WO2017125029A1 - 一种用于中低速磁悬浮交通工程低置线路的榫接式承轨梁结构 - Google Patents

一种用于中低速磁悬浮交通工程低置线路的榫接式承轨梁结构 Download PDF

Info

Publication number
WO2017125029A1
WO2017125029A1 PCT/CN2017/071620 CN2017071620W WO2017125029A1 WO 2017125029 A1 WO2017125029 A1 WO 2017125029A1 CN 2017071620 W CN2017071620 W CN 2017071620W WO 2017125029 A1 WO2017125029 A1 WO 2017125029A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforced concrete
low
bottom plate
adjacent
traffic engineering
Prior art date
Application number
PCT/CN2017/071620
Other languages
English (en)
French (fr)
Inventor
郭建湖
李小和
赵新益
姚洪锡
李巍
王勇刚
杨辉建
Original Assignee
中铁第四勘察设计院集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中铁第四勘察设计院集团有限公司 filed Critical 中铁第四勘察设计院集团有限公司
Publication of WO2017125029A1 publication Critical patent/WO2017125029A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B25/00Tracks for special kinds of railways
    • E01B25/30Tracks for magnetic suspension or levitation vehicles
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B25/00Tracks for special kinds of railways
    • E01B25/30Tracks for magnetic suspension or levitation vehicles
    • E01B25/305Rails or supporting constructions
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B2204/00Characteristics of the track and its foundations
    • E01B2204/09Ballastless systems

