WO2017132792A1 - 多叶准直器及其位移检测系统 - Google Patents

多叶准直器及其位移检测系统 Download PDF

Info

Publication number
WO2017132792A1
WO2017132792A1 PCT/CN2016/073048 CN2016073048W WO2017132792A1 WO 2017132792 A1 WO2017132792 A1 WO 2017132792A1 CN 2016073048 W CN2016073048 W CN 2016073048W WO 2017132792 A1 WO2017132792 A1 WO 2017132792A1
Authority
WO
WIPO (PCT)
Prior art keywords
displacement detecting
blade
scale
displacement
leaf collimator
Prior art date
Application number
PCT/CN2016/073048
Other languages
English (en)
French (fr)
Inventor
杨勇强
闵浩
Original Assignee
武汉数码刀医疗有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉数码刀医疗有限公司 filed Critical 武汉数码刀医疗有限公司
Priority to CN201680000529.0A priority Critical patent/CN107429987A/zh
Priority to PCT/CN2016/073048 priority patent/WO2017132792A1/zh
Publication of WO2017132792A1 publication Critical patent/WO2017132792A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses
    • G01D5/38Forming the light into pulses by diffraction gratings

Definitions

  • the invention relates to the field of radiotherapy equipment, in particular to a multi-leaf collimator and a displacement detecting system thereof.
  • a contact or non-contact position detecting method is generally used in actual use.
  • Contact type for example, using a linear carbon film resistance potentiometer, a resistive touch screen, etc., is to slide on the surface of the potentiometer or the touch screen by a contact piece or an elastic piece fixedly moving with the blade of the multi-leaf collimator to change the contact resistance value.
  • the size of the output thus changes the linear or approximately linear voltage signal and determines the position of the blade by A/D conversion.
  • the non-contact position detection method for example, the principle of CCD photography is adopted, and the position of the marked points on the blade is continuously photographed by a high-speed camera through a set of optical components, and then the position pixel information is collected and transmitted to the computer for processing in time. Implement detection of moving positions.
  • the contact detection method has a large number of contact sheets or elastic sheets due to the large number of blades to be detected by the multi-leaf collimator. Due to manufacturing and installation factors, the contact pressure between the contact pads and the surface of the potentiometer or the touch screen is different, resulting in instability of the detection process, poor reliability, and even unusable, and the accuracy of such contact detection is poor. Cannot provide accurate location information.
  • the non-contact position detection of the CCD camera principle can provide high position detection accuracy, and the non-contact detection method avoids the defect that the contact detection method has low reliability, but the multi-leaf collimator is applied to the spoke. In the case of photography, the CCD camera is not resistant to radiation, causing the CCD camera to be easily damaged and needs to be replaced frequently.
  • the semi-closed loop mode of the motor encoder can also be used to determine the moving position of the blade by the pulse signal transmitted from the encoder counting control system to the motor.
  • the accuracy of the detection is related to the number of lines of the encoder, but the detection is caused by the motor out of step.
  • the error which affects the accuracy of the detected value. This is an indirect position detection method that does not directly reflect the actual position of the blade.
  • the present invention provides a displacement detecting system and a radiotherapy apparatus for a multi-leaf collimator.
  • An embodiment of the present invention provides a displacement detecting system for a multi-leaf collimator, the multi-leaf collimator including a plurality of blades, each of which includes a plurality of scale marks.
  • the displacement detecting system includes a plurality of sets of displacement detecting devices, each blade correspondingly mounting at least one set of the displacement detecting devices, each set of the displacement detecting devices comprising: a laser emitter, emitting a continuous laser to a scale mark on the corresponding blade An optical receiver that receives an optical signal reflected from the scale mark and converts the optical signal into an electrical signal output; a fiber optic assembly coupled to the laser emitter and the photoreceiver, the fiber optic assembly including an optical fiber and a corresponding a detecting head, the detecting head is disposed to the scale mark, the fiber optic assembly is configured to transmit the laser light to the scale mark through the detecting head, and transmit the light signal reflected by the scale mark to the An optoelectronic receiver; and processing means for receiving an electrical signal output
  • Each of the blades includes a plurality of scale marks
  • the displacement detecting system includes a plurality of sets of displacement detecting devices, each blade correspondingly mounting at least one set of the displacement detecting devices.
  • Each set of the displacement detecting device comprises: a laser emitter that emits a continuous laser to a scale mark on the corresponding blade; a photoelectric receiver that receives the light signal reflected by the scale mark and converts the light signal into an electrical signal output; a module coupled to the laser emitter and the photoreceiver, the fiber optic assembly including a detection head disposed opposite the scale identification, the fiber optic assembly for passing the laser light through the detection head Transmitting to the scale identifier and transmitting the optical signal reflected by the scale identifier to the optoelectronic receiver; and processing means for receiving an electrical signal output by the optoelectronic receiver and changing according to the electrical signal Calculate the moving distance of the blade.
  • the multi-leaf collimator and the displacement detecting system thereof of the invention can monitor the movement state of the blade and record the moving position of the blade in real time by adopting a displacement detecting device with high measurement accuracy, safety, reliability and convenient maintenance.
  • FIG. 1 is a schematic overall view of a first embodiment of a multi-leaf collimator provided by the present invention
  • Figure 2 is a plan view of the mounting plate of the fiber optic assembly of the multi-leaf collimator of Figure 1;
  • FIG. 3 is a schematic overall view of a second embodiment of the multi-leaf collimator provided by the present invention.
  • Figure 4 is a top plan view of the mounting plate of the fiber optic assembly of the multi-leaf collimator of Figure 3;
  • Figure 5 is a schematic overall view of a third embodiment of the multi-leaf collimator provided by the present invention.
  • Figure 6 is a top plan view of the mounting plate of the fiber optic assembly of the multi-leaf collimator of Figure 5.
  • a first embodiment of the present invention provides a multi-leaf collimator 100 that includes at least a plurality of movable vanes 10 and a displacement detecting system 20.
  • the displacement detecting system 20 is disposed below the plurality of movable vanes 10 for detecting the displacement of each of the vanes 10.
  • the displacement detection system 20 may also be disposed in parallel over the plurality of movable vanes 10.
  • each of the movable vanes 10 includes a plurality of scale marks 11 thereon.
