WO2017123008A1 - 유기발광소자, 유기발광 표시장치 및 유기발광소자용 화합물 - Google Patents

유기발광소자, 유기발광 표시장치 및 유기발광소자용 화합물 Download PDF

Info

Publication number
WO2017123008A1
WO2017123008A1 PCT/KR2017/000380 KR2017000380W WO2017123008A1 WO 2017123008 A1 WO2017123008 A1 WO 2017123008A1 KR 2017000380 W KR2017000380 W KR 2017000380W WO 2017123008 A1 WO2017123008 A1 WO 2017123008A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
group
organic light
layer
disposed
Prior art date
Application number
PCT/KR2017/000380
Other languages
English (en)
French (fr)
Inventor
이문재
권재택
문성윤
윤진호
박남진
황선필
김대성
이범성
Original Assignee
덕산네오룩스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 덕산네오룩스 주식회사 filed Critical 덕산네오룩스 주식회사
Publication of WO2017123008A1 publication Critical patent/WO2017123008A1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03CDOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
    • E03C1/00Domestic plumbing installations for fresh water or waste water; Sinks
    • E03C1/12Plumbing installations for waste water; Basins or fountains connected thereto; Sinks
    • E03C1/14Wash-basins connected to the waste-pipe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03CDOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
    • E03C1/00Domestic plumbing installations for fresh water or waste water; Sinks
    • E03C1/12Plumbing installations for waste water; Basins or fountains connected thereto; Sinks
    • E03C1/28Odour seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L17/00Joints with packing adapted to sealing by fluid pressure
    • F16L17/02Joints with packing adapted to sealing by fluid pressure with sealing rings arranged between outer surface of pipe and inner surface of sleeve or socket
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L21/00Joints with sleeve or socket
    • F16L21/06Joints with sleeve or socket with a divided sleeve or ring clamping around the pipe ends
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03CDOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
    • E03C2201/00Details, devices or methods not otherwise provided for
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers

