WO2017124971A1 - 一种充放电控制装置 - Google Patents
一种充放电控制装置 Download PDFInfo
- Publication number
- WO2017124971A1 WO2017124971A1 PCT/CN2017/071120 CN2017071120W WO2017124971A1 WO 2017124971 A1 WO2017124971 A1 WO 2017124971A1 CN 2017071120 W CN2017071120 W CN 2017071120W WO 2017124971 A1 WO2017124971 A1 WO 2017124971A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electric drive
- terminal
- phase
- circuit
- igbt module
- Prior art date
Links
- 238000007599 discharging Methods 0.000 title abstract description 31
- 238000005070 sampling Methods 0.000 claims abstract description 87
- 239000003990 capacitor Substances 0.000 claims description 8
- 230000003321 amplification Effects 0.000 claims description 3
- 238000002955 isolation Methods 0.000 claims description 3
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 19
- 238000000034 method Methods 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 230000000630 rising effect Effects 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 238000004146 energy storage Methods 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/51—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/20—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
- B60L53/22—Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/20—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
- B60L53/24—Using the vehicle's propulsion converter for charging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
- B62D5/0457—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
- B62D5/046—Controlling the motor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0068—Battery or charger load switching, e.g. concurrent charging and load supply
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
- H02J7/04—Regulation of charging current or voltage
- H02J7/06—Regulation of charging current or voltage using discharge tubes or semiconductor devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/14—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
- H02J7/1423—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/14—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
- H02J7/1469—Regulation of the charging current or voltage otherwise than by variation of field
- H02J7/1492—Regulation of the charging current or voltage otherwise than by variation of field by means of controlling devices between the generator output and the battery
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/30—AC to DC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/40—DC to AC converters
-
- H02J2007/10—
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2207/00—Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J2207/20—Charging or discharging characterised by the power electronics converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2310/00—The network for supplying or distributing electric power characterised by its spatial reach or by the load
- H02J2310/40—The network being an on-board power network, i.e. within a vehicle
- H02J2310/48—The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/92—Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Definitions
- the present invention relates to the field of circuit technologies, and in particular, to a charge and discharge control device.
- Electric vehicles have the advantages of high efficiency, energy saving, low noise and zero emissions. They are the development trend of new energy vehicles in the future. However, the promotion of electric vehicles is still limited by cruising range and charging technology. At present, most electric vehicles use large-capacity batteries. Although they can improve the cruising range of electric vehicles, they also put forward higher requirements for charging electric vehicles.
- the AC slow charging method converts the alternating current into direct current by a power conversion device fixedly installed inside the electric vehicle to charge the electric vehicle power battery;
- the direct current charging method converts the alternating current into direct current by a power conversion device fixedly mounted outside the electric vehicle. Directly charge the power battery of the electric car.
- the inventor of the technical solution found in the research process that in the existing AC slow charging scheme, since the vehicle charger and the electric drive power conversion device are independent of each other, the vehicle space is limited, the power of the charger is not large, the charging efficiency is low, and charging is performed. For a long time, in the DC fast charging scheme, the power conversion device has high cost and large floor space.
- the invention discloses a charge and discharge control device for realizing charge and discharge control of a battery.
- a U-phase terminal of the motor is connected to a U-phase terminal of the electric drive circuit, a V-phase terminal of the motor is connected to a V-phase terminal of the electric drive circuit, and a W-phase terminal of the motor is connected a W-phase terminal of the electric drive circuit, wherein a midpoint tap of the motor is used to connect a first charge and discharge terminal of the external power supply;
- An N-point terminal of the electric drive circuit is used for connecting a second charge and discharge terminal of the external power source, a DC input positive terminal of the electric drive circuit is used for connecting a positive pole of the battery, and a DC input negative terminal of the electric drive circuit a negative electrode for connecting the battery;
- the charge and discharge current sampling circuit is configured to detect a three-phase charge and discharge current of the charge and discharge control device;
- the power supply voltage sampling circuit is configured to detect a voltage of the external power source;
- the charge and discharge current sampling circuit and the power source a voltage sampling circuit is connected to the control chip;
- the control chip is configured to send a first pulse width modulated PWM driving signal to the electric driving circuit, wherein the first PWM driving signal is used to instruct the electric driving circuit to store electrical energy of the external power source in the Charging the battery in the inductance of the motor and using electrical energy stored in the inductance of the motor; or
- the control chip is configured to send a second PWM driving signal to the electric driving circuit, wherein the second PWM driving signal is used to instruct the electric driving circuit to store electrical energy of the battery in an inductance of the motor And using the electrical energy stored in the inductance of the motor to feed back electrical energy to the external power source.
- the control chip of the charge and discharge control device acquires an input power type, a battery energy, a feedback power, a power supply voltage sample value, a battery voltage sample value, and a battery-based energy. Calculating the error between the feedback power, the power supply voltage sampling value, the battery voltage sampling value, the motor inductance value, and the discharge current target value and the discharge current detection value, and calculating the second PWM driving signal according to the first PWM driving signal, The electric energy of the battery is stored in the inductance of the motor, and then the electric energy stored in the inductance of the motor is transmitted to the external power source, that is, the external power supply feeds back the electric energy.
- the charge and discharge control device further includes a battery voltage sampling circuit and a driving circuit, wherein:
- the battery voltage sampling circuit is configured to detect a voltage of the battery, the battery voltage sampling circuit is connected to the control chip; the electric driving circuit is connected to the driving circuit, and the driving circuit is connected to the control chip.
- the electric drive circuit includes a first insulated gate bipolar transistor chip IGBT module, a second IGBT module, a third IGBT module, a fourth IGBT module, a fifth IGBT module, and a sixth IGBT module.
- bus capacitance where:
- the emitter of the first IGBT module is connected to the collector of the second IGBT module to form a U-phase terminal of the electric drive circuit
- the emitter of the IGBT 3 is connected to the collector of the fourth IGBT module Forming a V-phase terminal of the electric drive circuit
- the emitter of the fifth IGBT module being connected to the collector of the sixth IGBT module to form a W-phase terminal of the electric drive circuit
- a collector of the first IGBT module, a collector of the third IGBT module, a collector of the fifth IGBT module, and an anode of the bus capacitor are connected to form a DC input positive terminal of the electric drive circuit;
- the emitter of the second IGBT module, the emitter of the fourth IGBT module, the emitter of the sixth IGBT module, and the anode of the bus capacitor are connected to form a DC input negative terminal of the electric drive circuit and The N point terminal;
- the external power source connected to the charge and discharge control device is a DC power source;
- the drive circuit includes a signal isolation circuit and a power amplification circuit.
- control chip of the charge and discharge control device includes at least a sampling unit and a driving unit, wherein:
- the electric drive circuit includes a U-phase electric drive circuit, a V-phase electric drive circuit, and a W-phase electric drive circuit, and the U-phase electric drive circuit, the V-phase electric drive circuit, and the W phase electric drive circuit
- Each includes n electric driving units, and the electric driving unit includes a first terminal, a second terminal, a control signal terminal, a DC input positive terminal, and a DC input negative terminal, wherein the n is a positive integer;
- the battery includes a U-phase battery pack, a V-phase battery pack, and a W-phase battery pack, the U-phase battery pack including n battery cells correspondingly connected to n electric drive units in the U-phase electric drive circuit,
- the V-phase battery pack includes n battery cells correspondingly connected to n electric drive units in the V-phase electric drive circuit, and the W-phase battery pack includes n electric drives in the W-phase electric drive circuit
- the unit corresponds to the connected n battery cells;
- a first terminal of the first one of the U-phase electric drive circuits is connected to a U-phase terminal of the motor, and a first terminal of the first one of the V-phase electric drive circuits Connecting a V-phase terminal of the motor, wherein a first terminal of the first one of the W-phase electric drive circuits is connected to a W-phase terminal of the motor;
- a second terminal of the i-th electric driving unit in the U-phase electric driving circuit is connected to a first terminal of the i+1th electric driving unit in the U-phase electric driving circuit, the ith electric a DC input positive sub-terminal of the driving unit is connected to a positive pole of an i-th battery unit of the U-phase battery of the battery, and a DC input negative sub-terminal of the i-th electric driving unit is connected to the i-th battery unit a negative electrode, wherein i is a positive integer smaller than n; a second terminal of the jth electric drive unit in the V-phase electric drive circuit is connected to the j+1th electric drive unit in the V-phase electric drive circuit a first terminal, a DC input positive terminal of the jth electric drive unit is connected to a positive pole of a jth battery unit of the V-phase battery of the battery, and a DC input of the jth electric drive unit a negative electrode terminal connected to the negative electrode of the jth battery unit, wherein j
- Figure 4.1 is a schematic structural diagram of an electric drive unit of a charge and discharge control device according to a third embodiment of the present invention.
- the switching control of the working mode of the charging and discharging control device may be switched by hardware, or may be switched by software, or may be switched by a combination of hardware and software, for example, by a high-low level switching circuit.