  • the uneven grooves or the printed light-dark gratings are etched on each of the blades 10 to form alternating concave and convex grooves or light and dark surfaces, that is, the scale marks 11 are formed. More specifically, the periodic concave-convex grooves or light-dark gratings are inscribed at the edge of the blade 10.
  • the displacement detecting system 20 includes a plurality of sets of displacement detecting devices 21, each of which is correspondingly mounted to One set of said displacement detecting means 21 is omitted.
  • the displacement detecting system 20 is directly placed directly under the grating or concave-convex groove of the blade 10, and can be directly mounted or alternately staggered and arranged under the condition of the size permitting.
  • each set of the displacement detecting device 21 includes at least a laser emitter 211, a photoreceiver 212, a fiber optic assembly 213, and a processing device 214.
  • the laser emitter 211 is used to emit a continuous laser to the scale mark 11 on the corresponding blade 10.
  • the laser emitter 211 is a laser diode.
  • the photoreceiver 212 is configured to receive an optical signal reflected by the scale mark 11 and convert the optical signal into an electrical signal output.
  • the photoreceiver 212 is a photodiode.
  • the laser emitter 211 and the photoreceiver 212 are integrated in the same receiving device to minimize the occupied space.
  • the principle of the present invention is that the laser emitter 211 is excited to emit a continuous laser beam, and is transmitted through a single-guide light half-reflex lens, and the laser light is incident on the alternating concave-convex groove or the light-dark grating surface, on the convex surface or the bright surface. The light is reflected back to the laser, and the light is weakened or absorbed on the concave or dark surface, and the light that is reflected back to the strong and weak by the half mirror is received by the photoreceiver 212.
  • the photoelectric receiver 212 converts the optical signal into an electrical signal, and at the output end of the photoreceiver 212, a milliamp-level fluctuation current signal can be detected, and the received electrical signal is a periodic pulse signal, and the signal is transmitted to the single-chip microcomputer for processing.
  • the actual displacement value of the blade 10 is obtained.
  • the fiber optic assembly 213 is coupled to the laser emitter 211 and the photoreceiver 212 and disposed opposite the edge of the blade 10.
  • the optical fiber component 213 includes an optical fiber 2131 and a corresponding detecting head 2132, and the detecting head 2132 is disposed opposite to the scale marking 11.
  • the optical fiber 2131 is a radiation-proof single-membrane optical fiber.
  • the optical fiber assembly 213 is configured to transmit the laser light to the scale mark 11 through the detecting head 2132, and transmit the optical signal reflected by the scale mark 11 to the photoelectric receiver 212.
  • the displacement detecting system 20 further includes a mounting plate 214 disposed in parallel above or below the multi-leaf collimator 100.
  • the mounting plate 214 is provided with a plurality of mounting slots (not shown) for receiving the optical fibers 2131.
  • the receiving slots penetrate from the bottom surface of the mounting board 214 to the top surface.
  • the extending direction of the mounting groove is perpendicular to the extension of the blade 10
  • the axis of the detecting head 2132 i.e., the light exit/incident direction
  • the corresponding detecting head 2132 may be exposed outside an end surface of the mounting plate 214 away from the laser emitter 211 and the photoreceiver 212, and aligned The scale identifies the 11 position.
  • the detecting head 2132 is preferably housed in the mounting groove to prevent damage by an external force.
  • the distance between each of the detection heads 2132 and the edge of the corresponding blade 10 remains the same, and the distance should ensure that the focus of the light from the detection head 2132 is focused on the scale mark 11 of the blade 10.
  • the processing device 215 is configured to receive an electrical signal output by the photoreceiver 212, and calculate a moving distance of the blade 10 according to the change of the electrical signal.
  • the processing device 215 includes a receiving module 2151 and a computing module 2152.
  • the receiving module 2151 is configured to receive an electrical signal output by the photoreceiver 212, wherein the electrical signal is a periodic pulse signal.
  • the calculating module 2152 is configured to perform pulse counting according to the electrical signal, and calculate a moving distance of the blade 10 according to the number of pulses and a preset original position.
  • the processing device 215 further includes a displacement determining module 2153 for obtaining movement direction information according to the steering signal of the blade control motor, and determining the blade 10 in combination with the moving distance. Displacement. More specifically, the processing device 215 is coupled to the blade control motor, and the forward and reverse signals of the motor are controlled by the pick-up blade, combined with the measurement of the moving distance of the pulse count, to determine the distance that the blade 10 moves forward and backward.
  • the position of the blade 10 of the multi-leaf collimator 100 is detected by counting means, and the positioning accuracy depends on the precision of the surface of the blade 10 or the scale of the light-dark phase grating.
  • the resolution of the optical fiber component 213 can reach 0.01 mm, so the measurement accuracy of the displacement detecting system 20 using the present embodiment can reach 0.01 mm.
  • the fiber optic assembly 213 and the mounting may be omitted if the space allows the laser emitter 211 and the photoreceiver 212 to be capable of displacement detection of the blade 10 at a sufficiently short distance.
  • Board 214 may be omitted if the space allows the laser emitter 211 and the photoreceiver 212 to be capable of displacement detection of the blade 10 at a sufficiently short distance.
  • the multi-leaf collimator 100 of the present invention adopts high measurement accuracy, safety and reliability, and convenient maintenance.
  • the displacement detecting device 21 can monitor the movement state of the blade 10 and record the moving position of the blade 10 in real time.
  • the blades 10 of the multi-leaf collimator 100 are relatively thin, when the plurality of blades 10 are arranged tightly, the distributed mounting of the displacement detecting device 21 is greatly restricted. Moreover, since the optical fiber 2131 cannot be excessively bent during use, excessive bending may cause the optical signal transmission to be deteriorated or interrupted.
  • the present invention proposes a multi-leaf collimator 200 of the second embodiment.
  • the multi-leaf collimator 200 of the second embodiment is substantially identical to the multi-leaf collimator 100 of the first embodiment, except that each set of the displacement detecting device 21a further includes a set of fiber optic pairs of yardsticks 215 Provided between the laser emitter 211 or the photoreceiver 212 and the blade 10 for changing the transmission optical path of the light reflected from the scale mark 11.
