WO2017134862A1 - 保温体、真空断熱材および真空断熱材の製造方法 - Google Patents

保温体、真空断熱材および真空断熱材の製造方法 Download PDF

Info

Publication number
WO2017134862A1
WO2017134862A1 PCT/JP2016/080185 JP2016080185W WO2017134862A1 WO 2017134862 A1 WO2017134862 A1 WO 2017134862A1 JP 2016080185 W JP2016080185 W JP 2016080185W WO 2017134862 A1 WO2017134862 A1 WO 2017134862A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
film
radiation
vacuum heat
insulating material
Prior art date
Application number
PCT/JP2016/080185
Other languages
English (en)
French (fr)
Inventor
俊雄 篠木
慶和 矢次
俊圭 鈴木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US16/069,213 priority Critical patent/US10493725B2/en
Priority to EP16889345.1A priority patent/EP3412954A4/en
Priority to JP2017506423A priority patent/JP6266162B2/ja
Priority to CN201680079712.4A priority patent/CN108496037B/zh
Publication of WO2017134862A1 publication Critical patent/WO2017134862A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/04Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by at least one layer folded at the edge, e.g. over another layer ; characterised by at least one layer enveloping or enclosing a material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2509/00Household appliances
    • B32B2509/10Refrigerators or refrigerating equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/12Insulation with respect to heat using an insulating packing material
    • F25D2201/124Insulation with respect to heat using an insulating packing material of fibrous type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/12Insulation with respect to heat using an insulating packing material
    • F25D2201/128Insulation with respect to heat using an insulating packing material of foil type
    • F25D2201/1282Insulation with respect to heat using an insulating packing material of foil type with reflective foils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23Sheet including cover or casing
    • Y10T428/231Filled with gas other than air; or under vacuum

