WO2017135116A1 - 生体信号処理方法および生体信号処理装置 - Google Patents

生体信号処理方法および生体信号処理装置 Download PDF

Info

Publication number
WO2017135116A1
WO2017135116A1 PCT/JP2017/002483 JP2017002483W WO2017135116A1 WO 2017135116 A1 WO2017135116 A1 WO 2017135116A1 JP 2017002483 W JP2017002483 W JP 2017002483W WO 2017135116 A1 WO2017135116 A1 WO 2017135116A1
Authority
WO
WIPO (PCT)
Prior art keywords
biological signal
data
time
value
averaging
Prior art date
Application number
PCT/JP2017/002483
Other languages
English (en)
French (fr)
Inventor
松浦 伸昭
小笠原 隆行
啓 桑原
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to CN201780009657.6A priority Critical patent/CN108601546B/zh
Priority to JP2017565497A priority patent/JP6687645B2/ja
Priority to US16/075,116 priority patent/US10918302B2/en
Publication of WO2017135116A1 publication Critical patent/WO2017135116A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/352Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4538Evaluating a particular part of the muscoloskeletal system or a particular medical condition
    • A61B5/459Evaluating the wrist
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis

Definitions

  • the present invention relates to a biological signal processing method and a biological signal processing apparatus for appropriately removing a noise component mixed in a biological signal obtained from an electrocardiogram waveform to improve the analysis accuracy of the biological signal.
  • the pulsating rhythm of the heart is known to fluctuate under the influence of the autonomic nerve, that is, the sympathetic nerve and the vagus nerve.
  • the autonomic nerve that is, the sympathetic nerve and the vagus nerve.
  • heart rate fluctuation respiratory sinus arrhythmia
  • the respiratory rate at this time can be estimated by analyzing the time interval of the heartbeat (R wave) time extracted from the electrocardiogram waveform, that is, the RR interval.
  • the influence of respiration also appears on the amplitude of the electrocardiogram waveform.
  • the influence on the electrocardiogram waveform amplitude is considered to be due to the fluctuation of the impedance viewed from the electrocardiogram measurement system due to the expansion and contraction of the lung and thorax along with the respiration.
  • FIG. 17 (a) is a diagram showing an example of an electrocardiogram waveform when a subject practices a breathing method called 4-7-8 breathing method (4 seconds inhaled-7 seconds in breath hold-8 seconds in exhalation).
  • FIG. 17A it can be easily seen that the height of the electrocardiogram waveform is fluctuating.
  • a diagram in which data of an RR interval, which is a time interval of an R wave and an immediately preceding R wave, is extracted from this electrocardiogram waveform and plotted in time series is shown in (b) of FIG.
  • the RR interval is longer at exhalation and shorter at inspiration (heart rate is slower at exhalation and faster at inspiration).
  • the RR interval fluctuates in synchronization with the electrocardiogram waveform.
  • (c) of FIG. 17 is a diagram in which data of the amplitude from the peak value of the R wave to the peak value of the S wave, that is, RS amplitude is extracted for each heartbeat and plotted in time series.
  • the RS amplitude can be acquired, for example, by searching for an electrocardiogram waveform in a certain section before and after the extracted R wave, and calculating the difference between the maximum value and the minimum value of the section.
  • (c) of FIG. 17 it can be seen that the time width of the above-mentioned inspiratory-respiratory-expiratory appears in the fluctuation pattern of the RS amplitude.
  • FIG. 18 shows a spectrum obtained by analyzing the data of the RR interval shown in (b) of FIG. 17 by the Maximum Entropy Method (MEM), and (b) of FIG. It is a figure which shows the spectrum which analyzed the data of RS amplitude shown to (c) of FIG. 17 by MEM.
  • MEM Maximum Entropy Method
  • noise when measuring an electrocardiogram waveform, noise may be added to the waveform.
  • noise due to body movement or the like is likely to be introduced.
  • Such noise may also be mixed into the RS amplitude.
  • an error in R-wave extraction is induced, and as a result, it becomes a factor causing improper data to enter into the RR interval or the like.
  • Patent Document 1 in the method of performing respiration estimation based on the peak value of the T wave of the electrocardiogram waveform, the case where the T wave is not generated or the peak value of the T wave is very small is detected by a predetermined threshold, An arrangement for calibrating smaller peak values is disclosed.
  • Patent Document 1 when large noise is superimposed on an electrocardiogram waveform, it is impossible to correct biological signals such as RS amplitude and RR interval.
  • Patent No. 5632570 gazette
  • the present invention has been made in view of the above-described points, and noise components mixed in biological signals such as RS amplitude and RR interval can be appropriately removed, and the accuracy of analysis of biological signals can be reduced.
  • An object of the present invention is to provide a biological signal processing method and a biological signal processing device that can be improved.
  • the biological signal processing method of the present invention comprises a first step of extracting a biological signal from an electrocardiogram waveform of a living body, and a second step of calculating averaged data using time-series data of the biological signal extracted in the first step. And determining whether the data of the biological signal extracted in the first step is appropriate for each data based on the averaged data calculated using the data of the biological signal at a time earlier than this data And a fourth step of either deleting or interpolating the data of the biological signal determined to be inappropriate in the third step.
  • the biological signal processing apparatus of the present invention uses a biological signal extraction unit configured to extract a biological signal from an electrocardiogram waveform of a living body, and time-series data of the biological signal extracted by the biological signal extraction unit.
  • Averaging processing unit configured to calculate averaged data, and whether the data of the biological signal extracted by the biological signal extraction unit is appropriate, using data of biological signal at a time earlier than this data
  • an abnormal value determination unit configured to make a determination for each data based on the averaged data calculated as described above, or deletion or interpolation of data of a biological signal determined to be inappropriate by the abnormal value determination unit
  • an abnormal value processing unit configured to perform the following.
  • whether or not the data of the biological signal extracted in the first step is appropriate is determined for each data based on the averaged data calculated using the data of the biological signal at a time earlier than this data.
  • the noise component mixed in the biological signal can be appropriately removed by either deleting or interpolating the data of the biological signal determined to be inappropriate, and the accuracy of analysis of the biological signal can be improved. it can.
  • the value is inherently variable, and in order to determine if inappropriate data may be mixed, it is not a fixed value but based on the averaged value of the previous values. It is preferable to treat.
  • FIG. 1 is a diagram showing an example of time-series data of an electrocardiogram waveform and an RR interval.
  • FIG. 2 is a diagram showing an example of time-series data of RS amplitude.
  • FIG. 3 is a block diagram showing the configuration of the biological signal processing apparatus according to the first embodiment of the present invention.
  • FIG. 4 is a flowchart for explaining the operation of the biological signal processing apparatus according to the first embodiment of the present invention.
  • FIG. 5 is a diagram showing an example of RS amplitude time-series data, RS amplitude averaged data, and RS amplitude data after interpolation.
  • FIG. 1 is a diagram showing an example of time-series data of an electrocardiogram waveform and an RR interval.
  • FIG. 2 is a diagram showing an example of time-series data of RS amplitude.
  • FIG. 3 is a block diagram showing the configuration of the biological signal processing apparatus according to the first embodiment of the present invention.
  • FIG. 4 is a flowchar
  • FIG. 6 is a diagram showing an example of time-series data of RS amplitude and data obtained by resampling time-series data of RS amplitude.
  • FIG. 7 is a diagram showing an example of a spectrum of RS amplitude.
  • FIG. 8 is a block diagram showing the configuration of a biological signal processing apparatus according to a second embodiment of the present invention.
  • FIG. 9 is a flowchart for explaining the operation of the biological signal processing apparatus according to the second embodiment of the present invention.
  • FIG. 10 is a diagram showing an example of an electrocardiogram waveform, time series data of an RR interval, averaged data of an RR interval, and data of an RR interval after interpolation.
  • FIG. 10 is a diagram showing an example of an electrocardiogram waveform, time series data of an RR interval, averaged data of an RR interval, and data of an RR interval after interpolation.
  • FIG. 11 is a view showing an example of averaged data of RR intervals according to the second embodiment of the present invention and data of RR intervals after interpolation.
  • FIG. 12 is a flow chart for explaining the operation of the biological signal processing apparatus according to the third embodiment of the present invention.
  • FIG. 13 is a diagram illustrating an example of first and second order differential values of time-series data of RS amplitude, and determination results of the change amount decrease determination unit.
  • FIG. 14 is a diagram showing an example of a spectrum obtained by frequency analysis of RS amplitude by fast Fourier transform in the fourth embodiment of the present invention.
  • FIG. 15 is a diagram showing an example of a spectrum in which RS amplitude is frequency analyzed by the maximum entropy method in the fourth embodiment of the present invention.
  • FIG. 12 is a flow chart for explaining the operation of the biological signal processing apparatus according to the third embodiment of the present invention.
  • FIG. 13 is a diagram illustrating an example of first and second order differential values of time-series data
  • FIG. 16 is a block diagram showing a configuration example of a computer for realizing the biological signal processing apparatus according to the first to fifth examples of the present invention.
  • FIG. 17 is a diagram showing an example of an electrocardiogram waveform, time series data of an RR interval, and time series data of an RS amplitude.
  • FIG. 18 shows a spectrum of an RR interval and a spectrum of an RS amplitude.
  • FIG. 1 (a) shows an example of an electrocardiogram waveform and time series data of RR intervals extracted from the electrocardiogram waveform
  • FIG. 1 (b) is an enlarged view of a part of FIG. 1 (a).
  • 100 indicates an electrocardiogram waveform (unit [ ⁇ V])
  • 101 indicates an RR interval (unit [ms]).
  • the horizontal axis of (a) of FIG. 1 and (b) of FIG. 1 is time.
  • FIG. 1 is an enlarged view of (a) of FIG. 1, in the heartbeat seen in the portion 102, the R wave overlaps the noise peak, and the S wave is on the noise slope I understand.
  • FIG. 2 is a diagram in which RS amplitude data is extracted for each heartbeat from the electrocardiogram waveform of (a) of FIG. 1 and plotted in time series.
  • the RS amplitude is calculated from the difference between the maximum value and the minimum value of the electrocardiogram waveform in an interval of ⁇ 25 ms of the heartbeat time.
  • the point of the portion 103 is affected by noise and has an inappropriate value.
  • FIG. 3 is a block diagram showing the configuration of the biological signal processing apparatus according to the present embodiment.
  • the biological signal processing apparatus averages the time series data of the biological signal extracted by the biological signal extraction unit 2 which extracts the biological signal from the electrocardiogram waveform measured by the electrocardiograph 1 and the biological signal extraction unit 2
  • the averaging processing unit 3 to be performed compares the data of the biological signal extracted by the biological signal extracting unit 2 with the averaged data calculated using data of the time before this data, and the biological signal extracting unit
  • the abnormal value determination unit 4 that determines whether the data of the biological signal extracted in 2 is appropriate and the data of the biological signal determined to be inappropriate by the abnormal value determination unit 4 are deleted or replaced with appropriate data