- switching control of the operation mode of the charge and discharge control device is not limited to the switching of the charging mode and the discharging mode of the charge and discharge control device.
- the control chip of the charge and discharge control device is configured to send a first PWM drive signal to the electric drive circuit, store the electrical energy of the external power source in the inductance of the motor, and utilize the inductance of the motor.
- the stored electrical energy charges the battery; or, the control chip is configured to send a second PWM driving signal to the electric driving circuit, store the electrical energy of the battery in the inductance of the motor, and use the electrical energy stored in the inductance of the motor to feed back the electrical energy to the external power source.
- FIG. 2 is a structural diagram of a charge and discharge control device according to a second embodiment of the present invention.
- the charge and discharge control device shown in FIG. 2 is optimized for the charge and discharge control device shown in FIG. 1.
- the charge and discharge control device shown in FIG. Including battery voltage sampling circuit and driving circuit, wherein:
- the battery voltage sampling circuit is configured to detect a voltage of the battery, and the battery voltage sampling circuit is connected to the control chip;
- the electric drive circuit is coupled to the drive circuit, and the drive circuit is coupled to the control chip.
- the electric drive circuit includes a first insulated gate bipolar transistor chip IGBT (Insulated Gate Bipolar Transistor) module, a second IGBT module T2, a third IGBT module T3, a fourth IGBT module T4, a fifth IGBT module T5, and a sixth IGBT module T6 and bus capacitors;
- IGBT Insulated Gate Bipolar Transistor
- the emitter of the first IGBT module T1 is connected to the collector of the second IGBT module T2 to form a U-phase terminal of the electric drive circuit, the emitter of the IGBT 3 and the fourth IGBT module T4 After the collector is connected, a V-phase terminal of the electric drive circuit is formed, and an emitter of the fifth IGBT module T5 is connected to a collector of the sixth IGBT module T6 to form a W-phase connection of the electric drive circuit. Terminal
- a gate and an emitter of the first IGBT module T1 a gate and an emitter of the second IGBT module T2, a gate and an emitter of the third IGBT module T3, and a fourth IGBT module T4
- a gate and an emitter, a gate and an emitter of the fifth IGBT module T5, and a gate and an emitter of the sixth IGBT module T6 are connected to the driving circuit.
- the external power source is a DC power source
- the drive circuit includes a signal isolation circuit and a power amplification circuit.
- FIG. 3.1 is a schematic diagram of V-phase charging of the charge and discharge control device according to the second embodiment of the present invention; when the charging and discharging control device operates in a charging mode and the direction of the external power supply is positive (DC)
- the control chip sends a first PWM driving signal to the electric driving circuit through the driving circuit, and the fourth IGBT module T4 of the electric driving circuit is reversely turned on (the collector is turned on to the emitter, that is, The transistor in the IGBT module is turned on.
- the motor, the fourth IGBT module T4, the N-point terminal, and the external power supply form an energy storage circuit, and the external power supply charges the inductance of the motor.
- the control chip can determine the input direction and type of the external power source according to the sampling result of the power voltage sampling circuit.
- the external power source is the DC power source
- the sampling result is greater than zero
- the input direction of the external power source is positive
- the sampling result is When the value is less than zero, the input direction of the external power supply is negative.
- the external power supply is AC power
- the phase of the sampling result is greater than 0 degrees and less than 180 degrees, indicating that the input direction of the external power supply is positive, and the phase of the sampling result is greater than 180 degrees.
- the input direction of the external power supply is negative.
- control chip includes at least a sampling unit and a driving unit;
- the battery voltage sampling circuit, the charge and discharge current sampling circuit, and the power voltage sampling circuit are connected to the sampling unit;
- the drive circuit is coupled to the drive unit.
- the battery may include n battery cells (A1, A2...An-1, An), and the n is a positive integer.
- the control chip of the charge and discharge control device is configured to send a first PWM drive signal to the electric drive circuit, store the electrical energy of the external power source in the inductance of the motor, and utilize the motor.
- the electric energy stored in the inductor charges the battery; or the control chip is used to send the second PWM driving signal to the electric driving circuit, store the electric energy of the battery in the inductance of the motor, and use the electric energy stored in the inductance of the motor as the external power source. Feed back energy.
- the charging and discharging control device realizeds charging and discharging control of the battery through the electric driving circuit, and the power of the electric driving circuit is large, so that the charging and discharging power of the charging and discharging control device is improved, and further, the The motor and the control chip of the charge and discharge control device share the electric drive circuit, and it is not necessary to independently deploy the on-board charger, which is beneficial to saving the cost of the charge and discharge control device and reducing the floor space.
- FIG. 4 is a structural diagram of a charge and discharge control device according to a third embodiment of the present invention.
- the charge and discharge control device shown in FIG. 4 is optimized for the charge and discharge control device shown in FIG. 1.
- the charge and discharge control device shown in FIG. Compared with the charge and discharge control device shown in FIG. 1, the charge and discharge control device shown in FIG. :
- the battery includes a U-phase battery pack, a V-phase battery pack, and a W-phase battery pack, the U-phase battery pack including n battery cells correspondingly connected to n electric drive units in the U-phase electric drive circuit,
- the V-phase battery pack includes n battery cells correspondingly connected to n electric drive units in the V-phase electric drive circuit, and the W-phase battery pack includes the same phase as the W-phase battery n electric drive units in the drive circuit correspond to n battery cells connected;
- a first terminal of the first one of the U-phase electric drive circuits is connected to a U-phase terminal of the motor, and a first terminal of the first one of the V-phase electric drive circuits Connecting a V-phase terminal of the motor, wherein a first terminal of the first one of the W-phase electric drive circuits is connected to a W-phase terminal of the motor;
- a second terminal of the i-th electric driving unit in the U-phase electric driving circuit is connected to a first terminal of the i+1th electric driving unit in the U-phase electric driving circuit, the ith electric a DC input positive sub-terminal of the driving unit is connected to a positive pole of an i-th battery unit of the U-phase battery of the battery, and a DC input negative sub-terminal of the i-th electric driving unit is connected to the i-th battery unit a negative electrode, wherein i is a positive integer smaller than n; a second terminal of the jth electric drive unit in the V-phase electric drive circuit is connected to the j+1th electric drive unit in the V-phase electric drive circuit a first terminal, a DC input positive terminal of the jth electric drive unit is connected to a positive pole of a jth battery unit of the V-phase battery of the battery, and a DC input of the jth electric drive unit a negative electrode terminal connected to the negative electrode of the jth battery unit, wherein j
- a second terminal of the nth electric drive unit in the U-phase electric drive circuit, a second connection terminal of the nth electric drive unit of the V-phase electric drive circuit, and the W-phase electric drive circuit a second terminal of the nth electric drive unit in the middle constitutes an N point terminal of the electric drive circuit;
- a control signal terminal of the electric drive unit in the U-phase electric drive circuit, a control signal connection terminal in the V-phase electric drive circuit, and a control signal connection terminal in the W-phase electric drive circuit are connected to the control chip .
- the electric drive unit includes an H-bridge inverter, a bypass switch, a drive circuit, a battery voltage sampling circuit, and an electric drive unit control chip; the bypass switch is configured to bypass the electric drive unit when the electric drive unit fails Electric drive unit
- FIG. 4.4 is a schematic diagram of V-phase discharge of a charge and discharge control device when the external power supply is forward-connected according to the third embodiment of the present invention; when the operation mode of the charge-discharge control device is a discharge mode, and When the direction of the external power source is positive, the control chip sends a PWM discharge driving signal to the n electric driving units in the V-phase electric driving circuit of the driving circuit, and the first IGBT module T1 of the n electric driving units
- the second IGBT module T2 is reversely turned on, and the external power source, the N-point terminal, the second IGBT module T2 of the n electric driving units, and the n battery cells corresponding to the n electric driving units
- the first IGBT module T1 of the n electric driving units forms the energy storage circuit, and the n battery units corresponding to the n electric driving units store energy to the inductance of the motor, and when the V-phase inductance of the motor is detected When the end value of the rising edge of
- FIG. 4.5 is a charging and discharging control when the external power supply of the third embodiment of the present invention is in a negative direction.
- Schematic diagram of the V-phase discharge of the device when the operation mode of the charge and discharge control device is the discharge mode and the direction of the external power supply is negative, the control chip drives n electric drives in the V-phase electric drive circuit of the drive circuit
- the unit sends a PWM discharge driving signal, and the fourth IGBT module T4 and the third IGBT module T3 of the n electric driving units are reversely turned on, wherein the motor, the N-point terminal, and the n electric driving units a fourth IGBT module T4, n battery cells corresponding to the n electric driving units, a third IGBT module T3 of the n electric driving units, and an external power supply forming an energy storage circuit, the n electric driving The n battery cells corresponding to the unit store energy to the inductance of the motor.
- the battery voltage sampling circuit, the charge and discharge current sampling circuit, and the power voltage sampling circuit are connected to the sampling unit;
- the drive circuit is coupled to the drive unit.
