WO2017130267A1 - 部品実装装置 - Google Patents

部品実装装置 Download PDF

Info

Publication number
WO2017130267A1
WO2017130267A1 PCT/JP2016/051969 JP2016051969W WO2017130267A1 WO 2017130267 A1 WO2017130267 A1 WO 2017130267A1 JP 2016051969 W JP2016051969 W JP 2016051969W WO 2017130267 A1 WO2017130267 A1 WO 2017130267A1
Authority
WO
WIPO (PCT)
Prior art keywords
component mounting
steady state
component
robot
correction
Prior art date
Application number
PCT/JP2016/051969
Other languages
English (en)
French (fr)
Inventor
岳史 櫻山
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to CN201680079087.3A priority Critical patent/CN108476609B/zh
Priority to US16/071,947 priority patent/US11083121B2/en
Priority to PCT/JP2016/051969 priority patent/WO2017130267A1/ja
Priority to EP16887854.4A priority patent/EP3410833B1/en
Priority to JP2017563411A priority patent/JP6670857B2/ja
Publication of WO2017130267A1 publication Critical patent/WO2017130267A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/089Calibration, teaching or correction of mechanical systems, e.g. of the mounting head
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0404Pick-and-place heads or apparatus, e.g. with jaws
    • H05K13/0408Incorporating a pick-up tool
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0404Pick-and-place heads or apparatus, e.g. with jaws
    • H05K13/0408Incorporating a pick-up tool
    • H05K13/0409Sucking devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/081Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/081Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
    • H05K13/0813Controlling of single components prior to mounting, e.g. orientation, component geometry
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/0882Control systems for mounting machines or assembly lines, e.g. centralized control, remote links, programming of apparatus and processes as such
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/53174Means to fasten electrical component to wiring board, base, or substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/53191Means to apply vacuum directly to position or hold work part