  • Value interpolation unit 5 that interpolates and the differentiation unit 6 that calculates the first and second derivative values of the biological signal after being processed by the abnormal value processing unit 5, first derivative and second derivative values
  • the frequency change analysis unit 7 performs frequency analysis on the time-series data of the biological signal acquired by the resampling unit
  • the resampling unit 8 samples the time-series data of the biological signal processed by the change amount decrease determination unit 7 and the abnormal value processing unit 5.
  • the electrocardiograph 1 measures an electrocardiogram waveform of a subject (living body) not shown.
  • a specific method of measuring an electrocardiogram waveform is a known technique, and thus the detailed description is omitted.
  • the biological signal extraction unit 2 extracts a biological signal (RS amplitude in the present embodiment) from the electrocardiogram waveform measured by the electrocardiograph 1 (step S1 in FIG. 4).
  • the biological signal extraction unit 2 of this embodiment corresponds to the maximum value (maximum value of the R wave) of the electrocardiogram waveform in a predetermined section (here, a section of ⁇ 25 ms of the heartbeat time) centered on the heartbeat time.
  • the minimum value of the electrocardiogram waveform (corresponding to the minimum value of the S wave) is extracted for each heartbeat as the RS amplitude.
  • the technology disclosed in Japanese Patent Laid-Open No. 2015-156936 can be used.
  • sampling data of two points of an electrocardiogram waveform straddling a predetermined threshold is detected between a representative point of R wave and a representative point of S wave existing after this point,
  • the time at which the straight line connecting the two points of sampling data intersects with the threshold is calculated as the heartbeat time.
  • this heartbeat time is taken as the time of the data of RS amplitude.
  • the abnormal value determination unit 4 performs averaging using data of the biological signal (RS amplitude) extracted by the biological signal extraction unit 2 and data of the biological signal (RS amplitude) up to the immediately preceding time by the averaging processing unit 3 The data is compared with each other to determine whether the data of the biological signal extracted by the biological signal extraction unit 2 is appropriate for each data (step S2 in FIG. 4).
  • the abnormal value determination unit 4 centers on the averaged data X ′ (i ⁇ 1) of the biological signal up to the immediately preceding time, as the value X (i) of the data of the biological signal at a certain time If it is within the range of the predetermined normal value, it is determined that the data X (i) of the biological signal is appropriate, and if the data X (i) is out of the range of the normal value, the data X (i) is not Determine that it is appropriate. In the present embodiment, the range of ⁇ 30% of the averaged data X ′ (i ⁇ 1) is taken as the range of the normal value.
  • the abnormal value determination unit 4 determines whether the data X (i) of the biological signal is appropriate by using the averaged data X ′ (i-1) of the biological signal at the past time, the biological signal extraction is performed. The determination process is not performed on the data of the first biological signal extracted by the unit 2. The abnormal value determination unit 4 performs the determination process on the second and subsequent biological signal data extracted by the biological signal extraction unit 2.
  • the averaging processing unit 3 performs averaging processing on time-series data of the biological signal (RS amplitude) extracted by the biological signal extraction unit 2 (step S3 in FIG. 4). Assuming that the value of the i-th biological signal before the averaging process is X (i), and the value obtained by averaging the biological signals up to the i-th is X ′ (i), the averaging processor 3 gives The averaging process of the biological signal is performed.
  • X '(i) r * X (i) + (1-r) * X' (i-1) (1)
  • the averaging processing unit 3 does not take in the data of the biological signal (RS amplitude) determined to be inappropriate by the abnormal value determination unit 4 in the averaging processing, in order to prevent the erroneous value from mixing into the averaging processing. Let's do it. For example, when the data X (i) of the biological signal is determined to be inappropriate, the averaged data X '(i-1) of the biological signal up to the immediately preceding time is averaged as it is without using the data X (i) What is necessary is to set it as the conversion data X '(i). This makes it possible to further stabilize the transition of the value of the averaged data.
  • the abnormal value processing unit 5 interpolates by replacing the data of the biological signal (RS amplitude) determined as inappropriate by the abnormal value determination unit 4 with appropriate data (step S4 in FIG. 4).
  • a method of interpolation at this time there is linear interpolation in which data of a biological signal determined to be inappropriate is interpolated using appropriate data before and after that.
  • an interpolation method such as spline interpolation may be used instead of linear interpolation.
  • the biological signal extraction unit 2, the abnormal value determination unit 4, the averaging processing unit 3, and the abnormal value processing unit 5 perform steps S1 to S4 until an instruction to end the measurement is given from the subject (YES in FIG. 4).
  • the process is performed every predetermined cycle (for example, every sampling of the electrocardiograph 1).
  • the display unit 10 displays time-series data of the biological signal (RS amplitude) processed by the abnormal value processing unit 5 (step S6 in FIG. 4).
  • FIG. 5 is a view showing an example of time series data of RS amplitude, data obtained by averaging processing section 3 averaging time series data of RS amplitude, and data of RS amplitude interpolated by abnormal value processing section 5.
  • Circles 50 in FIG. 5 indicate time series data of the same RS amplitude as in FIG. 2, broken lines 51 indicate data obtained by averaging the time series data, and asterisks 52 indicate data of RS amplitudes after interpolation. . According to FIG. 5, it can be seen that data of inappropriate RS amplitude affected by noise can be properly interpolated.
  • the averaging processing unit 3 targets the averaging processing with the data of the biological signal extracted by the biological signal extraction unit 2 and not the data interpolated by the abnormal value processing unit 5 but the interpolated data is , Will not be incorporated into the subsequent averaging process.
  • the reason for not using the data after interpolation for the averaging process is that the data after interpolation is estimated based on the averaged data, and the data after interpolation is used to derive the data itself It is not appropriate to reincorporate it into the value that had been.
  • FIG. 6 is a diagram showing an example of time series data of RS amplitude and data obtained by resampling time series data of RS amplitude. Circles 60 in FIG. 6 indicate time series data of RS amplitudes, and asterisks 61 indicate data resampled by the resampling unit 8 after interpolation by the abnormal value processing unit 5.
  • the frequency analysis unit 9 analyzes the frequency of the time series data of the biological signal (RS amplitude) acquired by the resampling unit 8 by the fast Fourier transform or the maximum entropy method (MEM) to obtain the spectrum of the biological signal (step S8 in FIG. 4). ).
  • the display unit 10 displays the spectrum of the frequency analysis result by the frequency analysis unit 9 (step S9 in FIG. 4).
  • FIG. 7 is a diagram showing an example of a spectrum analyzed by MEM.
  • a solid line 70 in FIG. 7 indicates a spectrum obtained by frequency analysis of the time-series data (61 in FIG. 6) of the RS amplitude acquired by the resampling unit 8 using MEM.
  • a broken line 71 indicates a spectrum obtained by performing frequency analysis on time series data (60 in FIG. 6) of the RS amplitude before the interpolation processing by the MEM.
  • the spectrum is different between the spectrum obtained from the RS amplitude data before interpolation processing and the spectrum obtained from the RS amplitude data after interpolation of inappropriate data, and the RS amplitude data before interpolation processing is used. It can be seen that the spectrum obtained includes the component or distribution (72, 73, 74 in FIG. 7) of the spectrum due to the inappropriate data. It is considered that the spectrum obtained from the data of RS amplitude after interpolation of inappropriate data shows a result that correctly reflects the condition of the living body.
  • noise components mixed in a biological signal such as RS amplitude can be appropriately removed, and the accuracy of analysis of the biological signal can be improved.
  • interpolation is performed by replacing the data of the biological signal determined as inappropriate by the abnormal value determination unit 4 with data that is likely to be inappropriate, but the present invention is not limited to this. Data of a biological signal determined to be inappropriate by the value determination unit 4 may be deleted (data loss).
  • FIG. 8 is a block diagram showing the configuration of a biological signal processing apparatus according to this embodiment.
  • the biological signal processing apparatus according to this embodiment includes a biological signal extraction unit 2, an averaging processing unit 3 a, an abnormal value determination unit 4, an abnormal value processing unit 5, a differentiation unit 6, and a change amount reduction determination unit 7. , A resampling unit 8, a frequency analysis unit 9, and a display unit 10.
  • a biological signal extraction unit 2 an averaging processing unit 3 a
  • an abnormal value determination unit 4 an abnormal value processing unit 5, a differentiation unit 6, and a change amount reduction determination unit 7.
  • a resampling unit 8 a frequency analysis unit 9
  • a display unit 10 In the present embodiment, an example will be described in which inappropriate data is removed from time-series data of an RR interval.
  • the biological signal extraction unit 2 extracts a biological signal (RR interval in this embodiment) from the electrocardiogram waveform measured by the electrocardiograph 1 (step S10 in FIG. 9).
  • a biological signal for example, the document "ECG Implementation on the TMS320C5515 DSP Medical Development Kit (MDK) with the ADS1298 ECG-FE", Texas Instruments Incorporated, ⁇ http://www.ti.com/lit The technology disclosed in /an/sprabj1/sprabj1.pdf>, 2011 "can be used.
  • the RR interval is obtained based on the change in the time difference value of the electrocardiogram waveform.
  • the heartbeat time may be determined using the technique disclosed in Japanese Patent Application Laid-Open No. 2015-156936, and the interval of the heartbeat time may be taken as the RR interval.
  • the abnormal value determination unit 4 uses the data of the biological signal (RR interval) extracted by the biological signal extraction unit 2 and the data of the biological signal (RR interval) up to the time immediately before the averaging processing unit 3a. The calculated averaged data is compared, and it is determined for each data whether the data of the biological signal extracted by the biological signal extraction unit 2 is appropriate (FIG. 9, step S11).
  • the value X (i) of the data of the biological signal at a certain time is a predetermined multiple of the averaged data X ′ (i-1) of the biological signal up to the immediately preceding time
  • the value exceeds 1.35 times it is determined that the data X (i) is inappropriate, and the data X (i) is not more than a predetermined number of times the averaged data X '(i-1).
  • the range equal to or less than a predetermined multiple of the averaged data X ′ (i ⁇ 1) is the range of the normal value.
  • the abnormal value determination unit 4 performs the determination process on the second and subsequent biological signal data extracted by the biological signal extraction unit 2.
  • the averaging processing unit 3a performs averaging processing on the time-series data of the biological signal (RR interval) extracted by the biological signal extraction unit 2 (steps S12 and S13 in FIG. 9). The averaging process of this embodiment will be described later.
  • the abnormal value processing unit 5 interpolates by replacing data of the biological signal (RR interval) determined by the abnormal value determination unit 4 as inappropriate with appropriate data (step S14 in FIG. 9).