- the control chip of the charge and discharge control device is configured to send a first PWM drive signal to the electric drive circuit, store the electrical energy of the external power source in the inductance of the motor, and utilize the inductance of the motor.
- the stored electrical energy charges the battery; or, the control chip is configured to send a second PWM driving signal to the electric driving circuit, store the electrical energy of the battery in the inductance of the motor, and use the electrical energy stored in the inductance of the motor to feed back the electrical energy to the external power source.
- the charge and discharge control device provided by the embodiment of the invention realizes charging and discharging control of the battery through the electric drive circuit, and the power of the electric drive circuit is large, so that the charge and discharge power of the charge and discharge control device is improved, and the charge and discharge is further improved.
- the motor and the control chip of the control device share the electric drive circuit, and it is not necessary to independently deploy the on-board charger, which is beneficial to saving the cost of the charge and discharge control device and reducing the floor space.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
一种充放电控制装置,包括电机、电驱动电路、电源电压采样电路、充放电电流采样电路以及控制芯片,其中:控制芯片用于向电驱动电路发送第一脉宽调制PWM驱动信号,其中,该第一PWM驱动信号用于指示该电驱动电路将外接电源的电能存储于电机的电感中,以及利用电机的电感中存储的电能为电池充电;或者,控制芯片用于向电驱动电路发送第二PWM驱动信号,其中,该第一PWM驱动信号用于指示该电驱动电路将电池的电能存储于电机的电感中,以及利用电机的电感中存储的电能为外接电源回馈电能。该充放电控制装置有利于节约成本,减少占地面积。
Description
本发明涉及电路技术领域,具体涉及一种充放电控制装置。
电动汽车具有高效、节能、低噪声、零排放等优点,是未来新能源汽车的发展趋势,然而电动汽车的推广仍受续航里程和充电技术的限制。目前电动汽车大多采用大容量的电池,虽然可以提高电动汽车的续航里程,但同时也对电动汽车充电提出了更高的要求,目前常用的两种充电方式有两种,即交流慢充和直流快充。交流慢充方式是通过固定安装在电动汽车内部的功率变换装置将交流电变换为直流电,为电动汽车动力电池充电;直流快充方式是通过固定安装在电动汽车外的功率变换装置将交流电变换为直流电,直接为电动汽车的动力电池充电。
本技术方案的发明人在研究过程中发现,现有交流慢充方案中,由于车载充电机和电驱动功率变换装置相互独立,受到车辆空间的限制,充电机功率不大,充电效率低,充电时间较长,直流快充方案中,功率变换装置成本高和占地面积大。
发明内容
本发明公开了一种充放电控制装置,用于实现电池的充放电控制。
本发明的第一方面提供了一种充放电控制装置,包括电机、电驱动电路、电源电压采样电路、充放电电流采样电路以及控制芯片,其中:
所述电机的U相接线端子连接所述电驱动电路的U相接线端子,所述电机的V相接线端子连接所述电驱动电路的V相接线端子,所述电机的W相接线端子连接所述电驱动电路的W相接线端子,所述电机的中点抽头用于连接外接电源的第一充放电端子;
所述电驱动电路的N点端子用于连接所述外接电源的第二充放电端子,所述电驱动电路的直流输入正极端子用于连接电池的正极,所述电驱动电路的直流输入负极端子用于连接所述电池的负极;
所述充放电电流采样电路用于检测所述充放电控制装置的三相充放电电流;所述电源电压采样电路用于检测所述外接电源的电压;所述充放电电流采样电路和所述电源电压采样电路连接所述控制芯片;
所述控制芯片用于向所述电驱动电路发送第一脉宽调制PWM驱动信号,其中,所述第一PWM驱动信号用于指示所述电驱动电路将所述外接电源的电能存储于所述电机的电感中,以及利用所述电机的电感中存储的电能为所述电池充电;或者,
所述控制芯片用于向所述电驱动电路发送第二PWM驱动信号,其中,所述第二PWM驱动信号用于指示所述电驱动电路将所述电池的电能存储于所述电机的电感中,以及利用所述电机的电感中存储的电能为所述外接电源回馈电能。
当所述充放电控制装置的工作模式为充电模式时,所述充放电控制装置的控制芯片获取输入电源类型、电源电压采样值、充电电流检测值,基于输入电源类型、电源电压采样值、电机电感值以及充电电流检测值和充电电流目标值之间的误差计算第一PWM驱动信号,并根据第一PWM驱动信号进行闭环控制,将外接电源的电能存储于电机的电感中,再将电机的电感中存储的电能传输至电池,即给电池充电。
当所述充放电控制装置的工作模式为放电模式时,所述充放电控制装置的控制芯片获取输入电源类型、电池的能量、回馈功率、电源电压采样值、电池电压采样值,基于电池的能量、回馈功率、电源电压采样值、电池电压采样值、电机电感值及放电电流目标值和放电电流检测值之间的误差计算第二PWM驱动信号,并根据第一PWM驱动信号进行闭环控制,将电池的电能存储于电机的电感中,再将电机的电感中存储的电能传输至外接电源,即向外接电源反馈电能。
在一个可能的设计中,所述充放电控制装置还包括电池电压采样电路和驱动电路,其中:
所述电池电压采样电路用于检测所述电池的电压,所述电池电压采样电路连接所述控制芯片;所述电驱动电路连接所述驱动电路,所述驱动电路连接所述控制芯片。
在另一个可能的设计中,所述电驱动电路包括第一绝缘栅双极型晶体管芯片IGBT模块、第二IGBT模块、第三IGBT模块、第四IGBT模块、第五IGBT模块、第六IGBT模块以及母线电容,其中:
所述第一IGBT模块的发射极与所述第二IGBT模块的集电极连接后组成所述电驱动电路的U相接线端子,所述IGBT3的发射极与所述第四IGBT模块的集电极连接后组成所述电驱动电路的的V相接线端子,所述第五IGBT模块的发射极与所述第六IGBT模块的集电极连接后组成所述电驱动电路的W相接线端子;
所述第一IGBT模块的集电极、所述第三IGBT模块的集电极、所述第五IGBT模块的集电极以及所述母线电容的正极连接后组成所述电驱动电路的直流输入正极端子;
所述第二IGBT模块的发射极、所述第四IGBT模块的发射极、所述第六IGBT模块的发射极以及所述母线电容的负极连接后组成所述电驱动电路的直流输入负极端子和所述N点端子;
所述第一IGBT模块的门极和发射极、所述第二IGBT模块的门极和发射极、所述第三IGBT模块的门极和发射极、所述第四IGBT模块的门极和发射极、所述第五IGBT模块的门极和发射极、所述第六IGBT模块的门极和发射极连接所述驱动电路。
需要注意的是,与所述充放电控制装置连接的所述外接电源为直流电源;所述驱动电路包括信号隔离电路和功率放大电路。
此外,所述充放电控制装置的所述控制芯片至少包括采样单元和驱动单元,其中:
所述电池电压采样电路、所述充放电电流采样电路和所述电源电压采样电路连接所述采样单元;所述驱动电路连接所述驱动单元。
在又一个可能的设计中,所述电驱动电路包括U相电驱动电路、V相电驱动电路以及W相电驱动电路,且所述U相电驱动电路、所述V相电驱动电路和所述W相电驱动电路
均包括n个电驱动单元,所述电驱动单元包括第一接线端子、第二接线端子、控制信号接线端子、直流输入正极子端子、直流输入负极子端子,所述n为正整数;
所述电池包括U相电池组、V相电池组和W相电池组,所述U相电池组包括与所述U相电驱动电路中的n个电驱动单元对应连接的n个电池单元,所述V相电池组包括与所述V相电驱动电路中的n个电驱动单元对应连接的n个电池单元,所述W相电池组包括与所述W相电驱动电路中的n个电驱动单元对应连接的n个电池单元;
所述U相电驱动电路中的第一个电驱动单元的第一接线端子连接所述电机的U相接线端子,所述V相电驱动电路中的第一个电驱动单元的第一接线端子连接所述电机的V相接线端子,所述W相电驱动电路中的第一个电驱动单元的第一接线端子连接所述电机的W相接线端子;
