボンナノチューブ撚糸の製造方法およびカーボンナノチューブ撚糸
 本発明は、カーボンナノチューブ撚糸の製造方法およびカーボンナノチューブ撚糸に関する。
 カーボンナノチューブは、優れた機械強度、熱伝導性および電気伝導性を有していることが知られている。そして、複数のカーボンナノチューブを糸状に形成し、カーボンナノチューブ糸として、各種産業製品の材料とすることが検討されている。
 このようなカーボンナノチューブ糸の製造方法として、例えば、基板上に成長させたナノチューブ・フォレストから、カーボンナノチューブが連続的につながるシート状のナノチューブシートを引き出し、そのナノチューブシートに撚りをかける、ナノファイバーの撚り糸の製造方法が提案されている(例えば、特許文献1参照)。
特表2008-523254号公報
 しかし、特許文献1に記載のナノファイバーの撚り糸の製造方法では、ナノファイバーの撚り糸の密度の向上を図るには限度がある。そのため、そのようなナノファイバーの撚り糸では、用途に応じた機械強度、熱伝導性および電気伝導性などを十分に確保できない場合がある。
 そこで、本発明の目的は、密度の向上を図ることができるカーボンナノチューブ撚糸の製造方法およびカーボンナノチューブ撚糸を提供することにある。
 本発明[1]は、基板上に配置され、前記基板に対して垂直に配向される垂直配向カーボンナノチューブを準備する工程と、前記垂直配向カーボンナノチューブから、複数のカーボンナノチューブ単糸が並列配置されるように引き出されてなるカーボンナノチューブウェブを引き出す工程と、前記カーボンナノチューブウェブを、前記複数のカーボンナノチューブ単糸の延びる方向が互いに沿うように複数積層して、積層体を形成する工程と、前記積層体に撚りをかける工程と、を含む、カーボンナノチューブ撚糸の製造方法を含んでいる。
 このような方法によれば、カーボンナノチューブ撚糸が、カーボンナノチューブウェブが複数積層されてなる積層体に撚りをかけることにより製造されるので、1枚のカーボンナノチューブウェブに撚りをかけて製造される場合と比較して、カーボンナノチューブ撚糸の密度の向上を図ることができる。そのため、カーボンナノチューブ撚糸の機械強度、熱伝導性および電気伝導性などの性能の向上を図ることができる。
 本発明[2]は、前記カーボンナノチューブウェブを積層する工程において、前記カーボンナノチューブウェブをローラの周面に複数周巻き付け、巻き付けた前記カーボンナノチューブウェブを前記ローラの軸線方向に切断して、前記積層体を前記ローラから離脱させる、上記[1]に記載のカーボンナノチューブ撚糸の製造方法を含んでいる。
 このような方法によれば、カーボンナノチューブウェブをローラの周面に複数周巻き付けることにより、カーボンナノチューブウェブをローラの径方向に円滑に複数積層させることができる。そして、巻き付けたカーボンナノチューブウェブをローラの軸線方向に切断することにより、積層体をローラから離脱させることができる。そのため、簡易な方法でありながら、積層体を円滑に形成することができ、ひいては、カーボンナノチューブ撚糸の生産効率の向上を図ることができる。
 本発明[3]は、前記積層体に撚りをかける工程の前に、前記積層体に揮発性の液体を供給する工程をさらに含む、上記[1]または[2]に記載のカーボンナノチューブ撚糸の製造方法を含んでいる。
 このような方法によれば、積層体に揮発性の液体が供給された後、揮発性の液体が気化することにより、積層される複数のカーボンナノチューブウェブが積層方向に互いに密集するとともに、各カーボンナノチューブウェブにおいて、複数のカーボンナノチューブが互いに密集する。そのため、積層体の密度の向上を図ることができる。
 本発明[4]は、前記液体には、微粒子が分散されているか、金属塩および/または樹脂材料が溶解されている、上記[3]に記載のカーボンナノチューブ撚糸の製造方法を含んでいる。
 このような方法によれば、液体に、微粒子が分散されているか、金属塩および/または樹脂材料が溶解されているので、積層体に液体を供給したときに、複数のカーボンナノチューブに微粒子や、金属塩、樹脂材料を付着させることができる。そのため、積層体から形成されるカーボンナノチューブ撚糸に、微粒子、金属塩および/または樹脂材料の特性を付与することができる。
 本発明[5]は、前記積層体に撚りをかける工程の前に、前記積層体を前記カーボンナノチューブウェブの積層方向に加圧する工程をさらに含む、上記[1]~[4]のいずれか一項に記載のカーボンナノチューブ撚糸の製造方法を含んでいる。
 このような方法によれば、積層体を積層方向に加圧するので、積層体の密度のさらなる向上を図ることができる。
 本発明[6]は、複数のカーボンナノチューブ単糸が並列配置されてなるカーボンナノチューブウェブが複数積層されている積層体に撚りかけてなる、カーボンナノチューブ撚糸を含んでいる。
 このような構成によれば、カーボンナノチューブ撚糸が、カーボンナノチューブウェブが複数積層されてなる積層体に撚りをかけてなるので、カーボンナノチューブ撚糸の密度の向上を確実に図ることができる。
 本発明のカーボンナノチューブ撚糸の製造方法では、カーボンナノチューブ撚糸の密度の向上を図ることができる。
 本発明のカーボンナノチューブ撚糸は、密度の向上が図られているので、機械強度、熱伝導性および電気伝導性などの性能の向上を図ることができる。
図1Aは、本発明のカーボンナノチューブ撚糸(CNT撚糸)の製造工程の一実施形態を説明するための説明図であって、基板上に触媒層を形成する工程を示す。図1Bは、図1Aに続いて、基板を加熱して、触媒層を複数の粒状体に凝集させる工程を示す。図1Cは、図1Bに続いて、複数の粒状体に原料ガスを供給して、垂直配向カーボンナノチューブ(VACNTs)を成長させる工程を示す。図1Dは、図1Cに続いて、VACNTsからカーボンナノチューブウェブ(CNTウェブ)を引き出す工程を示す。 図2は、図1Dに続いて、引き出されたCNTウェブをローラ上において積層する工程を示す。 図3Aは、図2に続いて、CNTウェブを積層させることによって作製したCNT積層体に揮発性の液体を供給し、かつ、加圧する工程を示す。図3Bは、図3Aに続いて、CNT積層体を展開して、ローラから離脱させる工程を示す。図3Cは、図3Bに続いて、CNT積層体を裁断する工程を示す。 図4Aは、図3Cに続いて、CNT積層体の撚りかけが開始された状態を示す。図4Bは、図4Aも続いて、CNT積層体の撚りかけ途中の状態を示す。図4Cは、CNT積層体の撚りかけが完了した状態を示す。 図5Aは、本発明のカーボンナノチューブ撚糸の製造工程の他の実施形態(CNTウェブを1枚ずつ積層する態様)を説明するための説明図であって、複数のCNTウェブを積層させ、CNT積層体を作製する工程を示す。図5Bは、図5Aに続いて、CNT積層体を加圧する工程を示す。 図6Aは、実施例1のカーボンナノチューブ撚糸(CNT撚糸)の走査型電子顕微鏡(SEM)写真である。図6Bは、図6Aに示すCNT撚糸のSEM写真の拡大図である。 図7Aは、比較例1のCNT撚糸の走査型電子顕微鏡(SEM)写真である。図7Bは、図7Aに示すCNT撚糸のSEM写真の拡大図である。
 本発明のカーボンナノチューブ撚糸の製造方法の一実施形態は、複数のカーボンナノチューブウェブが積層される積層体に撚りをかけて、カーボンナノチューブ撚糸を製造するものである。
(第1実施形態)
 図1~図4を参照して、本発明のカーボンナノチューブ撚糸の製造方法の一実施形態について説明する。カーボンナノチューブ撚糸の製造方法の一実施形態は、例えば、図2~図4Cに示すように、基板1上に配置される垂直配向カーボンナノチューブ2(Vertically Aligned carbon nanotubes;以下、VACNTs2とする。)を準備する工程と、VACNTs2からカーボンナノチューブウェブ3(以下、CNTウェブ3とする。)を引き出す工程と、CNTウェブ3を複数積層して、積層体としてのCNT積層体4を形成する工程と、CNT積層体4に撚りをかける工程とを含んでいる。
 このような製造方法では、例えば、図1A~図1Dに示すように、化学気相成長法(CVD法)により、基板1上にVACNTs2を成長させて、基板1上に配置されるVACNTs2を準備する(準備工程)。
