WO2017130266A1 - カプセル内視鏡 - Google Patents

カプセル内視鏡 Download PDF

Info

Publication number
WO2017130266A1
WO2017130266A1 PCT/JP2016/051966 JP2016051966W WO2017130266A1 WO 2017130266 A1 WO2017130266 A1 WO 2017130266A1 JP 2016051966 W JP2016051966 W JP 2016051966W WO 2017130266 A1 WO2017130266 A1 WO 2017130266A1
Authority
WO
WIPO (PCT)
Prior art keywords
instruction information
imaging
information
capsule endoscope
stop
Prior art date
Application number
PCT/JP2016/051966
Other languages
English (en)
French (fr)
Inventor
大和 合渡
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2017563410A priority Critical patent/JPWO2017130266A1/ja
Priority to PCT/JP2016/051966 priority patent/WO2017130266A1/ja
Publication of WO2017130266A1 publication Critical patent/WO2017130266A1/ja
Priority to US16/040,605 priority patent/US11134831B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00006Operational features of endoscopes characterised by electronic signal processing of control signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00011Operational features of endoscopes characterised by signal transmission
    • A61B1/00016Operational features of endoscopes characterised by signal transmission using wireless means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/0002Operational features of endoscopes provided with data storages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof

Definitions

  • the present invention relates to a capsule endoscope.
  • the capsule endoscope When the capsule endoscope is passing through the organ of the subject, the capsule endoscope is moving relative to the human body. When this moving speed is fast, it is desirable for the capsule endoscope to increase the imaging frame rate in order to reduce the missing of the subject. In addition, when the capsule endoscope is relatively stationary with respect to the human body, it is desirable that the capsule endoscope lower the imaging frame rate in order to reduce power consumption.
  • Patent Document 1 determines the frame rate of imaging based on the output of a sensor that detects capsule movement. This system can also determine an imaging frame rate based on a comparison result of two images output from the capsule. A block outside the capsule determines the frame rate and indicates the determined frame rate to the capsule.
  • the system disclosed in Patent Document 2 has two acceleration sensors.
  • An acceleration sensor provided in the capsule endoscope detects the acceleration of the capsule endoscope.
  • the acceleration sensor provided in the receiving device detects the acceleration of the human body in which the capsule endoscope is inserted.
  • the system disclosed in Patent Document 2 detects the relative movement of the capsule endoscope with respect to the human body based on the outputs of the two acceleration sensors.
  • at least one of the capsule endoscope and the receiving device includes a determination unit that determines a frame rate of imaging based on the detected motion.
  • the capsule endoscope system can immediately respond to the movement of the capsule endoscope by determining the imaging timing based on the output of the motion sensor provided in the capsule endoscope.
  • the capsule endoscope system erroneously detects the movement of the capsule endoscope. For this reason, the imaging timing may not be determined accurately.
  • the capsule endoscope system can detect the movement of only the capsule endoscope based on the comparison result of the two images acquired by the capsule endoscope.
  • the frame rate is low, the time until two images are acquired is relatively long, and it is difficult for the capsule endoscope system to immediately respond to the movement of the capsule endoscope.
  • An object of the present invention is to provide a capsule endoscope that can determine an imaging timing with high accuracy based on data acquired by a sensor included in the capsule endoscope.
  • the capsule endoscope includes the first sensor, the second sensor, the information generation unit, the signal generation unit, and the imaging unit.
  • the first sensor generates first data.
  • the second sensor generates second data different from the first data.
  • the information generation unit generates third instruction information based on the first instruction information and the second instruction information.
  • the first instruction information is a result of analyzing the first data.
  • the second instruction information is a result of analyzing the second data.
  • the signal generation unit generates an imaging synchronization signal based on the third instruction information.
  • the imaging unit performs imaging based on the imaging synchronization signal and acquires an image.
  • the update interval of the first instruction information is less than or equal to the update interval of the second instruction information.
  • the information generation unit generates the third instruction information based on a combination of at least three instruction information.
  • the at least three pieces of instruction information include at least one of the first instruction information and the second instruction information at a first time point, and the first instruction information and the second instruction information at a second time point. At least one of the second instruction information and the third instruction information.
  • the second time point is before the first time point.
  • the second sensor may be the imaging unit, and the second data may be the image.
  • the information generation unit does not depend on the first instruction information until the second instruction information is generated. 3 instruction information may be maintained.
  • the information generation unit may generate the third instruction information based on state information.
  • the state information the first instruction information and the second instruction information at the first time, the first instruction information and the second instruction information at the second time, and the third May be associated with the instruction information.
  • the number of the third instruction information whose imaging frequency is relatively low may be larger than the number of the third instruction information whose imaging frequency is relatively high.
  • the information generation unit may generate the third instruction information based on state information.
  • the state information the first instruction information and the second instruction information at the first time, the first instruction information and the second instruction information at the second time, and the third May be associated with the instruction information.
  • the number of the third instruction information whose imaging frequency is relatively high may be larger than the number of the third instruction information whose imaging frequency is relatively low.
  • At least one of the first instruction information and the second instruction information is three or more. Any one of the values may be indicated.
  • the third instruction information may indicate any one of three or more values.
  • the capsule endoscope may further include a counter whose count value increases or decreases from a reference value. Good.
  • the count value may be calculated based on the third instruction information.
  • the imaging synchronization signal is generated, the count value may be the reference value.
  • the signal generation unit may generate the imaging synchronization signal.
  • the capsule endoscope may further include a communication unit that performs wireless communication with a wireless communication device. .
  • the communication unit may transmit at least one of the first data and the second data to the wireless communication device.
  • the communication unit may receive at least one of the first instruction information and the second instruction information from the wireless communication device.
  • the information generating unit generates the third instruction information based on the first instruction information and the second instruction information, and the signal generating unit is based on the third instruction information.
  • An imaging synchronization signal is generated.
  • FIG. 1 shows a configuration of a capsule endoscope 10 according to the first embodiment of the present invention.
  • the capsule endoscope 10 includes a sensor 100, a first analysis unit 101, a second analysis unit 102, an information generation unit 103, a signal generation unit 104, and an imaging unit 105.
  • Each configuration shown in FIG. 1 is hardware.
  • the Sensor 100 (first sensor) generates first data.
  • the imaging unit 105 (second sensor) generates second data different from the first data.
  • the information generation unit 103 generates third instruction information based on the first instruction information and the second instruction information.
  • the first instruction information is a result of analyzing the first data.
  • the second instruction information is a result of analyzing the second data.
  • the signal generation unit 104 generates an imaging synchronization signal based on the third instruction information.
  • the imaging unit 105 performs imaging based on the imaging synchronization signal and acquires an image.
  • the update interval of the first instruction information is less than or equal to the update interval of the second instruction information.
  • the information generation unit 103 generates third instruction information based on a combination of at least three instruction information.
  • the at least three instruction information includes at least one of the first instruction information and the second instruction information at the first time point, and the first instruction information, the second instruction information, and the second instruction information at the second time point. 3 instruction information.
  • the second time point is
  • the sensor 100 periodically detects a physical quantity at first time intervals and generates first data indicating the detected physical quantity.
  • the cycle in which the sensor 100 generates the first data is the same as the first time.
  • the sensor 100 is a motion sensor.
  • the sensor 100 periodically detects the movement of the capsule endoscope 10 at first time intervals, and generates first data indicating the detected movement of the capsule endoscope 10.
  • the sensor 100 is at least one of an acceleration sensor, a velocity sensor, a magnetic sensor, and an angular velocity sensor. Therefore, the sensor 100 can acquire at least one data of acceleration, velocity, angular velocity, and magnetism.
  • the sensor 100 outputs the first data to the first analysis unit 101.
  • the first data is acceleration data.
  • the acceleration data is a measurement result of acceleration of the capsule endoscope 10.
  • the first data is speed data.
  • the speed data is a measurement result of the speed of the capsule endoscope 10.
  • the position data may be obtained by integrating the speed indicated by the speed data.
  • the movement of the capsule endoscope 10 can be detected from the amount of change in position data at a plurality of times.
  • the first data is magnetic data.
  • Magnetic data is the result of geomagnetic measurements.
  • the posture of the capsule endoscope 10 can be detected. Therefore, it is possible to detect the movement of the capsule endoscope 10 from the amount of change in magnetic data at a plurality of times.
  • the first data is angular velocity data.
  • the angular velocity data is a measurement result of the angular velocity of the capsule endoscope 10.
  • the first analysis unit 101 (first analyzer) is composed of one or a plurality of processors.
  • the processor includes a CPU (Central Processing Unit), an application specific integrated circuit (ASIC), an FPGA (Field-Programmable Gate Array), and the like.
  • the first analysis unit 101 analyzes the first data and generates first instruction information indicating the analysis result.
  • the first analysis unit 101 outputs the first instruction information to the information generation unit 103.
  • the first analysis unit 101 compares the first data with a predetermined threshold value, or compares the change amount of the first data with a predetermined threshold value at a plurality of times.
  • the first analysis unit 101 may calculate velocity data or position data based on the acceleration data.
  • the first instruction information is a result of the comparison.
  • the sensor 100 may periodically detect the movement of the capsule endoscope 10 at the second time interval.
  • the second time is less than or equal to the first time.
  • the first analysis unit 101 may analyze the movement detected by the sensor 100 and periodically generate first data based on the movement at a first time interval.
  • the second analysis unit 102 (second analyzer) is composed of one or a plurality of processors.
  • the second analysis unit 102 analyzes the second data and generates second instruction information indicating the analysis result.
  • the second analysis unit 102 outputs the second instruction information to the information generation unit 103.
  • the capsule endoscope 10 includes two sensors.
  • the first sensor is the sensor 100
  • the second sensor is the imaging unit 105.
  • the second data is an image acquired by the imaging unit 105.
  • the information generation unit 103 includes one or more processors.
  • the information generation unit 103 generates third instruction information based on a combination of instruction information at two different times. For example, the information generation unit 103 periodically generates the third instruction information at the first time interval. That is, the information generation unit 103 generates the third instruction information at a cycle in which the first instruction information is updated.
  • the first time point is the current time point. Specifically, the current time point is a time point before the first time elapses from the time point when the third instruction information is generated immediately before.
  • the second time point is a past time point. Specifically, the past time point is a time point when the third instruction information is generated immediately before. That is, the past time point is a time point that is a first time before the time point at which the third instruction information is scheduled to be generated.
  • the information generation unit 103 includes a memory 106.
  • the memory 106 is a nonvolatile recording medium.
  • the memory 106 stores state information in which a combination of instruction information at two different times and third instruction information are associated with each other.
  • the memory 106 stores past instruction information.
  • the memory 106 is provided inside the information generation unit 103.
  • the memory 106 may be independent from the information generation unit 103.
  • the signal generation unit 104 (signal generation circuit) is a digital signal processing circuit.
  • the signal generation unit 104 may be configured with one or a plurality of processors.
  • the signal generation unit 104 periodically refers to the third instruction information at the first time interval, and generates an imaging synchronization signal based on the third instruction information.
  • At least two of the first analysis unit 101, the second analysis unit 102, the information generation unit 103, and the signal generation unit 104 may be configured as one piece of hardware.
  • the imaging unit 105 is an image sensor (image sensor).
  • the imaging unit 105 performs imaging at an imaging timing based on the imaging synchronization signal and acquires an image (image data).
  • the subject imaged by the imaging unit 105 is an organ in the human body.
  • the image acquired by the imaging unit 105 may be transmitted wirelessly to a receiving device outside the body.
  • the functions of the first analysis unit 101, the second analysis unit 102, the information generation unit 103, and the signal generation unit 104 are such that the computer of the capsule endoscope 10 stores a program including instructions that define these operations. It can be realized as a software function by reading and executing.
  • This program may be provided by a “computer-readable recording medium” such as a flash memory.
  • the above-described program may be transmitted to the capsule endoscope 10 from a computer having a storage device in which the program is stored, via a transmission medium or by a transmission wave in the transmission medium.
  • a “transmission medium” for transmitting a program is a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
  • a network such as the Internet
  • a communication line such as a telephone line.
  • the above-described program may realize a part of the functions described above.
  • the above-described program may be a difference file (difference program) that can realize the above-described function in combination with a program already recorded in the computer.
  • FIG. 2 shows state information in the first operation.
  • the state information is shown as a table.
  • the current state of the first instruction information and the second instruction information, the state of the first instruction information in the past, and the state of the third instruction information are associated with each other.
  • Each instruction information indicates one of two values.
  • the two values are “imaging” and “stop”.
  • Imaging indicates an imaging instruction to the imaging unit 105. That is, “imaging” indicates a state in which the imaging frequency is relatively high.
  • “Stop” indicates an instruction to stop imaging with respect to the imaging unit 105. That is, “stop” indicates a state in which the imaging frequency is relatively low.
  • the first instruction information is “imaging”.
  • the second instruction information is “stop”.
  • the second instruction information is “imaging”.
  • the second instruction information is “imaging”.
  • the current state of the first instruction information and the second instruction information is delimited by “/”.
  • the left side of “/” is the state of the first instruction information
  • the right side of “/” is the state of the second instruction information.
  • “Stop / Imaging” indicates that the first instruction information is “Stop” and the second instruction information is “Imaging”.
  • the state of the current first instruction information and second instruction information and the corresponding third instruction information are described in the same line.
  • the state of the past first instruction information and the corresponding third instruction information are described in the same column. For example, when the current first instruction information and the second instruction information are “stop / imaging” and the past first instruction information is “stop”, the third information generated by the information generation unit 103 is used.
  • the instruction information is “stop”.
  • the third instruction information is set to “stop”.
  • the current first instruction information is “stop” and the current second instruction information is “imaging”, there is a possibility that a large movement is detected from the image before the capsule endoscope 10 stops. There is.
  • the current first instruction information is “imaging”
  • the current second instruction information is “stop”
  • the past first instruction information is “stop”
  • the third instruction information is set to “imaging” in order to reduce missing of the subject.
  • the current first instruction information is “imaging”
  • the current second instruction information is “stop”
  • the past first instruction information is “imaging”
  • the sensor 100 The movement detected is large and the movement detected from the image is small.
  • the capsule endoscope 10 may stop with respect to the human body and the human body may be moving. Accordingly, the third instruction information is set to “stop” in order to suppress useless imaging.
  • both the motion detected by the sensor 100 and the motion detected from the image are large. That is, there is a high possibility that the capsule endoscope 10 is moving.
  • the third instruction information is set to “imaging”.
  • the third instruction information indicates a relatively low imaging frequency (“stop”). )). If the current first instruction information indicates a relatively low imaging frequency (“stop”) and the current second instruction information indicates a relatively high imaging frequency (“imaging”), the third instruction The information indicates a relatively low imaging frequency (“stop”). If the current first instruction information indicates a relatively high imaging frequency (“imaging”) and the current second instruction information indicates a relatively low imaging frequency (“stop”), the third instruction The information is based on past first instruction information.
  • the current first instruction information indicates a relatively high imaging frequency (“imaging”)
  • the current second instruction information indicates a relatively low imaging frequency (“stop”)
  • the past first When the instruction information indicates a relatively low imaging frequency (“stop”), the third instruction information indicates a relatively high imaging frequency (“imaging”).
  • the current first instruction information indicates a relatively high imaging frequency (“imaging”)
  • the current second instruction information indicates a relatively low imaging frequency (“stop”)
  • the past first When the instruction information indicates a relatively high imaging frequency (“imaging”), the third instruction information indicates a relatively low imaging frequency (“stop”).
  • the third instruction information indicates a relatively high imaging frequency (“imaging”).
  • FIG. 3 shows a first operation of the capsule endoscope 10.
  • the state of the first instruction information, the state of the second instruction information, the state of the third instruction information, and the waveform of the imaging synchronization signal are shown.
  • the vertical direction of FIG. Time advances to the right in FIG.
  • the first instruction information is updated at intervals of the first time T1.
  • the updated first instruction information may be the same as the first instruction information before being updated.
  • the position where the first instruction information shown in FIG. 3 is delimited indicates a point in time when the first instruction information is updated by newly generating the first instruction information.
  • the imaging synchronization signal has a high level and a low level. When the imaging synchronization signal is at a high level, the imaging synchronization signal is valid. When the imaging synchronization signal is at a low level, the imaging synchronization signal is invalid.
  • the imaging unit 105 performs imaging when the imaging synchronization signal is valid. When the imaging synchronization signal is at a low level, the imaging synchronization signal is valid, and when the imaging synchronization signal is at a high level, the imaging synchronization signal may be invalid.
  • the second instruction information is updated after the imaging unit 105 performs imaging. That is, the second instruction information is updated after the high-level imaging synchronization signal is generated.
  • the updated second instruction information may be the same as the second instruction information before being updated.
  • the position where the second instruction information shown in FIG. 3 is delimited indicates a point in time when the second instruction information is updated by newly generating the second instruction information.
  • the second instruction information is updated at intervals equal to or longer than the first time T1. That is, the update frequency of the second instruction information is less than or equal to the update frequency of the first instruction information.
  • the third instruction information is updated at an interval of the first time T1.
  • the updated third instruction information may be the same as the third instruction information before being updated.
  • the position where the third instruction information shown in FIG. 3 is delimited indicates a point in time when the third instruction information is updated by newly generating the third instruction information.
  • the first instruction information, the second instruction information, and the third instruction information are “stopped”, and the imaging synchronization signal is invalid.
  • the first instruction information changes to “imaging”.
  • the current first instruction information and the second instruction information are “imaging / stop”, and the past first instruction information is “stop”.
  • the information generation unit 103 sets the third instruction information to “imaging”.
  • the signal generation unit 104 generates an effective imaging synchronization signal. Thereby, the missed shooting of the subject is suppressed.
  • the second instruction information changes to “imaging”.
  • the current first instruction information and the second instruction information are “imaging / imaging”, and the past first instruction information is “imaging”.
  • the information generation unit 103 sets the third instruction information to “imaging”.
  • the signal generation unit 104 generates an effective imaging synchronization signal.
  • each instruction information is the same as each instruction information at timing t103.
  • the signal generation unit 104 generates an effective imaging synchronization signal.
  • the first instruction information changes to “stop”.
  • the current first instruction information and the second instruction information are “stop / imaging”, and the past first instruction information is “imaging”.
  • the moving capsule endoscope 10 may have finished moving.
  • the information generation unit 103 sets the third instruction information to “stop”.
  • the imaging synchronization signal is invalid. As a result, useless imaging is suppressed.
  • each instruction information is the same as each instruction information at timing t105.
  • the imaging synchronization signal is invalid.
  • the current first instruction information and second instruction information are “imaging / imaging”.
  • the third instruction information is “imaging”.
  • the signal generation unit 104 generates an effective imaging synchronization signal.
  • the second instruction information changes to “stop”.
  • the current first instruction information and the second instruction information are “imaging / stop”, and the past first instruction information is “imaging”.
  • the capsule endoscope 10 may stop with respect to the human body and the human body may be moving.
  • the information generation unit 103 sets the third instruction information to “stop”.
  • the imaging synchronization signal is invalid. As a result, useless imaging is suppressed.
  • each instruction information is the same as each instruction information at timing t110.
  • the imaging synchronization signal is invalid.
  • the third instruction information is set to “Imaging”, thereby preventing the subject from being missed.
  • the third instruction information is set to “stop”, thereby suppressing unnecessary imaging. Is done. As a result, the power consumption of the capsule endoscope 10 is reduced.
  • the information generation unit 103 In the second operation, the information generation unit 103 generates third instruction information based on the current first instruction information, the current second instruction information, and the past second instruction information.