所述U相电驱动电路中的第i个电驱动单元的第二接线端子连接所述U相电驱动电路中的第i+1个电驱动单元的第一接线端子,所述第i个电驱动单元的直流输入正极子端子连接所述电池的U相电池组中的第i个电池单元的正极,所述第i个电驱动单元的直流输入负极子端子连接所述第i个电池单元的负极,所述i为小于n的正整数;所述V相电驱动电路中的第j个电驱动单元的第二接线端子连接所述V相电驱动电路中的第j+1个电驱动单元的第一接线端子,所述第j个电驱动单元的直流输入正极子端子连接所述电池的V相电池组中的第j个电池单元的正极,所述第j个电驱动单元的直流输入负极子端子连接所述第j个电池单元的负极,所述j为小于n的正整数;所述W相电驱动电路中的第k个电驱动单元的第二接线端子连接所述W相电驱动电路中的第k+1个电驱动单元的第一接线端子,所述第k个电驱动单元的直流输入正极子端子连接所述电池的W相电池组中的第k个电池单元的正极,所述第k个电驱动单元的直流输入负极子端子连接所述第k个电池单元的负极,所述k为小于n的正整数;
所述U相电驱动电路中的第n个电驱动单元的第二接线端子、所述V相电驱动电路中的第n个电驱动单元的第二接线端子,以及所述W相电驱动电路中的第n个电驱动单元的第二接线端子组成所述电驱动电路的N点端子;
所述U相电驱动电路中的电驱动单元的控制信号接线端子、所述V相电驱动电路中的控制信号接线端子、所述W相电驱动电路中的控制信号接线端子连接所述控制芯片。
可以理解的是,所述充放电控制装置的所述电驱动单元具体可以包括H桥逆变器、旁路开关、驱动电路、电池电压采样电路以及电驱动单元控制芯片,其中:
所述H桥逆变器包括第一绝缘栅双极型晶体管芯片IGBT模块、第二IGBT模块、第三IGBT模块、第四IGBT模块,所述第一IGBT模块的发射极、所述第四IGBT模块的集电极和所述旁路开关的第一端子连接后组成所述电驱动单元的所述第一接线端子,所述第三IGBT模块的发射极连、所述第二IGBT模块的集电极和所述旁路开关的第二端子连接后组成所述电驱动单元的所述第二接线端子;
所述电池电压采样电路用于检测与所述电驱动单元连接的电池单元的电压;
所述第一IGBT模块的门极和发射极、所述第二IGBT模块的门极和发射极、所述第三IGBT模块的门极和发射极、所述第四IGBT模块的门极和发射极连接所述驱动电路;
所述电池电压采样电路、所述驱动电路连接所述电驱动单元控制芯片,所述电驱动单元控制芯片连接所述控制芯片。
此外,与上述充放电控制装置相连接的所述外接电源为直流电源或交流电源;所述电驱动单元控制芯片至少包括采样单元和驱动单元,其中:
所述电池电压采样电路、所述充放电电流采样电路和所述电源电压采样电路连接所述采样单元;
所述驱动电路连接所述驱动单元。
在一些可能的实现方式中,所述充放电电流采样电路可以通过霍尔电流传感器检测所述充放电控制装置的三相充放电电流。或者,
所述充放电电流采样电路可以通过电阻、隔离运放检测所述充放电控制装置的三相充放电电流。
本发明实施例中,充放电控制装置的控制芯片用于向电驱动电路发送第一PWM驱动信号,将外接电源的电能存储于电机的电感中,以及利用电机的电感中存储的电能为电池充电;或者,控制芯片用于向电驱动电路发送第二PWM驱动信号,将电池的电能存储于电机的电感中,以及利用电机的电感中存储的电能为外接电源回馈电能。可见,本发明实施例提供的充放电控制装置通过电驱动电路实现电池的充电和放电控制,由于电驱动电路的功率较大,故而有利于提升充放电控制装置的充放电功率,此外,所述充放电控制装置的电机和控制芯片共用电驱动电路,无需独立部署车载充电机,有利于节约充放电控制装置的成本,减少占地面积。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明第一实施例提供的一种充放电控制装置的结构示意图;
图2是本发明第二实施例提供的一种充放电控制装置的结构示意图;
图3是本发明第二实施例提供的另一种充放电控制装置的结构示意图;
图3.1是本发明第二实施例提供的充放电控制装置的V相充电示意图;
图3.2是本发明第二实施例提供的充放电控制装置的V相放电示意图;
图4是本发明第三实施例提供的一种充放电控制装置的结构示意图。
图4.1是本发明第三实施例提供的充放电控制装置的电驱动单元的结构示意图;
图4.2是本发明第三实施例提供的外接电源为正向接入时,充放电控制装置的V相充电示意图;
图4.3是本发明第三实施例提供的外接电源为反向接入时,充放电控制装置的V相充电示意图;
图4.4是本发明第三实施例提供的外接电源为正向接入时,充放电控制装置的V相放
电示意图;
图4.5是本发明第三实施例提供的外接电源为反向接入时,充放电控制装置的V相放电示意图。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
目前电动汽车大多采用大容量的电池,目前常用的两种充电方式有两种,即交流慢充和直流快充。交流慢充方式通过固定安装在电动汽车内部的功率变换装置将交流电变换为直流电,为电动汽车动力电池充电,此方式车载充电机和电驱动功率变换电路相互独立,受到车辆空间的限制,充电机功率不大,充电时间较长。直流快充方式通过固定安装在电动汽车外的功率变换装置将交流电变换为直流电,直接为电动汽车的动力电池充电,此方式功率变换装置成本高和占地面积大。
为解决上述技术问题,本申请公开了一种充放电控制装置,充电模式下,充放电控制装置通过电机的电感存储外接电源的电能,再将电感中存储的电能通过电驱动电路传输给电池,放电模式下,充放电控制装置通过电机的电感存储电池的电能,再将电感中存储的电能通过电驱动电路反馈给外接电源,如此,充放电控制装置通过电驱动电路实现电池的充电和放电控制,由于电驱动电路的功率较大,故而可以提高充放电功率,且充放电控制装置的电机和控制芯片共用电驱动电路,无需独立部署车载充电机,有利于节约充放电控制装置的成本,减少占地面积。
需要注意的是,本发明实施例所描述的充放电控制装置可以应用于轿车、卡车、摩托车、公交车、船、飞机、直升机、割草机、铲雪车、休旅车、游乐园车辆、农业设备、施工设备、有轨电车、高尔夫球车等移动交通工具中。此外,机器人装置也可使用本发明所提供的充放电控制装置。以下分别进行详细说明。
请参阅图1,图1是本发明第一实施例公开的一种充放电控制装置的结构图。如图1所示,该充放电控制装置可以电机、电驱动电路、电源电压采样电路、充放电电流采样电路以及控制芯片,其中:
所述电机的U相接线端子连接所述电驱动电路的U相接线端子,所述电机的V相接线端子连接所述电驱动电路的V相接线端子,所述电机的W相接线端子连接所述电驱动电路的W相接线端子,所述电机的中点抽头用于连接外接电源的第一充放电端子;
所述电驱动电路的N点端子用于连接所述外接电源的第二充放电端子,所述电驱动电路的直流输入正极端子用于连接电池的正极,所述电驱动电路的直流输入负极端子用于连接所述电池的负极;
所述充放电电流采样电路用于检测所述充放电控制装置的三相充放电电流;所述电源电压采样电路用于检测所述外接电源的电压;所述充放电电流采样电路和所述电源电压采
样电路连接所述控制芯片;
所述控制芯片用于向所述电驱动电路发送第一脉宽调制PWM驱动信号,其中,所述第一PWM驱动信号用于指示所述电驱动电路将所述外接电源的电能存储于所述电机的电感中,以及利用所述电机的电感中存储的电能为所述电池充电;或者,
所述控制芯片用于向所述电驱动电路发送第二PWM驱动信号,其中,所述第二PWM驱动信号用于指示所述电驱动电路将所述电池的电能存储于所述电机的电感中,以及利用所述电机的电感中存储的电能为所述外接电源回馈电能。
图1所示的充放电控制装置的工作原理是:
当所述充放电控制装置的工作模式被设置为充电模式时,所述充放电控制装置的控制芯片获取输入电源类型、电源电压采样值、充电电流检测值、电池电压采样值,基于输入电源类型、电源电压采样值、电池电压采样值、电机电感值以及充电电流目标值和充电电流检测值之间的误差计算第一PWM驱动信号,并根据第一PWM驱动信号进行闭环控制,将外接电源的电能存储于电机的电感中,再将电机的电感中存储的电能传输至电池,即给电池充电。
当所述充放电控制装置的工作模式被设置为放电模式时,所述充放电控制装置的控制芯片获取输入电源类型、电池的能量、回馈功率、电源电压采样值、电池电压采样值,基于电池的能量、回馈功率、电源电压采样值、电池电压采样值、电机电感值及放电电流目标值和放电电流检测值之间的误差计算第二PWM驱动信号,并根据第二PWM驱动信号进行闭环控制,将电池的电能存储于电机的电感中,再将电机的电感中存储的电能传输至外接电源,即向外接电源反馈电能。
其中,所述充放电控制装置的工作模式的切换控制可以通过硬件方式进行切换,或者通过软件方式进行切换,或者通过硬件和软件相结合的方式进行切换,例如可以通过高低电平转换电路控制所述充放电控制装置的充电模式和放电模式的切换等,本发明实施例对所述充放电控制装置的工作模式的切换控制不做唯一限定。
在图1所描述的充放电控制装置中,充放电控制装置的控制芯片用于向电驱动电路发送第一PWM驱动信号,将外接电源的电能存储于电机的电感中,以及利用电机的电感中存储的电能为电池充电;或者,控制芯片用于向电驱动电路发送第二PWM驱动信号,将电池的电能存储于电机的电感中,以及利用电机的电感中存储的电能为外接电源回馈电能。可见,本发明实施例提供的充放电控制装置通过电驱动电路实现电池的充电和放电控制,由于电驱动电路的功率较大,故而有利于提升充放电控制装置的充放电功率,此外,所述充放电控制装置的电机和控制芯片共用电驱动电路,无需独立部署车载充电机,有利于节约充放电控制装置的成本,减少占地面积。
可选的,本发明实施例中,所述充放电电流采样电路通过霍尔电流传感器检测所述充放电控制装置的三相充放电电流。
可选的,本发明实施例中,所述充放电电流采样电路通过电阻、隔离运放检测所述充放电控制装置的三相充放电电流。
可以理解的是,上述充放电控制装置中的充放电电流采样电路、电源电压采样电路的
具体实现方式可以是多种多样的,本发明实施例不做唯一限定。
请参阅图2,图2是本发明第二实施例公开的一种充放电控制装置的结构图。其中,图2所示的充放电控制装置是对图1所示的充放电控制装置进行优化得到的,与图1所示的充放电控制装置相比,图2所示的充放电控制装置还包括电池电压采样电路和驱动电路,其中:
所述电池电压采样电路用于检测所述电池的电压,所述电池电压采样电路连接所述控制芯片;
所述电驱动电路连接所述驱动电路,所述驱动电路连接所述控制芯片。
可选的,本发明实施例中,请参阅图3,图3是本发明第二实施例提供的另一种充放电控制装置的结构图;其中,