Definitions

  • the present invention relates to a heat insulator using a vacuum heat insulating material, a vacuum heat insulating material, and a method for manufacturing the vacuum heat insulating material.
  • the vacuum heat insulating material has high heat insulating performance as compared with other heat insulating materials such as glass wool, and thus is applied to various types of cooling and heating equipment.
  • measures are taken to provide high heat insulation performance by reducing solid heat transfer through the core of the vacuum heat insulating material and suppressing gas heat transfer by maintaining the degree of vacuum.
  • a technique for suppressing radiant heat transfer has been proposed in order to further improve the heat insulation performance.
  • Patent Document 1 proposes a vacuum heat insulating material in which a core material made of open-cell foam is sandwiched between two aluminum foil shielding plates with metallic luster and inserted into a plastic laminate film bag.
  • Patent Document 2 proposes a vacuum heat insulating material using a heat insulating bag whose inner surface is covered with a metal thin film.
  • Patent Documents 1 and 2 each have a configuration in which a shielding plate or a metal thin film is provided on both surfaces of a vacuum heat insulating material.
  • the vacuum heat insulating material having such a configuration is used for a heat insulator, there are problems such as an increase in cost and a complicated assembly operation.
  • the shielding plate is bent by wrinkles or the like generated inside the bend.
  • the shielding plate is curved, a part of the shielding plate is inclined in the heat transfer direction, and thus the heat insulation performance of the vacuum heat insulating material is deteriorated by heat transfer through the shielding plate. With this, the heat retaining property is lowered and the reliability of the heat retaining member cannot be maintained.
  • the present invention has been made in order to solve the above-described problems, and a heat insulating body excellent in heat retaining properties and vacuum heat insulation while maintaining reliability by a vacuum heat insulating material in which a shielding plate is efficiently arranged. It aims at providing the manufacturing method of a material and a vacuum heat insulating material.
  • the heat insulator according to the present invention keeps the heat-retained material disposed on one surface side of the vacuum heat insulating material including the core material and the jacket material surrounding the core material with respect to the outside located on the other surface side of the vacuum heat insulating material.
  • a vacuum heat insulating material is equipped with the radiation suppression film which suppresses radiation.
  • the radiation suppressing film is disposed between the core material and the jacket material in a region near the other surface side of the one surface side and the other surface side.
  • the vacuum heat insulating material keeps the heat-retained material arranged on one side against the outside located on the other side.
  • the vacuum heat insulating material includes a core material, a jacket material surrounding the core material, and a radiation suppressing film that suppresses radiation.
  • the radiation suppressing film is disposed between the core material and the jacket material in a region near the other surface side of the one surface side and the other surface side.
  • the method for manufacturing a vacuum heat insulating material manufactures a vacuum heat insulating material that keeps a heat insulating material arranged on one side against the outside located on the other side.
  • the manufacturing method comprises preparing a core material, a jacket material surrounding the core material, and a radiation suppressing film for suppressing radiation, inserting the core material and the radiation suppressing film into the jacket material, An arrangement step of arranging a radiation suppression film in a region near the other surface side of the one surface side and the other surface side between the outer cover material and a core material is inserted and the radiation suppression film is disposed in the vicinity region A vacuum sealing step of vacuum sealing the outer covering material.
  • the heat insulating body, the vacuum heat insulating material, and the manufacturing method of the vacuum heat insulating material according to the present invention it is possible to provide a vacuum heat insulating material provided with a radiation suppressing film on one side of the core material.
  • the provided vacuum heat insulating material can be arrange
  • FIG. 6 is a schematic diagram of a radiation suppression film according to Embodiment 2.
  • FIG. 6 is a schematic diagram of a radiation suppressing film according to a modification of Embodiment 2.
  • FIG. 6 is a schematic diagram in the middle of manufacturing a vacuum heat insulating material according to Embodiment 3.
  • FIG. 6 is a schematic diagram showing a longitudinal section of a hot water storage tank according to Embodiment 4.
  • FIG. 6 is a schematic diagram showing a hot water storage tank according to Embodiment 4.
  • FIG. 10 is a schematic diagram showing a cross section of a side surface of a refrigerator according to a fifth embodiment.
  • FIG. 10 is a schematic diagram showing a partial cross section of the front surface of a refrigerator according to a fifth embodiment.
  • FIG. 1 is a schematic diagram showing a configuration of a heat retaining body 11 according to the present embodiment.
  • the heat insulator 11 is composed of, for example, a rectangular parallelepiped-shaped heat insulator 1 and six vacuum heat insulating materials 2 covering the periphery thereof.
  • the heat retaining body 11 is used to prevent heat transfer from the heat retaining material 1.
  • the shape of the heat retaining material 1 is not limited to a rectangular parallelepiped, and the technology of the heat retaining material 11 may be applied to a hot water storage tank in which hot water is stored as the heat retaining material 1, a compressor, a refrigerator, or the like.
  • the vacuum heat insulating material 2 may be provided only in one sheet, or multiple sheets may be provided.
  • FIG. 2 is a schematic diagram showing a configuration of the vacuum heat insulating material 2 of the heat retaining body 11 according to the present embodiment.
  • the vacuum heat insulating material 2 includes a jacket material 4, a core material 3 housed in the jacket material 4, and one surface of the core material 3 and the jacket material 4. It is comprised by the radiation suppression film 5 arrange
  • the core material 3 and the radiation suppression film 5 are disposed between the outer cover material 4 constituted by the two outer cover material sheets 4a and 4b, and from the heat retaining material 1 side, the outer cover material sheet 4b and the core material 3, the radiation suppression film 5 and the jacket sheet 4a are arranged in this order.
  • the core material 3 is formed by laminating a single or a plurality of fiber sheets 6 in which fibers such as glass fibers are stacked to form a laminated structure, and are formed into a rectangular shape or the like when viewed from above.
  • one fiber sheet has a thickness of about 0.5 mm.
  • FIG. 2 illustrates a state in which four fiber sheets 6 are laminated, the number of the fiber sheets 6 is not limited to four.
  • Each of the fiber sheets 6 is arranged so that the fibers are as parallel as possible to the sheet surface, and further laminated in the thickness direction.
  • the sheet surface refers to a surface orthogonal to the thickness direction of the fiber sheet 6.
  • the core material 3 has a structure in which the heat insulation performance in the thickness direction is improved by the fibers laminated in the thickness direction.
  • the fiber sheet 6 made of glass fibers has a space ratio of about 90% and the rest is made of glass fibers, and exhibits high heat insulation performance.
  • the two jacket material sheets 4 a and 4 b constitute the jacket material 4.
  • Each of the jacket material sheets 4a and 4b is made of a laminate film having a multilayer structure, and sandwiches the core material 3 from both sides in the stacking direction.
  • an aluminum laminate sheet in which stretched nylon, aluminum-deposited polyethylene terephthalate, aluminum foil, and unstretched polypropylene are laminated is used as the laminate film of the covering material sheets 4a and 4b.
  • Each of the above examples may be abbreviated as ONy, AL-deposited PET, AL foil, CPP, and the like.
  • Each layer is formed in a film thickness of, for example, 25 ⁇ m, 12 ⁇ m, 7 ⁇ m, and 30 ⁇ m in the order described above.
  • FIG. 3 is a schematic view showing a cross section of the radiation suppressing film 5 used for the vacuum heat insulating material 2 according to the present embodiment.
  • the radiation suppression film 5 is an aluminum foil produced to have a thickness of 30 ⁇ m, for example, by rolling aluminum, and suppresses transmission of radiant heat.
  • the radiation suppression film 5 is cut into an area equal to or smaller than the area of the core material 3 when viewed from above, and is sandwiched between the core material 3 and one of the inner surfaces of the jacket material 4.
  • the radiation suppression film 5 is in contact with the inner surface of the jacket material sheet 4a of the jacket material 4, and the jacket material sheet 4a is disposed on the surface opposite to the heat retaining material 1 side.
  • the radiation suppression film 5 is between the core material 3 and the jacket material 4, and is in the vicinity of the heat retaining material 1 side and the outer side of the outer side (in the example of FIG. 2, the jacket material sheet 4 a and (Region between the fiber sheets 6).
  • the radiation suppression film 5 is disposed in the vicinity region between the core material 3 and the jacket material 4 and close to the external temperature.
  • a jacket material sheet 4 b that is not in contact with the radiation suppressing film 5 is disposed on the heat retaining material 1 side.
  • the radiation suppressing film 5 is formed with a glossy surface 50 and a matte surface 51 that exhibits a higher radiation rate than the glossy surface 50.
  • the surface of the radiation suppressing film 5 that contacts the outer cover sheet 4 a is a matte surface 51
  • the surface of the radiation suppressing film 5 that is in contact with the core material 3 is the glossy surface 50. That is, radiation heat transfer is particularly suppressed by the surface of the radiation suppressing film 5 having a low emissivity on the core material 3 side.
  • Aluminum foils having a matte surface 51 and a glossy surface 50 are popular at a relatively low price. Therefore, by using an aluminum foil having a matte surface 51 and a glossy surface 50 as the radiation suppressing film 5, it is possible to suppress the manufacturing cost of the heat retaining body 11.
  • the fiber sheet 6 used for the core material 3 is formed by, for example, a papermaking method.
  • a papermaking method chopped fibers obtained by cutting a glass fiber having a diameter of 4 to 13 ⁇ m manufactured by a continuous filament manufacturing method to a length of 2 to 15 mm and fine fibers having a diameter of about 1 ⁇ m manufactured by a flame method are dispersed in a liquid.
  • the fiber sheet original fabric of thickness about 0.5mm is produced by making it dry with the automatic feed type paper machine using the liquid, and making it dry. This fiber sheet raw fabric is cut into a size of about the area of the required vacuum heat insulating material 2 to form the fiber sheet 6.
  • a fiber sheet 6 in which most of the fibers are arranged in a direction substantially perpendicular to the thickness direction, that is, in a direction parallel to the sheet surface.
  • the fiber sheet 6 is cut into a planar dimension such as 500 mm ⁇ 500 mm, and a core material 3 having a laminated structure in which a plurality of sheets are laminated and fibers are laminated in the thickness direction.
  • the laminated body of the fiber sheet 6 can also be formed by winding the fiber sheet original fabric before the cutting formed by the paper making method in the shape of a scoop.
  • the production of the fiber sheet original fabric is not limited to the papermaking method, and for example, a dry manufacturing method using a centrifugal method may be used.
  • a dry manufacturing method using a centrifugal method may be used.
  • the dry manufacturing method since it is a laminated body in which fibers are laminated at the stage of the fiber sheet, it is configured to have a necessary thickness with one sheet or several sheets, and the core material 3 It does not have to be a structure in which a plurality of fiber sheets 6 are laminated.
  • the core material 3, the jacket material 4, and the radiation suppressing film 5 are prepared, and the vacuum heat insulating material 2 is formed.
  • the core material 3 is formed by laminating and cutting fiber sheet original fabric produced by a papermaking method or the like. At this time, it is desirable that the fiber sheet 6 take into account the distortion caused by the pressure difference between the atmospheric pressure and the vacuum in the subsequent process so that the fiber sheet 6 has a desired size and thickness.
  • the radiation suppressing film 5 is produced by rolling aluminum or the like. The core material 3 and the radiation suppression film 5 are dried.
  • the covering material 4 is formed by cutting the laminate sheet into a rectangular shape having a size that is assumed from the finished dimensions to form two covering material sheets 4a and 4b, and three sides of the covering material sheets 4a and 4b. Are made by bag making. In addition, it cuts and overlaps a roll-shaped outer covering material sheet
  • the core material 3, the radiation suppressing film 5, and the adsorbent are inserted into the jacket material 4 and placed in a vacuum chamber.
  • the matte surface 51 and the inner surface of the outer cover material sheet 4a out of the two outer cover material sheets 4a and 4b are in contact with each other, and the glossy surface 50 and the core material 3 are in contact with each other. Insert like so.
