WO2017122967A1 - 디바이스에 대한 탑재 공간이 최소화된 전지팩 - Google Patents

디바이스에 대한 탑재 공간이 최소화된 전지팩 Download PDF

Info

Publication number
WO2017122967A1
WO2017122967A1 PCT/KR2017/000174 KR2017000174W WO2017122967A1 WO 2017122967 A1 WO2017122967 A1 WO 2017122967A1 KR 2017000174 W KR2017000174 W KR 2017000174W WO 2017122967 A1 WO2017122967 A1 WO 2017122967A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
battery
cover member
base plate
battery module
Prior art date
Application number
PCT/KR2017/000174
Other languages
English (en)
French (fr)
Inventor
김민성
이윤희
이학준
정준희
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP17738596.0A priority Critical patent/EP3336927A4/en
Priority to US15/752,899 priority patent/US10707463B2/en
Priority to CN201780003013.6A priority patent/CN107949931B/zh
Priority to JP2018531284A priority patent/JP6633760B2/ja
Publication of WO2017122967A1 publication Critical patent/WO2017122967A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery pack in which the mounting space for the device is minimized.
  • the secondary battery is an electric vehicle (EV), a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle that has been proposed as a solution for air pollution of existing gasoline and diesel vehicles using fossil fuel. It is attracting attention as a power source such as (Plug-In HEV).
  • Ni-MH secondary batteries are mainly used as secondary batteries for EV and HEV, but recently, researches using lithium secondary batteries with high energy density, high discharge voltage and output stability have been actively conducted. And is in some stages of commercialization.
  • the secondary battery When the secondary battery is used as a power source of an automobile, the secondary battery is used in the form of a battery pack including a plurality of battery modules or battery module assemblies.
  • the battery pack maintains structural stability against stimuli such as external shocks in various environments, and is used at various humidity and temperatures in order to be used as a power source of a device or system that is exposed to various environments such as automobiles. It should be possible to secure safety.
  • some battery packs used as a power source of an automobile may easily secure a mounting space and reduce stimulation caused by various factors such as external shock and humidity, such as an interior space such as a part of a trunk or a seat of a vehicle. Is mounted on.
  • the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • the inventors of the present application configure the outer circumferential surface of the cover member to be mounted in a state facing the battery pack mounting portion of the device, as described later.
  • the pack may be configured to be mounted, thereby minimizing the space required for mounting the battery pack in the device, thereby overcoming the limitation on the mounting position of the battery pack and maximizing the space utilization of the device. It was confirmed that this can be done, and came to complete this invention.
  • a cover member mounted on one surface of the base plate while surrounding the battery module assemblies
  • a reinforcing support member positioned at a spaced portion between the battery module assemblies while supporting a mounting state of the cover member to the base plate;
  • the battery pack may have a structure in which an outer circumferential surface of the cover member is mounted while facing the battery pack mounting portion of the device.
  • the battery pack can be configured to be mounted under the device such as a vehicle, and thus, by minimizing the space required for mounting the battery pack in the device, Overcoming limitations on mounting location can maximize the space utilization of the device.
  • the outer peripheral surface of the cover member may have a structure corresponding to the shape of the battery pack mounting portion of the device.
  • the outer circumferential surface of the cover member and the battery pack mounting portion of the device may be in close contact with each other in a maximized state. Accordingly, the bonding force of the battery pack to the battery pack mounting portion of the device may be improved. The space required to mount the battery pack can be minimized.
  • the cover member may have a structure in which portions corresponding to spaced spaces between the battery module assemblies are indented inwardly such that the battery module assemblies are apparently distinguished from each other.
  • each of the battery module assemblies is stably fixed and held by the cover member, thereby suppressing the flow in the battery pack, thereby improving structural stability.
  • a portion of the battery pack mounting portion may be coupled to the inner circumferential surface of the portion where the cover member is indented to face and coupled.
  • the device on which the battery pack is mounted may be, in detail, an automobile.
  • the battery pack mounting portion may be a lower frame of the vehicle including a plurality of linear beams.