Definitions

  • the present invention relates to a component mounting apparatus.
  • a nozzle is attached to a head that can move on an XY plane by an XY robot, and a component mounting operation in which a component supplied from a component supply device is attracted to the nozzle and transported to a predetermined position on the substrate to be mounted at the predetermined position.
  • a component mounting apparatus that performs the above. In this type of component mounting device, the aging operation is executed without actual production until the thermal deformation of the motor, etc. reaches the steady state after the power is turned on, and the component mounting operation is performed after the steady state is reached.
  • the present invention has been made in view of such problems, and a main object thereof is to reduce the frequency of thermal correction while giving priority to productivity.
  • the component mounting apparatus of the present invention is A nozzle is attached to a head that can move on an XY plane by an XY robot, and a component mounting operation is performed in which a component supplied from a component supply device is attracted to the nozzle and carried to a predetermined position on the substrate to be mounted at the predetermined position.
  • a component mounting apparatus From the time when the power is turned on to the time when the component mounting operation is started until the positional shift amount due to heat of the XY robot becomes a steady state, the component mounting operation is repeatedly performed while performing thermal correction. After the control and the steady state is reached, the XY robot is controlled so that the component mounting operation is repeatedly performed while performing the steady-state correction using the correction amount immediately after the steady state without performing thermal correction. And a control means for controlling the XY robot so as to perform a dummy operation for maintaining the steady state during the standby time during which the component mounting operation is not performed.
  • the component mounting operation is repeatedly performed while performing thermal correction until the position shift amount due to the heat of the XY robot reaches a steady state after the power is turned on and the component mounting operation is started. That is, the component mounting operation is performed even until the steady state is reached.
  • the component mounting operation is repeated while performing the steady state correction using the correction amount immediately after the steady state without performing the thermal correction, and at the standby time when the component mounting operation is not performed. Performs a dummy operation to maintain a steady state. That is, after the steady state is reached, the component mounting operation is performed without performing the thermal correction, so the frequency of the thermal correction is reduced.
  • the steady state is maintained by the dummy operation during the standby time, for example, even if the component mounting operation based on one production job is completed, the component mounting operation based on the next production job is ready. Immediately the production job can be started without thermal compensation. As described above, according to the present invention, the frequency of thermal correction can be reduced while giving priority to productivity.
  • the component supply apparatus is detachably attached to the component mount apparatus, and the control means is in an area where an operator does not put a hand when attaching or detaching the component supply apparatus.
  • the XY robot may be controlled so as to perform the dummy operation.
  • the operator attaches / detaches the component supply device.
  • the component mounting apparatus is in a standby state, and the XY robot is performing a dummy operation. Since this dummy operation is performed in an area where the operator does not put his / her hand when attaching / detaching the component supply device, the operator can safely attach / detach the component supply device.
  • a partition is provided between the component supply apparatus and a region of the component mounting apparatus in which the head moves, and the control means is located inside the component supply apparatus with respect to the partition.
  • the XY robot may be controlled so as to perform the dummy operation. In this way, since the dummy operation is performed inside the component supply device rather than the partition, the operator can safely attach and detach the component supply device.
  • the control unit measures the positional deviation amount when performing the thermal correction, calculates the positional correction amount of the XY robot according to the magnitude of the positional deviation amount, and The position of the XY robot may be corrected using a position correction amount. Further, whether or not the positional deviation amount has reached a steady state may be determined based on a variation amount of the positional deviation amount with respect to time or a transition of the variation amount. In this way, it can be accurately determined that the amount of thermal deformation is saturated and the steady state has been reached.
  • FIG. 3 is an explanatory diagram showing electrical connection of the component mounting apparatus 10.
  • the graph showing the relationship between time and the amount of position shift.
  • the flowchart of a production job processing routine The flowchart of the process routine during waiting time.
  • FIG. 1 is a perspective view of the component mounting apparatus 10
  • FIG. 2 is an explanatory diagram showing electrical connection of the component mounting apparatus 10.
  • the left-right direction (X-axis), the front-rear direction (Y-axis), and the up-down direction (Z-axis) are as shown in FIG.
  • the component mounting apparatus 10 includes a board transfer device 12, a head 18, a nozzle 28, a mark camera 34, a parts camera 36, and a mounting controller 38 that executes various controls (see FIG. 2). And a reel unit 50.
  • a cover 57 that covers the whole is attached to the component mounting apparatus 10 so that it can be opened and closed.
  • the substrate transport device 12 transports the substrate S from the left to the right by the conveyor belts 16 and 16 (only one is shown in FIG. 1) attached to the pair of left and right support plates 14 and 14, respectively. Further, the substrate transfer device 12 fixes the substrate S by lifting the substrate S from below with the support pins 17 disposed below the substrate S and pressing the substrate S against the roof portions of the support plates 14, 14. The substrate S is released by being lowered.
  • the head 18 has a nozzle 28 on the lower surface.
  • the head 18 is detachably attached to the front surface of the X-axis slider 20.
  • the X-axis slider 20 is slidably attached to a pair of upper and lower guide rails 22, 22 provided in front of the Y-axis slider 24 and extending in the left-right direction.
  • the Y-axis slider 24 is integrated with a nut 23 screwed into a Y-axis ball screw 25, and is slidably attached to a pair of left and right guide rails 26, 26 extending in the front-rear direction.
  • One end of the Y-axis ball screw 25 is attached to the Y-axis motor 24a, and the other end is a free end.
  • the Y-axis slider 24 slides along the guide rails 26 and 26 by such a ball screw mechanism. That is, when the Y-axis motor 24 a rotates, the Y-axis ball screw 25 rotates, and the nut 23 slides along the guide rails 26 and 26 together with the Y-axis slider 24.
  • the X-axis slider 20 slides along the guide rails 22 and 22 by a ball screw mechanism equipped with an X-axis motor 20a (see FIG. 2), like the Y-axis slider 24.
  • the head 18 moves in the left-right direction as the X-axis slider 20 moves in the left-right direction, and moves in the front-rear direction as the Y-axis slider 24 moves in the front-rear direction.
  • the nozzle 28 uses pressure to adsorb components to the nozzle tip or release components adsorbed to the nozzle tip.
  • the pressure of the nozzle 28 is adjusted by a pressure adjusting device 28a (see FIG. 2).
  • the height of the nozzle 28 is adjusted by a Z-axis motor 30 built in the head 18 and a ball screw 32 extending along the Z-axis.
  • the mark camera 34 is installed on the lower surface of the head 18 so that the imaging direction faces the substrate S, and can move in the XY direction together with the head 18.
  • the mark camera 34 images a board mark (not shown) for board positioning provided on the board S, or images a reference mark 40 arranged at a predetermined position (next to the part camera 36 in this case) of the component mounting apparatus 10.
  • the reference mark 40 is provided at a predetermined coordinate in the XY coordinates of the component mounting apparatus 10, and the height thereof is set to the same level as the board S. Even if the X-axis slider 20 and the Y-axis slider 24 generate heat, the reference mark 40 is provided at a position where the reference mark 40 is not affected or hardly affected by the heat.
  • the parts camera 36 is installed between the reel unit 50 and the substrate transport apparatus 12 so that the imaging direction is upward at the approximate center of the length in the left-right direction. This parts camera 36 images the part adsorbed by the nozzle 28 passing above.
  • the mounting controller 38 is configured as a microprocessor centered on a CPU 38a, and includes a ROM 38b for storing processing programs, an HDD 38c for storing various data, a RAM 38d used as a work area, and the like. .
  • the mounting controller 38 is connected to an input device 38e such as a mouse and a keyboard and a display device 38f such as a liquid crystal display.