  • an adsorbent may be inserted as necessary.
  • the inside of the vacuum chamber is depressurized to a predetermined pressure, for example, a vacuum pressure of about 0.1 to 3 Pa. In this state, the opening part of the remaining one side of the jacket material 4 is sealed by heat sealing, and the jacket material is vacuum-sealed.
  • the vacuum heat insulating material 2 is obtained by returning the inside of the vacuum chamber to atmospheric pressure and taking it out of the vacuum chamber.
  • the manufactured vacuum heat insulating material 2 is arranged in the order of the jacket material sheet 4b, the core material 3, the radiation suppressing film 5, and the jacket material sheet 4a from the heat retaining material 1 side, and a plurality of vacuum
  • the heat insulating material 2 covers the periphery of the heat retaining material 1.
  • the heat insulating body 11 using the vacuum heat insulating material 2 shown in FIG. 1 is obtained by joining the plurality of vacuum heat insulating materials 2.
  • the fiber sheet 6 used for the core material 3 is a chopped glass fiber and a micro glass fiber fiber. Produced by the papermaking method. As the chopped glass fiber, one having an average fiber diameter of 6 ⁇ m and a length of 12 mm was used, and as the micro glass fiber fiber, one manufactured by a flame method having an average fiber diameter of 0.8 ⁇ m was used. The fiber sheet 6 formed to have a thickness of 0.5 mm was prepared as a core material 3 by cutting 30 laminated sheets into a planar size of 500 mm ⁇ 500 mm.
  • an aluminum laminate sheet in which stretched nylon with a film thickness of 25 ⁇ m, aluminum-deposited polyethylene terephthalate with a film thickness of 12 ⁇ m, an aluminum foil with a film thickness of 7 ⁇ m, and unstretched polypropylene with a film thickness of 30 ⁇ m was used.
  • an aluminum foil having a thickness of 30 ⁇ m was used.
  • the aluminum foil was formed as a glossy surface 50 on the roll side and a matte surface 51 on one roll side by carrying out two-layer rolling to improve productivity. Note that the gloss rate of the glossy surface 50 and the matte surface 51 was about 5% lower than that of the matte surface 51.
  • the radiation suppressing film 5 was disposed on both surfaces of the core material 3 one by one and inserted between the two jacket material sheets 4a and 4b and sealed under reduced pressure.
  • the thermal conductivity was determined by setting the high temperature side to 70 ° C. and the low temperature side to 5 ° C. As a result, 0.0021 W / (m ⁇ K) was obtained, and the thermal conductivity was lower than that of Comparative Example 1. This is considered to be because the radiation heat transfer from the high temperature side to the low temperature side was suppressed by the two radiation suppression films 5 provided inside the vacuum heat insulating material.
  • the vacuum heat insulating material 2 of the present embodiment the covering material sheet 4b, the core material 3, the radiation suppressing film 5, and the covering material sheet 4a were arranged in this order and sealed under reduced pressure.
  • the vacuum heat insulating material 2 made the jacket material sheet 4a which contacts the radiation suppression film 5 into the low temperature side, and made the jacket material sheet 4b into the high temperature side.
  • the thermal conductivity was determined by setting the high temperature side to 70 ° C. and the low temperature side to 5 ° C. As a result, 0.0021 W / (m ⁇ K) was obtained.
  • This result is equivalent to the vacuum heat insulating material of Comparative Example 1 in which the radiation suppressing film 5 is provided on both sides of the core material 3.
  • the core material 3, the jacket material 4 that covers the core material 3, and one surface of the core material 3 and the jacket material 4 are arranged.
  • the vacuum heat insulating material 2 constituted by the radiation suppressing film 5 thus arranged is arranged in the order of the core material 3 and the radiation suppressing film 5 from the heat retaining material 1 side. Then, the radiation suppression film 5 is provided only on one surface of the core material 3, thereby preventing heat conduction through the radiation suppression film 5 between the inside and the outside of the heat retaining body 11, and The cost of the vacuum heat insulating material 2 can be reduced.
  • the radiation suppression film 5 is not provided on the side closer to the heat retaining material 1, heat is not conducted through the radiation suppression film 5 even when the vacuum heat insulating material 2 is bent. Thereby, the heat retention body 11 which was excellent in heat retention and maintained reliability by maintaining low thermal conductivity is obtained.
  • the radiation suppressing film 5 has one surface and the other surface having a lower emissivity than the one surface, and one surface is the heat retaining material 1 side. Is arranged. Then, since the radiation suppression film 5 has surfaces with different emissivities, the vacuum heat insulating material 2 can be reduced in cost and can be efficiently arranged for radiation suppression.
  • One surface is an example of the second surface of the present invention, and the other surface having a lower emissivity than the one surface is an example of the first surface of the present invention.
  • the heat insulating body 11 it is possible to match the shape of the heat insulating material 1 by combining a plurality of vacuum heat insulating materials 2.
  • the heat retaining material 1 to which the vacuum heat insulating material 2 is applied is at a high temperature, it is shielded on the high temperature side by moisture and oxygen that enter the inside of the vacuum heat insulating material 2 from the sealing portion of the packaging material during long-term use. There is a concern that the surface of the plate is oxidized to increase the radiation rate, and the radiation shielding function is lowered.
  • the radiation suppressing film 5 by disposing the radiation suppressing film 5 on the low temperature side, even if the temperature inside the heat retaining body 11 is higher than the temperature outside the heat retaining body 11, the temporal change of the heat insulating performance of the radiation suppressing film 5 is suppressed. It is possible to maintain reliability.
  • the core material 3 is a single fiber sheet 6 having a laminated structure of fibers, or the fiber sheet 6 laminated in a plurality, so that the core material 3 Is a fiber having a high porosity. Furthermore, when the heat conductivity of the whole vacuum heat insulating material is quite small, since the influence of radiation cannot be ignored relatively, a radiation suppression effect can be obtained.
  • the jacket material 4 may be a bag made by bending a single jacket material sheet and joining two sides.
  • the gas adsorbent inserted into the vacuum heat insulating material 2 as necessary may be, for example, calcium oxide or zeolite, and is not particularly limited.
  • FIG. The present embodiment is different from the first embodiment in that a radiation suppressing film having a laminate structure is used as the vacuum heat insulating material.
  • FIG. 4 is a schematic diagram of the radiation suppressing film 5b according to the present embodiment. As shown in FIG. 4, the radiation suppressing film 5 b according to the present embodiment has a laminate structure of a metal foil 52 and a polymer film 53.
  • the other structure of the vacuum heat insulating material 2 is the same as that of Embodiment 1, description is abbreviate
  • the metal foil 52 constituting the radiation suppressing film 5b is an aluminum foil or the like having a low emissivity, and has a film thickness of 30 ⁇ m, for example.
  • the metal foil 52 is, for example, an aluminum foil in which a glossy surface 50 and a matte surface 51 are formed by performing two-layer rolling during finish rolling in a rolling process.
  • the polymer film 53 is a stretched polyethylene terephthalate film or the like having a high emissivity, and has a film thickness of 12 ⁇ m, for example.
  • the radiation suppressing film 5b is formed by laminating a metal foil 52 and a polymer film 53 and integrating them by a laminating process or the like.
  • the metal foil 52 is disposed so that the glossy surface 50 becomes the surface of the radiation suppressing film 5b.
  • the vacuum heat insulating material 2 is formed by inserting and sealing the above-described radiation suppressing film 5b and the core material 3 into the covering material 4 formed by the covering material sheets 4a and 4b. At this time, the radiation suppressing film 5b is disposed such that the metal foil 52 is on the core material 3 side and the polymer film 53 is on the outer covering material sheet 4a side. And the vacuum heat insulating material 2 is arrange
  • FIG. 5 is a schematic diagram of a radiation suppressing film 5c according to a modification of the present embodiment.
  • the radiation suppression film 5 c of Modification 1 is a vapor deposition film in which a metal vapor deposition film 54 is formed on a polymer film 53.
  • the polymer film 53 for example, a polyethylene terephthalate film having a thickness of 12 ⁇ m is used.
  • the emissivity of the surface on which the metal vapor deposition film 54 is formed is higher than that of the metal foil 52, the surface is lower than that of the polymer film 53, and the same effect as when the metal foil 52 is used can be obtained.
  • one surface of the radiation suppressing film 5 is the polymer film 53 and the other surface of the radiation suppressing film 5 is the metal foil 52.
  • the aluminum foil having glossy surfaces on both sides is rolled from a single aluminum thin plate, but the radiation suppressing film 5 in the heat retaining body 11 according to the present embodiment is a glossy surface in which two sheets are rolled simultaneously. 50 and an aluminum foil having a matte surface 51 can be applied. Therefore, it is possible to obtain the vacuum heat insulating material 2 having a lower cost than the case where both surfaces of the aluminum foil are the glossy surfaces 50 and having the same radiation suppressing effect.
  • FIG. 6 is a schematic diagram showing a configuration in the middle of manufacturing the vacuum heat insulating material 2b according to the present embodiment.
  • the vacuum heat insulating material 2 b has a sealant layer 7 that is the innermost layer of the jacket material 4, a metal foil 52, and a radiation suppression film 5 d that includes a heat-sealing film 55.
  • the sealant layer 7 corresponds to unstretched polypropylene serving as the innermost layer of the laminate film having a multilayer structure.
  • the heat-sealing film 55 functions as a sealant film, and is a non-stretched polypropylene having a thickness of, for example, 30 ⁇ m.
  • the innermost sealant layer 7 of the covering material sheet 4a and the heat fusion film 55 of the radiation suppressing film 5d are fixed in advance by heat fusion.
  • the jacket material sheet 4a and the heat-sealing film 55 may be partially heat-sealed to form a bag.
  • the polymer film 53 is a sealant film
  • the jacket material 4 and the radiation suppressing film 5 can be integrated in advance.
  • the surface of the metal foil 52 is prevented from being broken or torn in the manufacturing process, and it becomes easy to perform the process of inserting the core material 3 into the jacket material 4.
  • the heat sealing temperature of the sealant film is equal to or lower than the heat sealing temperature of the jacket material 4, so that the jacket material 4 and the radiation suppressing film 5 are integrated. It is possible to reduce the heat load on the jacket material 4 at the time.
  • unstretched polypropylene is shown as the heat fusion film 55, but the present invention is not limited to this.
  • Linear low density polyethylene, high density polyethylene, ethylene vinyl alcohol copolymer, unstretched polypropylene, and the like may be applied.
  • LLDPE low density polyethylene
  • HDPE high density polyethylene
  • unstretched EVOH unstretched PET
  • unstretched PET unstretched PET
  • the material of the sealant layer 7 and the heat-sealing film 55 is described as being similar, but the material of the sealant layer 7 and the heat-sealing film 55 may not necessarily match. However, it is preferable that the materials are the same because the heat fusion temperature differs depending on the materials.
  • a heat-sealing film having a heat-sealing temperature lower than the heat-sealing temperature of the sealant layer 7 is preferable because the heat effect on the sealant layer 7 can be suppressed.
  • FIG. 7 is a schematic diagram showing a longitudinal section of the hot water storage tank 56 according to the present embodiment.
  • the hot water storage tank 56 includes a tank 103 that stores heated water.
  • the tank 103 in which heated water is stored corresponds to the heat retaining body 11.
  • the tank 103 has, for example, a substantially cylindrical shape, and an upper pipe 100 and a hot water supply pipe 101 are connected to the upper part, and a bottom pipe 105 and a water supply pipe 104 are connected to the lower part.
  • the upper pipe 100 and the bottom pipe 105 are connected to a heating device (not shown) such as a heat pump unit, for example.
  • the water stored in the tank 103 is sent to a heating device (not shown) through the bottom pipe 105, heated, and returned to the upper part in the tank 103 through the upper pipe 100.
  • a heating device not shown
  • heated water stored in the tank 103 that is, hot water is pushed up.
  • hot water is supplied to the outside from the hot water supply pipe 101 connected to the upper part of the tank 103.
  • a temperature stratification is formed in which a high temperature portion and a low temperature portion are separated due to a temperature difference between hot water and water.
  • the temperature of the water to be heated is about 90 ° C. for high-temperature boiling and about 65 ° C. for low-temperature boiling, and the surface temperature of the heat retaining body 11 substantially matches these.