Definitions

  • the present invention relates to an organic light emitting device and an organic light emitting display device including the same.
  • the organic light emitting device In the organic light emitting layer interposed between the anode (cathode) and the cathode (cathode), the organic light emitting device has a molecular exciton having a high energy excited state by the recombination of holes introduced from the anode and electrons from the cathode After forming, the light emitting device emits light inherent in the material while returning to a low energy ground state.
  • Such an organic light emitting device is a device using a material that emits light when a voltage is applied, and has the advantages of high brightness, excellent contrast, multicoloring, dash angle, high response speed, and low driving voltage.
  • the organic light emitting display for displaying an image is composed of a plurality of pixels, each containing an organic light emitting element.
  • each pixel may include two or more light emitting regions, for example, a red light emitting region, a green light emitting region, and a blue light emitting region.
  • the organic light emitting diode display has a short lifespan or low efficiency among organic light emitting diodes disposed for each light emitting region.
  • an organic light emitting display device capable of reducing the number of patterning of the light emitting regions in the manufacturing process of the organic light emitting display device and at the same time improving the light emitting performance of the organic light emitting diodes or maintaining at least the same performance as the conventional one.
  • An object of the present invention is to provide an organic light emitting display device including an organic light emitting device and an organic light emitting device for improving the light emitting performance.
  • an object of the present invention is to provide an organic light emitting display device and an organic light emitting display device including the organic light emitting device for minimizing the patterning process of the light emitting regions during manufacturing.
  • the organic light emitting device is a first electrode disposed on a substrate, a second electrode disposed to face the first electrode, disposed between the first electrode and the second electrode, An organic light emitting layer including a first organic light emitting layer disposed in one subpixel, a second organic light emitting layer disposed in the second subpixel, and a third organic light emitting layer disposed in the third subpixel, between the first electrode and the organic light emitting layer A hole transporting layer disposed between the hole transporting layer and the hole transporting layer and the organic light emitting layer, and a first light emitting auxiliary layer disposed in the first subpixel, a second light emitting auxiliary layer disposed in the second subpixel, and the hole transporting layer and the organic light emitting layer. And a third light emitting auxiliary layer disposed on the first and second light emitting auxiliary layers between the light emitting layers and disposed in common to the first to third subpixels.
  • an organic light emitting diode in another aspect, includes a substrate including two or more subpixels, a first electrode disposed on the substrate, a second electrode disposed to face the first electrode, and the first electrode; An organic light emitting layer having a different color disposed between each of the at least two subpixels between the second electrode, a hole transport layer disposed between the first electrode and the organic light emitting layer, and disposed between the hole transport layer and the organic light emitting layer, One or more individual light emitting auxiliary layers respectively disposed on some of the subpixels, and a common light emitting auxiliary layer disposed on the individual light emitting auxiliary layers and commonly disposed on two or more subpixels.
  • an organic light emitting display device includes a driving transistor disposed on each of a first subpixel, a second subpixel, and a third subpixel emitting a different color, and a substrate electrically connected to the driving transistor.
  • the arrangement on the first and second auxiliary light emitting layer and comprises a third light emitting auxiliary layer disposed in common to the first to third sub-pixels.
  • An object of the present invention is to provide an organic light emitting display device including an organic light emitting device and an organic light emitting device to improve the light emitting performance.
  • an object of the present invention is to provide an organic light emitting display including an organic light emitting device and an organic light emitting device for minimizing the patterning process of the light emitting regions during manufacturing.
  • FIG. 1 is a cross-sectional view of an organic light emitting diode according to an embodiment.
  • FIG. 2 is a diagram illustrating thicknesses of light emitting auxiliary layers of an organic light emitting diode according to an exemplary embodiment.
  • FIG 3 is a diagram illustrating HOMO levels of a hole transport layer and an auxiliary light emitting layer in an organic light emitting diode according to an exemplary embodiment.
  • FIG. 4 is a cross-sectional view of an organic light emitting diode according to a comparative example.
  • 5A to 5G are views illustrating a method of manufacturing an organic light emitting diode according to an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of an organic light emitting diode according to another embodiment.
  • FIG. 7 is a conceptual diagram of an organic light emitting display device to which embodiments may be applied.
  • the red (R) subpixel, the green (G) subpixel, and the blue (B) subpixel may configure each pixel P of the organic light emitting display 1000 as described with reference to FIG. 9.
  • the organic light emitting diode 200 includes a first electrode 120 disposed on the substrate 100, a second electrode 180 disposed to face the first electrode 120, and the first electrode 120. ) And the organic light emitting layer 145 disposed between the second electrode 180.
  • the first electrode 120 may be an anode (anode)
  • the second electrode 180 may be a cathode (cathode)
  • embodiments of the present invention are not limited thereto.
  • the first electrode 120 may be a cathode and the second electrode 180 may be an anode.
  • the first electrode 120 of the organic light emitting diode 200 is an anode (anode) and the second electrode 170 is a cathode.
  • the first electrode 120 may be separated and disposed for each subpixel on the insulating layer 111 of the substrate 100.
  • the first electrode 120 disposed in each subpixel is electrically connected to any one of the source and the drain 110 and the contact hole formed in the insulating layer 111 in the transistor including the source, drain, gate, and active layer. .
  • the first electrode 120 may be made of a material having a relatively high work function.
  • the first electrode 120 may be formed of, for example, ITO (indium tin oxide), IZO (indium zinc oxide), ZnO (zinc oxide), AZO (Al doped zinc oxide), In 2 O 3 (indium oxide) or SnO 2 (tin). Oxide)), but is not limited thereto.
  • the first electrode 120 may be formed through a deposition method or a sputtering method.
  • the second electrode 180 may use a metal, an alloy, an electrically conductive compound having a relatively low work function, or a mixture of two or more thereof. Specific examples include lithium (Li), magnesium (Mg), aluminum (Al), aluminum-lithium (Al-Li), calcium (Ca), magnesium-indium (Mg-In), magnesium-silver (Mg-Ag), and the like. It can be formed into a thin film to obtain a transmissive electrode. On the other hand, in order to form a transmissive electrode using ITO, IZO to obtain a top emitting device (Top emitting device) may be variously modified in embodiments of the present invention.
  • the organic light emitting layer 145 is disposed at a first organic light emitting layer 145R disposed at a first subpixel (eg, a red (R) subpixel) and a second subpixel (eg, a green (G) subpixel).
  • the second organic light emitting layer 145G and the third organic light emitting layer 145B may be disposed on a third subpixel (eg, a blue (B) subpixel).
  • the size of the wavelength of light emitted is large in order of the first organic light emitting layer 145R, the second organic light emitting layer 145G, and the third organic light emitting layer 145B.
  • the first organic light emitting layer 145R may be a red organic light emitting layer
  • the second organic light emitting layer 145G may be a green organic light emitting layer
  • the third organic light emitting layer 145B may be a blue organic light emitting layer.
  • the first organic light emitting layer 145R may include a red host and a red dopant.
  • the red host may use Alq 3, CBP, PVK, ADN, TCTA, TPBI, TBADN, E3, DSA or a mixture of two or more thereof, but is not limited thereto.
  • the second organic light emitting layer 145G may include a green host and a green dopant.
  • the green host may use Alq 3, CBP, PVK, ADN, TCTA, TPBI, TBADN, E3, DSA or a mixture of two or more thereof, but is not limited thereto.
  • Ir (ppy) 3 tris (2-phenylpyridine) iridium, tris (2-phenylpyridine) iridium
  • Ir (ppy) 2 (acac) Bis (2-phenylpyridine) (Acetylacetonato) iridium (III), Bis (2-phenylpyridine) (acetylaceto) iridium (III))
  • Ir (mppy) 3 tris (2- (4-tolyl) phenylpiridine) iridium, tris (2- (4-tolyl) phenylpyridine) iridium)
  • C545T (10- (2benzothiazolyl) -1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H, 5H, 11H- [1] benzopyrano [6,7,8-ij] -quinolizin11 -one, 10- (2-benzothiazolyl) -1,1,7,7-tetramethyl-2,3,6,7
  • the first organic light emitting layer 145R and the second organic light emitting layer 145G may be formed using a method such as vacuum deposition, spin coating, cast, LB, or the like. Meanwhile, a codeposition method may be used to form the first organic light emitting layer 145R and the second organic light emitting layer 145G including the host and the dopant.
  • the third organic light emitting layer 145B may include a blue host and a blue dopant.
  • the blue host may be Alq3, CBP (4,4'-N, N'-dicabazole-biphenyl, 4,4'-N, N'-dicarbazole-biphenyl), PVK (poly (n-vinylcabazole) ), Poly (n-vinylcarbazole)), ADN (9,10-di (naphthalene-2-yl) anthracene, 9,10-di (naphthylene-2-yl) anthracene), TCTA, TPBI (1, 3,5-tris (N-phenylbenzimidazole-2-yl) benzene, 1,3,5-tris (N-phenylbenzimidazol-2-yl) benzene), TBADN (3-tert-butyl-9,10- di (naphth-2-yl) anthracene, 3-tert-
  • F2Irpic As blue dopant, F2Irpic, (F2ppy) 2Ir (tmd), Ir (dfppz) 3, ter-fluorene (ter-fluorene), DPAVBi (4,4'-bis (4diphenylaminostyryl) biphenyl, 4,4'-bis Diphenylaminostaryl) biphenyl), TBPe (2,5,8,11-tetra-tbutylperylene, 2,5,8,11-tetra-thi-butyl perylene) and the like can be used. However, it is not limited thereto.
  • the third organic light emitting layer 145B may be formed using a method such as vacuum deposition, spin coating, cast, LB, or the like.
  • the deposition conditions vary depending on the compound used, and in general, may be selected from a range of conditions substantially the same as the formation of the hole injection layer.
  • a co-deposition method may be used to simultaneously form a layer including the host and the dopant.
  • the organic light emitting diode 200 may include a hole transport layer 135 disposed between the first electrode 120 and the organic light emitting layer 145, and a light emitting auxiliary layer disposed between the hole transport layer 135 and the organic light emitting layer 145. 140).
  • the light emitting auxiliary layer 140 may include a first light emitting auxiliary layer 140R ', a second light emitting auxiliary layer 140G', and a third light emitting auxiliary layer 140B 'disposed on the hole transport layer 135. Include. Specifically, the first light emitting auxiliary layer 140R 'is disposed on the hole transport layer 135 in the first subpixel SP1, and the second light emitting auxiliary layer 140G' is disposed in the second subpixel. The pixel SP2 is disposed on the hole transport layer 130.
  • the third light emitting auxiliary layer 140B ' includes a first light emitting auxiliary layer 140R' and a second light emitting auxiliary layer 140G 'in the first subpixel SP1 and the second subpixel SP2, respectively. Is disposed on the hole transport layer 135 in the third sub-pixel SP3. That is, the third light emitting auxiliary layer 140B ′ is commonly disposed in the first subpixel SP1, the second subpixel SP2, and the third subpixel SP3.
  • the first light emitting auxiliary layer 140R ', the second light emitting auxiliary layer 140G' and the third light emitting auxiliary layer 140B ' may play a role of hole transport, for example, and may be made of a hole transport material.
  • the first light emitting auxiliary layer 140R ', the second light emitting auxiliary layer 140G', and the third light emitting auxiliary layer 140B ' may be made of the same material or compound, or may be made of different materials or compounds.
  • the first light emitting auxiliary layer 140R ', the second light emitting auxiliary layer 140G', and the third light emitting auxiliary layer 140B ' may be made of the same material or compound as the hole transport layer 135, or may be different from each other. It may also consist of a compound.
  • the hole transport layer 135, the first light emitting auxiliary layer 140R 'and the second light emitting auxiliary layer 140G' is a material containing a tertiary amine including tertiary amine or fluorine (fluorine). Can be done.
  • the hole transport layer 135, the first light emitting auxiliary layer 140R 'and the second light emitting auxiliary layer 140G' may include a compound represented by the following formula (1).
  • L is any one of a single bond, an arylene group of C 6 -C 60 , a fluorenylene group, and a C 2 -C 60 heterocyclic group
  • l and m are integers of 0 or more
  • R 1 and R 2 is any one of an aryl group of C 6 -C 60 , a heterocyclic group or alkenyl group of C 2 -C 60
  • Ar 1 And Ar 2 is any one of an aryl group of C 6 -C 60 , a heterocyclic group or a fluorene group of C 2 -C 60
  • X may be any one of NR ′ or CR′R ′′.
  • the fluorene group herein includes a spirofluorene group.
  • R ′ and R ′′ are either an aryl group of C 6 -C 60 , a heterocyclic group of C 2 -C 60 , or an alkyl group of C 1 -C 30 .
  • R ′ and R ′ ′ of X may combine with each other to form a spiro compound.
  • R 1 and R 2 may be bonded to each other to form a ring.
  • the group may be further substituted with one or more substituents selected from the group consisting of cyano groups, and when these substituents are adjacent to each other, they may combine with each other to form a ring.
  • Formula 1 may include a compound represented by Formula 2 to Formula 4. That is, the hole transport layer 135, the first light emitting auxiliary layer 140R 'and the second light emitting auxiliary layer 140G' may include a compound represented by the following Chemical Formulas 2 to 4. In this case, the first light emitting auxiliary layer 140R 'and the second light emitting auxiliary layer 140G' may be the same compound, and the hole transport layer 135 may be another compound, but is not limited thereto.
  • L is any one of a single bond, an arylene group of C 6 -C 60 , a fluorenylene group, a heterocyclic group of C 2 -C 60 , and Ar 3
  • Ar 4 is any one of C 6 -C 60 aryl group, C 2 -C 60 heterocyclic group, fluorene group
  • Ar 8 is any one of an aryl group of C 6 -C 60 , a heterocyclic group of C 2 -C 60 , a fluorene group
  • R ′ and R ′′ are an aryl group of C 6 -C 60 , C 2 -C Either a heterocyclic group of 60 or an alkyl group of C 1 -C 30 .
  • Ar 3 when Ar 4 is a C 2 -C 60 heterocyclic group, carbazole, Ar 5 When Ar 8 is a C 6 -C 60 heterocyclic group, it may not include carbazole.
  • the hole transport layer 135 may include a compound represented by the formula (2). Meanwhile, when the hole transport layer 135 includes the compound represented by Chemical Formula 2, the first light emitting auxiliary layer 140R 'and the second light emitting auxiliary layer 140G' are represented by Chemical Formulas 3 and 4. It may include a compound.
  • the first light emitting auxiliary layer 140R 'and the second light emitting auxiliary layer 140G' may be the same compound, and the hole transport layer 135 may be another compound.
  • the hole transport layer 135, the first light emitting auxiliary layer 140R ', and the second light emitting auxiliary layer 140G' may use the same compound represented by Chemical Formulas 1 to 4 described above.
  • the third light emitting auxiliary layer 140B ′ may include a compound represented by Formula 5 below.
  • R 3 and R 4 is hydrogen, deuterium, C 6 -C 60 aryl group, C 2 -C 60 alkenyl group, C 1 -C 60 alkyl group, C 6 -C 60 aryl Oxy group, C 2 -C 60 heterocyclic group, cyano group, nitro group, halogen group
  • L is a single bond, an arylene group of C 6 -C 60 , a heterocyclic group of C 3 -C 60 , a fluorenylene group
  • Ar 9 and Ar 10 are C 6 -C 24 aryl group, C 3 -C 24 heterocyclic group, fluorene group
  • R 3 may combine with each other to form a ring
  • R 4 may combine with each other to form a ring
  • the aryl group, heterocyclic group, alkenyl group, alkyl group, aryloxy group, fluorene group, arylene group, fluorenylene group (including spirofluorenyl group) is C 6 -C 24 aryl group, C 2 -C In the group consisting of 24 heterocyclic groups, C 1 -C 30 alkyl group, C 2 -C 24 alkenyl group, C 6 -C 24 aryloxy group, fluorenyl group, halogen group, nitro group, cyano group It may be further substituted with one or more selected substituents, and when each of these substituents is adjacent, they may combine with each other to form a ring.
  • Chemical Formula 5 may include a compound represented by Chemical Formulas 6 and 7. That is, the third light emitting auxiliary layer 140B ′ may include a compound represented by the following Chemical Formulas 6 to 7.
  • R 3 and R 4 , n, o, Ar 9 and Ar 10 are the same as in Formula 5.
  • the material of the light emitting auxiliary layer uses a material having a high T1 value, whereas when the organic light emitting layer is fluorescent, the lifespan is shortened when the light emitting auxiliary layer is used for the phosphorescent light.
  • the organic light emitting layer exhibits a long life even when a common light emitting auxiliary layer is used for both the blue light of the organic light emitting layer and the green and red light of the organic light emitting layer. It can also be seen that the phosphorescent green and red color exhibit high efficiency.
  • substituents described above in Chemical Formulas 1 to 7 are fluorene groups, they may include a spirofluorene group.
  • the carbon number may be 6 to 60, preferably 6 to 40 carbon atoms, more preferably 6 to 30 carbon atoms, and in the case of the heterocyclic group, the carbon number is 2 to 60, preferably 2 carbon atoms. ⁇ 30, more preferably a hetero ring having 2 to 20 carbon atoms, and in the case of the alkyl group, may be an alkyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and preferably 1 to 10 carbon atoms.
  • the compound represented by Formula 1 to 7 may be any one of the following compounds, it is not limited to the following compounds.
  • Sub 4 of Scheme 1 may be synthesized by the reaction route of Scheme 2, but is not limited thereto.
  • Specific compounds of Sub 1 may be compounds represented by Chemical Formulas Sub 1-1 to Sub 1-52 described below, but are not limited thereto.
  • Sub 4 of Scheme 1 may be synthesized by the reaction route of Scheme 3, but is not limited thereto.
  • Specific compounds of Sub 4 may be compounds represented by Chemical Formulas Sub 4-1 to Sub 1-81 described below, but are not limited thereto.
  • [1,1'-biphenyl]-in starting material 7-bromo-9,9-dimethyl-N, N-di (naphthalen-1-yl) -9H-fluoren-2-amine (52.7g, 97.5mmol) 3-amine (15g, 88.6mmol), Pd 2 (dba) 3 (4.1g, 4.43mmol), P ( t -Bu) 3 (1.8g, 8.9mmol), NaO t -Bu (25.6g, 266mmol), 930 ml of toluene was obtained using the Sub 4-2 synthesis method to obtain 9.11 g (yield: 77%) of the product.
  • Sub 1-1-6 (9.6 g, 24 mmol) was dissolved in toluene, then Sub 2-36 (7.0 g, 20 mmol), Pd 2 (dba) 3 (0.5 g, 0.6 mmol), P (t-Bu) 3 (0.2 g, 2 mmol), NaO t -Bu (5.8 g, 60 mmol) and toluene (300 mL) were added, respectively, and 12.5 g (yield: 78%) of the product was obtained using the P1-54 synthesis method.
  • Compound represented by the formula (3) according to the present invention (final product (2), for example, compounds represented by P2-1 to P1-72) can be prepared by reacting Sub 2 and Sub 4 as shown in the following scheme This is not restrictive.
  • Sub 2 of Scheme 4 may be synthesized by the reaction route of Scheme 5, but is not limited thereto.
  • Specific compounds of Sub 2 may be compounds represented by Chemical Formulas Sub 2-1 to Sub 2-39 described below, but are not limited thereto.
  • Sub 2-1 (75 g, 274.55 mmol) was dissolved in 1372 mL of DMF, followed by Bispinacolborate (76.69 g, 302.01 mmol), PdCl 2 (dppf) catalyst (6.03 g, 8.24 mmol) and KOAc (80.83 g, 823.66 mmol). After the addition, the mixture was stirred for 24 hours to synthesize the borate compound, and the obtained compound was separated through a silicagel column and recrystallization to give 72.10 g (82%) of the product.
  • Bispinacolborate 76.69 g, 302.01 mmol
  • PdCl 2 (dppf) catalyst (6.03 g, 8.24 mmol)
  • KOAc 80.83 g, 823.66 mmol
  • Sub 3 of Scheme 6 may be synthesized by, but are not limited to, the reaction route of Scheme 7 below.
  • Specific compounds of Sub 3 may be compounds represented by Chemical Formulas Sub 3-1 to Sub 3-37 described below, but are not limited thereto.
  • some of the hole transport layer 135, the first light emitting auxiliary layer 140R ', and the second light emitting auxiliary layer 140G' may be formed of the same compound or different compounds.
  • the third light emitting auxiliary layer 140B ' is disposed on the first light emitting auxiliary layer 140R' and the second light emitting auxiliary layer 140G ', and includes first to third subpixels SP1 and SP2, By being disposed in common with SP3, the charge balance in the organic light emitting layer 145 can be matched, so that the efficiency can be increased and the life can be extended.
  • the third sub-fill cell SP3 has a relatively high emission rate and a relatively long lifetime. have.
  • the organic light emitting device 200 may reduce the excess polaron causing dopant quenching and deterioration of the device in the organic light emitting layer 145, resulting from the excess polaron. Dopant quenching and device degradation can be reduced to increase lifetime.
  • the organic light emitting diode 200 may further include a hole injection layer 130 between the first electrode 120 and the hole transport layer 135. However, the organic light emitting diode 200 according to the exemplary embodiment may simultaneously delete the hole injection layer 130 by performing the role of the hole transport layer 135 and the hole injection layer 130.
  • the organic light emitting diode 200 may include an electron transport layer 160 and an electron injection layer 170 sequentially on the organic light emitting layer 145.
  • the second electrode 180 may be disposed on the electron injection layer 170.
  • the electron transport layer 160 may be disposed on the organic light emitting layer 145.
  • the electron transport layer 160 is a layer for transporting electrons injected from the second electrode 180 to the light emitting layer.
  • Alq 3 BCP (2,9-Dimethyl-4,7-diphenyl- 1,10-phenanthroline,, 9-dimethyl-4,7-diphenyl-1,10-phenanthroline), Bphen (4,7-Diphenyl-1,10-phenanthroline, 4,7-diphenyl-1, 10-phenanthroline), TAZ (3- (4-Biphenylyl) -4-phenyl-5tert-butylphenyl-1,2,4-triazole, 3- (4-biphenylyl) -4-phenyl-5-tert -Butylphenyl-1,2,4-triazole), NTAZ (4 (Naphthalen-1-yl) -3,5-diphenyl-4H-1,2,4-triazole, 4-
  • the electron transport layer 160 may be formed using a vacuum deposition method, a spin coating method, a cast method, or the like.
  • the conditions may vary depending on the compound used, but may be generally selected from the same range of conditions as the formation of the hole injection layer 130.
  • the thickness of the electron transport layer 160 may be about 100 kPa to about 1,000 kPa, for example, about 150 kPa to about 500 kPa.
  • a satisfactory electron transport characteristic may be obtained without a substantial increase in driving voltage.
  • the electron transport layer 160 may include an electron transport organic compound and a metal-containing material.
  • the metal-containing material may comprise a Li complex.
  • Li complex include lithium quinolate (LiQ) and the like,
  • an electron injection layer 170 having a function of facilitating injection of electrons from the second electrode 180 may be disposed on the electron transport layer 160.
  • the electron injection layer 170 may use the above materials as an electron injection layer material such as LiF, NaCl, CsF, Li 2 O, BaO, and the like, but is not limited thereto.
  • the deposition conditions of the electron injection layer 170 vary depending on the compound used, the electron injection layer 170 may be generally selected from the same range of conditions as the formation of the hole injection layer 130.
  • the electron injection layer 170 may have a thickness of about 1 kPa to about 100 kPa and about 3 kPa to about 90 kPa. When the thickness of the electron injection layer 170 satisfies the aforementioned range, a satisfactory electron injection characteristic may be obtained without a substantial increase in driving voltage.
  • the electron transport layer 160 and the electron injection layer 170 of the organic light emitting device 200 according to an embodiment is not limited thereto, and the electron transport layer 160 and the electron injection layer 170 may have an electron transport function and It can be replaced by a functional layer having an electron injection function at the same time.
  • a capping layer may be formed on the second electrode 180 to maximize optical emission efficiency by improving optical characteristics.
  • the capping layer may be formed of, for example, a metal oxide layer, a metal nitride layer, or a metal nitride oxide layer.
  • the organic light emitting device 200 deletes the remaining layers except for the hole transport layer 135, the light emitting auxiliary layer 140, and the organic light emitting layer 145 between the first electrode 120 and the second electrode 180. It can include a configured configuration.
  • the organic light emitting device 200 may further include a hole blocking layer, an electron blocking layer, a buffer layer, etc. in addition to the above-described configuration, the hole transport layer 135 serves as an electron blocking layer, or the electron transport layer 160 ) May serve as a hole blocking layer.
  • the organic light emitting diode 200 may be formed on at least one surface of the first electrode 120 and the second electrode 180 opposite to the organic light emitting layer 145.
  • the layer may further include a capping layer. The microcavity effect may be induced through the improvement of the light efficiency formed on one surface opposite to the organic light emitting layer 145.
  • the light emitted from the first to third organic light emitting layers 145R, 145G, and 145B in the organic light emitting diode 200 is disposed between the first electrode 120 and the second electrode 180. It can reciprocate in and cause interference.
  • the distance between the first electrode 120 and the second electrode 180 corresponds to a distance that can cause resonance
  • the light having an integer multiple of wavelengths causes constructive interference, resulting in stronger intensity and light having different wavelengths.
  • Such a round trip and interference process of light is called a micro cavity.
  • the distance between the first electrode 120 and the second electrode 180 corresponds to an integer multiple of the light wavelengths emitted from the first to third organic light emitting layers 145R, 145G, and 145B for each subpixel.
  • an optical path length of light emitted from the organic light emitting layer 145 is different for each subpixel by using the thickness of the light emitting auxiliary layer 140.
  • FIG. 2 is a diagram illustrating thicknesses of light emitting auxiliary layers of an organic light emitting diode according to an exemplary embodiment.
  • an auxiliary light emitting layer 140 is disposed between the organic light emitting layer 145 and the hole transport layer 135.
  • the first light emitting auxiliary layer 140R 'and the third light emitting auxiliary layer 140B' are disposed between the first organic light emitting layer 145R and the hole transport layer 135.
  • a second light emitting auxiliary layer 140G 'and a third light emitting auxiliary layer 140B' are disposed between the second organic light emitting layer 145G and the hole transport layer 135.
  • only the third light emitting auxiliary layer 140B ′ is disposed between the third organic light emitting layer 145B and the hole transport layer 135.
  • the light emitting auxiliary layer 140 may be a layer for matching the resonance distance for each color of the organic light emitting layer 145.
  • the first light emitting auxiliary layer 140R ', the second light emitting auxiliary layer 140G', and the third light emitting auxiliary layer 140B ' emit red light in the first to third subpixels SP1, SP2, and SP3. And green light emission to adjust the resonant distance and the region where the electrons and holes recombine.
  • the first light emitting auxiliary layer 140R ', the second light emitting auxiliary layer 140G', and the third light emitting auxiliary layer 140B ' may be added to match the resonance distance for each color.
  • the sum of the thickness T1 of the first light emitting auxiliary layer 140R 'and the thickness T3 of the third light emitting auxiliary layer 140B' disposed between the first organic light emitting layer 145R and the hole transport layer 135. Is the same as or substantially equal to the thickness T1 of only the first light emitting auxiliary layer 140R 'when only the first light emitting auxiliary layer 140R' is disposed between the third organic light emitting layer 145R and the hole transport layer 135. Can be.
  • the thickness T2 of the second light emitting auxiliary layer 140G 'disposed between the second organic light emitting layer 145G and the hole transport layer 135 and the thickness T3 of the third light emitting auxiliary layer 140B' is equal to or substantially the same as the thickness T2 of only the second light emitting auxiliary layer 140G 'when only the second light emitting auxiliary layer 140G' is disposed between the second organic light emitting layer 145G and the hole transport layer 140. can do.
  • the wavelength of the emitted light is the largest.
  • the thickness T1 of the large first light emitting auxiliary layer 140R ' may be thicker than the thickness T2 of the second light emitting auxiliary layer 140G' having a relatively small wavelength.
  • the thickness of the first light emitting auxiliary layer 140R ′ may be about 30 kPa to about 700 kPa, for example, about 50 kPa to about 200 kPa.
  • the thickness of the second light emitting auxiliary layer 140G ' may be about 30 kPa to about 300 kPa, for example, about 50 kPa to about 100 kPa.
  • the second light emitting auxiliary layer 140G ' may be thicker than the third light emitting auxiliary layer 140B'.
  • the third light emitting auxiliary layer 140B ' may be about 30 kPa to about 250 kPa, for example, about 50 kPa to about 100 kPa.
  • the optical path length of the light emitted from the organic light emitting layer 145 is different for each subpixel and thus the microcavity. microcavity effect can be realized.
  • the second subpixel (for example, the green subpixel) of the organic light emitting diode 200 according to the exemplary embodiment as described above has an excellent luminance-current efficiency characteristic.
  • the structure of another organic light emitting device 200 as shown in FIG. 1 not only the microcavity effect is satisfied but also the energy level in terms of the energy transport layer 135 from the first electrode 120. This is because holes can be efficiently transported step by step according to the HOMO level in the order of the third light emitting auxiliary layer 150B 'and the second light emitting auxiliary layer 150R'.
  • the HOMO levels of the components of the organic light emitting diode according to the exemplary embodiment are as follows.
  • 3 is a diagram illustrating HOMO levels of a hole transport layer and an auxiliary light emitting layer in an organic light emitting diode according to an exemplary embodiment.
  • the light emitting auxiliary layer 140 may serve to assist hole transport for each color of the hole transport layer 135.
  • the first light emitting auxiliary layer 140R ', the second light emitting auxiliary layer 140G', and the third light emitting auxiliary layer 140B ' are appropriate energy levels to assist hole transport for each color, for example, HOMO. (Highest Occupied Molecular Orbital) can be formed to have a level.
  • the HOMO level H2 of the first light emitting auxiliary layer 140R ′ disposed between the hole transport layer 135 and the first organic light emitting layer 145R is the HOMO level H1 of the hole transport layer 135. Can be greater than
  • the HOMO level H3 of the second light emitting auxiliary layer 140G ′ disposed between the hole transport layer 135 and the second organic light emitting layer 145G is greater than the HOMO level H1 of the hole transport layer 135.
  • the HOMO level H3 of the second light emitting auxiliary layer 140B ′ disposed between the hole transport layer 135 and the third organic light emitting layer 145B is greater than the HOMO level H1 of the hole transport layer 135. Can be.
  • HOMO levels (H2, H3, H4) of the light emitting auxiliary layer 150 may be greater than the HOMO level (H1) of the hole transport layer 135.
  • the HOMO level (H3) of the second light emitting auxiliary layer 140G 'disposed in the region between the hole transport layer 135 and the third light emitting auxiliary layer 140B' is the third light emitting auxiliary layer 140B 'HOMO level. It can be made larger than (H4). In other words, the HOMO level H3 of the second light emitting auxiliary layer 140G 'may be greater than the HOMO level H4 of the third light emitting auxiliary layer 140B'.
  • the HOMO level H2 of the first light emitting auxiliary layer 140R 'disposed in the region between the hole transport layer 135 and the third light emitting auxiliary layer 140B' is equal to that of the third light emitting auxiliary layer 140B '. It may be made larger than the HOMO level (H4). In other words, the HOMO level H2 of the first light emitting auxiliary layer 140R 'may be greater than the HOMO level H4 of the third light emitting auxiliary layer 140B'.
  • the HOMO level H4 of the third emission auxiliary layer 140B ' is greater than the HOMO level H1 of the hole transport layer 135 and the HOMO level H3 of the second emission auxiliary layer 140G', or It may be smaller than the HOMO level H4 of the third light emitting auxiliary layer 140R '.
  • the materials of the first light emitting auxiliary layer 140R ', the second light emitting auxiliary layer 140G', and the third light emitting auxiliary layer 140B ' may be the above-described hole transport materials satisfying energy levels.
  • a third light emitting auxiliary layer 140B ', a second light emitting auxiliary layer 140G', and a first light emitting auxiliary layer 140R ' are sequentially formed through the hole transport layer 135 from the first electrode of the organic light emitting diode. Holes can be transported.
  • Transferring holes directly from the first electrode of the light emitting device through the hole transport layer 135 directly to the first light emitting auxiliary layer 140R 'or the second light emitting auxiliary layer 140G' is the third light emitting auxiliary layer 140B '. ) May be inefficient than transporting holes first.
  • the HOMO level is in the order of the hole transport layer 135, the third light emitting auxiliary layer 140B ', the second light emitting auxiliary layer 140G', and the first light emitting auxiliary layer 140R ', Holes are efficiently stepped in accordance with the HOMO level in the order of the third light emitting auxiliary layer 140B ', the second light emitting auxiliary layer 140G', and the first light emitting auxiliary layer 140R 'from the electrode through the hole transport layer 135. Can be transported by.
  • Comparing the organic light emitting device according to an embodiment as described above with the organic light emitting device according to a comparative example is as follows. 4 is a cross-sectional view of an organic light emitting diode according to a comparative example.
  • the organic light emitting diode 300 includes a first light emitting auxiliary layer 240R ', a second light emitting auxiliary layer 240G', and a third light emitting auxiliary layer 240B 'for each subpixel. It may be the same as the organic light emitting diode according to the exemplary embodiment described with reference to FIG. 1 except that the first organic light emitting layer 245R, the second organic light emitting layer 245G, and the third organic light emitting layer 24BR are disposed thereon. have.
  • the first light emitting auxiliary layer 140R ', the second light emitting auxiliary layer 140G', and the first light emitting auxiliary layer 140G ' are formed.
  • the organic light emitting diode according to the above-described exemplary embodiment is disposed.
  • the device 200 transports holes from the hole transport layer 135 to the second organic light emitting layer 145G through the second light emitting auxiliary layer 140G 'and the third light emitting auxiliary layer 140B', or the first light emitting auxiliary layer ( Since the holes are transported to the first organic light emitting layer 145R through 140R ′) and the third light emitting auxiliary layer 140B ′, the mobility of holes may be improved.
  • the organic light emitting device 200 may be manufactured using a vacuum deposition (deposition).
  • Some of the organic material layers including the hole transport layer 135, the light emitting auxiliary layer 140, and the organic light emitting layer 145 may be formed using a variety of polymer materials, rather than a vacuum deposition method, a solution process or a solvent process such as a spin coating process, It can be produced in fewer layers by a method such as a nozzle printing process, an inkjet printing process, a slot coating process, a dip coating process, a roll-to-roll process, a doctor blading process, a screen printing process, or a thermal transfer method.
  • the organic material layer including the hole transport layer 135, the light emitting auxiliary layer 140, and the organic light emitting layer 145 may be formed in various ways, and thus the scope of the present invention is not limited by the method.
  • the organic light emitting diode according to the above embodiment may be manufactured using a total of five masks. Such a configuration will be described with reference to FIGS. 5A to 5G as follows.
  • 5A to 5G are views illustrating a method of manufacturing an organic light emitting diode according to an embodiment of the present invention.
  • the organic light emitting diode according to the embodiment forms the light emitting auxiliary layer 140 and the organic light emitting layer 145 for each subpixel using only five masks (first to fifth masks). can do.
  • a total of two masks are used to form the light emitting auxiliary layer 140 on the substrate 100 divided into first to third subpixels SP1, SP2, and SP3, and the light emitting auxiliary layer 140 is used. Since a total of three masks are used to form the organic light emitting layer 145 disposed thereon, the organic light emitting diode according to the exemplary embodiment may be formed through a total of five masks.
  • the third to third subpixels SP1, SP2, and SP3 share the third light emitting layer 140B ′ of the light emitting auxiliary layer 140, thereby patterning the third light emitting auxiliary layer 140B ′. Since the process may be omitted, only five masks may be used in the manufacturing process of the organic light emitting diode according to one embodiment.
  • the first light emitting auxiliary layer 240R ′, the second light emitting auxiliary layer 240G ′, and the third light emitting auxiliary layer 240B ′ for each pixel.
  • the first organic light emitting layer 245R, the second organic light emitting layer 245G, and the third organic light emitting layer 245B are disposed on the substrate.
  • a total of six masks should be used.
  • process efficiency may be improved and organic light emitting diodes may be used. Large area of the organic light emitting display including the device 200 is possible.
  • FIG. 6 is a cross-sectional view of an organic light emitting diode according to another embodiment.
  • an organic light emitting diode includes two or more subpixels a and b on a substrate.
  • Each of the subpixels a and b includes a first electrode, a second electrode disposed on the first electrode to face the first electrode, and two or more subpixels between the first electrode and the second electrode.
  • Two or more organic light emitting layers 345 of different colors disposed, a hole transport layer 335 disposed between the first electrode and the organic light emitting layer 345, disposed between the hole transport layer 335 and the organic light emitting layer 345
  • the light emitting auxiliary layer 340 may be included.
  • the light emitting auxiliary layer 450 includes a separate light emitting auxiliary layer 340a 'and at least one of the two or more subpixels a and b, respectively.
  • the light emitting auxiliary layer 340b ' may be disposed on 340a' and disposed in common to the two or more subpixels a and b.
  • one pixel P includes two subpixels a and b.
  • the organic light emitting diode according to another exemplary embodiment is not limited thereto.
  • the subpixels may consist of two to four.
  • an organic light emitting diode in which one subpixel (for example, a white subpixel) is added to the organic light emitting diode 200 described with reference to FIG. 1. Will correspond to.
  • the organic light emitting layer may include two to four organic light emitting layers disposed on each of two to four subpixels.
  • the organic light emitting layer 345 may include a first organic light emitting layer 345a and a second organic light emitting layer 345b. .
  • the light emitting auxiliary layer 340 may include a common light emitting auxiliary layer commonly disposed in two to four subpixels and one to three individual light emitting auxiliary layers disposed in each of one to three subpixels. have.
  • FIG. 7 is a conceptual diagram of an organic light emitting display device to which embodiments may be applied.
  • n gate lines GL1,..., GLn, n natural numbers are arranged in a first direction (eg, in a horizontal direction).
  • a timing controller 540 for controlling the gate driver 530.
  • a sub pixel is formed in a matrix form at each intersection point of one data line and one or more gate lines.
  • the plurality of subpixels are arranged in the display panel 510 in a matrix form.
  • the timing controller 540 starts scanning according to the timing implemented in each frame, and converts the image data input from the interface according to the data signal format used by the data driver 520 to convert the image data (Data). Outputs the data and controls the data drive in a time appropriate for the scan.
  • the timing controller 540 may control various control signals such as a data control signal (DCS) and a gate control signal (GCS) to control the data driver 520 and the gate driver 530.
  • DCS data control signal
  • GCS gate control signal
  • the gate driver 530 sequentially supplies scan signals of an on voltage or an off voltage to n gate lines GL1,..., GLn under the control of the timing controller 540. N gate lines GL1, ..., GLn are sequentially driven.
  • the data driver 520 stores the input image data Data in a memory (not shown) under the control of the timing controller 540 and, when a specific gate line is opened, stores the image data Data in an analog form.
  • the m data lines DL1, ..., DLm are driven by converting the data voltage Vdata and supplying the m data lines DL1, ..., DLm.
  • the organic light emitting diode display 500 illustrated in FIG. 7 controls the organic light emitting display panel 510 including the organic light emitting diodes 200 and 300 and the organic light emitting display panel 510. It may include an electronic device including a control unit. At this time, the electronic device may be a current or future wired or wireless communication terminal, and includes all electronic devices such as mobile communication terminals such as mobile phones, PDAs, electronic dictionaries, PMPs, remote controllers, navigation devices, game machines, various TVs, and various computers.
  • mobile communication terminals such as mobile phones, PDAs, electronic dictionaries, PMPs, remote controllers, navigation devices, game machines, various TVs, and various computers.
  • Each pixel Pij may include three subpixels. That is, each pixel Pij may include a red subpixel R, a green subpixel G, and a blue subpixel B.
  • the shape, arrangement, and number of subpixels of each pixel Pij may be modified in various ways, and other pixels such as a white subpixel displaying white may be further included.
  • each pixel Pij of the organic light emitting display panel 510 includes a source, a drain, a gate, and an active layer in the first subpixel R, the second subpixel G, and the third subpixel B, respectively. It includes a driving transistor included.
  • each pixel Pij emits a different color on the substrate, and includes the organic light emitting diode 200 illustrated in FIG. 1.
  • a first electrode of each organic light emitting diode disposed in the first subpixel R, the second subpixel G, and the third subpixel B is electrically connected to one of a source and a drain of the driving transistor. Can be connected.
  • each pixel Pij may include a switching transistor for switching a data voltage to a driving transistor and a storage capacitor Cst for maintaining the data voltage for a predetermined period of time, for example, for one frame. have.
  • the switching transistor and the driving transistor are n-channel field effect transistors (FETs), but at least one of them may be a p-channel field effect transistor.
  • FETs field effect transistors
  • connection relationship between the driving transistor, the switching transistor, the storage capacitor Cst, and the organic light emitting diode is only one example, and is not limited to the above-described connection relationship.
  • the organic light emitting diode display and the organic light emitting diode according to the above-described embodiments of the present invention have an effect of minimizing the patterning process of the light emitting regions during manufacturing.
  • a 4,4 ', 4' '-Tris [2-naphthyl (phenyl) amino] triphenylamine (abbreviated as 2-TNATA) film is vacuum deposited on an ITO layer (anode) formed on a glass substrate to form holes having a thickness of 100 nm.
  • the hole transport layer was formed on the hole injection layer by vacuum deposition to a thickness of 1200 nm with the above-described compound of Formulas 1 to 4 (for example, P2-41) as the hole transport compound.
  • a first light emitting auxiliary layer (red light emitting auxiliary layer) disposed on the first subpixel satisfying the thickness conditions of FIGS. 2 and 3 with the above-described compound of Formulas 1 to 4 (for example, P2-41) on the hole transport layer. Layer), and a second light emitting auxiliary layer (green light emitting auxiliary layer) disposed in the second subpixel.
  • the compounds of Formulas 5 to 7 (for example, P3-51) described above on the first and second light emitting auxiliary layers are common to the first to third subpixels satisfying the thickness conditions of FIGS. 2 and 3.
  • a third light emitting auxiliary layer (blue light emitting auxiliary layer) is formed.
  • the first organic light emitting layer (red organic light emitting layer) disposed in the first subpixel, the second organic light emitting layer (green organic light emitting layer) disposed in the second subpixel, and the third subpixel are disposed on the third light emitting auxiliary layer as a host.
  • An organic light emitting layer including a third organic light emitting layer (blue organic light emitting layer) was deposited to a thickness of 400 nm.
  • tris (8-quinolinol) aluminum hereinafter abbreviated as Alq 3
  • LiF which is an alkali metal halide
  • Al was deposited to a thickness of 150 nm to prepare an organic light emitting device.
  • An organic light emitting diode was manufactured according to the same method as Example 1 except for using Comparative Compounds 1 and 2 as the third emission auxiliary layer in the method of manufacturing the organic light emitting diode.
  • an organic light emitting diode is manufactured in the same manner as in the above example, except that P2-41, which is used as the first and second light emitting auxiliary layers as Comparative Compound 3, is used as the third light emitting auxiliary layer.
  • P2-41 which is used as the first and second light emitting auxiliary layers as Comparative Compound 3
  • Comparative Compound 3 is used as the third light emitting auxiliary layer.
  • the same compound was used as the third light emitting auxiliary layer in the first and second light emitting auxiliary layers, and thus, the organic light emitting device was manufactured by varying only the thickness of the same compound.
  • Electroluminescent (EL) characteristics were measured by PR-650 of photoresearch by applying a forward bias DC voltage to the organic light emitting diodes manufactured by Examples and Comparative Examples of the present invention, and the measurement result was 5000 cd / m 2.
  • the T95 lifetime was measured using a lifespan measuring instrument manufactured by McScience Inc. at the reference luminance, and the measurement results were as shown in Table 1 (blue), Table 2 (green), and Table 3 (red). In this example, specific compounds are shown as P3-51 and P2-41, but other compounds showed similar measurement results.
  • Comparative Compound 3 (P2-41) corresponds to an organic light emitting device having only the same compound thickness as the same compound as the third light emitting auxiliary layer, as the first and second light emitting auxiliary layers.
  • the organic light emitting device using the compound according to an embodiment of the present invention is significantly improved luminous efficiency and lifetime than the organic light emitting device using Comparative Compound 1 and Comparative Compound 2 It was confirmed.
  • the organic light emitting device using the compound according to the embodiment of the present invention uses the same compound of the first and second light emitting auxiliary layers as the third light emitting auxiliary layer, the light emitting efficiency and lifespan are higher than those of the organic light emitting device having only the same compound thickness. It was confirmed that this was significantly improved.
  • the compounds of Chemical Formulas 5 to 7 of the present invention which is a third light-emitting auxiliary layer material commonly disposed in the first to third subpixels, may have a common electron blocking layer (EBL) of red, green, and blue subpixels. It was confirmed that it can be used as a substance and exhibits a high life improvement effect.
  • EBL electron blocking layer
  • the organic light emitting diode display and the organic light emitting diode according to the above embodiments have the effect of improving the light emitting performance (high efficiency) and significantly improving the life (long life).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