  • the orientation of the mounting plate 214a is also changed.
  • the mounting plate 214a is still disposed in parallel above or below the multi-leaf collimator 200, but the mounting groove is formed on the top surface of the mounting plate 214a, that is, the surface facing the blade 10. At this time, the light transmitted by the detecting head 2132 reaches the scale mark via the fiber pair 215 or is reflected from the scale mark. .
  • each set of fiber pair yardsticks 215 includes a focusing lens 2151 and a reflecting lens 2152 (total reflection) side by side.
  • the fiber pair yardstick 215 is disposed between the fiber optic assembly 213 and the blade 10, and the axial direction of the detecting head 2132 is aligned with the center of the fiber pair yardstick 215 such that it is emitted from the detecting head 2132.
  • the light rays can be reflected by the optical fiber to the scale 215 to the scale mark 11.
  • the laser light emitted by the laser emitter 211 is transmitted to the fiber pair yardstick 215 via the optical fiber 2131 and the detecting head 2132, and is focused by the focusing lens 2151 onto the reflective lens 2152, and passes through the reflection.
  • the lens 2152 is reflected onto the scale mark 11 of the blade 10.
  • the scale mark 11 in turn reflects the light back to the reflective lens 2152, which reflects the reflected light back through the fiber optic assembly 213 back to the photoreceiver 212.
  • the fiber pair yardstick 215 can also be disposed between the laser emitter 211 or the photoreceiver 212 and the mounting plate. At this time, the detecting head 2132 is axially opposed. The scale mark 11 is being described.
  • the optical signal steering problem of the photodetection system 20 in a small area is solved.
  • the reflected optical signal can be led to a remote location for detection, so that the larger-sized laser transmitter 211 and the photoreceiver 212 can be mounted on the multi-leaf collimator 200.
  • the photoelectric device has a fast response to the optical signal and low loss, the signal can be reliably received and recognized, and the light transmitting and receiving device (such as the photoreceiver 212 and the laser emitter 211) can be adopted by using the remote position detecting method.
  • Mounting on the outside of the blade 10 not only solves the limitation of the insufficient installation position, but also has more space for protecting the design, and the fiber assembly 213 disposed under the blade 10 can adopt the radiation-resistant single-mode fiber, which is At a dose of 50 krad and a dose rate of 0.1 rad/s, the additional loss at the 1310 nm window is less than 3 dB/km, while the fiber assembly 213 is used under the protection of the blade 10, thus having a high reliability.
  • the fiber optic pair 215a consisting of a lens and a mirror is made of glass and metal and is not disturbed by radiation. In this way, the long-term stable operation of the photodetecting device can be ensured.
  • the multi-leaf collimator 300 of the third embodiment of the present invention is substantially the same as the multi-leaf collimator 200 of the second embodiment, with the difference that in order to accurately obtain the moving direction of the blade 10, each Below the blade 10, two sets of the displacement detecting means 21 are mounted, and the two sets of the displacement detecting means 21 differ in optical signal periods of a predetermined value. That is to say, in this embodiment, each blade 10 of the multi-leaf collimator 300 can be correspondingly mounted with two laser emitters 211, two photoreceivers 212, two fiber optic components 213, and correspondingly disposed two Group fiber pair 215.
  • each blade can also be correspondingly provided with a laser emitter 211, and the laser emitter 211 can separate two parallel laser beams, respectively, through two fiber components, the detection head transmits and transmits Receiving an optical signal having a predetermined period reflected back from the scale scale to the photoreceiver.
  • the optical signals reflected back between the two sets of the displacement detecting devices 21 differ by 1/4 optical signal period.
  • a photoreceiver 212 having two parallel receiving ports is provided, thereby ensuring that the initial laser emission positions are the same while reducing the space occupied by the components.
  • the detecting heads 2132 of the two fiber optic assemblies 213 are juxtaposed in the front and rear positions of the same mounting slot of the mounting board 214, and the interval between the two detecting heads 2132 is 1/4 optical signal period.
  • the interval between the two sets of the displacement detecting devices 21 can be determined according to specific conditions, for example, 1/2, 1/3, 1/5 optical signal periods, and the like can also be different.
  • the processing means 215a also changes correspondingly.
  • the processing device 215a includes a receiving module 2151a, a calculating module 2152a, and a displacement determining module 2153a
  • the receiving module 2151a is configured to receive two sets of electrical signals output by the photoreceiver 212, wherein the electrical signal a periodic pulse signal
  • the calculation module 2152a is configured to perform pulse counting according to one set of the electrical signals, and calculate a displacement of the blade 10 according to the number of pulses and a preset original position, and according to Calculating the period advance or lag of the pulse signal by the period of the two sets of pulse signals
  • the displacement determining module 2153a is configured to determine the direction in which the blade 10 moves according to the period advance or lag condition of the pulse signal, and combine the The calculated moving distance determines the displacement of the blade 10.
  • the optical signals collected by the two detection points will have an advance or lag of 1/4 cycle difference, and the processing of the advanced or delayed signal is processed.
  • Information on the direction in which the blade 10 moves can be obtained.
  • the two detecting heads of the displacement detecting device 21 are respectively disposed at two positions A and B of the blade.
  • the pulse calculated by the calculating module 2152a is at position A, it is 1/1 earlier than the position B. 4 cycles, it is judged that the blade 10 is moved from the A position to the B position, that is, the forward movement. Otherwise, if the pulse calculated by the calculation module 2152a is delayed by 1/4 cycle at the position A than at the position B, the blade 10 is judged. It is moved from the B position to the A position, that is, the reverse movement.
  • the multi-leaf collimator and the displacement detecting system thereof of the invention can monitor the movement state of the blade and record the moving position of the blade in real time by adopting a displacement detecting device with high measurement accuracy, safety, reliability and convenient maintenance.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种多叶准直器(100)的位移检测系统(20),多叶准直器(100)包括多个叶片(10),每个叶片(10)上包括多个刻度标识(11)。位移检测系统(20)包括多组位移检测装置(21),每个叶片(10)对应安装至少一组位移检测装置(21)。每组位移检测装置(21)包括:激光发射器(211),发射激光至对应叶片上的刻度标识(11);光电接收器(212),接收刻度标识(11)反射的光信号,并将光信号转换为电信号输出;光纤组件(213),耦接激光发射器(211)和光电接收器(212),且正对叶片(10)边缘设置,所述光纤组件(213)包括光纤(2131)以及对应的检测头(2132),所述检测头(2132)正对刻度标识(11)设置,光纤组件(213)用于将激光通过所述检测头(2132)传输到刻度标识(11),并将刻度标识(11)反射的光信号传输到光电接收器(212);以及处理装置(215),用于接收光电接收器(212)输出的电信号,并根据电信号的变化计算得到叶片(10)的移动距离。