  • the upper surface of the tank 103 and the bottom surface of the tank 103 are covered with the first foam heat insulating material 102a and the second foam heat insulating material 102b, respectively, and the body portion is covered with the vacuum heat insulating material 2e. And is insulated between the tank 103 and the surrounding air.
  • the first foam heat insulating material 102a and the second foam heat insulating material 102b are formed of, for example, a foamed resin such as a bead-method foamed polystyrene.
  • FIG. 8 is a schematic view showing the hot water storage tank 56 according to the present embodiment, and shows a cross section taken along the line AA of FIG.
  • the vacuum heat insulating material 2e includes the outer cover material 4, the core material 3 housed in the two outer cover material sheets 4a and 4b constituting the outer cover material 4, and the core material 3 And a radiation suppressing film 5 disposed between the outer covering material sheet 4a.
  • the vacuum heat insulating material 2e is formed into an arc shape covering the periphery of the hot water storage tank 56 by a triaxial roller or the like.
  • the outer covering material sheet 4a is formed on the outer side, and the outer covering material sheet 4b is formed on the inner side, and the radiation suppressing film 5 is formed of the cylindrical vacuum insulating material 2e. It is arranged outside the core material.
  • the vacuum heat insulating material 2e is formed by being bent into a curved shape such as an arc shape, an in-plane stress is generated due to the difference between the inner and outer circumferences of the bending due to the thickness of the vacuum heat insulating material 2e, and the inner peripheral side of the vacuum heat insulating material 2e. Deep wrinkles occur in the outer cover sheet 4b. On the other hand, the radiation suppressing film 5 on the outer peripheral side and the covering material sheet 4a are pulled and almost no wrinkles are generated.
  • the inner jacket material sheet Wrinkles occur in both 4b and the radiation suppressing film 5.
  • the wrinkles of the radiation suppression film 5 are close to the radiation suppression film 5 on the outer peripheral side, become a heat transfer medium, and lead to deterioration of the heat insulation performance of the heat retaining body 11.
  • the configuration of the vacuum heat insulating material 2e wrinkles are not generated in the radiation suppressing film 5 on the inner circumferential side, and the heat radiation medium is brought close to the radiation suppressing film 5 on the outer circumferential side. Is prevented.
  • the vacuum heat insulating material 2e according to the present embodiment is formed so as to be hermetically sealed with the radiation suppressing film 5 interposed between the jacket material sheet 4a and the core material 3 so that the core material 3 side becomes the glossy surface 50. .
  • the vacuum heat insulating material of Comparative Example 3 has a radiation suppression film 5 interposed between the two jacket material sheets 4a and 4b and the core material 3 so that the core material 3 side has a glossy surface 50. And sealed under reduced pressure.
  • Other configurations are the same as those described in the first embodiment.
  • the vacuum heat insulating material 2e of the present embodiment formed in a flat plate shape is arranged so that the outer cover sheet 4a is arranged on the outer surface, and the long side is the circumferential direction so that it has a cylindrical shape with a curvature radius of 200 mm.
  • the shape of the tank 103 was formed.
  • the vacuum heat insulating material of Comparative Example 3 was formed into the shape of the tank 103 by curving it into a cylindrical shape with a radius of curvature of 200 mm with the long side as the circumferential direction.
  • the thermal conductivity of the vacuum heat insulating material 2e of the present embodiment and the vacuum heat insulating material of Comparative Example 3 was measured.
  • the vacuum heat insulating material 2e of the present embodiment and the vacuum heat insulating material of Comparative Example 3 are cylindrical, the vacuum heat insulating material 2e of the present embodiment is 0.0025 W / (m ⁇ K). Yes, the vacuum heat insulating material of Comparative Example 3 was 0.0027 W / (m ⁇ K).
  • the radiation suppressing film 5 is provided on the outer peripheral surface side and the inner peripheral surface even in the vacuum heat insulating material 2e of the present embodiment in which the radiation suppressing film 5 is provided only on the outer peripheral surface side. It was confirmed that the same level of radiation heat shielding function as that provided on both sides was exhibited. Furthermore, when it was set as the cylindrical shape, it turned out that the deterioration of heat conductivity can be suppressed by arrange
  • the inner surface on the inner peripheral side was observed when the vacuum heat insulating material 2e of the present embodiment and the vacuum heat insulating material of Comparative Example 3 were formed into a cylindrical shape.
  • the vacuum heat insulating material 2e of the present embodiment large wrinkles having a width and a depth of about 1 to 2 mm are generated in the outer jacket material sheet 4b, and the outer jacket material sheet 4a, And almost no wrinkles were generated in the radiation suppressing film 5.
  • the vacuum heat insulating material of Comparative Example 3 large wrinkles having a width and a depth of about 1 to 2 mm are generated in the inner jacket material sheet 4b, and the outer jacket material sheet 4b and the core material 3 are separated.
  • the radiation suppression film 5 in the meantime was curved in a shape along the wrinkles of the jacket sheet 4b.
  • the vacuum heat insulating material of Comparative Example 3 having a cylindrical shape has an increased thermal conductivity because the radiation suppressing film 5 on the curved inner peripheral surface side is inclined in the radial direction of the tank 103 serving as the heat transfer direction. It was speculated that it was.
  • the vacuum heat insulating material 2e of this Embodiment a wrinkle does not arise in the radiation suppression film 5 of an outer peripheral surface, but a low thermal conductivity is maintained because the radiation suppression film 5 which faces a heat-transfer direction does not exist. I was able to.
  • the heat insulating body 11 has a curved surface, and the vacuum heat insulating material 2e is formed in an arc shape according to the heat insulating body 11.
  • wrinkles are generated in the radiation suppression film 5 on the inner peripheral side seen in Comparative Example 3 by using the vacuum heat insulating material 2e arranged in this order from the tank 103 side to the core material 3 and the radiation suppression film 5. It can prevent that it becomes close to the radiation suppression film 5 of the outer peripheral side, and becomes a heat transfer medium. Thereby, the heat insulation performance of the hot water storage tank 56 is maintained well.
  • the example which applied the vacuum heat insulating material 2e to the side part of the tank 103 was shown in this Embodiment 4, you may provide in the upper part and the lower part of the tank 103.
  • the heat retaining body can be applied to a cooling / heating device such as a substantially cylindrical compressor.
  • FIG. 9 is a schematic diagram showing a cross section of the side surface of the refrigerator according to the present embodiment.
  • FIG. 10 is a schematic diagram showing a partial cross section of the front surface of the refrigerator according to the present embodiment.
  • the inside of the refrigerator 130 is divided into a refrigerator compartment 150, a switching room 200, a freezing room 300, a vegetable room 400 and an ice making room 500.
  • a refrigerator compartment door 160, a switching compartment door 210, a freezer compartment door 310, and a vegetable compartment door 410 are provided as opening and closing doors.
  • a machine room 601 is provided inside the refrigerator 130, and a compressor 600 is installed therein.
  • a cooler room 640 is provided, a cooler 650 and a fan 660 are provided, and a cooling air passage 680 is provided.
  • the region between the outer box 110 and the inner box 120 of the refrigerator 130 is provided with the vacuum heat insulating material 2 such as the side surface vacuum heat insulating material 700, the ceiling vacuum heat insulating material 701, and the machine room vacuum heat insulating material 702, and The other portions are filled with foam heat insulating material 800.
  • the door vacuum heat insulating material 703 is also installed in the freezer compartment door 310 and the refrigerator compartment door 160.
  • a control board storage chamber 900 is provided on the back of the refrigerator 130.
  • the inner box 120 corresponds to the heat insulator 11.
  • the food storage room of the refrigerator 130 is controlled by an operation panel (not shown) for adjusting the temperature and setting of each room.
  • the food storage room of the refrigerator 130 is an operation panel (not shown) that adjusts the temperature and setting of a refrigerator room 150 (about 4 ° C.) that is provided with a refrigerator door 160 that is an open / close door at the top. Control.
  • a switch provided with a drawer door type switching chamber door 210 that can be switched from the freezing temperature range ( ⁇ 18 ° C.) to the temperature range such as refrigeration, vegetables, chilled, soft freezing ( ⁇ 7 ° C.) below the refrigerating room 150. Control is performed by an operation panel (not shown) for adjusting the temperature and setting of the chamber 200.
  • an ice making chamber 500 (about ⁇ 12 ° C.) having a drawer door type ice making room door 510 in parallel with the switching room 200 and a vegetable room 400 (about about 100 ° C.) having a drawer door type vegetable room door 410 arranged at the bottom. (12 ° C.) is controlled by an operation panel (not shown) for adjusting the temperature and setting.
  • An operation panel (not shown) for adjusting the temperature and setting of a freezing room 300 (about ⁇ 18 ° C.) having a drawer door type freezing room door 310 between the vegetable room 400, the switching room 200 and the ice making room 500. ) To control.
  • control board storage chamber 900 provided in the upper rear part of the refrigerator, for example, to the compressor 600 and the cooler room 640 provided in the machine room 601 in the lower rear part constituting the refrigeration cycle (not shown).
  • a fan 660 for blowing cool air from the provided cooler 650 and a damper provided at the entrance of the room are controlled to maintain each room at a predetermined temperature.
  • the vacuum heat insulating material 2f for example, the side surface vacuum heat insulating material 700, the ceiling vacuum heat insulating material 701, the machine room vacuum heat insulating material 702, and the door vacuum heat insulating material.
  • the material 703 and the like are surrounded by the foam heat insulating material 800 to suppress heat intrusion from the outside.
  • the radiation suppressing film 5 is disposed on the outer box 110 side.
  • the ceiling vacuum heat insulating material 701 is bent along its shape in order to thermally shield the control storage room and the inside of the cabinet.
  • the heat insulating body 11 corresponds to the inner box 120, and the vacuum heat insulating material 2f is the same as that described in the first to fourth embodiments, the core material 3 inserted in the outer jacket material 4, and radiation suppression.
  • the point that the film 5 is vacuum-sealed is the same.
  • the difference is that the radiation suppressing film 5 is disposed on the outer box 110 side, which is the side close to the external temperature. That is, here, the other side is closer to the external temperature than the one side.
  • the high emissivity side for example, the frosted surface 51, is arrange
  • the machine room vacuum heat insulating material 702 shields heat generated from the compressor 600.
  • the inner box 120 that retains heat, but when viewed from individual devices, heat generated from the compressor 600 is retained. That is, the heat retaining material 1 becomes the compressor 600, and the vacuum heat insulating material is bent along the shape of the machine room 601.
  • the machine room vacuum heat insulating material 702 is the same as that described in the first to fourth embodiments, and is the one in which the core material 3 and the radiation suppressing film 5 inserted into the jacket material 4 are vacuum-sealed. However, the radiation suppression film 5 is different in that it is disposed on the inner box 120 side.
  • these vacuum heat insulating materials are formed by being bent into a curved surface shape such as an arc shape with a small radius of curvature, an in-plane stress is generated due to the difference between the inner and outer circumferences of the bending due to the thickness of the vacuum heat insulating material. Deep wrinkles occur on the outer jacket sheet.
  • the radiation suppressing film 5 on the outer peripheral side and the covering material sheet are pulled and there is almost no generation of wrinkles.
  • the configuration of the present invention for example, when the radiation suppression film 5 is provided between each of the outer cover material sheets 4a and 4b and the core material 3, the outer cover material on the inner peripheral side Wrinkles are generated on both the sheet and the radiation suppressing film 5.
  • the wrinkles of the radiation suppression film 5 are close to the radiation suppression film 5 on the outer peripheral side, become a heat transfer medium, and lead to deterioration of the heat insulation performance of the heat retaining body 11.
  • the configuration of the vacuum heat insulating material 2f wrinkles are not generated in the radiation suppressing film 5 on the inner circumferential side, and the heat radiation medium becomes close to the radiation suppressing film 5 on the outer circumferential side. Is prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Textile Engineering (AREA)
  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Abstract