본 발명은 유기발광소자 및 이를 포함하는 유기발광 표시장치를 개시한다. 본 발명에 따른 유기발광소자 및 이를 포함하는 유기발광 표시장치는 기판 상에 배치된 제 1 전극, 상기 제 1 전극과 대향하도록 배치된 제 2 전극, 상기 제 1 전극과 상기 제 2 전극 사이에 배치되며, 상기 제 1 서브픽셀에 배치된 제 1 유기발광층, 상기 제 2 서브픽셀에 배치된 제 2 유기발광층, 상기 제 3 서브픽셀에 배치된 제 3 유기발광층을 포함하는 유기발광층, 상기 제 1 전극과 유기발광층 사이에 배치된 정공수송층 및 상기 정공수송층과 유기발광층 사이에 배치되며, 상기 제 1 서브픽셀에 배치된 제 1 발광보조층, 상기 제 2 서브픽셀에 배치된 제 2 발광보조층 및 상기 정공수송층과 유기발광층 사이에서 상기 제 1 및 제 2 발광보조층 상에 배치되고 상기 제 1 내지 제 3 서브픽셀에 공통으로 배치된 제 3 발광보조층을 포함한다.

Description

유기발광소자, 유기발광 표시장치 및 유기발광소자용 화합물
본 발명은 유기발광소자 및 이를 포함하는 유기발광 표시장치에 관한 것이다.
유기발광소자는 애노드(anode)와 캐소드(cathode) 사이에 개재된 유기 발광층에서 애노드로부터 유입된 정공와 캐소드로부터 유입된 전자가 재결합하여 높은 에너지의 여기 상태(excited state)를 갖는 분자 여기자(exiton)를 형성한 후 낮은 에너지의 바닥 상태(ground state)로 돌아오면서 재료 고유의 빛을 방출하는 발광소자이다.
이러한 유기발광소자는 전압을 걸면 자체가 발광하는 물질을 이용한 소자로서 고휘도, 우수한 콘트라스트, 다색화, 대시야각, 고응답속도 및 저구동전압의 장점을 갖는다.
한편, 영상을 표시하는 유기발광 표시장치는 각각 유기발광소자를 포함하는 다수의 픽셀로 구성된다. 이 때, 각각의 픽셀들은 두 개 이상의 발광영역, 예를 들면, 적색 발광영역, 녹색 발광영역, 청색 발광영역으로 이루어질 수 있다.
이러한 유기발광 표시장치는 전술한 장점에도 불구하고, 발광영역별로 배치되는 유기발광소자 중 수명이 짧거나 효율이 낮은 유기발광소자가 문제가 되고 있다. 또한, 발광영역별로 각각의 픽셀들을 패터닝하여 대면적화하는 데 제조공정상 어려움을 겪고 있다.
따라서, 유기발광 표시장치의 제조공정상 발광영역들로 패터닝하는 회수를 줄이는 동시에 유기발광소자들의 발광 성능을 향상시키거나 적어도 기존과 동일한 성능을 유지할 수 있는 유기발광 표시장치가 요구되고 있는 실정이다.
본 발명의 목적은 발광 성능을 향상시키는 유기발광소자 및 유기발광소자를 포함하는 유기발광 표시장치를 제공하는 것을 목적으로 한다.
또한, 본 발명의 목적은 제조 시 발광 영역들의 패터닝 공정을 최소화하는 유기발광소자 및 유기발광소자를 포함하는 유기발광 표시장치를 제공하는 것을 목적으로 한다.
일측면에서, 본 발명에 따른 유기발광소자는 기판 상에 배치된 제 1 전극, 상기 제 1 전극과 대향하도록 배치된 제 2 전극, 상기 제 1 전극과 상기 제 2 전극 사이에 배치되며, 상기 제 1 서브픽셀에 배치된 제 1 유기발광층, 상기 제 2 서브픽셀에 배치된 제 2 유기발광층, 상기 제 3 서브픽셀에 배치된 제 3 유기발광층을 포함하는 유기발광층, 상기 제 1 전극과 유기발광층 사이에 배치된 정공수송층 및 상기 정공수송층과 유기발광층 사이에 배치되며, 상기 제 1 서브픽셀에 배치된 제 1 발광보조층, 상기 제 2 서브픽셀에 배치된 제 2 발광보조층 및 상기 정공수송층과 유기발광층 사이에서 상기 제 1 및 제 2 발광보조층 상에 배치되고 상기 제 1 내지 제 3 서브픽셀에 공통으로 배치된 제 3 발광보조층을 포함한다.
다른 측면에서, 본 발명에 따른 유기발광소자는 2 개 이상의 서브픽셀을 포함하는 기판, 상기 기판 상에 배치된 제 1 전극, 상기 제 1 전극과 대향하도록 배치된 제 2 전극, 상기 제 1 전극과 제 2 전극 사이에서 2 개 이상의 서브픽셀 각각에 배치된 서로 다른 색상의 유기발광층, 상기 제 1 전극과 유기발광층 사이에 배치된 정공수송층 및 상기 정공수송층과 상기 유기발광층 사이에 배치되며, 상기 2 개 이상의 서브픽셀 중 일부에 각각 배치된 하나 이상의 개별 발광보조층 및 상기 개별 발광보조층 상에 배치되며, 2 개 이상의 서브픽셀들에 공통으로 배치된 공통 발광보조층을 포함한다.
또 다른 측면에서, 본 발명에 따른 유기발광 표시장치는 서로 다른 색상을 발광하는 제 1 서프픽셀, 제 2 서브픽셀 및 제 3 서브픽셀 각각에 배치되는 구동 트랜지스터, 상기 구동 트랜지스터와 전기적으로 연결되며 기판 상에 배치된 제 1 전극, 상기 제 1 전극과 대향하도록 배치된 제 2 전극, 상기 제 1 전극과 상기 제 2 전극 사이에 배치되며, 상기 제 1 서브픽셀에 배치된 제 1 유기발광층, 상기 제 2 서브픽셀에 배치된 제 2 유기발광층, 상기 제 3 서브픽셀에 배치된 제 3 유기발광층을 포함하는 유기발광층, 상기 제 1 전극과 유기발광층 사이에 배치된 정공수송층 및 상기 정공수송층과 유기발광층 사이에 배치되며, 상기 제 1 서브픽셀에 배치된 제 1 발광보조층, 상기 제 2 서브픽셀에 배치된 제 2 발광보조층 및 상기 정공수송층과 유기발광층 사이에서 상기 제 1 및 제 2 발광보조층 상에 배치되고 상기 제 1 내지 제 3 서브픽셀에 공통으로 배치된 제 3 발광보조층을 포함한다.
본 발명의 목적은 발광 성능을 향상시키는 유기발광소자 및 유기발광소자를 포함하는 유기발광 표시장치를 제공하는 것이다.
또한, 본 발명의 목적은 제조 시 발광 영역들의 패터닝 공정을 최소화하는 유기발광소자 및 유기발광소자를 포함하는 유기발광 표시장치를 제공하는 것이다.
도 1은 일 실시예에 따른 유기발광소자의 단면도이다.
도 2는 일 실시예에 따른 유기발광소자의 발광보조층들의 두께를 도시한 도면이다.
도 3은 일 실시예에 따른 유기발광소자에서 정공수송층과 발광보조층들의 HOMO 준위를 도시한 도면이다.
도 4는 비교예에 따른 유기발광소자의 단면도이다.
도 5a 내지 도 5g는 본 발명의 일 실시예에 따른 유기발광소자의 제조방법을 도시한 도면이다.
도 6은 다른 실시예에 따른 유기발광소자의 단면도이다.
도 7은 실시예들이 적용될 수 있는 유기발광 표시장치의 개념도이다.
[규칙 제91조에 의한 정정 20.03.2017] 
상기 적색(R) 서브픽셀, 녹색(G) 서브픽셀 및 청색(B) 서브픽셀은 도 9를 참조하여 설명하는 바와 같이 유기발광 표시장치(1000)의 각 화소(P)를 구성할 수 있다.
한편, 상기 유기발광소자(200)는 기판(100) 상에 배치된 제 1 전극(120), 상기 제 1 전극(120)과 대향하도록 배치된 제 2 전극(180), 상기 제 1 전극(120)과 제 2 전극(180) 사이에 배치된 유기발광층(145)을 구비한다. 이 때, 상기 제 1 전극(120)은 애노드(양극)이고, 제 2 전극(180)은 캐소드(음극)일 수 있으나, 본 발명의 실시예들이 이에 국한되는 것은 아니다.
예를 들면, 인버트형의 경우에는 제 1 전극(120)이 캐소드이고 제 2 전극(180)이 애노드일 수 있다. 다만, 후술하는 실시예들에서는 상기 유기발광소자(200)의 제 1 전극(120)이 애노드(양극)이고 제 2 전극(170)이 캐소드인 구성을 중심으로 설명한다.
상기 제 1 전극(120)이 기판(100)의 절연막(111) 상에 서브픽셀 별로 분리되어 배치될 수 있다. 서브픽셀 각각에 배치되는 제 1 전극(120)은 소스, 드레인, 게이트 및 활성층 등을 포함한 트랜지스터에서 소스 및 드레인 중 어느 하나(110)와 절연막(111)에 형성된 컨택홀을 통해 전기적으로 연결되어 있다.
상기 제 1 전극(120)은 상대적으로 일함수가 높은 물질로 이루어질 수 있다. 제 1 전극(120)은 예를 들면, ITO(인듐 주석 산화물), IZO(인듐 아연 산화물), ZnO(아연 산화물), AZO(Al 도핑된 아연 산화물), In2O3(인듐 산화물) 또는 SnO 2(주석 산화물)과 같은 투명한 도전성 산화물로 이루어질 수 있으나, 이에 한정되는 것은 아니다. 제1전극(120)는 증착법 또는 스퍼터링법 등을 통하여 형성할 수 있다.
상기 제 2 전극(180)은 상대적으로 낮은 일함수를 갖는 금속, 합금, 전기전도성 화합물 또는 이들의 2 이상의 혼합물을 사용할 수 있다. 구체적인 예로서는 리튬(Li), 마그네슘(Mg), 알루미늄(Al), 알루미늄-리튬(Al-Li), 칼슘 (Ca), 마그네슘-인듐(Mg-In), 마그네슘-은(Mg-Ag) 등을 박막으로 형성하여 투과형 전극을 얻을 수 있다. 한편, 전면 발광 소자(Top emitting device)를 얻기 위하여 ITO, IZO를 이용한 투과형 전극을 형성할 수 있는 등, 본 발명의 실시예들에서는 다양하게 변형될 수 있다.
상기 유기발광층(145)은 제 1 서브픽셀(예를 들어 적색(R) 서브픽셀)에 배치된 제 1 유기발광층(145R), 제 2 서브픽셀(예를 들어 녹색(G) 서브픽셀)에 배치된 제 2 유기발광층(145G), 제 3 서브픽셀(예를 들어 청색(B) 서브픽셀)에 배치된 제 3 유기발광층(145B)을 포함할 수 있다.
이 때, 발광하는 빛의 파장의 크기는 제 1 유기발광층(145R)과 제 2 유기발광층(145G), 제 3 유기발광층(145B)의 순서로 크다. 구체적으로, 상기 제 1 유기발광층(145R)은 적색 유기발광층이고, 제 2 유기발광층(145G)은 녹색 유기발광층이고, 제 3 유기발광층(145B)은 청색 유기발광층일 수 있다.
이 때, 제 1 유기발광층(145R)은 적색 호스트 및 적색 도펀트를 포함할 수 있다. 적색 호스트는 Alq 3, CBP, PVK, ADN, TCTA, TPBI, TBADN, E3, DSA 또는 이들의 2 이상의 혼합물을 사용할 수 있으나, 이에 국한되는 것은 아니다.
적색 도펀트로서 PtOEP, Ir(piq)3, Btp2Ir(acac), Ir(piq)2(acac), Ir(2-phq)2(acac), Ir(2-phq)3, Ir(flq)2(acac), Ir(fliq)2(acac), DCM 또는 DCJTB 을 포함하는 화합물들을 이용할 수 있으나, 이에 한정되는 것은 아니다.
상기 제 2 유기발광층(145G)은 녹색 호스트 및 녹색 도펀트를 포함할 수 있다. 녹색 호스트는 Alq 3, CBP, PVK, ADN, TCTA, TPBI, TBADN, E3, DSA 또는 이들의 2 이상의 혼합물을 사용할 수 있으나, 이에 국한되는 것은 아니다.
녹색 도펀트로서 Ir(ppy) 3 (tris(2-phenylpyridine) iridium, 트리스(2-페닐피리딘) 이리듐), Ir(ppy) 2(acac)(Bis(2-phenylpyridine)(Acetylacetonato)iridium(III), 비스(2-페닐피리딘)(아세틸아세토) 이리듐(III)), Ir(mppy)3 (tris(2-(4-tolyl)phenylpiridine)iridium, 트리스(2-(4-톨일)페닐피리딘) 이리듐), C545T (10-(2benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H-[1]benzopyrano [6,7,8-ij]-quinolizin11-one, 10-(2-벤조티아졸일)-1,1,7,7-테트라메틸-2,3,6,7,-테트라하이드로-1H,5H,11H-[1]벤조피라노 [6,7,8ij]-퀴놀리진-11-온) 등을 이용할 수 있으나, 이에 국한되는 것은 아니다.
상기 제 1 유기발광층(145R) 및 제 2 유기발광층(145G)은 진공 증착법, 스핀 코팅법, 캐스트법, LB법 등과 같은 방법을 이용하여 형성할 수 있다. 한편, 호스트 및 도펀트를 포함하는 제 1 유기발광층(145R) 및 제 2 유기발광층(145G)을 형성하기 위하여 공증착(codeposition) 방법을 사용할 수도 있다.
상기 제 3 유기발광층(145B)는 청색 호스트 및 청색 도펀트를 포함할 수 있다. 예를 들면, 상기 청색 호스트는 Alq3, CBP(4,4'-N,N'-dicabazole-biphenyl, 4,4'-N,N'-디카바졸 -비페닐), PVK(poly(n-vinylcabazole), 폴리 (n-비닐카바졸)), ADN(9,10-di(naphthalene-2-yl)anthracene, 9,10-디 (나프 탈렌 -2-일) 안트라센), TCTA, TPBI(1,3,5-tris(N-phenylbenzimidazole-2-yl)benzene, 1,3,5-트리스 (N-페닐벤즈 이미다졸 -2-일) 벤젠), TBADN(3-tert-butyl-9,10-di(naphth-2-yl) anthracene, 3-터트 -부틸 -9,10-디(나프트 -2일) 안트라센), E3, DSA(distyrylarylene, 디스티릴아릴렌) 또는 이들의 2 이상의 혼합물을 사용할 수 있으나, 이에 국한되는 것은 아니다.
청색 도펀트로서 F2Irpic, (F2ppy)2Ir(tmd), Ir(dfppz)3, ter-fluorene(터 -플루오렌), DPAVBi(4,4'-bis(4diphenylaminostyryl)biphenyl, 4,4'-비스 (4-디페닐아미노스타릴) 비페닐), TBPe(2,5,8,11-tetra-tbutylperylene, 2,5,8,11-테트라 -티-부틸 페릴렌) 등을 포함하는 화합물들을 이용할 수 있으나, 이에 국한되는 것은 아니다.
상기 제 3 유기발광층(145B)은 진공 증착법, 스핀 코팅법, 캐스트법, LB 법 등과 같은 방법을 이용하여 형성할 수 있다. 진공증착법 및 스핀코팅법을 이용하여 발광층을 형성하는 경우, 증착조건은 사용하는 화합물에 따라 다르지만, 일반적으로 정공주입층의 형성과 거의 동일한 조건범위 중에서 선택될 수 있다. 한편, 호스트 및 도펀트를 포함하는 층을 동시에 형성하기 위하여 공증착 방법을 사용할 수도 있다.
상기 유기발광소자(200)는 제 1 전극(120)과 유기발광층(145) 사이에 배치된 정공수송층(135) 및 상기 정공수송층(135)과 유기발광층(145) 사이에 배치된 발광보조층(140)을 포함할 수 있다.
한편, 상기 발광보조층(140)은 상기 정공수송층(135) 상에 배치되는 제 1 발광보조층(140R’), 제 2 발광보조층(140G’) 및 제 3 발광보조층(140B’)을 포함한다. 구체적으로는, 상기 제 1 발광보조층(140R’)은 상기 제 1 서브픽셀(SP1)에서 상기 정공수송층(135) 상에 배치되고, 상기 제 2 발광보조층(140G’)은 상기 제 2 서브픽셀(SP2)에서 상기 정공수송층(130) 상에 배치된다.
그리고, 상기 제 3 발광보조층(140B’)은 상기 제 1 서브픽셀(SP1) 및 제 2 서브픽셀(SP2)에서 각각 제 1 발광보조층(140R’) 및 제 2 발광보조층(140G’) 상에 배치되고, 상기 제 3 서브픽셀(SP3)에서 상기 정공수송층(135) 상에 배치된다. 즉, 상기 제 3 발광보조층(140B’)은 상기 제 1 서브픽셀(SP1), 제 2 서브픽셀(SP2) 및 제 3 서브픽셀(SP3)에 공통으로 배치된다.
한편, 상기 제 1 발광보조층(140R’), 제 2 발광보조층(140G’)과 제 3 발광보조층(140B’)은 예를 들어 정공 수송 역할을 할 수 있으며, 정공 수송 물질로 이루어질 수 있다. 상기 제 1 발광보조층(140R’), 제 2 발광보조층(140G’)과 제 3 발광보조층(140B’)은 서로 동일한 물질 또는 화합물로 이루어질 수도 있고 서로 상이한 물질 또는 화합물로 이루어질 수도 있다. 또한 상기 제 1 발광보조층(140R’), 제 2 발광보조층(140G’)과 제 3 발광보조층(140B’)은 정공수송층(135)과 동일한 물질 또는 화합물로 이루어질 수도 있고 서로 상이한 물질 또는 화합물로 이루어질 수도 있다.
예를 들어 상기 정공수송층(135), 제 1 발광보조층(140R’) 및 제 2 발광보조층(140G’)은 3 차 아민 또는 플루오렌(fluorine)을 포함하는 3차 아민을 포함하는 물질로 이루어질 수 있다.
구체적으로, 상기 정공수송층(135), 제 1 발광보조층(140R’) 및 제 2 발광보조층(140G’)은 하기 화학식 1로 표시되는 화합물을 포함할 수 있다.
[화학식 1]
Figure PCTKR2017000380-appb-I000001
상기 화학식 1 에서, L은 단일결합, C6-C60의 아릴렌기, 플루오렌일렌기, C2-C60헤테로고리기 중 어느 하나이고, l과 m은 0 이상의 정수이고, R1 및 R2는 C6-C60의 아릴기, C2-C60의 헤테로고리기 또는 알케닐기 중 어느 하나이고, Ar1 및 Ar2는 C6-C60의 아릴기, C2-C60의 헤테로고리기 또는 플루오렌기 중 어느 하나이고, X는 NR’ 또는 CR’R’’ 중 어느 하나일 수 있다. 본 명세서에서 플루오렌기는 스파이로플루오렌기를 포함한다.
여기서 R’ 및 R”은 C6-C60의 아릴기, C2-C60의 헤테로고리기 또는 C1-C30의 알킬기 중 어느 하나이다.
여기서, Ar1 및 Ar2가 C2-C60의 헤테로고리기일 경우 카바졸을 포함할 수 있다.
상기 화학식 1에서 X의 R’과 R’’는 서로 결합하여 스파이로(spiro) 화합물을 형성할 수 있다.
R1, R2에서 l과 m이 1 이상의 정수일 때, R1과 R2는 서로 결합하여 환을 형성할 수 있다.
상기 아릴기, 헤테로고리기, 알케닐기, 알킬기, 아릴옥시기, 플루오렌기(스파이로플루오렌기 포함), 아릴렌기 플루오렌일렌기(스파이로플루오렌일기 포함), 는 C6-C24의 아릴기, C2-C24의 헤테로고리기, C1-C30의 알킬기, C2-C24의 알케닐기, C6-C24의 아릴옥시기, 플루오렌일기, 할로겐기, 나이트로기,  시아노기로 이루어진 군에서 선택된 하나 이상의 치환기로 더욱 치환될 수 있으며, 이들 각 치환기가 인접한 경우 이들은 서로 결합하여 고리를 형성할 수 있다.
또한, 상기 화학식 1은 하기 화학식 2 내지 화학식 4로 표시되는 화합물을 포함할 수 있다. 즉, 상기 정공수송층(135), 제 1 발광보조층(140R’) 및 제 2 발광보조층(140G’)은 하기 화학식 2 내지 화학식 4로 표시되는 화합물을 포함할 수 있다. 이 때 제 1 발광보조층(140R’) 및 제 2 발광보조층(140G’)은 동일한 화합물이고 정공수송층(135)은 다른 화합물일 수 있으나 이에 제한되지 않는다.
[화학식 2]
Figure PCTKR2017000380-appb-I000002
[화학식 3]
Figure PCTKR2017000380-appb-I000003
[화학식 4]
Figure PCTKR2017000380-appb-I000004
상기 화학식 2 내지 화학식 4에서, L은 단일결합, C6-C60의 아릴렌기, 플루오렌일렌기, C2-C60의 헤테로고리기 중 어느 하나이고, Ar3 및 Ar4는 C6-C60의 아릴기, C2-C60의 헤테로고리기, 플루오렌기 중 어느 하나이고, Ar5 내지 Ar8은 C6-C60의 아릴기, C2-C60의 헤테로고리기, 플루오렌기 중 어느 하나이고, R’ 및 R”은 C6-C60의 아릴기, C2-C60의 헤테로고리기 또는 C1-C30의 알킬기 중 어느 하나이다.
여기서, Ar3 및 Ar4가 C2-C60의 헤테로고리기일 경우, 카바졸을 포함하고, Ar5 내지 Ar8가 C6-C60의 헤테로고리기일 경우, 카바졸을 포함하지 않을 수 있다.
또한, 상기 정공수송층(135)은 화학식 2로 표시되는 화합물을 포함할 수 있다. 한편, 상기 정공수송층(135)이 상기 화학식 2로 표시되는 화합물을 포함할 때, 상기 제 1 발광보조층(140R’), 제 2 발광보조층(140G’)은 화학식 3 및 화학식 4로 표시되는 화합물을 포함할 수 있다.
이 때 전술한 바와 같이 제 1 발광보조층(140R’) 및 제 2 발광보조층(140G’)은 동일한 화합물이고 정공수송층(135)은 다른 화합물일 수 있다. 정공수송층(135)과 제1발광보조층(140R'), 제2발광보조층(140G')은 전술한 화학식 1 내지 4로 표현되는 동일한 화합물을 사용할 수도 있다.
또한, 상기 제 3 발광보조층(140B’)은 하기 화학식 5으로 표시되는 화합물을 포함할 수 있다.
[화학식 5]
Figure PCTKR2017000380-appb-I000005
상기 화학식 5에서, 1) R3과 R4는 수소, 중수소, C6-C60의 아릴기, C2-C60의 알케닐기, C1-C60의 알킬기, C6-C60의 아릴옥시기, C2-C60의 헤테로고리기, 시아노기, 나이트로기, 할로겐기이며
2) n=0-4의 정수, o=0-3의 정수
3) L은 단일결합, C6-C60의 아릴렌기, C3-C60의 헤테로고리기, 플루오렌일렌기
4) Ar9, Ar10은 C6-C24의 아릴기,  C3-C24의 헤테로고리기, 플루오렌기
5) n=2 이상일 경우 R3은 서로 결합하여 고리를 형성할 수 있고 o=2 이상일 경우 R4는 서로 결합하여 고리를 형성할 수 있다.
상기 아릴기, 헤테로고리기, 알케닐기, 알킬기, 아릴옥시기, 플루오렌기, 아릴렌기, 플루오렌일렌기(스파이로플루오렌일기 포함)는 C6-C24의 아릴기, C2-C24의 헤테로고리기, C1-C30의 알킬기, C2-C24의 알케닐기, C6-C24의 아릴옥시기, 플루오렌일기, 할로겐기, 나이트로기,  시아노기로 이루어진 군에서 선택된 하나 이상의 치환기로 더욱 치환될 수 있으며, 이들 각 치환기가 인접한 경우 이들은 서로 결합하여 고리를 형성할 수 있다.
또한, 상기 화학식 5는 하기 화학식 6 및 7로 표시되는 화합물을 포함할 수 있다. 즉, 상기 제 3 발광보조층(140B’)은 하기 화학식 6 내지 화학식 7로 표시되는 화합물을 포함할 수 있다.
[화학식 6]
Figure PCTKR2017000380-appb-I000006
[화학식 7]
Figure PCTKR2017000380-appb-I000007
상기 화학식 6 및 7에서, R3과 R4, n, o, Ar9, Ar10는 상기 화학식 5와 동일하다.
일반적으로 유기발광층이 인광일 경우 발광보조층의 물질은 high T1 값을 갖는 물질을 사용하는 반면에 유기발광층이 형광일 경우 인광용 발광보조층을 사용할 경우 수명이 단축되는 경향성을 나타낸다. 하지만 전술한 화학식 5 내지 7로 표시되는 화합물의 경우 유기발광층이 형광인 청색과 유기발광층이 인광인 녹색, 적색 모두 공통의 발광보조층을 사용해도 고수명을 나타내는 것을 확인할 수 있다. 또한 인광용 녹색과 적색에서 고효율을 나타내는 것을 확인할 수 있다.
화학식 1 내지 7에서 전술한 치환기가 플루오렌기일 때 스파이로플루오렌기를 포함할 수 있다.
여기서, 상기 아릴기인 경우 탄소수는 6~60, 바람직하게는 탄소수 6~40, 보다 바람직하게는 탄소수 6~30의 아릴기일 수 있으며, 상기 헤테로고리기인 경우 탄소수는 2~60, 바람직하게는 탄소수 2~30, 보다 바람직하게는 탄소수 2~20의 헤테로고리일 수 있으며, 상기 알킬기인 경우 탄소수 1~30, 보다 바람직하게는 탄소수 1~20, 바람직하게는 탄소수 1~10의 알킬기일 수 있다.
보다 구체적으로, 상기 화학식 1 내지 7로 표시되는 화합물은 하기 화합물들 중 어느 하나일 수 있으며, 하기 화합물에만 한정하는 것은 아니다.
Figure PCTKR2017000380-appb-I000008
Figure PCTKR2017000380-appb-I000009
Figure PCTKR2017000380-appb-I000010
Figure PCTKR2017000380-appb-I000011
Figure PCTKR2017000380-appb-I000012
Figure PCTKR2017000380-appb-I000014
Figure PCTKR2017000380-appb-I000015
Figure PCTKR2017000380-appb-I000016
Figure PCTKR2017000380-appb-I000017
이하에서, 본 발명에 따른 화학식 1 내지 7로 표시되는 화합물의 합성예 및 유기전기소자의 제조예에 관하여 실시예를 들어 구체적으로 설명하지만, 본 발명이 하기의 실시예로 한정되는 것은 아니다.
[ 합성예 ]
본 발명에 따른 화학식 1 및 2로 표시되는 화합물(final product (1), 예를 들어 P1-1 내지 P1-77로 표시되는 화합물들)은 하기 반응식 1과 같이 Sub 1과 Sub 4를 반응하여 제조되나, 이에 한정되는 것은 아니다.
I. Final product (1)
<반응식 1>
Figure PCTKR2017000380-appb-I000018
Sub 1의 합성 예시 (L이 단일결합이 아닐 경우)
반응식 1의 Sub 4는 하기 반응식 2의 반응경로에 의해 합성될 수 있으며 이에 한정된 것은 아니다. Sub 1의 구체적인 화합물들은 후술하는 화학식 Sub 1-1 내지 Sub 1-52로 표시되는 화합물들일 수 있으나 이에 제한되지 않는다.
<반응식 2>
Figure PCTKR2017000380-appb-I000019
(1) M 1-1 합성 예
Figure PCTKR2017000380-appb-I000020
3-bromo-9-phenyl-9H-carbazole (45.1g, 140 mmol) 을 DMF 980mL 에 녹인 후에, Bispinacolborate (39.1g, 154 mmol), PdCl2(dppf) 촉매 (3.43g, 4.2 mmol), KOAc (41.3g, 420 mmol)을 순서대로 첨가한후 24 시간 교반하여 보레이트 화합물을 합성한 후에, 얻어진 화합물을 silicagel column 및 재결정을 걸쳐서 분리한후 보레이트 화합물을 35.2g (68 %)얻었다.
(2) M 1-2 합성 예
Figure PCTKR2017000380-appb-I000021
상기 M 1-1과 동일한 실험방법을 통해서 40 g (64%)을 얻었다.
(3) Sub 1-23 합성 예
Figure PCTKR2017000380-appb-I000022
M 1-1 (29.5 g, 80 mmol) 을 THF 360 mL 에 녹인후에, 4-bromo-4'-iodo-1,1'-biphenyl (30.16 g, 84 mmol), Pd(PPh3)4 (2.8 g, 2.4mmol), NaOH (9.6 g, 240mmol), 물 180 mL 을 첨가한후, 교반 환류 시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축 한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 26.56 g (70 %) 얻었다.
(4) Sub 1-16 합성 예
Figure PCTKR2017000380-appb-I000023