  • the abnormal value processing unit 5 determines that the abnormal value determination unit 4 generates inappropriate data in the biological signal (RR interval), the time at which the inappropriate data was generated and the time immediately before the time And estimate the number of data to be inserted (corresponding to the heart rate).
  • the abnormal value processing unit 5 sets a time interval (t 2 ⁇ t 1 ) between a time t 2 when inappropriate data occurs in the biological signal (RR interval) and a time t 1 of data immediately before that. ), and by dividing the value of the average data of R-R interval until time t 1, determining a number N of data to be inserted between the time t 2 and time t 1.
  • the abnormal value processing unit 5 equally divides the time interval (t 2 ⁇ t 1 ) between the time t 2 and the time t 1 by the determined number N of data into the time t 2 and the time t 1 . Calculated as the probable value of the RR interval to be inserted between.
  • the abnormal value processing unit 5 between times t 2 to inappropriate data occurs in R-R interval between the time t 1 immediately before, insert a plausible value of the number N by R-R intervals
  • the RR interval can be interpolated.
  • FIG. 10A shows an example of an electrocardiogram waveform and time series data of an RR interval extracted from the electrocardiogram waveform.
  • 80 indicates an electrocardiogram waveform (unit [ ⁇ V])
  • 81 indicates an RR interval (unit [ms]).
  • the RR interval largely fluctuates due to the respiratory motion of the living body at around 16:31:40.
  • FIG. 10B is a diagram showing an example of data obtained by averaging the time-series data of the RR interval shown in FIG. 10A and data interpolated by the abnormal value processing unit 5.
  • the broken line 82 in (b) of FIG. 10 indicates data obtained by averaging the time series data of the RR interval according to the method described in the first embodiment, and the * mark 83 indicates the data after interpolation.
  • averaging is performed using the values of the RR intervals themselves. Also, in order to prevent erroneous values from being included in the averaging, do not take into the averaging in the case of values separated by a fixed percentage (more than ⁇ 30% in this example) compared to the previous averaged values. And, the value of the RR interval showing the fluctuation derived from the original living condition is regarded as an inappropriate value and is not taken into the averaging, so that it becomes a form of sticking to the past value. It turns out that it leads to an incorrect result, such as continuing unnecessary interpolation.
  • the averaging processing unit 3a performs averaging on the values based on the reciprocal of the RR intervals. And calculating the averaged data of the RR interval from the reciprocal of the value obtained by this averaging process, for each piece of data.
  • the processing target up to the i-th A value C ′ (i) obtained by averaging the data can be obtained by the following equation similar to the equation (1).
  • C '(i) r * C (i) + (1-r) * C' (i-1) (2)
  • the processing target data C (i) is inappropriate and is not taken into the averaging process.
  • the value C ′ (i ⁇ 1) obtained by averaging the processing target data up to the immediately preceding time may be taken as C ′ (i).
  • the range of ⁇ 30% of the averaged data C ′ (i ⁇ 1) is taken as the normal value range.
  • steps S14, S15, S16, S17, S18, and S19 in FIG. 9 are the same as those in steps S4, S5, S6, S7, S8, and S9 in FIG.
  • FIG. 11 is a diagram showing an example of data obtained by averaging the time-series data of the RR interval shown in FIG. 10A by the method of the present embodiment, and data interpolated by the abnormal value processing unit 5. Circles and * marks 91 in FIG. 11 indicate time series data of the RR interval and data of the RR interval after interpolation, and a broken line 92 indicates averaged data of the RR interval.
  • the variation range of the RR interval of the steepest variation is about 650 ms ⁇ 900 ms (42% variation), while the variation range of the heart rate proportional to the reciprocal of the RR interval is about 92 bpm ⁇ 67 bpm (The fluctuation amount is 27%). Therefore, according to the method of the present embodiment, even in the place where the RR interval fluctuates, those fluctuations are taken into the averaging, and the data of the interpolated RR interval is R- before the interpolation process. There is no deviation from the R interval data. That is, by using the heart rate, the scale of fluctuation can be suppressed, so that the averaging process is stabilized and the process on the data sequence of the biological signal is performed correctly.
  • the fluctuation range of the averaged data is performed by performing averaging processing on the value based on the reciprocal of the data value rather than the data value itself in a certain numerical range.
  • the averaging process can be stabilized. According to this embodiment, in the time-series data of the biological signal, it is possible to remove inappropriate data caused by noise etc. and restore it in a plausible manner, thereby linking it to more accurate analysis of the condition of the living body. it can.
  • the differentiating unit 6 calculates first and second derivative values of the biological signal (RS amplitude) processed by the abnormal value processing unit 5 (step S20 in FIG. 12).
  • the first-order differential value f ′ (t k ) can be expressed as equation (3).
  • f '(t k ) ⁇ f (t k + 1 ) -f (t k ) ⁇ / (t k + 1 -t k ) (3)
  • the second-order differential value f ′ ′ (t k ) can be expressed as in equation (4).
  • f "(t k) ⁇ f (t k + 1) -2f (t k) + f (t k-1) ⁇ / (t k + 1 -t k) 2 ... (4)
  • the change amount decrease determination unit 7 determines that the state of the first-order differential value calculated by the differential unit 6 and the second-order differential value within a predetermined range centered on 0 continues for a predetermined time or more.
  • the display unit 10 displays the determination result of the change amount reduction determination unit 7 (step S22 in FIG. 12). This makes it possible to warn that the fluctuation of the biological signal is low.
  • a warning message may be displayed on the display unit 10 as a notification means, a notification means comprising a light emitter such as an LED may be separately provided and blinked, or a notification means such as a speaker may be provided. It may be separately provided to issue a warning by voice.
  • FIG. 13 is a diagram showing an example of the first-order differential value and the second-order differential value of the time-series data of RS amplitude shown in FIG. 5 and the determination result of the change amount reduction determination unit 7.
  • the ⁇ mark 110 in FIG. 13 indicates the first-order derivative value
  • the ⁇ mark 111 indicates the second-order derivative value
  • the solid line 112 indicates the determination result of the change amount reduction determination unit 7.
  • the biological signal fluctuation is low and the determination result is “1”.
  • at least one of the first derivative and the second derivative is out of the range of ⁇ 80 ⁇ V, or the first derivative and the second derivative are both in the range of ⁇ 80 ⁇ V If the duration of time is less than 3 seconds, it is determined that the fluctuation of the biological signal is normal and the determination result is "0". Thus, in this embodiment, it can be determined whether the breathing movement is changing or stopping with time, and the breathing movement of the living body can be monitored.
  • the frequency analysis unit 9 of the biological signal processing apparatus frequency analyzes time series data of the biological signal (RS amplitude) acquired by the resampling unit 8 to obtain the spectrum of the biological signal ( The display unit 10 displays this spectrum (step S9 in FIG. 4).
  • FIG. 14 is a diagram showing an example of a spectrum obtained by frequency analysis of RS amplitude by fast Fourier transform.
  • the horizontal axis is the frequency
  • the vertical axis is the spectral energy density normalized so that the maximum peak value is 1.
  • FIG. 15 is a diagram showing an example of a spectrum analyzed by the maximum entropy method using data of the same RS amplitude as in the case of FIG.
  • the maximum entropy method is different from fast Fourier transform, and frequency resolution is independent of measurement time, so high frequency resolution can be obtained without increasing measurement time.
  • the period of normal breathing is 3 to 4 seconds, and if the measurement time is lengthened to increase the frequency resolution with fast Fourier transform, data for multiple cycles will be included, and the obtained frequency distribution will be those statistics. In the end, information on a single respiratory activity is buried. However, since maximum resolution can be used to obtain high resolution in a short measurement time, it is possible to obtain frequency information for a single non-statistical breath.
  • the calculation of the frequency by the maximum entropy method is carried out by the following method (refer to the document, "N. Shigeo," Processing of waveform data for scientific measurement ", CQ publication, p. 173-174, 1986").
  • the maximum entropy method there are the Burg method and the Yule-Walker method.
  • the Burg method is taken as an example.
  • the spectral energy density S ( ⁇ ) to be determined is given by the following equation.
  • ⁇ t is a sampling rate, which is 0.2 seconds in the example of FIG.
  • the model order m takes an arbitrary integer, but here, the maximum model order has a value of 16 or more (see “Inoue Hiroshi,” Circular disease and autonomic nervous function, Medical School, p. 85-86, 2010 ". ) To 20, and the order m is 1 to 20.
  • N is the number of RS amplitude data, which is 32 here.
  • initial values of the coefficients b mi and b ' mi in the equations (7) to (9) are expressed by the following equations.
  • x i represents the i-th data out of N data.
  • the regression relationship equation of equations (13) and (14) is used to find the coefficient a mi of the autoregressive model and the variance P m of the prediction error.
  • Equation (14) P 0 used in equation (14) can be obtained by equation (15), assuming that the average value of data of RS amplitude is x ave .
  • the statistic Q m is calculated from Q 1 to Q 20 using equation (16), and m giving the smallest Q m among them is the model order m used in equation (6).
  • the frequency distribution can be obtained by Equation (6).
  • the determination process is performed using the above example. It is not limited.
  • the range of averaged data X ′ (i ⁇ 1) ⁇ ⁇ ( ⁇ is a specified value) may be set as the range of normal values.
  • the abnormal value determination unit 4 of the first to fourth embodiments uses the data X (i) of the biosignal to be determined and the biosignal data of a time earlier than this data (up to the immediately preceding time).
  • the variance ⁇ 2 obtained from the averaged data calculated using the biological signal data) may be calculated.
  • the abnormal value determination unit 4 determines that the variance ⁇ 2 is out of the range of the predetermined normal value based on the variance ⁇ p 2 obtained from the averaged data calculated using the data of the biological signal at the past time.
  • the data X (i) of the biological signal may be determined to be inappropriate. For example, if the range of 2 ⁇ p 2 or less is a normal range, and the variance ⁇ 2 exceeds 2 ⁇ p 2 , it may be determined that the data X (i) of the biological signal is inappropriate.
  • the biological signal processing apparatus described in the first to fifth embodiments can be realized by a computer having a central processing unit (CPU), a storage device, and an interface, and a program for controlling these hardware resources.
  • the computer includes a CPU 40, a storage device 41, and an interface device (hereinafter abbreviated as I / F) 42.
  • I / F interface device
  • the electrocardiograph 1 and the like are connected to the I / F 42.
  • a program for realizing the biological signal processing method of the present invention is provided in the state of being recorded on a recording medium such as a flexible disk, a CD-ROM, a DVD-ROM, a memory card, etc.
  • Stored in The CPU 40 executes the processing described in the first to fifth embodiments in accordance with the program stored in the storage device 41.
  • the present invention can be applied to a technique for analyzing a biological signal obtained from an electrocardiogram waveform.
  • SYMBOLS 1 electrocardiograph, 2 ... biomedical signal extraction part, 3, 3 ... averaging processing part, 4 ... abnormal value determination part, 5 ... abnormal value processing part, 6 ... differentiation part, 7 ... change amount reduction determination part, 8 ... Resampling unit, 9 ... Frequency analysis unit, 10 ... Display unit, 30 ... Inverse number average processing unit, 31 ... Averaged data calculation unit.