Definitions

  • the invention belongs to the technical field of low-rise lines for medium and low-speed magnetic levitation traffic engineering, and more particularly relates to a low-line track-bearing beam structure for medium and low-speed magnetic levitation traffic engineering.
  • Medium- and low-speed magnetic levitation rail transit is a new type of transportation. At present, there are few research results at home and abroad, and the number of lines opened and operated in the world is even rare. At present, there is only the commercial operation line of the medium and low-speed magnetic levitation railway opened in March 2005 in Japan - the eastern hilly line and the medium and low speed magnetic levitation railway commercial operation line opened in June 2014 in South Korea. China's medium and low-speed magnetic levitation traffic is currently only the National Defense University of Science and Technology test line, Qingchengshan test line, Tangshan experimental line, but there is no official line of operation, and the main structure is elevated structure, rarely related to the low-line line bearing beam structure Research and application.
  • the medium and low speed magnetic levitation low line consists of the sleeper, the track beam and the underpass of the track beam.
  • the support beam of the support track is placed on the roadbed composed of geotechnical structures.
  • the operation of the medium and low speed maglev train includes suspension, guidance and drive. Both braking and braking need to be done on the rail beam.
  • Maglev trains have high requirements on the deformation of the line structure. Because the small deformation of the structure may affect the comfort of the ride and even threaten the safety of the train, the design of the track beam is very important.
  • the conventional rail-bearing beam structure In order to prevent excessive temperature stress and uneven settlement, the conventional rail-bearing beam structure generally adopts an expansion joint every 10 to 30 m.
  • the foundation under the bearing beam is a geotechnical structure composed of rock and soil. Due to the influence of topography and geological conditions, the quality is relatively difficult to control, so the load and Uneven settlement is easy to occur under various natural factors, and staggered settlement will inevitably occur at the inter-segment joint between adjacent bearing beams, which will affect the smoothness of the F-track, and may even lead to misalignment, deformation, etc. of the F-rail. The problem will seriously affect the normal operation of the magnetic levitation vehicle.
  • the present invention provides a splicing type bearing beam structure for low and medium speed magnetic levitation traffic engineering low-line lines, which can meet the track structure of the medium and low speed magnetic levitation traffic engineering track structure.
  • the requirement of uneven settlement of the beam structure can meet the requirements of long-term stability, durability and controllability of the construction quality of the bed.
  • a splicing type bearing beam structure for a low-speed line of a medium-low speed magnetic levitation traffic engineering which is characterized in that it comprises a reinforced concrete support structure, and the number of reinforced concrete support structures For a plurality of and these reinforced concrete support structures are arranged in order from left to right, each reinforced concrete support structure comprises a reinforced concrete beam structure and a reinforced concrete floor, wherein the reinforced concrete beam structure passes through the reinforced concrete
  • the bottom plate supports and the two are fixedly connected, and the longitudinal direction of the reinforced concrete beam structure and the reinforced concrete floor extends in the front-rear direction;
  • Each of the reinforced concrete bottom plates comprises a bottom plate main structure, a tenon and a gutter, wherein the tenons and the gutters are respectively disposed on the right side and the left side of the bottom plate main structure, and each of the tenons and the gutters The longitudinal direction of each of them is extended in the front and rear direction;
  • one of the reinforced concrete floors protrudes into the groove of the other reinforced concrete floor, and the tenons and the grooves cooperate to prevent the reinforced concrete beam supported by the two reinforced concrete floors.
  • the structure is differentially settled; in addition, rounds are provided on each of the tenons and each of the gutters so that the tenons can rotate in the gutters, so that the adjacent two reinforced concrete floors can be rotated relative to each other.
  • the reinforced concrete beam structure supported by the reinforced concrete floor can also rotate relative to each other.
  • the method further comprises a wear-resistant sliding layer disposed between the mutually cooperating tenons and the gutters for buffering the impact force transmitted to the maglev train between the tenon and the gutter, and reducing the reinforced concrete Wear of the bottom plate at the tenon and the groove
  • the utility model further comprises a steel edge rubber waterstop belt, wherein the adjacent two bottom plate main body structures are connected by a steel edge rubber waterstop belt, wherein the steel edge rubber waterstop belt is disposed at an upper portion of the bottom plate main body structure,
  • the longitudinal direction extends in the front-rear direction, and the steel edges at the left and right ends thereof respectively extend into a bottom plate main body structure.
  • the method further comprises: adding back asphalt formed by the asphalt from the upper part of the steel edge rubber waterstop, and the upper part of the adjacent two bottom body structures are connected by the asphalt rib to prevent the surface from seeping and directly affecting the foundation. Bed stability.
  • expansion joint I there is an expansion joint I between two adjacent reinforced concrete beam structures, and an expansion joint II exists between adjacent two reinforced concrete bottom plates, and the slit width of the expansion joint I is larger than the slit width of the expansion joint II.
  • the present invention provides the tongue and the tongue groove to form a ⁇ -type connection, thereby avoiding the settlement of the settlement caused by the different ground treatment measures between the adjacent reinforced concrete beam structures, and the deformation coordination can be realized to control the uneven settlement, thereby ensuring
  • the magnetic F-rail does not generate misalignment on the low-line, effectively achieving the smoothness requirement of the F-rail of the elevated structure of the magnetic levitation traffic engineering and the transition section of the low-line.
  • the bead and the groove of the invention are rounded, and a wear-resistant sliding layer is arranged between the tenon and the groove, which can be buffered to some extent between the tenon and the groove of the reinforced concrete floor.
  • the impact force of the maglev train reduces the wear of the reinforced concrete floor at the tenons and the gutters, and at the same time avoids the local pressure damage caused by the stress concentration caused by the mutual compression between the tenons and the gutters.