  • FIG. 4 shows state information in the second operation. In FIG. 4, the state information is shown as a table. The current state of the first instruction information and the second instruction information, the state of the past second instruction information, and the state of the third instruction information are associated with each other. Each instruction information indicates one of two values. The two values are “imaging” and “stop”.
  • the states of the current first instruction information and second instruction information and the corresponding third instruction information are described in the same line.
  • the state of the past second instruction information and the corresponding third instruction information are described in the same column. For example, when the current first instruction information and the second instruction information are “stop / imaging” and the past second instruction information is “stop”, the third information generated by the information generation unit 103 is used.
  • the instruction information is “stop”.
  • the third instruction information is set to “stop”.
  • the current first instruction information is “stop” and the current second instruction information is “imaging”, there is a possibility that a large movement is detected from the image before the capsule endoscope 10 stops. There is.
  • the current first instruction information is “imaging”
  • the current second instruction information is “stop”
  • the past second instruction information is “stop”
  • the capsule endoscope 10 may stop with respect to the human body and the human body may be moving.
  • the third instruction information is set to “imaging” in order to confirm whether or not the capsule endoscope 10 is moving by an image.
  • the current first instruction information is “imaging”
  • the current second instruction information is “stop”
  • the past second instruction information is “imaging”
  • the moving capsule endoscope 10 may have finished moving.
  • the movement detected by the sensor 100 is large.
  • the capsule endoscope 10 may stop with respect to the human body and the human body may be moving. Accordingly, the third instruction information is set to “stop” in order to suppress useless imaging.
  • both the motion detected by the sensor 100 and the motion detected from the image are large. That is, there is a high possibility that the capsule endoscope 10 is moving.
  • the third instruction information is set to “imaging”.
  • the third instruction information indicates a relatively low imaging frequency (“stop”). )). If the current first instruction information indicates a relatively low imaging frequency (“stop”) and the current second instruction information indicates a relatively high imaging frequency (“imaging”), the third instruction The information indicates a relatively low imaging frequency (“stop”). If the current first instruction information indicates a relatively high imaging frequency (“imaging”) and the current second instruction information indicates a relatively low imaging frequency (“stop”), the third instruction The information is based on the past second instruction information.
  • the current first instruction information indicates a relatively high imaging frequency (“imaging”)
  • the current second instruction information indicates a relatively low imaging frequency (“stop”)
  • the past second When the instruction information indicates a relatively low imaging frequency (“stop”), the third instruction information indicates a relatively high imaging frequency (“imaging”).
  • the current first instruction information indicates a relatively high imaging frequency (“imaging”)
  • the current second instruction information indicates a relatively low imaging frequency (“stop”)
  • the past second When the instruction information indicates a relatively high imaging frequency (“imaging”), the third instruction information indicates a relatively low imaging frequency (“stop”).
  • the third instruction information indicates a relatively high imaging frequency (“imaging”).
  • FIG. 5 shows a second operation of the capsule endoscope 10.
  • FIG. 5 shows the state of the first instruction information, the state of the second instruction information, the state of the third instruction information, and the waveform of the imaging synchronization signal.
  • the vertical direction in FIG. 5 indicates the voltage. Time advances to the right in FIG.
  • the first instruction information, the second instruction information, and the third instruction information are “stopped”, and the imaging synchronization signal is invalid.
  • the first instruction information changes to “imaging”.
  • the current first instruction information and the second instruction information are “imaging / stop”, and the past second instruction information is “stop”.
  • the information generation unit 103 sets the third instruction information to “imaging”.
  • the signal generation unit 104 generates an effective imaging synchronization signal. Thereby, the missed shooting of the subject is suppressed.
  • the second instruction information changes to “imaging”.
  • the current first instruction information and the second instruction information are “imaging / imaging”, and the past second instruction information is “stop”.
  • the information generation unit 103 sets the third instruction information to “imaging”.
  • the signal generation unit 104 generates an effective imaging synchronization signal.
  • each instruction information is the same as each instruction information at timing t203.
  • the signal generation unit 104 generates an effective imaging synchronization signal.
  • the first instruction information changes to “stop”.
  • the current first instruction information and the second instruction information are “stop / imaging”, and the past second instruction information is “imaging”.
  • the moving capsule endoscope 10 may have finished moving.
  • the information generation unit 103 sets the third instruction information to “stop”.
  • the imaging synchronization signal is invalid. As a result, useless imaging is suppressed.
  • each instruction information is the same as each instruction information at timing t205.
  • the imaging synchronization signal is invalid.
  • the current first instruction information and second instruction information are “imaging / imaging”.
  • the third instruction information is “imaging”.
  • the signal generation unit 104 generates an effective imaging synchronization signal.
  • the second instruction information changes to “stop”.
  • the current first instruction information and second instruction information are “imaging / stop”, and the past second instruction information is “imaging”.
  • the capsule endoscope 10 may stop with respect to the human body and the human body may be moving.
  • the information generation unit 103 sets the third instruction information to “stop”.
  • the imaging synchronization signal is invalid. As a result, useless imaging is suppressed.
  • the current first instruction information and second instruction information are “imaging / stop”, and the past second instruction information is “stop”.
  • the capsule endoscope 10 may stop with respect to the human body and the human body may be moving.
  • the information generation unit 103 sets the third instruction information to “imaging”.
  • the signal generation unit 104 generates an effective imaging synchronization signal. For this reason, imaging is performed by the imaging unit 105 and an image is acquired. Based on this image, the second analysis unit 102 can confirm whether or not the capsule endoscope 10 is moving with respect to the human body.
  • the third instruction information is set to “stop”, so that useless imaging is suppressed. As a result, the power consumption of the capsule endoscope 10 is reduced.
  • the third instruction information is set to “imaging”, so that the capsule endoscope 10 An image for confirming whether or not is moving with respect to the human body is acquired.
  • the third instruction information at the timing t111 and the timing t211 is different between the first operation shown in FIG. 4 and the second operation shown in FIG. In the second operation, suppression of missed imaging of the subject has priority over suppression of useless imaging.
  • the information generating unit 103 In the third operation, the information generating unit 103 generates the third instruction information based on the current first instruction information, the current second instruction information, and the past third instruction information.
  • FIG. 6 shows state information in the third operation. In FIG. 6, the state information is shown as a table. The state of the current first instruction information and the second instruction information, the state of the past third instruction information, and the state of the updated third instruction information are associated with each other. Each instruction information indicates one of two values. The two values are “imaging” and “stop”.
  • the states of the current first instruction information and second instruction information and the corresponding third instruction information are described in the same line.
  • the state of the past third instruction information and the corresponding updated third instruction information are described in the same column. For example, when the current first instruction information and the second instruction information are “stop / imaging” and the past third instruction information is “stop”, the third information generated by the information generation unit 103 is used.
  • the instruction information is “stop”.
  • the third instruction information is set to “stop”.
  • the current first instruction information is “stop” and the current second instruction information is “imaging”, there is a possibility that a large movement is detected from the image before the capsule endoscope 10 stops. There is.
  • the updated third instruction information differs according to the past third instruction information.
  • the capsule endoscope 10 may stop with respect to the human body and the human body may be moving.
  • the third instruction information is set to “imaging” in order to confirm whether or not the capsule endoscope 10 is moving by an image.
  • the capsule endoscope 10 may stop with respect to the human body and the human body may be moving. Accordingly, the third instruction information is set to “stop” in order to suppress useless imaging.
  • both the motion detected by the sensor 100 and the motion detected from the image are large. That is, there is a high possibility that the capsule endoscope 10 is moving.
  • the third instruction information is set to “imaging”.
  • the third instruction information indicates a relatively low imaging frequency (“stop”). )). If the current first instruction information indicates a relatively low imaging frequency (“stop”) and the current second instruction information indicates a relatively high imaging frequency (“imaging”), the third instruction The information indicates a relatively low imaging frequency (“stop”). If the current first instruction information indicates a relatively high imaging frequency (“imaging”) and the current second instruction information indicates a relatively low imaging frequency (“stop”), the third instruction The information is based on past third instruction information.
  • the current first instruction information indicates a relatively high imaging frequency (“imaging”)
  • the current second instruction information indicates a relatively low imaging frequency (“stop”)
  • the past third When the instruction information indicates a relatively low imaging frequency (“stop”), the updated third instruction information indicates a relatively high imaging frequency (“imaging”).
  • the current first instruction information indicates a relatively high imaging frequency (“imaging”)
  • the current second instruction information indicates a relatively low imaging frequency (“stop”)
  • the past third When the instruction information indicates a relatively high imaging frequency (“imaging”), the updated third instruction information indicates a relatively low imaging frequency (“stop”).
  • the third instruction information indicates a relatively high imaging frequency (“imaging”).
  • the third operation will be described with reference to FIG.
  • the first instruction information, the second instruction information, and the third instruction information are “stopped”, and the imaging synchronization signal is invalid.
  • the first instruction information changes to “imaging”.
  • the current first instruction information and the second instruction information are “imaging / stop”, and the past third instruction information is “stop”.
  • the information generation unit 103 sets the third instruction information to “imaging”.
  • the signal generation unit 104 generates an effective imaging synchronization signal. Thereby, the missed shooting of the subject is suppressed.
  • the second instruction information changes to “imaging”.
  • the current first instruction information and the second instruction information are “imaging / imaging”, and the past third instruction information is “imaging”.
  • the information generation unit 103 sets the third instruction information to “imaging”.
  • the signal generation unit 104 generates an effective imaging synchronization signal.
  • each instruction information is the same as each instruction information at timing t203.
  • the signal generation unit 104 generates an effective imaging synchronization signal.
  • the first instruction information changes to “stop”.
  • the current first instruction information and the second instruction information are “stop / imaging”, and the past third instruction information is “imaging”.
  • the moving capsule endoscope 10 may have finished moving.
  • the information generation unit 103 sets the third instruction information to “stop”.
  • the imaging synchronization signal is invalid. As a result, useless imaging is suppressed.
  • the information generation unit 103 sets the third instruction information to “stop”.
  • the imaging synchronization signal is invalid.
  • the first instruction information changes to “imaging”.
  • the current first instruction information and the second instruction information are “imaging / imaging”, and the past third instruction information is “stop”. For this reason, the information generation unit 103 sets the third instruction information to “imaging”.
  • the signal generation unit 104 generates an effective imaging synchronization signal.
  • the current first instruction information and second instruction information are “imaging / imaging”, and the past third instruction information is “imaging”.
  • the updated third instruction information is “imaging”.
  • the signal generation unit 104 generates an effective imaging synchronization signal.
  • the second instruction information changes to “stop”.
  • the current first instruction information and second instruction information are “imaging / stop”, and the past third instruction information is “imaging”.
  • the capsule endoscope 10 may stop with respect to the human body and the human body may be moving.
  • the information generation unit 103 sets the third instruction information to “stop”.
  • the imaging synchronization signal is invalid. As a result, useless imaging is suppressed.
  • the current first instruction information and second instruction information are “imaging / stop”, and the past third instruction information is “stop”.
  • the capsule endoscope 10 may stop with respect to the human body and the human body may be moving.
  • the information generation unit 103 sets the third instruction information to “imaging”.
  • the signal generation unit 104 generates an effective imaging synchronization signal. For this reason, imaging is performed by the imaging unit 105 and an image is acquired. Based on this image, the second analysis unit 102 can confirm whether or not the capsule endoscope 10 is moving with respect to the human body.
  • the third instruction information is By setting “stop”, useless imaging is suppressed. As a result, the power consumption of the capsule endoscope 10 is reduced.
  • the third instruction information is set to “imaging”.
  • the information generation unit 103 is based on the current first instruction information, the current second instruction information, the past first instruction information, and the past second instruction information.
  • Third instruction information is generated.
  • FIG. 7 shows state information in the fourth operation.
  • the state information is shown as a table.
  • the current first instruction information and second instruction information states, the past first instruction information and second instruction information states, and the third instruction information state are associated with each other.
  • Each instruction information indicates one of two values. The two values are “imaging” and “stop”.
  • the states of the current first instruction information and second instruction information and the corresponding third instruction information are described in the same line.
  • the state of the first instruction information and the second instruction information in the past and the corresponding third instruction information are described in the same column. For example, when the current first instruction information and the second instruction information are “stop / imaging” and the past first instruction information and the second instruction information are “stop / imaging”, information generation is performed.
  • the third instruction information generated by the unit 103 is “stop”.
  • the state of the third instruction information in the columns C11 and C12 of the table shown in FIG. 7 is the same as the state in the case where the past first instruction information is “stop” in the table shown in FIG.
  • the state of the third instruction information in column C13 of the table shown in FIG. 7 is the same as the state when the past first instruction information is “imaging” in the table shown in FIG.
  • the state of the third instruction information in column C14 of the table shown in FIG. 7 is the same as that in the table shown in FIG. 2 except when the current first instruction information and second instruction information are “stop / image pickup”. This is the same as when the first instruction information in the past is “imaging”.
  • the sensor 100 Detected by the sensor 100 when the current first instruction information and second instruction information are “stop / imaging” and the past first instruction information and second instruction information are “imaging / imaging”. Motion is greatly reduced and motion detected from the image is large. In this case, the moving capsule endoscope 10 may have finished moving. However, the third instruction information is set to “imaging” in order to confirm whether or not the capsule endoscope 10 is moving by an image.
  • the third instruction information indicates a relatively low imaging frequency (“stop”). )). If the current first instruction information indicates a relatively low imaging frequency (“stop”) and the current second instruction information indicates a relatively high imaging frequency (“imaging”), the third instruction The information is based on past first instruction information and second instruction information. When the current first instruction information indicates a relatively low imaging frequency (“stop”) and the current second instruction information indicates a relatively high imaging frequency (“imaging”), the past first Only when the instruction information and the second instruction information indicate a relatively high imaging frequency (“imaging”), the third instruction information indicates a relatively high imaging frequency (“imaging”).
  • the third instruction is based on past first instruction information.
  • the current first instruction information indicates a relatively high imaging frequency (“imaging”)
  • the current second instruction information indicates a relatively low imaging frequency (“stop”)
  • the past first When the instruction information indicates a relatively low imaging frequency (“stop”), the third instruction information indicates a relatively high imaging frequency (“imaging”).
  • the current first instruction information indicates a relatively high imaging frequency (“imaging”)
  • the current second instruction information indicates a relatively low imaging frequency (“stop”)
  • the past first When the instruction information indicates a relatively high imaging frequency (“imaging”), the third instruction information indicates a relatively low imaging frequency (“stop”).
  • the third instruction information indicates a relatively high imaging frequency (“imaging”).
  • the third instruction information indicates a relatively high imaging frequency (“imaging”).
  • the information generation unit 103 generates third instruction information based on the state information.
  • the state information In the state information, the first instruction information and the second instruction information at the first time point, the first instruction information and the second instruction information at the second time point, and the third instruction information are associated with each other. Yes.
  • the number of third instruction information whose imaging frequency is relatively low is larger than the number of third instruction information whose imaging frequency is relatively high.
  • the state of the third instruction information whose imaging frequency is relatively low is “stop”.
  • the state of the third instruction information in which the imaging frequency is relatively high is “imaging”.
  • the number in which the third instruction information is “stop” is nine.
  • the number in which the third instruction information is “imaging” is seven.
  • FIG. 8 shows a fourth operation of the capsule endoscope 10.
  • the state of the first instruction information, the state of the second instruction information, the state of the third instruction information, and the waveform of the imaging synchronization signal are shown.
  • the vertical direction in FIG. Time advances to the right in FIG.
  • the operation related to the timing t304 from the timing t301 is the same as the operation related to the timing t104 from the timing t101 in the first operation shown in FIG.
  • the first instruction information changes to “stop”.
  • the current first instruction information and second instruction information are “stop / imaging”, and the past first instruction information and second instruction information are “imaging / imaging”.
  • the moving capsule endoscope 10 may have finished moving.
  • the information generation unit 103 sets the third instruction information to “imaging”.
  • the signal generation unit 104 generates an effective imaging synchronization signal. For this reason, imaging is performed by the imaging unit 105 and an image is acquired.
  • the second analysis unit 102 can confirm whether or not the capsule endoscope 10 is moving based on this image.
  • the information generation unit 103 sets the third instruction information to “stop”.
  • the imaging synchronization signal is invalid. As a result, useless imaging is suppressed.
  • the operation related to the timing t311 from the timing t307 is the same as the operation related to the timing t111 from the timing t107 in the first operation shown in FIG.
  • the third instruction information is set to “Imaging”, thereby preventing the subject from being missed.
  • the third instruction information is set to “stop”, thereby suppressing unnecessary imaging. Is done. As a result, the power consumption of the capsule endoscope 10 is reduced.
  • the third instruction information is set to “imaging”. An image for confirming whether the capsule endoscope 10 is moving is acquired.
  • the imaging frequency is often relatively low. Thereby, useless imaging is easily suppressed.
  • the information generation unit 103 maintains the third instruction information regardless of the first instruction information until the second instruction information is generated.
  • the second analysis unit 102 updates the second instruction information based on the image output from the imaging unit 105. For example, the information generation unit 103 updates the third instruction information at the first time interval. After the imaging unit 105 performs imaging, the second analysis unit 102 updates the second instruction information before the update timing of the third instruction information occurs. However, a delay in image processing by the second analysis unit 102 occurs. In this case, the second instruction information may not be updated before the update timing of the third instruction information occurs. For this reason, the information generation unit 103 maintains the third instruction information regardless of the first instruction information until the second instruction information is updated.
  • the information generation unit 103 when the second instruction information is not output from the second analysis unit 102 before a predetermined time has elapsed from the time when the image capturing unit 105 performed the image capturing, the information generation unit 103 relates to the first instruction information. First, the third instruction information is maintained. When the second instruction information is output from the second analysis unit 102 before a predetermined time has elapsed from the time when the imaging unit 105 performed imaging, the information generation unit 103 performs the third instruction based on the state information. Generate instruction information. The predetermined time is based on an interval at which the information generation unit 103 updates the third instruction information.
  • FIG. 9 shows a fifth operation of the capsule endoscope 10.
  • FIG. 9 shows the state of the first instruction information, the state of the second instruction information, the state of the third instruction information, and the waveform of the imaging synchronization signal.
  • the vertical direction in FIG. 9 indicates the voltage. Time advances to the right in FIG. The case where the state information in the fifth operation is the same as the state information in the fourth operation will be described.
  • the first instruction information, the second instruction information, and the third instruction information are “stopped”, and the imaging synchronization signal is invalid.
  • the first instruction information changes to “imaging”.
  • the current first instruction information and second instruction information are “imaging / stop”, and the past first instruction information and second instruction information are “stop / stop”.
  • the information generation unit 103 sets the third instruction information to “imaging”.
  • the signal generation unit 104 generates an effective imaging synchronization signal.
  • the imaging unit 105 When the imaging synchronization signal becomes effective at timing t402, the imaging unit 105 performs imaging. Since the second instruction information is not updated before the update timing of the third instruction information occurs, the information generation unit 103 maintains the third instruction information. That is, the information generation unit 103 sets the third instruction information to “imaging”. At timing t403, the signal generation unit 104 generates an effective imaging synchronization signal.
  • the imaging unit 105 When the imaging synchronization signal becomes effective at timing t403, the imaging unit 105 performs imaging.