 詳しくは、図1Aに示すように、まず、基板1を準備する。基板1は、特に限定されず、例えば、CVD法に用いられる公知の基板が挙げられ、市販品を用いることができる。
 基板1として、例えば、シリコン基板や、二酸化ケイ素膜6が積層されるステンレス基板5などが挙げられ、好ましくは、二酸化ケイ素膜6が積層されるステンレス基板5が挙げられる。なお、図1A~図1Dおよび図2では、基板1が、二酸化ケイ素膜6が積層されるステンレス基板5である場合を示す。
 そして、図1Aに示すように、基板1上、好ましくは、二酸化ケイ素膜6上に触媒層7を形成する。基板1上に触媒層7を形成するには、金属触媒を、公知の成膜方法により、基板1(好ましくは、二酸化ケイ素膜6)上に成膜する。
 金属触媒として、例えば、鉄、コバルト、ニッケルなどが挙げられ、好ましくは、鉄が挙げられる。このような金属触媒は、単独使用または2種類以上併用することができる。成膜方法として、例えば、真空蒸着およびスパッタリングが挙げられ、好ましくは、真空蒸着が挙げられる。
 これによって、基板1上に触媒層7が配置される。なお、基板1が、二酸化ケイ素膜6が積層されるステンレス基板5である場合、二酸化ケイ素膜6および触媒層7は、例えば、特開2014-94856号公報に記載されるように、二酸化ケイ素前駆体溶液と金属触媒前駆体溶液とが混合される混合溶液を、ステンレス基板5に塗布した後、その混合液を相分離させ、次いで、乾燥することにより、同時に形成することもできる。
 次いで、触媒層7が配置される基板1を、図1Bに示すように、例えば、700℃以上900℃以下に加熱する。これにより、触媒層7が、凝集して、複数の粒状体7Aとなる。
 そして、加熱された基板1に、図1Cに示すように、原料ガスを供給する。原料ガスは、炭素数1~4の炭化水素ガス(低級炭化水素ガス)を含んでいる。炭素数1~4の炭化水素ガスとして、例えば、メタンガス、エタンガス、プロパンガス、ブタンガス、エチレンガス、アセチレンガスなどが挙げられ、好ましくは、アセチレンガスが挙げられる。
 また、原料ガスは、必要により、水素ガスや、不活性ガス(例えば、ヘリウム、アルゴンなど)、水蒸気などを含むこともできる。
 原料ガスの供給時間としては、例えば、1分以上、好ましくは、5分以上、例えば、60分以下、好ましくは、30分以下である。
 これによって、複数の粒状体7Aのそれぞれを起点として、複数のカーボンナノチューブ10(以下、CNT10とする。)が成長する。なお、図1Cでは、便宜上、1つの粒状体7Aから、1つのCNT10が成長するように記載されているが、これに限定されず、1つの粒状体7Aから、複数のCNT10が成長してもよい。
 複数のCNT10のそれぞれは、単層カーボンナノチューブおよび多層カーボンナノチューブのいずれであってもよく、好ましくは、多層カーボンナノチューブである。複数のCNT10は、単層カーボンナノチューブおよび多層カーボンナノチューブのいずれか1種のみを含んでいてもよく、単層カーボンナノチューブおよび多層カーボンナノチューブの両方を含んでいてもよい。
 CNT10の平均外径は、例えば、1nm以上、好ましくは、5nm以上、例えば、100nm以下、好ましくは、50nm以下、さらに好ましくは、20nm以下である。
 CNT10の平均長さ(平均軸線方向寸法)は、例えば、1μm以上、好ましくは、100μm以上、さらに好ましくは、200μm以上、例えば、1000μm以下、好ましくは、500μm以下、さらに好ましくは、400μm以下である。なお、CNT10の層数、平均外径および平均長さは、例えば、ラマン分光分析や、電子顕微鏡観察などの公知の方法により測定される。
 このような複数のCNT10のそれぞれは、基板1上において、互いに略平行となるように、基板1の厚み方向に延びている。これによって、複数のCNT10からなるVACNTs2が、基板1上に成長する。
 つまり、複数のCNT10は、基板1に対して直交するように配向(垂直に配向)されており、VACNTs2は、基板1に対して垂直に配向されている。
 以上によって、基板1上に配置されるVACNTs2が準備される。
 VACNTs2は、図2に示すように、基板1の厚み方向(上下方向)と直交する面方向(縦方向および横方向)に延びる平面視略矩形形状を有している。VACNTs2は、複数のCNT10が縦方向に直線的に並ぶ列2Aを、横方向に複数備えている。VACNTs2において、複数のCNT10は、面方向(縦方向および横方向)に互いに密集している。
 このようなVACNTs2において、複数のCNT10の嵩密度は、例えば、10mg/cm以上、好ましくは、20mg/cm以上、例えば、60mg/cm以下、好ましくは、50mg/cm以下である。なお、CNT10の嵩密度は、例えば、単位面積当たり質量(目付量:単位 mg/cm)と、カーボンナノチューブの長さ(SEM(日本電子社製)または非接触膜厚計(キーエンス社製)により測定)とから算出される。
 次いで、図1Dに示すように、CNTウェブ3をVACNTs2から引き出す(引出工程)。
 CNTウェブ3をVACNTs2から引き出すには、図2に示すように、VACNTs2のうち、各列2Aの縦方向一方側端部に位置するCNT10を、図示しない引出具により一括して保持し、基板1の厚み方向と交差する(交わる)方向、好ましくは、縦方向に沿って引っ張る。
 すると、引っ張られたCNT10は、図1Dに示すように、対応する粒状体7Aから引き抜かれる。このとき、引き抜かれるCNT10に縦方向に隣接するCNT10は、引き抜かれるCNT10との摩擦力およびファンデルワ―ルス力などにより、そのCNT10の一端(下端)が、引き抜かれるCNT10の一端(下端)に付着され、対応する粒状体7Aから引き抜かれる。
 このとき、一端(下端)にCNT10が付着されたCNT10は、その一端(下端)が引出方向の下流に引っ張られることにより、CNT10の他端(上端)が引出方向の上流に向かうように傾倒し、隣接するCNT10の他端(上端)に付着する。
 次いで、他端(上端)にCNT10が付着されたCNT10は、その他端(上端)が引出方向の下流に引っ張られることにより、その一端(下端)が対応する粒状体7Aから引き抜かれ、隣接するCNT10の一端(下端)に付着する。
 これによって、複数のCNT10が、順次連続して、VACNTs2から引き出され、複数のCNT10が直線状に連続的に繋がるカーボンナノチューブ単糸8(以下、CNT単糸8とする。)を形成する。
 より詳しくは、CNT単糸8において、連続するCNT10は、それらCNT10の一端(下端)同士または他端(上端)同士が付着されており、CNT単糸8の延びる方向に沿うように配向されている。なお、図1Dでは、便宜上、CNT10が1本ずつ連続的に繋がり、CNT単糸8を形成するように記載されているが、実際には、複数のCNT10からなる束(バンドル)が連続的に繋がり、CNT単糸8を形成している。
 このようなCNT単糸8は、撚り合わされていない無撚糸であって、撚り角度は、略0°である。CNT単糸8の外径は、例えば、5nm以上、好ましくは、8nm以上、例えば、100nm以下、好ましくは、80nm以下、さらに好ましくは、50nm以下である。
 このようなCNT単糸8は、図2の拡大図に示すように、各列2AのCNT10が、同時かつ平行に一括して引き出されるため、CNT単糸8の延びる方向と交差する(交わる)方向に複数並列配置されている。
 具体的には、複数のCNT単糸8は、縦方向に沿って延びており、横方向に並列配置されている。これによって、並列配置される複数のCNT単糸8は、略シート形状を有しており、CNTウェブ3として形成される。つまり、CNTウェブ3は、複数のCNT単糸8が並列配置されるように引き出されてなる。
 CNTウェブ3の横方向寸法は、例えば、0.5mm以上、好ましくは、1cm以上、例えば、500cm以下、好ましくは、100cm以下である。
 次いで、CNTウェブ3を複数積層してCNT積層体4を形成する(積層工程)。
 CNTウェブ3を複数積層するには、本実施形態では、図2に示すように、まず、ローラ20を準備する。