  • a part of the lower frame of the vehicle formed of the plurality of linear beams may be coupled to face the inner circumferential surface of the cover member portion indented in a shape corresponding to the spaced space between the battery module assemblies, and thus, the battery pack The flow is prevented by the cover member surrounding the battery module assemblies, thereby preventing damage from external impact, and can be safely protected.
  • the battery pack mounting portion is composed of a frame constituting the device, it is not necessary to manufacture a separate battery pack mounting portion having a structure corresponding to the shape of the outer peripheral surface of the battery pack, it is possible to save the overall manufacturing cost and time, By reducing the types of components, the battery pack can be mounted in a more simplified structure.
  • the battery pack may be a structure that is mounted to the battery pack mounting portion by a fastener that is inserted and coupled from the base plate.
  • the battery pack according to the present invention may have a structure in which the outer circumferential surface of the cover member is mounted while facing the battery pack mounting portion of the device.
  • the battery pack can be easily mounted to the battery pack mounting portion of the device by inserting and engaging a fastener for mounting the battery pack mounting portion of the device from the base plate opposite to the cover member.
  • the fastener may be coupled to the battery pack mounting portion from the base plate via the reinforcing support member and the cover member.
  • the battery pack can be mounted to the battery pack mounting portion of the device at the same time, the base plate and the reinforcing support member and the cover member are integrally coupled by one fastener inserted and coupled from the base plate, thereby
  • the base plate and the reinforcing support member and the cover member are integrally coupled by one fastener inserted and coupled from the base plate, thereby
  • the battery pack can be mounted to the battery pack mounting portion of the device at the same time, the base plate and the reinforcing support member and the cover member are integrally coupled by one fastener inserted and coupled from the base plate, thereby
  • the battery pack can be mounted to the battery pack mounting portion of the device at the same time, the base plate and the reinforcing support member and the cover member are integrally coupled by one fastener inserted and coupled from the base plate, thereby
  • the overall weight of the battery pack it is possible to improve the operating efficiency of the device.
  • the reinforcing support member may have a structure in which a connect beam is connected between at least two support portions.
  • the reinforcing support member is relatively light in weight and compact in size, and can stably support the mounting state of the cover member with respect to the base plate.
  • the support parts and the connect beam may be formed in an integrated structure to further improve structural stability.
  • the length of the connect beam connected between the support portion may be a structure consisting of 10% to 30% of the total length of the reinforcing support member.
  • the weight and the strength of the reinforcing support member in comparison with the strength required for exerting the desired supporting force are less than 10% of the total length of the reinforcing support member, the weight and the strength of the reinforcing support member in comparison with the strength required for exerting the desired supporting force. And / or increase in size.
  • the reinforcing support member may have a structure in which both surfaces of the support parts facing each other are coupled to face indented inner circumferential portions of the cover member and spaced apart portions of the battery cell assemblies on the base plate.
  • the reinforcing support member is located at a spaced portion between the battery module assemblies while supporting the mounting state of the cover member with respect to the base plate, wherein the cover member is a battery so that the battery module assemblies are separated, A portion corresponding to the spaced space between the module assemblies may have a structure indented inward.
  • the reinforcing support member is coupled to the opposite inner surface of the support member and the spaced apart portions of the battery cell assemblies on the base plate, respectively, so that both sides of the support portion are opposed to each other, thereby stably mounting the cover member to the base plate. Can support the state.
  • the support part may have a structure in which a first fastening hole having a fastener coupled to both surfaces coupled to the cover member and the base plate is formed in a through structure.
  • a portion of the cover member and the base plate corresponding to the first fastening hole of the support may have a structure in which a second fastening hole and a third fastening hole are formed, respectively.
  • it may have a structure formed at a position corresponding to each other with the first fastening hole formed in the support portion of the reinforcing support member, the second fastening hole of the cover member, and the third fastening hole of the base plate.
  • the fastener is coupled to the first fastening hole formed in the support portion of the reinforcing support member and the second fastening hole of the cover member from the third fastening hole of the base plate, so that the base plate and the reinforcing support member and the cover member are Can be coupled at the same time by the same fastener.
  • the fastener may have a structure in which one end portion protrudes from the cover member and is coupled to the battery pack mounting part of the device in a state where the fastener is inserted into and coupled to the cover member opposite to the cover member from the base plate.