  • the invention provides a steel edge rubber waterstop on the upper part between the reinforced concrete bottom plates, and the steel edges with higher strength on both sides are fixed between the adjacent two reinforced concrete bottom plates to prevent the waterproof belt from being unevenly loaded.
  • the width of the expansion joint I between the adjacent reinforced concrete beam structures of the present invention is larger than the width of the expansion joint II of the adjacent two reinforced concrete floors, and satisfies the requirements of the arrangement of the rail pedestal, and not only provides drainage channels, Moreover, it provides space for comprehensive pipeline crossing, and is also conducive to maintenance and repair.
  • Figure 1 is a front view of the present invention
  • Figure 2 is a schematic view of the joint of the tenon and the tongue and groove in Figure 1.
  • a splicing type bearing beam structure for a low-speed line of a medium-low speed magnetic levitation traffic engineering including a reinforced concrete supporting structure, the number of the reinforced concrete supporting structures is plural and the reinforced concrete supports The structures are arranged in order from left to right, and each reinforced concrete support structure comprises a reinforced concrete beam structure 1 and a reinforced concrete floor 2, wherein the reinforced concrete beam structure 1 is supported by the reinforced concrete floor 2 and Fixedly connected, the longitudinal direction of the reinforced concrete beam structure 1 and the reinforced concrete floor 2 extending in the front-rear direction;
  • Each of the reinforced concrete floor 2 includes a bottom plate main structure 2.1, a tongue 2.2 and a gutter 2.3, wherein the tenon 2.2 and the gutter 2.3 are respectively disposed on the right side and the left side of the bottom plate main structure 2.1.
  • Each of the tenon 2.2 and the gutter 2.3 has a longitudinal direction extending in the front-rear direction;
  • the tenon 2.2 of one of the reinforced concrete floor 2 projects into the groove 2.3 of the other reinforced concrete floor 2, and the tongue 2.2 and the groove 2.3 cooperate to prevent the two reinforced concrete floors
  • the two supported reinforced concrete beam structures 1 are differentially settled; in addition, each of the tenons 2.2 and each of the gutters 2.3 are provided with rounded corners so that the tenons 2.2 can rotate within the gutters 2.3, thereby making adjacent
  • the two reinforced concrete floor 2 can undergo relatively small rotation, so that the reinforced concrete beam structure 1 supported by the two reinforced concrete floor 2 can also rotate relative to each other.
  • a convex portion 2.2 on the right side of one of the bottom plate main structures 2.1 is overlapped with a groove 2.3 on the left side of the other bottom plate main structure 2.1 to prevent two reinforced concrete
  • the support structure is differentially settled, and the force mode is hinged (ie, relative rotation can occur), the rotation constraint of the low-line bearing beam structure is released, and the vertical constraint is retained to release the temperature stress, thereby avoiding the bearing beam structure. Warping and cracking can ensure the deformation coordination between each section of reinforced concrete support structure, control uneven settlement, and ensure the smoothness of the upper F rail of the bearing beam structure.
  • the wear-resistant sliding layer 3 is further disposed between the mutually cooperating protrusions 2.2 and the gutters 2.3 for buffering the maglev train impact transmitted between the tenons 2.2 and the gutters 2.3. Force to reduce the wear of the reinforced concrete floor 2 at the crown 2.2 and the groove 2.3.
  • the boring head of the concrete floor sill 2.2 is rounded, and the sill 2.3 is also rounded. Through the action of the wear-resistant sliding layer 3, it can be buffered to a certain extent to the concrete floor sill 2.2 and the concrete floor sill.
  • the impact force of the 2.3 maglev train reduces the wear between the concrete floor sill 2.2 and the shovel 2.3, and at the same time avoids the local pressure damage caused by the stress concentration caused by the squeezing between the shovel 2.2 and the shovel 2.3.
  • the cross section of the tenon 2.2 is a trapezoidal shape.
  • a steel edge rubber waterstop 4 is further included, and the adjacent two bottom plate main structures 2.1 are connected by a steel edge rubber waterstop 4, and the steel edge rubber waterstop 4 is disposed at an upper portion of the bottom plate main structure 2.1.
  • the longitudinal direction thereof extends in the front-rear direction, and the steel edges of the left and right ends thereof respectively extend into a bottom plate main body structure 2.1.
  • the steel edge of the steel edge rubber waterstop 4 with high strength on both sides is fixed between the two adjacent bottom plates to prevent the waterproof tape from tearing under the uneven bearing state, and the asphalt is backfilled from the upper part of the steel edge rubber waterstop 4
  • the top surface of the rib 5 to the bottom plate adopts a double waterproof structure to prevent the surface water from being infiltrated by the expansion joint directly affecting the long-term stability of the bed under the bearing beam structure.
  • the utility model further comprises an asphalt rib 5 formed by backfilling the asphalt from the upper part of the steel edge rubber waterstop 4, and the upper portions of the adjacent two bottom plate main structures 2.1 are connected by the asphalt rib 5 to prevent the surface from seeping. Directly affect the stability of the bed.
  • expansion joints I6 between adjacent two reinforced concrete beam structures 1 and adjacent two steels
  • expansion joint II7 between the reinforced concrete bottom plate 2
  • the joint width of the expansion joint I6 is larger than the joint width of the expansion joint II7, and meets the requirements of the arrangement of the rail pedestal, not only provides a drainage channel, but also provides space for comprehensive pipeline crossing. It is also conducive to maintenance and repair.
  • the invention realizes the inter-segment splicing connection by providing the ridges 2.2 and the groovings 2.3 at the two ends of the low-floor main body structure 2.1, and the wear-resistant sliding layer 3 is arranged between the ridges 2.2 and the sills 2.3, and the setting is set Steel edge rubber waterstop 4 and backfill asphalt rib 5 to prevent groundwater infiltration, which can effectively release the rotation constraint and temperature stress of the bearing beam structure under the load of differential settlement and temperature, avoiding the adjacent two sections Large settlements are generated between the reinforced concrete support structures, which can realize deformation coordination and control uneven settlement.
  • the construction quality can be easily controlled, which can meet the requirements of safe, comfortable operation and long-term stability of the maglev train.
  • the geotechnical foundation under the low-track bearing beam structure shall be filled according to the design requirements.
  • the filling shall be layered according to the filling type and compaction degree of each part during the filling, and the next layer of filling inspection shall be completed. Fill in the upper layer after requesting.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Bridges Or Land Bridges (AREA)
  • Road Paving Structures (AREA)