  • the mounting controller 38 is connected so as to be capable of bidirectional communication with a feeder controller 58 and a management computer 80 built in the feeder 56.
  • the mounting controller 38 can output control signals to the substrate transfer device 12, the X-axis motor 20 a, the Y-axis motor 24 a, the Z-axis motor 30, the pressure adjustment device 28 a for the nozzle 28, the mark camera 34, and the parts camera 36. It is connected to the.
  • the mounting controller 38 is connected so as to be able to receive images from the mark camera 34 and the parts camera 36. For example, the mounting controller 38 recognizes the position of the substrate S by processing the image of the substrate S captured by the mark camera 34 and recognizes the position of a substrate mark (not shown), or the reference captured by the mark camera 34. The position coordinate shift is calculated by processing the image of the mark 40 and recognizing the position of the reference mark 40. Further, the mounting controller 38 determines whether or not a component is attracted to the nozzle 28 based on an image captured by the parts camera 36, and determines the shape, size, suction position, and the like of the component.
  • the reel unit 50 includes a device pallet 52 and a feeder 56, as shown in FIG.
  • the device pallet 52 has a number of slots 54 on the upper surface.
  • the slot 54 is a groove into which the feeder 56 can be inserted.
  • the feeder 56 rotatably holds a reel 60 around which a tape is wound.
  • the tape is formed with a plurality of recesses (not shown) arranged along the longitudinal direction of the tape. Each recess accommodates a component. These parts are protected by a film (not shown) that covers the surface of the tape.
  • the feeder 56 has a component suction position.
  • the component suction position is a position determined by design in which the nozzle 28 sucks the component.
  • the components housed in the tape are sequentially arranged at the component suction position.
  • the component that has reached the component suction position is in a state where the film has been peeled off and is sucked by the nozzle 28.
  • the management computer 80 includes a personal computer main body 82, an input device 84, and a display 86, and can input signals from the input device 84 operated by an operator. An image can be output.
  • Production job data is stored in the memory of the PC main body 82. In the production job data, it is determined which components are mounted on the substrate S in what order in the component mounting apparatus 10 and how many substrates S are mounted.
  • the mounting controller 38 attracts the components supplied from the feeder 56 of the reel unit 50 to the nozzle 28 of the head 18. Specifically, the mounting controller 38 controls the X-axis motor 20a of the X-axis slider 20 and the Y-axis motor 24a of the Y-axis slider 24 so that the nozzle 28 of the head 18 is directly above the component suction position of the desired component. Move. Next, the mounting controller 38 controls the Z-axis motor 30 and the pressure adjusting device 28 a of the nozzle 28 to lower the nozzle 28 and supply negative pressure to the nozzle 28.
  • the mounting controller 38 raises the nozzle 28, controls the X-axis slider 20 and the Y-axis slider 24, and moves the nozzle 28, which has attracted components to the tip, above a predetermined position on the substrate S. Then, at the predetermined position, the mounting controller 38 lowers the nozzle 28 and controls the pressure adjusting device 28 a so that the atmospheric pressure is supplied to the nozzle 28.
  • the parts adsorbed by the nozzle 28 are separated and mounted at a predetermined position on the substrate S.
  • Other components to be mounted on the substrate S are similarly mounted on the substrate S, and when the mounting of all the components is completed, the substrate S is sent to the downstream side.
  • the X-axis slider 20 and the Y-axis slider 24 When the power is turned on from the state where the power is turned off (the temperature of the apparatus is completely lowered) and the component mounting operation of the first production job is started, the X-axis slider 20 and the Y-axis slider 24. Generates heat as it repeatedly moves in the XY direction. Since one end of the Y-axis ball screw 25 is attached to the Y-axis motor 24a and the other end is a free end, the Y-axis ball screw 25 extends in the Y-axis direction when heated to a high temperature. This also applies to an X-axis ball screw (not shown).
  • each ball screw gradually becomes longer accordingly.
  • a state is called a temperature rising state.
  • the component mounting operation is performed while performing thermal correction.
  • the thermal correction the reference mark 40 is imaged by the mark camera 34 in the middle of the component mounting operation, the positional deviation amount in the XY directions is calculated based on the coordinate position of the reference mark 40 obtained from the captured image, and the positional deviation amount is calculated. Then, the correction amount is obtained, and the positioning coordinates are corrected with the correction amount.
  • This thermal correction requires several tens of seconds.
  • Such a state is called a steady state.
  • the positional deviation amount is substantially constant. Therefore, it is only necessary to correct the positioning coordinates with the correction amount immediately after the steady state is reached without performing thermal correction (correction amount during normal operation).
  • the setup change is an operation of attaching a feeder 56 or the like used for the production job to the component mounting apparatus 10 before starting the production job, or changing the conveyor width of the board conveying apparatus 12 by automatic processing. If the X-axis slider 20 or the Y-axis slider 24 is stopped during the setup change, these temperatures gradually decrease. For this reason, in the present embodiment, a dummy operation for maintaining a steady state is performed even during setup change.
  • the steady state is maintained by repeatedly moving the X-axis slider 20 and the Y-axis slider 24 in the XY directions.
  • the component mounting operation can be performed by correcting the positioning coordinates with the normal correction amount without performing the thermal correction.
  • the thick line in FIG. 3 shows the relationship between the time and the amount of positional deviation in the present embodiment, and the broken line shows the relationship between the time and the amount of positional deviation when the dummy operation is not performed (reference form).
  • the second production job also has a temperature rise state, so it is necessary to perform a component mounting operation while performing thermal correction.
  • the CPU 38a of the mounting controller 38 starts a production job processing routine when a new production job start command is input.
  • the CPU 38a determines whether or not it is currently in a steady state (step S110). Whether or not it is in a steady state is determined by whether the steady state flag is on or off.
  • the steady state flag is set to ON in step S200 described later, but is automatically turned OFF when the power of the component mounting apparatus 10 is turned OFF.
  • a negative determination is made in step S110.
  • the CPU 38a measures the amount of positional deviation (step S120). For example, the CPU 38a rotates the X-axis motor 20a and the Y-axis motor 24a by a predetermined reference rotation amount.
  • the reference rotation amount is set such that, for example, the center of the mark camera 34 is directly above the reference mark 40 when the X-axis and Y-axis ball screw mechanisms are at a predetermined temperature (for example, 20 ° C.).
  • a predetermined temperature for example, 20 ° C.
  • the ball screw expands. Therefore, when each motor is rotated by the reference rotation amount, the center of the mark camera 34 is shifted from directly above the reference mark 40.
  • the amount of positional deviation in the X direction and Y direction at this time is calculated from the captured image of the mark camera 34.
  • the CPU 38a calculates a correction amount (step S130).
  • the CPU 38a calculates the correction amount so that the position shift amount measured this time is canceled.
  • the CPU 38a calculates the amount of change in the positional shift amount measured this time (step S140).
  • the CPU 38a calculates the difference between the current positional deviation amount and the previous positional deviation amount as the change amount of the positional deviation amount.
  • the previous positional shift amount does not exist, and is regarded as zero.
  • the timing for measuring the positional deviation amount is generated at predetermined intervals as will be described later. Therefore, the amount of change in the positional deviation amount can be regarded as the rate of change of the positional deviation amount with respect to time.
  • the predetermined narrow range is a range in which the lengths of the ball screws on the X-axis and the Y-axis can be considered to be substantially constant, and are determined empirically in advance.
  • the predetermined narrow range is set to ⁇ several ⁇ m.