  • the second instruction information is updated before the update timing of the third instruction information occurs.
  • the information generation unit 103 generates third instruction information based on the state information.
  • the current first instruction information and second instruction information are “imaging / imaging”, and the past first instruction information and second instruction information are “imaging”. / Stop ".
  • the information generation unit 103 sets the third instruction information to “imaging”.
  • the signal generation unit 104 At timing t404, the signal generation unit 104 generates an effective imaging synchronization signal.
  • the imaging unit 105 When the imaging synchronization signal becomes valid at timing t404, the imaging unit 105 performs imaging. Since the second instruction information is not updated before the update timing of the third instruction information occurs, the information generation unit 103 maintains the third instruction information. That is, the information generation unit 103 sets the third instruction information to “imaging”. At timing t405, the signal generation unit 104 generates an effective imaging synchronization signal.
  • the imaging unit 105 When the imaging synchronization signal becomes valid at timing t405, the imaging unit 105 performs imaging.
  • the second instruction information is updated before the update timing of the third instruction information occurs.
  • the information generation unit 103 generates third instruction information based on the state information.
  • the current first instruction information and the second instruction information are “imaging / stop”, and the past first instruction information and the second instruction information are “imaging”. / Imaging ".
  • the information generation unit 103 sets the third instruction information to “stop”.
  • the imaging synchronization signal is invalid.
  • the information generation unit 103 sets the third instruction information to “stop”.
  • the imaging synchronization signal is invalid.
  • the first instruction information changes to “stop”.
  • the current first instruction information and second instruction information are “stop / stop”, and the past first instruction information and second instruction information are “imaging / stop”.
  • the information generation unit 103 sets the third instruction information to “stop”.
  • the imaging synchronization signal is invalid.
  • the capsule endoscope 10 can maintain the previous control result until the second instruction information is updated.
  • FIG. 10 shows state information in the sixth operation.
  • the state information is shown as a table.
  • the current first instruction information and second instruction information states, the past first instruction information and second instruction information states, and the third instruction information state are associated with each other.
  • Each instruction information indicates one of two values. The two values are “imaging” and “stop”.
  • the states of the current first instruction information and second instruction information and the corresponding third instruction information are described in the same line.
  • the state of the first instruction information and the second instruction information in the past and the corresponding third instruction information are described in the same column. For example, when the current first instruction information and the second instruction information are “stop / imaging” and the past first instruction information and the second instruction information are “stop / imaging”, information generation is performed.
  • the third instruction information generated by the unit 103 is “imaging”.
  • the states of the third instruction information in column C21 and column C22 of the table shown in FIG. 10 are the same as those in FIG. 2 except when the current first instruction information and second instruction information are “stop / imaging”. In the table shown, this is the same as the state in the case where the past first instruction information is “stop”.
  • the state of the third instruction information in column C23 of the table shown in FIG. 10 is the same as that in the table shown in FIG. 4 except when the current first instruction information and second instruction information are “stop / image pickup”. This is the same as when the past second instruction information is “stopped”.
  • the state of the third instruction information in column C24 of the table shown in FIG. 10 is the same as that in the table shown in FIG. 4 except when the current first instruction information and second instruction information are “stop / image pickup”. This is the same as when the second instruction information in the past is “imaging”.
  • the capsule endoscope 10 may be stopped.
  • the third instruction information is set to “imaging” in order to confirm whether or not the capsule endoscope 10 is moving by an image.
  • the third instruction information indicates a relatively low imaging frequency (“stop”). )). If the current first instruction information indicates a relatively low imaging frequency (“stop”) and the current second instruction information indicates a relatively high imaging frequency (“imaging”), the third instruction The information indicates a relatively high imaging frequency (“imaging”). If the current first instruction information indicates a relatively high imaging frequency (“imaging”) and the current second instruction information indicates a relatively low imaging frequency (“stop”), the third instruction The information is based on past first instruction information and second instruction information.
  • the third instruction information indicates a relatively low imaging frequency (“stop”).
  • the third instruction information indicates a relatively high imaging frequency (“imaging”).
  • the information generation unit 103 generates third instruction information based on the state information.
  • the state information In the state information, the first instruction information and the second instruction information at the first time point, the first instruction information and the second instruction information at the second time point, and the third instruction information are associated with each other. Yes.
  • the number of third instruction information whose imaging frequency is relatively high is larger than the number of third instruction information whose imaging frequency is relatively low.
  • the state of the third instruction information in which the imaging frequency is relatively high is “imaging”.
  • the state of the third instruction information whose imaging frequency is relatively low is “stop”.
  • the number in which the third instruction information is “imaging” is eleven.
  • the number in which the third instruction information is “stop” is five.
  • FIG. 11 shows a sixth operation of the capsule endoscope 10.
  • the state of the first instruction information, the state of the second instruction information, the state of the third instruction information, and the waveform of the imaging synchronization signal are shown.
  • the vertical direction in FIG. 11 indicates the voltage. Time advances to the right in FIG.
  • the first instruction information, the second instruction information, and the third instruction information are “stopped”, and the imaging synchronization signal is invalid.
  • the first instruction information changes to “imaging”.
  • the current first instruction information and second instruction information are “imaging / stop”, and the past first instruction information and second instruction information are “stop / stop”.
  • the information generation unit 103 sets the third instruction information to “imaging”.
  • the signal generation unit 104 generates an effective imaging synchronization signal. Thereby, the missed shooting of the subject is suppressed.
  • the second instruction information changes to “imaging”.
  • the current first instruction information and second instruction information are “imaging / imaging”, and the past first instruction information and second instruction information are “imaging / stop”.
  • the information generation unit 103 sets the third instruction information to “imaging”.
  • the signal generation unit 104 generates an effective imaging synchronization signal.
  • the information generation unit 103 sets the third instruction information to “imaging”.
  • the signal generation unit 104 generates an effective imaging synchronization signal.
  • each instruction information is the same as each instruction information at timing t504.
  • the signal generation unit 104 generates an effective imaging synchronization signal.
  • the first instruction information changes to “stop”.
  • the current first instruction information and second instruction information are “stop / imaging”, and the past first instruction information and second instruction information are “imaging / imaging”.
  • the information generation unit 103 sets the third instruction information to “imaging”.
  • the signal generation unit 104 generates an effective imaging synchronization signal.
  • the motion detected by the sensor 100 is small, but the motion detected from the image is large. For this reason, imaging continues. Imaging is performed by the imaging unit 105 and an image is acquired. Based on this image, the second analysis unit 102 can confirm whether or not the capsule endoscope 10 is moving with respect to the human body.
  • the second instruction information changes to “stop”.
  • the current first instruction information and second instruction information are “stop / stop”, and the past first instruction information and second instruction information are “stop / imaging”.
  • the information generation unit 103 sets the third instruction information to “stop”.
  • the imaging synchronization signal is invalid. It is detected that the capsule endoscope 10 is surely stopped by reducing the motion detected from the image.
  • the information generation unit 103 sets the third instruction information to “stop”.
  • the imaging synchronization signal is invalid.
  • the imaging frequency is often relatively high. Thereby, it is easy to suppress missing of the subject.
  • the information generation unit 103 generates third instruction information based on the first instruction information and the second instruction information, and the signal generation unit 104 The imaging synchronization signal is generated based on the instruction information 3. Accordingly, the capsule endoscope 10 can determine the imaging timing with high accuracy based on the data acquired by the two sensors included in the capsule endoscope 10, that is, the sensor 100 and the imaging unit 105.
  • FIG. 12 shows the configuration of the capsule endoscope 11 according to the first modification of the first embodiment of the present invention.
  • the configuration shown in FIG. 12 will be described while referring to differences from the configuration shown in FIG.
  • the signal generation unit 104 has a counter 107.
  • the count value of the counter 107 increases or decreases from the reference value.
  • a count value is calculated based on the third instruction information.
  • the imaging synchronization signal is generated, the count value becomes the reference value.
  • the signal generation unit 104 performs imaging synchronization Generate a signal.
  • the counter 107 is provided inside the signal generation unit 104.
  • the counter 107 may be independent from the signal generation unit 104.
  • the counter 107 performs counting based on the third instruction information.
  • the counter 107 can perform at least one of up-counting and down-counting.
  • the count value of the counter 107 is set to a reference value when the count is started.
  • the count value is increased or decreased from the reference value by counting.
  • the count value is set again to the reference value.
  • the reference value is not always a constant value.
  • Counting by the counter 107 is performed at the first time interval. That is, the count value increases or decreases in synchronization with the generation of the first instruction information by the first analysis unit 101.
  • the operation of the counter 107 may not be synchronized with the generation of the first instruction information by the first analysis unit 101.
  • the reference value may include a first reference value and a second reference value.
  • the second reference value is the same as or different from the first reference value.
  • the count value is The second reference value is smaller than the predetermined value.
  • the count value is The second reference value is larger than the predetermined value.
  • FIG. 13 shows state information in a modification of the first embodiment.
  • the state information is shown as a table.
  • the current first instruction information and second instruction information states, the past first instruction information and second instruction information states, and the third instruction information state are associated with each other.
  • the first instruction information and the third instruction information indicate any one of three values.
  • Three values that can be indicated by the first instruction information and the third instruction information are “H”, “M”, and “L”. “H” corresponds to the case where the movement of the capsule endoscope 11 is large. “M” corresponds to the case where the movement of the capsule endoscope 11 is intermediate. “L” corresponds to the case where the movement of the capsule endoscope 11 is small.
  • the second instruction information indicates one of two values.
  • Two values that can be indicated by the second instruction information are “H” and “M”. “H” corresponds to the case where the movement of the capsule endoscope 11 is large. “M” corresponds to a case where the movement of the capsule endoscope 11 is small or the movement of the capsule endoscope 11 is intermediate. Similar to the first instruction information and the third instruction information, the second instruction information may indicate any one of three values.
  • the states of the current first instruction information and second instruction information and the corresponding third instruction information are described in the same line.
  • the state of the past second instruction information and the corresponding third instruction information are described in the same column. For example, when the current first instruction information and the second instruction information are “L / H” and the past first instruction information and the second instruction information are “L / H”, information generation is performed.
  • the third instruction information generated by the unit 103 is “L”.
  • the third instruction information is set to “L”.
  • the motion detected by the sensor 100 is small. That is, there is a high possibility that the capsule endoscope 11 is stopped.
  • the third instruction information is set to “M”.
  • the third instruction information is set to “H” except in some cases. Detected by the sensor 100 when the current first instruction information and second instruction information are “H / M” and the past first instruction information and second instruction information are “H / H”. The motion that is performed is large and the motion that is detected from the image is reduced. In this case, the capsule endoscope 11 may stop with respect to the human body and the human body may be moving. Therefore, the third instruction information is set to “M” in order to suppress useless imaging. If the current first instruction information and second instruction information are “H / M” and the past first instruction information and second instruction information are “H / M”, the third instruction The information is maintained at the previously set value.
  • FIG. 14 shows the operation of the capsule endoscope 11.
  • FIG. 14 shows the state of the third instruction information, the count value, and the waveform of the imaging synchronization signal.
  • the vertical direction of FIG. 14 indicates the voltage. Time advances to the right in FIG. In FIG. 14, the first instruction information and the second instruction information are omitted.
  • the count value increases from the reference value.
  • the signal generation unit 104 When the count value becomes equal to or greater than the first predetermined value, the signal generation unit 104 generates an imaging synchronization signal.
  • the count value increases in synchronization with the generation of the third instruction information by the information generation unit 103.
  • a value corresponding to the third instruction information is added to the count value.
  • the reference value is a second predetermined value that is different from the first predetermined value.
  • the counter 107 generates a count value by counting a value corresponding to the third instruction information.
  • the counter 107 generates a count value every first time T1.
  • the third instruction information is “H”, 3 is added to the count value.
  • the third instruction information is “M”, 1 is added to the count value.
  • the third instruction information is “L”, 0 is added to the count value.
  • the count value becomes equal to or greater than the first predetermined value, the count value is changed to the reference value.
  • the reference value is 0.
  • the first predetermined value is 3.
  • the cycle in which the signal generator 104 refers to the count value is constant.
  • the signal generation unit 104 refers to the count value at the interval of the first time T1.
  • the signal generation unit 104 generates an imaging synchronization signal based on the count value.
  • the signal generation unit 104 When the count value is greater than or equal to the first predetermined value, the signal generation unit 104 generates an imaging synchronization signal.
  • the third instruction information is “L”.
  • 0 is added to the count value.
  • the count value is zero.
  • the count value is less than 3, which is the first predetermined value. For this reason, the imaging synchronization signal is invalid at timing t601.
  • the third instruction information is “M”.
  • 1 is added to the count value, whereby the count value is changed to 1.
  • the count value is less than 3, which is the first predetermined value. For this reason, the imaging synchronization signal is invalid at the timing t602.
  • the third instruction information is “L”.
  • 0 is added to the count value.
  • the count value is 1.
  • the count value is less than 3, which is the first predetermined value. For this reason, the imaging synchronization signal is invalid at the timing t603.
  • the third instruction information is “H”.
  • 3 is added to the count value, whereby the count value is changed to 4.
  • the count value is 3 or more which is the first predetermined value.
  • the signal generation unit 104 generates an effective imaging synchronization signal.
  • the count value is changed to 0, which is a reference value.
  • the third instruction information is “M”.
  • 1 is added to the count value.
  • the count value is changed to 1 at timing t605, and the count value is changed to 2 at timing t606.
  • the count value is less than 3, which is the first predetermined value. For this reason, the imaging synchronization signal is invalid at timing t605 and timing t606.
  • the third instruction information is “L”.
  • 0 is added to the count value.
  • the count value is 2.
  • the count value is less than 3, which is the first predetermined value. For this reason, the imaging synchronization signal is invalid at timing t607, timing t608, and timing t609.
  • the third instruction information is “M”.
  • 1 is added to the count value, whereby the count value is changed to 3.
  • the count value is 3 or more which is the first predetermined value.
  • the signal generation unit 104 generates an effective imaging synchronization signal.
  • the count value is changed to 0, which is a reference value.
  • the imaging synchronization signal is valid at timing t612 and timing t613.
  • the imaging synchronization signal is invalid at timing t611, timing t614, timing t615, and timing t616.
  • the value added to the count value according to each state of the third instruction information is not limited to the above value.
  • the reference value and the predetermined value are not limited to the above values.
  • a value corresponding to the third instruction information may be subtracted from the count value.
  • the signal generation unit 104 when the count value becomes equal to or smaller than the first predetermined value, the signal generation unit 104 generates an imaging synchronization signal.
  • the method for generating the imaging synchronization signal from the third instruction information is not limited to the above method.
  • at least one of the first instruction information and the second instruction information may indicate any one of three or more values.
  • the third instruction information may indicate any one of three or more values.
  • FIG. 15 shows the configuration of the capsule endoscope system 1 according to the second embodiment of the present invention.
  • the capsule endoscope system 1 includes a capsule endoscope 12 and a wireless communication device 20.
  • the capsule endoscope 12 does not have the second analysis unit 102.
  • the capsule endoscope 12 includes a first communication unit 108 that performs wireless communication with the wireless communication device 20.
  • the first communication unit 108 is a wireless communication circuit (wireless communication device).
  • the first communication unit 108 transmits an image that is second data to the wireless communication device 20.
  • the first communication unit 108 receives the second instruction information from the wireless communication device 20.
  • the first communication unit 108 outputs the second instruction information to the information generation unit 103.
  • the configuration of the capsule endoscope 12 is the same as the configuration of the capsule endoscope 10.
  • the wireless communication device 20 includes a second communication unit 200 and a second analysis unit 201.
  • the second communication unit 200 is a wireless communication circuit (wireless communication device).
  • the second communication unit 200 performs wireless communication with the capsule endoscope 12.
  • the second communication unit 200 receives an image that is second data from the capsule endoscope 12.
  • the second communication unit 200 outputs the image to the second analysis unit 201.
  • the second communication unit 200 transmits the second instruction information to the capsule endoscope 12.
  • the second analysis unit 201 (second analyzer) is composed of one or a plurality of processors.
  • the second analysis unit 201 performs the same processing as the second analysis unit 102 in the first embodiment.
  • the second analysis unit 201 analyzes the second data and generates second instruction information indicating the analysis result.
  • the second analysis unit 201 outputs the second instruction information to the second communication unit 200.
  • the operations of the information generation unit 103 and the signal generation unit 104 are the same as the operations in the first embodiment.
  • the capsule endoscope 12 may include a counter 107 illustrated in FIG.
  • the information generation unit 103 generates third instruction information based on the first instruction information and the second instruction information, and the signal generation unit 104 The imaging synchronization signal is generated based on the instruction information 3.
  • the capsule endoscope 12 can determine the imaging timing with high accuracy based on the data acquired by the two sensors included in the capsule endoscope 12, that is, the sensor 100 and the imaging unit 105.
  • FIG. 16 shows a configuration of a capsule endoscope system 2 according to a modification of the second embodiment of the present invention.
  • the capsule endoscope system 2 includes a capsule endoscope 13 and a wireless communication device 21.
  • the capsule endoscope 13 does not have the first analysis unit 101.
  • the capsule endoscope 13 includes a first communication unit 108 that performs wireless communication with the wireless communication device 21.
  • the first communication unit 108 transmits the first data to the wireless communication device 21.
  • the first communication unit 108 receives the first instruction information from the wireless communication device 21.
  • the first communication unit 108 outputs the first instruction information to the information generation unit 103.
  • the configuration of the capsule endoscope 13 is the same as the configuration of the capsule endoscope 10.
  • the wireless communication device 21 includes a first analysis unit 202 instead of the second analysis unit 201 illustrated in FIG.
  • the second communication unit 200 receives the first data from the capsule endoscope 13.
  • the second communication unit 200 outputs the first data to the first analysis unit 202.
  • the second communication unit 200 transmits the second instruction information to the capsule endoscope 13.
  • the first analysis unit 202 (first analyzer) is composed of one or a plurality of processors.
  • the first analysis unit 202 performs the same processing as the first analysis unit 101 in the first embodiment.
  • the first analysis unit 202 analyzes the first data and generates first instruction information indicating the analysis result.
  • the first analysis unit 202 outputs the first instruction information to the second communication unit 200.
  • the configuration of the wireless communication device 21 is the same as the configuration of the wireless communication device 20.
  • the operations of the information generation unit 103 and the signal generation unit 104 are the same as the operations in the first embodiment.
  • the capsule endoscope 13 may include a counter 107 illustrated in FIG.
  • the capsule endoscope 13 may not include the second analysis unit 102, and the wireless communication device 21 may further include the second analysis unit 201.
  • the first communication unit 108 transmits the first data and image to the wireless communication device 21.
  • the first communication unit 108 receives the first instruction information and the second instruction information from the wireless communication device 21.
  • the second communication unit 200 receives the first data and the image from the capsule endoscope 13.
  • the second communication unit 200 transmits the first instruction information and the second instruction information to the capsule endoscope 13.
  • the third instruction information is generated based on any one of the current first and second instruction information and at least two of the first to third instruction information in the past. Also good.
  • the state of the third instruction information corresponding to the current instruction information and the past instruction information is not limited to the example shown in each embodiment.
  • the state of the generated third instruction information can be freely changed according to an assumed operation or the like.
  • the past time point when the instruction information referred to when generating the third instruction information is generated is a time point that is a time longer than the first time from the time point when the third instruction information is scheduled to be generated. There may be.
  • the capsule endoscope can determine the imaging timing with high accuracy based on data acquired by a sensor included in the capsule endoscope.