 ローラ20は、横方向に延びる円柱形状を有しており、軸線を回転中心として、回転可能である。また、ローラ20の周面には、好ましくは、樹脂フィルムが設けられている。
 ローラ20の外径は、例えば、1cm以上、好ましくは、3cm以上、例えば、500cm以下、好ましくは、100cm以下である。ローラ20の横方向(軸線方向)の寸法は、例えば、3cm以上、好ましくは、5cm以上、例えば、500cm以下、好ましくは、100cm以下である。
 次いで、CNTウェブ3の引出方向下流端部を、ローラ20の周面に固定して、ローラ20を回転させる。
 これにより、CNTウェブ3は、1つのVACNTs2から連続的に引き出されるとともに、ローラ20の周面に複数周巻き付けられ、ローラ20の径方向に複数積層される。
 引き出されるCNTウェブ3の移動速度は、例えば、0.01m/min以上、好ましくは、0.1m/min以上、例えば、200m/min以下、好ましくは、100m/min以下である。
 積層されるCNTウェブ3において、複数のCNT単糸8は、図3Aに示すように、ローラ20の周方向に沿うように延びている。つまり、CNTウェブ3は、複数のCNT単糸8の延びる方向が互いに沿うように、複数積層されている。
 CNTウェブ3の巻回数(積層数)は、例えば、5回以上、好ましくは、10回以上、さらに好ましくは、50回以上、とりわけ好ましくは、100回以上、例えば、2000回以下、好ましくは、500回以下、さらに好ましくは、300回以下、とりわけ好ましくは、150回以下である。
 以上によって、CNTウェブ3が複数積層されて、CNT積層体4が形成される。
 このように、ローラ20に巻き付けられたCNT積層体4は、切断刃(例えば、剃刀、カッター刃など)により、ローラ20の軸線方向に切断し展開して、ローラ20から離脱させることにより、そのままカーボンナノチューブ撚糸100(後述)の製造に使用することができるが、カーボンナノチューブ撚糸100(後述)の性能向上の観点から好ましくは、高密度化処理される(高密度化工程)。
 高密度化処理として、例えば、CNT積層体4に揮発性の液体を供給する方法や、CNT積層体4を加圧する方法が挙げられる。
 本実施形態では、ローラ20に対するCNT積層体4の巻き付けが完了した後、CNT積層体4が、ローラ20に巻き付けられた状態で、揮発性の液体が供給され、次いで、加圧される態様について詳述する。つまり、本実施形態のカーボンナノチューブ撚糸の製造方法は、CNT積層体4に揮発性の液体を供給する工程(液体供給工程)と、CNT積層体4を加圧する工程(加圧工程)とを順に含んでいる。なお、これら工程は、後述する撚掛工程よりも前に実施される。
 本実施形態の高密度化処理では、まず、ローラ20を回転させながら、ローラ20に巻き付けられたCNT積層体4に、噴霧器24により揮発性の液体を供給する。
 噴霧器24は、公知の噴霧器であって、ローラ20に対して間隔を空けて配置されている。噴霧器24は、ローラ20に巻き付けられたCNT積層体4に、揮発性の液体をスプレーするように構成されている。
 揮発性の液体として、例えば、水、有機溶媒などが挙げられ、好ましくは、有機溶媒が挙げられる。有機溶媒として、例えば、低級(C1~3)アルコール類(例えば、メタノール、エタノール、プロパノールなど)、ケトン類(例えば、アセトンなど)、エーテル類(例えば、ジエチルエーテル、テトラヒドロフランなど)、アルキルエステル類(例えば、酢酸エチルなど)、ハロゲン化脂肪族炭化水素類(例えば、クロロホルム、ジクロロメタンなど)、極性非プロトン類(例えば、N-メチルピロリドン、ジメチルホルムアミドなど)などが挙げられる。
 このような揮発性の液体のなかでは、好ましくは、低級アルコール類、さらに好ましくは、エタノールが挙げられる。このような揮発性の液体は、単独使用または2種類以上併用することができる。
 また、揮発性の液体には、好ましくは、微粒子を分散でき、また、金属塩および/または樹脂材料を溶解することもできる。
 微粒子は、その平均一次粒子径が、例えば、0.001μm以上、好ましくは、0.01μm以上、例えば、100μm以下、好ましくは、50μm以下の粒子である。微粒子は、例えば、有機微粒子、無機微粒子などが挙げられる。
 有機微粒子として、例えば、シリコーン微粒子、アクリル微粒子などが挙げられる。
 無機微粒子として、例えば、炭素微粒子、金属微粒子(例えば、アルミニウム、チタン、クロム、鉄、コバルト、ニッケル、銅、亜鉛、銀、スズ、白金、金、ロジウム、パラジウム、および、それらを含む合金など)などが挙げられる。
 このような微粒子のなかでは、好ましくは、無機微粒子が挙げられ、さらに好ましくは、炭素微粒子が挙げられる。このような微粒子は、単独使用または2種類以上併用することができる。
 金属塩として、例えば、上記した金属の硝酸塩、硫酸塩、塩化物、水酸酸化物などが挙げられ、好ましくは、硝酸塩、さらに好ましくは、硝酸コバルト(Co(NO)が挙げられる。このような金属塩は、単独使用または2種類以上併用することができる。
 樹脂材料として、例えば、熱可塑性樹脂(例えば、ポリエステル樹脂、ポリカーボネート樹脂、フッ素樹脂など)、熱硬化樹脂(例えば、シリコーン樹脂、エポキシ樹脂、ウレタン樹脂など)などが挙げられる。また、樹脂材料として、ポリアニリンやポリピロールなどの導電性高分子を用いることもできる。なお、揮発性の液体に、微粒子を分散するとともに、金属塩および/または樹脂材料を溶解することもできる。
 これによって、ローラ20上のCNT積層体4に揮発性の液体が均一に付着する。さらに、CNT積層体4には、揮発性の液体に粒子が分散されている場合、微粒子が付着し、揮発性の液体に金属塩および/または樹脂材料が溶解されている場合、金属塩および/または樹脂材料が付着する。
 その後、揮発性の液体が気化することにより、積層されるCNTウェブ3が積層方向(ローラ20の径方向)に互いに密集するとともに、各CNT単糸8において、複数のCNT10が互いに密集する。そのため、CNT積層体4の密度が向上する。
 次いで、液体が供給された積層体4を、加圧ローラ21により加圧する。
 加圧ローラ21は、ローラ20に沿うように延びる略円筒形状を有しており、軸線を回転中心として回転可能である。加圧ローラ21は、噴霧器24に対して、ローラ20の回転方向の下流側に間隔を空けて配置されており、かつ、CNT積層体4をローラ20との間に挟むように、ローラ20に対して径方向に向かい合って配置されている。また、加圧ローラ21は、ローラ20の径方向に沿って移動可能である。
 加圧ローラ21の外径は、ローラ20の外径よりも小さく、例えば、1cm以上、好ましくは、3cm以上、例えば、100cm以下、好ましくは、50cm以下である。加圧ローラ21の軸線方向の寸法は、ローラ20の軸線方向の寸法よりも長く、例えば、3cm以上、好ましくは、5cm以上、例えば、500cm以下、好ましくは、100cm以下である。なお、加圧ローラ21は、ローラ20の回転に伴なって従動回転する。
 そして、液体が供給されたCNT積層体4は、ローラ20の回転に伴なって、ローラ20と加圧ローラ21との間に到達する。このとき、加圧ローラ21は、CNT積層体4をローラ20の径方向(つまり、CNT積層体4の積層方向)に加圧する。
 加圧ローラ21のCNT積層体4に対する圧力は、例えば、10kg/cm以上、好ましくは、100kg/cm以上、例えば、1000kg/cm以下、好ましくは、500kg/cm以下である。
 以上によって、ローラ20に巻き付けられたCNT積層体4に、ローラ20の周方向全体にわたって、揮発性の液体が供給され、かつ、圧力が付与され、CNT積層体4の高密度化処理が完了する。その後、必要によりCNT積層体4を乾燥させる。
 次いで、ローラ20に巻き付けられたCNT積層体4を、上記のように、切断刃により、ローラ20の軸線方向に切断し展開して、ローラ20から離脱させる。これによって、図3Bに示すように、シート形状のCNT積層体4が形成される。CNT積層体4は、厚み方向に積層される複数のCNTウェブ3からなり、好ましくは、平帯形状を有している。つまり、CNT積層体4の厚み方向は、複数のCNTウェブ3の積層方向と同一方向である。また、CNT積層体4の長手方向は、各CNTウェブ3におけるCNT単糸8の延びる方向に沿っており、CNT積層体4の長手方向とCNT単糸8の延びる方向とは同一方向である。また、CNT積層体4の幅方向は、複数のCNTウェブ3の積層方向およびCNT単糸8の延びる方向の両方向と直交する直交方向である。