Abstract

一种用于中低速磁悬浮交通工程低置线路的榫接式承轨梁结构,包括钢筋混凝土支承结构,钢筋混凝土支承结构均包括钢筋混凝土梁式结构(1)和钢筋混凝土底板(2),钢筋混凝土底板(2)均包括底板主体结构(2)、凸榫(2.2)和榫槽(2.1);每个凸榫(2.2)和每个榫槽(2.1)上均设置圆角,以使凸榫(2.2)能在榫槽(2.1)内转动,从而使相邻两钢筋混凝土底板(2)能发生相对转动,进而使这两钢筋混凝土底板(2)所支承的钢筋混凝土梁式结构(1)也能发生相对转动。设置凸榫和榫槽形成榫式连接,避免了相邻钢筋混凝土梁式结构之间因地基处理措施不同造成的沉降错台,有效实现磁悬浮交通工程高架结构与低置线路过渡段F轨的平顺性要求。

Description

一种用于中低速磁悬浮交通工程低置线路的榫接式承轨梁结构 [技术领域]
本发明属于中低速磁悬浮交通工程低置线路技术领域,更具体地,涉及一种中低速磁悬浮交通工程低置线路承轨梁结构。
[背景技术]
中低速磁悬浮轨道交通属于一种新型交通方式,目前国内外的研究成果较少,全世界开通运营的线路更是少数。目前只有2005年3月日本建设开通的中低速磁悬浮铁路商业运行线-东部丘陵线和2014年6月韩国开通的中低速磁悬浮铁路商务运行线。而中国的中低速磁悬浮交通目前只有国防科技大学试验线、青城山试验线、唐山实验线,但没有投入运营的正式线路,且均以高架结构为主,鲜见有关低置线路承轨梁结构方面的研究与应用。
中低速磁悬浮低置线路由轨枕、承轨梁与承轨梁下路基组成,支承轨道的承轨梁设置在由土工结构物构成的路基之上,中低速磁悬浮列车的运行包括悬浮、导向、驱动和制动都需要在承轨梁上完成的。磁悬浮列车对线路结构变形要求很高,因为结构很小的变形就可能影响乘车的舒适性甚至威胁行车安全,所以承轨梁的设计十分重要。
为了防止产生过大的温度应力和不均匀沉降,传统的承轨梁结构一般采用每10~30m一节设置伸缩缝。与高架线路承轨梁设置于沉降容易控制的桥梁上不同,承轨梁下基础是由岩土构成的土工结构物,受地形、地质条件等因素的影响,质量相对不易控制,因此在荷载及各种自然因素作用下易产生不均匀沉降,相邻承轨梁之间的节间缝处难免会出现错台沉降,从而影响F轨的平顺性,甚至可能导致F轨产生错台、变形等问题,严重时将影响磁悬浮车辆的正常运营。
[发明内容]
针对现有技术的以上缺陷或改进需求,本发明提供了一种用于中低速磁悬浮交通工程低置线路的榫接式承轨梁结构,其既能满足中低速磁悬浮交通工程轨道结构对承轨梁结构不均匀沉降的要求,又能满足基床长期稳定性、耐久性和施工质量的可控性的要求。
为实现上述目的,按照本发明,提供了一种用于中低速磁悬浮交通工程低置线路的榫接式承轨梁结构,其特征在于,包括钢筋混凝土支承结构,所述钢筋混凝土支承结构的数量为多个并且这些钢筋混凝土支承结构沿从左至右的顺序排列,每个钢筋混凝土支承结构均包括钢筋混凝土梁式结构和钢筋混凝土底板,其中,所述钢筋混凝土梁式结构通过所述钢筋混凝土底板支承并且二者固定连接,所述钢筋混凝土梁式结构和所述钢筋混凝土底板的纵向均沿前后方向延伸;
每个所述钢筋混凝土底板均包括底板主体结构、凸榫和榫槽,其中,所述凸榫和榫槽分别设置在所述底板主体结构的右侧和左侧,每个凸榫和榫槽的纵向均设前后方向延伸;
相邻两钢筋混凝土底板中,其中一个钢筋混凝土底板的凸榫伸入另一个钢筋混凝土底板的榫槽中,凸榫和榫槽相互配合,以防止这两钢筋混凝土底板所支承的钢筋混凝土梁式结构发生差异沉降;此外,每个凸榫和每个榫槽上均设置圆角,以使凸榫能在榫槽内转动,从而使相邻两钢筋混凝土底板能发生相对转动,进而使这两钢筋混凝土底板所支承的钢筋混凝土梁式结构也能发生相对转动。
优选地,还包括耐磨滑动层,所述耐磨滑动层设置于相互配合的凸榫与榫槽之间,以用于缓冲传递至凸榫与榫槽间的磁浮列车冲击力,减少钢筋混凝土底板在凸榫与榫槽处的磨损
优选地,还包括钢边橡胶止水带,相邻两底板主体结构通过一钢边橡胶止水带连接,所述钢边橡胶止水带设置于所述底板主体结构的上部,其 纵向沿前后方向延伸,并且其左右两端的钢边分别伸入一底板主体结构内。
优选地,还包括从钢边橡胶止水带的上部回填沥青形成的沥青麻筋,相邻两底板主体结构的上部通过所述沥青麻筋连接在一起,以防止地表水下渗而直接影响基床的稳定性。
优选地,相邻两钢筋混凝土梁式结构之间存在伸缩缝Ⅰ,相邻两钢筋混凝土底板之间存在伸缩缝Ⅱ,并且伸缩缝Ⅰ的缝宽大于所述伸缩缝Ⅱ的缝宽。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
(1)本发明设置凸榫和榫槽形成榫式连接,避免了相邻钢筋混凝土梁式结构之间因地基处理措施不同造成的沉降错台,可实现变形协调从而控制不均匀沉降,确保了磁浮F轨在低置线路上不会产生错台,有效实现磁悬浮交通工程高架结构与低置线路过渡段F轨的平顺性要求。
(2本发明的凸榫和榫槽处采用倒圆角处理,凸榫和榫槽之间设有耐磨滑动层,可在一定程度上缓冲传递至钢筋混凝土底板的凸榫与榫槽间的磁浮列车冲击力,减少钢筋混凝土底板在凸榫与榫槽处的磨损,同时避免了因凸榫与榫槽之间相互挤压引起应力集中造成结构的局部承压破坏。