  • the fastener may be coupled to the battery pack mounting portion from the base plate via the reinforcing support member and the cover member, and the battery pack may be mounted to the device with a more simplified structure.
  • the height at which the fastener protrudes from the cover member may be between 10% and 90% of the height of the support.
  • the fastener protrudes too short, so that the battery pack is stable in a state where the battery pack is mounted on the battery pack mounting part of the device. Can't keep up.
  • the support portion may have a structure in which a watertight gasket is interposed on both surfaces coupled to the base plate and the cover member.
  • the watertight gasket may have a structure in which a portion corresponding to the fastening hole of the support penetrates.
  • the fastener coupling the base plate and the cover member and the support portion can be easily fastened without interference of the watertight gasket, and between the outer circumferential surface of the fastener and the inner circumferential surfaces of the fastening holes of the base plate and the cover member, from the outside. It can effectively prevent the inflow of moisture and dirt.
  • the material of the watertight gasket is not particularly limited as long as the material is interposed between the support part, the base plate and the cover member to exert a predetermined sealing force and prevent moisture and dirt penetration.
  • Synthetic rubber, natural rubber, silicone resin, and PVC Polyvinyl Chloride
  • PVC Polyvinyl Chloride
  • the synthetic rubber may be styrene-butadiene rubber, polychloroprene rubber, nitrile rubber, butyl rubber, butadiene rubber, isoprene rubber, ethylene prepropylene rubber, polysulfide rubber, silicone rubber, fluoro rubber, urethane rubber, And it may be one or more selected from the group consisting of acrylic rubber.
  • one surface of the base plate may have a structure in which a mounting space for mounting the respective battery module assemblies is indented.
  • two or more battery module assemblies are mounted on one surface of the base plate to be spaced apart from each other at a predetermined interval, and the mounting space for mounting the battery module assemblies is formed into an indented structure, thereby separating the spaces. It may be a structure that provides independent mounting space with the interposed portions interposed therebetween.
  • the spaced portions between the battery module assemblies are formed in a relatively protruding structure, and thus, each of the battery module assemblies may be spaced apart from each other by adjacent spaced portions of the battery module assemblies. Flow in can be suppressed and more stable mounting state can be maintained.
  • the depth in which the battery module assembly mounting space is indented is formed in a size of 10% to 50% based on the height corresponding to the mounting direction of the battery module assembly to prevent the flow of the battery module assembly. It can be a structure.
  • each battery module assembly may not maintain a stable mounting state. Can be.
  • the depth in which the battery module assembly mounting space is indented is formed to have a size exceeding 50% based on the height corresponding to the mounting direction of the battery module assembly, the battery of the device coupled face-to-face through the spaced apart portion.
  • the length from the pack mounting portion to the other surface of the base plate opposite thereto may be excessively large, thereby causing a problem in that a space and a location on which the battery pack can be mounted may be restricted.
  • each battery module assembly is formed in a rectangular parallelepiped structure in which the length of one outer periphery is relatively larger than the length of the other outer periphery, the battery module assemblies are in a state in which the outer periphery of the relatively large size facing each other It may be a structure mounted on the base plate.
  • each battery module assembly is formed by arranging a plurality of battery cells, in this case, the battery module assembly is easy to form the electrical connection structure of the battery cells, ease of application to the limited mounting space of the vehicle, etc. In consideration of this, it may be formed into a rectangular parallelepiped structure.
  • the battery module assemblies are mounted on the base plate in a state in which the outer peripheries having a relatively large size face each other, thereby making the battery pack more compact.
  • the mounting structure of the battery module assemblies is not limited thereto, and the battery module assemblies may be mounted and arranged on the base plate in various structures according to the mounting position of the battery pack and the shape of the mounting space. .
  • battery cells constituting one battery module assembly may be connected in series, and each battery module assembly constituting the module assembly assembly may be connected in parallel.
  • the battery pack according to the present invention may be mounted on a device such as an automobile and serve to supply power. Accordingly, when the supply of power to the vehicle is suddenly cut off, a large accident It is likely to lead to.