Description

多叶准直器及其位移检测系统 技术领域
本发明涉及放疗设备领域,尤其涉及一种多叶准直器及其位移检测系统。
背景技术
在现有的多叶准直器中,为准确实现叶片运动位置的检测,在实际使用中一般采用接触式或非接触式的位置检测方式。接触式的例如采用线性碳膜电阻电位器、电阻式触摸屏等方式,均是通过与多叶准直器叶片固定运动的接触片或弹性片在电位器或触摸屏表面滑动,以通过改变接触电阻值的大小,从而输出变化的线性或近似线性电压信号,并通过A/D转换来确定叶片的运动位置。非接触式的位置检测方式中,例如采用CCD照像的原理,通过一套光学组件将叶片上标记点的位置通过高速摄像机连续拍摄下来,然后将位置像素信息采集后适时传输至电脑处理,以实现移动位置的检测。
以上两种检测方式中,接触式检测的方式由于多叶准直器需检测的叶片数量较多,接触片或弹性片的数量就多。由于制造及安装的因素会产生各接触片与电位器或触摸屏表面的接触压力不同,从而产生检测过程的不稳定,可靠性较差,甚至造成无法使用,而且此类接触式的检测精度较差,无法提供准确的位置信息。CCD摄像原理的非接触式位置检测可提供较高的位置检测精度,而且由于采用非接触式的检测方式,避免了接触式检测方式可靠性低的缺陷,但由于多叶准直器应用于辐照的场合,CCD摄像头不耐辐射,造成CCD摄像头易损坏,需经常更换。
另外,除采用以上两种闭环检测方式检测叶片位移之外,还可采用电机编码器的半闭环方式,通过编码器计数控制系统传给电机的脉冲信号,确定叶片的运动位置。检测的精度与编码器的线数有关,但由于电机失步会造成检测的 误差,从而影响检测数值的准确。这是一种间接的位置检测方法,不能直接反映叶片的实际位置。
发明内容
为了解决上述技术问题,本发明提供一种多叶准直器的位移检测系统及放射治疗设备。
本发明一实施例提供一种多叶准直器的位移检测系统,所述多叶准直器包括多个叶片,每个叶片上包括多个刻度标识。所述位移检测系统包括多组位移检测装置,每个叶片对应安装至少一组所述位移检测装置,每组所述位移检测装置包括:激光发射器,发射连续的激光至对应叶片上的刻度标识;光电接收器,接收从所述刻度标识反射的光信号,并将光信号转换为电信号输出;光纤组件,耦接所述激光发射器和光电接收器,所述光纤组件包括光纤以及对应的检测头,所述检测头正对所述刻度标识设置,所述光纤组件用于将所述激光通过所述检测头传输到所述刻度标识,并将所述刻度标识反射的光信号传输到所述光电接收器;以及处理装置,用于接收所述光电接收器输出的电信号,并根据所述电信号的变化计算得到叶片的移动距离。
本发明另一实施例提供一种多叶准直器,至少包括多个可移动叶片以及一位移检测系统,所述位移检测系统用于检测每个叶片的位移。每个叶片上包括多个刻度标识,所述位移检测系统包括多组位移检测装置,每个叶片对应安装至少一组所述位移检测装置。每组所述位移检测装置包括:激光发射器,发射连续的激光至对应叶片上的刻度标识;光电接收器,接收所述刻度标识反射的光信号,并将光信号转换为电信号输出;光纤组件,耦接所述激光发射器和光电接收器,所述光纤组件包括一个检测头,所述检测头正对所述刻度标识设置,所述光纤组件用于将所述激光通过所述检测头传输到所述刻度标识,并将所述刻度标识反射的光信号传输到所述光电接收器;以及处理装置,用于接收所述光电接收器输出的电信号,并根据所述电信号的变化计算得到叶片的移动距离。
本发明的多叶准直器及其位移检测系统,通过采用测量精度高、安全可靠、维护方便的位移检测装置,可实时监测叶片运动状态及记录叶片的运动位置。
附图说明
图1是本发明提供的多叶准直器的第一实施例的整体示意图;
图2是图1的多叶准直器的光纤组件的安装板的俯视图;
图3是本发明提供的多叶准直器的第二实施例的整体示意图;
图4是图3的多叶准直器的光纤组件的安装板的俯视图;
图5是本发明提供的多叶准直器的第三实施例的整体示意图;
图6是图5的多叶准直器的光纤组件的安装板的俯视图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
第一实施例
请参阅图1,本发明第一实施例提供一种多叶准直器100,其至少包括多个可移动叶片10以及一个位移检测系统20。所述位移检测系统20设置在所述多个可移动叶片10下方,用于检测每个叶片10的位移。
可以理解,在其他实施例中,所述位移检测系统20还可平行设置在所述多个可移动叶片10上方。
具体的,每个可移动叶片10上包括多个刻度标识11。本实施例中,在每个叶片10上蚀刻等间距的凹凸槽或印刷明暗相间的光栅,形成交替的凹凸槽或明暗面,即形成所述刻度标识11。更具体的,所述周期性的凹凸槽或明暗相间的光栅刻于叶片10的边缘位置。
所述位移检测系统20包括多组位移检测装置21,每个叶片10对应安装至 少一组所述位移检测装置21。本实施例中,将所述位移检测系统20直接置于叶片10的光栅或凹凸槽正下方,在尺寸允许条件下,可以直接安装或前后交替错开布置。更具体的,每组所述位移检测装置21至少包括激光发射器211、光电接收器212、光纤组件213以及处理装置214。