M 1-2 (29.5 g, 80 mmol), THF 360 mL, 1-bromo-4-iodobenzene (23.8 g, 84 mmol), Pd(PPh3)4 (2.8 g, 2.4mmol), NaOH (9.6 g, 240mmol), 물 180 mL 상기 Sub 1-23 합성방법을 사용하여 생성물을 22.9 g (72 %) 얻었다.
(5) Sub 1-26 합성 예
Figure PCTKR2017000380-appb-I000024
M 1-2 (29.5 g, 80 mmol) 을 THF 360 mL 에 녹인후에, 4'-bromo-3-iodo-1,1'-biphenyl (30.16 g, 84 mmol), Pd(PPh3)4 (2.8 g, 2.4mmol), NaOH (9.6 g, 240mmol), 물 180 mL 상기 Sub 1-23 합성방법을 사용하여 생성물을 24.7 g (65 %) 얻었다.
(6) M 1-3 합성 예
Figure PCTKR2017000380-appb-I000025
2-bromo-9-phenyl-9H-carbazole (45.1 g, 140 mmol) 을 DMF 980mL 에 녹인 후에, Bispinacolborate (39.1 g, 154 mmol), PdCl2(dppf) 촉매 (3.43 g, 4.2 mmol), KOAc (41.3 g, 420 mmol)을 상기 M 1-1 합성방법을 사용하여 생성물을 36.2g (70%)얻었다.
(7) M 1-4 합성 예
Figure PCTKR2017000380-appb-I000026
상기 M 1-1과 동일한 실험방법을 통해서 43.6g (67%)을 얻었다.
(8) Sub 1-32 합성 예
Figure PCTKR2017000380-appb-I000027
M 1-3 (30g, 81.24mmol) 을 THF 357mL 에 녹인후에, 3-Bromoiodobenzene (22.98g, 81.24mmol), Pd(PPh3)4 (2.82g, 2.44mmol), NaOH (9.75g, 243.72mmol), 물 179 mL 을 상기 Sub 1-23 합성방법을 사용하여 생성물을 26.95 g (70 %) 얻었다.
(9) Sub 1-28 합성 예
Figure PCTKR2017000380-appb-I000028
M 1-3 (29.5 g, 80 mmol), THF 360 mL, 1-bromo-4-iodobenzene (23.8 g, 84 mmol), Pd(PPh3)4 (2.8 g, 2.4mmol), NaOH (9.6 g, 240mmol), 물 180 mL 을 첨가한 후, 상기 Sub 1-32와 동일한 실험방법을 통해서 생성물을 23.26 g (73 %) 얻었다.
(10) Sub 1-36 합성 예
Figure PCTKR2017000380-appb-I000029
M 1-3 (29.5 g, 79.89 mmol) 을 THF 351 mL 에 녹인 후에, 3,7-dibromodibenzo[b,d]thiophene (27.33 g, 79.89 mmol), Pd(PPh3)4 (1.38 g, 1.2 mmol), NaOH (4.79 g, 119.83 mmol), 물 176 mL 을 첨가한 후, 상기 Sub 1-32와 동일한 실험방법을 통해서 생성물을 25.79 g (64 %) 얻었다.
(11) Sub 1-47 의 합성
Figure PCTKR2017000380-appb-I000030
1) M 1-I-47-I 합성
둥근바닥플라스크에 naphthalen-1-ylboronic acid (66g, 383.74mmol)를 THF(1688ml)에 녹인 후에, 4-bromo-1-iodo-2-nitrobenzene (125.83g, 383.74mmol), Pd(PPh3)4 (13.30g, 11.51mmol), K2CO3 (159.11g, 1151.23mmol), 물(844ml)을 첨가한 후, 교반 환류 시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 102.01g (수율: 81 %)을 얻었다.
2) M 1-I-47-II 합성
둥근바닥플라스크에 M 1-I-47-I (102g, 310.82mmol), Triphenylphosphine (203.81g, 777.04mmol), o-Dichlorobenzene (1243ml)을 넣은 후에 180℃로 환류하였다. 반응이 완료되면 상온으로 냉각 시킨 후에 메틸렌클로라이드와 물을 사용하여 추출하였다. 유기층을 MgSO4로 건조하고 농축 한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 77.33g (수율: 84 %)을 얻었다.
3) M 1-I-47 합성
둥근바닥플라스크에 M 1-I-47-II (77.33g, 261.1mmol)을 nitrobenzene(1305ml)으로 녹인 후, iodoben ene (58.59g, 287.21mmol), Na2SO4 (37.09g, 261.1mmol), K2CO3 (36.09g, 261.1mmol), Cu (4.98g, 78.33mmol)를 첨가하고 200°C에서 교반하였다. 반응이 완료되면 증류를 통해 nitrobenzene을 제거하고 CH2Cl2와 물로 추출하였다. 유기층을 MgSO4로 건조하고 농축 한 후 생성된 화합물을silicagel column 및 재결정하여 생성물 70.96g (수율: 73%)를 얻었다.
4) M 1-47 합성
M 1-I-47 (70.96g, 216.82mmol) 을 DMF 1084mL 에 녹인 후에, Bispinacolborate (60.57g, 238.51mmol), PdCl2(dppf) 촉매 (4.76g, 6.50mmol), KOAc (63.84g, 650.47mmol)을 상기 M 1-1 합성방법을 사용하여 생성물을 64.55 (71%)얻었다.
5) Sub 1-47 합성
둥근바닥플라스크에 M 1-47 (64.55g, 153.94mmol)를 THF(677ml)에 녹인 후에, 2,7-dibromo-9,9-dimethyl-9H-fluorene (54.20g, 153.94mmol), Pd(PPh3)4 (2.67g, 2.31mmol), K2CO3 (31.91g, 230.9mmol), 물(338ml)을 상기 M 1-I-47-I 합성방법을 사용하여 생성물을 59.96g (수율: 69%)을 얻었다.
Sub 1의 구체적인 화합물들 중 일부에 대한 합성방법을 예시하였으나 후술하는 화학식 Sub 1-1 내지 Sub 1-52로 표시되는 화합물들도 동일한 합성방법으로 합성할 수 있다.
Sub 4의 합성 예시
반응식 1의 Sub 4는 하기 반응식 3의 반응경로에 의해 합성될 수 있으며 이에 한정된 것은 아니다. Sub 4의 구체적인 화합물들은 후술하는 화학식 Sub 4-1 내지 Sub 1-81로 표시되는 화합물들일 수 있으나 이에 제한되지 않는다.
<반응식 3>
Figure PCTKR2017000380-appb-I000031
(1) Sub 4-2의 합성예시
Figure PCTKR2017000380-appb-I000032
둥근바닥플라스크에 Aniline (15 g, 161.1 mmol), 1-bromonaphthalene (36.7 g, 177.2 mmol), Pd2(dba)3 (7.37 g, 8.05 mmol), P(t-Bu)3 (3.26 g, 16.1 mmol), NaOt-Bu (51.08 g, 531.5 mmol), toluene (1690 mL)을 넣은 후에 100 ℃에서 반응을 진행한다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축 한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 25.4 g얻었다. (수율: 72%)
(2) Sub 4-9의 합성예시
Figure PCTKR2017000380-appb-I000033
4-bromo-1,1'-biphenyl (5.6g, 24mmol)을 톨루엔에 녹인 후에, [1,1'-biphenyl]-4-amine (3.4g, 20mmol), Pd2(dba)3 (0.5g, 0.6mmol), P(t-Bu)3 (0.2g, 2mmol), NaOt-Bu (5.8g, 60mmol), toluene (300 mL)을 상기 Sub 4-2 합성방법을 사용하여 생성물 6.2g (수율: 80%)을 얻었다.
(3) Sub 4-30의 합성예시
Figure PCTKR2017000380-appb-I000034
둥근바닥플라스크에 4-Aminobiphenyl (15 g, 88.6 mmol), toluene(931 ml), 2-bromo-9,9-diphenyl-9H-fluorene (38.7 g, 97.5 mmol), Pd2(dba)3 (4.1 g, 4.43 mmol), P(t-Bu)3 (1.8 g, 8.86 mmol), NaOt-Bu (28.1 g, 292.5 mmol)을 상기 Sub 4-2 합성방법을 사용하여 생성물 30.6 g (수율: 71%)를 얻었다.
Sub 4-41의 합성예시
Figure PCTKR2017000380-appb-I000035
출발물질인 2-bromodibenzo[b,d]thiophene (9.57 g, 36.4 mmol)에 naphthalen-1-amine (10.41 g, 72.7 mmol), Pd2(dba)3 (1 g, 1.1 mmol), 50% P(t-Bu)3 (1.4ml, 2.9 mmol), NaOt-Bu (10.49 g, 109.1 mmol), toluene을 상기 Sub 4-2 합성방법을 사용하여 생성물 9.11 g (수율: 77%)를 얻었다.
Sub 4-77의 합성예시
Figure PCTKR2017000380-appb-I000036
출발물질인 7-bromo-9,9-dimethyl-N,N-di(naphthalen-1-yl)-9H-fluoren-2-amine (52.7g, 97.5mmol)에 [1,1'-biphenyl]-3-amine (15g, 88.6mmol), Pd2(dba)3 (4.1g, 4.43mmol), P(t-Bu)3 (1.8g, 8.9mmol), NaOt-Bu (25.6g, 266mmol), toluene 930ml을 상기 Sub 4-2 합성방법을 사용하여 생성물 9.11 g (수율: 77%)를 얻었다.
Sub 4의 구체적인 화합물들 중 일부에 대한 합성방법을 예시하였으나 후술하는 화학식 Sub 4 내지 Sub 1-81로 표시되는 화합물들도 동일한 합성방법으로 합성할 수 있다.
Final Product (1) 의 합성
P1-54의 합성예시
Figure PCTKR2017000380-appb-I000037
둥근바닥플라스크에 Sub 1-32 (9.6g, 24mmol)을 톨루엔에 녹인 후에, Sub 4-9을 (6.4g, 20mmol), Pd2(dba)3 (0.5g, 0.6mmol), P(t-Bu)3 (0.2g, 2mmol), NaOt-Bu (5.8g, 60mmol), toluene (300 mL)을 넣은 후에 100 ℃에서 반응을 진행한다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축 한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 12.0g (수율: 78%)을 얻었다.
P1-48의 합성예시
Figure PCTKR2017000380-appb-I000038
Sub 1-1-6 (9.6g, 24mmol)을 톨루엔에 녹인 후에, Sub 2-36을 (7.0g, 20mmol), Pd2(dba)3 (0.5g, 0.6mmol), P(t-Bu)3 (0.2g, 2mmol), NaOt-Bu (5.8g, 60mmol), toluene (300 mL)을 각각 첨가한 뒤, 상기 P1-54 합성법을 이용하여 생성물 12.5g (수율: 78%)을 얻었다.
P1-31의 합성예시
Figure PCTKR2017000380-appb-I000039
Sub 1-27(11.4g, 24mmol)을 톨루엔에 녹인 후에, Sub 4-7을 (5.9g, 20mmol), Pd2(dba)3 (0.5g, 0.6mmol), P(t-Bu)3 (0.2g, 2mmol), NaOt-Bu (5.8g, 60mmol), toluene (300 mL)을 각각 첨가한 뒤, 상기 P1-54 합성법을 이용하여 생성물 13.7g (수율: 83%)을 얻었다.
P1-34의 합성예시
Figure PCTKR2017000380-appb-I000040
Sub 1-52(5g, 9.48mmol)을 톨루엔(10ml)에 녹인 후에, Sub 4-8을 (6.55g, 18.97mmol), Pd2(dba)3 (0.87g, 0.95mmol), P(t-Bu)3 (0.31g, 1.52mmol), NaOt-Bu (5.47g, 56.9mmol), toluene (100mL)을 각각 첨가한 뒤, 상기 P1-54 합성법을 이용하여 생성물 12.02 (수율: 74%)을 얻었다.
P1-75의 합성예시
Figure PCTKR2017000380-appb-I000041
Sub 1-47(11.5g, 20.37mmol)을 톨루엔(10ml)에 녹인 후에, Sub 4-23을 (8.34g, 20.37mmol), Pd2(dba)3 (0.93g, 1.02mmol), P(t-Bu)3 (0.33g, 1.63mmol), NaOt-Bu (5.87g, 61.11mmol), toluene (213mL)을 각각 첨가한 뒤, 상기 P1-54 합성법을 이용하여 생성물 12.92 (수율: 71%)을 얻었다.
Final product (1)의 구체적인 화합물들 중 일부에 대한 합성방법을 예시하였으나 전술한 화학식 P1-1 내지 P1-77로 표시되는 화합물들도 동일한 합성방법으로 합성할 수 있다.
II. Final product (2) 의 합성
본 발명에 따른 화학식 3으로 표시되는 화합물 (final product (2), 예를 들어 P2-1 내지 P1-72로 표시되는 화합물들)는 하기 반응식과 같이 Sub 2와 Sub 4를 반응하여 제조될 수 있으나 이에 제한되지 않는다.
<반응식 4>
Figure PCTKR2017000380-appb-I000042
Sub 2의 합성 예시 (L이 단일결합이 아닐 경우)
반응식 4의 Sub 2는 하기 반응식 5의 반응경로에 의해 합성될 수 있으며 이에 한정된 것은 아니다. Sub 2의 구체적인 화합물들은 후술하는 화학식 Sub 2-1 내지 Sub 2-39로 표시되는 화합물들일 수 있으나 이에 제한되지 않는다.
<반응식 5>
Figure PCTKR2017000380-appb-I000043
Sub 2의 합성 예
(1) Sub 2-8 합성 예
Figure PCTKR2017000380-appb-I000044
1) M 2-1 합성
Sub 2-1 (75g, 274.55mmol) 을 DMF 1372mL 에 녹인 후에, Bispinacolborate (76.69g, 302.01mmol), PdCl2(dppf) 촉매 (6.03g, 8.24mmol), KOAc (80.83g, 823.66mmol)을 순서대로 첨가한후 24 시간 교반하여 보레이트 화합물을 합성한 후에, 얻어진 화합물을 silicagel column 및 재결정을 걸쳐서 분리한후 생성물을 72.10g (82 %)얻었다.
2) Sub 2-8의 합성
M 2-1 (30g, 93.68mmol) 을 THF 412mL 에 녹인후에, 1-bromo-4-iodobenzene (26.50g, 93.68mmol), Pd(PPh3)4 (1.62g, 1.41mmol), NaOH (5.62g, 140.52mmol), 물 206mL 을 첨가한후, 교반 환류 시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축 한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 22.25 g (68 %) 얻었다.
(2) Sub 2-10 합성 예
Figure PCTKR2017000380-appb-I000045
Sub 2-10의 합성
M 2-1 (30g, 93.68mmol) 을 THF 412mL 에 녹인후에, 1-bromo-2-iodobenzene (26.50g, 93.68mmol), Pd(PPh3)4 (1.62g, 1.41mmol), NaOH (5.62g, 140.52mmol), 물 206mL 을 Sub 2-8 합성방법을 사용하여 생성물을 19.96g (61 %) 얻었다.
(3) Sub 2-12 합성 예
Figure PCTKR2017000380-appb-I000046
Sub 2-I-12 의 합성
naphthalen-1-ylboronic acid (85g, 494.22mmol) 을 THF 2175mL 에 녹인후에, methyl 5-chloro-2-iodobenzoate (146.53g, 494.22mmol), Pd(PPh3)4 (8.57g, 7.41mmol), NaOH (29.65g, 741.32mmol), 물 1087mL 을 첨가한후, 교반 환류 시킨다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축 한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 90.93g (62 %) 얻었다.
Sub 2-II-12 의 합성
Sub 2-I-12 (90.93g, 306.42mmol를 Methanesulfonic acid (996ml)에 녹이고 50~60 °C에서 교반하였다. 반응이 완료되면 0 °C까지 낮추고 물을 투입 후, 고체로 석출된 것을 여과하여 소량의 물로 세척하였다. CH2Cl2에 다시 녹여 MgSO4로 건조하고 농축 한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 37.31g을 얻었다. (수율: 46%)
Sub 2-III-12 의 합성
상기 합성에서 얻어진 Sub 2-II-12 (37.31g, 140.95mmol)을 Ethylene glycol(564mL)에 녹인 후에, Hydrazine monohydrate (211.67g, 4228.4mmol), KOH (19.77g, 352.37mmol) 첨가한 후, 185 °C에서 교반하였다. 반응이 완료되면 0 °C까지 낮추고 물을 투입 후, 고체로 석출된 것을 여과하여 소량의 물로 세척하였다. CH2Cl2에 다시 녹여 MgSO4로 건조하고 농축 한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 33.22g 를 얻었다. (수율: 94%)
Sub 2-IV-12 의 합성
둥근바닥플라스크에 상기 합성에서 얻어진 Sub 2-III-12 (33.22g, 132.49mmol), KOt-Bu (44.60g, 397.48mmol), DMSO (861ml)에 녹인 후에 0°C에서 5분 동안 교반시키고 상온으로 올려서 iodomethane (56.42g, 397.48mmol)을 첨가하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 35.46g을 얻었다. (수율: 96%)
Sub 2-V-12 의 합성
Sub 2-IV-12 (35.46g, 127.20mmol) 을 DMF 801mL 에 녹인 후에, Bispinacolborate (35.53g, 139.92mmol), PdCl2(dppf) 촉매 (2.79g, 3.82mmol), KOAc (37.45g, 381.59mmol)을 순서대로 첨가한후 24 시간 교반하여 보레이트 화합물을 합성한 후에, 얻어진 화합물을 silicagel column 및 재결정을 걸쳐서 분리한후 생성물을 39.57g 얻었다. (수율: 84 %)
Sub 2-12 의 합성
Sub 2-V-12 (39.57g, 106.86mmol) 을 THF 470mL 에 녹인후에, 1-bromo-4-iodobenzene (30.23g, 106.86mmol), Pd(PPh3)4 (1.85g, 1.60mmol), NaOH (6.41g, 160.29mmol), 물 235mL 을 Sub 2-8 합성방법을 사용하여 26.88g 얻었다. (수율: 63 %)
Sub 2-20 의 합성예
Figure PCTKR2017000380-appb-I000047
Sub 2-I-20 의 합성
2-bromo-1,1'-biphenyl (46.6g, 199.91mmol)과 9-chloro-11H-benzo[a]fluoren-11-one (52.9g, 199.91mmol)을 THF(1400ml)에 녹인 후에, 반응물의 온도를 -78 ℃로 낮추고, n-BuLi (2.5 M in hexane) (14.09g, 219.9mmol)을 천천히 가한 후 반응물을 상온에서 4시간 동안 교반시켰다. 반응이 종결되면 반응물을 H2O에 넣어 quenching 시킨 후 반응물 내의 물을 제거하고 감압 여과 후, 유기용매를 농축하여 생성된 생성물을 컬럼크로마토그래피를 이용하여 분리하여 생성물을 74.6g 얻었다. (수율: 89%)
Sub 2-II-20 의 합성
Sub 2-I-20 (74.6g, 178 mmol)에 HCl 소량과 Acetic acid(704ml)를 넣고 80℃에서 1시간 교반시킨다. 반응이 종결되면 감압여과 후, 유기용매를 농축하여 생성된 생성물을 컬럼크로마토그래피를 이용하여 분리하여 생성물을 64.89g 얻었다. (수율: 91%)
Sub 2-III-20 의 합성
Sub 2-II-20 (64.89g, 161.86mmol) 을 DMF 809mL 에 녹인 후에, Bispinacolborate (45.21g, 178.04mmol), PdCl2(dppf) 촉매 (3.55g, 4.86mmol), KOAc (47.65g, 485.57mmol)을 순서대로 첨가한후 24 시간 교반하여 보레이트 화합물을 합성한 후에, 얻어진 화합물을 silicagel column 및 재결정을 걸쳐서 분리한후 생성물을 65.36g 얻었다. (수율: 82 %)
Sub 2-20 의 합성
Sub 2-III-20 (30g, 60.92mmol) 을 THF 268mL 에 녹인후에, 4'-bromo-3-iodo-1,1'-biphenyl (21.87g, 60.92mmol), Pd(PPh3)4 (1.06g, 0.91mmol), NaOH (3.66g, 91.38mmol), 물 235mL 을 상기 Sub 2-8의 합성방법을 사용하여 생성물을 24.39g 얻었다. (수율: 67 %)
Sub 2-25 의 합성예
Figure PCTKR2017000380-appb-I000048
Sub 2-I-25 의 합성
2-bromo-1,1'-biphenyl (50g, 214.49mmol)과 2-chloro-9H-fluoren-9-one (46.04g, 214.49mmol)을 THF(1501ml)에 녹인 후에, 반응물의 온도를 -78 ℃로 낮추고, n-BuLi (2.5 M in hexane) (15.11g, 235.94mmol)을 상기 Sub 2-I-20 합성방법을 사용하여 생성물을 68.83g 얻었다. (수율: 87%)
Sub 2-II-25 의 합성
Sub 2-I-25 (68.83g, 164.3mmol)에 HCl 소량과 Acetic acid(361ml)를 상기 Sub 2-II-20 합성방법을사용하여 생성물을 58.27g 얻었다. (수율: 89%)
Sub 2-III-25 의 합성
Sub 2-II-25 (58.27g, 166.08mmol) 을 DMF 830mL 에 녹인 후에, Bispinacolborate (46.39g, 182.69mmol), PdCl2(dppf) 촉매 (3.65g, 4.98mmol), KOAc (48.9g, 498.25mmol)을 상기 Sub 2-III-20 합성방법을 사용하여 생성물을 58.78g 얻었다. (수율: 80 %)
Sub 2-25 의 합성
Sub 2-III-25 (58.78g, 132.88mmol) 을 THF 585mL 에 녹인후에, 3,7-dibromodibenzo[b,d]thiophene (45.45g, 132.88mmol), Pd(PPh3)4 (2.30g, 1.99mmol), NaOH (7.97g, 199.31mmol), 물 292mL 을 상기 Sub 2-8 합성방법을 사용하여 생성물을 29.09g 얻었다. (수율: 64 %)
Sub 2-31의 합성예
Figure PCTKR2017000380-appb-I000049
Sub 2-I-31 의 합성
2-bromo-1,1'-biphenyl (50g, 214.49mmol)과 7-chloro-11H-benzo[b]fluoren-11-one (56.78g, 214.49mmol)을 THF(1501ml), n-BuLi (2.5 M in hexane) (15.11g, 235.94mmol)을 상기 Sub 2-I-20 합성방법을 사용하여 생성물을 73.68g 얻었다. (수율: 82%)
Sub 2-II-31 의 합성
Sub 2-I-31 (73.68g, 175.88mmol)에 HCl 소량과 Acetic acid(387ml)를 상기 Sub 2-II-20 합성방법을 사용하여 생성물을 60.64g 얻었다. (수율: 86%)
Sub 2-III-31 의 합성
Sub 2-II-31 (60.64g, 151.26mmol) 을 DMF 953mL 에 녹인 후에, Bispinacolborate (42.25g, 166.38mmol), PdCl2(dppf) 촉매 (3.32g, 4.54mmol), KOAc (44.53g, 453.77mmol)을 상기 Sub 2-III-20 합성방법을 사용하여 생성물을 61.82g 얻었다. (수율: 83 %)
Sub 2-31 의 합성
Sub 2-III-31 (20g, 40.61mmol) 을 THF 179mL 에 녹인후에, 1-bromo-3-iodobenzene (11.49g, 40.61mmol), Pd(PPh3)4 (0.70g, 0.61mmol), NaOH (2.44g, 60.92mmol), 물 89mL 을 상기 Sub 2-8의 합성방법을 사용하여 생성물을 13.98g 얻었다. (수율: 66 %)
이상 Sub 2의 구체적인 화합물들 중 일부에 대한 합성방법을 예시하였으나 후술하는 화학식 Sub 2-1 내지 Sub 2-39로 표시되는 화합물들도 동일한 합성방법으로 합성할 수 있다.
Final Product ( 2)의 합성
P2-14 의 합성예시
Figure PCTKR2017000380-appb-I000050
둥근바닥플라스크에 Sub 2-1 (4g, 14.64mmol), Sub 4-67 (7.86g, 14.64mmol), Pd2(dba)3 (0.67g, 0.73 mmol), P(t-Bu)3 (0.24g, 1.17mmol), NaOt-Bu (4.22g, 43.93mmol), toluene (154mL)을 넣은 후에 100 ℃에서 반응을 진행한다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축 한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 7.58g 얻었다. (수율: 71%)