(3)本发明在钢筋混凝土底板间的上部设置钢边橡胶止水带,其两侧强度较高的钢边固定在相邻两块钢筋混凝土底板之间,防止受荷不均匀状态下防水带撕裂失效,从钢边橡胶止水带上部回填沥青麻筋至钢筋混凝土底板的顶面,这样采用双重防水构造用以防止地表水由伸缩缝下渗直接影响承轨梁结构下的基床的长期稳定性。
(4)本发明的相邻钢筋混凝土梁式结构之间的伸缩缝Ⅰ的宽度大于相邻两块钢筋混凝土底板的伸缩缝Ⅱ的宽度,且满足轨排台座布置要求,不仅提供了排水通道,而且为综合管线穿越提供了空间,也有利于养护维修等。
[附图说明]
图1是本发明的主视图;
图2是图1中凸榫与榫槽配合处的示意图。
[具体实施方式]
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
参照图1、图2,一种用于中低速磁悬浮交通工程低置线路的榫接式承轨梁结构,包括钢筋混凝土支承结构,所述钢筋混凝土支承结构的数量为多个并且这些钢筋混凝土支承结构沿从左至右的顺序排列,每个钢筋混凝土支承结构均包括钢筋混凝土梁式结构1和钢筋混凝土底板2,其中,所述钢筋混凝土梁式结构1通过所述钢筋混凝土底板2支承并且二者固定连接,所述钢筋混凝土梁式结构1和所述钢筋混凝土底板2的纵向均沿前后方向延伸;
每个所述钢筋混凝土底板2均包括底板主体结构2.1、凸榫2.2和榫槽2.3,其中,所述凸榫2.2和榫槽2.3分别设置在所述底板主体结构2.1的右侧和左侧,每个凸榫2.2和榫槽2.3的纵向均设前后方向延伸;
相邻两钢筋混凝土底板2中,其中一个钢筋混凝土底板2的凸榫2.2伸入另一个钢筋混凝土底板2的榫槽2.3中,凸榫2.2和榫槽2.3相互配合,以防止这两钢筋混凝土底板2所支承的钢筋混凝土梁式结构1发生差异沉降;此外,每个凸榫2.2和每个榫槽2.3上均设置圆角,以使凸榫2.2能在榫槽2.3内转动,从而使相邻两钢筋混凝土底板2能发生相对微小的转动,进而使这两钢筋混凝土底板2所支承的钢筋混凝土梁式结构1也能发生相对转动。
参照图1,相邻两钢筋混凝土支承结构中,其中一节底板主体结构2.1右侧的凸榫2.2与另一节底板主体结构2.1左侧的榫槽2.3搭接,用以防止两节钢筋混凝土支承结构发生差异沉降,其受力模式为铰接(即能发生相对转动),释放了低置线路承轨梁结构的转动约束,保留了竖向约束,以释放温度应力,避免了承轨梁结构发生翘曲、开裂,从而可确保每节钢筋混凝土支承结构之间的变形协调,控制不均匀沉降,保证承轨梁结构上部F轨的平顺性。
进一步,还包括耐磨滑动层3,所述耐磨滑动层3设置于相互配合的凸榫2.2与榫槽2.3之间,以用于缓冲传递至凸榫2.2与榫槽2.3间的磁浮列车冲击力,减少钢筋混凝土底板2在凸榫2.2与榫槽2.3处的磨损。混凝土底板凸榫2.2的榫头采用倒圆角处理,榫槽2.3也采用倒圆角处理,通过耐磨滑动层3的作用,可在一定程度上缓冲传递至混凝土底板凸榫2.2与混凝土底板榫槽2.3间的磁浮列车冲击力,减少混凝土底板凸榫2.2与榫槽2.3间的磨损,同时避免了因凸榫2.2与榫槽2.3之间相互挤压引起应力集中造成结构的局部承压破坏,所述凸榫2.2的横截面为类梯形。
进一步,还包括钢边橡胶止水带4,相邻两底板主体结构2.1通过一钢边橡胶止水带4连接,所述钢边橡胶止水带4设置于所述底板主体结构2.1的上部,其纵向沿前后方向延伸,并且其左右两端的钢边分别伸入一底板主体结构2.1内。钢边橡胶止水带4的两侧强度较高的钢边固定在相邻两块底板之间,防止受荷不均匀状态下防水带撕裂失效,从钢边橡胶止水带4上部回填沥青麻筋5至底板的顶面,采用双重防水构造用以防止地表水由伸缩缝下渗直接影响承轨梁结构下的基床的长期稳定性。
进一步,还包括从钢边橡胶止水带4的上部回填沥青形成的沥青麻筋5,相邻两底板主体结构2.1的上部通过所述沥青麻筋5连接在一起,以防止地表水下渗而直接影响基床的稳定性。
进一步,相邻两钢筋混凝土梁式结构1之间存在伸缩缝Ⅰ6,相邻两钢 筋混凝土底板2之间存在伸缩缝Ⅱ7,并且伸缩缝Ⅰ6的缝宽大于所述伸缩缝Ⅱ7的缝宽,且满足轨排台座布置要求,不仅提供了排水通道,而且为综合管线穿越提供了空间,也有利于养护维修等。
本发明通过在低置线路底板主体结构2.1的两端分别设置凸榫2.2和榫槽2.3,实现节间榫接式连接,并在凸榫2.2榫槽2.3间设置耐磨滑动层3,并且设置钢边橡胶止水带4和回填沥青麻筋5以防止地下水下渗,这样可以有效释放承轨梁结构在差异沉降和温度等荷载作用下可能出现的转动约束和温度应力,避免相邻两节钢筋混凝土支承结构间产生较大的沉降错台,可实现变形协调从而控制不均匀沉降,施工质量容易控制,能够满足磁悬浮列车安全、舒适运营以及长期稳定性的要求。
本发明的具体的实施过程如下:
(1)平整低置线路地段场地,根据地基条件进行必要的地基处理。
(2)地基处理完成后,按设计要求填筑低置线路承轨梁结构下的土工基础,填筑时根据各部位填料类型及压实度要求分层填筑,下一层填筑检测符合要求后再填筑上一层。
(3)承轨梁下的土工基础填筑施工完成后,做好钢筋的绑扎、耐磨滑动层3以及钢边橡胶止水带4的固定,立模后浇筑底板和梁式结构混凝土。
(4)待混凝土结构强度达到设计要求强度后拆除模板,于钢筋混凝土底板2的节间伸缩缝处回填沥青麻筋5至底板主体结构2.1的顶面,施工完毕后即可。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (5)