具体来说,所述激光发射器211用于发射连续的激光至对应叶片10上的刻度标识11。本实施例中,所述激光发射器211是激光二极管。
所述光电接收器212用于接收所述刻度标识11反射的光信号,并将光信号转换为电信号输出。本实施例中,所述光电接收器212是光电二极管。
本实施例中,所述激光发射器211以及光电接收器212集成在同一个收容装置中,以尽量减小占用的空间。
本发明的原理是:激光发射器211受激后发射出连续的激光,透过一个单向导光的半反镜片,激光射到交替的凹凸槽或明暗相间的光栅面上,在凸面或明面上反射回激光,在凹面或暗面光线被减弱或吸收,通过半反镜片反射回强弱交替的光线被光电接收器212接收。光电接收器212将光信号转换为电信号,在光电接收器212输出端可以检测到毫安级波动的电流信号,接收到的电信号为周期性的脉冲信号,该信号传递给单片机处理后,可得到叶片10的实际位移值。请结合图2,所述光纤组件213耦接所述激光发射器211和光电接收器212,且正对所述叶片10边缘设置。具体的,所述光纤组件213包括光纤2131以及对应的检测头2132,所述检测头2132正对所述刻度标识11设置。本实施例中,所述光纤2131是防辐射单膜光纤。所述光纤组件213用于将所述激光通过所述检测头2132传输到所述刻度标识11,并将所述刻度标识11反射的光信号传输到所述光电接收器212。
本实施例中,所述位移检测系统20进一步包括一安装板214,所述安装板214平行设置在所述多叶准直器100上方或下方。所述安装板214上开设有用于收容所述光纤2131的多个安装槽(图未示),所述收容槽从安装板214的底面穿透至顶面。本实施例中,所述安装槽的延伸方向垂直于所述叶片10的延伸 方向,所述检测头2132的轴线(即光线出射/入射方向)垂直于叶片10的底面。当所述光纤2131收容在所述安装槽内后,对应的所述检测头2132可暴露在所述安装板214远离所述激光发射器211和光电接收器212的一个端面外,并对准所述刻度标识11位置。当然,在一些实施例中,所述检测头2132优选为收容在所述安装槽内,以防止被外力损坏。此外,每个检测头2132与对应叶片10边缘之间的距离保持一致,且该距离应保证检测头2132的光线聚焦点聚焦于叶片10的刻度标识11上。
所述处理装置215用于接收所述光电接收器212输出的电信号,并根据所述电信号的变化计算得到叶片10的移动距离。本实施例中,所述处理装置215包括接收模块2151以及计算模块2152。所述接收模块2151用于接收所述光电接收器212输出的电信号,其中所述电信号为周期性的脉冲信号。所述计算模块2152用于根据所述电信号进行脉冲计数,并根据所述脉冲数以及预设的原始位置,计算得到所述叶片10的移动距离。在本实施例中,为了进一步判断叶片10位移的方向,所述处理装置215进一步包括位移确定模块2153,用于根据叶片控制电机的转向信号获得移动方向信息,并结合所述移动距离确定叶片10的位移。更具体的,所述处理装置215与叶片控制电机连接,通过拾取叶片控制电机的正反转信号,与脉冲计数的移动距离测量结果相结合,可确定叶片10正反移动的距离。
通过计数方式对多叶准直器100的叶片10进行位置检测,其定位精度取决于叶片10表面凹凸槽或明暗相间光栅刻度的精密性。本实施例中,光纤组件213的分辨率可达到0.01mm,因此使用该本实施例的位移检测系统20的测量精度可达到0.01mm。
可以理解的是,在一些实施例中,如果空间允许,使得激光发射器211、光电接收器212能够在足够短的距离对叶片10进行位移检测,则可以省略所述光纤组件213和所述安装板214。
本发明的多叶准直器100中,通过采用测量精度高、安全可靠、维护方便 的位移检测装置21,可实时监测叶片10运动状态及记录叶片10的运动位置。
第二实施例
由于多叶准直器100的叶片10较薄,当多个叶片10排布较紧密时,所述位移检测装置21的分布安装会受到较大限制。而且由于光纤2131在使用中不能过度弯曲,过度弯曲会造成光信号传递变差或中断。
请参阅图3-4,为解决上述技术问题,本发明提出第二实施例的多叶准直器200。具体来说,第二实施例的多叶准直器200与第一实施例的多叶准直器100基本相同,区别在于:每组所述位移检测装置21a进一步包括一组光纤对码尺215,设置在所述激光发射器211或光电接收器212与所述叶片10之间,用于改变从所述刻度标识11反射的光线的传输光路。此外,所述安装板214a的摆放方向也发生了改变。具体来说,所述安装板214a仍然平行设置在所述多叶准直器200上方或下方,但是所述安装槽开设在安装板214a的顶面,即面向所述叶片10的表面。此时,所述检测头2132传输的光线经所述光纤对码尺215到达所述刻度标识,或从刻度标识反射。。