  • the battery cells constituting one battery module assembly are connected in series to each other, thereby exhibiting desired electrical characteristics, and each battery module assembly constituting the module assembly assembly is connected in parallel.
  • the remaining battery module assembly can maintain the power supply state to the device, and thus, the power supply to the device is suddenly cut off, so that the operation of the device is stopped. This can prevent the occurrence of a safety accident, which can effectively prevent the occurrence of a safety accident.
  • the type of the battery cell is not particularly limited, but as a specific example, it may be a lithium secondary battery such as a lithium ion battery, a lithium ion polymer battery and the like having advantages such as high energy density, discharge voltage, output stability and the like. .
  • a lithium secondary battery is composed of a positive electrode, a negative electrode, a separator, and a lithium salt-containing nonaqueous electrolyte.
  • the positive electrode is prepared by, for example, applying a mixture of a positive electrode active material, a conductive material, and a binder to a positive electrode current collector, followed by drying, and optionally, a filler is further added to the mixture.
  • the conductive material is typically added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the binder is a component that assists the bonding of the active material and the conductive material to the current collector, and is generally added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
  • the filler is optionally used as a component for inhibiting expansion of the positive electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
  • the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
  • the negative electrode is manufactured by coating and drying a negative electrode active material on a negative electrode current collector, and optionally, the components as described above may optionally be further included.
  • carbon such as hardly graphitized carbon and graphite type carbon
  • Me: Mn, Fe, Pb, Ge; Me' Metal complex oxides such as Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen, 0 ⁇ x ⁇ 1; 1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8); Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , and metal oxides such as Bi 2
  • the separator and the separator are interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
  • the pore diameter of the separator is generally from 0.01 to 10 ⁇ m ⁇ m, thickness is generally 5 ⁇ 130 ⁇ m.
  • a separator for example, olefin polymers such as chemical resistance and hydrophobic polypropylene; Sheets or non-woven fabrics made of glass fibers or polyethylene are used.
  • a solid electrolyte such as a polymer is used as the electrolyte, the solid electrolyte may also serve as a separator.
  • the separator and / or the separator may be an SRS (Safety-Reinforcing Separators) separator of organic / inorganic composite porous.
  • the SRS separator is manufactured using inorganic particles and a binder polymer as an active layer component on a polyolefin-based separator substrate, wherein the pore structure included in the separator substrate itself and the interstitial volume between the inorganic particles as the active layer component are used. It has a uniform pore structure formed.
  • the organic / inorganic composite porous separator may exhibit excellent adhesion characteristics by controlling the content of the inorganic particles and the binder polymer, which are the active layer components in the separator, and thus may have an easy battery assembly process.
  • the inorganic particles are not particularly limited as long as they are electrochemically stable. That is, the inorganic particles that can be used in the present invention are not particularly limited as long as the oxidation and / or reduction reactions do not occur in the operating voltage range of the battery to be applied (for example, 0 to 5 V on the basis of Li / Li +).
  • the inorganic particles having the ion transfer ability since the ion conductivity in the electrochemical device can be improved to improve the performance, it is preferable that the ion conductivity is as high as possible.
  • the inorganic particles have a high density, it is not only difficult to disperse during coating, but also has a problem of weight increase during battery manufacturing, and therefore, it is preferable that the density is as small as possible.
  • an inorganic material having a high dielectric constant it is possible to contribute to an increase in the degree of dissociation of an electrolyte salt such as lithium salt in the liquid electrolyte, thereby improving the ionic conductivity of the electrolyte solution.
  • the lithium salt-containing nonaqueous electrolyte solution consists of a polar organic electrolyte solution and a lithium salt.
  • a non-aqueous liquid electrolyte an organic solid electrolyte, an inorganic solid electrolyte, and the like are used.
  • N-methyl- 2-pyrrolidinone a propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma
  • Butyl lactone 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxorone, formamide, dimethylformamide, dioxolon , Acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbo Aprotic organic solvents such as nate derivatives, tetrahydrofuran derivatives, ethers, methyl pyroionate and eth
  • organic solid electrolytes examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohols, polyvinylidene fluorides, Polymers containing ionic dissociating groups and the like can be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates and the like of Li, such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , and the like, may be used.
  • the lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide have.