【課題】信頼性を維持し、保温性に優れた保温体、真空断熱材および真空断熱材の製造方法を提供する。 【解決手段】保温体は、芯材と芯材を囲う外被材とを含む真空断熱材の一面側に配置した保温物を真空断熱材の他面側に位置する外部に対して保温する。真空断熱材は、輻射を抑制する輻射抑制フィルムを備える。輻射抑制フィルムは、芯材と外被材との間であって、一面側と他面側のうちの他面側に対する近傍領域に配置される。

Description

保温体、真空断熱材および真空断熱材の製造方法
 本発明は、真空断熱材を用いた保温体、真空断熱材および真空断熱材の製造方法に関するものである。
 真空断熱材は、グラスウールなどの他の断熱材と比較して、高い断熱性能を有することから、各種冷熱機器に適用されている。また、真空断熱材の芯材を介した固体伝熱の低減、真空度維持による気体伝熱の抑制などにより、高い断熱性能を持たせる対策が図られている。断熱性能の更なる高性能化のために、輻射伝熱を抑制する技術も提案されている。
 例えば、特許文献1には、連続気泡発泡体から成る芯材を金属光沢のある2枚のアルミ箔の遮蔽板で挟み、それをプラスチックラミネートフィルムの袋に挿入した真空断熱材が提案されている。また、特許文献2には、内表面を金属薄膜で覆った断熱袋が用いられた真空断熱材が提案されている。
特開昭60-174639号公報 特開2002-90049号公報
 特許文献1、2は、いずれも、遮蔽板、又は、金属薄膜が真空断熱材の両方の面に設けられた構成である。このような構成の真空断熱材が保温体に用いられる場合、コストアップに繋がるばかりか、組み立て作業が複雑化するなどの問題があった。また、真空断熱材が保温体を覆う形状に曲げ成形されると、屈曲の内側で生じるシワなどにより遮蔽板が湾曲する。遮蔽板が湾曲すると、遮蔽板の一部が伝熱方向に傾斜することから、遮蔽板を介した熱移動により真空断熱材の断熱性能を悪化させることになってしまう。これでは、保温性が低下し、保温体の信頼性を維持できない。
 本発明は、上述のような問題点を解決するためになされたものであり、遮蔽板を効率よく配置した真空断熱材により、信頼性を維持しつつ、保温性に優れた保温体、真空断熱材および真空断熱材の製造方法を提供することを目的とする。
 本発明に係る保温体は、芯材と芯材を囲う外被材とを含む真空断熱材の一面側に配置した保温物を真空断熱材の他面側に位置する外部に対して保温する。真空断熱材は、輻射を抑制する輻射抑制フィルムを備える。輻射抑制フィルムは、芯材と外被材との間であって、一面側と他面側のうちの他面側に対する近傍領域に配置してある。
 本発明に係る真空断熱材は、一面側に配置した保温物を他面側に位置する外部に対して保温する。真空断熱材は、芯材と、芯材を囲う外被材と、輻射を抑制する輻射抑制フィルムとを備える。輻射抑制フィルムは、芯材と外被材との間であって、一面側と他面側のうちの他面側に対する近傍領域に配置してある。
 本発明に係る真空断熱材の製造方法は、一面側に配置した保温物を他面側に位置する外部に対して保温する真空断熱材を製造する。製造方法は、芯材と、芯材を囲う外被材と、輻射を抑制する輻射抑制フィルムとを準備する準備工程と、芯材と輻射抑制フィルムとを外被材に挿入し、芯材と外被材との間であって、一面側と他面側のうちの他面側に対する近傍領域に輻射抑制フィルムを配置する配置工程と、芯材が挿入され輻射抑制フィルムが近傍領域に配置された外被材を真空封止する真空封止工程とを備える。
 本発明に係る保温体、真空断熱材および真空断熱材の製造方法によれば、芯材の一方側に輻射抑制フィルムを設けた真空断熱材を提供することができる。また、提供された真空断熱材を、外部側および保温物側のうちの外部側から外被材、輻射抑制フィルム、芯材、保温物となる順に配置することができる。このため、保温体の内部と外部との間での熱伝導が抑制され、保温体の保温性を改善し得る。
本発明の実施の形態1に係る保温体の構成を示す模式図である。 実施の形態1に係る保温体の真空断熱材の模式図である。 実施の形態1に係る真空断熱材に用いる輻射抑制フィルムの断面を示す模式図である。 実施の形態2に係る輻射抑制フィルムの模式図である。 実施の形態2の変形例に係る輻射抑制フィルムの模式図である。 実施の形態3に係る真空断熱材の製造途中の模式図である。 実施の形態4に係る貯湯タンクの縦断面を示す模式図である。 実施の形態4に係る貯湯タンクを示す模式図である。 実施の形態5に係る冷蔵庫側面の断面を示す模式図である。 実施の形態5に係る冷蔵庫正面の一部断面を示す模式図である。
 実施の形態1.
 <保温体11の構成>
 本発明の実施の形態1に係る保温体11について説明する。図1は、本実施の形態に係る保温体11の構成を示す模式図である。図1に示すように、保温体11は、例えば、直方体形状の保温物1と、その周囲を覆う6枚の真空断熱材2から構成されている。保温体11は、保温物1からの熱移動を防止するために用いるものである。なお、保温物1の形状は、直方体に限定されず、例えば、保温物1として湯が貯留される貯湯タンクや、圧縮機、冷蔵庫などに保温体11の技術が適用されてもよい。また、真空断熱材2は、1枚のみであっても、複数枚設けられていてもよい。
 図2は、本実施の形態に係る保温体11の真空断熱材2の構成を示す模式図である。図2に示すように、真空断熱材2は、外被材4と、外被材4の内部に収納された芯材3と、芯材3の一方の面と外被材4との間に配置された輻射抑制フィルム5とにより構成され、上面視で矩形状を有する。芯材3と、輻射抑制フィルム5とは、2枚の外被材シート4a、4bにより構成された外被材4の間に配置され、保温物1側から、外被材シート4b、芯材3、輻射抑制フィルム5、外被材シート4aの順で配置される。
 芯材3は、ガラス繊維などの繊維が積み重なり積層体構造となった繊維シート6を、単数、又は、複数枚積層し、上面視で矩形状などに形成したものである。例えば、繊維シート1枚は、0.5mm程度の厚さを有する。図2において、繊維シート6が4枚積層された様子を図示しているが、繊維シート6の枚数は4枚に限定されない。繊維シート6のそれぞれは、繊維がシート面となるべく平行となる様に配置されており、更に、厚み方向に積層されている。なお、シート面とは、繊維シート6の厚み方向と直交する面をいう。このように、芯材3は、厚み方向に積層された繊維により、厚み方向の断熱性能が向上された構造となっている。ガラス繊維から成る繊維シート6は、体積比で約90%が空間であり、残りはガラス繊維で構成されており、高い断熱性能を示す。
 2枚の外被材シート4a、4bは、外被材4を構成している。外被材シート4a、4bのそれぞれは、多層構造をなすラミネートフィルムから成り、芯材3を積層方向の両側から挟み込む。外被材シート4a、4bのラミネートフィルムには、例えば、延伸ナイロン、アルミニウム蒸着ポリエチレンテレフタレート、アルミニウム箔、及び、無延伸ポリプロピレンを積層させたアルミラミネートシートが用いられる。上記の例はそれぞれ、ONy、AL蒸着PET、AL箔、CPPなどと略称されこともある。それぞれの層は上記で記載した順に、例えば、25μm、12μm、7μm、30μmの膜厚に成膜されている。
 図3は、本実施の形態に係る真空断熱材2に用いる輻射抑制フィルム5の断面を示す模式図である。図3に示すように、輻射抑制フィルム5は、アルミニウムの圧延加工により、例えば、厚み30μmに作製されたアルミニウム箔であり、輻射熱の透過を抑制する。輻射抑制フィルム5は、上面視において、芯材3の面積と同一、又は、それより小さい面積に切断され、芯材3と外被材4の内表面の一方との間に挟持されている。輻射抑制フィルム5は、外被材4のうち外被材シート4aの内面に接し、外被材シート4aが保温物1側と反対の面に配置されている。つまり輻射抑制フィルム5は、芯材3と外被材4との間であって、保温物1側と外部側のうちの外部側に対する近傍領域(図2の一例では、外被材シート4aと繊維シート6との間の領域)に配置してある。言い換えると、輻射抑制フィルム5は、芯材3と外被材4との間であって外部温度に近い近傍領域に配置してある。また、外被材4のうち、輻射抑制フィルム5に接していない外被材シート4bが保温物1側に配置されている。輻射抑制フィルム5には、光沢面50と、光沢面50よりも高い輻射率を示す、つや消し面51が形成されている。そして、輻射抑制フィルム5の外被材シート4aが接する面がつや消し面51になっており、輻射抑制フィルム5の芯材3に接する側の面が光沢面50になっている。つまり、輻射率の低い輻射抑制フィルム5の芯材3側の面により、特に、輻射伝熱が抑制される。つや消し面51と光沢面50とを有するアルミニウム箔は、比較的低価格で普及している。そのため、つや消し面51と光沢面50とを有するアルミニウム箔を輻射抑制フィルム5として用いることにより、保温体11の製造コストを抑制することが可能となる。
 芯材3に用いられる繊維シート6は、例えば、抄紙法により形成される。抄紙法では、連続フィラメント製法で製造された直径4~13μmのガラス繊維を長さ2~15mmに切断したチョップド繊維と、火炎法で製造された直径1μm程度の細径繊維を液体中に分散させる。そして、その液体を用いて自動送り式抄紙機などで抄紙した後に乾燥させることで、厚さ0.5mm程度の繊維シート原反が作製される。この繊維シート原反は、必要とする真空断熱材2の面積程度のサイズに裁断されて、繊維シート6が形成される。抄紙法を用いることで、繊維の多くが厚み方向と概ね直角な方向、つまり、シート面と平行な方向に配列された繊維シート6が得られる。繊維シート6は、500mm×500mmなどの平面寸法に裁断され、複数枚が積層されて、繊維が厚み方向に積層した積層体構造を有する芯材3となる。
 なお、繊維シート6の積層体は、抄紙法により形成された切断前の繊維シート原反をとぐろ状に巻き込んで形成することもできる。また、繊維シート原反の作製は、抄紙法に限定されず、例えば、遠心法を用いた乾式製造方法を用いてもよい。乾式製造方法を用いた場合には、繊維シートの段階で繊維が積層された積層体となっているため、1枚、又は、数枚で必要な厚みとなるように構成し、芯材3とすればよく、複数の繊維シート6が積層した構造でなくてもよい。
 <保温体11の製造方法>
 次に、本実施の形態における保温体11の製造方法について説明する。保温体11の製造においては、まず、芯材3、外被材4、及び、輻射抑制フィルム5を準備し、真空断熱材2を形成する。芯材3は、抄紙法などにより作製された繊維シート原反を積層し、裁断する。このとき、繊維シート6は、所望の寸法、及び、厚さになるよう、後の工程において大気圧と真空との圧力差により生じる歪を考慮することが望ましい。輻射抑制フィルム5は、アルミニウムなどを圧延加工して作製される。芯材3、及び、輻射抑制フィルム5は、乾燥させておく。外被材4は、まず、ラミネートシートを出来上がり寸法とから想定される寸法の矩形状に切断して2枚の外被材シート4a、4bを形成し、外被材シート4a、4bの3辺を接合して製袋されて作製される。なお、ロール状の外被材シートを所定の幅で切断して重ね合せ、連続的に横方向2辺の接合をし、さらに奥行き方向の1辺の接合と切断をする手順で外被材4を作製しても良い。
 次に、芯材3、輻射抑制フィルム5、及び、吸着剤とともに外被材4に挿入し、真空チャンバ内に配置する。このとき、輻射抑制フィルム5は、つや消し面51と、2枚の外被材シート4a、4bのうち、外被材シート4aの内面とが接触し、光沢面50と芯材3とが接触するように挿入する。このとき、必要に応じて吸着剤を挿入してもよい。次に、真空チャンバ内を減圧して、所定の圧力、例えば0.1~3Pa程度の真空圧にする。この状態で、外被材4の残り1辺の開口部分をヒートシールにより密閉し、外被材を真空封止する。真空チャンバ内を大気圧に戻し、真空チャンバ内から取り出すことで、真空断熱材2が得られる。
 続いて、製造された真空断熱材2を、保温物1側から、外被材シート4b、芯材3、輻射抑制フィルム5、外被材シート4aの順となるように配置し、複数の真空断熱材2により保温物1の周囲を覆う。そして、複数の真空断熱材2を接合することにより、図1において示した、真空断熱材2を用いた保温体11が得られる。
 <真空断熱材2の性能評価>
 次に、本実施の形態に係る真空断熱材2、比較例1に係る真空断熱材、及び、比較例2に係る真空断熱材について熱伝導率を測定し、性能評価を行った。