P2-25의 합성예시
Figure PCTKR2017000380-appb-I000051
Sub 2-9 (5.2g, 14.89mmol)을 톨루엔에 녹인 후에, Sub 4-47 (5.98g, 14.89mmol), Pd2(dba)3 (0.68g, 0.74mmol), P(t-Bu)3 (0.24g, 1.19mmol), NaOt-Bu (4.29g, 44.67mmol), toluene (156mL)을 상기 P2-14 합성방법을 사용하여 생성물 7.28g 을 얻었다. (수율: 73%)
P2-37의 합성예시
Figure PCTKR2017000380-appb-I000052
Sub 2-6 (5.2g, 14.89mmol)을 톨루엔에 녹인 후에, Sub 4-59 (6.86g, 14.89mmol), Pd2(dba)3 (0.68g, 0.74mmol), P(t-Bu)3 (0.24g, 1.19mmol), NaOt-Bu (4.29g, 44.67mmol), toluene (156mL)을 상기 P2-14 합성방법을 사용하여 생성물 7.38g을 얻었다. (수율: 68%)
P2-39의 합성예시
Figure PCTKR2017000380-appb-I000053
Sub 2-19 (6.5g, 11.83mmol)을 톨루엔에 녹인 후에, Sub 4-12 (4.39g, 11.83mmol), Pd2(dba)3 (0.54g, 0.59mmol), P(t-Bu)3 (0.19g, 0.95mmol), NaOt-Bu (3.41g, 35.49mmol), toluene (124mL)을 상기 P2-14 합성방법을 사용하여 생성물 7.15g을 얻었다. (수율: 72%)
P2-43의 합성예시
Figure PCTKR2017000380-appb-I000054
Sub 2-5 (5.2g, 12.16mmol)을 톨루엔에 녹인 후에, Sub 4-19 (4.76g, 13.16mmol), Pd2(dba)3 (0.6g, 0.66mmol), P(t-Bu)3 (0.21g, 1.05mmol), NaOt-Bu (3.79g, 39.46mmol), toluene (138mL)을 상기 P2-14 합성방법을 사용하여 생성물 7.11g을 얻었다.(수율: 80%)
P2-64의 합성예시
Figure PCTKR2017000380-appb-I000055
Sub 2-31 (6g, 11.51mmol)을 톨루엔에 녹인 후에, Sub 4-33 (4.69g, 11.51mmol), Pd2(dba)3 (0.53g, 0.58mmol), P(t-Bu)3 (0.19g, 0.92mmol), NaOt-Bu (3.32g, 34.52mmol), toluene (121mL)을 상기 P2-14 합성방법을 사용하여 생성물 7.22g을 얻었다. (수율: 74%)
P2-65의 합성예시
Figure PCTKR2017000380-appb-I000056
Sub 2-32 (6.5g, 12.47mmol)을 톨루엔에 녹인 후에, Sub 4-9 (4.01g, 12.47mmol), Pd2(dba)3 (0.57g, 0.62mmol), P(t-Bu)3 (0.2g, 0.997mmol), NaOt-Bu (3.59g, 37.4mmol), toluene (131mL)을 상기 P2-14 합성방법을 사용하여 생성물 7.31g을 얻었다. (수율: 77%)
Final product (2)의 구체적인 화합물들 중 일부에 대한 합성방법을 예시하였으나 전술한 화학식 P2-1 내지 P2-72로 표시되는 화합물들도 동일한 합성방법으로 합성할 수 있다.
III. Final product ( 3)의 합성
본 발명에 따른 화학식 5 내지 7로 표시되는 화합물 (final product (3), 예를 들어 P3-1 내지 P3-80로 표시되는 화합물들)은 하기 반응식 6과 같이 Sub 3과 Sub 4를 반응하여 제조되나, 이에 한정되지 않는다.
<반응식 6>
Figure PCTKR2017000380-appb-I000057
Sub 3 합성 예시
반응식 6의 Sub 3은 하기 반응식 7의 반응경로에 의해 합성될 수 있으며 이에 한정된 것은 아니다. Sub 3의 구체적인 화합물들은 후술하는 화학식 Sub 3-1 내지 Sub 3-37로 표시되는 화합물들일 수 있으나 이에 제한되지 않는다.
<반응식 7>
Figure PCTKR2017000380-appb-I000058
Sub 3-1의 합성 예
Figure PCTKR2017000380-appb-I000059
(1) M 3-1 합성
M 3-I-1 (15.76 g, 63.78 mmol)를 둥근바닥플라스크에 DMF (320ml)로 녹인 후에, Bis(pinacolato)diboron (17.82 g, 70.16 mmol), Pd(dppf)Cl2 (1.56 g, 1.91 mmol), KOAc (18.78 g, 191.35 mmol)를 첨가하고 90°C에서 교반하였다. 반응이 완료되면 증류를 통해 DMF를 제거하고 CH2Cl2와 물로 추출하였다. 유기층을 MgSO4로 건조하고 농축 한 후 생성된 화합물을 silicagel column 및 재결정하여 를 생성물 15.38 g을 얻었다. (수율: 82%)
(2) Sub 3-4 합성
상기 합성에서 얻어진 M 3-1 (15.38g, 52.28mmol)를 둥근바닥플라스크에 THF (230ml)로 녹인 후에, 1-bromo-4-iodobenzene (14.79g, 52.28mmol), Pd(PPh3)4 (0.91g, 0.78mmol), NaOH (3.14g, 78.43mmol), 물(115ml)을 첨가하고 80°C에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축 한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 12.17g을 얻었다. (수율: 72%)
Sub 3-9의 합성 예
Figure PCTKR2017000380-appb-I000060
상기 합성에서 얻어진 M 3-1 (9g, 30.60mmol)를 THF (134ml)로 녹인 후에, 4'-bromo-3-iodo-1,1'-biphenyl (10.98g, 30.60mmol), Pd(PPh3)4 (0.53g, 0.46mmol), NaOH (1.84g, 45.89mmol), 물(67ml)을 상기 Sub 3-4 합성방법을 사용하여 생성물 8.67g (수율: 71%)를 얻었다.
Sub 3-12의 합성 예
Figure PCTKR2017000380-appb-I000061
(1) M 3-I-2 합성
출발물질인 10-(3-bromophenyl)phenanthren-9-ol (63.74 g, 182.5 mmol)를 둥근바닥플라스크에 Pd(OAc)2 (4.1 g, 18.3 mmol), 3-nitropyridine (2.27 g, 18.3 mmol)과 함께 넣고 C6F6 (270ml), DMI (180ml)로 녹인 후, tert-butyl peroxybenzoate (70.9 g, 365 mmol)를 첨가하고 90°C에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축 한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 26.62 g을 얻었다. (수율: 42%)
(2) M 3-2 합성
상기 합성에서 얻어진 M 3-I-2 (26.62 g, 76.7 mmol)을 둥근바닥플라스크에 DMF (385ml)로 녹인 후에, Bis(pinacolato)diboron (21.42 g, 84.3 mmol), Pd(dppf)Cl2 (1.88 g, 2.3 mmol), KOAc (22.57 g, 230 mmol를 상기 M 3-1의 합성방법을 사용하여 생성물 20.25 g을 얻었다. (수율: 67%)
(3) Sub 3-12
상기 합성에서 얻어진 M 3-2 (10g, 25.36mmol)를 THF (111ml)로 녹인 후에, 2-bromo-3'-iodo-1,1'-biphenyl (9.11g, 25.36mmol), Pd(PPh3)4 (0.44g, 0.38mmol), NaOH (1.52g, 38.04mmol), 물(56ml)을 상기 Sub 3-4 합성방법을 사용하여 생성물 8.61g을 얻었다. (수율: 68%)
Sub 3-14의 합성 예
Figure PCTKR2017000380-appb-I000062
(1) M 3-3 합성
M 3-I-3 (32.76 g, 132.58 mmol)에 Bis(pinacolato)diboron (37.04 g, 145.84 mmol), Pd(dppf)Cl2 (3.25 g, 3.98 mmol), KOAc (39.04 g, 397.75 mmol), DMF (660ml)를 상기 M 3-1 합성법을 사용하여 생성물 33.54 g을 얻었다. (수율: 86%)
(2) Sub 3-14 합성
상기 합성에서 얻어진 M 3-3 (12g, 40.79mmol)에 1-bromo-4-iodobenzene (11.54g, 40.79mmol), Pd(PPh3)4 (0.71g, 0.61mmol), NaOH (2.45g, 61.19mmol), THF (170ml), 물 (90ml)을 상기 Sub 3-4 합성법을 사용하여 생성물 9.62g을 얻었다. (수율: 73%)
Sub 3-16의 합성 예
Figure PCTKR2017000380-appb-I000063
상기 합성에서 얻어진 M 3-3 (11g, 37.93mmol)에 4-bromo-4'-iodo-1,1'-biphenyl (13.42g, 37.39mmol), Pd(PPh3)4 (0.65g, 0.56mmol), NaOH (2.24g, 56.09mmol), THF (165ml), 물 (82ml)을 상기 Sub 3-4 합성법을 사용하여 생성물 11.20g을 얻었다. (수율: 75%)
Sub 3-19의 합성 예
Figure PCTKR2017000380-appb-I000064
상기 합성에서 얻어진 M 3-3 (10g, 34mmol)에 1,3,5-tribromobenzene (10.70g, 34mmol), Pd(PPh3)4 (0.39g, 0.34mmol), NaOH (1.36g, 34mmol), THF (150ml), 물 (75ml)을 상기 Sub 3-4 합성법을 사용하여 생성물 9.29g을 얻었다. (수율: 68%)
Sub 3-21의 합성 예
Figure PCTKR2017000380-appb-I000065
(1) M 3-4 합성
M 3-I-4 (25g, 100.37mmol)에 Bis(pinacolato)diboron (28.04g, 110.40mmol), Pd(dppf)Cl2 (2.2g, 3.01mmol), KOAc (29.55g, 301.10mmol), DMF (632ml)를 상기 M 3-1 합성법을 사용하여 생성물 24.5g을 얻었다. (수율: 83%)
(2) Sub 3-21 합성
상기 합성에서 얻어진 M 3-4 (10g, 34mmol)에 2,7-dibromo-9,9-dimethyl-9H-fluorene (11.97g, 34mmol), Pd(PPh3)4 (0.59g, 0.51mmol), NaOH (2.04g, 51mmol), THF (150ml), 물 (75ml)을 상기 Sub 3-4 합성법을 사용하여 생성물 10.16g을 얻었다. (수율: 68%)
Sub 3-21의 합성 예
Figure PCTKR2017000380-appb-I000066
(1) M 3-I-5 합성
3-(4-bromophenyl)naphthalen-2-ol (55g, 183.84mmol), Pd(OAc)2 (4.13g, 18.38mmol), 3-nitropyridine (2.28g, 18.38mmol), C6F6 (276ml), DMI (184ml)로 녹인 후, tert-butyl peroxybenzoate (71.42g, 367.68mmol)를 상기 M 3-I-2의 합성방법을 사용하여 생성물 51.85g을 얻었다. (수율: 71%)
(2) M 3-5 합성
상기 합성에서 얻어진 M 3-I-5 (30g, 100.96mmol)을 DMF (636ml)로 녹인 후에, Bis(pinacolato)diboron (28.1g, 111.06mmol), Pd(dppf)Cl2 (2.22g, 3.03mmol), KOAc (29.72g, 302.88mmol를 상기 M 3-2의 합성방법을 사용하여 생성물 26.41g을 얻었다. (수율: 76%)
(2) Sub 3-31 합성
상기 합성에서 얻어진 M 3-4 (13g, 37.77mmol)에 1-bromo-3-iodobenzene (10.68g, 37.77mmol), Pd(PPh3)4 (0.65g, 0.57mmol), NaOH (2.27g, 56.65mmol), THF (166ml), 물 (83ml)을 상기 Sub 3-4 합성법을 사용하여 생성물 9.59g을 얻었다. (수율: 68%)
이상, Sub 3의 구체적인 화합물들 중 일부에 대한 합성방법을 예시하였으나 후술하는 화학식 Sub 3-1 내지 Sub 3-37로 표시되는 화합물들도 동일한 합성방법으로 합성할 수 있다.
Final Product (3) 합성예
P3-1의 합성
Figure PCTKR2017000380-appb-I000067
둥근바닥플라스크에 Sub 3-1 (4g, 16.19mmol), Sub 4-9 (5.20g, 16.19mmol), Pd2(dba)3 (0.74g, 0.81 mmol), P(t-Bu)3 (0.26g, 1.30mmol), NaOt-Bu (4.67g, 48.57mmol), toluene (170mL)을 넣은 후에 100 ℃에서 반응을 진행한다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물을 7.03g 얻었다. (수율: 89%)
P3-20의 합성
Figure PCTKR2017000380-appb-I000068
Sub 3-18 (4.60g, 11.52mmol)을 톨루엔에 녹인 후에, Sub 4-49 (5.08g, 11.52mmol), Pd2(dba)3 (0.53g, 0.58mmol), P(t-Bu)3 (0.19g, 0.92mmol), NaOt-Bu (3.32g, 34.56mmol), toluene (121mL)을 상기 P3-1 합성방법을 사용하여 생성물 7.08g을 얻었다. (수율: 81%)
P3-25의 합성
Figure PCTKR2017000380-appb-I000069
Sub 3-22 (3.5g, 11.78mmol)을 톨루엔에 녹인 후에, Sub 4-76 (6.65g, 11.78mmol), Pd2(dba)3 (0.54g, 0.59mmol), P(t-Bu)3 (0.19g, 0.94mmol), NaOt-Bu (3.4g, 35.34mmol), toluene (124mL)을 상기 P3-1 합성방법을 사용하여 생성물 7.17g)을 얻었다. (수율: 78%
P3-46의 합성
Figure PCTKR2017000380-appb-I000070
Sub 3-6 (5.5g, 13.68mmol)을 톨루엔에 녹인 후에, Sub 4-8 (3.36g, 13.68mmol), Pd2(dba)3 (1.25g, 1.37mmol), P(t-Bu)3 (0.44g, 2.19mmol), NaOt-Bu (7.89g, 82.07mmol), toluene (144mL)을 상기 P3-1 합성방법을 사용하여 생성물 7.4g을 얻었다. (수율: 74%)
P3-51의 합성
Figure PCTKR2017000380-appb-I000071
Sub 3-9 (5.5g, 13.77mmol)을 톨루엔에 녹인 후에, Sub 4-9 (4.43g, 13.77mmol), Pd2(dba)3 (0.63g, 0.69mmol), P(t-Bu)3 (0.22g, 1.1mmol), NaOt-Bu (3.97g, 41.32mmol), toluene (145mL)을 상기 P3-1 합성방법을 사용하여 생성물 7.31g을 얻었다. (수율: 83%)
P3-64의 합성
Figure PCTKR2017000380-appb-I000072
Sub 3-13 (5g, 15.47mmol)을 톨루엔에 녹인 후에, Sub 4-20 (5.59g, 15.47mmol), Pd2(dba)3 (0.71g, 0.77mmol), P(t-Bu)3 (0.25g, 1.24mmol), NaOt-Bu (4.46g, 46.4mmol), toluene (162mL)을 상기 P3-1 합성방법을 사용하여 생성물 7.19g을 얻었다. (수율: 77%)
P3-72의 합성
Figure PCTKR2017000380-appb-I000073
Sub 3-29 (5.5g, 14.74mmol)을 톨루엔에 녹인 후에, Sub 4-33 (6g, 14.74mmol), Pd2(dba)3 (0.67g, 0.74mmol), P(t-Bu)3 (0.24g, 1.18mmol), NaOt-Bu (4.25g, 44.2mmol), toluene (155mL)을 상기 P3-1 합성방법을 사용하여 생성물 7.53g을 얻었다. (수율: 73%)
이상, Final product (3)의 구체적인 화합물들 중 일부에 대한 합성방법을 예시하였으나 전술한 화학식 P3-1 내지 P3-80로 표시되는 화합물들도 동일한 합성방법으로 합성할 수 있다.
이하 Sub 1 및 Sub 2, Sub 3의 구체적인 화합물들을 예시적으로 표시하지만 이에 제한되지 않는다.
Sub 1의 예시
Figure PCTKR2017000380-appb-I000074
Figure PCTKR2017000380-appb-I000075
Figure PCTKR2017000380-appb-I000076
Sub 3-1의 예시
Figure PCTKR2017000380-appb-I000077
Sub 4-1의 예시
Figure PCTKR2017000380-appb-I000078
Figure PCTKR2017000380-appb-I000079
한편, 상기에서는 화학식 1 내지 6으로 표시되는 본 발명의 예시적 합성예를 설명하였지만, 이들은 모두 Buchwald-Hartwig cross coupling 반응, Suzuki cross-coupling 반응, PPh3-mediated reductive cyclization 반응 (J. Org . Chem. 2005, 70, 5014.), Intramolecular acid-induced cyclization 반응 (J. mater. Chem . 1999, 9, 2095.), Pd(II)-catalyzed oxidative cyclization 반응 (Org . Lett . 2011, 13, 5504), Grignard 반응 및 Cyclic Dehydration 반응 등에 기초한 것으로 구체적 합성예에 명시된 치환기 이외에 화학식 1 내지 6에 정의된 다른 치환기가 결합되더라도 상기 반응이 진행된다는 것을 당업자라면 쉽게 이해할 수 있을 것이다.
한편, 상기 정공수송층(135), 제 1 발광보조층(140R’), 제 2 발광보조층(140G’) 중 일부는 서로 동일한 화합물로 이루어질 수도 있고 서로 상이한 화합물들로 이루어질 수도 있다.
여기서, 상기 제 3 발광보조층(140B’)이 상기 제 1 발광보조층(140R’) 및 제 2 발광보조층(140G’) 상에 배치되고, 제 1 내지 제 3 서브픽셀(SP1, SP2, SP3)에 공통으로 배치됨으로써, 유기발광층(145) 내의 전하 균형(charge balance)이 맞아 효율이 높아지고 수명이 늘어날 수 있으며, 특히 제 3 서브필셀(SP3)에서 발광 표율이 비교적 높고 수명이 비교적 길 수 있다. 또한, 일 실시예에 따른 유기발광소자(200)는 유기발광층(145) 내 도펀트 소멸(dopant quenching) 및 소자 열화를 야기하는 잉여 폴라론(polaron)이 감소하게 되어, 잉여 폴라론으로 인해 발생되는 도펀트 소멸(dopant quenching) 및 소자 열화가 감소되어 수명이 증가될 수 있다.
한편, 상기 유기발광소자(200)는 제 1 전극(120)과 정공수송층(135) 사이에 정공주입층(130)을 추가로 포함할 수 있다. 다만, 일 실시예에 따른 유기발광소자(200)는 상기 정공수송층(135) 상기 정공주입층(130) 역할을 동시에 수행함으로써, 상기 정공주입층(130) 구성을 삭제할 수도 있다.
또한, 상기 유기발광소자(200)는 유기발광층(145) 상에 순차적으로 전자수송층(160) 및 전자주입층(170)을 포함할 수 있다. 그리고, 상기 전자주입층(170) 상에 제 2 전극(180)이 배치될 수 있다.
구체적으로는, 상기 전자수송층(160)은 상기 유기발광층(145) 상에 배치될 수 있다. 또한, 상기 전자수송층(160)은 제 2 전극(180)로부터 주입된 전자를 발광층으로 수송하는 기능하는 층으로서, 예를 들면, Alq3, BCP(2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline, ,9-디메틸-4,7-디페닐-1,10-페난트롤린), Bphen(4,7-Diphenyl-1,10-phenanthroline, 4,7-디페닐-1,10-페난트롤린), TAZ(3-(4-Biphenylyl)-4-phenyl-5tert-butylphenyl-1,2,4-triazole, 3-(4-비페닐릴)-4-페닐-5-터트-부틸페닐-1,2,4-트리아졸), NTAZ(4(Naphthalen-1-yl)-3,5-diphenyl-4H-1,2,4-triazole, 4-(나프탈렌-1-일)-3,5-디페닐-4H-1,2,4-트리아졸), tBu-PBD(2-(4-Biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole, 2-(4-비페닐릴)-5-(4-tert-부틸페닐)1,3,4-옥사디아졸), BAlq(Bis(2-methyl-8-quinolinolato-N1,O8)-(1,1'-Biphenyl-4-olato)aluminum, 비스(2-메틸-8-퀴놀리노라토-N1,O8)-(1,1'-비페닐-4-오라토)알루미늄), Bebq2(beryllium bis(benzoquinolin-10-olate, 베릴륨 비스(벤조퀴놀리-10-노에이트)), ADN(9,10-di(naphthalene-2-yl)anthrascene, 9,10-디(나프탈렌-2일)안트라센) 등과 같은 물질을 사용할 수 있으나, 이에 국한되는 것은 아니다.
이와 같은 전자수송층(160)은 진공증착법, 또는 스핀코팅법, 캐스트법 등을 이용하여 형성될 수 있다. 진공증착법 및 스핀코팅법을 통해 상기 전자수송층(160)을 형성하는 경우, 그 조건은 사용하는 화합물에 따라 다르지만, 일반적으로 정공주입층(130)의 형성과 거의 동일한 조건범위 중에서 선택될 수 있다.
또한, 상기 전자수송층(160)의 두께는 약 100Å 내지 약 1,000Å, 예를 들어 약 150Å 내지 약 500Å일 수 있다. 전자 수송층(160)의 두께가 전술한 바와 같은 범위를 만족할 경우, 실질적인 구동 전압의 상승 없이 만족스러운 정도의 전자 수송 특성을 얻을 수 있다.
한편, 상기 전자수송층(160)은 전자수송성 유기 화합물 및 금속-함유 물질을 포함할 수 있다. 금속-함유 물질은 Li 착체를 포함할 수 있다. Li 착체의 비제한적인 예로는 리튬 퀴놀레이트(LiQ) 등을 들 수 있다,
또한, 상기 전자수송층(160) 상부에 제 2 전극(180)으로부터 전자의 주입을 용이하게 하는 기능을 갖는 전자주입층(170)이 배치될 수 있다. 상기 전자주입층(170)은 LiF, NaCl, CsF, Li2O, BaO 등과 같은 전자 주입층 재료로서 상기와 같은 물질들을 이용할 수 있으나, 이에 국한되는 것은 아니다. 상기 전자주입층(170)의 증착 조건은 사용하는 화합물에 따라 다르지만, 일반적으로 정공주입층(130)의 형성과 거의 동일한 조건범위 중에서 선택될 수 있다.
상기 전자주입층(170)의 두께는 약 1Å 내지 약 100Å, 약 3Å 내지 약 90Å 일 수 있다. 상기 전자주입층(170)의 두께가 전술한 바와 같은 범위를 만족할 경우, 실질적인 구동 전압의 상승없이 만족스러운 정도의 전자 주입 특성을 얻을 수 있다. 또한, 일 실시예에 따른 유기발광소자(200)의 전자수송층(160) 및 전자 주입층(170)은 이에 국한되지 않으며, 상기 전자수송층(160) 및 전자주입층(170)은 전자 수송 기능 및 전자 주입 기능을 동시에 갖는 기능층으로 대체될 수 있다.
한편, 상기 제 2 전극(180) 위에 광학적 특성을 향상시켜서 발광 효율을 극대화하기 위하여 캡핑층(미도시)을 형성할 수 있다. 캡핑층(미도시)은 예를 들면 금속 산화물층, 금속 질화물층 또는 금속 질산화물층으로 이루어질 수 있다. 캡핑층(미도시)은 예를 들면, MoOx(x=2~4), Al2O3, Sb2O3, BaO, CdO, CaO, Ce2O3, CoO, Cu2O, DyO, GdO, HfO2, La2O3, Li2O, MgO, NbO, NiO, Nd2O3, PdO, Sm2O3, ScO, SiO2, SrO, Ta2O3, TiO, WO3, VO2, YbO, Y2O3, ZnO, ZrO, AlN, BN, NbN, SiN, TaN, TiN, VN, YbN, ZrN, SiON, AlON 또는 이들의 혼합물로 이루어질 수 있다.
이 때, 상기 유기발광소자(200)는 제 1 전극(120)과 제 2 전극(180) 사이에 정공수송층(135), 발광보조층(140) 및 유기발광층(145)을 제외한 나머지 층들이 삭제된 구성을 포함할 수 있다. 또한, 상기 유기발광소자(200)는 전술한 구성들 외에 정공저지층, 전자저지층, 버퍼층 등을 더 포함할 수도 있으며, 정공수송층(135)이 전자저지층의 역할을 하거나, 전자수송층(160) 등이 정공저지층의 역할을 할 수도 있다.
또한, 도 1에서는 도시하지 않았으나, 일 실시예에 따른 유기발광소자(200)는 제 1 전극(120)과 제 2 전극(180)의 적어도 일면 중 유기 발광층(145)과 반대되는 일면에 형성된 보호층 또는 광효율 개선층(Capping layer)을 더 포함할 수 있다. 상기 유기발광층(145)과 반대되는 일면에 형성된 광효율 개선을을 통해 마이크로 캐비티(micro cavity) 효과를 이끌어낼 수 있다.
구체적으로는, 일 실시예에 따른 유기발광소자(200)에서 상기 제 1 내지 제 3 유기 발광층(145R, 145G, 145B)에서 발광된 광은 제 1 전극(120)과 제 2 전극(180) 사이에서 왕복하며 간섭 현상을 일으킬 수 있다. 이 때, 상기 제 1 전극(120)과 제 2 전극(180) 사이의 거리가 공진을 일으킬 수 있는 거리에 해당할 경우, 정수배의 파장의 광은 보강 간섭을 일으켜 세기가 강해지고 다른 파장의 광은 상쇄 간섭을 일으켜 세기가 약해진다. 이와 같은 광의 왕복 및 간섭 과정을 마이크로 캐비티라 한다.