 CNT積層体4において、CNTウェブ3の積層数は、例えば、5層以上、好ましくは、10層以上、さらに好ましくは、50層以上、とりわけ好ましくは、100層以上、例えば、2000層以下、好ましくは、400層以下、さらに好ましくは、300層以下、とりわけ好ましくは、150層以下である。
 CNTウェブ3の積層数が上記下限以上であれば、CNT積層体4の取扱性の向上を確実に確保することができ、CNTウェブ3の積層数が上記上限以下であれば、カーボンナノチューブ撚糸100(後述)の密度の向上を確実に図ることができる。
 CNT積層体4の厚みL1(CNTウェブ3の積層方向)は、例えば、0.5μm以上、好ましくは、1μm以上、さらに好ましくは、2μm以上、例えば、100μm以下、好ましくは、50μm以下、さらに好ましくは、30μm以下、とりわけ好ましくは、10μm以下である。
 そして、CNT積層体4は、図3Cに示すように、幅方向の寸法L2が所定の範囲内となるように、必要に応じて裁断される。この場合、CNT積層体4は、上記の切断刃により、CNT単糸8の延びる方向(CNT積層体4の長手方向)に沿って複数に裁断される。
 CNT積層体4の幅方向の寸法L2は、例えば、0.05cm以上、好ましくは、0.1cm以上、さらに好ましくは、0.5cm以上、例えば、10cm以下、好ましくは、5cm以下、さらに好ましくは、1cm以下である。
 また、CNT積層体4の厚みL1(CNTウェブ3の積層方向寸法)に対する、CNT積層体4の幅方向(直交方向)の寸法L2の比率(CNT積層体4の幅方向の寸法L2/CNT積層体4の厚みL1)は、例えば、5以上、好ましくは、10以上、さらに好ましくは、100以上、とりわけ好ましくは、4000以上、特に好ましくは、5000以上、例えば、10以下、好ましくは、50000以下、さらに好ましくは、40000以下、とりわけ好ましくは、30000以下である。
 CNT積層体4の厚みL1に対するCNT積層体4の幅方向の寸法L2の比率が上記下限以上であれば、CNT積層体4の取扱性の向上を図ることができ、CNT積層体4の厚みL1に対するCNT積層体4の幅方向の寸法L2の比率が上記上限以下であれば、CNT積層体4に撚りをかけて形成されるカーボンナノチューブ撚糸100(後述)の密度の向上を図ることができる。
 次いで、図4A~図4Cに示すように、CNT積層体4に撚りをかけて、カーボンナノチューブ撚糸100(以下、CNT撚糸100とする。)を製造する(撚掛工程)。
 CNT積層体4に撚りをかけるには、まず、図4Aに示すように、CNT積層体4の長手方向(複数のCNT単糸8の延びる方向)の両端部を把持する。そして、図4Bに示すように、CNT積層体4の他方側端部を固定した状態で、CNT積層体4の一方側端部を、CNT積層体4の長手方向に沿う仮想線を回転中心として回転させる。
 CNT積層体4の一方側端部の回転速度は、例えば、10rpm以上、好ましくは、50rpm以上、例えば、1000rpm以下、好ましくは、100rpm以下である。また、CNT積層体4の一方側端部の回転時間は、例えば、0.2分以上、好ましくは、0.5分以上、例えば、100分以下、好ましくは、10分以下である。
 これによって、図4Cに示すように、CNT積層体4が撚りかけられ、CNT積層体4が有する複数のCNT単糸8が互いに撚り合わされて、CNT撚糸100が製造される。つまり、CNT撚糸100は、複数のCNT単糸8が並列配置されてなるCNTウェブ3が複数積層されているCNT積層体4を、複数のCNT単糸8が互いに撚り合わされるように、撚りかけてなる。
 その後、必要により、把持されているCNT撚糸100の長手方向両端部を切断して除去する。
 CNT撚糸100の撚り数は、例えば、100T/m以上、好ましくは、500T/m以上、例えば、10000T/m以下、好ましくは、5000T/m以下である。
 CNT撚糸100の外径は、例えば、30μm以上、好ましくは、80μm以上、さらに好ましくは、100μm以上、例えば、1000μm以下、好ましくは、200μm以下である。
 CNT撚糸100の嵩密度は、例えば、0.2g/cm以上、好ましくは、0.6g/cm以上、さらに好ましくは、1.0g/cm以上、例えば、1.7g/cm以下、好ましくは、1.5g/cm以下、さらに好ましくは、1.4g/cm以下である。
 CNT撚糸100の引張強度は、例えば、0.3GPa以上、好ましくは、0.5GPa以上、さらに好ましくは、0.8GPa以上、とりわけ好ましくは、1.0GPa以上、例えば、3.0GPa以下、好ましくは、2.0GPa以下である。なお、引張強度は、後述する実施例に記載の方法により測定される。
 CNT撚糸100の電気抵抗率は、CNT撚糸100の延びる方向において、例えば、0.1mΩ・cm以上、好ましくは、0.3mΩ・cm以上、例えば、5.0mΩ・cm以下、好ましくは、3.0mΩ・cm以下、さらに好ましくは、2.0mΩ・cm以下、とりわけ好ましくは、1.0mΩ・cm以下である。なお、電気抵抗率は、後述する実施例に記載の方法により測定される。
 このようなCNT撚糸100は、例えば、炭素繊維が用いられる織物(シート)、電気機器(例えば、モータ、トランス、センサーなど)の導電線材など各種産業製品に利用される。
 このCNT撚糸100の製造方法は、例えば、図2~図4Cに示すように、撚糸製造装置30により連続的に実施される。撚糸製造装置30は、供給部31(図2参照)と、積層部32(図3A参照)と、撚掛部33(図4A参照)とを備えている。なお、撚糸製造装置30の説明において、上記した部材と同様の部材には同様の符号を付し、その説明を省略する。
 供給部31は、図2に示すように、CNTウェブ3を積層部32に供給するように構成されている。供給部31は、基板1上に配置されるVACNTs2と、図示しない引出具とを備えている。
 積層部32は、図3Aに示すように、ローラ20と、噴霧器24と、加圧ローラ21と、図示しない切断刃とを備えている。ローラ20は、VACNTs2に対して、縦方向の一方側に間隔を空けて配置されている。噴霧器24は、ローラ20に対して縦方向の一方側に間隔を空けて配置されている。加圧ローラ21は、ローラ20に対して縦方向他方側の斜め下側から、ローラ20と向かい合っている。
 撚掛部33は、図4Aに示すように、互いに間隔を空けて対向配置される第1挟持部34および第2挟持部35とを備えている。
 第1挟持部34は、2つの第1プレート36を備えている。2つの第1プレート36のそれぞれは、略平板形状を有している。2つの第1プレート36は、それらの厚み方向に互いに向かい合うように配置されている。また、第1挟持部34は、第1挟持部34と第2挟持部35との対向方向に沿う仮想線を回転中心として、回転可能である。
 第2挟持部35は、2つの第2プレート37を備えている。2つの第2プレート37のそれぞれは、略平板形状を有している。2つの第2プレート37は、それらの厚み方向に互いに向かい合うように配置されている。
 このような撚糸製造装置30では、図2に示すように、図示しない引出具が、VACNTs2の各列2AのCNT10を同時かつ平行に、縦方向一方側に向かって引き出す。これにより、複数のCNT単糸8が横方向に並列配置される略シート形状のCNTウェブ3が、VACNTs2から引き出される。
 次いで、図3Aに示すように、CNTウェブ3の先端をローラ20の周面に固定し、ローラ20を、横方向他方側からみて時計回り方向に回転させる。このとき、加圧ローラ21は、ローラ20から離れるように、ローラ20の径方向の外側に退避しており、ローラ20に対して径方向に間隔を空けて配置されている。これにより、CNTウェブ3が、VACNTs2から連続して引き出されるとともに、ローラ20の周面に複数周巻き付けられ、CNT積層体4が形成される。