Abstract

カプセル内視鏡は、第1のセンサと、第2のセンサと、情報生成部と、信号生成部と、撮像部とを有する。前記情報生成部は、第1の指示情報および第2の指示情報に基づいて第3の指示情報を生成する。前記第1の指示情報は、前記第1のセンサによって生成される第1のデータを解析した結果である。前記第2の指示情報は、前記第2のセンサによって生成される第2のデータを解析した結果である。前記信号生成部は、前記第3の指示情報に基づいて撮像同期信号を生成する。前記撮像部は、前記撮像同期信号に基づいて撮像を行い、かつ画像を取得する。前記情報生成部は、少なくとも3つの指示情報の組み合わせに基づいて前記第3の指示情報を生成する。

Description

カプセル内視鏡
 本発明は、カプセル内視鏡に関する。
 カプセル内視鏡が被験者の臓器内を通過しているとき、カプセル内視鏡は人体に対して相対的に移動している。この移動速度が速い場合、カプセル内視鏡は、被検体の撮り逃しを低減するために撮像のフレームレートを上げることが望ましい。また、人体に対してカプセル内視鏡が相対的に静止しているとき、カプセル内視鏡は、消費電力を低減するために撮像のフレームレートを下げることが望ましい。
 特許文献1に開示されたシステムは、カプセルの動きを検出するセンサの出力に基づいて撮像のフレームレートを決定する。このシステムは、カプセルから出力された2枚の画像の比較結果に基づいて撮像のフレームレートを決定することも可能である。カプセルの外部のブロックがフレームレートを決定し、かつ決定されたフレームレートをカプセルに指示する。
 特許文献2に開示されたシステムは、2つの加速度センサを有する。カプセル内視鏡に設けられた加速度センサは、カプセル内視鏡の加速度を検出する。受信装置に設けられた加速度センサは、カプセル内視鏡が入れられた人体の加速度を検出する。特許文献2に開示されたシステムは、2つの加速度センサの出力に基づいて、人体に対するカプセル内視鏡の相対的な動きを検出する。特許文献2に開示されたシステムにおいてカプセル内視鏡と受信装置との少なくとも1つは、検出された動きに基づいて撮像のフレームレートを決定する決定手段を有する。
米国特許第6709387号明細書 日本国特開2009-195271号公報
 カプセル内視鏡システムは、カプセル内視鏡に設けられた動きセンサの出力に基づいて撮像タイミングを決定することにより、カプセル内視鏡の動きに即座に対応することができる。しかし、人体に対してカプセル内視鏡が動かず、かつ人体が動いた場合、カプセル内視鏡システムは、カプセル内視鏡の動きを誤って検出する。このため、撮像タイミングが正確に決定されない場合がある。一方、カプセル内視鏡システムは、カプセル内視鏡で取得された2枚の画像の比較結果に基づいてカプセル内視鏡のみの動きを検出することができる。しかし、フレームレートが低い場合、2枚の画像が取得されるまでの時間が比較的長いため、カプセル内視鏡システムは、カプセル内視鏡の動きに即座に対応することが難しい。
 特許文献1に開示されたシステムでは、センサの出力の解析結果と画像の解析結果とを組み合わせて撮像タイミングを高精度に決定することが考慮されていない。特許文献2に開示されたシステムでは、人体の加速度を検出するためのセンサがカプセル内視鏡の外部に必要であるため、部品数が多い。
 本発明は、カプセル内視鏡が有するセンサで取得されたデータに基づいて撮像タイミングを高精度に決定することができるカプセル内視鏡を提供することを目的とする。
 本発明の第1の態様によれば、カプセル内視鏡は、第1のセンサと、第2のセンサと、情報生成部と、信号生成部と、撮像部とを有する。前記第1のセンサは、第1のデータを生成する。前記第2のセンサは、前記第1のデータと異なる第2のデータを生成する。前記情報生成部は、第1の指示情報および第2の指示情報に基づいて第3の指示情報を生成する。前記第1の指示情報は、前記第1のデータを解析した結果である。前記第2の指示情報は、前記第2のデータを解析した結果である。前記信号生成部は、前記第3の指示情報に基づいて撮像同期信号を生成する。前記撮像部は、前記撮像同期信号に基づいて撮像を行い、かつ画像を取得する。前記第1の指示情報の更新間隔は前記第2の指示情報の更新間隔以下である。前記情報生成部は、少なくとも3つの指示情報の組み合わせに基づいて前記第3の指示情報を生成する。前記少なくとも3つの前記指示情報は、第1の時点における前記第1の指示情報と前記第2の指示情報との少なくとも1つを含み、かつ第2の時点における前記第1の指示情報と前記第2の指示情報と前記第3の指示情報との少なくとも1つを含む。前記第2の時点は、前記第1の時点よりも前である。
 本発明の第2の態様によれば、第1の態様において、前記第2のセンサは前記撮像部であり、前記第2のデータは前記画像であってもよい。
 本発明の第3の態様によれば、第1または第2の態様において、前記情報生成部は、前記第2の指示情報の生成が行われるまで、前記第1の指示情報にかかわらず前記第3の指示情報を維持してもよい。
 本発明の第4の態様によれば、第1から第3の態様のいずれか1つにおいて、前記情報生成部は、状態情報に基づいて前記第3の指示情報を生成してもよい。前記状態情報において、前記第1の時点における前記第1の指示情報および前記第2の指示情報と、前記第2の時点における前記第1の指示情報および前記第2の指示情報と、前記第3の指示情報とが関連付けられてもよい。前記状態情報において、撮像頻度が相対的に低くなる前記第3の指示情報の数は、撮像頻度が相対的に高くなる前記第3の指示情報の数よりも多くてもよい。
 本発明の第5の態様によれば、第1から第3の態様のいずれか1つの態様において、前記情報生成部は、状態情報に基づいて前記第3の指示情報を生成してもよい。前記状態情報において、前記第1の時点における前記第1の指示情報および前記第2の指示情報と、前記第2の時点における前記第1の指示情報および前記第2の指示情報と、前記第3の指示情報とが関連付けられてもよい。前記状態情報において、撮像頻度が相対的に高くなる前記第3の指示情報の数は、撮像頻度が相対的に低くなる前記第3の指示情報の数よりも多くてもよい。
 本発明の第6の態様によれば、第1から第5の態様のいずれか1つの態様において、前記第1の指示情報と前記第2の指示情報との少なくとも1つは、3つ以上の値のいずれか1つを示してもよい。前記第3の指示情報は、3つ以上の値のいずれか1つを示してもよい。
 本発明の第7の態様によれば、第1から第6の態様のいずれか1つの態様において、前記カプセル内視鏡は、カウント値が基準値から増加または減少するカウンタをさらに有してもよい。前記第1の指示情報が更新される毎に前記第3の指示情報に基づいて前記カウント値が算出されてもよい。前記撮像同期信号が生成されたとき、前記カウント値は前記基準値になってもよい。前記カウント値が前記基準値から増加することにより前記カウント値が所定値以上になったとき、または前記カウント値が前記基準値から減少することにより前記カウント値が前記所定値以下になったとき、前記信号生成部は前記撮像同期信号を生成してもよい。
 本発明の第8の態様によれば、第1から第7の態様のいずれか1つの態様において、前記カプセル内視鏡は、無線通信装置と無線通信を行う通信部をさらに有してもよい。前記通信部は、前記第1のデータと前記第2のデータとの少なくとも1つを前記無線通信装置に送信してもよい。前記通信部は、前記第1の指示情報と前記第2の指示情報との少なくとも1つを前記無線通信装置から受信してもよい。
 上記の各態様によれば、情報生成部は、第1の指示情報および第2の指示情報に基づいて第3の指示情報を生成し、かつ信号生成部は、第3の指示情報に基づいて撮像同期信号を生成する。これによって、カプセル内視鏡は、カプセル内視鏡が有するセンサで取得されたデータに基づいて撮像タイミングを高精度に決定することができる。
本発明の第1の実施形態のカプセル内視鏡の構成を示すブロック図である。 本発明の第1の実施形態のカプセル内視鏡の第1の動作における状態情報を示す表である。 本発明の第1の実施形態のカプセル内視鏡の第1の動作を示すタイミングチャートである。 本発明の第1の実施形態のカプセル内視鏡の第2の動作における状態情報を示す表である。 本発明の第1の実施形態のカプセル内視鏡の第2の動作を示すタイミングチャートである。 本発明の第1の実施形態のカプセル内視鏡の第3の動作における状態情報を示す表である。 本発明の第1の実施形態のカプセル内視鏡の第4の動作における状態情報を示す表である。 本発明の第1の実施形態のカプセル内視鏡の第4の動作を示すタイミングチャートである。 本発明の第1の実施形態のカプセル内視鏡の第5の動作を示すタイミングチャートである。 本発明の第1の実施形態のカプセル内視鏡の第6の動作における状態情報を示す表である。 本発明の第1の実施形態のカプセル内視鏡の第6の動作を示すタイミングチャートである。 本発明の第1の実施形態の変形例のカプセル内視鏡の構成を示すブロック図である。 本発明の第1の実施形態の変形例のカプセル内視鏡における状態情報を示す表である。 本発明の第1の実施形態の変形例のカプセル内視鏡の動作を示すタイミングチャートである。 本発明の第2の実施形態のカプセル内視鏡システムの構成を示すブロック図である。 本発明の第2の実施形態の変形例のカプセル内視鏡システムの構成を示すブロック図である。
 図面を参照し、本発明の実施形態を説明する。
 (第1の実施形態)
 図1は、本発明の第1の実施形態のカプセル内視鏡10の構成を示している。図1に示すように、カプセル内視鏡10は、センサ100と、第1の解析部101と、第2の解析部102と、情報生成部103と、信号生成部104と、撮像部105とを有する。図1に示す各構成は、ハードウェアである。
 センサ100(第1のセンサ)は、第1のデータを生成する。撮像部105(第2のセンサ)は、第1のデータと異なる第2のデータを生成する。情報生成部103は、第1の指示情報および第2の指示情報に基づいて第3の指示情報を生成する。第1の指示情報は、第1のデータを解析した結果である。第2の指示情報は、第2のデータを解析した結果である。信号生成部104は、第3の指示情報に基づいて撮像同期信号を生成する。撮像部105は、撮像同期信号に基づいて撮像を行い、かつ画像を取得する。第1の指示情報の更新間隔は第2の指示情報の更新間隔以下である。情報生成部103は、少なくとも3つの指示情報の組み合わせに基づいて第3の指示情報を生成する。少なくとも3つの指示情報は、第1の時点における第1の指示情報と第2の指示情報との少なくとも1つを含み、かつ第2の時点における第1の指示情報と第2の指示情報と第3の指示情報との少なくとも1つを含む。第2の時点は、第1の時点よりも前である。
 図1に示す各構成の詳細を説明する。センサ100は、物理量を第1の時間の間隔で周期的に検出し、かつ検出された物理量を示す第1のデータを生成する。センサ100が第1のデータを生成する周期は、第1の時間と同一である。例えば、センサ100は、動きセンサである。センサ100は、カプセル内視鏡10の動きを第1の時間の間隔で周期的に検出し、かつ検出されたカプセル内視鏡10の動きを示す第1のデータを生成する。例えば、センサ100は、加速度センサ、速度センサ、磁気センサ、および角速度センサの少なくとも1つである。したがって、センサ100は、加速度、速度、角速度、および磁気の少なくとも1つのデータを取得することが可能である。センサ100は、第1のデータを第1の解析部101に出力する。
 センサ100が加速度センサである場合、第1のデータは加速度データである。加速度データは、カプセル内視鏡10の加速度の測定結果である。
 センサ100が速度センサである場合、第1のデータは速度データである。速度データは、カプセル内視鏡10の速度の測定結果である。
 速度データが示す速度を積分することによって位置データを得てもよい。複数の時刻における位置データの変化量からカプセル内視鏡10の動きを検出することが可能である。
 センサ100が磁気センサである場合、第1のデータは磁気データである。磁気データは地磁気の測定結果である。3次元方向に測定可能な磁気センサを用いることによって、カプセル内視鏡10の姿勢を検出することが可能である。したがって、複数の時刻における磁気データの変化量からカプセル内視鏡10の動きを検出することが可能である。
 センサ100が角速度センサである場合、第1のデータは角速度データである。角速度データは、カプセル内視鏡10の角速度の測定結果である。
 第1の解析部101(第1のアナライザ)は、1つまたは複数のプロセッサで構成されている。プロセッサは、CPU(Central Processing Unit)、特定用途向け集積回路(ASIC)、およびFPGA(Field-Programmable Gate Array)等を含む。第1の解析部101は、第1のデータを解析し、かつ解析結果を示す第1の指示情報を生成する。第1の解析部101は、第1の指示情報を情報生成部103に出力する。
 例えば、第1の解析部101は、第1のデータと所定の閾値とを比較する、または複数の時刻における第1のデータの変化量と所定の閾値とを比較する。第1のデータが加速度データである場合、第1の解析部101は、加速度データに基づいて速度データまたは位置データを算出してもよい。第1の指示情報は、上記の比較の結果である。
 センサ100は、カプセル内視鏡10の動きを第2の時間の間隔で周期的に検出してもよい。第2の時間は第1の時間以下である。第1の解析部101は、センサ100によって検出された動きを解析し、かつその動きに基づく第1のデータを第1の時間の間隔で周期的に生成してもよい。
 第2の解析部102(第2のアナライザ)は、1つまたは複数のプロセッサで構成されている。第2の解析部102は、第2のデータを解析し、かつ解析結果を示す第2の指示情報を生成する。第2の解析部102は、第2の指示情報を情報生成部103に出力する。カプセル内視鏡10は、2つのセンサを含む。第1のセンサは、センサ100であり、かつ第2のセンサは撮像部105である。第2のデータは、撮像部105によって取得された画像である。
 情報生成部103(情報生成回路)は、1つまたは複数のプロセッサで構成されている。情報生成部103は、2つの異なる時点における指示情報の組み合わせに基づいて第3の指示情報を生成する。例えば、情報生成部103は、第3の指示情報を第1の時間の間隔で周期的に生成する。つまり、情報生成部103は、第1の指示情報が更新される周期で第3の指示情報を生成する。以下では、第1の時点は、現在の時点である。具体的には、現在の時点は、直前に第3の指示情報が生成された時点から第1の時間が経過する前の時点である。以下では、第2の時点は、過去の時点である。具体的には、過去の時点は、直前に第3の指示情報が生成された時点である。つまり、過去の時点は、第3の指示情報が生成される予定の時点から第1の時間だけ前の時点である。
 情報生成部103は、メモリ106を有する。メモリ106は、不揮発性の記録媒体である。メモリ106は、2つの異なる時点における指示情報の組み合わせと第3の指示情報とが関連付けられた状態情報を記憶する。また、メモリ106は、過去の指示情報を記憶する。メモリ106は、情報生成部103の内部に設けられている。メモリ106は、情報生成部103から独立していてもよい。
 信号生成部104(信号生成回路)は、デジタル信号処理回路である。信号生成部104は、1つまたは複数のプロセッサで構成されてもよい。例えば、信号生成部104は、第3の指示情報を第1の時間の間隔で周期的に参照し、かつ第3の指示情報に基づいて撮像同期信号を生成する。第1の解析部101と第2の解析部102と情報生成部103と信号生成部104との少なくとも2つが1つのハードウェアとして構成されてもよい。
 撮像部105は、撮像素子(イメージセンサ)である。撮像部105は、撮像同期信号に基づく撮像タイミングで撮像を行い、かつ画像(画像データ)を取得する。撮像部105によって撮像される被検体は、人体内の臓器である。撮像部105によって取得された画像は、体外の受信装置に無線で送信されてもよい。
 例えば、第1の解析部101、第2の解析部102、情報生成部103、および信号生成部104の機能は、これらの動作を規定する命令を含むプログラムを、カプセル内視鏡10のコンピュータが読み込んで実行することにより、ソフトウェアの機能として実現可能である。このプログラムは、例えばフラッシュメモリのような「コンピュータ読み取り可能な記録媒体」により提供されてもよい。また、上述したプログラムは、このプログラムが保存された記憶装置等を有するコンピュータから、伝送媒体を介して、あるいは伝送媒体中の伝送波によりカプセル内視鏡10に伝送されてもよい。プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように、情報を伝送する機能を有する媒体である。また、上述したプログラムは、前述した機能の一部を実現してもよい。さらに、上述したプログラムは、前述した機能をコンピュータに既に記録されているプログラムとの組合せで実現できる差分ファイル(差分プログラム)であってもよい。
 (第1の動作)
 第1の動作において、情報生成部103は、現在の第1の指示情報と、現在の第2の指示情報と、過去の第1の指示情報とに基づいて第3の指示情報を生成する。図2は、第1の動作における状態情報を示している。図2において、状態情報が表として示されている。現在の第1の指示情報および第2の指示情報の状態と、過去の第1の指示情報の状態と、第3の指示情報の状態とが関連付けられている。各指示情報は、2つの値のいずれか1つを示す。2つの値は、“撮像”および“停止”である。“撮像”は、撮像部105に対する撮像指示を示す。つまり、“撮像”は、撮像頻度が相対的に高い状態を示す。“停止” は、撮像部105に対する撮像の停止指示を示す。つまり、“停止”は、撮像頻度が相対的に低い状態を示す。
 第1のデータから検出されるカプセル内視鏡10の動きが相対的に大きい場合、第1の指示情報は“撮像”である。第1のデータから検出されるカプセル内視鏡10の動きが相対的に小さい場合、第2の指示情報は“停止”である。第2のデータすなわち画像から検出されるカプセル内視鏡10の動きが相対的に大きい場合、第2の指示情報は“撮像”である。第2のデータすなわち画像から検出されるカプセル内視鏡10の動きが相対的に小さい場合、第2の指示情報は“停止”である。
 現在の第1の指示情報および第2の指示情報の状態は、“/”で区切られている。“/”の左側が第1の指示情報の状態であり、かつ“/”の右側が第2の指示情報の状態である。例えば、“停止/撮像”は、第1の指示情報が“停止”であり、かつ第2の指示情報が“撮像”であることを示す。現在の第1の指示情報および第2の指示情報の状態と、それに対応する第3の指示情報とは、同一の行に記載されている。過去の第1の指示情報の状態と、それに対応する第3の指示情報とは、同一の列に記載されている。例えば、現在の第1の指示情報および第2の指示情報が“停止/撮像”であり、かつ過去の第1の指示情報が“停止”である場合、情報生成部103によって生成される第3の指示情報は“停止”である。
 現在の第1の指示情報が“停止”である場合、センサ100によって検出される動きが小さい。つまり、カプセル内視鏡10は停止している可能性が高い。この場合、第3の指示情報は“停止”に設定される。現在の第1の指示情報が“停止”であり、かつ現在の第2の指示情報が“撮像”である場合、カプセル内視鏡10が停止する前の画像から大きな動きが検出された可能性がある。
 現在の第1の指示情報が“撮像”であり、かつ現在の第2の指示情報が“停止”であり、かつ過去の第1の指示情報が“停止”である場合、センサ100によって検出される動きが大幅に増加する。この場合、停止していたカプセル内視鏡10が移動を開始した可能性がある。したがって、被検体の撮り逃しを低減するために第3の指示情報は“撮像”に設定される。
 現在の第1の指示情報が“撮像”であり、かつ現在の第2の指示情報が“停止”であり、かつ過去の第1の指示情報が“撮像”である場合、センサ100によって検出される動きが大きく、かつ画像から検出される動きが小さい。この場合、カプセル内視鏡10は人体に対して停止し、かつ人体が動いている可能性がある。したがって、無駄な撮像を抑制するために第3の指示情報は“停止”に設定される。