所述电驱动电路包括第一绝缘栅双极型晶体管芯片IGBT(Insulated Gate Bipolar Transistor)模块、第二IGBT模块T2、第三IGBT模块T3、第四IGBT模块T4、第五IGBT模块T5、第六IGBT模块T6以及母线电容;
所述第一IGBT模块T1的发射极与所述第二IGBT模块T2的集电极连接后组成所述电驱动电路的U相接线端子,所述IGBT3的发射极与所述第四IGBT模块T4的集电极连接后组成所述电驱动电路的的V相接线端子,所述第五IGBT模块T5的发射极与所述第六IGBT模块T6的集电极连接后组成所述电驱动电路的W相接线端子;
所述第一IGBT模块T1的集电极、所述第三IGBT模块T3的集电极、所述第五IGBT模块T5的集电极以及所述母线电容的正极连接后组成所述电驱动电路的直流输入正极端子;
所述第二IGBT模块T2的发射极、所述第四IGBT模块T4的发射极、所述第六IGBT模块T6的发射极以及所述母线电容的负极连接后组成所述电驱动电路的直流输入负极端子和所述N点端子;
所述第一IGBT模块T1的门极和发射极、所述第二IGBT模块T2的门极和发射极、所述第三IGBT模块T3的门极和发射极、所述第四IGBT模块T4的门极和发射极、所述第五IGBT模块T5的门极和发射极、所述第六IGBT模块T6的门极和发射极连接所述驱动电路。
可选的,本发明实施例中,所述外接电源为直流电源;
所述驱动电路包括信号隔离电路和功率放大电路。
下面结合示意图详细描述本发明实施例提供的充放电控制装置的工作原理:
请参阅图3.1,图3.1是本发明第二实施例提供的充放电控制装置的V相充电示意图;当所述充放电控制装置的工作模式为充电模式、且外接电源的方向为正向(直流电源的正向)时,所述控制芯片通过驱动电路向电驱动电路发送第一PWM驱动信号,所述电驱动电路的第四IGBT模块T4逆向导通(由集电极向发射极导通,即IGBT模块中的晶体管导通),此时电机、第四IGBT模块T4、N点端子、外接电源形成储能回路,外接电源给电机的电感充电,当检测到电机的V相电感电流的上升沿的终点值达到目标值时,所述控制芯片控制所述第四IGBT模块T4关断,所述电驱动电路中的第三IGBT模块T3正向导通(由发射极向集电极导通,即IGBT模块中的二极管正向导通),所述电机、所述第三IGBT模块T3、所述电池、所述N点端子、所述外接电源形成充电回路,所述电机的电感给所述电池充电;
其中,所述控制芯片可以根据电源电压采样电路的采样结果确定外接电源的输入方向、类型等信息,外接电源为直流电源时,采样结果大于零时表示外接电源的输入方向为正向,采样结果小于零时表示外接电源的输入方向为负向,外接电源为交流电源时,采样结果的相位大于0度小于180度时,表示外接电源的输入方向为正向,采样结果的相位大于180度小于360度时,表示外接电源的输入方向为负向。
请参阅图3.2,图3.2是本发明第二实施例提供的充放电控制装置的V相放电示意图;当所述充放电控制装置的工作模式为放电模式、且外接电源的方向为正向(直流电源的正向)时,所述控制芯片通过驱动电路向点驱动电路与发送第二PWM驱动信号,所述电驱动电路的第三IGBT模块T3逆向导通,所述外接电源、所述N点端子、所述电池、所述第三IGBT模块T3、所述电机形成储能回路,所述电池的电能传输给所述电机的电感,当检测到电机的V相电感电流的上升沿的终点值达到目标值时,所述控制芯片控制所述第三IGBT模块T3关断,所述电驱动电路的第四IGBT模块T4正向导通,所述电机、所述外接电源、所述N点端子、所述第四IGBT模块T4形成放电回路,所述电机的电感向外接电源回馈电能。
可选的,本发明实施例中,所述控制芯片至少包括采样单元和驱动单元;
所述电池电压采样电路、所述充放电电流采样电路和所述电源电压采样电路连接所述采样单元;
所述驱动电路连接所述驱动单元。
其中,所述电池可以包括n个电池单元(A1、A2…An-1,An),所述n为正整数。
在图2或图3所描述的充放电控制装置中,充放电控制装置的控制芯片用于向电驱动电路发送第一PWM驱动信号,将外接电源的电能存储于电机的电感中,以及利用电机的电感中存储的电能为电池充电;或者,控制芯片用于向电驱动电路发送第二PWM驱动信号,将电池的电能存储于电机的电感中,以及利用电机的电感中存储的电能为外接电源回馈电能。可见,本发明实施例提供的充放电控制装置通过电驱动电路实现电池的充电和放电控制,由于电驱动电路的功率较大,故而有利于提升充放电控制装置的充放电功率,此外,所述充放电控制装置的电机和控制芯片共用电驱动电路,无需独立部署车载充电机,有利于节约充放电控制装置的成本,减少占地面积。
请参阅图4,图4是本发明第三实施例公开的一种充放电控制装置的结构图。其中,图4所示的充放电控制装置是对图1所示的充放电控制装置进行优化得到的,与图1所示的充放电控制装置相比,图3所示的充放电控制装置中:
所述电驱动电路包括U相电驱动电路、V相电驱动电路以及W相电驱动电路,且所述U相电驱动电路、所述V相电驱动电路和所述W相电驱动电路均包括n个电驱动单元,所述电驱动单元包括第一接线端子、第二接线端子、控制信号接线端子、直流输入正极子端子、直流输入负极子端子,所述n为正整数;
所述电池包括U相电池组、V相电池组和W相电池组,所述U相电池组包括与所述U相电驱动电路中的n个电驱动单元对应连接的n个电池单元,所述V相电池组包括与所述V相电驱动电路中的n个电驱动单元对应连接的n个电池单元,所述W相电池组包括与所述W相电
驱动电路中的n个电驱动单元对应连接的n个电池单元;
所述U相电驱动电路中的第一个电驱动单元的第一接线端子连接所述电机的U相接线端子,所述V相电驱动电路中的第一个电驱动单元的第一接线端子连接所述电机的V相接线端子,所述W相电驱动电路中的第一个电驱动单元的第一接线端子连接所述电机的W相接线端子;
所述U相电驱动电路中的第i个电驱动单元的第二接线端子连接所述U相电驱动电路中的第i+1个电驱动单元的第一接线端子,所述第i个电驱动单元的直流输入正极子端子连接所述电池的U相电池组中的第i个电池单元的正极,所述第i个电驱动单元的直流输入负极子端子连接所述第i个电池单元的负极,所述i为小于n的正整数;所述V相电驱动电路中的第j个电驱动单元的第二接线端子连接所述V相电驱动电路中的第j+1个电驱动单元的第一接线端子,所述第j个电驱动单元的直流输入正极子端子连接所述电池的V相电池组中的第j个电池单元的正极,所述第j个电驱动单元的直流输入负极子端子连接所述第j个电池单元的负极,所述j为小于n的正整数;所述W相电驱动电路中的第k个电驱动单元的第二接线端子连接所述W相电驱动电路中的第k+1个电驱动单元的第一接线端子,所述第k个电驱动单元的直流输入正极子端子连接所述电池的W相电池组中的第k个电池单元的正极,所述第k个电驱动单元的直流输入负极子端子连接所述第k个电池单元的负极,所述k为小于n的正整数;
所述U相电驱动电路中的第n个电驱动单元的第二接线端子、所述V相电驱动电路中的第n个电驱动单元的第二接线端子,以及所述W相电驱动电路中的第n个电驱动单元的第二接线端子组成所述电驱动电路的N点端子;
所述U相电驱动电路中的电驱动单元的控制信号接线端子、所述V相电驱动电路中的控制信号接线端子、所述W相电驱动电路中的控制信号接线端子连接所述控制芯片。
可选的,请参阅图4.1,图4.1是本发明第三实施例提供的充放电控制装置的电驱动单元的结构图;其中,
所述电驱动单元包括H桥逆变器、旁路开关、驱动电路、电池电压采样电路以及电驱动单元控制芯片;所述旁路开关用于在所述电驱动单元发生故障时,旁路所述电驱动单元;
所述H桥逆变器包括第一绝缘栅双极型晶体管芯片IGBT模块、第二IGBT模块T2、第三IGBT模块T3、第四IGBT模块T4,所述第一IGBT模块T1的发射极、所述第四IGBT模块T4的集电极和所述旁路开关的第一端子连接后组成所述电驱动单元的所述第一接线端子,所述第三IGBT模块T3的发射极连、所述第二IGBT模块T2的集电极和所述旁路开关的第二端子连接后组成所述电驱动单元的所述第二接线端子;
所述电池电压采样电路用于检测与所述电驱动单元连接的电池单元的电压;
所述第一IGBT模块T1的门极和发射极、所述第二IGBT模块T2的门极和发射极、所述第三IGBT模块T3的门极和发射极、所述第四IGBT模块T4的门极和发射极连接所述驱动电路;
所述电池电压采样电路、所述驱动电路连接所述电驱动单元控制芯片,所述电驱动单元控制芯片连接所述控制芯片。
下面结合示意图详细描述本发明实施例提供的充放电控制装置的工作原理:
图4所示的充放电控制装置的工作原理是:
请参阅图4.2,图4.2是本发明第三实施例提供的外接电源为正向接入时,充放电控制装置的V相充电示意图;当所述充放电控制装置的工作模式为充电模式、且外接电源的方向为正向时,所述控制芯片向所述电驱动电路的V相电驱动电路中的n个电驱动单元发送第一脉宽调制PWM驱动信号,所述n个电驱动单元中的第四IGBT模块T4逆向导通(由集电极向发射极导通,即IGBT模块中的晶体管导通),所述n个电驱动单元中的第二IGBT模块T2正向导通(由发射极向集电极导通,即IGBT模块中的二极管正向导通),所述电机、所述n个电驱动单元的第四IGBT模块T4和第二IGBT模块T2、所述N点端子、所述外接电源形成储能回路,所述外接电源向所述电机的电感存储能量,当检测到电机的V相电感电流的上升沿的终点值达到目标值时,所述控制芯片关断所述n个电驱动单元中的第四IGBT模块T4,所述n个电驱动单元中的第一IGBT模块T1和第二IGBT模块T2正向导通,所述电机、所述n个电驱动单元对应的n个电池单元、所述n个电驱动单元中的第一IGBT模块T1和第二IGBT模块T4、所述N点端子、所述外接电源形成充电回路,所述电机的电感给电池单元充电。
请参阅图4.3,图4.3是本发明第三实施例提供的外接电源为反向接入时,充放电控制装置的V相充电示意图;当所述充放电控制装置的工作模式为充电模式、且外接电源的方向为负向时,所述控制芯片向所述电驱动电路的V相电驱动电路中的n个电驱动单元发送第一PWM驱动信号,所述n个电驱动单元中的第二IGBT模块T2逆向导通,所述n个电驱动单元中的第四IGBT模块T4正向导通,所述外接电源、所述N点端子、所述n个电驱动单元中的第二IGBT模块T2和第四IGBT模块T4、所述电机形成储能回路,所述外接电源向所述电机的电感存储能量,当检测到电机的V相电感电流的上升沿的终点值达到目标值时,所述控制芯片关断所述n个电驱动单元中的第二IGBT模块T2,所述n个电驱动单元中的第三IGBT模块T3和第四IGBT模块T4正向导通,所述外接电源、所述n个电驱动单元中的第三IGBT模块T3、所述n个电驱动单元对应的n个电池单元、所述n个电驱动单元中的第四IGBT模块T4、所述N点端子、所述电机形成充电回路,所述电机的电感给所述n个电驱动单元对应的n个电池单元充电。