  1. 一种用于中低速磁悬浮交通工程低置线路的榫接式承轨梁结构,其特征在于,包括钢筋混凝土支承结构,所述钢筋混凝土支承结构的数量为多个并且这些钢筋混凝土支承结构沿从左至右的顺序排列,每个钢筋混凝土支承结构均包括钢筋混凝土梁式结构和钢筋混凝土底板,其中,所述钢筋混凝土梁式结构通过所述钢筋混凝土底板支承并且二者固定连接,所述钢筋混凝土梁式结构和所述钢筋混凝土底板的纵向均沿前后方向延伸;
    每个所述钢筋混凝土底板均包括底板主体结构、凸榫和榫槽,其中,所述凸榫和榫槽分别设置在所述底板主体结构的右侧和左侧,每个凸榫和榫槽的纵向均设前后方向延伸;
    相邻两钢筋混凝土底板中,其中一个钢筋混凝土底板的凸榫伸入另一个钢筋混凝土底板的榫槽中,凸榫和榫槽相互配合,以防止这两钢筋混凝土底板所支承的钢筋混凝土梁式结构发生差异沉降;此外,每个凸榫和每个榫槽上均设置圆角,以使凸榫能在榫槽内转动,从而使相邻两钢筋混凝土底板能发生相对转动,进而使这两钢筋混凝土底板所支承的钢筋混凝土梁式结构也能发生相对转动。
  2. 根据权利要求1所述的一种用于中低速磁悬浮交通工程低置线路的榫接式承轨梁结构,其特征在于,还包括耐磨滑动层,所述耐磨滑动层设置于相互配合的凸榫与榫槽之间,以用于缓冲传递至凸榫与榫槽间的磁浮列车冲击力,减少钢筋混凝土底板在凸榫与榫槽处的磨损
  3. 根据权利要求1所述的一种用于中低速磁悬浮交通工程低置线路的榫接式承轨梁结构,其特征在于,还包括钢边橡胶止水带,相邻两底板主体结构通过一钢边橡胶止水带连接,所述钢边橡胶止水带设置于所述底板主体结构的上部,其纵向沿前后方向延伸,并且其左右两端的钢边分别伸入一底板主体结构内。
  4. 根据权利要求3所述的一种用于中低速磁悬浮交通工程低置线路的榫接式承轨梁结构,其特征在于,还包括从钢边橡胶止水带的上部回填沥青形成的沥青麻筋,相邻两底板主体结构的上部通过所述沥青麻筋连接在一起,以防止地表水下渗而直接影响基床的稳定性。
  5. 根据权利要求1所述的一种用于中低速磁悬浮交通工程低置线路的榫接式承轨梁结构,其特征在于,相邻两钢筋混凝土梁式结构之间存在伸缩缝Ⅰ,相邻两钢筋混凝土底板之间存在伸缩缝Ⅱ,并且伸缩缝Ⅰ的缝宽大于所述伸缩缝Ⅱ的缝宽。
PCT/CN2017/071620 2016-01-21 2017-01-19 一种用于中低速磁悬浮交通工程低置线路的榫接式承轨梁结构 WO2017125029A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610040178.8A CN105714626B (zh) 2016-01-21 2016-01-21 一种用于中低速磁悬浮交通工程低置线路的榫接式承轨梁结构
CN201610040178.8 2016-01-21