 現在の第1の指示情報および第2の指示情報が“撮像”である場合、センサ100によって検出される動きと画像から検出される動きとの両方が大きい。つまり、カプセル内視鏡10は移動している可能性が高い。この場合、第3の指示情報は“撮像”に設定される。
 第1の動作において、現在の第1の指示情報および第2の指示情報が相対的に低い撮像頻度(“停止”)を示す場合、第3の指示情報は相対的に低い撮像頻度(“停止”)を示す。現在の第1の指示情報が相対的に低い撮像頻度(“停止”)を示し、かつ現在の第2の指示情報が相対的に高い撮像頻度(“撮像”)を示す場合、第3の指示情報は相対的に低い撮像頻度(“停止”)を示す。現在の第1の指示情報が相対的に高い撮像頻度(“撮像”)を示し、かつ現在の第2の指示情報が相対的に低い撮像頻度(“停止”)を示す場合、第3の指示情報は過去の第1の指示情報に基づく。現在の第1の指示情報が相対的に高い撮像頻度(“撮像”)を示し、かつ現在の第2の指示情報が相対的に低い撮像頻度(“停止”)を示し、かつ過去の第1の指示情報が相対的に低い撮像頻度(“停止”)を示す場合、第3の指示情報は相対的に高い撮像頻度(“撮像”)を示す。現在の第1の指示情報が相対的に高い撮像頻度(“撮像”)を示し、かつ現在の第2の指示情報が相対的に低い撮像頻度(“停止”)を示し、かつ過去の第1の指示情報が相対的に高い撮像頻度(“撮像”)を示す場合、第3の指示情報は相対的に低い撮像頻度(“停止”)を示す。現在の第1の指示情報および第2の指示情報が相対的に高い撮像頻度(“撮像”)を示す場合、第3の指示情報は相対的に高い撮像頻度(“撮像”)を示す。
 図3は、カプセル内視鏡10の第1の動作を示している。図3において、第1の指示情報の状態と、第2の指示情報の状態と、第3の指示情報の状態と、撮像同期信号の波形とが示されている。撮像同期信号に関して、図3の縦方向は電圧を示している。図3の右方向に時間が進む。
 第1の指示情報は、第1の時間T1の間隔で更新される。更新された第1の指示情報が、更新される前の第1の指示情報と同一になる場合がある。図3に示す第1の指示情報が区切られている位置は、第1の指示情報が新たに生成されることにより第1の指示情報が更新される時点を示す。
 撮像同期信号は、ハイレベルとローレベルとを有する。撮像同期信号がハイレベルであるとき、撮像同期信号は有効である。撮像同期信号がローレベルであるとき、撮像同期信号は無効である。撮像部105は、撮像同期信号が有効であるとき、撮像を行う。撮像同期信号がローレベルであるとき、撮像同期信号が有効であり、かつ撮像同期信号がハイレベルであるとき、撮像同期信号が無効であってもよい。
 第2の指示情報は、撮像部105によって撮像が行われた後に更新される。つまり、第2の指示情報は、ハイレベルの撮像同期信号が生成された後に更新される。更新された第2の指示情報が、更新される前の第2の指示情報と同一になる場合がある。図3に示す第2の指示情報が区切られている位置は、第2の指示情報が新たに生成されることにより第2の指示情報が更新される時点を示す。第2の指示情報は、第1の時間T1以上の間隔で更新される。つまり、第2の指示情報の更新頻度は、第1の指示情報の更新頻度以下である。
 第3の指示情報は、第1の時間T1の間隔で更新される。更新された第3の指示情報が、更新される前の第3の指示情報と同一になる場合がある。図3に示す第3の指示情報が区切られている位置は、第3の指示情報が新たに生成されることにより第3の指示情報が更新される時点を示す。
 タイミングt101において、第1の指示情報と第2の指示情報と第3の指示情報とは“停止”であり、かつ撮像同期信号は無効である。
 タイミングt101の後、第1の指示情報は“撮像”に変化する。このとき、現在の第1の指示情報および第2の指示情報は“撮像/停止”であり、かつ過去の第1の指示情報は“停止”である。この場合、停止していたカプセル内視鏡10が移動を開始した可能性がある。このため、情報生成部103は、第3の指示情報を“撮像”に設定する。タイミングt102において、信号生成部104は、有効な撮像同期信号を生成する。これによって、被検体の撮り逃しが抑制される。
 タイミングt102の後、第2の指示情報は“撮像”に変化する。このとき、現在の第1の指示情報および第2の指示情報は“撮像/撮像”であり、かつ過去の第1の指示情報は“撮像”である。このため、情報生成部103は、第3の指示情報を“撮像”に設定する。タイミングt103において、信号生成部104は、有効な撮像同期信号を生成する。
 タイミングt104において、各指示情報は、タイミングt103における各指示情報と同一である。タイミングt104において、信号生成部104は、有効な撮像同期信号を生成する。
 タイミングt104の後、第1の指示情報は“停止”に変化する。このとき、現在の第1の指示情報および第2の指示情報は“停止/撮像”であり、かつ過去の第1の指示情報は“撮像”である。この場合、移動していたカプセル内視鏡10が移動を終了した可能性がある。このため、情報生成部103は、第3の指示情報を“停止”に設定する。タイミングt105において、撮像同期信号は無効である。これによって、無駄な撮像が抑制される。
 タイミングt106において、各指示情報は、タイミングt105における各指示情報と同一である。タイミングt106において、撮像同期信号は無効である。
 タイミングt107、タイミングt108、およびタイミングt109において、現在の第1の指示情報および第2の指示情報は“撮像/撮像”である。これらのタイミングにおいて、第3の指示情報は“撮像”である。これらのタイミングにおいて、信号生成部104は、有効な撮像同期信号を生成する。
 タイミングt109の後、第2の指示情報が“停止”に変化する。このとき、現在の第1の指示情報および第2の指示情報は“撮像/停止”であり、かつ過去の第1の指示情報は“撮像”である。この場合、カプセル内視鏡10は人体に対して停止し、かつ人体が動いている可能性がある。このため、情報生成部103は、第3の指示情報を“停止”に設定する。タイミングt110において、撮像同期信号は無効である。これによって、無駄な撮像が抑制される。
 タイミングt111において、各指示情報は、タイミングt110における各指示情報と同一である。タイミングt111において、撮像同期信号は無効である。
 第1の動作において、第1の指示情報が“停止”から“撮像”に変化するときに第3の指示情報が“撮像”に設定されることにより、被検体の撮り逃しが抑制される。第1の指示情報が連続的に“撮像”であり、かつ第2の指示情報が“停止”であるときに第3の指示情報が“停止”に設定されることにより、無駄な撮像が抑制される。この結果、カプセル内視鏡10の消費電力が低減される。
 (第2の動作)
 第2の動作において、情報生成部103は、現在の第1の指示情報と、現在の第2の指示情報と、過去の第2の指示情報とに基づいて第3の指示情報を生成する。図4は、第2の動作における状態情報を示している。図4において、状態情報が表として示されている。現在の第1の指示情報および第2の指示情報の状態と、過去の第2の指示情報の状態と、第3の指示情報の状態とが関連付けられている。各指示情報は、2つの値のいずれか1つを示す。2つの値は、“撮像”および“停止”である。
 現在の第1の指示情報および第2の指示情報の状態と、それに対応する第3の指示情報とは、同一の行に記載されている。過去の第2の指示情報の状態と、それに対応する第3の指示情報とは、同一の列に記載されている。例えば、現在の第1の指示情報および第2の指示情報が“停止/撮像”であり、かつ過去の第2の指示情報が“停止”である場合、情報生成部103によって生成される第3の指示情報は“停止”である。
 現在の第1の指示情報が“停止”である場合、センサ100によって検出される動きが小さい。つまり、カプセル内視鏡10は停止している可能性が高い。この場合、第3の指示情報は“停止”に設定される。現在の第1の指示情報が“停止”であり、かつ現在の第2の指示情報が“撮像”である場合、カプセル内視鏡10が停止する前の画像から大きな動きが検出された可能性がある。
 現在の第1の指示情報が“撮像”であり、かつ現在の第2の指示情報が“停止”であり、かつ過去の第2の指示情報が“停止”である場合、画像から検出される動きが小さく、かつセンサ100によって検出される動きが大きい。この場合、カプセル内視鏡10は人体に対して停止し、かつ人体が動いている可能性がある。しかし、カプセル内視鏡10が移動しているか否かを画像によって確認するために第3の指示情報は“撮像”に設定される。
 現在の第1の指示情報が“撮像”であり、かつ現在の第2の指示情報が“停止”であり、かつ過去の第2の指示情報が“撮像”である場合、画像から検出される動きが大幅に減少する。この場合、移動していたカプセル内視鏡10が移動を終了した可能性がある。さらに、現在の第1の指示情報が“撮像”であるため、センサ100によって検出される動きが大きい。この場合、カプセル内視鏡10は人体に対して停止し、かつ人体が動いている可能性がある。したがって、無駄な撮像を抑制するために第3の指示情報は“停止”に設定される。
 現在の第1の指示情報および第2の指示情報が“撮像”である場合、センサ100によって検出される動きと画像から検出される動きとの両方が大きい。つまり、カプセル内視鏡10は移動している可能性が高い。この場合、第3の指示情報は“撮像”に設定される。
 第2の動作において、現在の第1の指示情報および第2の指示情報が相対的に低い撮像頻度(“停止”)を示す場合、第3の指示情報は相対的に低い撮像頻度(“停止”)を示す。現在の第1の指示情報が相対的に低い撮像頻度(“停止”)を示し、かつ現在の第2の指示情報が相対的に高い撮像頻度(“撮像”)を示す場合、第3の指示情報は相対的に低い撮像頻度(“停止”)を示す。現在の第1の指示情報が相対的に高い撮像頻度(“撮像”)を示し、かつ現在の第2の指示情報が相対的に低い撮像頻度(“停止”)を示す場合、第3の指示情報は過去の第2の指示情報に基づく。現在の第1の指示情報が相対的に高い撮像頻度(“撮像”)を示し、かつ現在の第2の指示情報が相対的に低い撮像頻度(“停止”)を示し、かつ過去の第2の指示情報が相対的に低い撮像頻度(“停止”)を示す場合、第3の指示情報は相対的に高い撮像頻度(“撮像”)を示す。現在の第1の指示情報が相対的に高い撮像頻度(“撮像”)を示し、かつ現在の第2の指示情報が相対的に低い撮像頻度(“停止”)を示し、かつ過去の第2の指示情報が相対的に高い撮像頻度(“撮像”)を示す場合、第3の指示情報は相対的に低い撮像頻度(“停止”)を示す。現在の第1の指示情報および第2の指示情報が相対的に高い撮像頻度(“撮像”)を示す場合、第3の指示情報は相対的に高い撮像頻度(“撮像”)を示す。
 図5は、カプセル内視鏡10の第2の動作を示している。図5において、第1の指示情報の状態と、第2の指示情報の状態と、第3の指示情報の状態と、撮像同期信号の波形とが示されている。撮像同期信号に関して、図5の縦方向は電圧を示している。図5の右方向に時間が進む。
 タイミングt201において、第1の指示情報と第2の指示情報と第3の指示情報とは“停止”であり、かつ撮像同期信号は無効である。
 タイミングt201の後、第1の指示情報は“撮像”に変化する。このとき、現在の第1の指示情報および第2の指示情報は“撮像/停止”であり、かつ過去の第2の指示情報は“停止”である。この場合、停止していたカプセル内視鏡10が移動を開始した可能性がある。このため、情報生成部103は、第3の指示情報を“撮像”に設定する。タイミングt202において、信号生成部104は、有効な撮像同期信号を生成する。これによって、被検体の撮り逃しが抑制される。
 タイミングt202の後、第2の指示情報は“撮像”に変化する。このとき、現在の第1の指示情報および第2の指示情報は“撮像/撮像”であり、かつ過去の第2の指示情報は“停止”である。このため、情報生成部103は、第3の指示情報を“撮像”に設定する。タイミングt203において、信号生成部104は、有効な撮像同期信号を生成する。
 タイミングt204において、各指示情報は、タイミングt203における各指示情報と同一である。タイミングt204において、信号生成部104は、有効な撮像同期信号を生成する。
 タイミングt204の後、第1の指示情報は“停止”に変化する。このとき、現在の第1の指示情報および第2の指示情報は“停止/撮像”であり、かつ過去の第2の指示情報は“撮像”である。この場合、移動していたカプセル内視鏡10が移動を終了した可能性がある。このため、情報生成部103は、第3の指示情報を“停止”に設定する。タイミングt205において、撮像同期信号は無効である。これによって、無駄な撮像が抑制される。
 タイミングt206において、各指示情報は、タイミングt205における各指示情報と同一である。タイミングt206において、撮像同期信号は無効である。
 タイミングt207、タイミングt208、およびタイミングt209において、現在の第1の指示情報および第2の指示情報は“撮像/撮像”である。これらのタイミングにおいて、第3の指示情報は“撮像”である。これらのタイミングにおいて、信号生成部104は、有効な撮像同期信号を生成する。
 タイミングt209の後、第2の指示情報が“停止”に変化する。このとき、現在の第1の指示情報および第2の指示情報は“撮像/停止”であり、かつ過去の第2の指示情報は“撮像”である。この場合、カプセル内視鏡10は人体に対して停止し、かつ人体が動いている可能性がある。このため、情報生成部103は、第3の指示情報を“停止”に設定する。タイミングt210において、撮像同期信号は無効である。これによって、無駄な撮像が抑制される。
 タイミングt210の後、現在の第1の指示情報および第2の指示情報は“撮像/停止”であり、かつ過去の第2の指示情報は“停止”である。この場合、カプセル内視鏡10は人体に対して停止し、かつ人体が動いている可能性がある。しかし、情報生成部103は、第3の指示情報を“撮像”に設定する。タイミングt211において、信号生成部104は、有効な撮像同期信号を生成する。このため、撮像部105によって撮像が行われ、かつ画像が取得される。第2の解析部102は、この画像に基づいて、カプセル内視鏡10が人体に対して動いているか否かを確認することができる。
 第2の動作において、第2の指示情報が“撮像”から“停止”に変化するときに第3の指示情報が“停止”に設定されることにより、無駄な撮像が抑制される。この結果、カプセル内視鏡10の消費電力が低減される。第2の指示情報が連続的に“停止”であり、かつ第1の指示情報が“撮像”であるときに第3の指示情報が“撮像”に設定されることにより、カプセル内視鏡10が人体に対して動いているか否かを確認するための画像が取得される。
 図4に示す第1の動作と図5に示す第2の動作とでは、タイミングt111とタイミングt211とにおける第3の指示情報が異なる。第2の動作において、被検体の撮り逃しの抑制が、無駄な撮像の抑制よりも優先される。
 (第3の動作)
 第3の動作において、情報生成部103は、現在の第1の指示情報と、現在の第2の指示情報と、過去の第3の指示情報とに基づいて第3の指示情報を生成する。図6は、第3の動作における状態情報を示している。図6において、状態情報が表として示されている。現在の第1の指示情報および第2の指示情報の状態と、過去の第3の指示情報の状態と、更新後の第3の指示情報の状態とが関連付けられている。各指示情報は、2つの値のいずれか1つを示す。2つの値は、“撮像”および“停止”である。
 現在の第1の指示情報および第2の指示情報の状態と、それに対応する第3の指示情報とは、同一の行に記載されている。過去の第3の指示情報の状態と、それに対応する更新後の第3の指示情報とは、同一の列に記載されている。例えば、現在の第1の指示情報および第2の指示情報が“停止/撮像”であり、かつ過去の第3の指示情報が“停止”である場合、情報生成部103によって生成される第3の指示情報は“停止”である。
 現在の第1の指示情報が“停止”である場合、センサ100によって検出される動きが小さい。つまり、カプセル内視鏡10は停止している可能性が高い。この場合、第3の指示情報は“停止”に設定される。現在の第1の指示情報が“停止”であり、かつ現在の第2の指示情報が“撮像”である場合、カプセル内視鏡10が停止する前の画像から大きな動きが検出された可能性がある。
 現在の第1の指示情報が“撮像”であり、かつ現在の第2の指示情報が“停止”である場合、センサ100によって検出される動きが大きく、かつ画像から検出される動きが小さい。この場合、過去の第3の指示情報に応じて、更新後の第3の指示情報が異なる。過去の第3の指示情報が“停止”である場合、カプセル内視鏡10は人体に対して停止し、かつ人体が動いている可能性がある。しかし、カプセル内視鏡10が移動しているか否かを画像によって確認するために第3の指示情報は“撮像”に設定される。過去の第3の指示情報が“撮像”である場合、カプセル内視鏡10は人体に対して停止し、かつ人体が動いている可能性がある。したがって、無駄な撮像を抑制するために第3の指示情報は“停止”に設定される。
 現在の第1の指示情報および第2の指示情報が“撮像”である場合、センサ100によって検出される動きと画像から検出される動きとの両方が大きい。つまり、カプセル内視鏡10は移動している可能性が高い。この場合、第3の指示情報は“撮像”に設定される。
 第3の動作において、現在の第1の指示情報および第2の指示情報が相対的に低い撮像頻度(“停止”)を示す場合、第3の指示情報は相対的に低い撮像頻度(“停止”)を示す。現在の第1の指示情報が相対的に低い撮像頻度(“停止”)を示し、かつ現在の第2の指示情報が相対的に高い撮像頻度(“撮像”)を示す場合、第3の指示情報は相対的に低い撮像頻度(“停止”)を示す。現在の第1の指示情報が相対的に高い撮像頻度(“撮像”)を示し、かつ現在の第2の指示情報が相対的に低い撮像頻度(“停止”)を示す場合、第3の指示情報は過去の第3の指示情報に基づく。現在の第1の指示情報が相対的に高い撮像頻度(“撮像”)を示し、かつ現在の第2の指示情報が相対的に低い撮像頻度(“停止”)を示し、かつ過去の第3の指示情報が相対的に低い撮像頻度(“停止”)を示す場合、更新後の第3の指示情報は相対的に高い撮像頻度(“撮像”)を示す。現在の第1の指示情報が相対的に高い撮像頻度(“撮像”)を示し、かつ現在の第2の指示情報が相対的に低い撮像頻度(“停止”)を示し、かつ過去の第3の指示情報が相対的に高い撮像頻度(“撮像”)を示す場合、更新後の第3の指示情報は相対的に低い撮像頻度(“停止”)を示す。現在の第1の指示情報および第2の指示情報が相対的に高い撮像頻度(“撮像”)を示す場合、第3の指示情報は相対的に高い撮像頻度(“撮像”)を示す。
 図5を参照して、第3の動作を説明する。タイミングt201において、第1の指示情報と第2の指示情報と第3の指示情報とは“停止”であり、かつ撮像同期信号は無効である。
 タイミングt201の後、第1の指示情報は“撮像”に変化する。このとき、現在の第1の指示情報および第2の指示情報は“撮像/停止”であり、かつ過去の第3の指示情報は“停止”である。この場合、停止していたカプセル内視鏡10が移動を開始した可能性がある。このため、情報生成部103は、第3の指示情報を“撮像”に設定する。タイミングt202において、信号生成部104は、有効な撮像同期信号を生成する。これによって、被検体の撮り逃しが抑制される。
 タイミングt202の後、第2の指示情報は“撮像”に変化する。このとき、現在の第1の指示情報および第2の指示情報は“撮像/撮像”であり、かつ過去の第3の指示情報は“撮像”である。このため、情報生成部103は、第3の指示情報を“撮像”に設定する。タイミングt203において、信号生成部104は、有効な撮像同期信号を生成する。
 タイミングt204において、各指示情報は、タイミングt203における各指示情報と同一である。タイミングt204において、信号生成部104は、有効な撮像同期信号を生成する。