  • the non-aqueous electrolyte solution includes, for example, pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, and hexaphosphate triamide.
  • halogen-containing solvents such as carbon tetrachloride and ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics.
  • the present invention also provides a device including the battery pack, wherein the device may be any one selected from the group consisting of an electric vehicle, a hybrid electric vehicle, or a plug-in hybrid electric vehicle.
  • the battery pack according to the present invention may be used as a power source of a device such as an automobile.
  • the battery pack may be a structure that is mounted to be positioned under the frame of the vehicle, and more specifically, It may be a structure mounted on the lower portion of the frame of the position corresponding to the driver's seat and the auxiliary seat of the vehicle.
  • the battery pack since the battery pack is not mounted in an interior space such as a trunk of a vehicle, the battery pack may be utilized more efficiently, and a limitation on a mounting position in a device such as a vehicle may be eliminated or minimized.
  • FIG. 1 is an exploded view schematically showing the structure of a battery pack according to an embodiment of the present invention
  • FIG. 2 is a plan view schematically showing the structure of a base plate on which the reinforcing support member of FIG. 1 is mounted;
  • FIG. 3 is a schematic view schematically showing the structure of the reinforcing support member of FIG. 1;
  • FIG. 4 is a vertical cross-sectional view schematically showing the structure of the reinforcing support member mounted to the battery pack of FIG. 1;
  • FIG. 5 is a vertical cross-sectional view schematically showing the mounting structure of the battery pack of FIG. 1 with respect to the device.
  • FIG. 1 is an exploded view schematically showing the structure of a battery pack according to an embodiment of the present invention.
  • the battery pack 100 includes a base plate 110, a cover member 120, and two reinforcing support members 131 and 132.
  • the base plate 110 includes mounting spaces 114 and 115 except for the spaced portions 111 and 112 between the battery module assemblies so that the three battery module assemblies may be mounted spaced apart from each other at predetermined intervals.
  • , 116 consists of a plate-like structure indented in the lower surface direction.
  • the spaced portions 111 and 112 between the battery module assemblies may have a predetermined height in the direction of the cover member 120 from the base plate 110 so that the two reinforcing support members 131 and 132 may be positioned. It is formed of a protruding partition structure.
  • the mounting spaces 114, 115, and 116 of the battery module assemblies are distinguished from each other by the spaced portions 111 and 112, whereby the flow of the respective battery module assemblies mounted in the battery pack 100 is suppressed.
  • structural stability can be improved.
  • the through holes 113 are formed in the spaced portions 111 and 112 so that the fasteners can be inserted into and coupled to the portions corresponding to the supports of the reinforcing support members 131 and 132.
  • the cover member 120 has a structure in which the outer circumferential surface corresponds to the shape of the battery pack mounting portion of the device, and the inner circumferential surface corresponds to the outer circumferential surface of the battery module assembly assembly, and in detail, each battery module assembly is distinguished.
  • the parts 121 and 122 corresponding to the spaced parts 111 and 112 between the assemblies are formed inwardly.
  • the cover member 120 is located at both sides of the battery pack mounting part of the device having various outer shapes, in addition to the portions 121 and 122 corresponding to the separation portions 111 and 112 between the battery module assemblies.
  • the parts 123 and 124 are further included in portions corresponding to the upper surface of the battery module assembly.
  • the battery pack 100 may be stably mounted and fixed to a battery pack mounting part having various shapes such as a lower surface of a vehicle frame.
  • the cover member 120 includes an inclined portion 125 formed in a structure corresponding to the battery pack mounting portion of the device at a portion covering the top surface of the battery module assembly positioned at the center portion.
  • the inclined portion 125 of the cover member 120 has a structure corresponding to the battery pack mounting portion of the device, and at the same time, the electrical connection device such as BMS and safety on the upper surface of the battery module assembly located at the center portion It can provide space for devices to be mounted.
  • Holes 126 and 127 are formed in the inclined portion 125 of the cover member 120 corresponding to the electrical connection device and the safety devices mounted on the top surface of the battery module assembly.