本实施例中,每组光纤对码尺215包括并排的一聚焦透镜2151以及一反射镜片2152(全反射)。所述光纤对码尺215设置在所述光纤组件213与所述叶片10之间,所述检测头2132的轴向对正所述光纤对码尺215的中心,使得从所述检测头2132发出的光线能够通过所述光纤对码尺215反射到所述刻度标识11。具体来说,激光发射器211发出的激光经由所述光纤2131以及检测头2132传输到所述光纤对码尺215,通过所述聚焦透镜2151聚焦到所述反射镜片2152上,并通过所述反射镜片2152反射到所述叶片10的刻度标识11上。所述刻度标识11又将所述光线反射回到所述反射镜片2152,反射镜片2152将反射后的光线通过光纤组件213再次反射回所述光电接收器212。
可以理解的是,在其他实施例中,所述光纤对码尺215还可设置在激光发射器211或光电接收器212与所述安装板之间,此时,所述检测头2132轴向对正所述刻度标识11。
通过上述方式,解决了光电检测系统20在较小的区域内的光信号转向问题。同时,通过光纤组件213及光纤对码尺215,可将反射的光信号引至较远处进行检测,使得尺寸较大的激光发射器211以及光电接收器212能够安装在多叶准直器200外部,而尺寸较小(检测头直径可到2mm左右)的光纤组件213可安装在空间较小的多叶准直器200下方,且能够分布较多的检测点,从而解决光电检测装置的安装问题。
由于光电器件对光信号的响应速度快,损耗小,因此能保证信号的可靠接收与识别,同时通过采用远距离位置检测方式,光的发射与接收装置(如光电接收器212及激光发射器211)安装于叶片10的外部,不仅解决了安装位置不足的限制,同时有更多的空间对其进行保护设计,而布置于叶片10下方的光纤组件213可采用抗辐射单模光纤,其在总剂量为50krad、剂量率为0.1rad/s的连续脉冲照射下,在1310nm窗口的附加损耗小于3dB/km,同时光纤组件213在叶片10的保护下使用,因此有较高的可靠性。而由透镜和反射镜组成的光纤对码尺215a,其材料为玻璃及金属,不会被辐射所干扰。如此,就可保证该光电检测装置的长期稳定工作。
第三实施例
请参阅图5-6,本发明第三实施例的多叶准直器300与第二实施例的多叶准直器200基本相同,其区别在于:为了准确获得叶片10的移动方向,每个叶片10下方对应安装两组所述位移检测装置21,且两组所述位移检测装置21之间相差预定数值的光信号周期。也就是说,在本实施例中,所述多叶准直器300的每个叶片10可对应安装两个激光发射器211、两个光电接收器212、两个光纤组件213以及对应设置了两组光纤对码尺215。可以理解的是,根据实际情况,每个叶片也可对应设置一个激光发射器211,所述激光发射器211可分出两束平行的激光束,分别经过两个光纤组件、检测头传输发射及接收刻度标尺反射回的具有预定周期的光信号至所述光电接收器。本实施例中,两组所述位移检测装置21之间反射回的光信号相差1/4个光信号周期。此外,也可对应设 置一个具有两个并行接收口的光电接收器212,由此能够保证激光初始发射位置相同,同时减少元件占用的空间。本实施例中,所述两个光纤组件213的检测头2132前后并列设置在安装板214的同一个安装槽的边缘位置,且两个检测头2132之间的间隔为1/4个光信号周期。可以理解的是,两组所述位移检测装置21之间的间隔可根据具体情况而定,例如还可相差1/2、1/3、1/5个光信号周期等等。
由于采用两组所述位移检测装置21,所述处理装置215a也对应发生变化。本实施例中,所述处理装置215a包括接收模块2151a、计算模块2152a以及位移确定模块2153a,所述接收模块2151a用于接收所述光电接收器212输出的两组电信号,其中所述电信号为周期性的脉冲信号;所述计算模块2152a用于根据其中一组所述电信号进行脉冲计数,并根据所述脉冲数以及预设的原始位置,计算得到所述叶片10的位移,以及根据两组脉冲信号的周期,计算得到所述脉冲信号的周期提前或滞后情况;所述位移确定模块2153a用于根据所述脉冲信号的周期提前或滞后情况,判断叶片10移动的方向,并结合所计算的移动距离确定叶片10的位移。
具体来说,当叶片10与光信号检测点之间有相对运动时,两个检测点收集的光信号就会出现相差1/4周期的提前或滞后情况,通过对这个提前或滞后信号的处理,可以获得叶片10移动方向的信息。例如,假设位移检测装置21的两个检测头分别对应设置在叶片的A、B两个位置,当叶片移动时,如果所述计算模块2152a计算得到的脉冲在位置A比在位置B提前1/4周期,则判断叶片10是从A位置移动到B位置,即正向移动,反之,如果所述计算模块2152a计算得到的脉冲在位置A比在位置B滞后1/4周期,则判断叶片10是从B位置移动到A位置,即反向移动。
本发明的多叶准直器及其位移检测系统,通过采用测量精度高、安全可靠、维护方便的位移检测装置,可实时监测叶片运动状态及记录叶片的运动位置。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发 明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种多叶准直器的位移检测系统,所述多叶准直器包括多个叶片,其特征在于,每个叶片上包括多个刻度标识,所述位移检测系统包括多组位移检测装置,每个叶片对应安装至少一组所述位移检测装置,每组所述位移检测装置包括:
    激光发射器,发射连续的激光至对应叶片上的刻度标识;
    光电接收器,接收从所述刻度标识反射的光信号,并将光信号转换为电信号输出;
    光纤组件,耦接所述激光发射器和光电接收器,所述光纤组件包括光纤以及对应的检测头,所述检测头正对所述刻度标识设置,所述光纤组件用于将所述激光通过所述检测头传输到所述刻度标识,并将所述刻度标识反射的光信号传输到所述光电接收器;以及
    处理装置,用于接收所述光电接收器输出的电信号,并根据所述电信号的变化计算得到叶片的移动距离。
  2. 如权利要求1所述的多叶准直器的位移检测系统,其特征在于,每组所述位移检测装置进一步包括:
    一组光纤对码尺,设置在所述激光发射器或光电接收器与所述叶片之间,使得所述激光发射器发出的光线经过所述光纤对码尺后,光路发生特定角度的改变,而且所述刻度标识反射的光线经过所述光纤对码尺后,光路也发生特定角度的改变。
  3. 如权利要求2所述的多叶准直器的位移检测系统,其特征在于,所述光纤对码尺包括并排的一聚焦透镜以及一反射镜片。
  4. 如权利要求1或2所述的多叶准直器的位移检测系统,进一步包括一安装板,所述安装板平行设置在所述多叶准直器上方或下方,所述安装板包括用于收容所述光纤的多个安装槽,所述光纤组件的检测头设置在所述安装槽的一 端。
  5. 如权利要求4所述的多叶准直器的位移检测系统,其特征在于,每个叶片对应安装两组所述位移检测装置,且所述两组位移检测装置经所述刻度标识反射的光信号相差预定数值的周期。
  6. 如权利要求5所述的多叶准直器的位移检测系统,其特征在于,两组所述位移检测装置包括两个由一个激光发生器和一个光电接收器组成的组件,所述激光发生器发射的激光通过光纤组件、检测头及刻度标尺反射至光电接收器后,光信号周期相差所述预定数值。
  7. 如权利要求5所述的多叶准直器的位移检测系统,其特征在于,两个光纤组件的检测头前后设置在安装板的同一个安装槽的边缘位置。
  8. 如权利要求5所述的多叶准直器的位移检测系统,其特征在于,所述处理装置包括:
    接收模块,用于接收所述光电接收器输出的两组电信号,其中所述电信号为周期性的脉冲信号;
    计算模块,用于根据其中一组所述脉冲信号进行脉冲计数,以及根据所述脉冲数和预设的原始位置,计算得到所述叶片的移动距离,还用于根据所述两组脉冲信号的周期,计算得到所述脉冲信号的周期提前或滞后情况;以及
    位移确定模块,用于根据所述脉冲信号的周期提前或滞后情况,判断叶片移动的方向,并结合所计算的移动距离确定叶片的位移。
  9. 如权利要求1所述的多叶准直器的位移检测系统,其特征在于,所述处理装置包括:
    接收模块,用于接收所述光电接收器输出的电信号,其中所述电信号为周期性的脉冲信号;
    计算模块,用于根据所述电信号进行脉冲计数,并根据所述脉冲数以及预设的原始位置,计算得到所述叶片的移动距离;以及
    位移确定模块,用于根据叶片控制电机的转向信号获得移动方向信息,并 结合所述移动距离确定叶片的位移。
  10. 一种多叶准直器,至少包括多个可移动叶片以及一位移检测系统,所述位移检测系统用于检测每个叶片的位移,其特征在于,每个叶片上包括多个刻度标识,所述位移检测系统包括多组位移检测装置,每个叶片对应安装至少一组所述位移检测装置,每组所述位移检测装置包括:
    激光发射器,发射连续的激光至对应叶片上的刻度标识;
    光电接收器,接收所述刻度标识反射的光信号,并将光信号转换为电信号输出;
    光纤组件,耦接所述激光发射器和光电接收器,所述光纤组件包括一个检测头,所述检测头正对所述刻度标识设置,所述光纤组件用于将所述激光通过所述检测头传输到所述刻度标识,并将所述刻度标识反射的光信号传输到所述光电接收器;以及
    处理装置,用于接收所述光电接收器输出的电信号,并根据所述电信号的变化计算得到叶片的移动距离。
PCT/CN2016/073048 2016-02-01 2016-02-01 多叶准直器及其位移检测系统 WO2017132792A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680000529.0A CN107429987A (zh) 2016-02-01 2016-02-01 多叶准直器及其位移检测系统
PCT/CN2016/073048 WO2017132792A1 (zh) 2016-02-01 2016-02-01 多叶准直器及其位移检测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/073048 WO2017132792A1 (zh) 2016-02-01 2016-02-01 多叶准直器及其位移检测系统