 ローラ20の回転による、CNTウェブ3の移動速度は、例えば、0.1m/min以上、好ましくは、5m/min以上、例えば、100m/min以下、好ましくは、10m/min以下である。
 次いで、ローラ20を回転させながら、噴霧器24により上記の揮発性の液体を、CNT積層体4にスプレーし、かつ、加圧ローラ21をローラ20の径方向の内側に向かって移動させ、CNT積層体4をローラ20との間に挟みこみ、CNT積層体4を加圧する。
 次いで、ローラ20に巻き付けられたCNT積層体4を、図示しない切断刃により、ローラ20の軸線方向に沿って切断し、ローラ20から離脱させる。これによって、図3Bに示すように、平帯状のCNT積層体4が形成される。その後、平帯状のCNT積層体4を、図3Cに示すように、図示しない切断刃により、幅方向の寸法L2が所定の値となるように、CNT積層体4の長手方向に沿って裁断する。
 次いで、図4Aおよび図4Bに示すように、裁断されたCNT積層体4の一方側端部を、第1挟持部34の2つの第1プレート36が挟み込み、CNT積層体4の他方側端部を、第2挟持部35の2つの第2プレート37が挟み込む。そして、第1挟持部34が、CNT積層体4の長手方向に沿う仮想線を回転中心として、長手方向一方側からみて反時計回り方向に回転する。
 これによって、CNT積層体4は、複数のCNT単糸8が互いに撚り合わされるように、撚りかけられる。
 このとき、第1挟持部34の回転速度(周速度)の範囲は、上記のCNT積層体4の一方側端部の回転速度の範囲と同一である。
 以上によって、CNT撚糸100が、撚糸製造装置30により製造される。
 (作用効果)
 本実施形態において、CNT撚糸100は、図4A~図4Cに示すように、CNTウェブ3が複数積層されてなるCNT積層体4に撚りをかけることにより製造される。そのため、CNT撚糸100が1枚のCNTウェブ3に撚りをかけて製造される場合と比較して、CNT撚糸100の密度の向上を図ることができる。その結果、CNT撚糸100の機械強度、熱伝導性および電気伝導性などの性能の向上を図ることができる。
 また、CNTウェブ3は、図2に示すように、ローラ20の周面に複数周巻き付けることにより、ローラ20の径方向に複数積層されて、CNT積層体4を形成する。そして、巻き付けられたCNT積層体4をローラ20の軸線方向に切断することにより、CNT積層体4をローラ20から離脱させることができる。そのため、簡易な方法でありながら、CNT積層体4を円滑に形成することができ、ひいては、CNT撚糸100の生産効率の向上を図ることができる。
 また、図3Cに示すように、CNT積層体4の厚みL1に対する、CNT積層体4の幅方向の寸法L2(幅方向の寸法L2/厚みL1)が、4000以上である。そのため、CNT積層体4の取扱性の向上を図ることができ、CNT積層体4に容易に撚りをかけることができる。
 また、CNT積層体4の厚みL1に対する、CNT積層体4の幅方向の寸法L2(幅方向の寸法L2/厚みL1)が、50000以下である。そのため、CNT積層体4に撚りをかけて形成されるCNT撚糸100の密度の向上を図ることができる。
 また、CNTウェブ3の積層数は50以上である。そのため、CNT積層体4の取扱性の向上を確実に図ることができ、CNT積層体4により容易に撚りをかけることができる。
 また、CNTウェブ3の積層数は400以下である。そのため、CNT積層体4に撚りをかけて形成されるCNT撚糸100の密度の向上を確実に図ることができる。
 また、CNT積層体4には、図3Aに示すように、揮発性の液体が供給される。そのため、揮発性の液体が気化することにより、CNT積層体4において積層される複数のCNTウェブ3が積層方向に互いに密集するとともに、各CNTウェブ3において、複数のCNT10が互いに密集する。その結果、CNT積層体4の密度の向上を図ることができ、ひいては、CNT撚糸100の密度の向上を確実に図ることができる。
 また、揮発性の液体に、微粒子が分散されているか、金属塩および/または樹脂材料が溶解されている。そのため、CNT積層体4に液体を供給したときに、複数のCNT10に微粒子や、金属塩、樹脂材料を付着させることができる。その結果、CNT積層体4から形成されるCNT撚糸100に、微粒子、金属塩および/または樹脂材料の特性を付与することができる。
 また、CNT積層体4は、図3Aに示すように、積層方向に加圧される。そのため、CNT積層体4の密度のさらなる向上を図ることができ、ひいては、CNT撚糸100の密度の向上をより一層確実に図ることができる。
 CNT撚糸100は、図4A~図4Cに示すように、CNTウェブ3が複数積層されるCNT積層体4に撚りをかけてなる。そのため、CNT撚糸100の密度の向上を図ることができる。
 また、CNT撚糸100の嵩密度は、0.6g/cm以上であるので、CNT撚糸100の機械強度、熱伝導性および電気伝導性などの性能の向上を図ることができる。また、CNT撚糸100の嵩密度は、1.7g/cm以下であるので、CNT撚糸100を、上記の方法により円滑に製造することができる。
 (変形例)
 上記の実施形態では、CNTウェブ3がローラ20の周面に複数周巻き付けられて積層されるが、これに限定されず、図5Aおよび図5Bに示すように、CNTウェブ3を複数準備して、それらCNTウェブ3を厚み方向に積層して、CNT積層体4を形成してもよい。この場合、CNT積層体4は、互いに向かい合う1対の加圧ローラ40の間を通過させることにより、積層方向に加圧される。
 上記の実施形態では、高密度化処理の液体供給工程として、ローラ20に巻き付けられた状態のCNT積層体4に、揮発性の液体が供給されるが、これに限定されず、CNT積層体4を、ローラ20から離脱させた後、CNT積層体4に揮発性の液体をスプレーしてもよく、CNT積層体4を揮発性の液体に浸漬させることもできる。この場合においても、揮発性の液体には、上記と同様に、微粒子が分散されているか、金属塩および/または樹脂材料が溶解されていてもよい。
 上記の実施形態では、高密度化処理の加圧工程として、ローラ20に巻き付けられた状態のCNT積層体4が加圧されるが、これに限定されず、CNT積層体4を、ローラ20から離脱させた後、加圧してもよい。
 上記の実施形態では、CNT積層体4に揮発性の液体が供給された後、CNT積層体4が加圧されるが、これに限定されず、CNT積層体4を加圧した後、CNT積層体4に揮発性の液体を供給してもよい。また、CNT撚糸100の製造方法は、高密度化処理として、CNT積層体4に対する揮発性の液体の供給(液体供給工程)および加圧(加圧工程)のいずれか一方のみを含んでいてもよく、また、高密度化処理を含んでいなくてもよい。
 なお、CNT撚糸100の製造方法が、高密度化処理として、CNT積層体4に対する揮発性の液体の供給(液体供給工程)および加圧(加圧工程)のいずれか一方のみを含んでいる場合、撚糸製造装置30の積層部32は、噴霧器24および加圧ローラ21のいずれか一方を備えている。また、CNT撚糸100の製造方法が高密度化処理を含んでいない場合、撚糸製造装置30は、噴霧器24および加圧ローラ21を備えていなくてもよい。
 上記の実施形態では、ローラ20に対するCNT積層体4の巻き付けが完了した後、液体供給工程および加圧工程が実施されるが、これに限定されない。
 例えば、CNTウェブ3がローラ20の周面に巻き付けられるときに、揮発性の液体を供給してもよい。この場合、揮発性の液体が供給されたCNTウェブ3が、順次ローラ20の周面に巻き付けられ、積層される。つまり、積層工程と液体供給工程とが同時に実施される。これによっても、CNT積層体4に揮発性の液体を供給することができる。
 また、CNTウェブ3がローラ20の周面に巻き付けられるときに、加圧してもよい。この場合、CNTウェブ3が、順次ローラ20の周面に巻き付けられ、積層されるときに、加圧される。つまり、積層工程と加圧工程とが同時に実施される。これによっても、CNT積層体4を積層方向に加圧することができる。
 これら変形例によっても、上記の実施形態と同様の作用効果を奏することができる。
 これら上記の実施形態および変形例は、適宜組み合わせることができる。