 本実施の形態の真空断熱材2、比較例1の真空断熱材、及び、比較例2の真空断熱材において、芯材3に用いる繊維シート6は、チョップドガラス繊維と、マイクロガラスファイバ繊維との抄紙法により製作した。チョップドガラス繊維は、平均繊維直径が6μmで長さが12mmのものを用い、マイクロガラスファイバ繊維は、平均繊維直径が0.8μmの火炎法で製造されたものを用いた。厚さ0.5mmに形成された繊維シート6は、30枚積層したものを500mm×500mmの平面的な寸法に裁断し、芯材3として作製した。外被材シート4a、4bには、膜厚25μmの延伸ナイロン、膜厚12μmのアルミニウム蒸着ポリエチレンテレフタレート、膜厚7μmのアルミニウム箔、及び、膜厚30μm無延伸ポリプロピレンを積層したアルミラミネートシートを用いた。輻射抑制フィルム5には、厚み30μmのアルミニウム箔を用いた。アルミニウム箔は、圧延加工プロセスの仕上げ圧延時において、生産性を向上させる2枚重ね圧延を実施することにより、ロール側を光沢面50とし、一方の重ね合わせ面をつや消し面51として形成した。なお、光沢面50とつや消し面51とでは、光沢面50の輻射率が消し面51の輻射率より約5%低くなっていた。
 まず、比較例1の真空断熱材として、2枚の外被材シート4a、4bの間に芯材3のみを挿入し減圧密閉した。そして、高温側を70℃、低温側を5℃とし、定常状態での熱流束から熱伝導率を測定した。その結果、0.0023W/(m・K)が得られた。
 比較例2の真空断熱材として、芯材3の両面に一枚ずつ輻射抑制フィルム5を配置し、2枚の外被材シート4a、4bの間に挿入して減圧密閉した。そして、比較例1と同様、高温側を70℃、低温側を5℃として熱伝導率を求めた。その結果、0.0021W/(m・K)が得られ、比較例1よりも熱伝導率が低かった。これは、真空断熱材内部に設けた2枚の輻射抑制フィルム5により、高温側から低温側への輻射伝熱が抑制されたためであったと考えられる。
 次に、本実施の形態の真空断熱材2として、外被材シート4b、芯材3、輻射抑制フィルム5、外被材シート4aの順で配置し、減圧密閉した。真空断熱材2は、輻射抑制フィルム5と接触する外被材シート4aを低温側、外被材シート4bを高温側とした。そして、比較例1、2と同様、高温側を70℃、低温側を5℃として熱伝導率を求めた。その結果、0.0021W/(m・K)が得られた。この結果は、芯材3の両側に輻射抑制フィルム5を設けた比較例1の真空断熱材と同等である。これより、真空断熱材2のように、輻射抑制フィルム5を低温側にのみ配置した場合であっても、輻射抑制フィルム5を芯材3の両側に設けた場合と同等の効果を得られることが確認された。
 <効果>
 以上説明した、本実施の形態に係る保温体11によれば、芯材3と、芯材3を覆う外被材4と、芯材3の一方の面と外被材4との間に配置された輻射抑制フィルム5とにより構成された真空断熱材2が、保温物1側から、芯材3、輻射抑制フィルム5の順で配置される。すると、輻射抑制フィルム5が芯材3の一方の面にのみ設けられていることで、保温体11の内部と外部との間での輻射抑制フィルム5を介した熱伝導を防止し、且つ、真空断熱材2のコストを削減できる。また、保温物1から近い側に輻射抑制フィルム5が設けられていないため、真空断熱材2を屈曲させた場合でも、熱が輻射抑制フィルム5を介して伝導することがない。これにより、低熱伝導率を維持することで保温性に優れ、信頼性が維持された保温体11が得られる。
 また、本実施の形態に係る保温体11においては、輻射抑制フィルム5は、一方の面と、一方の面よりも低輻射率な他方の面と、を有し一方の面が保温物1側に配置されている。すると、輻射抑制フィルム5が異なる輻射率の面を有することにより、真空断熱材2の低コスト化が可能になるとともに、輻射抑制に効率的な配置ができる。なお、一方の面は、本発明の第2面の一例であり、一方の面よりも低輻射率な他方の面は、本発明の第1面の一例である。
 また、本実施の形態に係る保温体11においては、複数の真空断熱材2の組み合わせることで保温物1の形状に合わせることができる。
 さらに、真空断熱材2を適用する保温物1が高温である場合、長期使用の間に包材のシール部等から真空断熱材2の内部に侵入してくる水分ならびに酸素によって、高温側の遮蔽板の表面が酸化されて輻射率が上昇し、輻射遮蔽機能が低下することが危惧される。しかし、輻射抑制フィルム5を低温側に配置することによって、保温体11内の温度が該保温体11の外部の温度よりも高温であっても、輻射抑制フィルム5の断熱性能の経時変化が抑制され、信頼性を維持することが可能である。
 また、本実施の形態に係る保温体11においては、芯材3が、繊維の積層構造を有する単一の繊維シート6、又は、複数枚積層された前記繊維シート6であるため、芯材3が高い空隙率を有する繊維である。さらに、真空断熱材全体の熱伝導率がかなり小さい場合、相対的に輻射の影響も無視することができなくなっていることから、輻射抑制効果を得ることができる。
 なお、上記においては、外被材シート4a、4bを製袋して形成した外被材4を用いた例を説明しているが、これに代えて、2枚の外被材シート4a、4bを減圧した後に密閉することもできる。この場合には、真空チャンバ内において、芯材3を挟み込むように2枚の外被材シート4a、4bを配置し、真空チャンバ内を減圧した後に、2枚の外被材シート4a、4bの周囲をヒートシールにより密閉すればよい。また、外被材4は、1枚の外被材シートを折り曲げ、2辺を接合して製袋したものであってもよい。更に、真空断熱材2に必要に応じて挿入されるガス吸着剤は、例えば、酸化カルシウム、ゼオライトなどを用いればよく、特に限定されるものではない。
 実施の形態2.
 本実施の形態においては、真空断熱材にラミネート構造を有する輻射抑制フィルムを用いる点で実施の形態1と異なる。図4は、本実施の形態に係る輻射抑制フィルム5bの模式図である。図4に示すように、本実施の形態に係る輻射抑制フィルム5bは、金属箔52と高分子フィルム53とによるラミネート構造になっている。なお、真空断熱材2のその他の構成は、実施の形態1と同様であるため、説明を省略する。
 <保温体11の構成>
 輻射抑制フィルム5bを構成する金属箔52は、輻射率が低いアルミニウム箔などであり、例えば、30μmの膜厚を有する。金属箔52は、例えば、圧延加工プロセスの仕上げ圧延時において2枚重ね圧延を実施することにより、光沢面50と、つや消し面51とが形成されたアルミニウム箔である。一方、高分子フィルム53は、輻射率が高い延伸ポリエチレンテレフタレートフィルムなどであり、例えば、12μmの膜厚を有する。輻射抑制フィルム5bは、金属箔52と高分子フィルム53とが積層され、ラミネート処理等により一体化されている。金属箔52は、光沢面50が輻射抑制フィルム5bの表面になるように配置されている。
 真空断熱材2は、上述の輻射抑制フィルム5bと、芯材3とを、外被材シート4a、4bにより形成された外被材4に挿入し密閉して形成される。このとき、輻射抑制フィルム5bは、金属箔52が芯材3側に、高分子フィルム53が外被材シート4a側になるように配置される。そして、保温物1の周囲に、保温物1側から、外被材シート4b、芯材3、金属箔52、高分子フィルム53、外被材シート4aの順になるように真空断熱材2を配置することで、保温体11が形成される。
 <真空断熱材2の性能評価>
 次に、輻射抑制フィルム5bを用いて作製された真空断熱材2について、性能評価を行った。評価において、輻射抑制フィルム5bを設けた面を低温側として、熱伝導率の測定を行った。その結果、熱伝導率として、0.0021W/(m・K)が得られた。輻射抑制フィルム5bの低温側に用いられたポリエチレンテレフタレートフィルムは、輻射率が0.5程度と高めの値を示すものの、高い性能が得ることができた。これは、高温側に表出するアルミ二ウム箔の輻射率が低く、輻射率の高いポリエチレンテレフタレートフィルムが真空断熱材2内部の輻射伝熱に影響を及ぼしていないためであると考えられる。更に、ラミネート構成によりアルミ二ウム箔が高分子フィルム53により補強されることで、アルミ二ウム箔の折れや、外被材4への挿入時に発生しやすい破損が防止され、金属表面状態が維持されたと推測される。
 変形例.
 図5は、本実施の形態の変形例に係る輻射抑制フィルム5cの模式図である。図5に示すように、変形例1の輻射抑制フィルム5cは、高分子フィルム53に金属蒸着膜54が形成された蒸着フィルムである。高分子フィルム53としては、厚みが、例えば、12μmのポリエチレンテレフタレートフィルムが用いられる。金属蒸着膜54が形成された面は、金属箔52と比べて輻射率が高くなるものの、高分子フィルム53よりも低く、金属箔52を用いた場合と同等の効果を得ることができる。
 <効果>
 以上説明した、本実施の形態に係る保温体11においては、輻射抑制フィルム5の一方の面は、高分子フィルム53であり、輻射抑制フィルム5の他方の面は、金属箔52である。このため、実施の形態1に係る効果に加え、一方の面により他方の面が補強されるとともに、他方の面の表面状態の悪化を防止できるという効果が得られる。また、外被材4に輻射抑制フィルム5を挿入するときに輻射抑制フィルム5が破損することを防止できる。
 ここで、両側に光沢面を有するアルミニウム箔は、単一なアルミニウム薄板から圧延加工されるが、本実施の形態に係る保温体11における輻射抑制フィルム5は、2枚を同時に圧延加工した光沢面50とつや消し面51を有するアルミニウム箔を適用できる。したがって、アルミ二ウム箔の両面を光沢面50とした場合よりも低コストで、且つ、同等の輻射抑制効果を備えた真空断熱材2を得ることができる。
 実施の形態3
 図6は、本実施の形態に係る真空断熱材2bの製造途中の構成を示す模式図である。図6に示すように、真空断熱材2bは、外被材4の最内層のシーラント層7と、金属箔52、及び、熱融着フィルム55から構成された輻射抑制フィルム5dとを有するという点で実施の形態1と異なる。その他の構成は、実施の形態1と同様であるため、説明を省略する。なお、シーラント層7は、上記の説明において、多層構造をなすラミネートフィルムのうち、最内層となる無延伸ポリプロピレンに相当する。また、熱融着フィルム55は、シーラントフィルムとして機能するものであり、厚みが、例えば、30μmの無延伸ポリプロピレンである。
 <真空断熱材2bの製造方法>
 真空断熱材2bの製造工程においては、外被材シート4aの最内層のシーラント層7と、輻射抑制フィルム5dの熱融着フィルム55とが、予め熱融着により固着される。例えば、外被材シート4aと熱融着フィルム55とを部分的に熱融着させ、製袋すればよい。
 これにより、製造工程において、金属箔52の表面に折れや破れが発生することが防止され、芯材3を外被材4に挿入する工程が容易になる。したがって、性能、品質ならびに生産性の高い真空断熱材2bができ、これを適用することで高い断熱性能を有する保温体11が実現できる。
 <効果>
 以上説明した、本実施の形態に係る保温体11においては、高分子フィルム53がシーラントフィルムであるため、外被材4と輻射抑制フィルム5とを予め一体化しておくことができる。これにより、実施の形態1に係る効果に加え、製造工程における金属箔52表面の折れや破れが防止され、芯材3を外被材4に挿入する工程を行うことが容易になる。 
 また、本実施の形態に係る保温体11においては、シーラントフィルムの熱融着温度が外被材4の熱融着温度以下であるため、外被材4と輻射抑制フィルム5とを一体化する時の外被材4への熱負荷を軽減できる。
 なお、本実施の形態においては、熱融着フィルム55として、無延伸ポリプロピレンを示したが、これに限定されるものではない。リニア低密度ポリエチレン、高密度ポリエチレン、エチレンビニルアルコール共重合体、未延伸ポリプロピレンなどを適用してもよい。上記の例はそれぞれ、LLDPE、HDPE、未延伸EVOH、未延伸PETなどと略称されるものである。
 上記では、シーラント層7と熱融着フィルム55との材質を同様として説明しているが、シーラント層7と熱融着フィルム55との材質が必ずしも一致していなくても良い。ただし、材質によって熱融着温度が異なることから、材質が同じであることが好ましい。また、シーラント層7の熱融着温度より低い熱融着温度を有する熱融着フィルムであれば、シーラント層7への熱影響を抑制できるため好ましい。
 実施の形態4.
 本実施の形態においては、実施の形態1~3で説明した保温体を、保温体11の一例である貯湯タンク56として適用した場合について説明する。図7は、本実施の形態に係る貯湯タンク56の縦断面を示す模式図である。図7に示すように、貯湯タンク56は、加熱された水を貯留するタンク103を備える。なお、加熱された水が貯留されるタンク103は、保温体11に相当する。
 <貯湯タンク56の構成>
 タンク103は、例えば略円柱形状をしており、上部に上部配管100及び給湯配管101が接続され、下部に底部配管105及び水供給配管104が接続されている。上部配管100、及び、底部配管105は、例えば、ヒートポンプユニットなど、不図示の加熱装置に接続される。
 タンク103に貯留されている水は、底部配管105を通って図示せぬ加熱装置に送られ、加熱され、上部配管100を通って、タンク103内の上部に戻る。タンク103に水が供給されると、タンク103内に貯められた加熱された水、つまり、湯が押し上げられる。そして、この動作により、タンク103の上部に接続される給湯配管101から外部に湯が供給される。タンク103内には、湯と水の温度差に起因して高温部と低温部が分離された温度成層が形成される。ここで、加熱装置側のヒートポンプに、例えば、COヒートポンプを適用した場合、COのサイクル系と水のサイクル系で熱交換器を介して熱の受け渡しが行われるが、タンク103に貯留される水の温度は,高温沸き上げで約90℃、低温沸き上げで約65℃となり、保温体11の表面温度もこれらとほぼ一致する。