Abstract

生体信号処理装置は、心電計(1)が測定した心電図波形から生体信号を抽出する生体信号抽出部(2)と、生体信号抽出部(2)で抽出された生体信号の時系列データを用いて平均化データを算出する平均化処理部(3)と、生体信号抽出部(2)で抽出された生体信号のデータが適切かどうかを、このデータよりも過去の時刻の生体信号のデータを用いて算出された平均化データに基づいてデータ毎に判定する異常値判定部(4)と、異常値判定部(4)で不適切と判定された生体信号のデータの削除および補間のいずれかを行う異常値処理部(5)とを備えている。

Description

生体信号処理方法および生体信号処理装置
 本発明は、心電図波形から得られる生体信号に混入したノイズ成分を適切に除去して、生体信号の解析精度を向上させる生体信号処理方法および生体信号処理装置に関するものである。
 心臓の拍動リズムは、自律神経すなわち交感神経・迷走神経の影響を受けて変動することが知られている。例えば、安静かつ寛いだ状態では、迷走神経が亢進し、呼吸に伴う心拍変動(呼吸性洞性不整脈)が顕著にみられるようになる。このときの呼吸数は、心電図波形から抽出される心拍(R波)時刻の時間間隔、すなわちR-R間隔を分析することで、推定することができる。
 一方、心電図波形の振幅にも呼吸の影響が現れる。この心電図波形振幅への影響は、呼吸に伴って肺や胸郭が伸縮することで、心電図測定系から見たインピーダンスが変動することによると考えられる。
 図17の(a)は、被験者が4-7-8呼吸法(吸気4秒-息止め7秒-呼気8秒)と呼ばれる呼吸方法を実践した際の心電図波形の例を示す図である。図17の(a)によると、心電図波形の高さが変動していることが容易に見て取れる。この心電図波形から、R波と1つ前のR波の時間間隔であるR-R間隔のデータを抽出して時系列にプロットした図を図17の(b)に示す。R-R間隔は、呼気時に長くなり、吸気時に短くなる(心拍は、呼気時に遅くなり、吸気時に速くなる)。図17の(b)によると、R-R間隔が、心電図波形と同期して変動していることが分かる。
 また、図17の(c)は、R波のピーク値からS波のピーク値までの振幅、すなわちRS振幅のデータを心拍毎に抽出して時系列にプロットした図である。RS振幅は、例えば、抽出したR波に対して、前後一定の区間の心電図波形を探索し、その区間の最大値と最小値の差をとる、といった方法で取得できる。図17の(c)では、上述の吸気-息止め-呼気の時間幅がRS振幅の変動パターンに現れていることが分かる。
 図18の(a)は、図17の(b)に示したR-R間隔のデータを最大エントロピー法(MEM:Maximum Entropy Method)で解析したスペクトルを示す図、図18の(b)は、図17の(c)に示したRS振幅のデータをMEMで解析したスペクトルを示す図である。MEMを用いることにより、60秒という短いデータからでも滑らかなスペクトル曲線が得られる。図18の(a)、図18の(b)の例では、RS振幅から得られたスペクトルは、R-R間隔から得られたスペクトルよりも明確に、19秒周期≒0.052Hzのピークを示している。このように、R-R間隔と併せて、RS振幅からも呼吸についての情報を得ることができる。
 ところで、心電図波形を計測する際、波形にノイズが加わることがある。特に、携帯型の装置やウエアラブルな装置を用いて日常生活の中での心電図波形を取得する場合には、体動などによるノイズが入りやすい。そうしたノイズは、RS振幅にも混入する可能性がある。また、R波抽出の誤りを誘発し、その結果、R-R間隔などに不適切なデータを入り込ませる要因になる。
 特許文献1には、心電図波形のT波のピーク値を基に呼吸推定を行う方法において、T波が発生しない場合もしくはT波のピーク値が非常に小さい場合を所定閾値により検出し、所定閾値より小さいピークの値を校正する構成が開示されている。しかしながら、特許文献1に開示された技術では、心電図波形に大きなノイズが重畳した場合、RS振幅やR-R間隔などの生体信号を補正することは不可能であった。
 RS振幅やR-R間隔などの生体信号を基に、被験者の呼吸等に関する分析を行う場合、それら生体信号の、呼吸等に同期した変動成分に着目することになる。そこで、MEMや高速フーリエ変換(FFT:Fast Fourier Transform)といったスペクトル解析などの手法を生体信号に適用し、呼吸等に関する情報を抽出するといった方法が採られる。ところが、生体信号のデータ列に、ノイズ等に由来する不適切な値が含まれていると、解析の結果が本来のものとは乖離してしまうという問題点があった。
特許第5632570号公報
 本発明は、上記のような点に鑑みてなされたものであり、RS振幅やR-R間隔などの生体信号に混入したノイズ成分を適切に除去することができ、生体信号の解析の精度を向上させることができる生体信号処理方法および生体信号処理装置を提供することを目的とする。
 本発明の生体信号処理方法は、生体の心電図波形から生体信号を抽出する第1のステップと、この第1のステップで抽出した生体信号の時系列データを用いて平均化データを算出する第2のステップと、前記第1のステップで抽出した生体信号のデータが適切かどうかを、このデータよりも過去の時刻の生体信号のデータを用いて算出した前記平均化データに基づいてデータ毎に判定する第3のステップと、この第3のステップで不適切と判定した生体信号のデータの削除および補間のいずれかを行う第4のステップとを含むことを特徴とするものである。
 また、本発明の生体信号処理装置は、生体の心電図波形から生体信号を抽出するように構成された生体信号抽出部と、この生体信号抽出部で抽出された生体信号の時系列データを用いて平均化データを算出するように構成された平均化処理部と、前記生体信号抽出部で抽出された生体信号のデータが適切かどうかを、このデータよりも過去の時刻の生体信号のデータを用いて算出された前記平均化データに基づいてデータ毎に判定するように構成された異常値判定部と、この異常値判定部で不適切と判定された生体信号のデータの削除および補間のいずれかを行うように構成された異常値処理部とを備えることを特徴とするものである。
 本発明によれば、第1のステップで抽出した生体信号のデータが適切かどうかを、このデータよりも過去の時刻の生体信号のデータを用いて算出した平均化データに基づいてデータ毎に判定し、不適切と判定した生体信号のデータの削除および補間のいずれかを行うことにより、生体信号に混入したノイズ成分を適切に除去することができ、生体信号の解析の精度を向上させることができる。生体信号においては本来その値は変動するものであり、不適切なデータが混入しうる場合にそれを判別するためには、固定的な値ではなく、それまでの値の平均化した値に基づいて処理することが好ましい。
図1は、心電図波形およびR-R間隔の時系列データの例を示す図である。 図2は、RS振幅の時系列データの例を示す図である。 図3は、本発明の第1の実施例に係る生体信号処理装置の構成を示すブロック図である。 図4は、本発明の第1の実施例に係る生体信号処理装置の動作を説明するフローチャートである。 図5は、RS振幅の時系列データ、RS振幅の平均化データ、および補間後のRS振幅のデータの例を示す図である。 図6は、RS振幅の時系列データ、およびRS振幅の時系列データを再サンプリングしたデータの例を示す図である。 図7は、RS振幅のスペクトルの例を示す図である。 図8は、本発明の第2の実施例に係る生体信号処理装置の構成を示すブロック図である。 図9は、本発明の第2の実施例に係る生体信号処理装置の動作を説明するフローチャートである。 図10は、心電図波形、R-R間隔の時系列データ、R-R間隔の平均化データ、および補間後のR-R間隔のデータの例を示す図である。 図11は、本発明の第2の実施例によるR-R間隔の平均化データ、および補間後のR-R間隔のデータの例を示す図である。 図12は、本発明の第3の実施例に係る生体信号処理装置の動作を説明するフローチャートである。 図13は、RS振幅の時系列データの1階微分値および2階微分値と、変化量低下判定部の判定結果の例を示す図である。 図14は、本発明の第4の実施例においてRS振幅を高速フーリエ変換により周波数解析したスペクトルの例を示す図である。 図15は、本発明の第4の実施例においてRS振幅を最大エントロピー法により周波数解析したスペクトルの例を示す図である。 図16は、本発明の第1~第5の実施例に係る生体信号処理装置を実現するコンピュータの構成例を示すブロック図である。 図17は、心電図波形、R-R間隔の時系列データおよびRS振幅の時系列データの例を示す図である。 図18は、R-R間隔のスペクトルおよびRS振幅のスペクトルを示す図である。
[第1の実施例]
 図1ないし図7を参照して本発明の第1の実施例について説明する。図1の(a)は心電図波形、および心電図波形から抽出したR-R間隔の時系列データの例を示す図であり、図1の(b)は図1の(a)の一部を拡大した図である。図1の(a)、図1の(b)において、100は心電図波形(単位[μV])を示し、101はR-R間隔(単位[ms])を示している。図1の(a)、図1の(b)の横軸は時間である。
 心電図波形にはノイズが重畳しているものの、R波に相当する棘波が確認でき、R-R間隔は正しく抽出されている。図1の(a)を拡大した図1の(b)によると、102の部分に見られる心拍では、R波がノイズのピークと重なっており、S波はノイズのスロープにかかっていることが分かる。
 図2は、図1の(a)の心電図波形からRS振幅のデータを心拍毎に抽出して時系列にプロットした図である。ここでは、RS振幅は、心拍時刻の±25msの区間での心電図波形の最大値と最小値の差から算出している。103の部分の点はノイズの影響を受けたものであり、不適切な値になっている。
 図3は本実施例に係る生体信号処理装置の構成を示すブロック図である。生体信号処理装置は、心電計1が測定した心電図波形から生体信号を抽出する生体信号抽出部2と、生体信号抽出部2で抽出された生体信号の時系列データに対して平均化処理を行う平均化処理部3と、生体信号抽出部2で抽出された生体信号のデータとこのデータよりも前の時刻のデータを用いて算出された平均化データとを比較して、生体信号抽出部2で抽出された生体信号のデータが適切かどうかを判定する異常値判定部4と、異常値判定部4で不適切と判定された生体信号のデータを削除するか、もしくは適切なデータに置き換えて補間する異常値処理部5と、異常値処理部5によって処理された後の生体信号の1階微分値と2階微分値を算出する微分部6と、1階微分値と2階微分値を基に生体信号の変動が低いかどうかを判定する変化量低下判定部7と、異常値処理部5によって処理された生体信号の時系列データをサンプリングするリサンプリング部8と、リサンプリング部8が取得した生体信号の時系列データを周波数解析して生体信号のスペクトルを求める周波数解析部9と、異常値処理部5によって処理された後の生体信号、変化量低下判定部7の判定結果および周波数解析部9の周波数解析結果を表示する表示部10とを備えている。
 次に、図4を参照して本実施例の生体信号処理装置の動作を説明する。本実施例では、図2に示したRS振幅の時系列データから不適切なデータを取り除く例について説明する。なお、微分部6と変化量低下判定部7の動作については他の実施例で説明する。
 心電計1は、図示しない被験者(生体)の心電図波形を測定する。心電図波形の具体的な測定方法は周知の技術であるので、詳細な説明は省略する。
 生体信号抽出部2は、心電計1が測定した心電図波形から生体信号(本実施例ではRS振幅)を抽出する(図4ステップS1)。本実施例の生体信号抽出部2は、上記のとおり、心拍時刻を中心とする所定の区間(ここでは心拍時刻の±25msの区間)での心電図波形の最大値(R波の最大値に相当)と心電図波形の最小値(S波の最小値に相当)との差をRS振幅として心拍毎に抽出する。
 なお、心拍時刻を求める方法としては、例えば特開2015-156936号公報に開示された技術を用いることができる。この文献に開示された技術では、R波の代表点とこの点の後に存在するS波の代表点との間で、所定の閾値を跨ぐ心電図波形の2点のサンプリングデータを検出して、この2点のサンプリングデータを結ぶ直線が前記閾値と交わる時刻を心拍時刻として算出する。また、この心拍時刻を、RS振幅のデータの時刻とする。
 異常値判定部4は、生体信号抽出部2が抽出した生体信号(RS振幅)のデータと平均化処理部3が直前の時刻までの生体信号(RS振幅)のデータを用いて算出した平均化データとを比較し、生体信号抽出部2が抽出した生体信号のデータが適切かどうかをデータ毎に判定する(図4ステップS2)。