 以下に実施例を示し、本発明をさらに具体的に説明するが、本発明は、それらに限定されない。以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。
 (実施例1)
 ステンレス製の基板(ステンレス基板)の表面に二酸化ケイ素膜を積層した後、二酸化ケイ素膜上に、触媒層として鉄を蒸着した。
 次いで、基板を所定の温度に加熱して、触媒層に原料ガス(アセチレンガス)を供給した。これにより、基板上において、平面視略矩形形状のVACNTsを形成した。
 VACNTsにおいて、複数のCNTは、互いに略平行となるように延び、基板に対して直交するように配向(垂直配向)されていた。CNTは、多層カーボンナノチューブであり、CNTの平均外径は、10nm、CNTの平均長さは、約300μm、VACNTsの嵩密度は、50mg/cmであった。
 そして、VACNTsにおいて、前端部に配置される複数のCNTを、引出具により、全幅にわたって一括して保持し、前側に引っ張った。これによって、VACNTsから、複数のCNT単糸からなるCNTウェブを引き出した。
 次いで、CNTウェブの先端(引出方向下流端部)を、直径60mmのローラの周面に固定して、ローラを30rpmで7分間回転させた。これにより、CNTウェブが、VACNTsから連続して引き出され、ローラの周面に210周巻き付けられた。
 次いで、巻き付けたCNTウェブをローラの軸線方向に切断し展開して、ローラから離脱させた。これによって、複数のCNTウェブが積層されたCNT積層体(積層数:210)を得た。なお、CNT積層体の長さ(長手方向長さ)は、190mmであった。
 次いで、そのCNT積層体にエタノールをスプレーした後、60℃で乾燥させて、CNT積層体を密集させ、高密度化させた。密集後のCNT積層体の厚みは10μm、密集後のCNT積層体の嵩密度は0.52g/cmであった。
 次いで、密集後のCNT積層体を、CNT単糸の延びる方向に沿って、5mm幅に裁断した。つまり、裁断されたCNT積層体は、厚みに対する幅方向の寸法の比率(幅方向寸法/厚み)が5000であった。
 次いで、裁断されたCNT積層体を10000T/m未満となるように撚糸化した。これにより、CNT撚糸を得た。CNT撚糸の直径は140μmであり、CNT撚糸の嵩密度は1.62g/cmであった。
 なお、実施例1~14、比較例1および2における、CNT積層体とCNT撚糸との構成(積層数、寸法、嵩密度など)および高密度化処理の有無について、表1に示す。
 また、実施例1のCNT撚糸のSEM写真を、図6Aおよび図6Bに示し、比較例1のCNT撚糸のSEM写真を、図7Aおよび図7Bに示す。
 (実施例2)
 CNTウェブをローラの周面に100周巻き付けたこと、および、CNT積層体にエタノールをスプレーしなかったこと以外は、実施例1と同様にして、CNT積層体およびCNT撚糸を得た。
 (実施例3)
 実施例1と同様にして、CNTウェブをローラの周面に100周巻き付けた後、ローラに巻き付けたCNTウェブに、エタノールをスプレーした。その後、60℃で乾燥させてCNTウェブを密集させた。
 次いで、実施例1と同様にして、そのCNTウェブをローラから離脱させて、CNT積層体(積層数:100)を得た。そして、そのCNT積層体からCNT撚糸を調製した。
 (実施例4)
 実施例3と同様にして、CNT積層体(積層数:100)を得た。その後、CNT積層体を、0.5mol/Lの硝酸コバルトのエタノール溶液に、60秒間浸漬させた。そして、CNT積層体を、CO(NOエタノール溶液から引き上げ、60℃で乾燥させた。
 次いで、実施例1と同様にして、そのCNT積層体からCNT撚糸を得た。
 (実施例5)
 実施例1と同様にして、CNTウェブをローラの周面に100周巻き付けた後、ローラに巻き付けたCNTウェブを、ローラと加圧ローラ(直径20mm)とで挟み、ローラを回転させて、10kg/cmの圧力で加圧した。
 次いで、実施例1と同様にして、そのCNTウェブをローラから離脱させて、CNT積層体(積層数:100)を得た。そして、そのCNT積層体からCNT撚糸を調製した。
 (実施例6)
 CNTウェブをローラの周面に200周巻き付けたこと以外は、実施例5と同様にして、CNT積層体およびCNT撚糸を得た。
 (実施例7)
 実施例3と同様にして、ローラに巻き付けたCNTウェブに、エタノールをスプレーした。次いで、実施例5と同様にして、ローラに巻き付けたCNTウェブを、10kg/cmの圧力で加圧した。その後、60℃で乾燥させた。
 次いで、実施例1と同様にして、そのCNTウェブをローラから離脱させて、CNT積層体(積層数:100)を得た。そして、そのCNT積層体からCNT撚糸を調製した。
 (実施例8)
 CNTウェブをローラの周面に50周巻き付けたこと以外は、実施例7と同様にして、CNT積層体およびCNT撚糸を得た。
 (実施例9)
 CNTウェブをローラの周面に200周巻き付けたこと以外は、実施例7と同様にして、CNT積層体およびCNT撚糸を得た。
 (実施例10)
 CNTウェブをローラの周面に400周巻き付けたこと以外は、実施例7と同様にして、CNT積層体およびCNT撚糸を得た。
 (実施例11)
 CNTウェブをローラの周面に10周巻き付けたこと以外は、実施例7と同様にして、CNT積層体およびCNT撚糸を得た。
 (実施例12)
 CNTウェブをローラの周面に500周巻き付けたこと以外は、実施例7と同様にして、CNT積層体およびCNT撚糸を得た。
 (比較例1)
 実施例1と同様にして、平面視略矩形形状のVACNTsを形成し、VACNTsから、複数のCNT単糸からなるCNTウェブを引き出した。
 次いで、CNTウェブを、VACNTsから連続的に引き出すとともに、1000T/mとなるように撚糸化した。これにより、CNT撚糸を得た。その後、CNT撚糸にエタノールをスプレーした後、60℃で乾燥させた。
 (比較例2)
 実施例1と同様にして、平面視略矩形形状のVACNTsを形成し、カッターにより、VACNTsを基板から分離した。そして、分離したVACNTsを、公知のプレス加工によりシート状に形成して、プレス成形シートを調製した。プレス成形シートの厚みは10μmであり、プレス成形シートの嵩密度は1.0g/cmであった。プレス成形シートに撚りをかけると、断裂し撚糸化できなかった。
評価:
(1)取扱性
 各実施例および比較例で得られたCNT積層体の取扱性を、下記基準により評価した。
○:風などの影響が限定的であり、容易に把持して円滑に撚りをかけることができた。
△:風などの影響を僅かに受け、把持して撚りをかけることが不安定となる場合があった。
×:風などに影響を受け、把持して撚りをかけることが困難であった。
 その結果を表1に示す。
(2)引張強度
 各実施例および比較例で得られたCNT積層体およびCNT撚糸の引張強度を、下記のように測定した。その結果を表1に示す。なお、比較例2のプレス成形シートの引張強度は、15MPaであった。
 CNT撚糸の一端を固定し、CNT撚糸の他端をフォースゲージへ固定して、0.2mm/secで引き上げて断裂した負荷を破断強度とした。そして、破断強度をCNT撚糸の断面積で除して、引張強度を算出した。
 また、CNT撚糸と同様にして、CNT積層体の破断強度を測定し、引張強度を算出した。
(3)電気抵抗率
 各実施例および比較例で得られたCNT積層体およびCNT撚糸の電気抵抗率を、電気抵抗測定装置(商品名:ロレスタ MCP-FP、三菱化学アナリテック社製)により測定した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。
 本発明のカーボンナノチューブ撚糸の製造方法は、各種産業製品に用いられるカーボンナノチューブ撚糸の製造に好適に用いることができる。本発明のカーボンナノチューブ撚糸は、各種産業製品に好適に用いることができる。
 1   基板
 2   垂直配向カーボンナノチューブ
 3   カーボンナノチューブウェブ
 4   CNT積層体
 10  カーボンナノチューブ
 20  ローラ
 100 カーボンナノチューブ撚糸