 タンク103は、タンク103の上部表面、及び、タンク103の底面がそれぞれ、第一の発泡断熱材102a、第二の発泡断熱材102bに覆われ、胴体部分が、真空断熱材2eにより覆われており、タンク103と周辺空気との間で断熱されている。第一の発泡断熱材102a、及び、第二の発泡断熱材102bは、例えば、ビーズ法発泡ポリスチレンなどの発泡樹脂により形成されている。
 図8は、本実施の形態に係る貯湯タンク56を示す模式図であり、図7のA―A線に沿った断面を示している。図8に示すように、貯湯タンク56は、タンク103の周囲が真空断熱材2eにより覆われている。真空断熱材2eは、実施の形態1と同様、外被材4と、外被材4を構成する2枚の外被材シート4a、4bの内部に収納された芯材3と、芯材3と外被材シート4aとの間に配置された輻射抑制フィルム5とにより構成された積層構造を有する。真空断熱材2eは、3軸ローラ等により、貯湯タンク56の周囲を覆う円弧形状に成形される。真空断熱材2eを円弧半径方向平面から見ると、外被材シート4aが外側となり、外被材シート4bが内側となる円弧形状に成形され、輻射抑制フィルム5が円筒形状の真空断熱材2eの芯材の外側に配置される。
 真空断熱材2eは、円弧形状等の曲面形状に曲げられて成形されるため、真空断熱材2eの厚みに起因する曲げの内外周差により面内応力が生じ、真空断熱材2eの内周側の外被材シート4bに深いシワが発生する。一方、外周側の輻射抑制フィルム5と、外被材シート4aとは、引っ張られ、シワの発生はほとんどない。
 真空断熱材2eの構成ではなく、例えば、両面の外被材シート4a、4bと芯材3との間のそれぞれに輻射抑制フィルム5が設けた構成とした場合、内周側の外被材シート4bと輻射抑制フィルム5との双方にシワが発生する。輻射抑制フィルム5のシワは、外周側の輻射抑制フィルム5と近接し、伝熱媒体となり、保温体11の断熱性能の悪化に繋がる。これに対し、真空断熱材2eの構成を採用することで、内周側の輻射抑制フィルム5にシワが発生することはなく、外周側の輻射抑制フィルム5と近接し、伝熱媒体となることが防止される。
 <真空断熱材2eの性能評価>
 次に、タンク103に本実施の形態に係る真空断熱材2eを用いた場合の熱伝導率を測定し、比較例3に係る真空断熱材との比較により性能評価を行った。本実施の形態の真空断熱材2eと、比較例3の真空断熱材とにおいて、芯材3として900mm×600mmの平面的な寸法に裁断して作製した繊維シート6を用いた。また、輻射抑制フィルム5には、30μmのアルミニウム箔を用いた。
 本実施の形態の真空断熱材2eは、外被材シート4aと芯材3との間にのみ、芯材3側が光沢面50となる様に輻射抑制フィルム5を介在させ、密閉して形成した。比較例3の真空断熱材は、2枚の外被材シート4a、4bと芯材3との間のそれぞれに一枚ずつ、芯材3側が光沢面50となる様に輻射抑制フィルム5を介在させ、減圧密閉して形成した。その他の構成は、実施の形態1において説明した構成と同様とした。
 平板形状に形成した本実施の形態の真空断熱材2eは、外被材シート4aを外側面に配置し、長尺側を円周方向として、曲率半径が200mmの円筒形状になるように湾曲させてタンク103の形状に形成した。比較例3の真空断熱材についても同様に、長尺側を円周方向として、曲率半径が200mmの円筒形状に湾曲させ、タンク103の形状に形成した。
 続いて、本実施の形態の真空断熱材2eと、比較例3の真空断熱材とについて熱伝導率を測定した。本実施の形態の真空断熱材2eと、比較例3の真空断熱材とを平板形状とした場合では、いずれも0.0023W/(m・K)であった。一方、本実施の形態の真空断熱材2eと、比較例3の真空断熱材とを円筒形状とした場合には、本実施の形態の真空断熱材2eは0.0025W/(m・K)であり、比較例3の真空断熱材は0.0027W/(m・K)であった。この結果より、平板形状の場合には、輻射抑制フィルム5が外周面側にのみ設けられた本実施の形態の真空断熱材2eであっても、輻射抑制フィルム5が外周面側と内周面側の両方に設けられた場合と同程度の輻射熱遮蔽機能が発揮されることが確認された。更に、円筒形状とした場合には、真空断熱材2eをタンク103側から芯材3、輻射抑制フィルム5の順となるような配置とすることで熱伝導率の悪化を抑制できることが分かった。
 次に、本実施の形態の真空断熱材2eと、比較例3の真空断熱材とを円筒形状とした場合における、内周側の内面の観察を行った。本実施の形態の真空断熱材2eでは、内周側の外被材シート4bに、幅及び深さがともに1~2mm程度の大きなシワが発生しており、外周側の外被材シート4a、及び、輻射抑制フィルム5にはシワがほとんど発生していなかった。一方、比較例3の真空断熱材では、内周側の外被材シート4bに、幅及び深さがともに1~2mm程度の大きなシワが発生し、外被材シート4bと芯材3との間の輻射抑制フィルム5が、外被材シート4bのシワに沿った形状で湾曲していた。観察結果より、円筒形状とした比較例3の真空断熱材は、湾曲した内周面側の輻射抑制フィルム5が、伝熱方向となるタンク103の半径方向に傾斜するため、熱伝導率が上昇していたことが推測された。これに対し、本実施の形態の真空断熱材2eでは、外周面の輻射抑制フィルム5にシワが生じず、伝熱方向を向く輻射抑制フィルム5が存在しないことで、低い熱伝導率を維持することができた。
 <効果>
 以上説明した、本実施の形態に係る保温体11においては、保温体11は、曲面を有し、真空断熱材2eが保温体11に準じた円弧形状に形成されている。このように、タンク103側から芯材3、輻射抑制フィルム5の順に配置された真空断熱材2eとすることで、比較例3に見られた内周側の輻射抑制フィルム5にシワが発生することはなく、外周側の輻射抑制フィルム5と近接し、伝熱媒体となることを防止できる。これにより、貯湯タンク56の断熱性能が良好に維持される。
 なお、本実施の形態4では、真空断熱材2eをタンク103の側面部に適用した例を示したが、タンク103の上部及び下部に設けられていても良い。また、タンク103の上部表面、及び、タンク103の底面は、第一の発泡断熱材102a、及び、第二の発泡断熱材102bに覆われている例を説明したが、真空断熱材2eにより覆われていてもよい。更に、保温体として、貯湯タンク56以外にも、例えば概円筒形状の圧縮機などの冷熱機器などに適用することもできる。
 実施の形態5.
 本実施の形態5においては、実施の形態1~3で説明した保温体11について、一例として冷蔵庫130を適用した場合について説明する。図9は、本実施の形態に係る冷蔵庫側面の断面を示す模式図である。図10は、本実施の形態に係る冷蔵庫正面の一部断面を示す模式図である。図中、冷蔵庫130の内部は、冷蔵室150、切替室200、冷凍室300、野菜室400ならびに製氷室500で区分されている。また其々の部屋には、開閉扉として、冷蔵室扉160、切替室扉210、冷凍室扉310ならびに野菜室扉410が設けられている。また、冷蔵庫130の内部には、機械室601が設けられ、その内部に圧縮機600が設置されている。機械室601の上部には、冷却器室640が設けられ、冷却器650とファン660が設置され、冷却風路680が設けられている。一方、冷蔵庫130の、外箱110と内箱120挟まれた領域は、側面真空断熱材700、天井真空断熱材701、機械室真空断熱材702などの真空断熱材2が配置されており、また、それ以外の部分には、発泡断熱材800で埋められている。さらに、冷凍室扉310や冷蔵室扉160にも扉真空断熱材703が設置されている。また、冷蔵庫130の背面には、制御基板収納室900が設けられている。ここでは、内箱120が保温体11に相当する。
 図9および10において、冷蔵庫130の食品貯蔵室は、各室の温度や設定を調節する操作パネル(図示せず)で制御する。例えば、冷蔵庫130の食品貯蔵室は、最上部に開閉ドアである冷蔵室扉160を備えて配置される冷蔵室150(約4℃)の温度や設定を調節する操作パネル(図示せず)で制御する。また、冷蔵室150の下方に冷凍温度帯(-18℃)から冷蔵、野菜、チルド、ソフト冷凍(-7℃)などの温度帯に切り替えることのできる引き出しドア式の切替室扉210を備える切替室200の温度や設定を調節する操作パネル(図示せず)で制御する。また、切替室200と並列に引き出しドア式の製氷室扉510を備える製氷室500(約-12℃)、最下部に配置される引き出しドア式の野菜室扉410を備えた野菜室400(約12℃)の温度や設定を調節する操作パネル(図示せず)で制御する。また、野菜室400と切替室200及び製氷室500との間に引き出しドア式の冷凍室扉310を備えた冷凍室300(約-18℃)の温度や設定を調節する操作パネル(図示せず)で制御する。
 具体的には、冷蔵庫背面上部に設けた制御基板収納室900の制御装置から、例えば冷凍サイクル(図示せず)を構成する背面下部の機械室601に設けた圧縮機600、冷却器室640に設けた冷却器650から冷気を送風するファン660、ならびに部屋の入口に設けたダンパなどを制御し、各部屋を所定の温度に維持する。
 冷却された庫内は、所定の温度に維持するために、扉も含めて、真空断熱材2f、例えば、側面真空断熱材700、天井真空断熱材701、機械室真空断熱材702、扉真空断熱材703などと、発泡断熱材800で囲繞され、外部からの熱侵入を抑制している。真空断熱材2fを断面から見ると、外箱110側に、輻射抑制フィルム5が配置される。ところで、例えば、天井真空断熱材701は、制御収納室と庫内を熱的に遮蔽するために、その形状に沿って、曲げ成形がなされている。本実施の形態では、保温体11は、内箱120に相当し、真空断熱材2fは、実施の形態1~4に記載したものと、外被材4に挿入された芯材3と輻射抑制フィルム5を真空封止したものである点は同じである。但し、輻射抑制フィルム5は、外部温度に近い側である外箱110側に配置されている点が異なる。つまりここでは、他面側は一面側より外部温度に近くなっている。輻射抑制フィルム5は、高輻射率側、例えばつや消し面51が外箱110側に配置されている。
 また機械室真空断熱材702は、圧縮機600からの発熱を遮蔽する。この場合、冷蔵庫130の機能面から見ると、保温するのは内箱120であるが、個別の機器から見ると、圧縮機600からの発熱を保温することになる。つまり、保温物1は圧縮機600となり、真空断熱材は、機械室601の形状に沿って曲げ成形がなされている。機械室真空断熱材702は、実施の形態1~4に記載したものと、外被材4に挿入された芯材3と輻射抑制フィルム5を真空封止したものである点は同じである。但し、輻射抑制フィルム5は、内箱120側に配置されている点が異なる。
 これら真空断熱材は、曲率半径の小さい円弧形状等の曲面形状に曲げられて成形されるため、真空断熱材の厚みに起因する曲げの内外周差により面内応力が生じ、真空断熱材の内周側の外被材シートに深いシワが発生する。一方、外周側の輻射抑制フィルム5と、外被材シートとは、引っ張られ、シワの発生はほとんどない。これにより、本発明の構成ではなく、例えば、両面の外被材シート4a、4bと芯材3との間のそれぞれに輻射抑制フィルム5が設けた構成とした場合、内周側の外被材シートと輻射抑制フィルム5との双方にシワが発生する。輻射抑制フィルム5のシワは、外周側の輻射抑制フィルム5と近接し、伝熱媒体となり、保温体11の断熱性能の悪化に繋がる。これに対し、真空断熱材2fの構成を採用することで、内周側の輻射抑制フィルム5にシワが発生することはなく、外周側の輻射抑制フィルム5と近接し、伝熱媒体となることが防止される。
 1 保温物、2、2b、2e 真空断熱材、3 芯材、4 外被材、4a、4b 外被材シート、5、5b、5c、5d 輻射抑制フィルム、6 繊維シート、7 シーラント層、11 保温体、50 光沢面、51 つや消し面、52 金属箔、53 高分子フィルム、54 金属蒸着膜、55 熱融着フィルム、56 貯湯タンク、100 上部配管、101 給湯配管、102a 第一の発泡断熱材、102b 第二の発泡断熱材、103 タンク、104 水供給配管、105 底部配管、110 外箱、120 内箱、130 冷蔵庫、150 冷蔵室、160 冷蔵室扉、200 切替室、210 切替室扉、300 冷凍室、310 冷凍室扉、400 野菜室、410 野菜室扉、500 製氷室、510 製氷室扉、600 圧縮機、601 機械室、640 冷却器室、650 冷却器、660 ファン、680 冷却風路、700 側面真空断熱材、701 天井真空断熱材、702 機械室真空断熱材、703 扉真空断熱材、800 発泡断熱材、900 制御基板収納室。