 タイミングt204の後、第1の指示情報は“停止”に変化する。このとき、現在の第1の指示情報および第2の指示情報は“停止/撮像”であり、かつ過去の第3の指示情報は“撮像”である。この場合、移動していたカプセル内視鏡10が移動を終了した可能性がある。このため、情報生成部103は、第3の指示情報を“停止”に設定する。タイミングt205において、撮像同期信号は無効である。これによって、無駄な撮像が抑制される。
 タイミングt205の後、現在の第1の指示情報および第2の指示情報は“停止/撮像”であり、かつ過去の第3の指示情報は“停止”である。このため、情報生成部103は、第3の指示情報を“停止”に設定する。タイミングt206において、撮像同期信号は無効である。
 タイミングt206の後、第1の指示情報は“撮像”に変化する。このとき、現在の第1の指示情報および第2の指示情報は“撮像/撮像”であり、かつ過去の第3の指示情報は“停止”である。このため、情報生成部103は、第3の指示情報を“撮像”に設定する。タイミングt207において、信号生成部104は、有効な撮像同期信号を生成する。
 タイミングt208およびタイミングt209において、現在の第1の指示情報および第2の指示情報は“撮像/撮像”であり、かつ過去の第3の指示情報は“撮像”である。これらのタイミングにおいて、更新後の第3の指示情報は“撮像”である。これらのタイミングにおいて、信号生成部104は、有効な撮像同期信号を生成する。
 タイミングt209の後、第2の指示情報が“停止”に変化する。このとき、現在の第1の指示情報および第2の指示情報は“撮像/停止”であり、かつ過去の第3の指示情報は“撮像”である。この場合、カプセル内視鏡10は人体に対して停止し、かつ人体が動いている可能性がある。このため、情報生成部103は、第3の指示情報を“停止”に設定する。タイミングt210において、撮像同期信号は無効である。これによって、無駄な撮像が抑制される。
 タイミングt210の後、現在の第1の指示情報および第2の指示情報は“撮像/停止”であり、かつ過去の第3の指示情報は“停止”である。この場合、カプセル内視鏡10は人体に対して停止し、かつ人体が動いている可能性がある。しかし、情報生成部103は、第3の指示情報を“撮像”に設定する。タイミングt211において、信号生成部104は、有効な撮像同期信号を生成する。このため、撮像部105によって撮像が行われ、かつ画像が取得される。第2の解析部102は、この画像に基づいて、カプセル内視鏡10が人体に対して動いているか否かを確認することができる。
 第3の動作において、現在の第1の指示情報および第2の指示情報が“撮像/停止”であり、かつ過去の第3の指示情報が“撮像”であるときに第3の指示情報が“停止”に設定されることにより、無駄な撮像が抑制される。この結果、カプセル内視鏡10の消費電力が低減される。現在の第1の指示情報および第2の指示情報が“撮像/停止”であり、かつ過去の第3の指示情報が“停止”であるときに第3の指示情報が“撮像”に設定されることにより、カプセル内視鏡10が人体に対して動いているか否かを確認するための画像が取得される。
 (第4の動作)
 第4の動作において、情報生成部103は、現在の第1の指示情報と、現在の第2の指示情報と、過去の第1の指示情報と、過去の第2の指示情報とに基づいて第3の指示情報を生成する。図7は、第4の動作における状態情報を示している。図7において、状態情報が表として示されている。現在の第1の指示情報および第2の指示情報の状態と、過去の第1の指示情報および第2の指示情報の状態と、第3の指示情報の状態とが関連付けられている。各指示情報は、2つの値のいずれか1つを示す。2つの値は、“撮像”および“停止”である。
 現在の第1の指示情報および第2の指示情報の状態と、それに対応する第3の指示情報とは、同一の行に記載されている。過去の第1の指示情報および第2の指示情報の状態と、それに対応する第3の指示情報とは、同一の列に記載されている。例えば、現在の第1の指示情報および第2の指示情報が“停止/撮像”であり、かつ過去の第1の指示情報および第2の指示情報が“停止/撮像”である場合、情報生成部103によって生成される第3の指示情報は“停止”である。
 図7に示す表の列C11および列C12における第3の指示情報の状態は、図2に示す表において過去の第1の指示情報が“停止”である場合の状態と同一である。図7に示す表の列C13における第3の指示情報の状態は、図2に示す表において過去の第1の指示情報が“撮像”である場合の状態と同一である。図7に示す表の列C14における第3の指示情報の状態は、現在の第1の指示情報および第2の指示情報が“停止/撮像”である場合を除いて、図2に示す表において過去の第1の指示情報が“撮像”である場合の状態と同一である。
 現在の第1の指示情報および第2の指示情報が“停止/撮像”であり、かつ過去の第1の指示情報および第2の指示情報が“撮像/撮像”である場合、センサ100によって検出される動きが大幅に減少し、かつ画像から検出される動きが大きい。この場合、移動していたカプセル内視鏡10が移動を終了した可能性がある。しかし、カプセル内視鏡10が移動しているか否かを画像によって確認するために第3の指示情報は“撮像”に設定される。
 第4の動作において、現在の第1の指示情報および第2の指示情報が相対的に低い撮像頻度(“停止”)を示す場合、第3の指示情報は相対的に低い撮像頻度(“停止”)を示す。現在の第1の指示情報が相対的に低い撮像頻度(“停止”)を示し、かつ現在の第2の指示情報が相対的に高い撮像頻度(“撮像”)を示す場合、第3の指示情報は過去の第1の指示情報および第2の指示情報に基づく。現在の第1の指示情報が相対的に低い撮像頻度(“停止”)を示し、かつ現在の第2の指示情報が相対的に高い撮像頻度(“撮像”)を示す場合、過去の第1の指示情報および第2の指示情報が相対的に高い撮像頻度(“撮像”)を示すときのみ、第3の指示情報は相対的に高い撮像頻度(“撮像”)を示す。現在の第1の指示情報が相対的に高い撮像頻度(“撮像”)を示し、かつ現在の第2の指示情報が相対的に低い撮像頻度(“停止”)を示す場合、第3の指示情報は過去の第1の指示情報に基づく。現在の第1の指示情報が相対的に高い撮像頻度(“撮像”)を示し、かつ現在の第2の指示情報が相対的に低い撮像頻度(“停止”)を示し、かつ過去の第1の指示情報が相対的に低い撮像頻度(“停止”)を示す場合、第3の指示情報は相対的に高い撮像頻度(“撮像”)を示す。現在の第1の指示情報が相対的に高い撮像頻度(“撮像”)を示し、かつ現在の第2の指示情報が相対的に低い撮像頻度(“停止”)を示し、かつ過去の第1の指示情報が相対的に高い撮像頻度(“撮像”)を示す場合、第3の指示情報は相対的に低い撮像頻度(“停止”)を示す。現在の第1の指示情報および第2の指示情報が相対的に高い撮像頻度(“撮像”)を示す場合、第3の指示情報は相対的に高い撮像頻度(“撮像”)を示す。
 情報生成部103は、状態情報に基づいて第3の指示情報を生成する。状態情報において、第1の時点における第1の指示情報および第2の指示情報と、第2の時点における第1の指示情報および第2の指示情報と、第3の指示情報とが関連付けられている。図7に示す状態情報において、撮像頻度が相対的に低くなる第3の指示情報の数は、撮像頻度が相対的に高くなる第3の指示情報の数よりも多い。撮像頻度が相対的に低くなる第3の指示情報の状態は“停止”である。撮像頻度が相対的に高くなる第3の指示情報の状態は“撮像”である。第3の指示情報が“停止”である数は9である。第3の指示情報が“撮像”である数は7である。これによって、全体的に、無駄な撮像が抑制される効果が、被検体の撮り逃しが抑制される効果よりも高まりやすい。第1から第3の動作においても同様の効果が得られる。
 図8は、カプセル内視鏡10の第4の動作を示している。図8において、第1の指示情報の状態と、第2の指示情報の状態と、第3の指示情報の状態と、撮像同期信号の波形とが示されている。撮像同期信号に関して、図8の縦方向は電圧を示している。図8の右方向に時間が進む。
 タイミングt301からタイミングt304に関する動作は、図3に示す第1の動作におけるタイミングt101からタイミングt104に関する動作と同様である。
 タイミングt304の後、第1の指示情報は“停止”に変化する。このとき、現在の第1の指示情報および第2の指示情報は“停止/撮像”であり、かつ過去の第1の指示情報および第2の指示情報は“撮像/撮像”である。この場合、移動していたカプセル内視鏡10が移動を終了した可能性がある。しかし、情報生成部103は、第3の指示情報を“撮像”に設定する。タイミングt305において、信号生成部104は、有効な撮像同期信号を生成する。このため、撮像部105によって撮像が行われ、かつ画像が取得される。第2の解析部102は、この画像に基づいて、カプセル内視鏡10が移動しているか否かを確認することができる。
 タイミングt305の後、現在の第1の指示情報および第2の指示情報は“停止/撮像”であり、かつ過去の第1の指示情報および第2の指示情報は“停止/撮像”である。この場合、移動していたカプセル内視鏡10が移動を終了した可能性が高い。このため、情報生成部103は、第3の指示情報を“停止”に設定する。タイミングt306において、撮像同期信号は無効である。これによって、無駄な撮像が抑制される。
 タイミングt307からタイミングt311に関する動作は、図3に示す第1の動作におけるタイミングt107からタイミングt111に関する動作と同様である。
 第4の動作において、第1の指示情報が“停止”から“撮像”に変化するときに第3の指示情報が“撮像”に設定されることにより、被検体の撮り逃しが抑制される。第1の指示情報が連続的に“撮像”であり、かつ第2の指示情報が“停止”であるときに第3の指示情報が“停止”に設定されることにより、無駄な撮像が抑制される。この結果、カプセル内視鏡10の消費電力が低減される。第2の指示情報が連続的に“撮像”であり、かつ第1の指示情報が“撮像”から“停止”に変化するときに第3の指示情報が“撮像”に設定されることにより、カプセル内視鏡10が移動しているか否かを確認するための画像が取得される。
 第4の動作において、撮像頻度が相対的に低くなる場合が多い。これによって、無駄な撮像が抑制されやすい。
 (第5の動作)
 第5の動作において、情報生成部103は、第2の指示情報の生成が行われるまで、第1の指示情報にかかわらず第3の指示情報を維持する。
 撮像部105が撮像を行った場合、第2の解析部102は、撮像部105から出力された画像に基づいて第2の指示情報を更新する。例えば、情報生成部103は、第3の指示情報を第1の時間の間隔で更新する。撮像部105が撮像を行った後、第3の指示情報の更新タイミングが発生する前に、第2の解析部102は第2の指示情報を更新する。しかし、第2の解析部102による画像処理の遅延等が発生する。この場合、第3の指示情報の更新タイミングが発生する前に第2の指示情報が更新されない可能性がある。このため、情報生成部103は、第2の指示情報が更新されるまで、第1の指示情報にかかわらず第3の指示情報を維持する。
 例えば、撮像部105が撮像を行った時点から所定の時間が経過する前に第2の解析部102から第2の指示情報が出力されない場合、情報生成部103は、第1の指示情報にかかわらず第3の指示情報を維持する。撮像部105が撮像を行った時点から所定の時間が経過する前に第2の解析部102から第2の指示情報が出力された場合、情報生成部103は、状態情報に基づいて第3の指示情報を生成する。所定の時間は、情報生成部103が第3の指示情報を更新する間隔に基づく。
 図9は、カプセル内視鏡10の第5の動作を示している。図9において、第1の指示情報の状態と、第2の指示情報の状態と、第3の指示情報の状態と、撮像同期信号の波形とが示されている。撮像同期信号に関して、図9の縦方向は電圧を示している。図9の右方向に時間が進む。第5の動作における状態情報が第4の動作における状態情報と同一である場合について、第5の動作を説明する。
 タイミングt401において、第1の指示情報と第2の指示情報と第3の指示情報とは“停止”であり、かつ撮像同期信号は無効である。
 タイミングt401の後、第1の指示情報は“撮像”に変化する。このとき、現在の第1の指示情報および第2の指示情報は“撮像/停止”であり、かつ過去の第1の指示情報および第2の指示情報は“停止/停止”である。このため、情報生成部103は、第3の指示情報を“撮像”に設定する。タイミングt402において、信号生成部104は、有効な撮像同期信号を生成する。
 タイミングt402において撮像同期信号が有効になることにより、撮像部105は撮像を行う。第3の指示情報の更新タイミングが発生する前に第2の指示情報が更新されないため、情報生成部103は、第3の指示情報を維持する。つまり、情報生成部103は、第3の指示情報を“撮像”に設定する。タイミングt403において、信号生成部104は、有効な撮像同期信号を生成する。
 タイミングt403において撮像同期信号が有効になることにより、撮像部105は撮像を行う。第3の指示情報の更新タイミングが発生する前に第2の指示情報が更新される。このため、情報生成部103は、状態情報に基づいて第3の指示情報を生成する。第2の指示情報が更新されたとき、現在の第1の指示情報および第2の指示情報は“撮像/撮像”であり、かつ過去の第1の指示情報および第2の指示情報は“撮像/停止”である。このため、情報生成部103は、第3の指示情報を“撮像”に設定する。タイミングt404において、信号生成部104は、有効な撮像同期信号を生成する。
 タイミングt404において撮像同期信号が有効になることにより、撮像部105は撮像を行う。第3の指示情報の更新タイミングが発生する前に第2の指示情報が更新されないため、情報生成部103は、第3の指示情報を維持する。つまり、情報生成部103は、第3の指示情報を“撮像”に設定する。タイミングt405において、信号生成部104は、有効な撮像同期信号を生成する。
 タイミングt405において撮像同期信号が有効になることにより、撮像部105は撮像を行う。第3の指示情報の更新タイミングが発生する前に第2の指示情報が更新される。このため、情報生成部103は、状態情報に基づいて第3の指示情報を生成する。第2の指示情報が更新されたとき、現在の第1の指示情報および第2の指示情報は“撮像/停止”であり、かつ過去の第1の指示情報および第2の指示情報は“撮像/撮像”である。このため、情報生成部103は、第3の指示情報を“停止”に設定する。タイミングt406において、撮像同期信号は無効である。
 タイミングt406の後、現在の第1の指示情報および第2の指示情報は“撮像/停止”であり、かつ過去の第1の指示情報および第2の指示情報は“撮像/停止”である。このため、情報生成部103は、第3の指示情報を“停止”に設定する。タイミングt407において、撮像同期信号は無効である。
 タイミングt407の後、第1の指示情報は“停止”に変化する。このとき、現在の第1の指示情報および第2の指示情報は“停止/停止”であり、かつ過去の第1の指示情報および第2の指示情報は“撮像/停止”である。このため、情報生成部103は、第3の指示情報を“停止”に設定する。タイミングt408において、撮像同期信号は無効である。
 第5の動作において、第3の指示情報の更新タイミングが発生する前に第2の指示情報が更新されない場合、第1の指示情報にかかわらず第3の指示情報が維持される。このため、第2の指示情報が更新されるまで、カプセル内視鏡10は前回の制御結果を維持することができる。
 (第6の動作)
 第6の動作において、情報生成部103は、現在の第1の指示情報と、現在の第2の指示情報と、過去の第1の指示情報と、過去の第2の指示情報とに基づいて第3の指示情報を生成する。図10は、第6の動作における状態情報を示している。図10において、状態情報が表として示されている。現在の第1の指示情報および第2の指示情報の状態と、過去の第1の指示情報および第2の指示情報の状態と、第3の指示情報の状態とが関連付けられている。各指示情報は、2つの値のいずれか1つを示す。2つの値は、“撮像”および“停止”である。
 現在の第1の指示情報および第2の指示情報の状態と、それに対応する第3の指示情報とは、同一の行に記載されている。過去の第1の指示情報および第2の指示情報の状態と、それに対応する第3の指示情報とは、同一の列に記載されている。例えば、現在の第1の指示情報および第2の指示情報が“停止/撮像”であり、かつ過去の第1の指示情報および第2の指示情報が“停止/撮像”である場合、情報生成部103によって生成される第3の指示情報は“撮像”である。
 図10に示す表の列C21および列C22における第3の指示情報の状態は、現在の第1の指示情報および第2の指示情報が“停止/撮像”である場合を除いて、図2に示す表において過去の第1の指示情報が“停止”である場合の状態と同一である。図10に示す表の列C23における第3の指示情報の状態は、現在の第1の指示情報および第2の指示情報が“停止/撮像”である場合を除いて、図4に示す表において過去の第2の指示情報が“停止”である場合の状態と同一である。図10に示す表の列C24における第3の指示情報の状態は、現在の第1の指示情報および第2の指示情報が“停止/撮像”である場合を除いて、図4に示す表において過去の第2の指示情報が“撮像”である場合の状態と同一である。
 現在の第1の指示情報および第2の指示情報が“停止/撮像”である場合、センサ100によって検出される動きが小さく、かつ画像から検出される動きが大きい。この場合、カプセル内視鏡10が停止している可能性がある。しかし、カプセル内視鏡10が移動しているか否かを画像によって確認するために第3の指示情報は“撮像”に設定される。
 第6の動作において、現在の第1の指示情報および第2の指示情報が相対的に低い撮像頻度(“停止”)を示す場合、第3の指示情報は相対的に低い撮像頻度(“停止”)を示す。現在の第1の指示情報が相対的に低い撮像頻度(“停止”)を示し、かつ現在の第2の指示情報が相対的に高い撮像頻度(“撮像”)を示す場合、第3の指示情報は相対的に高い撮像頻度(“撮像”)を示す。現在の第1の指示情報が相対的に高い撮像頻度(“撮像”)を示し、かつ現在の第2の指示情報が相対的に低い撮像頻度(“停止”)を示す場合、第3の指示情報は過去の第1の指示情報および第2の指示情報に基づく。現在の第1の指示情報が相対的に高い撮像頻度(“撮像”)を示し、かつ現在の第2の指示情報が相対的に低い撮像頻度(“停止”)を示す場合、過去の第1の指示情報および第2の指示情報が相対的に高い撮像頻度(“撮像”)を示すときのみ、第3の指示情報は相対的に低い撮像頻度(“停止”)を示す。現在の第1の指示情報および第2の指示情報が相対的に高い撮像頻度(“撮像”)を示す場合、第3の指示情報は相対的に高い撮像頻度(“撮像”)を示す。
 情報生成部103は、状態情報に基づいて第3の指示情報を生成する。状態情報において、第1の時点における第1の指示情報および第2の指示情報と、第2の時点における第1の指示情報および第2の指示情報と、第3の指示情報とが関連付けられている。図10に示す状態情報において、撮像頻度が相対的に高くなる第3の指示情報の数は、撮像頻度が相対的に低くなる第3の指示情報の数よりも多い。撮像頻度が相対的に高くなる第3の指示情報の状態は“撮像”である。撮像頻度が相対的に低くなる第3の指示情報の状態は“停止”である。第3の指示情報が“撮像”である数は11である。第3の指示情報が“停止”である数は5である。これによって、全体的に、被検体の撮り逃しが抑制される効果が、無駄な撮像が抑制される効果よりも高まりやすい。
 図11は、カプセル内視鏡10の第6の動作を示している。図11において、第1の指示情報の状態と、第2の指示情報の状態と、第3の指示情報の状態と、撮像同期信号の波形とが示されている。撮像同期信号に関して、図11の縦方向は電圧を示している。図11の右方向に時間が進む。
 タイミングt501において、第1の指示情報と第2の指示情報と第3の指示情報とは“停止”であり、かつ撮像同期信号は無効である。