  • the two reinforcing support members 131 and 132 are positioned on the base plates 110 and spaced apart from each other between the battery module assemblies 111 and 112, respectively, and the base plate 110 and the cover member 120. By being coupled face to face, the mounting state of the cover member 120 with respect to the base plate 110 can be stably supported.
  • FIG. 2 is a plan view schematically showing the structure of the base plate on which the reinforcing support member of FIG. 1 is mounted.
  • three battery module assembly mounting spaces 114, 115, and 116 are formed on an upper surface of the base plate 110, and between each battery module assembly mounting spaces 114, 115, and 116.
  • Reinforcing support members 131 and 132 are positioned and mounted on the separation parts 111 and 112.
  • the mounting spaces 114, 115, and 116 of the battery module assembly may have a length 211 of one outer periphery at a length 212 of the other outer periphery adjacent thereto so as to mount the battery module assembly having a rectangular parallelepiped structure. Compared to the larger structure.
  • a plurality of reinforcement beads 118 protruded convexly in the battery module assembly mounting direction are formed to reinforce rigidity.
  • the width 222 of the spaced portions 111 and 112 is about 200% of the width 221 of the reinforcing support members 131 and 132.
  • the spaces 111 and 112 between the battery module assembly mounting spaces 114, 115, and 116 electrically connect the battery modules or the battery module assemblies. Electrical connection members can be easily received.
  • the outer periphery of the base plate 110 is formed with a plurality of fastening holes 119 for mounting to the device, the two corner portions corresponding to the shape of the battery pack mounting portion of the device, the inclined portions 117a, 117b, respectively Formed.
  • FIG. 3 is a schematic diagram schematically showing the structure of the reinforcing support member of FIG.
  • the reinforcing support member 131 has a structure in which connect beams 131b are continuously connected between the support portions 131a, and the support portions 131a and the connect beam 131b have an integrated structure. have.
  • the support portion 131a has a cylindrical structure in which opposite surfaces of the cover member 131 are joined to the indented inner circumferential portion of the cover member and spaced apart portions between the battery cell assemblies on the base plate, respectively.
  • Fastening holes 131d to which fasteners are coupled are formed on both surfaces of the support part 131a coupled to the cover member and the base plate in a through structure.
  • Watertight gaskets 131c interposed between the cover member and the base plate are positioned on both surfaces of the support part 131a.
  • the watertight gasket 131c has the same circular shape as the horizontal cross-sectional shape of the support 131a, and has a structure in which a portion corresponding to the fastening hole 131d of the support 131a penetrates.
  • the length L1 of the connect beam 131b connected between the supporting parts 131a is about 10% of the total length L2 of the reinforcing support member 131.
  • FIG. 4 is a vertical cross-sectional view schematically showing the structure of the reinforcing support member mounted to the battery pack of FIG.
  • a gasket mounting groove 431 in which a watertight gasket 131c is mounted is provided at both surfaces of the support 131a of the reinforcing support member 131 facing the cover member 120 and the base plate 110. It is formed continuously around the fastening hole of 131a).
  • the cover member 120 and the base plate 110 are provided. ), The desired sealing force can be exhibited.
  • the first fastening hole 131d of the support portion 131a of the reinforcing support member 131 has a through structure, and a groove 435 having a screw structure is formed on an inner surface thereof.
  • the second fastening hole 432 and the third fastening hole ( 433) are formed respectively.
  • one fastener 434 is inserted and coupled into the screw structure through the fastening holes 432, 433, 131 d from the base plate 110 in the direction of the cover member 120 opposite thereto, and thus, the base The plate 110, the reinforcing support member 131, and the cover member 120 may be stably coupled and maintained.
  • One end 434a of the fastener 434 protrudes from the cover member 120 at a height H2 of about 20% with respect to the height H1 of the support 131a.
  • the base plate 110 and the cover member 120 and the reinforcing support member 131 of the battery pack may be coupled to the battery pack mounting portion of the device while being coupled to the same fastener 434 by the same.
  • the battery pack can be configured with a simpler and lighter structure.
  • FIG. 5 is a vertical cross-sectional view schematically showing the mounting structure of the battery pack of FIG. 1 with respect to the device.