Publications (1)

Publication Number Publication Date
WO2017125029A1 true WO2017125029A1 (zh) 2017-07-27

Family

ID=56153800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071620 WO2017125029A1 (zh) 2016-01-21 2017-01-19 一种用于中低速磁悬浮交通工程低置线路的榫接式承轨梁结构

Country Status (2)

Country Link
CN (1) CN105714626B (zh)
WO (1) WO2017125029A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105714626B (zh) * 2016-01-21 2017-05-10 中铁第四勘察设计院集团有限公司 一种用于中低速磁悬浮交通工程低置线路的榫接式承轨梁结构
CN106283951B (zh) * 2016-09-15 2017-11-14 中铁第四勘察设计院集团有限公司 中低速磁浮单线填方地段桩基托梁式承轨梁过渡段结构
CN106283949B (zh) * 2016-09-15 2017-11-14 中铁第四勘察设计院集团有限公司 中低速磁浮交通工程单线填方地段独立墩柱式承轨梁结构
CN106283938B (zh) * 2016-09-15 2017-11-17 中铁第四勘察设计院集团有限公司 中低速磁浮双线挖方地段桩基复合分幅式承轨梁结构
CN106283946B (zh) * 2016-09-15 2017-11-17 中铁第四勘察设计院集团有限公司 中低速磁浮双线挖方地段桩基复合分幅式承轨梁过渡段结构
CN106283940B (zh) * 2016-09-15 2017-10-13 中铁第四勘察设计院集团有限公司 中低速磁浮交通工程单线挖方地段独立墩柱式承轨梁结构
CN106283967B (zh) * 2016-09-15 2017-10-13 中铁第四勘察设计院集团有限公司 中低速磁浮双线填方地段桩基托梁分幅式承轨梁过渡段结构
CN106283941B (zh) * 2016-09-15 2017-11-14 中铁第四勘察设计院集团有限公司 中低速磁浮双线填方地段桩基复合分幅式承轨梁过渡段结构
CN106283939B (zh) * 2016-09-15 2017-10-27 中铁第四勘察设计院集团有限公司 中低速磁浮双线挖方地段桩基托梁式承轨梁过渡段结构
CN106283950B (zh) * 2016-09-15 2017-12-05 中铁第四勘察设计院集团有限公司 中低速磁浮交通工程双线填方地段桩基托梁式承轨梁过渡段结构
CN106283947B (zh) * 2016-09-15 2017-10-13 中铁第四勘察设计院集团有限公司 中低速磁浮双线填方地段桩基托梁分幅式承轨梁结构
CN106283942B (zh) * 2016-09-15 2017-11-17 中铁第四勘察设计院集团有限公司 中低速磁浮交通工程双线填方地段桩基复合式承轨梁结构
CN107642010A (zh) * 2017-11-06 2018-01-30 中国铁路设计集团有限公司 中低速磁浮交通系统直线段承轨梁
CN112112006A (zh) * 2020-08-28 2020-12-22 中铁第四勘察设计院集团有限公司 磁悬浮轨道梁以及轨道结构
CN115012258B (zh) * 2022-05-23 2024-07-12 中铁第一勘察设计院集团有限公司 低真空管道超高速磁浮梁端支撑轨无缝化装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3847518B2 (ja) * 2000-03-28 2006-11-22 日本鋳造株式会社 橋梁用伸縮装置のベアリング
CN101270568A (zh) * 2007-11-06 2008-09-24 铁道第四勘察设计院 用于解决大梁缝地段的轨道桥接轨道板技术
CN103898812A (zh) * 2012-12-25 2014-07-02 中铁第四勘察设计院集团有限公司 无砟轨道分块式底座
CN203834296U (zh) * 2014-05-21 2014-09-17 张锡祥 Frp框架式轨枕结构
CN105714626A (zh) * 2016-01-21 2016-06-29 中铁第四勘察设计院集团有限公司 一种用于中低速磁悬浮交通工程低置线路的榫接式承轨梁结构
CN205474609U (zh) * 2016-01-21 2016-08-17 中铁第四勘察设计院集团有限公司 一种用于中低速磁悬浮交通工程低置线路的榫接式承轨梁结构