 タイミングt501の後、第1の指示情報は“撮像”に変化する。このとき、現在の第1の指示情報および第2の指示情報は“撮像/停止”であり、かつ過去の第1の指示情報および第2の指示情報は“停止/停止”である。この場合、停止していたカプセル内視鏡10が移動を開始した可能性がある。このため、情報生成部103は、第3の指示情報を“撮像”に設定する。タイミングt502において、信号生成部104は、有効な撮像同期信号を生成する。これによって、被検体の撮り逃しが抑制される。
 タイミングt502の後、第2の指示情報は“撮像”に変化する。このとき、現在の第1の指示情報および第2の指示情報は“撮像/撮像”であり、かつ過去の第1の指示情報および第2の指示情報は“撮像/停止”である。このため、情報生成部103は、第3の指示情報を“撮像”に設定する。タイミングt503において、信号生成部104は、有効な撮像同期信号を生成する。
 タイミングt503の後、現在の第1の指示情報および第2の指示情報は“撮像/撮像”であり、かつ過去の第1の指示情報および第2の指示情報は“撮像/撮像”である。このため、情報生成部103は、第3の指示情報を“撮像”に設定する。タイミングt504において、信号生成部104は、有効な撮像同期信号を生成する。
 タイミングt505において、各指示情報は、タイミングt504における各指示情報と同一である。タイミングt505において、信号生成部104は、有効な撮像同期信号を生成する。
 タイミングt505の後、第1の指示情報は“停止”に変化する。このとき、現在の第1の指示情報および第2の指示情報は“停止/撮像”であり、かつ過去の第1の指示情報および第2の指示情報は“撮像/撮像”である。このため、情報生成部103は、第3の指示情報を“撮像”に設定する。タイミングt506において、信号生成部104は、有効な撮像同期信号を生成する。タイミングt506において、センサ100によって検出される動きは小さいが、画像から検出される動きが大きい。このため、撮像が継続する。撮像部105によって撮像が行われ、かつ画像が取得される。第2の解析部102は、この画像に基づいて、カプセル内視鏡10が人体に対して動いているか否かを確認することができる。
 タイミングt506の後、第2の指示情報は“停止”に変化する。このとき、現在の第1の指示情報および第2の指示情報は“停止/停止”であり、かつ過去の第1の指示情報および第2の指示情報は“停止/撮像”である。このため、情報生成部103は、第3の指示情報を“停止”に設定する。タイミングt507において、撮像同期信号は無効である。画像から検出される動きが小さくなることにより、カプセル内視鏡10が確実に停止したことが検出される。
 タイミングt507の後、現在の第1の指示情報および第2の指示情報は“停止/停止”であり、かつ過去の第1の指示情報および第2の指示情報は“停止/停止”である。このため、情報生成部103は、第3の指示情報を“停止”に設定する。タイミングt508において、撮像同期信号は無効である。
 第6の動作において、撮像頻度が相対的に高くなる場合が多い。これによって、被検体の撮り逃しが抑制されやすい。
 第1の実施形態のカプセル内視鏡10において、情報生成部103は、第1の指示情報および第2の指示情報に基づいて第3の指示情報を生成し、かつ信号生成部104は、第3の指示情報に基づいて撮像同期信号を生成する。これによって、カプセル内視鏡10は、カプセル内視鏡10が有する2つのセンサ、すなわちセンサ100および撮像部105で取得されたデータに基づいて撮像タイミングを高精度に決定することができる。
 (第1の実施形態の変形例)
 図12は、本発明の第1の実施形態の第1の変形例のカプセル内視鏡11の構成を示している。図12に示す構成について、図1に示す構成と異なる点を説明する。
 信号生成部104は、カウンタ107を有する。カウンタ107のカウント値は基準値から増加または減少する。第1の指示情報が更新される毎に第3の指示情報に基づいてカウント値が算出される。撮像同期信号が生成されたとき、カウント値は基準値になる。カウント値が基準値から増加することによりカウント値が所定値以上になったとき、またはカウント値が基準値から減少することによりカウント値が所定値以下になったとき、信号生成部104は撮像同期信号を生成する。
 カウンタ107は、信号生成部104の内部に設けられている。カウンタ107は、信号生成部104から独立していてもよい。カウンタ107は、第3の指示情報に基づいてカウントを行う。カウンタ107は、アップカウントとダウンカウントとの少なくとも1つを行うことができる。カウンタ107のカウント値は、カウントが開始されたときに基準値に設定される。カウント値は、カウントにより基準値から増加または減少する。撮像同期信号が生成されたとき、カウント値は基準値に再度設定される。基準値が一定の値であるとは限らない。カウンタ107によるカウントは、第1の時間の間隔で行われる。つまり、カウント値は、第1の解析部101による第1の指示情報の生成と同期して増加または減少する。カウンタ107の動作は、第1の解析部101による第1の指示情報の生成と同期しなくてもよい。
 基準値は第1の基準値と第2の基準値とを含んでもよい。第2の基準値は、第1の基準値と同一である、または第1の基準値と異なる。第1の基準値が第1の所定値よりも小さく、かつカウント値が第1の基準値から増加することによりカウント値が第1の所定値以上になったとき、カウント値は、第1の所定値よりも小さい第2の基準値になる。第1の基準値が第1の所定値よりも大きく、かつカウント値が第1の基準値から減少することによりカウント値が第1の所定値以下になったとき、カウント値は、第1の所定値よりも大きい第2の基準値になる。
 上記以外の点について、図12に示す構成は、図1に示す構成と同様である。
 図13は、第1の実施形態の変形例における状態情報を示している。図13において、状態情報が表として示されている。現在の第1の指示情報および第2の指示情報の状態と、過去の第1の指示情報および第2の指示情報の状態と、第3の指示情報の状態とが関連付けられている。第1の指示情報および第3の指示情報は、3つの値のいずれか1つを示す。第1の指示情報および第3の指示情報が示しうる3つの値は、“H”と、“M”と、“L”とである。“H”は、カプセル内視鏡11の動きが大きい場合に対応する。“M”は、カプセル内視鏡11の動きが中間である場合に対応する。“L”は、カプセル内視鏡11の動きが小さい場合に対応する。第2の指示情報は、2つの値のいずれか1つを示す。第2の指示情報が示しうる2つの値は、“H”および“M”である。“H”は、カプセル内視鏡11の動きが大きい場合に対応する。“M”は、カプセル内視鏡11の動きが小さい、またはカプセル内視鏡11の動きが中間である場合に対応する。第1の指示情報および第3の指示情報と同様に、第2の指示情報が3つの値のいずれか1つを示してもよい。
 現在の第1の指示情報および第2の指示情報の状態と、それに対応する第3の指示情報とは、同一の行に記載されている。過去の第2の指示情報の状態と、それに対応する第3の指示情報とは、同一の列に記載されている。例えば、現在の第1の指示情報および第2の指示情報が“L/H”であり、かつ過去の第1の指示情報および第2の指示情報が“L/H”である場合、情報生成部103によって生成される第3の指示情報は“L”である。
 現在の第1の指示情報が“L”である場合、センサ100によって検出される動きが小さい。つまり、カプセル内視鏡11は停止している可能性が高い。この場合、第3の指示情報は“L”に設定される。同様に、現在の第1の指示情報が“M”である場合、センサ100によって検出される動きが中間である。つまり、カプセル内視鏡11はゆっくり移動している可能性が高い。この場合、第3の指示情報は“M”に設定される。
 現在の第1の指示情報が“H”である場合、センサ100によって検出される動きが大きい。つまり、カプセル内視鏡11は移動している可能性が高い。この場合、一部の場合を除いて第3の指示情報は“H”に設定される。現在の第1の指示情報および第2の指示情報が“H/M”であり、かつ過去の第1の指示情報および第2の指示情報が“H/H”である場合、センサ100によって検出される動きが大きく、かつ画像から検出される動きが減少する。この場合、カプセル内視鏡11は人体に対して停止し、かつ人体が動いている可能性がある。したがって、無駄な撮像を抑制するために第3の指示情報は“M”に設定される。現在の第1の指示情報および第2の指示情報が“H/M”であり、かつ過去の第1の指示情報および第2の指示情報が“H/M”である場合、第3の指示情報は、前回設定された値に維持される。
 図14は、カプセル内視鏡11の動作を示している。図14において、第3の指示情報の状態と、カウント値と、撮像同期信号の波形とが示されている。撮像同期信号に関して、図14の縦方向は電圧を示している。図14の右方向に時間が進む。図14において、第1の指示情報および第2の指示情報は省略されている。
 カウント値は、基準値から増加する。カウント値が第1の所定値以上になったとき、信号生成部104は、撮像同期信号を生成する。カウント値は、情報生成部103による第3の指示情報の生成と同期して増加する。情報生成部103による第3の指示情報の生成と同期して、第3の指示情報に応じた値がカウント値に加算される。基準値は、第1の所定値と異なる第2の所定値である。
 カウンタ107は、第3の指示情報に応じた値をカウントすることによりカウント値を生成する。カウンタ107は、第1の時間T1ごとにカウント値を生成する。第3の指示情報が“H”である場合、カウント値に3が加算される。第3の指示情報が“M”である場合、カウント値に1が加算される。第3の指示情報が“L”である場合、カウント値に0が加算される。カウント値が第1の所定値以上になったとき、カウント値は基準値に変更される。基準値は0である。第1の所定値は3である。
 信号生成部104がカウント値を参照する周期は、一定である。信号生成部104は、第1の時間T1の間隔でカウント値を参照する。信号生成部104は、カウント値に基づく撮像同期信号を生成する。カウント値が第1の所定値以上である場合、信号生成部104は撮像同期信号を生成する。
 タイミングt601において、第3の指示情報は“L”である。タイミングt601において、0がカウント値に加算される。このとき、カウント値は、0である。このとき、カウント値は、第1の所定値である3未満である。このため、タイミングt601において、撮像同期信号は無効である。
 タイミングt602において、第3の指示情報は“M”である。タイミングt602において、1がカウント値に加算されることにより、カウント値は、1に変更される。このとき、カウント値は、第1の所定値である3未満である。このため、タイミングt602において、撮像同期信号は無効である。
 タイミングt603において、第3の指示情報は“L”である。タイミングt603において、0がカウント値に加算される。このとき、カウント値は、1である。このとき、カウント値は、第1の所定値である3未満である。このため、タイミングt603において、撮像同期信号は無効である。
 タイミングt604において、第3の指示情報は“H”である。タイミングt604において、3がカウント値に加算されることにより、カウント値は、4に変更される。このとき、カウント値は、第1の所定値である3以上である。このため、タイミングt604において、信号生成部104は、有効な撮像同期信号を生成する。タイミングt604において、カウント値は、基準値である0に変更される。
 タイミングt605およびタイミングt606において、第3の指示情報は“M”である。タイミングt605およびタイミングt606において、1がカウント値に加算される。タイミングt605においてカウント値は1に変更され、かつタイミングt606においてカウント値は2に変更される。タイミングt605およびタイミングt606において、カウント値は、第1の所定値である3未満である。このため、タイミングt605およびタイミングt606において、撮像同期信号は無効である。
 タイミングt607、タイミングt608、およびタイミングt609において、第3の指示情報は“L”である。タイミングt607、タイミングt608、およびタイミングt609において、0がカウント値に加算される。このとき、カウント値は、2である。このとき、カウント値は、第1の所定値である3未満である。このため、タイミングt607、タイミングt608、およびタイミングt609において、撮像同期信号は無効である。
 タイミングt610において、第3の指示情報は“M”である。タイミングt610において、1がカウント値に加算されることにより、カウント値は、3に変更される。このとき、カウント値は、第1の所定値である3以上である。このため、タイミングt610において、信号生成部104は、有効な撮像同期信号を生成する。タイミングt610において、カウント値は、基準値である0に変更される。
 タイミングt611からタイミングt616までの期間における動作の詳細な説明を省略する。タイミングt612およびタイミングt613において、撮像同期信号は有効である。タイミングt611、タイミングt614、タイミングt615、およびタイミングt616において、撮像同期信号は無効である。
 第3の指示情報の各状態に応じてカウント値に加算される値は、上記の値に限らない。基準値および所定値は、上記の値に限らない。
 情報生成部103による第3の指示情報の生成と同期して、第3の指示情報に応じた値がカウント値から減算されてもよい。この場合、カウント値が第1の所定値以下になったとき、信号生成部104は、撮像同期信号を生成する。
 第1の実施形態の変形例において、第3の指示情報から撮像同期信号を生成する方法は、上記の方法に限らない。第1の実施形態の変形例において、第1の指示情報と第2の指示情報との少なくとも1つは、3つ以上の値のいずれか1つを示せばよい。第3の指示情報は、3つ以上の値のいずれか1つを示せばよい。
 第1の実施形態の変形例において、指示情報の状態数が増えることにより、カプセル内視鏡11の動きに対してより忠実な撮像同期信号が生成される。
 (第2の実施形態)
 図15は、本発明の第2の実施形態のカプセル内視鏡システム1の構成を示している。図15に示すように、カプセル内視鏡システム1は、カプセル内視鏡12と、無線通信装置20とを有する。
 カプセル内視鏡12の構成について、図1に示すカプセル内視鏡10の構成と異なる点を説明する。カプセル内視鏡12は、第2の解析部102を有していない。カプセル内視鏡12は、無線通信装置20と無線通信を行う第1の通信部108を有する。第1の通信部108は、無線通信回路(無線通信機)である。第1の通信部108は、第2のデータである画像を無線通信装置20に送信する。第1の通信部108は、第2の指示情報を無線通信装置20から受信する。第1の通信部108は、第2の指示情報を情報生成部103に出力する。上記以外の点については、カプセル内視鏡12の構成は、カプセル内視鏡10の構成と同様である。
 無線通信装置20は、第2の通信部200と、第2の解析部201とを有する。第2の通信部200は、無線通信回路(無線通信機)である。第2の通信部200は、カプセル内視鏡12と無線通信を行う。第2の通信部200は、第2のデータである画像をカプセル内視鏡12から受信する。第2の通信部200は、画像を第2の解析部201に出力する。第2の通信部200は、第2の指示情報をカプセル内視鏡12に送信する。
 第2の解析部201(第2のアナライザ)は、1つまたは複数のプロセッサで構成されている。第2の解析部201は、第1の実施形態における第2の解析部102と同様の処理を行う。第2の解析部201は、第2のデータを解析し、かつ解析結果を示す第2の指示情報を生成する。第2の解析部201は、第2の指示情報を第2の通信部200に出力する。
 情報生成部103と信号生成部104との動作は、第1の実施形態における動作と同様である。カプセル内視鏡12は、図12に示すカウンタ107を有してもよい。
 第2の実施形態のカプセル内視鏡12において、情報生成部103は、第1の指示情報および第2の指示情報に基づいて第3の指示情報を生成し、かつ信号生成部104は、第3の指示情報に基づいて撮像同期信号を生成する。これによって、カプセル内視鏡12は、カプセル内視鏡12が有する2つのセンサ、すなわちセンサ100および撮像部105で取得されたデータに基づいて撮像タイミングを高精度に決定することができる。
 (第2の実施形態の変形例)
 図16は、本発明の第2の実施形態の変形例のカプセル内視鏡システム2の構成を示している。図16に示すように、カプセル内視鏡システム2は、カプセル内視鏡13と、無線通信装置21とを有する。
 カプセル内視鏡13の構成について、図1に示すカプセル内視鏡10の構成と異なる点を説明する。カプセル内視鏡13は、第1の解析部101を有していない。カプセル内視鏡13は、無線通信装置21と無線通信を行う第1の通信部108を有する。第1の通信部108は、第1のデータを無線通信装置21に送信する。第1の通信部108は、第1の指示情報を無線通信装置21から受信する。第1の通信部108は、第1の指示情報を情報生成部103に出力する。上記以外の点については、カプセル内視鏡13の構成は、カプセル内視鏡10の構成と同様である。
 無線通信装置21の構成について、図15に示す無線通信装置20の構成と異なる点を説明する。無線通信装置21は、図15に示す第2の解析部201に代えて第1の解析部202を有する。第2の通信部200は、第1のデータをカプセル内視鏡13から受信する。第2の通信部200は、第1のデータを第1の解析部202に出力する。第2の通信部200は、第2の指示情報をカプセル内視鏡13に送信する。
 第1の解析部202(第1のアナライザ)は、1つまたは複数のプロセッサで構成されている。第1の解析部202は、第1の実施形態における第1の解析部101と同様の処理を行う。第1の解析部202は、第1のデータを解析し、かつ解析結果を示す第1の指示情報を生成する。第1の解析部202は、第1の指示情報を第2の通信部200に出力する。上記以外の点については、無線通信装置21の構成は、無線通信装置20の構成と同様である。
 情報生成部103と信号生成部104との動作は、第1の実施形態における動作と同様である。カプセル内視鏡13は、図12に示すカウンタ107を有してもよい。
 カプセル内視鏡13が第2の解析部102を有さず、かつ無線通信装置21が第2の解析部201をさらに有してもよい。この場合、第1の通信部108は、第1のデータおよび画像を無線通信装置21に送信する。第1の通信部108は、第1の指示情報および第2の指示情報を無線通信装置21から受信する。第2の通信部200は、第1のデータおよび画像をカプセル内視鏡13から受信する。第2の通信部200は、第1の指示情報および第2の指示情報をカプセル内視鏡13に送信する。
 本発明の各実施形態において、現在の第1および第2の指示情報のいずれか1つと、過去の第1から第3の指示情報の少なくとも2つとに基づいて第3の指示情報が生成されてもよい。現在の指示情報と過去の指示情報とに対応する第3の指示情報の状態は、各実施形態に示す例に限らない。想定される動作等に応じて、生成される第3の指示情報の状態は自由に変更できる。第3の指示情報の生成の際に参照される指示情報が生成された過去の時点は、第3の指示情報が生成される予定の時点から第1の時間よりも長い時間だけ前の時点であってもよい。
 以上、本発明の好ましい実施形態を説明したが、本発明はこれら実施形態およびその変形例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。
 本発明の各実施形態によれば、カプセル内視鏡は、カプセル内視鏡が有するセンサで取得されたデータに基づいて撮像タイミングを高精度に決定することができる。
 1,2 カプセル内視鏡システム
 10,11,12,13 カプセル内視鏡
 20,21 無線通信装置
 100 センサ
 101,202 第1の解析部
 102,201 第2の解析部
 103 情報生成部
 104 信号生成部
 105 撮像部
 106 メモリ
 107 カウンタ
 108 第1の通信部
 200 第2の通信部