Claims (13)

  1.  芯材と前記芯材を囲う外被材とを含む真空断熱材の一面側に配置した保温物を前記真空断熱材の他面側に位置する外部に対して保温する保温体において、
     前記真空断熱材は、輻射を抑制する輻射抑制フィルムを備え、
     前記輻射抑制フィルムは、前記芯材と前記外被材との間であって、前記一面側と前記他面側のうちの前記他面側に対する近傍領域に配置してある
     保温体。
  2.  前記他面側の温度は、前記一面側の温度より外部温度に近い
     請求項1に記載の保温体。
  3.  前記輻射抑制フィルムは、
     前記他面側に向けた第1面と
     前記第1面の裏面となり前記一面側に向けた第2面とを有し、
     前記第1面は、前記第2面よりも高輻射率である
     請求項1および請求項2に記載の保温体。
  4.  前記輻射抑制フィルムは、
     前記第1面に位置する高分子フィルムと、
     前記第2面に位置する金属箔とを備える
     請求項3に記載の保温体。
  5.  前記輻射抑制フィルムは、光沢面、及び、つや消し面を有するアルミ二ウム箔を含み、
     前記第1面が前記つや消し面であり、
     前記第2面が前記光沢面である
     請求項3に記載の保温体。
  6.  前記高分子フィルムは、シーラントフィルムである、
     請求項4に記載の保温体。
  7.  前記シーラントフィルムの熱融着温度は、前記外被材の熱融着温度以下である、
     請求項6に記載の保温体。
  8.  前記保温物は、曲面形状の部位を有し、
     前記真空断熱材は、前記曲面形状に応じた円弧状に成形してある
     請求項1~7のいずれか1項に記載の保温体。
  9.  前記保温物は冷蔵庫である
     請求項1~8のいずれか1項に記載の保温体。
  10.  一面側に配置した保温物を他面側に位置する外部に対して保温する真空断熱材において、
     芯材と、
     前記芯材を囲う外被材と、
     輻射を抑制する輻射抑制フィルムとを備え、
     前記輻射抑制フィルムは、前記芯材と前記外被材との間であって、前記一面側と前記他面側のうちの前記他面側に対する近傍領域に配置してある
     真空断熱材。
  11.  前記輻射抑制フィルムは、
     前記他面側に向けた第1面と
     前記第1面の裏面となり前記一面側に向けた第2面とを有し、
     前記第1面は、前記第2面よりも高輻射率である
     請求項10記載の真空断熱材。
  12.  一面側に配置した保温物を他面側に位置する外部に対して保温する真空断熱材を製造する製造方法において、
     芯材と、前記芯材を囲う外被材と、輻射を抑制する輻射抑制フィルムとを準備する準備工程と、
     前記芯材と前記輻射抑制フィルムとを前記外被材に挿入し、前記芯材と前記外被材との間であって、前記一面側と前記他面側のうちの前記他面側に対する近傍領域に前記輻射抑制フィルムを配置する配置工程と、
     前記芯材が挿入され前記輻射抑制フィルムが前記近傍領域に配置された前記外被材を真空封止する真空封止工程と
     を備える真空断熱材の製造方法。
  13.  前記配置工程において、前記輻射抑制フィルムが有する高輻射率の第1面を前記他面側に向け、前記第1面の裏面であって前記輻射抑制フィルムが有する低輻射率の第2面を前記一面側に向ける請求項12に記載の真空断熱材の製造方法。
PCT/JP2016/080185 2016-02-04 2016-10-12 保温体、真空断熱材および真空断熱材の製造方法 WO2017134862A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/069,213 US10493725B2 (en) 2016-02-04 2016-10-12 Thermal insulator, vacuum insulation member, and method of manufacturing vacuum insulation member
EP16889345.1A EP3412954A4 (en) 2016-02-04 2016-10-12 HEAT-STORED BODY, VACUUM HEAT INSULATION MATERIAL AND METHOD FOR PRODUCING VACUUM HEAT INSULATION MATERIAL
JP2017506423A JP6266162B2 (ja) 2016-02-04 2016-10-12 保温体、真空断熱材および真空断熱材の製造方法
CN201680079712.4A CN108496037B (zh) 2016-02-04 2016-10-12 保温体、真空隔热材料及真空隔热材料的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016020070 2016-02-04
JP2016-020070 2016-02-04

Publications (1)

Publication Number Publication Date
WO2017134862A1 true WO2017134862A1 (ja) 2017-08-10

Family

ID=59500186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080185 WO2017134862A1 (ja) 2016-02-04 2016-10-12 保温体、真空断熱材および真空断熱材の製造方法

Country Status (5)

Country Link
US (1) US10493725B2 (ja)
EP (1) EP3412954A4 (ja)
JP (1) JP6266162B2 (ja)
CN (1) CN108496037B (ja)
WO (1) WO2017134862A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019094962A (ja) * 2017-11-21 2019-06-20 トヨタ自動車株式会社 断熱パネル
JP2019184020A (ja) * 2018-04-16 2019-10-24 アクア株式会社 真空断熱材

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102568407B1 (ko) * 2018-06-27 2023-08-21 엘지전자 주식회사 진공단열체 및 냉장고
EP3984909A4 (en) * 2019-06-17 2022-08-03 Panasonic Intellectual Property Management Co., Ltd. CONSTANT TEMPERATURE CONTAINER
KR20210100447A (ko) * 2020-02-06 2021-08-17 삼성전자주식회사 진공단열재, 진공단열재의 제조방법 및 진공단열재를 포함하는 냉장고

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174639A (ja) 1984-02-20 1985-09-07 松下冷機株式会社 断熱板
JPH05215291A (ja) * 1991-10-02 1993-08-24 Fujimori Kogyo Kk 真空断熱パネルの製造方法
JPH08142264A (ja) * 1994-11-15 1996-06-04 Sankyo Kasei Kogyo Kk 断熱用被覆材
JPH09292091A (ja) * 1996-04-25 1997-11-11 Kubota Corp 断熱容器
JP2002090049A (ja) 2000-09-19 2002-03-27 Hitachi Ltd 断熱箱体及びその製造方法
JP2011190925A (ja) * 2010-02-16 2011-09-29 Tokyo Electron Ltd 断熱体及び断熱体の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7409322A (nl) * 1973-07-16 1975-01-20 Johns Manville Samengestelde thermische isolatiemantel.
JPS6086369A (ja) 1983-10-14 1985-05-15 松下冷機株式会社 断熱体
CN2041761U (zh) * 1988-05-28 1989-07-26 侯梦斌 高效保温体
US5376424A (en) 1991-10-02 1994-12-27 Fujimori Kogyo Co., Ltd. Vacuum thermal insulating panel and method for preparing same
US7485352B2 (en) * 2003-07-04 2009-02-03 Panasonic Corporation Vacuum heat insulator and apparatus using the same
JP2005163989A (ja) * 2003-12-05 2005-06-23 Matsushita Electric Ind Co Ltd 真空断熱材とその使用方法
DE102004050549B4 (de) * 2004-08-09 2014-02-13 Va-Q-Tec Ag Folienumhüllte Vakuumdämmplatte und Verfahren zur Herstellung derselben
JP2007139118A (ja) 2005-11-21 2007-06-07 Jr Higashi Nippon Consultants Kk 耐熱材及びこれを用いた耐熱容器
WO2012044001A2 (en) * 2010-10-01 2012-04-05 Lg Electronics Inc. Vacuum insulation panel, refrigerator with vacuum insulation panel and manufacturing method for vacuum insulation panel
CN203500757U (zh) * 2013-09-05 2014-03-26 天津世纪天源集团有限公司 一种可拆卸的加热套管
CN104746668A (zh) * 2013-12-25 2015-07-01 戴长虹 玻璃焊接的金属真空复合绝热板及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174639A (ja) 1984-02-20 1985-09-07 松下冷機株式会社 断熱板
JPH0437774B2 (ja) * 1984-02-20 1992-06-22 Matsushita Refrigeration
JPH05215291A (ja) * 1991-10-02 1993-08-24 Fujimori Kogyo Kk 真空断熱パネルの製造方法
JPH08142264A (ja) * 1994-11-15 1996-06-04 Sankyo Kasei Kogyo Kk 断熱用被覆材
JPH09292091A (ja) * 1996-04-25 1997-11-11 Kubota Corp 断熱容器
JP2002090049A (ja) 2000-09-19 2002-03-27 Hitachi Ltd 断熱箱体及びその製造方法
JP2011190925A (ja) * 2010-02-16 2011-09-29 Tokyo Electron Ltd 断熱体及び断熱体の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019094962A (ja) * 2017-11-21 2019-06-20 トヨタ自動車株式会社 断熱パネル
JP7006170B2 (ja) 2017-11-21 2022-01-24 トヨタ自動車株式会社 断熱パネル
JP2019184020A (ja) * 2018-04-16 2019-10-24 アクア株式会社 真空断熱材
CN110388538A (zh) * 2018-04-16 2019-10-29 Aqua株式会社 真空绝热材
CN110388538B (zh) * 2018-04-16 2022-09-20 Aqua株式会社 真空绝热材
JP7233070B2 (ja) 2018-04-16 2023-03-06 アクア株式会社 真空断熱材

Also Published As

Publication number Publication date
JPWO2017134862A1 (ja) 2018-02-08
CN108496037B (zh) 2020-05-19
EP3412954A4 (en) 2019-01-23
US20190001626A1 (en) 2019-01-03
US10493725B2 (en) 2019-12-03
JP6266162B2 (ja) 2018-01-24
CN108496037A (zh) 2018-09-04
EP3412954A1 (en) 2018-12-12

Similar Documents

Publication Publication Date Title
JP6266162B2 (ja) 保温体、真空断熱材および真空断熱材の製造方法
JP3478771B2 (ja) 冷蔵庫
WO2010087039A1 (ja) 真空断熱材及びこれを備えた断熱箱
JP2009024922A (ja) 冷蔵庫
JP2013088036A (ja) 断熱箱体、冷蔵庫及び貯湯式給湯器
US20130200084A1 (en) High-performance vacuum insulation panel and manufacturing method thereof
JP2011122739A (ja) 冷蔵庫
JP2008185220A (ja) 真空断熱材
US20180339490A1 (en) Vacuum insulation material, vacuum insulation material manufacturing method, and refrigerator including vacuum insulation material
JP5571610B2 (ja) 真空断熱材の製造方法、真空断熱材及びこれを備えた冷蔵庫
JP2009299764A (ja) 真空断熱材及びこれを用いた断熱容器
TWI622747B (zh) refrigerator
JP5646241B2 (ja) 冷蔵庫
JP2008256125A (ja) 真空断熱材及びこれを用いた冷蔵庫
JP2001165389A (ja) 断熱箱体
JP6634040B2 (ja) 真空断熱材、真空断熱材の製造方法及び冷蔵庫
KR102186839B1 (ko) 진공 단열재, 단열 케이스체 및 냉장고
JP2018017314A (ja) 真空断熱材及びそれを用いた冷蔵庫
JP2013002580A (ja) 真空断熱材及びそれを用いた冷蔵庫
WO2013145401A1 (ja) 複合断熱材、保温タンク及びヒートポンプ式給湯機
JP2004156824A (ja) 冷蔵庫
JP2015001290A (ja) 真空断熱材及び冷蔵庫
JP6225324B2 (ja) 断熱箱体
JP2019002581A (ja) 冷蔵庫
JP2004012125A (ja) 断熱箱体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017506423

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016889345

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016889345

Country of ref document: EP

Effective date: 20180904