  • step S150 When the first production job is started, a negative determination is made in step S150. If a negative determination is made in step S150, the CPU 38a corrects the positioning coordinate values of the component suction position and the component mounting position on the substrate S based on the correction amount calculated in step S140 (step S160). Subsequently, the CPU 38a controls each motor 20a, 24a, 30 of the component mounting apparatus 10 and communicates with the feeder controller 58 so that the component mounting operation is performed based on the corrected positioning coordinate value (step S170). ). After that, when the nozzle 28 has picked up the components from the feeder 56 and has been mounted on the substrate S, the CPU 38a determines whether or not the current production job has been completed (step S180). It is determined whether or not the measurement time has come (step S190). The positional deviation amount measurement timing comes every predetermined cycle (for example, several minutes). If the position shift amount measurement time has not come in step S190, the CPU 38a performs the processing from step S160.
  • step S190 the CPU 38a performs the processing from step S120 onward. Until a certain amount of time (for example, several tens of minutes) elapses after the start of the first production job, the temperature of each part of the component mounting apparatus 10 gradually increases. As a result, a negative determination is made in step S150, and the processes in steps S160 to S190 are performed.
  • a certain amount of time for example, several tens of minutes
  • step S150 A positive determination is made in step S150. If an affirmative determination is made in step S150, the CPU 38a sets the steady state flag to ON (step S200), and stores the correction amount calculated immediately before in the RAM 38d as a steady-state correction amount (step S210). Subsequently, the CPU 38a corrects the positioning coordinate values of the component suction position and the component mounting position on the board S based on the steady-state correction amount (step S220).
  • the CPU 38a controls the motors 20a, 24a, and 30 of the component mounting apparatus 10 so as to perform the component mounting operation based on the corrected positioning coordinate values, and communicates with the feeder controller 58 (step S230). .
  • the CPU 38a determines whether or not the current production job is completed (step S240). If the current production job is not completed, the CPU 38a returns to step S220. That is, thermal correction (steps S120 and S130) is not performed after the steady state is reached. If the current production job is completed in step S240 or step S180, the CPU 38a ends the production job processing routine.
  • the CPU 38a determines that it has shifted to the standby time, reads out the processing routine during the standby time from the ROM 38b, and executes it. During the standby time, the operator performs a setup change in preparation for the next production job.
  • the CPU 38a first determines whether or not the component mounting apparatus 10 is in a steady state (step S310). On the other hand, if the steady state is obtained in step S310, the CPU 38a performs a dummy operation (step S320). That is, although no component mounting is performed, the steady state is maintained by repeatedly moving the X-axis slider 20 and the Y-axis slider 24 in the XY directions.
  • This dummy operation is performed in a region where the operator does not put his / her hand when attaching / detaching the feeder 56, that is, a region inside the front surface 57 a of the cover 57. Subsequently, the CPU 38a determines whether or not a new production job start command has been input (step S330). If not input, the CPU 38a returns to step S320 and continues the dummy operation. On the other hand, if a new production job start command is input in step S330, the CPU 38a ends the dummy operation (step S340) and ends this routine. At the same time, the CPU 38a restarts the production job processing routine.
  • the CPU 38a When restarting the production job processing routine, the CPU 38a first determines whether or not it is in a steady state (step S110). When the second production job is started, the steady state is maintained because the dummy operation is executed in the waiting time immediately before the second production job. Therefore, the CPU 38a makes a positive determination in step S110 and skips to step S220. The CPU 38a corrects the positioning coordinate value based on the steady-state correction amount without performing thermal correction until it is determined in step S240 that the second production job is completed (step S220), and executes the component mounting operation. (Step S230).
  • the X-axis slider 20 and the Y-axis slider 24 of the present embodiment correspond to an XY robot of the present invention
  • the feeder 56 of the reel unit 50 corresponds to a component supply device
  • the mounting controller 38 corresponds to a control unit.
  • the front surface 57a of the cover 57 corresponds to a partition.
  • the amount of positional deviation due to the heat of the X-axis slider 20 and the Y-axis slider 24 after the power is turned on and the component mounting operation starts is in a steady state.
  • the component mounting operation is repeated while performing thermal correction. That is, the component mounting operation is performed even until the steady state is reached.
  • the component mounting operation is repeated while performing the steady state correction using the correction amount immediately after the steady state without performing the thermal correction, and at the standby time when the component mounting operation is not performed. Performs a dummy operation to maintain a steady state. That is, after the steady state is reached, the component mounting operation is performed without performing the thermal correction, so the frequency of the thermal correction is reduced.
  • the steady state is maintained by the dummy operation during the standby time, for example, even if the component mounting operation based on one production job is completed, the component mounting operation based on the next production job is ready. Immediately the production job can be started without thermal compensation.
  • the dummy operation is performed in an area where the operator does not put his / her hand when attaching / detaching the feeder 56, in the embodiment described above, inside the front surface 57 a of the cover 57, the operator can safely feed the feeder 56. Can be attached and detached.
  • the thermal correction is performed in consideration of the expansion and contraction of the X-axis and Y-axis ball screws, but the nozzle 28 and the mark camera 34 provided on the lower surface of the head 18 It is also possible to perform thermal correction in consideration of the expansion and contraction of the distance.
  • the distance between the nozzle 28 and the mark camera 34 can be measured by using an image obtained by capturing them with the parts camera 36.
  • thermal correction may be performed in consideration of expansion and contraction of the Z-axis ball screw 32 due to heat.
  • a camera capable of imaging the nozzle 28 from the side may be attached to the head 18 and the positional deviation amount in the Z-axis direction may be measured by using an image obtained by imaging the nozzle 28 with the camera.
  • the component mounting operation is repeatedly performed while performing the steady state correction using the correction amount immediately after the steady state is reached without performing the thermal correction.
  • step S150 it is determined whether or not the steady state is satisfied depending on whether or not the amount of change in the positional deviation is within a predetermined narrow range, but the determination method is not limited to this. For example, it may be determined whether or not the steady state is based on the transition of the change amount of the positional deviation amount. Specifically, whether or not the steady state is reached may be determined based on whether or not the difference between the previous positional deviation amount and the current positional deviation amount is equal to or smaller than a predetermined slight difference.
  • the time for performing the setup change is exemplified as the standby time, but the standby time is not limited to this.
  • the standby time is not limited to this.
  • the time for replacing the substrate S may be set as the standby time.
  • the mounting controller 38 may not execute the processing routine during the standby time when the cover 57 covering the entire component mounting apparatus 10 is opened. In this way, no dummy operation is performed when the cover 57 is opened.
  • the head 18 having one nozzle 28 is illustrated, but the present invention is not particularly limited to this, and a head having a plurality of nozzles (for example, having a plurality of nozzles along the circumference).
  • a rotary head may be used.
  • the X-axis slider 20 and the Y-axis slider 24 are provided with a ball screw mechanism.
  • the present invention is not particularly limited to this. Also good.
  • the thermal correction calculates the positional shift amount in the XY directions from the image of the reference mark 40 captured by the mark camera 34 during the component mounting operation, and calculates the correction amount based on the positional shift amount.
  • a reference mark is provided at a predetermined position on the lower surface of the head 18, the reference mark is imaged by the parts camera 36 during the component mounting operation, and the position in the XY direction is based on the coordinate position of the reference mark obtained from the captured image.
  • a deviation amount may be calculated, a correction amount may be obtained based on the positional deviation amount, and the positioning coordinates may be corrected with the correction amount.
  • the dummy operation is performed in the steady state, but the dummy operation may be performed in the temperature rising state. In this way, it is possible to shift to the steady state earlier and reduce the number of thermal correction processes.
  • the present invention can be used, for example, in a component mounting apparatus for mounting various electronic components having different sizes on a substrate.