 具体的には、異常値判定部4は、ある時刻での生体信号のデータの値X(i)が、直前の時刻までの生体信号の平均化データX´(i-1)を中心とする所定の正常値の範囲内の場合、生体信号のデータX(i)は適切であると判定し、データX(i)が前記正常値の範囲から外れている場合、データX(i)は不適切であると判定する。本実施例では、平均化データX´(i-1)の±30%の範囲を正常値の範囲とする。なお、異常値判定部4は、過去の時刻の生体信号の平均化データX´(i-1)を用いて、生体信号のデータX(i)が適切かどうかを判定するので、生体信号抽出部2が抽出した1個目の生体信号のデータについては判定処理を実施しない。異常値判定部4が判定処理を実施するのは、生体信号抽出部2が抽出した2個目以降の生体信号のデータについてである。
 次に、平均化処理部3は、生体信号抽出部2が抽出した生体信号(RS振幅)の時系列データに対して平均化処理を行う(図4ステップS3)。平均化処理部3は、平均化処理前のi番目の生体信号の値をX(i)、i番目までの生体信号を平均化した値をX´(i)としたとき、次式のようにして生体信号の平均化処理を行う。
 X´(i)=r×X(i)+(1-r)×X´(i-1) ・・・(1)
 式(1)におけるrは予め定められた係数である。係数rの値を小さくするほど、生体信号のデータ列の値の細かな変動が抑えられるものの、一方で生体信号の大まかな変化に追随し難くなるので、このような点を鑑みて、例えばr=0.2などとすると、生体信号の瞬時の変動が抑えられ、適度に平均化された生体信号のデータ列が得られる。
 ただし、平均化処理部3は、誤った値が平均化処理に混入することを防ぐために、異常値判定部4が不適切と判定した生体信号(RS振幅)のデータを平均化処理に取り込まないようにする。例えば生体信号のデータX(i)が不適切と判定された場合、データX(i)を使用せずに、直前の時刻までの生体信号の平均化データX´(i-1)をそのまま平均化データX´(i)とすればよい。これにより、平均化データの値の推移をより安定させることができる。
 異常値処理部5は、異常値判定部4が不適切と判定した生体信号(RS振幅)のデータを適切なデータに置き換えて補間する(図4ステップS4)。このときの補間の方法としては、不適切と判定された生体信号のデータを、その前後の適切なデータを用いて補間する線形補間がある。また、線形補間に代わってスプライン補間などの補間方法を用いてもよい。
 生体信号抽出部2と異常値判定部4と平均化処理部3と異常値処理部5とは、例えば被験者から測定終了の指示があるまで(図4ステップS5においてYES)、ステップS1~S4の処理を所定の周期毎(例えば心電計1のサンプリング毎)に行う。
 表示部10は、異常値処理部5によって処理された生体信号(RS振幅)の時系列データを表示する(図4ステップS6)。
 図5はRS振幅の時系列データ、このRS振幅の時系列データを平均化処理部3が平均化したデータ、および異常値処理部5が補間したRS振幅のデータの例を示す図である。図5の○印50は図2と同じRS振幅の時系列データを示し、破線51はこの時系列データを平均化したデータを示し、*印52は補間後のRS振幅のデータを示している。図5によれば、ノイズの影響を受けた不適切なRS振幅のデータを適切に補間できていることが分かる。
 なお、平均化処理部3が平均化処理の対象とするのは、生体信号抽出部2が抽出した生体信号のデータであって、異常値処理部5が補間したデータではなく、補間したデータが、その後の平均化処理に組み込まれることはない。補間後のデータを平均化処理に使用しない理由は、補間後のデータは、平均化されたデータに基づいて推定されたものであり、その補間後のデータを、このデータ自身を導くのに用いた値に再び組み込むことは適切ではないからである。
 次に、リサンプリング部8は、異常値処理部5によって処理された生体信号(RS振幅)の時系列データを、心電計1のサンプリング周波数よりも遅いサンプリング周波数(例えば1秒間隔)でサンプリングする(図4ステップS7)。
 図6はRS振幅の時系列データ、およびRS振幅の時系列データを再サンプリングしたデータの例を示す図である。図6の○印60はRS振幅の時系列データを示し、*印61は異常値処理部5による補間後にリサンプリング部8が再サンプリングしたデータを示している。
 周波数解析部9は、リサンプリング部8が取得した生体信号(RS振幅)の時系列データを高速フーリエ変換または最大エントロピー法(MEM)により周波数解析し、生体信号のスペクトルを求める(図4ステップS8)。
 表示部10は、周波数解析部9による周波数解析結果のスペクトルを表示する(図4ステップS9)。
 図7はMEMにより周波数解析したスペクトルの例を示す図である。図7の実線70はリサンプリング部8が取得したRS振幅の時系列データ(図6の61)をMEMにより周波数解析したスペクトルを示している。ここでは、比較のため、補間処理前のRS振幅の時系列データ(図6の60)をMEMにより周波数解析したスペクトルを破線71で示している。
 補間処理前のRS振幅のデータから得られたスペクトルと、不適切なデータを補間した後のRS振幅のデータから得られたスペクトルとでは様相が異なっており、補間処理前のRS振幅のデータから得られたスペクトルには、不適切なデータに起因するスペクトルの成分ないしは分布(図7の72,73,74)が含まれていることが見て取れる。不適切なデータを補間した後のRS振幅のデータから得られたスペクトルの方が、生体の状態を正しく反映した結果を示していると考えられる。
 以上のように、本実施例では、RS振幅などの生体信号に混入したノイズ成分を適切に除去することができ、生体信号の解析の精度を向上させることができる。
 なお、本実施例では、異常値判定部4が不適切と判定した生体信号のデータをもっともらしいデータに置き換えて補間しているが、これに限るものではなく、異常値処理部5は、異常値判定部4が不適切と判定した生体信号のデータを削除(データ欠損)してもよい。
[第2の実施例]
 次に、本発明の第2の実施例について説明する。図8は本実施例に係る生体信号処理装置の構成を示すブロック図である。本実施例の生体信号処理装置は、生体信号抽出部2と、平均化処理部3aと、異常値判定部4と、異常値処理部5と、微分部6と、変化量低下判定部7と、リサンプリング部8と、周波数解析部9と、表示部10とを備えている。本実施例では、R-R間隔の時系列データから不適切なデータを取り除く例について説明する。
 次に、図9を参照して本実施例の生体信号処理装置の動作を説明する。生体信号抽出部2は、心電計1が測定した心電図波形から生体信号(本実施例ではR-R間隔)を抽出する(図9ステップS10)。R-R間隔を求める方法としては、例えば文献「“ECG Implementation on the TMS320C5515 DSP Medical Development Kit (MDK) with the ADS1298 ECG-FE”,Texas Instruments Incorporated,<http://www.ti.com/lit/an/sprabj1/sprabj1.pdf>,2011」に開示された技術を用いることができる。この文献に開示された技術では、心電図波形を時間差分した値の変化を基にR-R間隔を求めている。あるいは特開2015-156936号公報に開示された技術等を用いて心拍時刻を求め、心拍時刻の間隔をR-R間隔としてもよい。
 異常値判定部4は、生体信号抽出部2が抽出した生体信号(R-R間隔)のデータと平均化処理部3aが直前の時刻までの生体信号(R-R間隔)のデータを用いて算出した平均化データとを比較し、生体信号抽出部2が抽出した生体信号のデータが適切かどうかをデータ毎に判定する(図9ステップS11)。
 本実施例の異常値判定部4は、ある時刻での生体信号のデータの値X(i)が、直前の時刻までの生体信号の平均化データX´(i-1)の所定数倍(本実施例では1.35倍)の値を超える場合、データX(i)は不適切であると判定し、データX(i)が平均化データX´(i-1)の所定数倍以下の値である場合、データX(i)は適切であると判定する。すなわち、本実施例では、平均化データX´(i-1)の所定数倍以下の範囲が正常値の範囲となる。第1の実施例で説明したとおり、異常値判定部4が判定処理を実施するのは、生体信号抽出部2が抽出した2個目以降の生体信号のデータについてである。
 次に、平均化処理部3aは、生体信号抽出部2が抽出した生体信号(R-R間隔)の時系列データに対して平均化処理を行う(図9ステップS12,S13)。本実施例の平均化処理については後述する。
 異常値処理部5は、異常値判定部4が不適切と判定した生体信号(R-R間隔)のデータを適切なデータに置き換えて補間する(図9ステップS14)。まず、異常値処理部5は、異常値判定部4が生体信号(R-R間隔)に不適切なデータが生じていると判定した場合、不適切なデータが生じた時刻とその直前の時刻との間に挿入すべきデータの個数(心拍数に相当)を推定する。具体的には、異常値処理部5は、生体信号(R-R間隔)に不適切なデータが生じた時刻t2とその直前のデータの時刻t1との時間間隔(t2―t1)を、時刻t1までのR-R間隔の平均化データの値で除することによって、時刻t2と時刻t1との間に挿入するデータの個数Nを決める。
 そして、異常値処理部5は、決定したデータの個数Nで時刻t2と時刻t1との時間間隔(t2―t1)を等分した値を、時刻t2と時刻t1との間に挿入するR-R間隔のもっともらしい値として算出する。こうして、異常値処理部5は、R-R間隔に不適切なデータが生じた時刻t2とその直前の時刻t1との間に、個数NだけR-R間隔のもっともらしい値を挿入することによりR-R間隔を補間することができる。
 図10の(a)は心電図波形、および心電図波形から抽出したR-R間隔の時系列データの例を示す図である。図10の(a)において、80は心電図波形(単位[μV])を示し、81はR-R間隔(単位[ms])を示している。この図10の(a)に示した例では、16時31分40秒付近の時刻で、生体の呼吸運動に由来してR-R間隔が大きく揺らいでいる。
 図10の(b)は図10の(a)に示したR-R間隔の時系列データを平均化したデータ、および異常値処理部5が補間したデータの例を示す図である。図10の(b)の破線82はR-R間隔の時系列データを第1の実施例で説明した手法で平均化したデータを示し、*印83は補間後のデータを示している。
 図10の(b)の例では、R-R間隔を平均化した値を求める際に、R-R間隔そのものの値を用い平均化している。また、誤った値が平均化に混入することを防ぐために、それまでの平均化した値に比べ一定の割合(この例では±30%超)離れた値の場合には平均化に取り込まないこととしている。しかしそのため、本来の生体の状態に由来した揺らぎを示しているR-R間隔の値を不適切な値と見なして平均化に取り込まず、過去の値に固執する形となってしまい、それに基づいて無用な補間を続けるといった、誤った結果を招いていることが分かる。
 そこで、本実施例の平均化処理部3aは、生体信号抽出部2が抽出した生体信号(R-R間隔)の平均化処理に際して、R-R間隔の逆数に基づく値に対して平均化処理を行い、この平均化処理で求めた値の逆数からR-R間隔の平均化データを算出することを、個々のデータ毎に行う。具体的には、R-R間隔の逆数に基づく値(以下、処理対象データCと呼ぶ)として、C=60000/R-R間隔=心拍数を用いる。i番目の処理対象データをC(i)、i-1番目までの処理対象データを平均化した値をC´(i-1)、所定の係数をrとすれば、i番目までの処理対象データを平均化した値C´(i)は、式(1)と同様の次式によって求めることができる。
 C´(i)=r×C(i)+(1-r)×C´(i-1) ・・・(2)
 平均化処理部3aの逆数平均化処理部30は、式(2)によりC´(i)を算出する(図9ステップS12)。そして、平均化処理部3aの平均化データ算出部31は、R-R間隔=60000/C´(i)により、R-R間隔の平均化データを算出すればよい(図9ステップS13)。
 ただし、平均化処理部3aは、誤った値が平均化処理に混入することを防ぐために、ある時刻での処理対象データC(i)が、直前の時刻までの処理対象データを平均化した値C´(i-1)を中心とする所定の正常値範囲から外れている場合、処理対象データC(i)を不適切であると判定して、平均化処理に取り込まないようにする。例えば処理対象データC(i)が不適切と判定した場合、直前の時刻までの処理対象データを平均化した値C´(i-1)をそのままC´(i)とすればよい。ここでは、平均化データC´(i-1)の±30%の範囲を正常値範囲とする。
 図9のステップS14,S15,S16,S17,S18,S19の処理は、それぞれ図4のステップS4,S5,S6,S7,S8,S9と同様であるので、説明は省略する。