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3326608C2 (de) * 1983-07-23 1986-10-30 Walter-Thosti-Boswau Bau-AG, 8900 Augsburg Verfahren zur Herstellung des Überbaus einer Brücke
DE3701682A1 (de) * 1987-01-22 1988-08-04 Strabag Bau Ag Verfahren zum herstellen eines langgestreckten bauwerkes
DE10213052A1 (de) * 2002-03-22 2003-10-02 Boegl Max Verfahren zum lagegenauen Aufstellen und Betreiben eines Trägers für einen ebenerdigen Fahrweg und ebenerdigen Fahrweg
CN202671978U (zh) * 2012-07-17 2013-01-16 李文俊 一种低噪音轨道
CN204898442U (zh) * 2015-06-29 2015-12-23 胥剑 可减震的低噪音轨道

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3847518B2 (ja) * 2000-03-28 2006-11-22 日本鋳造株式会社 橋梁用伸縮装置のベアリング
CN101270568A (zh) * 2007-11-06 2008-09-24 铁道第四勘察设计院 用于解决大梁缝地段的轨道桥接轨道板技术
CN103898812A (zh) * 2012-12-25 2014-07-02 中铁第四勘察设计院集团有限公司 无砟轨道分块式底座
CN203834296U (zh) * 2014-05-21 2014-09-17 张锡祥 Frp框架式轨枕结构
CN105714626A (zh) * 2016-01-21 2016-06-29 中铁第四勘察设计院集团有限公司 一种用于中低速磁悬浮交通工程低置线路的榫接式承轨梁结构
CN205474609U (zh) * 2016-01-21 2016-08-17 中铁第四勘察设计院集团有限公司 一种用于中低速磁悬浮交通工程低置线路的榫接式承轨梁结构

Also Published As

Publication number Publication date
CN105714626A (zh) 2016-06-29
CN105714626B (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
WO2017125029A1 (zh) 一种用于中低速磁悬浮交通工程低置线路的榫接式承轨梁结构
WO2017185906A1 (zh) 一种中低速磁浮低置线路道岔区与非道岔区过渡段结构
WO2017125028A1 (zh) 一种中低速磁悬浮交通工程承轨梁低置线路与高架桥过渡段结构
CN105887586A (zh) 中低速磁悬浮交通工程低置线路双线地段端刺式承轨梁节间限位结构
WO2017185917A1 (zh) 中低速磁悬浮交通工程低置线路单线地段端刺式承轨梁节间限位结构
CN110258221A (zh) 一种箱型框路基
CN206219897U (zh) 中低速磁浮双线挖方地段桩基复合式承轨梁过渡段结构
CN106283966B (zh) 中低速磁浮单线填方地段独立墩柱式承轨梁过渡段结构
CN106283948B (zh) 中低速磁浮交通工程双线填方地段桩基托梁式承轨梁结构
CN107313338A (zh) 高速铁路桥隧过渡段道岔梁结构及其施工方法
CN110939019A (zh) 箱式路基结构及重载铁路路基
CN205474609U (zh) 一种用于中低速磁悬浮交通工程低置线路的榫接式承轨梁结构
CN206127736U (zh) 中低速磁浮双线填方地段桩基复合分幅式承轨梁过渡段结构
CN106400615B (zh) 中低速磁浮单线挖方地段独立墩柱式承轨梁过渡段结构
CN206157485U (zh) 中低速磁浮单线挖方地段桩基复合式承轨梁过渡段结构
CN206157483U (zh) 中低速磁浮交通工程双线填方地段桩基托梁式承轨梁结构
CN206157488U (zh) 中低速磁浮交通工程双线填方地段桩基托梁式承轨梁过渡段结构
CN106283957B (zh) 中低速磁浮双线挖方地段桩基托梁分幅式承轨梁过渡段结构
WO2017185916A1 (zh) 中低速磁悬浮交通工程低置线路双线地段承轨梁节间限位结构
CN204162955U (zh) 软土地区现代有轨电车路基刚度过渡结构
CN207295410U (zh) 高速铁路桥隧过渡段道岔梁结构
CN206219896U (zh) 中低速磁浮交通工程双线挖方地段桩基托梁式承轨梁结构
CN106436496B (zh) 中低速磁浮单线填方地段桩基复合式承轨梁过渡段结构
CN106283967B (zh) 中低速磁浮双线填方地段桩基托梁分幅式承轨梁过渡段结构
CN206127744U (zh) 中低速磁浮单线挖方地段桩基托梁式承轨梁过渡段结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17741060

Country of ref document: EP

Kind code of ref document: A1