Abstract

部品実装装置(10)は、フィーダ(56)から供給される部品をノズル(28)に吸着して基板S上の所定位置へ運んで該所定位置に実装する部品実装動作を実行する。部品実装装置(10)は、電源が投入されて部品実装動作を開始してからXYロボット(X軸スライダ(20)及びY軸スライダ(24))の熱による位置ズレ量が定常状態になるまでの間は、熱補正を行いながら部品実装動作を繰り返し行うようXYロボットを制御する。部品実装装置(10)は、定常状態になった後は、熱補正を行わず定常状態になった直後の補正量を用いて定常時補正を行いながら部品実装動作を繰り返し行うようXYロボットを制御すると共に、待機時間には定常状態を維持するためのダミー動作を行うようXYロボットを制御する。

Description

部品実装装置
 本発明は、部品実装装置に関する。
 従来より、XYロボットによってXY平面を移動可能なヘッドにノズルが取り付けられ、部品供給装置から供給される部品をノズルに吸着して基板上の所定位置へ運んで該所定位置に実装する部品実装動作を行う部品実装装置が知られている。この種の部品実装装置としては、電源が投入されてからモータなどの熱による変形が定常状態になるまでは実生産を行わずにエージング動作を実行し、定常状態になったあと部品実装動作を伴う実生産を行い、その実生産の終了後にマシンを停止し、定常状態よりも低温になった場合にエージング動作を実行して定常状態に戻してから次の実生産を行うものが知られている(特許文献1の図6参照)。この部品実装装置によれば、マシン停止などに起因する温度変化による装着精度低下を自動エージング動作により防止することができ、熱補正の頻度を低減して生産性を向上することができると説明されている。
特開2002-237700号公報
 しかしながら、電源が投入されてから熱による変形が定常状態になるまでに1時間程度かかることがあるため、この期間に実生産を行わない特許文献1の部品実装装置は必ずしも生産性が高いとはいえない。また、ある実生産から次の実生産までマシンを停止するため、定常状態よりも低温になることがある。その場合、次の実生産の準備が整ったにもかかわらず、エージング動作による定常状態への復帰が必要になるため実生産を開始できないことがある。したがって、生産性を優先しつつ熱補正の頻度を低減することが望まれていた。
 本発明はこのような課題に鑑みなされたものであり、生産性を優先しつつ熱補正の頻度を低減することを主目的とする。
 本発明の部品実装装置は、
 XYロボットによってXY平面を移動可能なヘッドにノズルが取り付けられ、部品供給装置から供給される部品を前記ノズルに吸着して基板上の所定位置へ運んで該所定位置に実装する部品実装動作を行う部品実装装置であって、
 電源が投入されて前記部品実装動作を開始してから前記XYロボットの熱による位置ズレ量が定常状態になるまでの間は、熱補正を行いながら前記部品実装動作を繰り返し行うよう前記XYロボットを制御し、定常状態になった後は、熱補正を行わず前記定常状態になった直後の補正量を用いて定常時補正を行いながら前記部品実装動作を繰り返し行うよう前記XYロボットを制御すると共に、前記部品実装動作を行わない待機時間には前記定常状態を維持するためのダミー動作を行うよう前記XYロボットを制御する制御手段
 を備えたものである。
 この部品実装装置では、電源が投入されて部品実装動作を開始してからXYロボットの熱による位置ズレ量が定常状態になるまでの間は、熱補正を行いながら部品実装動作を繰り返し行う。つまり、定常状態になるまでの間であっても部品実装動作を行う。また、定常状態になった後は、熱補正を行わず定常状態になった直後の補正量を用いて定常時補正を行いながら部品実装動作を繰り返し行うと共に、部品実装動作を行わない待機時間には定常状態を維持するためのダミー動作を行う。つまり、定常状態になった後は、熱補正を行わずに部品実装動作を行うため、熱補正の頻度が低減する。また、待機時間にはダミー動作により定常状態が維持されるため、例えば1つの生産ジョブに基づく部品実装動作が終了したあと待機したとしても、次の生産ジョブに基づく部品実装動作の準備が整えばすぐにその生産ジョブを熱補正なしで開始することができる。以上のように、本発明によれば、生産性を優先しつつ熱補正の頻度を低減することができる。
 本発明の部品実装装置において、前記部品供給装置は、前記部品実装装置に着脱可能に取り付けられ、前記制御手段は、オペレータが前記部品供給装置の着脱を行うときに手を入れることのない領域内で前記ダミー動作を行うように前記XYロボットを制御してもよい。部品実装動作を開始したあと部品供給装置の部品を補給したり部品種を交換したりする必要が生じた場合、オペレータは部品供給装置の着脱を行う。その際、部品実装装置は待機状態にあり、XYロボットはダミー動作を行っている。このダミー動作はオペレータが部品供給装置の着脱を行うときに手を入れることのない領域内で行われているため、オペレータは安全に部品供給装置の着脱を行うことができる。
 本発明の部品実装装置において、前記部品供給装置と前記部品実装装置のうち前記ヘッドが移動する領域との間には仕切りが設けられ、前記制御手段は、前記仕切りよりも前記部品供給装置の内側で前記ダミー動作を行うように前記XYロボットを制御してもよい。こうすれば、ダミー動作は仕切りよりも部品供給装置の内側で行われているため、オペレータは安全に部品供給装置の着脱を行うことができる。
 本発明の部品実装装置において、前記制御手段は、前記熱補正を行うにあたり、前記位置ズレ量を測定し、前記位置ズレ量の大きさに応じて前記XYロボットの位置補正量を算出し、前記位置補正量を用いて前記XYロボットの位置を補正してもよい。また、位置ズレ量が定常状態になったか否かを、位置ズレ量の時間に対する変化量又は該変化量の推移に基づいて判断してもよい。こうすれば、熱変形量が飽和して定常状態になったことを正確に判定することができる。
部品実装装置10の斜視図。 部品実装装置10の電気的接続を示す説明図。 時間と位置ズレ量との関係を表すグラフ。 生産ジョブ処理ルーチンのフローチャート。 待機時間中の処理ルーチンのフローチャート。
 本発明の好適な実施形態を図面を参照しながら以下に説明する。図1は部品実装装置10の斜視図、図2は部品実装装置10の電気的接続を示す説明図である。なお、本実施形態において、左右方向(X軸)、前後方向(Y軸)及び上下方向(Z軸)は、図1に示した通りとする。
 部品実装装置10は、図1に示すように、基板搬送装置12と、ヘッド18と、ノズル28と、マークカメラ34と、パーツカメラ36と、各種制御を実行する実装コントローラ38(図2参照)と、リールユニット50とを備えている。部品実装装置10には、全体を覆うカバー57が開閉可能に取り付けられている。
 基板搬送装置12は、左右一対の支持板14,14にそれぞれ取り付けられたコンベアベルト16,16(図1では片方のみ図示)により基板Sを左から右へと搬送する。また、基板搬送装置12は、基板Sの下方に配置された支持ピン17により基板Sを下から持ち上げて支持板14,14の屋根部に押し当てることで基板Sを固定し、支持ピン17を下降させることで基板Sの固定を解除する。
 ヘッド18は、下面にノズル28を有している。また、ヘッド18は、X軸スライダ20の前面に着脱可能に取り付けられている。X軸スライダ20は、Y軸スライダ24の前面に設けられた左右方向に延びる上下一対のガイドレール22,22にスライド可能に取り付けられている。Y軸スライダ24は、Y軸ボールネジ25に螺合されたナット23と一体化され、前後方向に延びる左右一対のガイドレール26,26にスライド可能に取り付けられている。Y軸ボールネジ25は一端がY軸モータ24aに取り付けられ、他端が自由端となっている。Y軸スライダ24は、こうしたボールネジ機構によってガイドレール26,26に沿ってスライドする。すなわち、Y軸モータ24aが回転すると、Y軸ボールネジ25が回転し、それに伴ってナット23がY軸スライダ24と共にガイドレール26,26に沿ってスライドする。X軸スライダ20は、図示しないが、Y軸スライダ24と同様、X軸モータ20a(図2参照)を備えたボールネジ機構によってガイドレール22,22に沿ってスライドする。ヘッド18は、X軸スライダ20が左右方向に移動するのに伴って左右方向に移動し、Y軸スライダ24が前後方向に移動するのに伴って前後方向に移動する。
 ノズル28は、圧力を利用して、ノズル先端に部品を吸着したり、ノズル先端に吸着している部品を離したりするものである。ノズル28の圧力は、圧力調整装置28a(図2参照)によって調整される。このノズル28は、ヘッド18に内蔵されたZ軸モータ30とZ軸に沿って延びるボールネジ32によって高さが調整される。
 マークカメラ34は、ヘッド18の下面に、撮像方向が基板Sに対向する向きとなるように設置され、ヘッド18と共にXY方向に移動可能である。このマークカメラ34は、基板Sに設けられた図示しない基板位置決め用の基板マークを撮像したり、部品実装装置10の所定位置(ここではパーツカメラ36の隣)に配置された基準マーク40を撮像したりする。基準マーク40は、部品実装装置10のXY座標において予め決められた座標に設けられ、その高さは、基板Sと同程度の高さに設定されている。この基準マーク40は、X軸スライダ20やY軸スライダ24が発熱したとしてもその熱の影響を受けないかほとんど受けない位置に設けられている。
 パーツカメラ36は、リールユニット50と基板搬送装置12との間であって左右方向の長さの略中央にて、撮像方向が上向きとなるように設置されている。このパーツカメラ36は、その上方を通過するノズル28に吸着された部品を撮像する。