 図11は図10の(a)に示したR-R間隔の時系列データを本実施例の手法で平均化したデータ、および異常値処理部5が補間したデータの例を示す図である。図11の○印および*印91はR-R間隔の時系列データおよび補間後のR-R間隔のデータを示し、破線92はR-R間隔の平均化データを示している。
 最も変動が急な部分のR-R間隔の変動域がおよそ650ms→900ms(変動量42%)であるのに対し、R-R間隔の逆数に比例する心拍数の変動域はおよそ92bpm→67bpm(変動量27%)となる。したがって、本実施例の手法によれば、R-R間隔が揺らいでいる箇所でも、それらの揺らぎは平均化に取り込まれており、補間処理したR-R間隔のデータが補間処理前のR-R間隔のデータから逸脱することがない。つまり、心拍数を用いることにより、変動のスケールが抑えられるので、平均化処理が安定化され、生体信号のデータ列に対する処理が正しく行なわれている。
 生体信号のデータの値が変動する場合、ある数値域においては、データの値そのものよりも、データの値の逆数に基づく値に対して平均化処理を行うことで、平均化データの変動幅を抑えることができ、平均化処理を安定化することができる。本実施例によれば、生体信号の時系列データにおいて、ノイズ等に起因する不適切なデータを取り除いて、もっともらしく修復することができ、それにより生体の状態のより正確な分析に結び付けることができる。
[第3の実施例]
 次に、本発明の第3の実施例について説明する。本実施例においても、生体信号処理装置の構成は第1の実施例と同様であるので、図3の符号を用いて説明する。本実施例は、図3の生体信号処理装置の微分部6と変化量低下判定部7の動作を説明するものである。
 図12を参照して本実施例の生体信号処理装置の動作を説明する。図12のステップS1~S6の処理は第1の実施例で説明したとおりである。
 次に、微分部6は、異常値処理部5によって処理された生体信号(RS振幅)の1階微分値と2階微分値を算出する(図12ステップS20)。
 ある時刻tkにおける生体信号(RS振幅)の補間された値をf(tk)とすると、1階微分値f’(tk)は式(3)のように表すことができる。
 f’(tk)={f(tk+1)-f(tk)}/(tk+1-tk)・・・(3)
 また、2階微分値f”(tk)は式(4)のように表すことができる。
 f”(tk)={f(tk+1)-2f(tk)+f(tk-1)}/(tk+1-tk2
                            ・・・(4)
 RS振幅の変化は呼吸運動に起因するため、息を止めているときなど、呼吸運動が停止している際は、1階微分値と2階微分値が共に0近傍の値をとる。そこで、変化量低下判定部7は、微分部6が算出した1階微分値と2階微分値が共に0を中心とする所定の範囲内の状態が所定時間以上継続した場合に、生体信号の変動が低い(呼吸運動が停止している)と判定し、1階微分値と2階微分値のうち少なくとも一方が0を中心とする所定の範囲から外れているか、あるいは1階微分値と2階微分値が共に所定の範囲内の状態の継続時間が所定時間未満の場合に、生体信号の変動が正常(呼吸運動が経時変化している)と判定する(図12ステップS21)。
 表示部10は、変化量低下判定部7の判定結果を表示する(図12ステップS22)。これにより、生体信号の変動が低いことを警告することが可能になる。警告の方法としては、通知手段となる表示部10に警告メッセージを表示させてもよいし、LED等の発光器からなる通知手段を別に設けて点滅させてもよいし、スピーカ等の通知手段を別に設けて音声で警告を発するようにしてもよい。
 図13は、図5に示したRS振幅の時系列データの1階微分値および2階微分値と、変化量低下判定部7の判定結果の例を示す図である。図13の□印110は1階微分値を示し、△印111は2階微分値を示し、実線112は変化量低下判定部7の判定結果を示している。
 この図13の例では、1階微分値と2階微分値が共に±80[μV]の範囲内の状態が3秒以上継続した場合に、生体信号の変動が低いとして判定結果を“1”とし、1階微分値と2階微分値のうち少なくとも一方が±80[μV]の範囲から外れているか、あるいは1階微分値と2階微分値が共に±80[μV]の範囲内の状態の継続時間が3秒未満の場合に、生体信号の変動が正常として判定結果を“0”としている。
 こうして、本実施例では、呼吸運動が経時変化しているのか、停止しているのかを判定することができ、生体の呼吸運動を監視することができる。
 なお、本実施例では、図3に示した生体信号処理装置の微分部6と変化量低下判定部7の動作について説明しているが、図8に示した第2の実施例においても同様の動作を実現することができる。
[第4の実施例]
 次に、本発明の第4の実施例について説明する。本実施例においても、生体信号処理装置の構成および処理の流れは第1の実施例と同様であるので、図3、図4の符号を用いて説明する。本実施例では、RS振幅の時系列データを周波数解析する例について説明する。
 第1の実施例で説明したとおり、生体信号処理装置の周波数解析部9は、リサンプリング部8が取得した生体信号(RS振幅)の時系列データを周波数解析して生体信号のスペクトルを求め(図4ステップS8)、表示部10は、このスペクトルを表示する(図4ステップS9)。
 図14はRS振幅を高速フーリエ変換により周波数解析したスペクトルの例を示す図である。横軸は周波数、縦軸は最大ピーク値が1となるように規格化されたスペクトルエネルギー密度である。このように、周波数分布を得たことにより、計測されたRS振幅は、どの周波数帯域の成分により構成されているのか把握可能となり、呼吸運動のより特徴的な知見を得ることができる。
 図14の例では、0.2秒おきにサンプリングされたRS振幅の時系列データを32個すなわち、計6.2秒間のデータからフーリエ変換の計算を行っている。高速フーリエ変換における周波数分解能は、次の式(5)で規定されるため、横軸のプロット間隔はおよそ0.16Hzである(文献「三上直樹,“はじめて学ぶディジタル・フィルタと高速フーリエ変換”,CQ出版,p.135-137,2005年」参照)。
 df=1/T(=1/6.4=1/(0.2×32)≒0.16)    ・・・(5)
 式(5)が意味するところは、周波数分解能は計測時間によって一意に定まるということである。周波数分解能を0.16Hzよりも高くしたい場合には、リサンプリング部8のサンプリングレートが固定されている状況においては、計測時間を長くするより他ない。
 図15は、図14の場合と同じRS振幅のデータを用いて最大エントロピー法により周波数解析したスペクトルの例を示す図である。最大エントロピー法は高速フーリエ変換とは異なり、周波数分解能は計測時間に無関係であるため、計測時間を長くせずとも高い周波数分解能が得られる。
 平時の呼吸の周期は3~4秒であり、高速フーリエ変換で周波数分解能を高めようとして計測時間を長くすると複数周期分のデータを含むこととなり、得られる周波数分布はそれらの統計量となってしまい、単回の呼吸活動の情報が埋もれてしまう。しかし、最大エントロピー法を用いれば高い分解能を短い計測時間で得られるため、統計量ではない単回の呼吸についての周波数情報を得ることができる。
 図15においては、図14に比べて周波数分解能が高まったために、呼吸周波数のピークが0.35Hzにあることが明瞭に観測でき、かつ、図14では確認できない0.23Hzのピークも検出できている。
 最大エントロピー法による周波数の計算は、以下の方法により行う(文献「南茂夫,“科学計測のための波形データ処理”,CQ出版,p.173-174,1986年」参照)。最大エントロピー法には、Burg法とYule-Walker方があるが、ここではBurg法を例にとる。
 求めたいスペクトルエネルギー密度S(ω)は次の式で与えられる。
Figure JPOXMLDOC01-appb-M000001
 Δtはサンプリングレートであり、図15の例では0.2秒である。ωは角周波数であり、周波数fとω=2πfの関係をもつ。
 スペクトルエネルギー密度S(ω)を求めるためには、自己回帰モデルの係数ami、予測誤差の分散Pm、および用いるモデル次数mが分かればよい。モデル次数mは任意の整数をとるが、ここでは最大モデル次数を16以上の値(文献「井上博,“循環器疾患と自律神経機能”,医学書院,p.85-86,2010年」参照)から20を選択し、次数mは1から20をとるものとする。
 自己回帰モデルの係数amiを求めるためには、まず式(7)~式(9)からammを求めておく必要がある。
Figure JPOXMLDOC01-appb-M000002
 式(7)におけるNはRS振幅のデータの個数であり、ここでは32である。また、式(7)~式(9)中の係数bmi,b’miの初期値は次式のようになる。xiはN個のデータのうちのi番目のデータを現す。
Figure JPOXMLDOC01-appb-M000003
 求めたammから式(13)、式(14)の漸化関係式を用いて、自己回帰モデルの係数amiと予測誤差の分散Pmを求める。
Figure JPOXMLDOC01-appb-M000004
 式(14)で用いるP0は、RS振幅のデータの平均値をxaveとすると式(15)で求められる。
Figure JPOXMLDOC01-appb-M000005
 次に、式(6)に代入すべき係数amiを決定するための統計量Qmを計算する。
Figure JPOXMLDOC01-appb-M000006
 式(16)を用いて統計量QmをQ1からQ20まで計算し、それらのうち最小のQmを与えるmが、式(6)で使用するモデル次数mである。計算はm=1から1ずつ増加させてQ20まで計算する途中において統計量Qmの極小値が最初に出現した段階で計算を打ち切り、Qmが極小値となったときのmを式(6)のモデル次数mとして使用してもよい。仮にQ20まで計算しても統計量の極小値が現れなかった場合には、次数の候補の最大値(この場合は20)を使用する。
 以上により、自己回帰モデルの係数ami、予測誤差の分散Pmおよびモデル次数mが入手できたので、式(6)により、周波数分布を求めることができる。図15では、周波数分解能をΔf=0.001とした。すなわち、角周波数ωを0から0.00628ずつ増加させて、3.14まで計算した。高速フーリエ変換の際のΔf=0.16と比べて高い分解能を得ることができた。
[第5の実施例]
 第1~第4の実施例では、判定の対象となる生体信号のデータX(i)が、このデータX(i)よりも過去の時刻の生体信号のデータを用いて算出された平均化データX´(i-1)に基づく所定の正常値の範囲外の場合に、判定の対象となる生体信号のデータX(i)を不適切と判定していたが、判定処理は上記の例に限るものではない。例えば、平均化データX´(i-1)±α(αは規定値)の範囲を正常値の範囲としてもよい。
 また、第1~第4の実施例の異常値判定部4は、判定の対象となる生体信号のデータX(i)とこのデータよりも過去の時刻の生体信号のデータ(直前の時刻までの生体信号のデータ)とを用いて算出した平均化データから得られる分散σ2を算出してもよい。そして、異常値判定部4は、この分散σ2が、過去の時刻の生体信号のデータを用いて算出した平均化データから得られる分散σp 2に基づく所定の正常値の範囲外の場合に、生体信号のデータX(i)を不適切と判定するようにしてもよい。例えば2σp 2以下の範囲を正常値の範囲とし、分散σ2が2σp 2を上回る場合に、生体信号のデータX(i)を不適切と判定すればよい。
[第6の実施例]
 第1~第5の実施例で説明した生体信号処理装置は、CPU(Central Processing Unit)、記憶装置及びインターフェースを備えたコンピュータと、これらのハードウェア資源を制御するプログラムによって実現することができる。このコンピュータの構成例を図16に示す。コンピュータは、CPU40と、記憶装置41と、インターフェース装置(以下、I/Fと略する)42とを備えている。I/F42には、心電計1などが接続される。このようなコンピュータにおいて、本発明の生体信号処理方法を実現させるためのプログラムは、フレキシブルディスク、CD-ROM、DVD-ROM、メモリカードなどの記録媒体に記録された状態で提供され、記憶装置41に格納される。CPU40は、記憶装置41に記憶されたプログラムに従って第1~第5の実施例で説明した処理を実行する。
 本発明は、心電図波形から得られる生体信号を解析する技術に適用することができる。
 1…心電計、2…生体信号抽出部、3,3a…平均化処理部、4…異常値判定部、5…異常値処理部、6…微分部、7…変化量低下判定部、8…リサンプリング部、9…周波数解析部、10…表示部、30…逆数平均化処理部、31…平均化データ算出部。