Claims (6)

  1.  基板上に配置され、前記基板に対して垂直に配向される垂直配向カーボンナノチューブを準備する工程と、
     前記垂直配向カーボンナノチューブから、複数のカーボンナノチューブ単糸が並列配置されるように引き出されてなるカーボンナノチューブウェブを引き出す工程と、
     前記カーボンナノチューブウェブを、前記複数のカーボンナノチューブ単糸の延びる方向が互いに沿うように複数積層して、積層体を形成する工程と、
     前記積層体に撚りをかける工程と、を含むことを特徴とする、カーボンナノチューブ撚糸の製造方法。
  2.  前記カーボンナノチューブウェブを積層する工程において、前記カーボンナノチューブウェブをローラの周面に複数周巻き付け、巻き付けた前記カーボンナノチューブウェブを前記ローラの軸線方向に切断して、前記積層体を前記ローラから離脱させることを特徴とする、請求項1に記載のカーボンナノチューブ撚糸の製造方法。
  3.  前記積層体に撚りをかける工程の前に、前記積層体に揮発性の液体を供給する工程をさらに含むことを特徴とする、請求項1に記載のカーボンナノチューブ撚糸の製造方法。
  4.  前記液体には、微粒子が分散されているか、金属塩および/または樹脂材料が溶解されていることを特徴とする、請求項3に記載のカーボンナノチューブ撚糸の製造方法。
  5.  前記積層体に撚りをかける工程の前に、前記積層体を前記カーボンナノチューブウェブの積層方向に加圧する工程をさらに含むことを特徴とする、請求項1に記載のカーボンナノチューブ撚糸の製造方法。
  6.  複数のカーボンナノチューブ単糸が並列配置されてなるカーボンナノチューブウェブが複数積層されている積層体に撚りかけてなることを特徴とする、カーボンナノチューブ撚糸。
PCT/JP2017/003360 2016-02-04 2017-01-31 カーボンナノチューブ撚糸の製造方法およびカーボンナノチューブ撚糸 WO2017135234A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/075,177 US20190039904A1 (en) 2016-02-04 2017-01-31 Method for producing carbon nanotube twisted yarn and carbon nanotube twisted yarn
EP17747390.7A EP3412808A4 (en) 2016-02-04 2017-01-31 METHOD OF MANUFACTURING CARBON NANOTECHNIC TOOL AND CARBON NANOTUBE TOOL
CN201780009454.7A CN108699734A (zh) 2016-02-04 2017-01-31 碳纳米管加捻纱的制造方法以及碳纳米管加捻纱
KR1020187022451A KR20180104642A (ko) 2016-02-04 2017-01-31 카본나노튜브 연사의 제조방법 및 카본나노튜브 연사