 実装コントローラ38は、図2に示すように、CPU38aを中心とするマイクロプロセッサとして構成されており、処理プログラムを記憶するROM38b、各種データを記憶するHDD38c、作業領域として用いられるRAM38dなどを備えている。また、実装コントローラ38には、マウスやキーボードなどの入力装置38e、液晶ディスプレイなどの表示装置38fが接続されている。この実装コントローラ38は、フィーダ56に内蔵されたフィーダコントローラ58や管理コンピュータ80と双方向通信可能なように接続されている。また、実装コントローラ38は、基板搬送装置12やX軸モータ20a、Y軸モータ24a、Z軸モータ30、ノズル28の圧力調整装置28a、マークカメラ34、パーツカメラ36へ制御信号を出力可能なように接続されている。また、実装コントローラ38は、マークカメラ34やパーツカメラ36から画像を受信可能に接続されている。例えば、実装コントローラ38は、マークカメラ34で撮像された基板Sの画像を処理して図示しない基板マークの位置を認識することにより基板Sの位置を認識したり、マークカメラ34で撮像された基準マーク40の画像を処理して基準マーク40の位置を認識することにより位置座標のズレを算出したりする。また、実装コントローラ38は、パーツカメラ36で撮像された画像に基づいてノズル28に部品が吸着されているか否かの判断やその部品の形状、大きさ、吸着位置などを判定する。
 リールユニット50は、図1に示すように、デバイスパレット52と、フィーダ56とを備えている。デバイスパレット52は、上面に多数のスロット54を有している。スロット54は、フィーダ56を差し込み可能な溝である。フィーダ56は、テープが巻回されたリール60を回転可能に保持している。テープには、図示しない複数の凹部がテープの長手方向に沿って並ぶように形成されている。各凹部には、部品が収容されている。これらの部品は、テープの表面を覆う図示しないフィルムによって保護されている。フィーダ56には、部品吸着位置が定められている。部品吸着位置は、ノズル28が部品を吸着する設計上定められた位置である。テープがフィーダ56によって所定量後方へ送られるごとに、テープに収容された部品が順次、部品吸着位置へ配置されるようになっている。部品吸着位置に至った部品は、フィルムが剥がされた状態になっており、ノズル28によって吸着される。
 管理コンピュータ80は、図2に示すように、パソコン本体82と入力デバイス84とディスプレイ86とを備えており、オペレータによって操作される入力デバイス84からの信号を入力可能であり、ディスプレイ86に種々の画像を出力可能である。パソコン本体82のメモリには、生産ジョブデータが記憶されている。生産ジョブデータには、部品実装装置10においてどの部品をどういう順番で基板Sへ実装するか、また、そのように実装した基板Sを何枚作製するかなどが定められている。
 次に、部品実装装置10の実装コントローラ38が、生産ジョブに基づいて基板Sへ部品を実装する動作(部品実装動作)について説明する。まず、実装コントローラ38は、ヘッド18のノズル28にリールユニット50のフィーダ56から供給される部品を吸着させる。具体的には、実装コントローラ38は、X軸スライダ20のX軸モータ20a及びY軸スライダ24のY軸モータ24aを制御してヘッド18のノズル28を所望の部品の部品吸着位置の真上に移動させる。次に、実装コントローラ38は、Z軸モータ30及びノズル28の圧力調整装置28aを制御し、ノズル28を下降させると共にそのノズル28へ負圧が供給されるようにする。これにより、ノズル28の先端部に所望の部品が吸着される。その後、実装コントローラ38は、ノズル28を上昇させ、X軸スライダ20及びY軸スライダ24を制御して、先端に部品を吸着したノズル28を基板Sの所定の位置の上方へ移動させる。そして、その所定の位置で、実装コントローラ38は、ノズル28を下降させ、そのノズル28へ大気圧が供給されるように圧力調整装置28aを制御する。これにより、ノズル28に吸着されていた部品が離間して基板Sの所定の位置に実装される。基板Sに実装すべき他の部品についても、同様にして基板S上に実装していき、すべての部品の実装が完了したら基板Sを下流側へ送り出す。
 こうした部品実装装置10は、電源がオフされた状態(装置温度が下がりきった状態)から電源がオンされて1番目の生産ジョブの部品実装動作を開始すると、X軸スライダ20やY軸スライダ24がXY方向へ繰り返し移動するのに伴って発熱する。Y軸ボールネジ25は、一端がY軸モータ24aに取り付けられ他端が自由端になっているため、熱によって高温になるとY軸方向へ伸長する。この点は図示しないX軸ボールネジも同様である。そして、部品実装動作が開始されてからしばらくの間(例えば40分とか50分)は、徐々に温度が高くなるため、各ボールネジもそれに伴って徐々に長くなる。こうした状態を昇温状態という。昇温状態では、熱補正を行いながら部品実装動作を行う。熱補正は、部品実装動作の途中でマークカメラ34により基準マーク40を撮像し、その撮像画像から得られる基準マーク40の座標位置に基づいてXY方向の位置ズレ量を算出し、その位置ズレ量に基づいて補正量を求め、その補正量で位置決め座標を補正する。この熱補正には、数10秒を要する。昇温状態が終わると、温度がほぼ一定になるため、各ボールネジの長さもほぼ一定になる。こうした状態を定常状態という。定常状態では、位置ズレ量はほぼ一定になる。そのため、熱補正を行わず定常状態になった直後の補正量(定常時補正量)で位置決め座標を補正すればよい。そして、1番目の生産ジョブが終わると、オペレータは2番目の生産ジョブの準備すなわち段取り替えを行う。段取り替えとは、生産ジョブを開始する前にその生産ジョブに使用するフィーダ56などを部品実装装置10に取り付けたり、基板搬送装置12のコンベア幅を自動処理で変更する作業をいう。段取り替えを行っている間、X軸スライダ20やY軸スライダ24を停止しておくと、これらの温度が徐々に低下していく。そのため、本実施形態では、段取り替え中であっても、定常状態を維持するためのダミー動作を行う。すなわち、部品実装は行わないものの、X軸スライダ20やY軸スライダ24をXY方向へ繰り返し移動させることにより、定常状態を維持する。こうすることにより、2番目の生産ジョブ以降は、開始した直後から定常状態になっているため、熱補正を行わずに定常時補正量で位置決め座標を補正して部品実装動作を行うことができる。図3の太線は本実施形態の時間と位置ズレ量との関係を示し、破線はダミー動作を行わなかった場合(参考形態)の時間と位置ズレ量との関係を示す。参考形態では、2番目の生産ジョブにおいても昇温状態があるため、熱補正を行いながら部品実装動作を行う必要がある。
 次に、部品実装装置10の生産ジョブ処理ルーチン及び待機時間中の処理ルーチンについて、図4及び図5のフローチャートを参照しながら以下に説明する。これらのルーチンのプログラムは、実装コントローラ38のROM38bに格納されている。
 実装コントローラ38のCPU38aは、新たな生産ジョブの開始指令を入力すると、生産ジョブ処理ルーチンを開始する。CPU38aは、まず、現在定常状態か否かを判定する(ステップS110)。定常状態か否かは、定常状態フラグがオンかオフかによって判断する。定常状態フラグは、後述するステップS200でオンに設定されるが、部品実装装置10の電源がオフになると自動的にオフになる。1番目の生産ジョブを開始した当初は、まだ定常状態に達していないためステップS110では否定判定される。
 次に、CPU38aは、位置ズレ量を測定する(ステップS120)。例えば、CPU38aは、X軸モータ20a及びY軸モータ24aを予め定められた基準回転量だけ回転させる。基準回転量は、例えばX軸及びY軸のボールネジ機構が所定温度(例えば20℃)のときにマークカメラ34の中心が基準マーク40の真上に来るように設定されている。X軸及びY軸のボールネジ機構が所定温度よりも高くなると、ボールネジが伸長するため、基準回転量で各モータを回転させると、マークカメラ34の中心が基準マーク40の真上からずれる。このときのX方向とY方向の位置ズレ量をマークカメラ34の撮像画像から算出する。
 次に、CPU38aは、補正量を算出する(ステップS130)。ここでは、CPU38aは、今回測定した位置ズレ量がキャンセルされるように補正量を算出する。
 次に、CPU38aは、今回測定した位置ズレ量の変化量を算出する(ステップS140)。ここでは、CPU38aは、今回の位置ズレ量と前回の位置ズレ量との差を位置ズレ量の変化量として算出する。なお、このルーチンを開始した直後においては、前回の位置ズレ量は存在しないためゼロとみなすこととする。本実施形態では、位置ズレ量を測定するタイミングは、後述するように所定の周期ごとに発生する。そのため、位置ズレ量の変化量は、位置ズレ量の時間に対する変化の割合とみることができる。
 次に、CPU38aは、位置ズレ量の変化量が所定の狭小範囲内に収まるか否かを判定する(ステップS150)。所定の狭小範囲は、X軸及びY軸の各ボールネジの長さがほぼ一定になったとみなすことのできる範囲であり、予め経験的に定められている。例えば、所定の狭小範囲は、±数μmに設定される。
 1番目の生産ジョブを開始した当初は、ステップS150で否定判定される。ステップS150で否定判定されると、CPU38aは、ステップS140で算出した補正量に基づいて、部品吸着位置や基板S上の部品実装位置の位置決め座標値を補正する(ステップS160)。続いて、CPU38aは、補正後の位置決め座標値に基づいて部品実装動作が行われるよう、部品実装装置10の各モータ20a,24a,30を制御すると共に、フィーダコントローラ58と通信を行う(ステップS170)。その後、フィーダ56からノズル28が部品を吸着して基板Sへ実装し終わったら、CPU38aは今回の生産ジョブが終了したか否かを判定し(ステップS180)、終了していなければ、位置ズレ量測定時期が到来したか否かを判定する(ステップS190)。位置ズレ量測定時期は、所定の周期(例えば数分)ごとに到来する。ステップS190で位置ズレ量測定時期が到来していなければ、CPU38aは、ステップS160以降の処理を行う。