Claims (9)

  1.  生体の心電図波形から生体信号を抽出する第1のステップと、
     この第1のステップで抽出した生体信号の時系列データを用いて平均化データを算出する第2のステップと、
     前記第1のステップで抽出した生体信号のデータが適切かどうかを、このデータよりも過去の時刻の生体信号のデータを用いて算出した前記平均化データに基づいてデータ毎に判定する第3のステップと、
     この第3のステップで不適切と判定した生体信号のデータの削除および補間のいずれかを行う第4のステップとを含むことを特徴とする生体信号処理方法。
  2.  請求項1記載の生体信号処理方法において、
     前記第2のステップは、
     前記第1のステップで抽出した生体信号の時系列データのそれぞれの値の逆数に基づく値に対して平均化処理を行う第5のステップと、
     この第5のステップの平均化処理で求めた値の逆数から前記平均化データを算出する第6のステップとを含むことを特徴とする生体信号処理方法。
  3.  請求項1または2記載の生体信号処理方法において、
     前記第3のステップは、
     前記判定の対象となる生体信号のデータが、このデータよりも過去の時刻の生体信号のデータを用いて算出した前記平均化データに基づく所定の正常値の範囲外の場合に、前記判定の対象となる生体信号のデータを不適切と判定するか、もしくは前記判定の対象となる生体信号のデータとこのデータよりも過去の時刻の生体信号のデータとを用いて算出した前記平均化データから得られる分散が、前記過去の時刻の生体信号のデータを用いて算出した前記平均化データから得られる分散に基づく所定の正常値の範囲外の場合に、前記判定の対象となる生体信号のデータを不適切と判定するステップを含むことを特徴とする生体信号処理方法。
  4.  請求項1乃至3のいずれか1項に記載の生体信号処理方法において、
     前記第2のステップは、前記第1のステップで抽出した生体信号のデータの平均化処理に際して、このデータよりも過去の時刻のデータを用いて算出した前記平均化データの値を中心とする所定の範囲から外れている生体信号のデータ、および前記第4のステップで補間した生体信号のデータを、前記平均化データの算出に使用しないことを特徴とする生体信号処理方法。
  5.  請求項1乃至4のいずれか1項に記載の生体信号処理方法において、
     前記生体信号は、R波と1つ前のR波の時間間隔であるR-R間隔、およびR波のピーク値からS波のピーク値までのRS振幅のいずれかであることを特徴とする生体信号処理方法。
  6.  請求項1乃至5のいずれか1項に記載の生体信号処理方法において、
     前記第4のステップで処理した後の生体信号の1階微分値と2階微分値とを算出する第7のステップと、
     前記1階微分値と前記2階微分値とが共に0を中心とする所定の範囲内の状態が所定時間以上継続した場合に、生体信号の変動が低いことを警告する第8のステップとをさらに含むことを特徴とする生体信号処理方法。
  7.  請求項1乃至6のいずれか1項に記載の生体信号処理方法において、
     前記第4のステップで処理した後の生体信号を高速フーリエ変換および最大エントロピー法のいずれかにより周波数解析して、生体信号のスペクトルを求める第9のステップをさらに含むことを特徴とする生体信号処理方法。
  8.  生体の心電図波形から生体信号を抽出するように構成された生体信号抽出部と、
     この生体信号抽出部で抽出された生体信号の時系列データを用いて平均化データを算出するように構成された平均化処理部と、
     前記生体信号抽出部で抽出された生体信号のデータが適切かどうかを、このデータよりも過去の時刻の生体信号のデータを用いて算出された前記平均化データに基づいてデータ毎に判定するように構成された異常値判定部と、
     この異常値判定部で不適切と判定された生体信号のデータの削除および補間のいずれかを行うように構成された異常値処理部とを備えることを特徴とする生体信号処理装置。
  9.  請求項8記載の生体信号処理装置において、
     前記平均化処理部は、
     前記生体信号抽出部で抽出された生体信号の時系列データのそれぞれの値の逆数に基づく値に対して平均化処理を行うように構成された逆数平均化処理部と、
     この逆数平均化処理部の平均化処理で求めた値の逆数から前記平均化データを算出するように構成された平均化データ算出部とから構成されることを特徴とする生体信号処理装置。
PCT/JP2017/002483 2016-02-04 2017-01-25 生体信号処理方法および生体信号処理装置 WO2017135116A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780009657.6A CN108601546B (zh) 2016-02-04 2017-01-25 生物信号处理方法和生物信号处理设备
JP2017565497A JP6687645B2 (ja) 2016-02-04 2017-01-25 生体信号処理方法および生体信号処理装置
US16/075,116 US10918302B2 (en) 2016-02-04 2017-01-25 Biological signal processing method and biological signal processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016019500 2016-02-04
JP2016-019500 2016-02-04