여기서, 상기 제 1 전극(120)과 제 2 전극(180) 사이의 거리는 각 서브픽셀 별로 제 1 내지 제 3 유기발광층(145R, 145G, 145B)에서 발광된 광 파장의 정수배에 해당한다. 이하, 도 2를 참조하여, 발광보조층(140)의 두께를 이용하여 유기발광층(145)에서 발광된 빛의 광 경로 길이(Optical path length)를 각 서브픽셀 별로 다르게 한 것을 설명한다.
도 2는 일 실시예에 따른 유기발광소자의 발광보조층들의 두께를 도시한 도면이다. 도 2를 참조하면, 유기발광층(145)과 정공수송층(135) 사이에 발광보조층(140)이 배치된다.
구체적으로는, 제 1 유기발광층(145R)과 정공수송층(135) 사이에는 제 1 발광보조층(140R’)과 제 3 발광보조층(140B’)이 배치된다. 그리고, 상기 제 2 유기발광층(145G)과 정공수송층(135) 사이에는 제 2 발광보조층(140G’)과 제 3 발광보조층(140B’)이 배치된다. 또한, 상기 제 3 유기발광층(145B)과 정공수송층(135) 사이에는 제 3 발광보조층(140B’)만 배치된다.
상기 발광보조층(140)은 유기발광층(145)의 색별 공진 거리를 맞추기 위한 층일 수 있다. 상기 제 1 발광보조층(140R’), 제 2 발광보조층(140G’)과 제 3 발광보조층(140B’)은 제 1 서브픽셀 내지 제 3 서브픽셀(SP1, SP2, SP3)에서 적색 발광과 녹색 발광의 공진 거리 및 전자와 정공이 재결합하는 영역을 조절하기 위하여 각각 적절한 두께를 갖도록 형성될 수 있다. 이 때, 상기 제 1 발광보조층(140R’), 제 2 발광보조층(140G’)과 제 3 발광보조층(140B’)는 각 색별 공진 거리를 맞추기 위하여 부가될 수 있다.
한편, 제 1 유기발광층(145R)과 정공수송층(135) 사이에 배치된 제 1 발광보조층(140R’)의 두께(T1)와 제 3 발광보조층(140B’)의 두께(T3)의 합은 제 3 유기발광층(145R)과 정공수송층(135) 사이에 제 1 발광보조층(140R’)만 배치된 경우 제 1 발광보조층(140R’)만의 두께(T1)와 동일하거나 실질적으로 동일할 수 있다.
또한, 상기 제 2 유기발광층(145G)과 정공수송층(135) 사이에 배치된 제 2 발광보조층(140G’)의 두께(T2)와 제 3 발광보조층(140B’)의 두께(T3)의 합은 제 2 유기 발광층(145G)과 정공수송층(140) 사이에 제 2 발광보조층(140G’)만 배치된 경우 제 2 발광보조층(140G’)만의 두께(T2)와 동일하거나 실질적으로 동일할 수 있다.
또한, 상기 제 3 발광보조층(140B’)이 제 1 서브픽셀(SP1), 제 2 서브픽셀(SP2) 및 제 3 서브픽셀(SP3)에 공통으로 배치되었기 때문에 발광하는 광의 파장의 크기가 가장 큰 제 1 발광보조층(140R’)의 두께(T1)가 파장의 크기가 상대적으로 작은 제 2 발광보조층(140G’)의 두께(T2)보다 두껍게 형성될 수 있다. 이 때, 상기 제 1 발광보조층(140R’)의 두께는 약 30Å 내지 약 700Å, 예를 들어 약 50Å 내지 약 200Å 일 수 있다. 또한, 상기 제 2 발광보조층(140G’)의 두께는 약 30Å 내지 약 300Å, 예를 들어 약 50Å 내지 약 100Å 일 수 있다.
상기 제 2 발광보조층(140G’)은 제 3 발광보조층(140B’)보다 두꺼울 수 있다. 여기서, 상기 제 3 발광보조층(140B’)은 30Å 내지 약 250Å일 수 있으며, 예를 들면, 약 50Å 내지 약 100Å 일 수 있다.
또한 일 실시예에 따른 유기발광소자(200)에서 발광보조층(140)의 두께를 이용하여 유기발광층(145)에서 발광된 광의 광 경로 길이(Optical path length)를 각 서브픽셀 별로 다르게 하여서 마이크로 캐비티(microcavity) 효과를 구현할 수 있다.
전술한 바와 같은 일 실시예에 따른 유기발광소자(200)의 제 2 서브픽셀(예를 들어 녹색 서브픽셀)은 휘도-전류 효율 특성이 우수한 효과가 있다. 자세하게는, 도 1 과 같이 일 실시예에 다른 유기발광소자(200)의 구조를 가짐으로써, 마이크로 캐비티 효과를 충족시킬 뿐만 아니라 에너지 준위 측면에서 제 1 전극(120)으로부터 정공수송층(135)을 통해 제 3 발광보조층(150B’), 제 2 발광보조층(150R’)의 순서로 HOMO 준위에 따라 단계적으로 정공을 효율적으로 수송할 수 있기 때문이다.
이어서, 도 3을 참조하여 일 실시예에 따른 유기발광소자의 구성요소들의 HOMO 준위를 살펴보면 다음과 같다. 도 3은 일 실시예에 따른 유기발광소자에서 정공수송층과 발광보조층들의 HOMO 준위를 도시한 도면이다.
도 3을 참조하면, 발광보조층(140)은 정공수송층(135)의 각 색상별 정공 수송을 보조하는 역할을 할 수 있다. 그리고, 제 1 발광보조층(140R’), 제 2 발광보조층(140G’)과 제 3 발광보조층(140B’)은 각 색상별 정공 수송을 보조하기 위하여 각각 적절한 에너지 준위, 예를 들어 HOMO(Highest Occupied Molecular Orbital) 준위를 갖도록 형성될 수 있다.
구체적으로는, 상기 정공수송층(135)과 제 1 유기발광층(145R) 사이에 배치된 제 1 발광보조층(140R’)의 HOMO 준위(H2)는 상기 정공수송층(135)의 HOMO 준위(H1)보다 클 수 있다. 또한, 상기 정공수송층(135)과 제 2 유기발광층(145G) 사이에 배치된 제 2 발광보조층(140G’)의 HOMO 준위(H3)는 상기 정공수송층(135)의 HOMO 준위(H1)보다 클 수 있다. 그리고, 상기 정공수송층(135)과 제 3 유기발광층(145B) 사이에 배치된 제 2 발광보조층(140B’)의 HOMO 준위(H3)는 상기 정공수송층(135)의 HOMO 준위(H1)보다 클 수 있다.
즉, 상기 발광보조층(150)의 HOMO 준위(H2, H3, H4)는 상기 정공수송층(135)의 HOMO 준위(H1)보다 클 수 있다.
또한, 상기 정공수송층(135)과 제 3 발광보조층(140B’) 사이 영역에 배치된 제 2 발광보조층(140G’)의 HOMO 준위(H3)는 제 3 발광보조층(140B’) HOMO 준위(H4)보다 크게 이루어질 수 있다. 다시 설명하면, 상기 제 2 발광보조층(140G’)의 HOMO 준위(H3)가 상기 제 3 발광보조층(140B’)의 HOMO 준위(H4)보다 클 수 있다.
또한, 상기 정공수송층(135)과 제 3 발광보조층(140B’) 사이 영역에 배치된 제 1 발광보조층(140R’)의 HOMO 준위(H2)는 상기 제 3 발광 보조층(140B’)의 HOMO 준위(H4)보다 크게 이루어질 수 있다. 다시 설명하면, 상기 제 1 발광보조층(140R’)의 HOMO 준위(H2)가 상기 제 3 발광보조층(140B’)의 HOMO 준위(H4)보다 클 수 있다.
즉, 상기 제 3 발광 보조층(140B’)의 HOMO 준위(H4)는 상기 정공수송층(135)의 HOMO 준위(H1)보다 크고 상기 제 2 발광보조층(140G’)의 HOMO 준위(H3) 또는 상기 제 3 발광보조층(140R’)의 HOMO 준위(H4)보다 작을 수 있다.
한편, 상기 제 1 발광보조층(140R’), 제 2 발광보조층(140G’)과 제 3 발광보조층(140B’)의 재료는 에너지 준위를 만족하는 전술한 정공 수송 물질일 수 있다. 이 때, 유기발광소자의 제 1 전극으로부터 상기 정공수송층(135)을 통해, 제 3 발광보조층(140B’), 제 2 발광보조층(140G’), 제 1 발광보조층(140R’) 순서로 정공이 수송될 수 있다.
구체적으로는, 상기 정공수송층(135)과 제 1 발광보조층(140R’)의 HOMO 준위의 차이(△HOMO=H2-H1) 및 상기 정공수송층(135)과 제 2 발광보조층(140G’)의 HOMO 준위의 차이(△HOMO=H3-H1)는 상기 정공수송층(135)과 제 3 발광보조층(140B’)의 HOMO 준위의 차이(△HOMO=H4-H1)에 비해 상대적으로 크기 때문에 유기발광소자의 제 1 전극으로부터 정공수송층(135)을 통해 직접 제 1 발광 보조층(140R’) 또는 제 2 발광보조층(140G’)에 먼저 정공을 수송하는 것은 상기 제 3 발광보조층(140B’)에 먼저 정공을 수송하는 것보다 비효율적일 수 있다.
반대로 HOMO 준위가 상기 정공수송층(135)과 제 3 발광보조층(140B’), 제 2 발광보조층(140G’), 제 1 발광보조층(140R’)의 순서이기 때문에 유기발광소자의 제 1 전극으로부터 정공수송층(135)을 통해 제 3 발광보조층(140B’), 제 2 발광보조층(140G’), 제 1 발광보조층(140R’)의 순서로 HOMO 준위에 따라 단계적으로 정공이 효율적으로 수송될 수 있다.
전술한 바와 같은 일 실시예에 따른 유기발광소자를 비교예에 따른 유기발광소자와 비교하면 다음과 같다. 도 4는 비교예에 따른 유기발광소자의 단면도이다.
도 4를 참조하면, 비교예에 따른 유기발광소자(300)는 각 서브픽셀 별로 제 1 발광보조층(240R’), 제 2 발광보조층(240G’) 및 제 3 발광보조층(240B’) 상에 제 1 유기발광층(245R), 제 2 유기발광층(245G) 및 제 3 유기발광층(24BR)을 배치한 점을 제외하고 도 1을 참조하여 설명한 일 실시예에 따른 유기발광소자와 동일할 수 있다.
이와 같이 HOMO 준위에 따른 정공의 수송 능력 또는 정공의 이동 능력(hole mobility) 측면에서, 도 3에 도시된 바와 같이 제 1 발광보조층(140R’), 제 2 발광보조층(140G’) 및 제 3 발광보조층(140B’) 상에 제 1 유기발광층(145R), 제 2 유기발광층(145G) 및 제 3 유기발광층(145B)을 배치하는 구조와 대비할 때, 전술한 일 실시예에 따른 유기발광소자(200)는 정공수송층(135)으로부터 제 2 발광보조층(140G’) 및 제 3 발광보조층(140B’)을 통해 제 2 유기발광층(145G)에 정공을 수송하거나 제 1 발광보조층(140R’) 및 제 3 발광보조층(140B’)을 통해 제 1 유기발광층(145R)에 정공을 수송하므로 정공의 이동 능력을 향상시킬 수 있다.
한편, 일 실시예에 따른 유기발광소자(200)는 진공 증착법(deposition)을 이용하여 제조될 수 있다. 정공수송층(135), 발광보조층(140) 및 유기 발광층(145)을 포함하는 유기물층 중 일부는 다양한 고분자 소재를 사용하여 진공 증착법이 아닌 용액 공정 또는 솔벤트 프로세스(solvent process), 예컨대 스핀코팅 공정, 노즐 프린팅 공정, 잉크젯 프린팅 공정, 슬롯코팅 공정, 딥코팅 공정, 롤투롤 공정, 닥터 블레이딩 공정, 스크린 프린팅 공정, 또는 열 전사법 등의 방법에 의하여 더 적은 수의 층으로 제조할 수 있다.
상기 정공수송층(135), 발광보조층(140) 및 유기발광층(145)을 포함하는 유기물층은 다양한 방법으로 형성될 수 있으므로, 그 형성방법에 의해 본 발명의 권리범위가 제한되는 것은 아니다.
이하, 진공 증착법에 의해 다른 실시예에 따른 유기발광소자의 제조 방법을 설명한다. 진공 증착법에 의해 다른 실시예에 따른 유기발광소자의 제조 방법에서 각층의 재료나 두께 등은 도 1 내지 도 3을 참조하여 설명한 바와 동일할 수 있다.
전술한 일 실시예에 따른 유기발광소자는 총 5 개의 마스크를 이용하여 제조될 수 있다. 이와 같은 구성을 도 5a 내지 도 5g를 참조하여 설명하면 다음과 같다. 도 5a 내지 도 5g는 본 발명의 일 실시예에 따른 유기발광소자의 제조방법을 도시한 도면이다.
도 5a 내지 도 5g를 참조하면, 일 실시예에 따른 유기발광소자는 총 5 개의 마스크(제 1 내지 제 5 마스크)만을 사용하여 서브픽셀별로 발광보조층(140)과 유기발광층(145)을 형성할 수 있다. 자세하게는, 제 1 내지 제 3 서프픽셀(SP1, SP2, SP3)로 구분되는 기판(100) 상에 상기 발광보조층(140)을 형성하는데 총 2 개의 마스크가 사용되고, 상기 발광보조층(140) 상에 배치되는 유기발광층(145)을 형성하는데 총 3 개의 마스크가 사용됨으로써, 일 실시예에 따른 유기발광소자는 총 5 개의 마스크를 통해 형성될 수 있다.
특히, 상기 발광보조층(140) 중 제 3 발광보조층(140B’)을 제 1 내지 제 3 서브픽셀(SP1, SP2, SP3)이 공유함으로써, 상기 제 3 발광보조층(140B’)의 패터닝 공정을 생략할 수 있으므로, 일 실시예에 따른 유기발광소자의 제조 공정에서 5 개의 마스크만을 사용할 수 있다.
한편, 도 4에 도시한 비교예에 따른 유기발광소자(300)는 각 화소별로 제 1 발광보조층(240R’), 제 2 발광보조층(240G’) 및 제 3 발광보조층(240B’) 상에 제 1 유기발광층(245R), 제 2 유기발광층(245G) 및 제 3 유기발광층(245B)을 배치하는 구조를 가지며, 이와 같은 구조를 제조할 때, 총 6개의 마스크들을 사용해야 한다. 그러나, 도 5a 내지 도 5g을 참조하여 설명한 일 실시 예에 따른 유기발광소자(200)의 제조 시 총 5개의 마스크들(제1 내지 제5마스크)만을 사용하므로, 공정효율을 향상시키고, 유기발광소자(200)을 포함하는 유기발광 표시장치의 대면적화가 가능하다.
이어서, 도 6을 참조하여, 다른 실시예에 따른 유기발광소자를 살펴보면 다음과 같다. 도 6은 다른 실시예에 따른 유기발광소자의 단면도이다.
도 6을 참조하면, 다른 실시예에 따른 유기발광소자는 기판 상에 2 개 이상의 서브픽셀(a,b)을 포함한다. 그리고, 각각의 서브픽셀(a,b)은 제 1 전극, 상기 제 1 전극 상에 제 1 전극과 대향하도록 배치된 제 2 전극, 상기 제 1 전극과 제 2 전극 사이 2 개 이상의 서브픽셀들에 배치된 서로 다른 색상의 둘 이상의 유기발광층(345), 상기 제 1 전극과 유기발광층(345) 사이에 배치된 정공수송층(335), 상기 정공수송층(335)과 유기발광층(345) 사이에 배치된 발광보조층(340)을 포함할 수 있다.
이 때, 상기 발광보조층(450)은 2 개 이상의 서브픽셀(a, b) 중 적어도 하나 이상의 서브픽셀(a,b)에 각각 배치된 개별 발광보조층(340a’)과 상기 개별 발광보조층(340a’) 상에 배치되고, 상기 2 개 이상의 서브픽셀(a,b)에 공통으로 배치된 공통 발광보조층(340b’)을 포함할 수 있다.
도 6에서는 1 개의 픽셀(P)이 2 개의 서브픽셀(a,b)로 이루어지는 구성을 도시하고 있으나, 다른 실시예에 따른 유기발광소자는 이에 국한되지 않으며, 1 개의 픽셀(P)을 구성하는 서브픽셀은 2 개 내지 4 개로 구성될 수 있다.
여기서, 1 개의 픽셀(P)을 구성하는 서브픽셀이 3개일 경우에 해당하는 유기발광소자는 도 1을 참조하여 설명한 유기발광소자(200)와 동일하다. 그리고, 1 개의 픽셀(P)이 4 개의 서브픽셀로 이루어지는 경우, 도 1을 참조하여 설명한 유기발광소자(200)에 1 개의 서브픽셀(예를 들면, 백색의 서브픽셀)이 추가된 유기발광소자에 해당하게 된다.
또한, 유기발광층은 2 개 내지 4개 의 서브픽셀 각각에 배치된 2 개 내지 4 개의 유기발광층을 포함할 수 있다. 여기서, 1 개의 픽셀(P)이 2 개의 서브픽셀로 이루어지는 경우 도 4에 도시한 바와 같이, 유기발광층(345)은 제 1 유기발광층(345a)과 제 2 유기발광층(345b)을 포함할 수 있다.
그리고, 발광보조층(340)은 2 개 내지 4 개의 서브픽셀에 공통으로 배치된 공통 발광보조층과 1 개 내지 3 개의 서브픽셀 각각에 배치된 1 개 내지 3 개의 개별 발광보조층을 포함할 수 있다.
이어서, 본 발명의 실시예들이 적용될 수 있는 유기발광 표시장치를 도 7을 참조하여 살펴보면 다음과 같다. 도 7은 실시예들이 적용될 수 있는 유기발광 표시장치의 개념도이다.
도 7을 참조하면, 본 발명의 실시예들이 적용될 수 있는 유기 발광표시장치(500)는, n개의 게이트 라인(GL1, ... , GLn, n: 자연수)이 제 1 방향(예: 수평방향)으로 형성되고, m개의 데이터 라인(DL1, ... , DLm, m: 자연수)이 제 1 방향과 교차하는 제 2 방향(예: 수직방향)으로 형성된 표시패널(510)과, m개의 데이터 라인(DL1, ... , DLm)을 구동하는 데이터 구동부(520)와, n개의 게이트 라인(GL1, ... , GLn)을 순차적으로 구동하는 게이트 구동부(530)와, 데이터 구동부(520) 및 게이트 구동부(530)를 제어하는 타이밍 컨트롤러(540) 등을 포함한다.
표시패널(510)에는, 1 개의 데이터 라인과 1 개 이상의 게이트 라인이 교차하는 지점마다 서브픽셀(SP: Sub Pixel)이 매트릭스 형태로 형성된다. 이러한 다수의 서브픽셀에 의해, 다수의 픽셀이 매트릭스 형태로 표시패널(510)에 배치된다.
또한, 타이밍 컨트롤러(540)는 각 프레임에서 구현하는 타이밍에 따라 스캔을 시작하고, 인터페이스에서 입력되는 영상 데이터를 데이터 구동부(520)에서 사용하는 데이터 신호 형식에 맞게 전환하여 전환된 영상 데이터(Data)를 출력하고, 스캔에 맞춰 적당한 시간에 데이터 구동을 통제한다.
이러한 타이밍 컨트롤러(540)는 데이터 구동부(520) 및 게이트 구동부(530)를 제어하기 위하여, 데이터 제어 신호(DCS: Data Control Signal), 게이트 제어 신호(GCS: Gate Control Signal) 등의 각종 제어 신호를 출력할 수 있다.
그리고, 게이트 구동부(530)는 타이밍 컨트롤러(540)의 제어에 따라, 온(On) 전압 또는 오프(Off) 전압의 스캔 신호를 n개의 게이트 라인(GL1, ... , GLn)으로 순차적으로 공급하여 n개의 게이트 라인(GL1, ... , GLn)을 순차적으로 구동한다.
데이터 구동부(520)는, 타이밍 컨트롤러(540)의 제어에 따라, 입력된 영상 데이터(Data)를 메모리(미도시)에 저장해두고, 특정 게이트 라인이 열리면, 해당 영상 데이터(Data)를 아날로그 형태의 데이터 전압(Vdata)으로 변환하여 m개의 데이터 라인(DL1, ... , DLm)으로 공급함으로써, m개의 데이터 라인(DL1, ... , DLm)을 구동한다.
한편, 도 7에 도시된 유기발광 표시장치(500)는 전술한 본 발명의 유기발광소자(200, 300)를 포함하는 유기발광 표시패널(510)과 상기 유기발광 표시패널(510)을 제어하는 제어부를 포함하는 전자장치를 포함할 수 있다. 이 때, 전자장치는 현재 또는 장래의 유무선 통신단말일 수 있으며, 휴대폰 등의 이동 통신 단말기, PDA, 전자사전, PMP, 리모콘, 네비게이션, 게임기, 각종 TV, 각종 컴퓨터 등 모든 전자장치를 포함한다.
[규칙 제91조에 의한 정정 20.03.2017] 
이어서, 전술한 유기발광 표시패널의 픽셀 구조를 살펴보면 다음과 같다. 도 7을 참조하면 참조하면, 표시패널(510)에는 i행 j열의 픽셀(Pij, i=1, 2, ..., j=1, 2, ...)이 매트릭스 형태로 배치된다.
각 픽셀(Pij)은 3 개의 서브픽셀을 포함할 수 있다. 즉, 각 픽셀(Pij)은 적색 서브픽셀(R), 녹색 서브픽셀(G) 및 청색 서브픽셀(B)을 포함할 수 있다. 여기서, 각 픽셀(Pij)의 모양 및 배치, 서브픽셀의 개수는 여러 가지로 변형될 수 있으며, 백색을 표시하는 백색 서브픽셀 등 다른 픽셀이 더 포함될 수도 있다.
한편, 유기발광 표시패널(510)의 각 화소(Pij)는 제 1 서브픽셀(R), 제 2 서브픽셀(G) 및 제 3 서브픽셀(B)에 각각 소스, 드레인, 게이트 및 액티브층을 포함한 구동 트랜지스터를 포함한다.
또한, 각 화소(Pij)는 기판 상에 서로 다른 색상을 발광하며, 도 1에 도시한 유기발광소자(200)를 포함한다. 이 때, 상기 제 1 서브픽셀(R), 제 2 서브픽셀(G) 및 제 3 서브픽셀(B)에 배치된 각각의 유기발광소자의 제 1 전극이 구동 트랜지스터의 소스 및 드레인 중 하나와 전기적으로 연결될 수 있다.
또한, 각 화소(Pij)는 구동 트랜지스터에 데이터 전압을 스위칭하는 스위칭 트랜지스터(switching transistor)와 이 데이터 전압을 일정 기간, 예를 들어 한 프레임 동안 유지하는 저장 캐패시터(storage capacitor, Cst)를 포함할 수 있다.
상기 스위칭 트랜지스터 및 구동 트랜지스터는 n-채널 전계 효과 트랜지스터(field effect transistor,FET)이지만, 이들 중 적어도 하나는 p-채널 전계 효과 트랜지스터일 수 있다. 여기서, 상기 구동 트랜지스터 및 스위칭 트랜지스터, 저장 캐패시터(Cst) 및 유기발광소자의 연결 관계는 일례일 뿐, 전술한 연결 관계에 국한되지 않는다.
한편, 본 발명의 전술한 실시예들에 유기발광 표시장치 및 그 유기발광소자는 제조 시 발광 영역들의 패터닝 공정을 최소화할 수 있는 효과가 있다.
유기전기소자의 제조평가
[ 실시예 ]
먼저, 유리 기판에 형성된 ITO층(양극) 상에 4,4',4''-Tris[2-naphthyl(phenyl)amino]triphenylamine (2-TNATA로 약기함)막을 진공증착하여 100 nm 두께의 정공주입층을 형성한 후, 정공주입층 위에 정공수송 화합물로서 전술한 화학식 1 내지 4의 화합물(예를 들어 P2-41)로 1200 nm 두께로 진공증착하여 정공수송층을 형성하였다.
이후에 정공수송층 상에 전술한 화학식 1 내지 4의 화합물(예를 들어 P2-41)로 도 2 및 도 3의 두께 조건을 만족하는 제 1 서브픽셀에 배치된 제 1 발광보조층(적색 발광보조층), 제 2 서브픽셀에 배치된 제 2 발광보조층(녹색 발광보조층)을 형성하였다. 이후에, 제 1 및 제 2 발광보조층 상에 전술한 화학식 5 내지 7의 화합물(예를 들어 P3-51)로 도 2 및 도 3의 두께 조건을 만족하는 제 1 내지 제 3 서브픽셀에 공통으로 배치되는 제 3 발광보조층(청색 발광보조층)을 형성하였다.
제 3 발광 보조층 상부에 호스트로서는 제 1 서브픽셀에 배치된 제 1 유기발광층(적색 유기발광층), 제 2 서브픽셀에 배치된 제 2 유기발광층(녹색 유기발광층), 제 3 서브픽셀에 배치된 제 3 유기발광층(청색 유기발광층)을 포함하는 유기발광층을 400nm 두께로 증착하였다. 이어서 전자수송층으로 트리스(8-퀴놀리놀)알루미늄(이하 Alq3로 약기함)을 300 nm 두께로 성막하였다. 이후, 전자주입층으로 할로젠화 알칼리 금속인 LiF를 5 nm 두께로 증착하고, 이어서 Al을 150 nm의 두께로 증착하여 음극으로 사용함으로서 유기발광소자를 제조하였다.
[ 비교예 ]
전술한 유기발광소자의 제조방법에서 제3발광보조층으로 비교화합물1 및 2를 사용한 점을 제외하고는 상기 실시예와 동일한 방법으로 유기발광소자를 제조하였다.
Figure PCTKR2017000380-appb-I000080
또한 전술한 유기발광소자의 제조방법에서, 비교화합물 3으로 제1, 2발광보조층으로 사용한 P2-41을 제3발광보조층으로 사용한 점을 제외하고는 상기 실시예와 동일한 방법으로 유기발광소자를 제조하였다. 이 비교예는 결과적으로 제1, 2발광보조층에 동일한 화합물을 제3발광보조층으로 사용하였으므로 동일한 화합물의 두께만을 달리하여 유기발광소자를 제조한 것이다.
본 발명의 실시예 및 비교예에 의해 제조된 유기발광소자들에 순바이어스 직류전압을 가하여 포토리서치(photoresearch)사의 PR-650으로 전기발광(EL) 특성을 측정하였으며, 그 측정 결과 5000cd/m2 기준 휘도에서 맥사이언스사에서 제조된 수명 측정 장비를 통해 T95 수명을 측정하였으며, 그 측정 결과는 하기 표 1(청색), 표 2(녹색), 표 3(적색)과 같았다. 이때 실시예에서 구체적인 화합물을 P3-51과 P2-41을 예시적으로 나타내었으나, 다른 화합물들도 유사한 측정 결과들을 나타내었다. 표 1 내지 3에서 비교화합물3(P2-41)은 제1, 2발광보조층에 동일한 화합물을 제3발광보조층으로 사용하였으므로 동일한 화합물의 두께만을 달리한 유기발광소자에 해당한다.
[표 1]
Figure PCTKR2017000380-appb-I000081
[표 2]
Figure PCTKR2017000380-appb-I000082
[표 3]
Figure PCTKR2017000380-appb-I000083
[규칙 제91조에 의한 정정 20.03.2017] 
표 1(청색), 표 2(녹색), 표 3(적색)의 측정 결과들 중 구동전압과 발광 효율, 수명을 살펴본다.
[규칙 제91조에 의한 정정 20.03.2017] 
상기 표 1 내지 표 3의 측정 결과에서 알 수 있듯이, 본 발명의 일 실시예에 따른 화합물을 사용한 유기발광소자는 비교화합물 1 및 비교화합물 2를 사용한 유기발광소자보다 발광 효율과 수명이 현저히 개선된 것을 확인하였다. 또한 본 발명의 일 실시예에 따른 화합물을 사용한 유기발광소자는 제1, 2발광보조층의 동일한 화합물을 제3발광보조층으로 사용하였으므로 동일한 화합물의 두께만을 달리한 유기발광소자보다 발광 효율과 수명이 현저히 개선된 것을 확인하였다.
특히 제 1 내지 제 3 서브픽셀에 공통으로 배치되는 제 3 발광보조층 물질인 본 발명 화학식 5 내지 화학식 7의 화합물들은 적색, 녹색, 청색 서브픽셀의 공통 전자 블록킹 층(EBL(Electron Blocking Layer)) 물질로서 사용이 가능하고, 또한 높은 수명 개선 효과를 나타내는 것을 확인하였다.
즉, 전술한 실시예들에 따른 유기발광 표시장치 및 그 유기발광소자는 발광 성능을 향상(고효율화)시키고 수명을 현저히 개선(장수명화)킬 수 있는 효과가 있다.
이상에서, 본 발명의 실시예를 구성하는 모든 구성 요소들이 하나로 결합되거나 결합되어 동작하는 것으로 설명되었다고 해서, 본 발명이 반드시 이러한 실시 예에 한정되는 것은 아니다. 즉, 본 발명의 목적 범위 안에서라면, 그 모든 구성 요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다. 이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
CROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2016년 1월 11일 한국에 출원한 특허출원번호 제10-2016-0003170호에 대해 우선권을 주장하며, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.