请参阅图4.4,图4.4是本发明第三实施例提供的外接电源为正向接入时,充放电控制装置的V相放电示意图;当所述充放电控制装置的工作模式为放电模式、且外接电源的方向为正向时,所述控制芯片向驱动电路的V相电驱动电路中的n个电驱动单元发送PWM放电驱动信号,所述n个电驱动单元中的第一IGBT模块T1、第二IGBT模块T2逆向导通,所述外接电源、所述N点端子、所述n个电驱动单元中的第二IGBT模块T2、所述n个电驱动单元对应的n个电池单元、所述n个电驱动单元中的第一IGBT模块T1、所述电机形成储能回路,所述n个电驱动单元对应的n个电池单元向电机的电感存储能量,当检测到电机的V相电感电流的上升沿的终点值达到目标值时,所述控制芯片关断n个电驱动单元中的第一IGBT模块T1,所述n个电驱动单元中的第四IGBT模块T4正向导通,所述外接电源、所述N点端子、所述n个电驱动单元中的第二IGBT模块T2、第四IGBT模块T4、所述电机形成放电回路,所述电机的电感向所述外接电源回馈电能;
请参阅图4.5,图4.5是本发明第三实施例提供的外接电源为负向接入时,充放电控制
装置的V相放电示意图;当所述充放电控制装置的工作模式为放电模式、且外接电源的方向为负向时,所述控制芯片向驱动电路的V相电驱动电路中的n个电驱动单元发送PWM放电驱动信号,所述n个电驱动单元中的第四IGBT模块T4、第三IGBT模块T3逆向导通,所述电机、所述N点端子、所述n个电驱动单元中的第四IGBT模块T4、所述n个电驱动单元对应的n个电池单元、所述n个电驱动单元中的第三IGBT模块T3、所述外接电源形成储能回路,所述n个电驱动单元对应的n个电池单元向电机的电感存储能量,当检测到电机的V相电感电流的上升沿的终点值达到目标值时,所述控制芯片关断n个电驱动单元中的第三IGBT模块T3,所述n个电驱动单元中的第二IGBT模块T2正向导通,所述电机、所述n个电驱动单元中的第四IGBT模块T4、第二IGBT模块T2、所述N点端子、所述外接电源形成放电回路,所述电机的电感向所述外接电源回馈电能;
可选的,本发明实施例中,所述外接电源为直流电源或交流电源;
所述电驱动单元控制芯片至少包括采样单元和驱动单元;
所述电池电压采样电路、所述充放电电流采样电路和所述电源电压采样电路连接所述采样单元;
所述驱动电路连接所述驱动单元。
可选的,本发明实施例中,所述充放电电流采样电路通过霍尔电流传感器检测所述充放电控制装置的三相充放电电流。或者,
所述充放电电流采样电路通过电阻、隔离运放检测所述充放电控制装置的三相充放电电流。
在图4所描述的充放电控制装置中,充放电控制装置的控制芯片用于向电驱动电路发送第一PWM驱动信号,将外接电源的电能存储于电机的电感中,以及利用电机的电感中存储的电能为电池充电;或者,控制芯片用于向电驱动电路发送第二PWM驱动信号,将电池的电能存储于电机的电感中,以及利用电机的电感中存储的电能为外接电源回馈电能。本发明实施例提供的充放电控制装置通过电驱动电路实现电池的充电和放电控制,由于电驱动电路的功率较大,故而有利于提升充放电控制装置的充放电功率,此外,所述充放电控制装置的电机和控制芯片共用电驱动电路,无需独立部署车载充电机,有利于节约充放电控制装置的成本,减少占地面积。
以上对本发明实施例所提供的充放电控制装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
Claims (10)
- 一种充放电控制装置,其特征在于,包括电机、电驱动电路、电源电压采样电路、充放电电流采样电路以及控制芯片,其中:所述电机的U相接线端子连接所述电驱动电路的U相接线端子,所述电机的V相接线端子连接所述电驱动电路的V相接线端子,所述电机的W相接线端子连接所述电驱动电路的W相接线端子,所述电机的中点抽头用于连接外接电源的第一充放电端子;所述电驱动电路的N点端子用于连接所述外接电源的第二充放电端子,所述电驱动电路的直流输入正极端子用于连接电池的正极,所述电驱动电路的直流输入负极端子用于连接所述电池的负极;所述充放电电流采样电路用于检测所述充放电控制装置的三相充放电电流;所述电源电压采样电路用于检测所述外接电源的电压;所述充放电电流采样电路和所述电源电压采样电路连接所述控制芯片;所述控制芯片用于向所述电驱动电路发送第一脉宽调制PWM驱动信号,其中,所述第一PWM驱动信号用于指示所述电驱动电路将所述外接电源的电能存储于所述电机的电感中,以及利用所述电机的电感中存储的电能为所述电池充电;或者,所述控制芯片用于向所述电驱动电路发送第二PWM驱动信号,其中,所述第二PWM驱动信号用于指示所述电驱动电路将所述电池的电能存储于所述电机的电感中,以及利用所述电机的电感中存储的电能为所述外接电源回馈电能。
- 根据权利要求1所述的充放电控制装置,其特征在于,所述充放电控制装置还包括电池电压采样电路和驱动电路;所述电池电压采样电路用于检测所述电池的电压,所述电池电压采样电路连接所述控制芯片;所述电驱动电路连接所述驱动电路,所述驱动电路连接所述控制芯片。
- 根据权利要求1或2所述的充放电控制装置,其特征在于,所述电驱动电路包括第一绝缘栅双极型晶体管芯片IGBT模块、第二IGBT模块、第三IGBT模块、第四IGBT模块、第五IGBT模块、第六IGBT模块以及母线电容;所述第一IGBT模块的发射极与所述第二IGBT模块的集电极连接后组成所述电驱动电路的U相接线端子,所述IGBT3的发射极与所述第四IGBT模块的集电极连接后组成所述电驱动电路的的V相接线端子,所述第五IGBT模块的发射极与所述第六IGBT模块的集电极连接后组成所述电驱动电路的W相接线端子;所述第一IGBT模块的集电极、所述第三IGBT模块的集电极、所述第五IGBT模块的集电极以及所述母线电容的正极连接后组成所述电驱动电路的直流输入正极端子;所述第二IGBT模块的发射极、所述第四IGBT模块的发射极、所述第六IGBT模块的发射极以及所述母线电容的负极连接后组成所述电驱动电路的直流输入负极端子和所述N点端子;所述第一IGBT模块的门极和发射极、所述第二IGBT模块的门极和发射极、所述第三IGBT模块的门极和发射极、所述第四IGBT模块的门极和发射极、所述第五IGBT模块的门极和发射极、所述第六IGBT模块的门极和发射极连接所述驱动电路。
- 根据权利要求2或3所述的充放电控制装置,其特征在于,所述外接电源为直流电源;所述驱动电路包括信号隔离电路和功率放大电路。
- 根据权利要求2-4任一所述的充放电控制装置,其特征在于,所述控制芯片至少包括采样单元和驱动单元;所述电池电压采样电路、所述充放电电流采样电路和所述电源电压采样电路连接所述采样单元;所述驱动电路连接所述驱动单元。
- 根据权利要求1所述的充放电控制装置,其特征在于,所述电驱动电路包括U相电驱动电路、V相电驱动电路以及W相电驱动电路,且所述U相电驱动电路、所述V相电驱动电路和所述W相电驱动电路均包括n个电驱动单元,所述电驱动单元包括第一接线端子、第二接线端子、控制信号接线端子、直流输入正极子端子、直流输入负极子端子,所述n为正整数;所述电池包括U相电池组、V相电池组和W相电池组,所述U相电池组包括与所述U相电驱动电路中的n个电驱动单元对应连接的n个电池单元,所述V相电池组包括与所述V相电驱动电路中的n个电驱动单元对应连接的n个电池单元,所述W相电池组包括与所述W相电驱动电路中的n个电驱动单元对应连接的n个电池单元;所述U相电驱动电路中的第一个电驱动单元的第一接线端子连接所述电机的U相接线端子,所述V相电驱动电路中的第一个电驱动单元的第一接线端子连接所述电机的V相接线端子,所述W相电驱动电路中的第一个电驱动单元的第一接线端子连接所述电机的W相接线端子;所述U相电驱动电路中的第i个电驱动单元的第二接线端子连接所述U相电驱动电路中的第i+1个电驱动单元的第一接线端子,所述第i个电驱动单元的直流输入正极子端子连接所述电池的U相电池组中的第i个电池单元的正极,所述第i个电驱动单元的直流输入负极子端子连接所述第i个电池单元的负极,所述i为小于n的正整数;所述V相电驱动电路中的第j个电驱动单元的第二接线端子连接所述V相电驱动电路中的第j+1个电驱动单元的第一接线端子,所述第j个电驱动单元的直流输入正极子端子连接所述电池的V相电池组中的第j个电池单元的正极,所述第j个电驱动单元的直流输入负极子端子连接所述第j个电池单元的负极,所述j为小于n的正整数;所述W相电驱动电路中的第k个电驱动单元的第二接线端子连接所述W相电驱动电路中的第k+1个电驱动单元的第一接线端子,所述第k个电驱动单元的直流输入正极子端子连 接所述电池的W相电池组中的第k个电池单元的正极,所述第k个电驱动单元的直流输入负极子端子连接所述第k个电池单元的负极,所述k为小于n的正整数;所述U相电驱动电路中的第n个电驱动单元的第二接线端子、所述V相电驱动电路中的第n个电驱动单元的第二接线端子,以及所述W相电驱动电路中的第n个电驱动单元的第二接线端子组成所述电驱动电路的N点端子;所述U相电驱动电路中的电驱动单元的控制信号接线端子、所述V相电驱动电路中的控制信号接线端子、所述W相电驱动电路中的控制信号接线端子连接所述控制芯片。
- 根据权利要求6所述的充放电控制装置,其特征在于,所述电驱动单元包括H桥逆变器、旁路开关、驱动电路、电池电压采样电路以及电驱动单元控制芯片;所述H桥逆变器包括第一绝缘栅双极型晶体管芯片IGBT模块、第二IGBT模块、第三IGBT模块、第四IGBT模块,所述第一IGBT模块的发射极、所述第四IGBT模块的集电极和所述旁路开关的第一端子连接后组成所述电驱动单元的所述第一接线端子,所述第三IGBT模块的发射极连、所述第二IGBT模块的集电极和所述旁路开关的第二端子连接后组成所述电驱动单元的所述第二接线端子;所述电池电压采样电路用于检测与所述电驱动单元连接的电池单元的电压;所述第一IGBT模块的门极和发射极、所述第二IGBT模块的门极和发射极、所述第三IGBT模块的门极和发射极、所述第四IGBT模块的门极和发射极连接所述驱动电路;所述电池电压采样电路、所述驱动电路连接所述电驱动单元控制芯片,所述电驱动单元控制芯片连接所述控制芯片。