Publications (1)

Publication Number Publication Date
WO2017135116A1 true WO2017135116A1 (ja) 2017-08-10

Family

ID=59499544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002483 WO2017135116A1 (ja) 2016-02-04 2017-01-25 生体信号処理方法および生体信号処理装置

Country Status (4)

Country Link
US (1) US10918302B2 (ja)
JP (1) JP6687645B2 (ja)
CN (1) CN108601546B (ja)
WO (1) WO2017135116A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198691A1 (ja) * 2018-04-11 2019-10-17 シャープ株式会社 情報処理装置、およびウェアラブル端末
CN110432885A (zh) * 2019-09-11 2019-11-12 东北大学 一种光电容积脉搏波噪声去除方法
WO2023032281A1 (ja) * 2021-08-30 2023-03-09 ソニーグループ株式会社 情報処理装置、情報処理方法、及び、プログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102655669B1 (ko) * 2016-07-20 2024-04-05 삼성전자주식회사 생체신호의 특징 추출 장치 및 방법과, 생체정보 검출 장치
US11123004B2 (en) * 2018-12-20 2021-09-21 Biosense Webster (Israel) Ltd. Electrophysiological ripple mapping visualization method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004337408A (ja) * 2003-05-16 2004-12-02 Seiko Instruments Inc 生体信号測定装置
JP2007535392A (ja) * 2004-05-01 2007-12-06 ビーエスピー バイオロジカル シグナル プロセッシング リミテッド 高周波qrs群の分析のための装置および方法
JP2011098214A (ja) * 2004-03-24 2011-05-19 Dainippon Sumitomo Pharma Co Ltd センサを有する生体情報計測用衣服、生体情報計測システムおよび生体情報計測装置、および装置制御方法
JP2012065713A (ja) * 2010-09-21 2012-04-05 Gifu Univ 心電図データの異常心拍及びトレンドの除去方法、自律神経モニタ装置、及び敗血症発症警告装置
JP2013078543A (ja) * 2011-10-05 2013-05-02 Win Human Recorder Co Ltd 自律神経活動指標算出方法、自律神経活動指標算出装置とそれを用いたココロとカラダのバランスの視覚的表示システム
JP2013532573A (ja) * 2010-08-05 2013-08-19 レブ−エル ダイアグノスティクス オブ ハート ディジーズ リミテッド 心拍変動を測定する方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS526039B2 (ja) * 1971-12-17 1977-02-18
KR20030004387A (ko) 2001-03-06 2003-01-14 마이크로스톤 가부시키가이샤 신체 동작 검출 장치
JP3946108B2 (ja) * 2002-08-27 2007-07-18 パイオニア株式会社 心拍変動解析装置、心拍変動解析方法、および心拍変動解析用プログラム
US7699785B2 (en) * 2004-03-01 2010-04-20 Sleep System Laboratory Inc. Method for determining sleep stages
WO2008157544A1 (en) * 2007-06-18 2008-12-24 New York University Electronic identity card
CN201150533Y (zh) 2007-11-30 2008-11-19 沈阳东软医疗系统有限公司 一种血压测量装置
DK2346395T3 (en) * 2008-09-22 2018-06-06 Cheetah Medical Inc SYSTEM AND PROCEDURE FOR DETERMINING BLOOD FLOW
FR2946171B1 (fr) * 2009-05-29 2011-07-15 Groupe Des Ecoles De Telecommunications Get Ecole Nationale Superieure Des Telecommunications Enst Procede de quantification de l'evolution de pathologies impliquant des changements de volumes de corps, notamment de tumeurs
US9642534B2 (en) * 2009-09-11 2017-05-09 University Of Virginia Patent Foundation Systems and methods for determining location of an access needle in a subject
CN102846321B (zh) 2011-06-27 2015-03-25 联想(北京)有限公司 一种产生报警信息的方法和移动终端
JP6063775B2 (ja) * 2013-03-01 2017-01-18 東洋紡株式会社 居眠り予防方法、及び居眠り予防装置
WO2014147939A1 (ja) 2013-03-22 2014-09-25 パナソニック株式会社 生体信号計測システム、装置、方法およびそのプログラム
JP6243254B2 (ja) 2014-02-24 2017-12-06 日本電信電話株式会社 心拍検出方法および心拍検出装置
US9827992B2 (en) * 2014-03-19 2017-11-28 Ford Global Technologies, Llc Driver anomaly detection
CN104622446A (zh) * 2015-02-03 2015-05-20 南京理工大学 一种基于khm聚类算法的心率变异信号优化方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004337408A (ja) * 2003-05-16 2004-12-02 Seiko Instruments Inc 生体信号測定装置
JP2011098214A (ja) * 2004-03-24 2011-05-19 Dainippon Sumitomo Pharma Co Ltd センサを有する生体情報計測用衣服、生体情報計測システムおよび生体情報計測装置、および装置制御方法
JP2007535392A (ja) * 2004-05-01 2007-12-06 ビーエスピー バイオロジカル シグナル プロセッシング リミテッド 高周波qrs群の分析のための装置および方法
JP2013532573A (ja) * 2010-08-05 2013-08-19 レブ−エル ダイアグノスティクス オブ ハート ディジーズ リミテッド 心拍変動を測定する方法
JP2012065713A (ja) * 2010-09-21 2012-04-05 Gifu Univ 心電図データの異常心拍及びトレンドの除去方法、自律神経モニタ装置、及び敗血症発症警告装置
JP2013078543A (ja) * 2011-10-05 2013-05-02 Win Human Recorder Co Ltd 自律神経活動指標算出方法、自律神経活動指標算出装置とそれを用いたココロとカラダのバランスの視覚的表示システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198691A1 (ja) * 2018-04-11 2019-10-17 シャープ株式会社 情報処理装置、およびウェアラブル端末
JPWO2019198691A1 (ja) * 2018-04-11 2021-03-11 シャープ株式会社 情報処理装置、およびウェアラブル端末
CN110432885A (zh) * 2019-09-11 2019-11-12 东北大学 一种光电容积脉搏波噪声去除方法
WO2023032281A1 (ja) * 2021-08-30 2023-03-09 ソニーグループ株式会社 情報処理装置、情報処理方法、及び、プログラム

Also Published As

Publication number Publication date
JP6687645B2 (ja) 2020-04-28
CN108601546B (zh) 2021-03-26
CN108601546A (zh) 2018-09-28
US10918302B2 (en) 2021-02-16
US20190038164A1 (en) 2019-02-07
JPWO2017135116A1 (ja) 2018-08-16

Similar Documents

Publication Publication Date Title
WO2017135116A1 (ja) 生体信号処理方法および生体信号処理装置
JP5303802B2 (ja) 心電図から導出された無呼吸/低呼吸指数
EP3334337B1 (en) Monitoring of sleep phenomena
EP2953527B1 (en) Respiratory rate measurement
JP5475658B2 (ja) 痛み判定装置、痛み判定プログラムおよび痛み判定装置の制御方法
EP3381364B1 (en) Respiratory estimation method and device
Mirmohamadsadeghi et al. Respiratory rate estimation from the ECG using an instantaneous frequency tracking algorithm
JP2018011819A (ja) 生体信号処理方法および装置
JP5929020B2 (ja) 意識状態推定装置及びプログラム
JP6352826B2 (ja) R−r間隔補間方法および心拍変動計測装置
JP6709116B2 (ja) 呼吸検出装置、呼吸検出方法および呼吸検出用プログラム
US9706945B2 (en) Respiration rate determination in impedance pneumography
JP4528583B2 (ja) 生体負荷検査装置
JP7146803B2 (ja) Emg信号から吸入を検出する及び神経呼吸ドライブの量を抽出する方法並びにシステム
KR20140114181A (ko) 심전도 신호에 기반하여 스트레스를 분석하고 추정하는 방법 및 장치
JP4488016B2 (ja) 心音計
US11311243B2 (en) Blood pressure data processing apparatus, blood pressure data processing method, and blood pressure data processing program
JP3314521B2 (ja) 心拍変動波形解析方法及び装置
JP2005102781A (ja) 睡眠時無呼吸型判別方法
EP2954842B1 (en) Biological information measuring apparatus and blood pressure analyzing method
JP6568022B2 (ja) 生体信号分析方法および装置
JP2018011753A (ja) 呼吸推定方法および装置
Buś et al. ECG-Derived Respiration-Complete Implementation and its Evaluation with Use of Clinical Data
US10993676B2 (en) Signal processing method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747275

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017565497

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17747275

Country of ref document: EP

Kind code of ref document: A1