Claims (26)

  1. 기판 상에 배치된 제 1 전극;
    상기 제 1 전극과 대향하도록 배치된 제 2 전극;
    상기 제 1 전극과 상기 제 2 전극 사이에 배치되며, 상기 제 1 서브픽셀에 배치된 제 1 유기발광층, 상기 제 2 서브픽셀에 배치된 제 2 유기발광층, 상기 제 3 서브픽셀에 배치된 제 3 유기발광층을 포함하는 유기발광층;
    상기 제 1 전극과 유기발광층 사이에 배치된 정공수송층; 및
    상기 정공수송층과 유기발광층 사이에 배치되며, 상기 제 1 서브픽셀에 배치된 제 1 발광보조층, 상기 제 2 서브픽셀에 배치된 제 2 발광보조층 및 상기 정공수송층과 유기발광층 사이에서 상기 제 1 및 제 2 발광보조층 상에 배치되고 상기 제 1 내지 제 3 서브픽셀에 공통으로 배치된 제 3 발광보조층을 포함하는 유기발광소자.
  2. 제 1 항에 있어서,
    상기 제 1 발광보조층의 두께는 상기 제 2 발광보조층의 두께보다 두꺼운 유기발광소자.
  3. 제 2 항에 있어서,
    상기 제 2 발광보조층의 두께는 상기 제 3 발광보조층의 두께보다 두꺼운 유기발광소자.
  4. 제 1 항에 있어서,
    상기 제 1 및 제 2 발광보조층의 HOMO(Highest Occupied Molecular Orbital) 준위는 상기 정공수송층의 HOMO 준위보다 크고 상기 제 3 발광보조층의 HOMO 준위보다 작은 유기발광소자.
  5. 제 4 항에 있어서,
    상기 정공수송층 및 제 1 내지 제 3 발광보조층의 물질은 3차 아민 또는 플루오렌을 포함하는 3 차 아민을 포함하는 화합물로 이루어지는 유기발광소자.
  6. 제 5 항에 있어서,
    상기 정공수송층 및 제 1 및 제 2 발광보조층은 하기 화학식 1로 표시되는 화합물을 포함하는 유기발광소자.
    [화학식 1]
    Figure PCTKR2017000380-appb-I000084
    상기 화학식 1에서, L은 단일결합, C6-C60의 아릴렌기, 플루오렌일렌기, C2-C60헤테로고리기 중 어느 하나이고, l과 m은 0 이상의 정수이고, R1 및 R2는 C6-C60의 아릴기, C2-C60의 헤테로고리기 또는 알케닐기 중 어느 하나이고, Ar1 및 Ar2는 C6-C60의 아릴기, C2-C60의 헤테로고리기 또는 플루오렌기 중 어느 하나이고, X는 NR’ 또는 CR’R”중 어느 하나이고, R’ 및 R”은 C6-C60의 아릴기, C2-C60의 헤테로고리기 또는 C1-C30의 알킬기 중 어느 하나이며,
    상기 아릴기, 헤테로고리기, 알케닐기, 알킬기, 아릴옥시기, 플루오렌기(스파이로플루오렌기 포함), 아릴렌기, 플루오렌일렌기(스파이로플루오렌일기 포함)는 C6-C24의 아릴기, C2-C24의 헤테로고리기, C1-C30의 알킬기, C2-C24의 알케닐기, C6-C24의 아릴옥시기, 플루오렌일기, 할로겐기, 나이트로기,  시아노기로 이루어진 군에서 선택된 하나 이상의 치환기로 더욱 치환될 수 있으며, 이들 각 치환기가 인접한 경우 이들은 서로 결합하여 고리를 형성할 수 있다.
  7. 제 6 항에 있어서,
    상기 화학식 1은 하기 화학식 2 내지 화학식 4로 표시되는 화합물을 포함하는 유기발광소자.
    [화학식 2]
    Figure PCTKR2017000380-appb-I000085
    [화학식 3]
    Figure PCTKR2017000380-appb-I000086
    [화학식 4]
    Figure PCTKR2017000380-appb-I000087
    상기 화학식 2 내지 화학식 4에서,
    L은 단일결합, C6-C60의 아릴렌기, 플루오렌일렌기, C2-C60의 헤테로고리기 중 어느 하나이고, Ar3 및 Ar4는 C6-C60의 아릴기, C2-C60의 헤테로고리기, 플루오렌기 중 어느 하나이고, Ar5 내지 Ar8은 C6-C60의 아릴기, C2-C60의 헤테로고리기, 플루오렌기 중 어느 하나이고, R’ 및 R”은 C6-C60의 아릴기, C2-C60의 헤테로고리기 또는 C1-C30의 알킬기 중 어느 하나이고,
    Ar3 및 Ar4가 C2-C60의 헤테로고리기일 경우, 카바졸을 포함하고, Ar5 내지 Ar8가 C6-C60의 헤테로고리기일 경우, 카바졸을 포함하지 않는다.
  8. 제 5 항에 있어서,
    상기 제 1 및 제 2 발광보조층은 서로 동일 화합물이고, 상기 정공수송층은 다른 화합물인 유기발광소자.
  9. 제 5 항에 있어서,
    상기 제 1 및 제 2 발광보조층은 상기 화학식 3 또는 화학식 4로 표시되는 화합물이고, 상기 정공수송층은 상기 화학식 2로 표시되는 화합물인 유기발광소자.
  10. 제 6 항에 있어서,
    상기 제 3 발광보조층은 하기 화학식 5로 표시되는 화합물을 포함하는 유기발광소자.
    [화학식 5]
    Figure PCTKR2017000380-appb-I000088
    상기 화학식 5에서,
    1) R3과 R4는 수소, 중수소, C6-C60의 아릴기, C2-C60의 알케닐기, C1-C60의 알킬기, C6-C60의 아릴옥시기, C2-C60의 헤테로고리기, 시아노기, 나이트로기, 할로겐기이며
    2) n=0-4의 정수, o=0-3의 정수
    3) L은 단일결합, C6-C60의 아릴렌기, C3-C60의 헤테로고리기, 플루오렌일렌기
    4) Ar9, Ar10은 C6-C24의 아릴기, C3-C24의 헤테로고리기, 플루오렌기
    5) n=2 이상일 경우 R3은 서로 결합하여 고리를 형성할 수 있고 o=2 이상일 경우 R4는 서로 결합하여 고리를 형성할 수 있고,
    상기 아릴기, 헤테로고리기, 알케닐기, 알킬기, 아릴옥시기, 플루오렌기, 아릴렌기, 플루오렌일렌기(스파이로플루오렌일기 포함)는 C6-C24의 아릴기, C2-C24의 헤테로고리기, C1-C30의 알킬기, C2-C24의 알케닐기, C6-C24의 아릴옥시기, 플루오렌일기, 할로겐기, 나이트로기, 시아노기로 이루어진 군에서 선택된 하나 이상의 치환기로 더욱 치환될 수 있으며, 이들 각 치환기가 인접한 경우 이들은 서로 결합하여 고리를 형성할 수 있다.
  11. 제 10 항에 있어서,
    상기 화학식 5은 하기 화학식 6 및 7로 표시되는 화합물을 포함하는 유기발광소자.
    [화학식 6]
    Figure PCTKR2017000380-appb-I000089
    [화학식 7]
    Figure PCTKR2017000380-appb-I000090
    상기 화학식 6 및 7에서, R3과 R4, n, o, Ar9, Ar10는 상기 화학식 5와 동일하다.
  12. 제 10항에 있어서,
    상기 화학식 5로 표시되는 화합물은 아래 화학식 P3-1 내지 P3-80 중 하나로 표시되는 화합물인 유기발광소자.
    Figure PCTKR2017000380-appb-I000091
    Figure PCTKR2017000380-appb-I000092
    Figure PCTKR2017000380-appb-I000093
    Figure PCTKR2017000380-appb-I000094
  13. 제 6 항에 있어서,
    상기 화학식 1로 표시되는 화합물은 아래 화학식 P1-1 내지 P1-77, P2-1 내지 P2-72 중 하나로 표시되는 화합물인 유기발광소자.
    Figure PCTKR2017000380-appb-I000095
    Figure PCTKR2017000380-appb-I000096
    Figure PCTKR2017000380-appb-I000097
    Figure PCTKR2017000380-appb-I000098
    Figure PCTKR2017000380-appb-I000099
    Figure PCTKR2017000380-appb-I000100
    Figure PCTKR2017000380-appb-I000101
  14. 2 개 이상의 서브픽셀을 포함하는 기판;
    기 기판 상에 배치된 제 1 전극;
    상기 제 1 전극과 대향하도록 배치된 제 2 전극;
    상기 제 1 전극과 제 2 전극 사이에서 2 개 이상의 서브픽셀 각각에 배치된 서로 다른 색상의 유기 발광층;
    상기 제 1 전극과 유기발광층 사이에 배치된 정공수송층; 및
    상기 정공수송층과 상기 유기발광층 사이에 배치되며, 상기 2 개 이상의 서브픽셀 중 일부에 각각 배치된 하나 이상의 개별 발광보조층 및 상기 개별 발광보조층 상에 배치되며, 2 개 이상의 서브픽셀들에 공통으로 배치된 공통 발광보조층;을 포함하는 유기발광소자.
  15. 제 14 항에 있어서,
    서브픽셀은 2 개 내지 4 개이며,
    상기 유기발광층은 2개 내지 4개의 서브픽셀들 각각 배치된 2 내지 4개의 유기발광층을 포함하며,
    상기 발광보조층은 상기 2개 내지 4개의 서브픽셀에 공통으로 배치된 공통 발광보조층과 1개 내지 3개의 서브픽셀에 각각 배치된 1개 내지 3개의 개별 발광보조층을 포함하는 유기발광소자.
  16. 서로 다른 색상을 발광하는 제 1 서프픽셀, 제 2 서브픽셀 및 제 3 서브픽셀 각각에 배치되는 구동 트랜지스터; 및
    상기 구동 트랜지스터와 전기적으로 연결되며, 상기 제 1 항의 유기발광소자;를 포함하는 유기발광 표시장치.
  17. 제 16 항에 있어서,
    상기 제 1 발광보조층의 두께는 상기 제 2 발광보조층의 두께보다 두꺼운 유기발광 표시장치.
  18. 제 16 항에 있어서,
    상기 제 2 발광보조층의 두께는 상기 제 3 발광보조층의 두께보다 두꺼운 유기발광 표시장치.
  19. 제 16 항에 있어서,
    상기 제 1 및 제 2 발광보조층의 HOMO(Highest Occupied Molecular Orbital) 준위는 상기 정공 수송층의 HOMO 준위보다 크고 상기 제 3 발광보조층의 HOMO 준위보다 작은 유기발광 표시장치.
  20. 제 19 항에 있어서,
    상기 정공수송층 및 제 1 내지 제 3 발광보조층의 물질은 3차 아민 또는 플루오렌을 포함하는 3 차 아민을 포함하는 화합물로 이루어지는 유기발광 표시장치.
  21. 유기발광소자에 사용되는, 하기 화학식 1로 표시되는 유기발광소자용 화합물.
    [화학식 1]
    Figure PCTKR2017000380-appb-I000102
    상기 화학식 1에서, L은 단일결합, C6-C60의 아릴렌기, 플루오렌일렌기, C2-C60헤테로고리기 중 어느 하나이고, l과 m은 0 이상의 정수이고, R1 및 R2는 C6-C60의 아릴기, C2-C60의 헤테로고리기 또는 알케닐기 중 어느 하나이고, Ar1 및 Ar2는 C6-C60의 아릴기, C2-C60의 헤테로고리기 또는 플루오렌기 중 어느 하나이고, X는 NR’ 또는 CR’R”중 어느 하나이고, R’ 및 R”은 C6-C60의 아릴기, C2-C60의 헤테로고리기 또는 C1-C30의 알킬기 중 어느 하나이며,
    상기 아릴기, 헤테로고리기, 알케닐기, 알킬기, 아릴옥시기, 플루오렌기(스파이로플루오렌기 포함), 아릴렌기, 플루오렌일렌기(스파이로플루오렌일기 포함)는 C6-C24의 아릴기, C2-C24의 헤테로고리기, C1-C30의 알킬기, C2-C24의 알케닐기, C6-C24의 아릴옥시기, 플루오렌일기, 할로겐기, 나이트로기,  시아노기로 이루어진 군에서 선택된 하나 이상의 치환기로 더욱 치환될 수 있으며, 이들 각 치환기가 인접한 경우 이들은 서로 결합하여 고리를 형성할 수 있다.
  22. 제 21 항에 있어서,
    상기 화학식 1은 하기 화학식 2 내지 화학식 4로 표시되는 유기발광소자용 화합물.
    [화학식 2]
    Figure PCTKR2017000380-appb-I000103
    [화학식 3]
    Figure PCTKR2017000380-appb-I000104
    [화학식 4]
    Figure PCTKR2017000380-appb-I000105
    상기 화학식 2 내지 화학식 4에서,
    L은 단일결합, C6-C60의 아릴렌기, 플루오렌일렌기, C2-C60의 헤테로고리기 중 어느 하나이고, Ar3 및 Ar4는 C6-C60의 아릴기, C2-C60의 헤테로고리기, 플루오렌기 중 어느 하나이고, Ar5 내지 Ar8은 C6-C60의 아릴기, C2-C60의 헤테로고리기, 플루오렌기 중 어느 하나이고, R’ 및 R”은 C6-C60의 아릴기, C2-C60의 헤테로고리기 또는 C1-C30의 알킬기 중 어느 하나이고,
    Ar3 및 Ar4가 C2-C60의 헤테로고리기일 경우, 카바졸을 포함하고, Ar5 내지 Ar8가 C6-C60의 헤테로고리기일 경우, 카바졸을 포함하지 않는다.
  23. 제 22 항에 있어서,
    상기 유기발광소자는, 상기 제 1 전극과 상기 제 2 전극 사이에 배치되며, 상기 제 1 서브픽셀에 배치된 제 1 유기발광층, 상기 제 2 서브픽셀에 배치된 제 2 유기발광층, 상기 제 3 서브픽셀에 배치된 제 3 유기발광층을 포함하는 유기발광층;
    상기 제 1 전극과 유기발광층 사이에 배치된 정공수송층; 및
    상기 정공수송층과 유기발광층 사이에 배치되며, 상기 제 1 서브픽셀에 배치된 제 1 발광보조층, 상기 제 2 서브픽셀에 배치된 제 2 발광보조층 및 상기 정공수송층과 유기발광층 사이에서 상기 제 1 및 제 2 발광보조층 상에 배치되고 상기 제 1 내지 제 3 서브픽셀에 공통으로 배치된 제 3 발광보조층을 포함하며,
    상기 화학식 3 또는 화학식 4로 표시되는 화합물은 상기 상기 제 1 및 제 2 발광보조층에 포함되고, 상기 상기 화학식 2로 표시되는 화합물은 정공수송층에 포함되는 유기발광소자용 화합물.
  24. 유기발광소자에 사용되는, 하기 화학식 5로 표시되는 유기발광소자용 화합물.
    [화학식 5]
    Figure PCTKR2017000380-appb-I000106
    상기 화학식 5에서,
    1) R3과 R4는 수소, 중수소, C6-C60의 아릴기, C2-C60의 알케닐기, C1-C60의 알킬기, C6-C60의 아릴옥시기, C2-C60의 헤테로고리기, 시아노기, 나이트로기, 할로겐기이며
    2) n=0-4의 정수, o=0-3의 정수
    3) L은 단일결합, C6-C60의 아릴렌기, C3-C60의 헤테로고리기, 플루오렌일렌기
    4) Ar9, Ar10은 C6-C24의 아릴기, C3-C24의 헤테로고리기, 플루오렌기
    5) n=2 이상일 경우 R3은 서로 결합하여 고리를 형성할 수 있고 o=2 이상일 경우 R4는 서로 결합하여 고리를 형성할 수 있고,
    상기 아릴기, 헤테로고리기, 알케닐기, 알킬기, 아릴옥시기, 플루오렌기, 아릴렌기, 플루오렌일렌기(스파이로플루오렌일기 포함)는 C6-24의 아릴기, C2-24의 헤테로고리기, C1-C30의 알킬기, C2-C24의 알케닐기, C6-C24의 아릴옥시기, 플루오렌일기, 할로겐기, 나이트로기, 시아노기로 이루어진 군에서 선택된 하나 이상의 치환기로 더욱 치환될 수 있으며, 이들 각 치환기가 인접한 경우 이들은 서로 결합하여 고리를 형성할 수 있다.
  25. 제 24 항에 있어서,
    상기 화학식 5는 하기 화학식 6 및 7로 표시되는 유기발광소자용 화합물.
    [화학식 6]
    Figure PCTKR2017000380-appb-I000107
    [화학식 7]
    Figure PCTKR2017000380-appb-I000108
    상기 화학식 6 및 7에서, R3과 R4, n, o, Ar9, Ar10는 상기 화학식 5와 동일하다.
  26. 제 24 항에 있어서,
    상기 유기발광소자는, 상기 제 1 전극과 상기 제 2 전극 사이에 배치되며, 상기 제 1 서브픽셀에 배치된 제 1 유기발광층, 상기 제 2 서브픽셀에 배치된 제 2 유기발광층, 상기 제 3 서브픽셀에 배치된 제 3 유기발광층을 포함하는 유기발광층;
    상기 제 1 전극과 유기발광층 사이에 배치된 정공수송층; 및
    상기 정공수송층과 유기발광층 사이에 배치되며, 상기 제 1 서브픽셀에 배치된 제 1 발광보조층, 상기 제 2 서브픽셀에 배치된 제 2 발광보조층 및 상기 정공수송층과 유기발광층 사이에서 상기 제 1 및 제 2 발광보조층 상에 배치되고 상기 제 1 내지 제 3 서브픽셀에 공통으로 배치된 제 3 발광보조층을 포함하며,
    상기 화학식 5로 표시되는 화합물은 상기 제 3 발광보조층에 포함되는 유기발광소자용 화합물.
PCT/KR2017/000380 2016-01-11 2017-01-11 유기발광소자, 유기발광 표시장치 및 유기발광소자용 화합물 WO2017123008A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160003170A KR102635702B1 (ko) 2016-01-11 2016-01-11 유기발광소자, 유기발광 표시장치 및 유기발광소자용 화합물
KR10-2016-0003170 2016-01-11