- 根据权利要求6或7所述的充放电控制装置,其特征在于,所述外接电源为直流电源或交流电源;所述电驱动单元控制芯片至少包括采样单元和驱动单元;所述电池电压采样电路、所述充放电电流采样电路和所述电源电压采样电路连接所述采样单元;所述驱动电路连接所述驱动单元。
- 根据权利要求1-8任一项所述的充放电控制装置,其特征在于,所述充放电电流采样电路通过霍尔电流传感器检测所述充放电控制装置的三相充放电电流。
- 根据权利要求1-8任一项所述的充放电控制装置,其特征在于,所述充放电电流采样电路通过电阻、隔离运放检测所述充放电控制装置的三相充放电电流。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17741002.4A EP3399622B1 (en) | 2016-01-21 | 2017-01-13 | Charging / discharging control device |
US16/042,688 US10931134B2 (en) | 2016-01-21 | 2018-07-23 | Charging/discharging control apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610042115.6A CN106992558A (zh) | 2016-01-21 | 2016-01-21 | 一种充放电控制装置 |
CN201610042115.6 | 2016-01-21 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/042,688 Continuation US10931134B2 (en) | 2016-01-21 | 2018-07-23 | Charging/discharging control apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017124971A1 true WO2017124971A1 (zh) | 2017-07-27 |
Family
ID=59361557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/071120 WO2017124971A1 (zh) | 2016-01-21 | 2017-01-13 | 一种充放电控制装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10931134B2 (zh) |
EP (1) | EP3399622B1 (zh) |
CN (1) | CN106992558A (zh) |
WO (1) | WO2017124971A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110303916A (zh) * | 2018-03-21 | 2019-10-08 | 现代自动车株式会社 | 用于电动车辆的充电装置 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11479139B2 (en) | 2015-09-11 | 2022-10-25 | Invertedpower Pty Ltd | Methods and systems for an integrated charging system for an electric vehicle |
CN107846055A (zh) * | 2017-10-31 | 2018-03-27 | 华为技术有限公司 | 电动汽车的充放电电路及方法 |
CN112224042B (zh) * | 2019-06-30 | 2022-04-15 | 比亚迪股份有限公司 | 能量转换装置及车辆 |
CN111211622B (zh) * | 2020-04-21 | 2020-07-31 | 北京有感科技有限责任公司 | 电子设备和电子设备充电系统 |
CN112744101B (zh) * | 2020-12-25 | 2023-02-17 | 中国第一汽车股份有限公司 | 充放电控制系统、方法及交通工具 |
US11607967B2 (en) * | 2021-03-22 | 2023-03-21 | GM Global Technology Operations LLC | Vehicle electrical system having a power inverter and an electric motor for stepping up voltage |
US11569745B2 (en) | 2021-03-22 | 2023-01-31 | GM Global Technology Operations LLC | Electrical system having boost converter functionality |
US11728732B2 (en) | 2021-03-22 | 2023-08-15 | GM Global Technology Operations LLC | Electrical system having buck converter functionality |
US11383607B1 (en) * | 2021-03-22 | 2022-07-12 | GM Global Technology Operations LLC | Bi-directional electrical charging system for a motor vehicle |
US11970072B2 (en) | 2021-03-22 | 2024-04-30 | GM Global Technology Operations LLC | Vehicle electrical system having a power inverter and electric motor for stepping down voltage |
US11581841B2 (en) | 2021-03-22 | 2023-02-14 | GM Global Technology Operations LLC | Electrical system having boost converter functionality |
KR20220161688A (ko) * | 2021-05-31 | 2022-12-07 | 현대자동차주식회사 | 하이브리드 차량의 림폼 주행 제어 방법 |
CN114368355B (zh) * | 2021-12-01 | 2023-12-22 | 深圳市康为宏科技有限公司 | 一种汽车电源长时间搁置辅助启动装置及方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008074951A1 (fr) * | 2006-12-15 | 2008-06-26 | Valeo Equipements Electriques Moteur | Dispositif de pre-charge de moyens de stockage d'energie associes a une machne electrique tournante |
CN101459344A (zh) * | 2007-11-22 | 2009-06-17 | 株式会社电装 | 具有多相电机和多相逆变器的电源系统 |
JP2009296843A (ja) * | 2008-06-09 | 2009-12-17 | Toyota Motor Corp | 充電制御装置およびそれを備えた車両 |
US20120153884A1 (en) * | 2010-12-21 | 2012-06-21 | Caterpillar Inc. | Integrated motor controller system |
CN103338968A (zh) * | 2011-02-09 | 2013-10-02 | 罗伯特·博世有限公司 | 用于为储能器充电的系统和用于运行该充电系统的方法 |
CN103770656A (zh) * | 2012-10-24 | 2014-05-07 | 伊顿公司 | 一种集成驱动/充电装置 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5099186A (en) * | 1990-12-31 | 1992-03-24 | General Motors Inc. | Integrated motor drive and recharge system |
EP0834977A3 (de) * | 1996-08-08 | 1999-04-14 | Schmidhauser AG | Einrichtung zum Laden mindestens eines Akkumulators, insbesondere eines Akkumulators für ein elektrisch angetriebenes Fahrzeug sowie ein Verfahren zum Betrieb dieser Einrichtung |
JP4003409B2 (ja) | 2001-03-30 | 2007-11-07 | 株式会社豊田自動織機 | 多出力電力変換回路 |