Claims (8)

  1.  第1のデータを生成する第1のセンサと、
     前記第1のデータと異なる第2のデータを生成する第2のセンサと、
     第1の指示情報および第2の指示情報に基づいて第3の指示情報を生成し、前記第1の指示情報は、前記第1のデータを解析した結果であり、前記第2の指示情報は、前記第2のデータを解析した結果である情報生成部と、
     前記第3の指示情報に基づいて撮像同期信号を生成する信号生成部と、
     前記撮像同期信号に基づいて撮像を行い、かつ画像を取得する撮像部と、
     を有し、
     前記第1の指示情報の更新間隔は前記第2の指示情報の更新間隔以下であり、
     前記情報生成部は、少なくとも3つの指示情報の組み合わせに基づいて前記第3の指示情報を生成し、
     前記少なくとも3つの前記指示情報は、第1の時点における前記第1の指示情報と前記第2の指示情報との少なくとも1つを含み、かつ第2の時点における前記第1の指示情報と前記第2の指示情報と前記第3の指示情報との少なくとも1つを含み、前記第2の時点は、前記第1の時点よりも前である
     カプセル内視鏡。
  2.  前記第2のセンサは前記撮像部であり、前記第2のデータは前記画像である
     請求項1に記載のカプセル内視鏡。
  3.  前記情報生成部は、前記第2の指示情報の生成が行われるまで、前記第1の指示情報にかかわらず前記第3の指示情報を維持する
     請求項1または請求項2に記載のカプセル内視鏡。
  4.  前記情報生成部は、状態情報に基づいて前記第3の指示情報を生成し、
     前記状態情報において、前記第1の時点における前記第1の指示情報および前記第2の指示情報と、前記第2の時点における前記第1の指示情報および前記第2の指示情報と、前記第3の指示情報とが関連付けられ、
     前記状態情報において、撮像頻度が相対的に低くなる前記第3の指示情報の数は、撮像頻度が相対的に高くなる前記第3の指示情報の数よりも多い
     請求項1から請求項3のいずれか一項に記載のカプセル内視鏡。
  5.  前記情報生成部は、状態情報に基づいて前記第3の指示情報を生成し、
     前記状態情報において、前記第1の時点における前記第1の指示情報および前記第2の指示情報と、前記第2の時点における前記第1の指示情報および前記第2の指示情報と、前記第3の指示情報とが関連付けられ、
     前記状態情報において、撮像頻度が相対的に高くなる前記第3の指示情報の数は、撮像頻度が相対的に低くなる前記第3の指示情報の数よりも多い
     請求項1から請求項3のいずれか一項に記載のカプセル内視鏡。
  6.  前記第1の指示情報と前記第2の指示情報との少なくとも1つは、3つ以上の値のいずれか1つを示し、前記第3の指示情報は、3つ以上の値のいずれか1つを示す
     請求項1から請求項5のいずれか一項に記載のカプセル内視鏡。
  7.  カウント値が基準値から増加または減少するカウンタをさらに有し、
     前記第1の指示情報が更新される毎に前記第3の指示情報に基づいて前記カウント値が算出され、
     前記撮像同期信号が生成されたとき、前記カウント値は前記基準値になり、
     前記カウント値が前記基準値から増加することにより前記カウント値が所定値以上になったとき、または前記カウント値が前記基準値から減少することにより前記カウント値が前記所定値以下になったとき、前記信号生成部は前記撮像同期信号を生成する
     請求項1から請求項6のいずれか一項に記載のカプセル内視鏡。
  8.  無線通信装置と無線通信を行う通信部をさらに有し、
     前記通信部は、前記第1のデータと前記第2のデータとの少なくとも1つを前記無線通信装置に送信し、
     前記通信部は、前記第1の指示情報と前記第2の指示情報との少なくとも1つを前記無線通信装置から受信する
     請求項1から請求項7のいずれか一項に記載のカプセル内視鏡。
PCT/JP2016/051966 2016-01-25 2016-01-25 カプセル内視鏡 WO2017130266A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017563410A JPWO2017130266A1 (ja) 2016-01-25 2016-01-25 カプセル内視鏡
PCT/JP2016/051966 WO2017130266A1 (ja) 2016-01-25 2016-01-25 カプセル内視鏡
US16/040,605 US11134831B2 (en) 2016-01-25 2018-07-20 Capsule endoscope having imaging synchronization based on data from an image sensor and another sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/051966 WO2017130266A1 (ja) 2016-01-25 2016-01-25 カプセル内視鏡

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/040,605 Continuation US11134831B2 (en) 2016-01-25 2018-07-20 Capsule endoscope having imaging synchronization based on data from an image sensor and another sensor

Publications (1)

Publication Number Publication Date
WO2017130266A1 true WO2017130266A1 (ja) 2017-08-03

Family

ID=59397602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051966 WO2017130266A1 (ja) 2016-01-25 2016-01-25 カプセル内視鏡

Country Status (3)

Country Link
US (1) US11134831B2 (ja)
JP (1) JPWO2017130266A1 (ja)
WO (1) WO2017130266A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114245483B (zh) * 2021-12-23 2023-12-12 广州思德医疗科技有限公司 一种用于胃肠镜胶囊的通讯监测重连方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004154176A (ja) * 2002-11-01 2004-06-03 Olympus Corp 内視鏡撮像装置
JP2006223892A (ja) * 2000-05-15 2006-08-31 Given Imaging Ltd インビボカメラのキャプチャレートおよび表示レートを制御するためのシステム
JP2008237639A (ja) * 2007-03-28 2008-10-09 Fujifilm Corp カプセル内視鏡システム、およびカプセル内視鏡の動作制御方法
JP2010035746A (ja) * 2008-08-04 2010-02-18 Fujifilm Corp カプセル内視鏡システム、カプセル内視鏡及びカプセル内視鏡の動作制御方法
JP2012071186A (ja) * 2012-01-16 2012-04-12 Fujifilm Corp カプセル内視鏡、およびカプセル内視鏡の動作制御方法、並びに情報管理装置
JP2015077234A (ja) * 2013-10-16 2015-04-23 オリンパス株式会社 体外端末、カプセル内視鏡システム、カプセル内視鏡制御方法およびプログラム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7983458B2 (en) * 2005-09-20 2011-07-19 Capso Vision, Inc. In vivo autonomous camera with on-board data storage or digital wireless transmission in regulatory approved band
KR100876673B1 (ko) * 2007-09-06 2009-01-07 아이쓰리시스템 주식회사 촬영 속도 조절이 가능한 캡슐형 내시경
JP2009195271A (ja) 2008-02-19 2009-09-03 Fujifilm Corp カプセル内視鏡システム
JP2009225933A (ja) * 2008-03-21 2009-10-08 Fujifilm Corp カプセル内視鏡システム及びカプセル内視鏡の動作制御方法
DE112010004507B4 (de) * 2009-11-20 2023-05-25 Given Imaging Ltd. System und Verfahren zur Steuerung des Stromverbrauchs einer In-vivo-Vorrichtung
JP6249867B2 (ja) * 2014-04-18 2017-12-20 オリンパス株式会社 カプセル内視鏡システム、カプセル内視鏡、受信装置、カプセル内視鏡の撮像制御方法、及びプログラム
US10143364B2 (en) * 2015-07-23 2018-12-04 Ankon Technologies Co., Ltd Controlled image capturing method including position tracking and system used therein

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006223892A (ja) * 2000-05-15 2006-08-31 Given Imaging Ltd インビボカメラのキャプチャレートおよび表示レートを制御するためのシステム
JP2004154176A (ja) * 2002-11-01 2004-06-03 Olympus Corp 内視鏡撮像装置
JP2008237639A (ja) * 2007-03-28 2008-10-09 Fujifilm Corp カプセル内視鏡システム、およびカプセル内視鏡の動作制御方法
JP2010035746A (ja) * 2008-08-04 2010-02-18 Fujifilm Corp カプセル内視鏡システム、カプセル内視鏡及びカプセル内視鏡の動作制御方法
JP2012071186A (ja) * 2012-01-16 2012-04-12 Fujifilm Corp カプセル内視鏡、およびカプセル内視鏡の動作制御方法、並びに情報管理装置
JP2015077234A (ja) * 2013-10-16 2015-04-23 オリンパス株式会社 体外端末、カプセル内視鏡システム、カプセル内視鏡制御方法およびプログラム

Also Published As

Publication number Publication date
US11134831B2 (en) 2021-10-05
US20180325363A1 (en) 2018-11-15
JPWO2017130266A1 (ja) 2018-11-15

Similar Documents

Publication Publication Date Title
CN111149350B (zh) 使用事件相机生成静态图像
US20190008270A1 (en) Systems, methods, and devices for providing guidance and feedback based on location and performance
JP7215515B2 (ja) 解析装置、解析方法及びプログラム
JP6476925B2 (ja) 情報処理装置、位置更新方法及びプログラム
US20170127922A1 (en) Capsule endoscope, capsule endoscope system, and method for controlling capsule endoscope
RU2747010C2 (ru) Система и способ для обнаружения перемещения пользователя устройства для ухода за полостью рта и предоставления обратной связи
JP2019008507A (ja) 変換行列算出装置、位置推定装置、変換行列算出方法および位置推定方法
JPWO2018066421A1 (ja) 認知機能評価装置、認知機能評価システム、認知機能評価方法、及び、プログラム
WO2017130266A1 (ja) カプセル内視鏡
JP6578374B2 (ja) カプセル内視鏡およびカプセル内視鏡システム
WO2017047112A1 (ja) カプセル内視鏡システム
JP2017121373A (ja) 情報処理装置、情報処理方法、及び、プログラム
JP2015198938A5 (ja)
KR101728408B1 (ko) 방향 예측을 이용한 저 레이턴시 시뮬레이션 장치 및 방법과, 이를 위한 컴퓨터 프로그램
JP2014212994A (ja) 脈拍推定装置および脈拍推定プログラム
CN111385813A (zh) 用于重复活动序列中的循环持续时间测量的系统和方法
JP5168629B2 (ja) 方位角計測装置及び方位角計測方法
US11386917B1 (en) Audio-based repetition counter system and method
TWI680382B (zh) 電子裝置及其姿態校正方法
US20210004080A1 (en) Position estimation apparatus, position estimation method, and program
US10661142B2 (en) Movement analysis device for determining whether a time range between a start time and a completion time of a predetermined movement by a target person is valid, and movement analysis method and recording medium
JP6922208B2 (ja) 情報処理装置、情報処理方法及びプログラム
KR102280780B1 (ko) 모션 센서의 측정 정확도를 향상시키기 위한 전자 장치 및 그 방법
TWI766020B (zh) 用於估計可攜式裝置之定向的方法
CN111526313B (zh) 车辆质检视频的展示方法、装置及视频录制设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16887853

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017563410

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16887853

Country of ref document: EP

Kind code of ref document: A1