Publications (1)

Publication Number Publication Date
WO2017132792A1 true WO2017132792A1 (zh) 2017-08-10

Family

ID=59499156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073048 WO2017132792A1 (zh) 2016-02-01 2016-02-01 多叶准直器及其位移检测系统

Country Status (2)

Country Link
CN (1) CN107429987A (zh)
WO (1) WO2017132792A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110108897A (zh) * 2019-05-14 2019-08-09 威海新北洋正棋机器人股份有限公司 环线运行状态检测装置、系统及方法
CN110411980A (zh) * 2019-09-04 2019-11-05 北京市人工影响天气办公室 云室湿度监测系统
CN111700635A (zh) * 2020-06-28 2020-09-25 上海联影医疗科技有限公司 一种限束装置以及用于限束装置的安装结构
CN116327097A (zh) * 2023-03-03 2023-06-27 上海交通大学医学院附属第九人民医院 一种内镜检测肿物大小的测量方法和测量装置
WO2024027741A1 (en) * 2022-08-03 2024-02-08 Shanghai United Imaging Healthcare Co., Ltd. Position detection devices of multi-leaf collimators

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101162139A (zh) * 2006-10-13 2008-04-16 深圳市大族精密机电有限公司 光栅尺信号误差补偿方法
CN101251725A (zh) * 2008-03-31 2008-08-27 上海微电子装备有限公司 用于光刻装置的对准系统和标记、对准方法以及光刻装置
US20100208271A1 (en) * 2009-02-13 2010-08-19 Canon Kabushiki Kaisha Origin detection apparatus, displacement measurement apparatus and optical apparatus
CN103075958A (zh) * 2011-10-25 2013-05-01 无锡阿斯特科技有限公司 一种光纤拉远的光栅尺及其测量方法
CN103885778A (zh) * 2014-03-25 2014-06-25 上海理工大学 光栅细分和判向方法
CN203874296U (zh) * 2014-06-13 2014-10-15 大连现代高技术集团有限公司 一种自动多叶准直器叶片位置反馈结构及反馈电路
CN104147711A (zh) * 2014-08-28 2014-11-19 山东交通学院 一种提高多叶准直器叶片位置检测精度的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103791997A (zh) * 2012-11-03 2014-05-14 西安道恒交通设备科技有限公司 水轮机叶片旋转时振动状况监测系统
CN104359411A (zh) * 2014-12-01 2015-02-18 清华大学 一种利用光栅测量的位移测量系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101162139A (zh) * 2006-10-13 2008-04-16 深圳市大族精密机电有限公司 光栅尺信号误差补偿方法
CN101251725A (zh) * 2008-03-31 2008-08-27 上海微电子装备有限公司 用于光刻装置的对准系统和标记、对准方法以及光刻装置
US20100208271A1 (en) * 2009-02-13 2010-08-19 Canon Kabushiki Kaisha Origin detection apparatus, displacement measurement apparatus and optical apparatus
CN103075958A (zh) * 2011-10-25 2013-05-01 无锡阿斯特科技有限公司 一种光纤拉远的光栅尺及其测量方法
CN103885778A (zh) * 2014-03-25 2014-06-25 上海理工大学 光栅细分和判向方法
CN203874296U (zh) * 2014-06-13 2014-10-15 大连现代高技术集团有限公司 一种自动多叶准直器叶片位置反馈结构及反馈电路
CN104147711A (zh) * 2014-08-28 2014-11-19 山东交通学院 一种提高多叶准直器叶片位置检测精度的方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110108897A (zh) * 2019-05-14 2019-08-09 威海新北洋正棋机器人股份有限公司 环线运行状态检测装置、系统及方法
CN110108897B (zh) * 2019-05-14 2024-03-29 威海新北洋正棋机器人股份有限公司 环线运行状态检测装置、系统及方法
CN110411980A (zh) * 2019-09-04 2019-11-05 北京市人工影响天气办公室 云室湿度监测系统
CN111700635A (zh) * 2020-06-28 2020-09-25 上海联影医疗科技有限公司 一种限束装置以及用于限束装置的安装结构
WO2024027741A1 (en) * 2022-08-03 2024-02-08 Shanghai United Imaging Healthcare Co., Ltd. Position detection devices of multi-leaf collimators
CN116327097A (zh) * 2023-03-03 2023-06-27 上海交通大学医学院附属第九人民医院 一种内镜检测肿物大小的测量方法和测量装置
CN116327097B (zh) * 2023-03-03 2023-12-05 上海交通大学医学院附属第九人民医院 一种内镜检测肿物大小的测量方法和测量装置

Also Published As

Publication number Publication date
CN107429987A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
WO2017132792A1 (zh) 多叶准直器及其位移检测系统
JP2018105847A (ja) 光センサを有する座標測定装置とそれに対応する方法
US4269512A (en) Electro-optical position-monitoring apparatus with tracking detector
US7129508B2 (en) Compact VCSEL sensor with multiple sensing capabilities
US20220146680A1 (en) LiDAR System with Transmit Optical Power Monitor
JP6382303B2 (ja) 表面粗さ測定装置
US20180180718A1 (en) Distance detecting device using laser beam
JP2015014604A (ja) クロマティックレンジセンサを構成する光学ペン用の交換可能光学エレメント、および、その分離状態の検出方法
WO2008145972A1 (en) Electro-optical sensors
CN202938795U (zh) 一种微小角度的激光测量装置
JP2019511723A (ja) 絶対式の格子スケール
US10094684B2 (en) Method of manufacturing rotary scale, rotary scale, rotary encoder, driving apparatus, image pickup apparatus and robot apparatus
JP5177003B2 (ja) レーザ距離測定装置
CN108955735A (zh) 光电编码器
US11550054B2 (en) Optical triangulation sensor for distance measurement
US7880902B2 (en) Contactless optical probe and device and method making use thereof
US6794636B1 (en) Opto-electronic system
US20120119075A1 (en) Optical sensor for identifying and/or authenticating objects
CN108254734A (zh) 激光测距装置
CN109084691B (zh) 一种折射式位移传感器及其测量方法
CN108444397B (zh) 位移传感器及其测量方法
CN205486166U (zh) 基于纹理特征的多叶准直器叶片定位装置
CN111751567A (zh) 转速检测装置和车辆
CN109945788A (zh) 基于直角反射镜的新型位移传感器
US9816842B2 (en) Optoelectronic position measuring device including a code carrier, a radiation source, and a detection element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16888618

Country of ref document: EP

Kind code of ref document: A1