US7616460B2 (en) * | 2005-12-22 | 2009-11-10 | Continental Automotive Systems Us, Inc. | Apparatus, system, and method for AC bus loss detection and AC bus disconnection for electric vehicles having a house keeping power supply |
JP4491434B2 (ja) * | 2006-05-29 | 2010-06-30 | トヨタ自動車株式会社 | 電力制御装置およびそれを備えた車両 |
JP2008005659A (ja) * | 2006-06-23 | 2008-01-10 | Toyota Motor Corp | 電動車両 |
KR100846710B1 (ko) * | 2006-09-07 | 2008-07-16 | 삼성에스디아이 주식회사 | 배터리 관리 시스템 및 그의 구동 방법 |
CN101958657A (zh) | 2009-07-17 | 2011-01-26 | 华为技术有限公司 | 电源转换电路及设备、功率因数矫正电路交错控制方法 |
CN101814766A (zh) | 2010-04-06 | 2010-08-25 | 中国电力科学研究院 | 电动汽车双向充电机电源拓扑结构 |
CN102185487B (zh) | 2011-05-17 | 2013-04-03 | 清华大学 | 一种混合级联型多电平储能充放电及均压电路 |
CN103187896A (zh) | 2011-12-31 | 2013-07-03 | 北京友信宏科电子科技有限公司 | 级联中高压电动汽车变流器拓扑及其控制方法 |
US9120390B2 (en) * | 2012-03-08 | 2015-09-01 | General Electric Company | Apparatus for transferring energy using onboard power electronics and method of manufacturing same |
US9030174B2 (en) * | 2012-09-14 | 2015-05-12 | General Electric Company | Current balance control in converter for doubly fed induction generator wind turbine system |
CN106712517A (zh) | 2015-11-12 | 2017-05-24 | 华为技术有限公司 | 一种谐振双向变换电路以及变换器 |
CN107128185B (zh) | 2016-02-29 | 2020-06-16 | 华为技术有限公司 | 一种电机驱动装置及电动汽车 |
-
2016
- 2016-01-21 CN CN201610042115.6A patent/CN106992558A/zh active Pending
-
2017
- 2017-01-13 EP EP17741002.4A patent/EP3399622B1/en active Active
- 2017-01-13 WO PCT/CN2017/071120 patent/WO2017124971A1/zh active Application Filing
-
2018
- 2018-07-23 US US16/042,688 patent/US10931134B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008074951A1 (fr) * | 2006-12-15 | 2008-06-26 | Valeo Equipements Electriques Moteur | Dispositif de pre-charge de moyens de stockage d'energie associes a une machne electrique tournante |
CN101459344A (zh) * | 2007-11-22 | 2009-06-17 | 株式会社电装 | 具有多相电机和多相逆变器的电源系统 |
JP2009296843A (ja) * | 2008-06-09 | 2009-12-17 | Toyota Motor Corp | 充電制御装置およびそれを備えた車両 |
US20120153884A1 (en) * | 2010-12-21 | 2012-06-21 | Caterpillar Inc. | Integrated motor controller system |
CN103338968A (zh) * | 2011-02-09 | 2013-10-02 | 罗伯特·博世有限公司 | 用于为储能器充电的系统和用于运行该充电系统的方法 |
CN103770656A (zh) * | 2012-10-24 | 2014-05-07 | 伊顿公司 | 一种集成驱动/充电装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110303916A (zh) * | 2018-03-21 | 2019-10-08 | 现代自动车株式会社 | 用于电动车辆的充电装置 |
CN110303916B (zh) * | 2018-03-21 | 2023-03-10 | 现代自动车株式会社 | 用于电动车辆的充电装置 |
Also Published As
Publication number | Publication date |
---|---|
US20180351398A1 (en) | 2018-12-06 |
CN106992558A (zh) | 2017-07-28 |
EP3399622A1 (en) | 2018-11-07 |
US10931134B2 (en) | 2021-02-23 |
EP3399622A4 (en) | 2018-11-07 |
EP3399622B1 (en) | 2020-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017124971A1 (zh) | 一种充放电控制装置 | |
US8222866B2 (en) | Electrically-powered vehicle | |
US11159096B2 (en) | Power conversion device | |
US8004109B2 (en) | Vehicle power supply apparatus, and vehicle | |
US9878622B2 (en) | Power supply apparatus for eco-friendly vehicle | |
US20120248869A1 (en) | Vehicular electric power unit and method of controlling the same | |
US8441229B2 (en) | System for recharging plug-in hybrid vehicle and control method for the same | |
US10574144B1 (en) | System and method for a magnetically coupled inductor boost and multiphase buck converter with split duty cycle | |
US7605497B2 (en) | Two-source inverter | |
CN202906833U (zh) | 一种车用电机控制器 | |
JP2021048759A (ja) | 電源装置 | |
WO2014026460A1 (zh) | 一种集成开关磁阻电机驱动与低压电池充电的变换装置 | |
JP5394677B2 (ja) | 充電システムおよびそれを備えた車両 | |
US11207985B2 (en) | Power supply device | |
US7719138B2 (en) | Two-source series inverter | |
CN105914804A (zh) | 具有不同电池类型的电池组储能系统 | |
CN110053501A (zh) | 电动汽车的充电、驱动系统及充电装置 | |
CN201985600U (zh) | 带充电功能的电动汽车牵引变频器电路 | |
Cheng et al. | The design and control of an electrified powertrain with switched reluctance machines for series Hybrid Electric Vehicle | |
JP2000152408A (ja) | 電気自動車 | |
CN109586387B (zh) | 一种斩波电路及供电系统 | |
Salari et al. | A new multiple input bidirectional HEV battery charger | |
JP2013090410A (ja) | 電動車両 | |
JP2019110697A (ja) | 回転電機の駆動装置 | |
Makandar et al. | Performance analysis of bidirectional dc-dc converter for electric vehicle application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17741002 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017741002 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017741002 Country of ref document: EP Effective date: 20180731 |