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016019611A JP6649100B2 (ja) 2016-02-04 2016-02-04 Cnt積層体の製造方法およびカーボンナノチューブ撚糸の製造方法
JP2016-019611 2016-02-04

Publications (1)

Publication Number Publication Date
WO2017135234A1 true WO2017135234A1 (ja) 2017-08-10

Family

ID=59500850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003360 WO2017135234A1 (ja) 2016-02-04 2017-01-31 カーボンナノチューブ撚糸の製造方法およびカーボンナノチューブ撚糸

Country Status (7)

Country Link
US (1) US20190039904A1 (ja)
EP (1) EP3412808A4 (ja)
JP (1) JP6649100B2 (ja)
KR (1) KR20180104642A (ja)
CN (1) CN108699734A (ja)
TW (1) TW201728532A (ja)
WO (1) WO2017135234A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109160506A (zh) * 2018-09-28 2019-01-08 深圳烯湾科技有限公司 碳纳米管导线的生产装置
JP2022509664A (ja) * 2018-11-30 2022-01-21 オーエックスオーム レイ, インコーポレイテッド 一方向に整列されたヤーンを含むカーボンナノチューブシートを製造する方法およびこれによって製造されたカーボンナノチューブシート

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109416503B (zh) 2016-07-05 2023-06-09 三井化学株式会社 防护膜、防护膜组件框体、防护膜组件、其制造方法、曝光原版、曝光装置、半导体装置的制造方法
JP6699517B2 (ja) * 2016-11-11 2020-05-27 Jnc株式会社 紡績源部材、ウェブ状構造体、紡績源部材の製造方法およびウェブ状構造体の製造方法
JP6899031B2 (ja) * 2017-08-17 2021-07-07 リンテック・オヴ・アメリカ,インコーポレイテッド ナノファイバヤーンの選択的浸透
JP7083240B2 (ja) * 2017-09-11 2022-06-10 日立造船株式会社 カーボンナノチューブワイヤの製造方法
KR101982289B1 (ko) * 2017-09-21 2019-05-24 고려대학교 산학협력단 탄소나노튜브 전자방출원, 그 제조 방법 및 이를 이용하는 엑스선 소스
US10941040B2 (en) * 2017-09-22 2021-03-09 Lintec Of America, Inc. Controlling nanofiber sheet width
EP3703079B1 (en) * 2017-10-26 2022-03-09 Furukawa Electric Co., Ltd. Carbon nanotube composite wire, carbon nanotube-coated electric wire, and wire harness, robot wiring, and overhead line
JP7316760B2 (ja) * 2018-03-30 2023-07-28 古河電気工業株式会社 カーボンナノチューブ線材
KR101956153B1 (ko) 2018-10-04 2019-06-24 어썸레이 주식회사 탄소나노튜브를 포함하는 얀의 제조방법 및 이로부터 제조된 얀
KR101992745B1 (ko) 2019-01-24 2019-06-26 어썸레이 주식회사 구조적 안정성이 우수하고 전자 방출 효율이 향상된 이미터 및 이를 포함하는 x-선 튜브
KR102099410B1 (ko) 2019-04-04 2020-04-09 어썸레이 주식회사 세라믹계 소재로 이루어진 집속전극을 포함하는 x-선 발생장치
CN110016757B (zh) * 2019-04-11 2021-07-09 东华大学 一种力学信号感知绳索的制备方法
JP7508200B2 (ja) * 2019-04-24 2024-07-01 古河電気工業株式会社 カーボンナノチューブ線材、カーボンナノチューブ線材接続構造体及びカーボンナノチューブ線材の製造方法
JP7214556B2 (ja) * 2019-04-25 2023-01-30 日立造船株式会社 カーボンナノチューブ成形体の製造方法およびカーボンナノチューブ成形体製造装置
KR102099411B1 (ko) 2019-07-26 2020-04-09 어썸레이 주식회사 구조적 안정성이 우수한 전계 방출 장치 및 이를 포함하는 x-선 튜브
KR102201043B1 (ko) * 2019-07-31 2021-01-08 부산대학교 산학협력단 건식 방사를 이용한 탄소섬유 제조 방법 및 상기 제조 방법에 의해 제조되는 탄소섬유 제조 장치
JP7372092B2 (ja) * 2019-09-18 2023-10-31 日立造船株式会社 カーボンナノチューブ撚糸の製造方法
JP6812533B1 (ja) * 2019-12-27 2021-01-13 トクセン工業株式会社 カーボンナノチューブからなる長尺物の製造方法
KR102469018B1 (ko) * 2020-12-24 2022-11-18 부산대학교 산학협력단 탄소나노섬유의 합사방법 및 이를 위한 합사장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008022129A2 (en) * 2006-08-14 2008-02-21 Cnt Technologies, Inc. System and methods for spinning carbon nanotubes into yarn, and yarn made therefrom
JP2010116632A (ja) * 2008-11-11 2010-05-27 Osaka Prefecture 微細炭素繊維撚糸の製造装置及び製造方法
JP2010281025A (ja) * 2009-06-04 2010-12-16 Qinghua Univ カーボンナノチューブ線状構造体の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101437663B (zh) * 2004-11-09 2013-06-19 得克萨斯大学体系董事会 纳米纤维带和板以及加捻和无捻纳米纤维纱线的制造和应用
WO2007119747A1 (ja) * 2006-04-13 2007-10-25 Toyo Boseki Kabushiki Kaisha 微細炭素繊維撚糸を連続的に製造する方法、装置、及び該方法によって製造された微細炭素繊維撚糸
CN101964229B (zh) * 2009-07-21 2012-05-30 清华大学 碳纳米管绞线及其制备方法
CN102180460A (zh) * 2011-03-17 2011-09-14 东华大学 一种高取向度的碳纳米管纸的制备方法
JP5971421B2 (ja) * 2013-07-22 2016-08-17 村田機械株式会社 糸製造装置
CN105174204B (zh) * 2014-06-17 2017-05-17 清华大学 碳纳米管复合线的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008022129A2 (en) * 2006-08-14 2008-02-21 Cnt Technologies, Inc. System and methods for spinning carbon nanotubes into yarn, and yarn made therefrom
JP2010116632A (ja) * 2008-11-11 2010-05-27 Osaka Prefecture 微細炭素繊維撚糸の製造装置及び製造方法
JP2010281025A (ja) * 2009-06-04 2010-12-16 Qinghua Univ カーボンナノチューブ線状構造体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3412808A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109160506A (zh) * 2018-09-28 2019-01-08 深圳烯湾科技有限公司 碳纳米管导线的生产装置
JP2022509664A (ja) * 2018-11-30 2022-01-21 オーエックスオーム レイ, インコーポレイテッド 一方向に整列されたヤーンを含むカーボンナノチューブシートを製造する方法およびこれによって製造されたカーボンナノチューブシート
US11453591B2 (en) 2018-11-30 2022-09-27 Awexome Ray, Inc. Process for preparing a carbon nanotube sheet comprising a uniaxially aligned yarn and carbon nanotube sheet prepared thereby
JP7192176B2 (ja) 2018-11-30 2022-12-20 オーエックスオーム レイ, インコーポレイテッド 一方向に整列されたヤーンを含むカーボンナノチューブシートを製造する方法およびこれによって製造されたカーボンナノチューブシート

Also Published As

Publication number Publication date
JP2017137594A (ja) 2017-08-10
CN108699734A (zh) 2018-10-23
TW201728532A (zh) 2017-08-16
EP3412808A4 (en) 2019-08-21
JP6649100B2 (ja) 2020-02-19
KR20180104642A (ko) 2018-09-21
US20190039904A1 (en) 2019-02-07
EP3412808A1 (en) 2018-12-12

Similar Documents

Publication Publication Date Title
WO2017135234A1 (ja) カーボンナノチューブ撚糸の製造方法およびカーボンナノチューブ撚糸
JP6802193B2 (ja) カーボンナノチューブ糸の製造方法
JP5229732B2 (ja) 微細炭素繊維撚糸の製造装置及び製造方法
TWI689464B (zh) 碳奈米管集合體的製造方法
JP6482966B2 (ja) カーボンナノチューブウェブの製造方法、カーボンナノチューブ集合体の製造方法およびカーボンナノチューブウェブの製造装置
US20180044819A1 (en) Method for manufacturing carbon nanotube fiber, apparatus for manufacturing carbon nanotube fiber, and carbon nanotube fiber
US20130101495A1 (en) Systems and methods for continuously producing carbon nanostructures on reusable substrates
WO2016136826A1 (ja) カーボンナノチューブ高密度集合体およびカーボンナノチューブ高密度集合体の製造方法
TWI740831B (zh) 奈米碳管網的製造方法
JP2016160539A (ja) カーボンナノチューブ繊維の製造方法、カーボンナノチューブ繊維の製造装置およびカーボンナノチューブ繊維
EP4033018A1 (en) Method for manufacturing carbon nanotube twisted thread, and device for manufacturing carbon nanotube twisted thread
WO2020241177A1 (ja) 積層体および積層体の製造方法
JPWO2015045417A1 (ja) カーボンナノチューブ分散液の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747390

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187022451

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017747390

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017747390

Country of ref document: EP

Effective date: 20180904