 一方、ステップS190で位置ズレ量測定時期が到来したならば、CPU38aは、ステップS120以降の処理を行う。1番目の生産ジョブを開始してからある程度の時間(例えば数10分)が経過するまでは、部品実装装置10の各部の温度は徐々に上昇するため、位置ズレ量の変化量は狭小範囲を超えることになり、ステップS150で否定判定されてステップS160~S190の処理を行う。
 しかし、1番目の生産ジョブを開始してからある程度の時間が経過すると、部品実装装置10の各部の温度は上昇しきってほぼ一定になるため、位置ズレ量の変化量は狭小範囲内に収まり、ステップS150で肯定判定される。ステップS150で肯定判定されると、CPU38aは、定常状態フラグをオンに設定し(ステップS200)、その直前に算出した補正量を定常時補正量としてRAM38dに保存する(ステップS210)。続いて、CPU38aは、定常時補正量に基づいて部品吸着位置や基板S上の部品実装位置の位置決め座標値を補正する(ステップS220)。続いて、CPU38aは、補正後の位置決め座標値に基づいて部品実装動作が行われるよう部品実装装置10の各モータ20a,24a,30を制御すると共に、フィーダコントローラ58と通信を行う(ステップS230)。その後、フィーダ56からノズル28が部品を吸着して基板Sへ実装し終わったら、CPU38aは今回の生産ジョブが終了したか否かを判定する(ステップS240)。今回の生産ジョブが終了していなければ、CPU38aは、ステップS220に戻る。つまり、定常状態になった後は、熱補正(ステップS120,S130)を行わない。そして、ステップS240又はステップS180で今回の生産ジョブが終了したならば、CPU38aは、生産ジョブ処理ルーチンを終了する。
 1つの生産ジョブが終了すると、CPU38aは待機時間に移行したと判断し、待機時間中の処理ルーチンをROM38bから読み出して実行する。なお、待機時間中、オペレータは、次の生産ジョブに備えて段取り替えを行う。CPU38aは、待機時間中の処理ルーチンを開始すると、まず、部品実装装置10が定常状態か否かを判定し(ステップS310)、定常状態でなければそのままこのルーチンを終了する。一方、ステップS310で定常状態だったならば、CPU38aは、ダミー動作を実行する(ステップS320)。すなわち、部品実装は行わないものの、X軸スライダ20やY軸スライダ24をXY方向へ繰り返し移動させることにより、定常状態を維持する。このダミー動作は、オペレータがフィーダ56の着脱を行うときに手を入れることのない領域内、すなわちカバー57の前面57aよりも内側の領域で行われる。続いて、CPU38aは、新たな生産ジョブ開始指令が入力されたか否かを判定し(ステップS330)、入力されていなければステップS320に戻ってダミー動作を続行する。一方、ステップS330で新たな生産ジョブ開始指令が入力されたならば、CPU38aはダミー動作を終了し(ステップS340)、このルーチンを終了する。それと共に、CPU38aは、生産ジョブ処理ルーチンを再開する。
 CPU38aは、生産ジョブ処理ルーチンを再開すると、まず、定常状態か否かを判定する(ステップS110)。2番目の生産ジョブを開始した場合、その直前の待機時間ではダミー動作を実行しているため定常状態が維持されている。そのため、CPU38aは、ステップS110で肯定判定してステップS220へスキップする。そして、CPU38aは、ステップS240で2番目の生産ジョブが終了したと判断するまで、熱補正を行うことなく定常時補正量に基づいて位置決め座標値を補正し(ステップS220)、部品実装動作を実行する(ステップS230)。
 ここで、本実施形態の構成要素と本発明の構成要素との対応関係を明らかにする。本実施形態のX軸スライダ20及びY軸スライダ24が本発明のXYロボットに相当し、リールユニット50のフィーダ56が部品供給装置に相当し、実装コントローラ38が制御手段に相当する。また、カバー57の前面57aが仕切りに相当する。
 以上説明した本実施形態の部品実装装置10によれば、電源が投入されて部品実装動作を開始してからX軸スライダ20やY軸スライダ24の熱による位置ズレ量が定常状態になるまでの間は、熱補正を行いながら部品実装動作を繰り返し行う。つまり、定常状態になるまでの間であっても部品実装動作を行う。また、定常状態になった後は、熱補正を行わず定常状態になった直後の補正量を用いて定常時補正を行いながら部品実装動作を繰り返し行うと共に、部品実装動作を行わない待機時間には定常状態を維持するためのダミー動作を行う。つまり、定常状態になった後は、熱補正を行わずに部品実装動作を行うため、熱補正の頻度が低減する。また、待機時間にはダミー動作により定常状態が維持されるめ、例えば1つの生産ジョブに基づく部品実装動作が終了したあと待機したとしても、次の生産ジョブに基づく部品実装動作の準備が整えばすぐにその生産ジョブを熱補正なしで開始することができる。
 また、ダミー動作はオペレータがフィーダ56の着脱を行うときに手を入れることのない領域内、上述した実施形態ではカバー57の前面57aよりも内側で行われているため、オペレータは安全にフィーダ56の着脱を行うことができる。
 更に、熱補正を行うにあたりX軸及びY軸のボールネジ機構の熱変形による位置ずれ量を測定するため、熱補正に要する時間が長くなることから、熱補正の頻度を低減する意義が高い。
 更にまた、位置ズレ量が定常状態になったか否かを、位置ズレ量の変化量に基づいて判断しているため、位置ズレ量が定常状態になったか否かを精度よく判断することができる。
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
 例えば、上述した実施形態では、X軸及びY軸の各ボールネジが熱によって伸縮するのを考慮して熱補正を行うこととしたが、ヘッド18の下面に設けられたノズル28とマークカメラ34との距離が熱によって伸縮するのを考慮して熱補正を行うこととしてもよい。ノズル28とマークカメラ34との距離は、パーツカメラ36でこれらを撮像した画像を利用することにより測定することができる。また、Z軸のボールネジ32が熱によって伸縮するのを考慮して熱補正を行うこととしてもよい。この場合、例えばノズル28を横から撮像可能なカメラをヘッド18に取り付け、そのカメラでノズル28を撮像した画像を利用することによりZ軸方向の位置ズレ量を測定してもよい。いずれにおいても、定常状態になった後は、熱補正を行わず定常状態になった直後の補正量を用いて定常時補正を行いながら部品実装動作を繰り返し行う。
 上述した実施形態では、ステップS150において、位置ズレ量の変化量が所定の狭小範囲内に収まるか否かによって定常状態か否かを判定したが、判定手法はこれに限定されるものではない。例えば、位置ズレ量の変化量の推移に基づいて定常状態か否かを判定してもよい。具体的には、前回の位置ズレ量の変化量と今回の位置ズレ量の変化量との差が所定の僅少差以下か否かによって定常状態か否かを判定してもよい。
 上述した実施形態では、待機時間として段取り替えを行っている時間を例示したが、待機時間はこれに限定されない。例えば、1つの生産ジョブの実行中において部品実装装置10に何らかのトラブル、例えば部品切れによる補給待ちが発生して部品実装動作を中断することがあるが、その中断している時間を待機時間としてもよい。あるいは、基板Sの入れ替えを行う時間を待機時間としてもよい。
 上述した実施形態において、実装コントローラ38は、部品実装装置10の全体を覆うカバー57が開放されているときには、待機時間中の処理ルーチンを実行しないようにしてもよい。こうすれば、カバー57が開放されているときにダミー動作が行われることがない。
 上述した実施形態では、ヘッド18として1つのノズル28を有するものを例示したが、特にこれに限定されるものではなく、複数のノズルを有するヘッド(例えば円周に沿って複数のノズルを備えたロータリーヘッド)を用いてもよい。
 上述した実施形態では、X軸スライダ20やY軸スライダ24としてボールネジ機構を備えるものを例示したが、特にこれに限定されるものではなく、例えばボールネジ機構の代わりにリニアモータを備えるものを用いてもよい。
 上述した実施形態では、熱補正は、部品実装動作の途中でマークカメラ34により撮像した基準マーク40の画像からXY方向の位置ズレ量を算出し、その位置ズレ量に基づいて補正量を求めたが、特にこれに限定されない。例えば、ヘッド18の下面の所定位置に基準マークを設け、部品実装動作の途中でパーツカメラ36によりその基準マークを撮像し、その撮像画像から得られる基準マークの座標位置に基づいてXY方向の位置ズレ量を算出し、その位置ズレ量に基づいて補正量を求め、その補正量で位置決め座標を補正してもよい。こうすれば、ヘッド18の熱による伸縮も加味されるため、上述した実施形態に比べてより正確に熱変形の大きさを測定することができる。
 上述した実施形態では、定常状態のときにダミー動作を行ったが、昇温状態においてもダミー動作を行ってもよい。こうすれば、より早く定常状態に移行することができ、熱補正処理回数を削減できる。
 本発明は、例えばサイズの異なる種々の電子部品を基板へ実装する部品実装装置に利用可能である。
10 部品実装装置、12 基板搬送装置、14 支持板、16 コンベアベルト、18 ヘッド、20 X軸スライダ、20a X軸モータ、22 ガイドレール、23 ナット、24 Y軸スライダ、24a Y軸モータ、25 Y軸ボールネジ、26 ガイドレール、28 ノズル、28a 圧力調整装置、30 Z軸モータ、32 ボールネジ、34 マークカメラ、36 パーツカメラ、38 実装コントローラ、38a CPU、38b ROM、38c HDD、38d RAM、38e 入力装置、38f 表示装置、40 基準マーク、50 リールユニット、52 デバイスパレット、54 スロット、56 フィーダ、57 カバー、57a 前面、58 フィーダコントローラ、60 リール、62 テープ、80 管理コンピュータ、82 パソコン本体、84 入力デバイス、86 ディスプレイ。