Publications (1)

Publication Number Publication Date
WO2017123008A1 true WO2017123008A1 (ko) 2017-07-20

Family

ID=59311771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000380 WO2017123008A1 (ko) 2016-01-11 2017-01-11 유기발광소자, 유기발광 표시장치 및 유기발광소자용 화합물

Country Status (3)

Country Link
KR (1) KR102635702B1 (ko)
CN (1) CN106960912B (ko)
WO (1) WO2017123008A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12108671B2 (en) 2019-11-01 2024-10-01 Duk San Neolux Co., Ltd. Organic electric element comprising a plurality of emission-auxiliary layers and electronic device comprising it

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190038254A (ko) 2017-09-29 2019-04-08 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN110034148A (zh) 2018-01-12 2019-07-19 超微晶科技(深圳)有限公司 显示面板及显示面板制作方法
CN112018248B (zh) * 2019-05-28 2023-12-29 固安鼎材科技有限公司 一种显示装置及其制备方法
KR20210034445A (ko) * 2019-09-20 2021-03-30 주식회사 동진쎄미켐 신규 화합물 및 이를 포함하는 유기 발광 소자
KR20210034444A (ko) * 2019-09-20 2021-03-30 주식회사 동진쎄미켐 신규 화합물 및 이를 포함하는 유기 발광 소자
KR20210074448A (ko) 2019-12-11 2021-06-22 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함하는 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140080195A (ko) * 2012-12-20 2014-06-30 엘지디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
KR101493482B1 (ko) * 2014-08-29 2015-02-16 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR101530049B1 (ko) * 2014-10-24 2015-06-18 덕산네오룩스 주식회사 유기전기소자용 조성물을 이용한 디스플레이 장치 및 유기전기소자
KR20150068776A (ko) * 2013-12-12 2015-06-22 삼성디스플레이 주식회사 유기 발광 소자
KR20150138000A (ko) * 2014-05-30 2015-12-09 제일모직주식회사 유기 광전자 소자 및 표시 장치
KR101579490B1 (ko) * 2015-09-17 2015-12-22 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100829761B1 (ko) * 2007-05-16 2008-05-15 삼성에스디아이 주식회사 유기 발광 소자
JP5760334B2 (ja) * 2009-06-19 2015-08-05 大日本印刷株式会社 有機電子デバイス及びその製造方法
KR101952706B1 (ko) * 2012-07-24 2019-02-28 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함하는 유기 발광 표시 장치
WO2015182887A1 (ko) * 2014-05-30 2015-12-03 삼성에스디아이 주식회사 유기 광전자 소자 및 표시 장치
KR101745491B1 (ko) * 2015-03-12 2017-06-13 덕산네오룩스 주식회사 유기발광소자 및 유기발광 표시장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140080195A (ko) * 2012-12-20 2014-06-30 엘지디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
KR20150068776A (ko) * 2013-12-12 2015-06-22 삼성디스플레이 주식회사 유기 발광 소자
KR20150138000A (ko) * 2014-05-30 2015-12-09 제일모직주식회사 유기 광전자 소자 및 표시 장치
KR101493482B1 (ko) * 2014-08-29 2015-02-16 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR101530049B1 (ko) * 2014-10-24 2015-06-18 덕산네오룩스 주식회사 유기전기소자용 조성물을 이용한 디스플레이 장치 및 유기전기소자
KR101579490B1 (ko) * 2015-09-17 2015-12-22 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12108671B2 (en) 2019-11-01 2024-10-01 Duk San Neolux Co., Ltd. Organic electric element comprising a plurality of emission-auxiliary layers and electronic device comprising it

Also Published As

Publication number Publication date
CN106960912A (zh) 2017-07-18
CN106960912B (zh) 2019-12-03
KR20170084393A (ko) 2017-07-20
KR102635702B1 (ko) 2024-02-15

Similar Documents

Publication Publication Date Title
WO2017123008A1 (ko) 유기발광소자, 유기발광 표시장치 및 유기발광소자용 화합물
WO2017095075A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2020032424A1 (ko) 이종 화합물의 혼합물을 호스트로 포함하는 유기전기소자 및 그 전자 장치
WO2020116816A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2017090918A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2017122988A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2021085982A1 (ko) 복수의 발광보조층을 포함하는 유기전기소자 및 이를 포함하는 전자 장치
WO2016072690A1 (ko) 유기전기소자용 조성물을 이용한 디스플레이 장치 및 유기전기소자
WO2017200320A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2015130069A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2015041428A1 (ko) 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치
WO2017179875A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2018012780A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2015194791A2 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2017204556A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2017010726A1 (ko) 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치
WO2014088284A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2021112403A1 (ko) 유기화합물을 포함하는 유기전기소자 및 이를 포함하는 전자 장치
WO2013105747A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2013081315A1 (ko) 유기전기소자용 화합물, 이를 포함하는 유기전기소자 및 그 전자 장치
WO2017188655A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2020130392A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2016175533A2 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2017030307A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2015115756A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17738637

Country of ref document: EP

Kind code of ref document: A1