Claims (5)

  1.  XYロボットによってXY平面を移動可能なヘッドにノズルが取り付けられ、部品供給装置から供給される部品を前記ノズルに吸着して基板上の所定位置へ運んで該所定位置に実装する部品実装動作を行う部品実装装置であって、
     電源が投入されて前記部品実装動作を開始してから前記XYロボットの熱による位置ズレ量が定常状態になるまでの間は、熱補正を行いながら前記部品実装動作を繰り返し行うよう前記XYロボットを制御し、定常状態になった後は、熱補正を行わず前記定常状態になった直後の補正量を用いて定常時補正を行いながら前記部品実装動作を繰り返し行うよう前記XYロボットを制御すると共に、前記部品実装動作を行わない待機時間には前記定常状態を維持するためのダミー動作を行うよう前記XYロボットを制御する制御手段
     を備えた部品実装装置。
  2.  前記部品供給装置は、前記部品実装装置に着脱可能に取り付けられ、
     前記制御手段は、オペレータが前記部品供給装置の着脱を行うときに手を入れることのない領域内で前記ダミー動作を行うように前記XYロボットを制御する、
     請求項1に記載の部品実装装置。
  3.  前記部品供給装置と前記部品実装装置のうち前記ヘッドが移動する領域との間には仕切りが設けられ、
     前記制御手段は、前記仕切りよりも前記部品供給装置の内側で前記ダミー動作を行うように前記XYロボットを制御する、
     請求項1又は2に記載の部品実装装置。
  4.  前記制御手段は、前記熱補正を行うにあたり、前記位置ズレ量を測定し、前記位置ズレ量の大きさに応じて前記XYロボットの位置補正量を算出し、前記位置補正量を用いて前記XYロボットの位置を補正する、
     請求項1~3のいずれか1項に記載の部品実装装置。
  5.  前記制御手段は、前記位置ズレ量が定常状態になったか否かを、前記位置ズレ量の時間に対する変化量又は該変化量の推移に基づいて判断する、
     請求項1~4のいずれか1項に記載の部品実装装置。
PCT/JP2016/051969 2016-01-25 2016-01-25 部品実装装置 WO2017130267A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680079087.3A CN108476609B (zh) 2016-01-25 2016-01-25 元件安装装置
US16/071,947 US11083121B2 (en) 2016-01-25 2016-01-25 Component mounting apparatus
PCT/JP2016/051969 WO2017130267A1 (ja) 2016-01-25 2016-01-25 部品実装装置
EP16887854.4A EP3410833B1 (en) 2016-01-25 2016-01-25 Component mounting apparatus
JP2017563411A JP6670857B2 (ja) 2016-01-25 2016-01-25 部品実装装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/051969 WO2017130267A1 (ja) 2016-01-25 2016-01-25 部品実装装置

Publications (1)

Publication Number Publication Date
WO2017130267A1 true WO2017130267A1 (ja) 2017-08-03

Family

ID=59397520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051969 WO2017130267A1 (ja) 2016-01-25 2016-01-25 部品実装装置

Country Status (5)

Country Link
US (1) US11083121B2 (ja)
EP (1) EP3410833B1 (ja)
JP (1) JP6670857B2 (ja)
CN (1) CN108476609B (ja)
WO (1) WO2017130267A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111434203A (zh) * 2017-12-15 2020-07-17 株式会社富士 元件装配机

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111447825A (zh) * 2020-04-25 2020-07-24 安徽槿琳科技有限公司 一种线路板加工用灯珠贴片机
DE102020115598B3 (de) 2020-06-12 2021-08-26 Asm Assembly Systems Gmbh & Co. Kg Verfahren und Bestückmaschine zum Bestücken von Bauelementeträgern basierend auf einem Rekalibrieren der Bestückmaschine im realen Bestückbetrieb, Computerprogramm zum Steuern einer Bestückmaschine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237700A (ja) * 2000-12-06 2002-08-23 Matsushita Electric Ind Co Ltd 部品実装方法及び部品実装機
JP2009295709A (ja) * 2008-06-04 2009-12-17 Yamaha Motor Co Ltd マーク認識システム、マーク認識方法および表面実装機
JP2010251450A (ja) * 2009-04-14 2010-11-04 Panasonic Corp 部品実装装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05241660A (ja) * 1991-04-19 1993-09-21 Hitachi Ltd 電子部品装着機の熱変形の補正方法
JP2002050896A (ja) * 2000-08-03 2002-02-15 Sony Corp 部品把持位置補正装置および補正方法
US6920687B2 (en) * 2000-12-06 2005-07-26 Matsushita Electric Industrial Co., Ltd. Component mounting method employing temperature maintenance of positioning apparatus
DE10300518B4 (de) * 2003-01-09 2005-06-23 Siemens Ag Vorrichtung zum Bestücken von Substraten mit Bauelementen und Verfahren zum Kalibrieren einer solchen Vorrichtung
DE10309879B4 (de) * 2003-03-06 2006-08-31 Siemens Ag Vorrichtung zum Bestücken von Substraten mit elektrischen Bauelementen
JP4622913B2 (ja) * 2006-03-30 2011-02-02 パナソニック株式会社 認識対象の位置を認識する方法
EP2066166A1 (en) * 2007-11-30 2009-06-03 Mydata Automation AB Method for temperature compensation in a positioning system
JP5510342B2 (ja) * 2011-01-14 2014-06-04 パナソニック株式会社 電子部品実装方法
CN104170542B (zh) * 2012-03-12 2017-11-03 富士机械制造株式会社 元件安装机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237700A (ja) * 2000-12-06 2002-08-23 Matsushita Electric Ind Co Ltd 部品実装方法及び部品実装機
JP2009295709A (ja) * 2008-06-04 2009-12-17 Yamaha Motor Co Ltd マーク認識システム、マーク認識方法および表面実装機
JP2010251450A (ja) * 2009-04-14 2010-11-04 Panasonic Corp 部品実装装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111434203A (zh) * 2017-12-15 2020-07-17 株式会社富士 元件装配机
CN111434203B (zh) * 2017-12-15 2021-01-26 株式会社富士 元件装配机

Also Published As

Publication number Publication date
EP3410833B1 (en) 2020-12-16
CN108476609A (zh) 2018-08-31
EP3410833A4 (en) 2019-01-23
JP6670857B2 (ja) 2020-03-25
US20190037741A1 (en) 2019-01-31
JPWO2017130267A1 (ja) 2018-11-15
EP3410833A1 (en) 2018-12-05
US11083121B2 (en) 2021-08-03
CN108476609B (zh) 2020-02-28

Similar Documents

Publication Publication Date Title
EP3340760B1 (en) Component mounting device
US10582651B2 (en) Component mounting machine
WO2017130267A1 (ja) 部品実装装置
WO2017179146A1 (ja) 実装装置及び実装方法
CN111434203B (zh) 元件装配机
WO2019176033A1 (ja) 生産ジョブ処理方法及び生産ジョブ処理装置
WO2015145565A1 (ja) 部品装着装置
EP3771311B1 (en) Component-mounting device
JP2007235018A (ja) 実装ヘッドの位置補正方法および電子部品実装装置
JP4715558B2 (ja) 電子部品の位置認識方法および電子部品実装装置
EP3310147B1 (en) Component mounting machine
WO2016151797A1 (ja) 実装装置及び実装方法
JP6603318B2 (ja) 部品実装装置
JP6778270B2 (ja) 部品実装装置
JP7332515B2 (ja) 部品実装ライン
JP2012084631A (ja) 部品実装用装置および部品実装用装置における位置決め制御方法
WO2018173226A1 (ja) 実装装置及び実装方法
JP2024025014A (ja) 部品搭載装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16887854

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017563411

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016887854

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016887854

Country of ref document: EP

Effective date: 20180827