  • the mounting spaces 114, 115, and 116 of the base plate 110 for mounting the battery module assemblies 141, 142, and 143 correspond to the battery module assemblies 141, 142, Based on the height H3 of 143, the structure is indented to a depth H4 of about 50% in the direction.
  • the spaced apart portions 111 and 112 between the mounting spaces 114, 115, and 116 are relatively protruded in the upward direction, and the cover member 120 is disposed between the reinforcing support members 131 and 132. It is coupled to face the indented inner peripheral surface of.
  • the lower frame 510 of the vehicle is positioned as a battery pack mounting portion of the device on the upper surface of the indented portion of the cover member 120.
  • the fastener 434 is inserted into and coupled to the cover member 120 from the base plate 110, and one end thereof protrudes from the cover member 120 and is coupled to the lower frame 510 of the vehicle.
  • the battery pack 100 may be mounted in close contact with the shape of the lower frame 510 of the vehicle, and in a variety of operating environments of the vehicle, the battery pack 100 may more stably maintain the coupled state of the battery pack 100. .
  • the battery pack according to the present invention may be configured such that the battery pack is mounted on a lower part of a device such as an automobile by configuring the outer circumferential surface of the cover member to face the battery pack mounting portion of the device. Accordingly, in the device, by minimizing the space required for mounting the battery pack, it is possible to overcome the limitation on the mounting position of the battery pack and to maximize the space utilization of the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Battery Mounting, Suspending (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)

Abstract

본 발명은 전원의 공급을 위해 디바이스의 전지팩 탑재부에 장착되는 전지팩으로서, 각각 복수의 전지셀들이 배열되어 있는 둘 이상의 전지모듈 어셈블리들이 소정의 간격을 두고 서로 이격된 상태로 일면에 탑재되는 베이스 플레이트(base plate); 상기 전지모듈 어셈블리들을 감싸면서 베이스 플레이트의 일면 상에 장착되는 커버(cover) 부재; 및 상기 베이스 플레이트에 대한 커버 부재의 장착 상태를 지지하면서, 전지모듈 어셈블리들 사이의 이격 부위에 위치하는 보강 지지부재;를 포함하고 있고, 상기 전지팩은 상기 커버 부재의 외주면이 디바이스의 전지팩 탑재부에 대면한 상태에서 장착되는 것을 특징으로 하는 전지팩을 제공한다.

Description

디바이스에 대한 탑재 공간이 최소화된 전지팩
본 발명은 디바이스에 대한 탑재 공간이 최소화된 전지팩에 관한 것이다.
본 출원은 2016.01.12 일자 한국 특허 출원 제10-2016-0003598호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
최근, 모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 충방전이 가능한 이차전지의 수요가 급격히 증가하고 있고, 그에 따라 다양한 요구에 부응할 수 있는 이차전지에 대한 많은 연구가 행해지고 있다. 또한, 이차전지는 화석 연료를 사용하는 기존의 가솔린 차량, 디젤 차량 등의 대기오염 등을 해결하기 위한 방안으로 제시되고 있는 전기자동차(EV), 하이브리드 전기자동차(HEV), 플러그-인 하이브리드 전기자동차(Plug-In HEV) 등의 동력원으로서도 주목받고 있다.
따라서, 배터리 만으로 운행될 수 있는 전기자동차(EV), 배터리와 기존 엔진을 병용하는 하이브리드 전기자동차(HEV) 등이 개발되었고, 일부는 상용화되어 있다. EV, HEV 등의 동력원으로서의 이차전지는 주로 니켈 수소 금속(Ni-MH) 이차전지가 주로 사용되고 있지만, 최근에는 높은 에너지 밀도, 높은 방전 전압 및 출력 안정성의 리튬 이차전지를 사용하는 연구가 활발하게 진행되고 있으며, 일부 상용화 단계에 있다.
이러한 이차전지가 자동차의 동력원으로 이용되는 경우, 상기 이차전지는 다수의 전지모듈 내지 전지모듈 어셈블리를 포함하는 전지팩의 형태로 이용된다.
이러한 경우에, 상기 전지팩이 자동차와 같은 다양한 환경에 노출되는 디바이스 또는 시스템의 동력원으로 사용되기 위해서는 다양한 환경에 따른 외부 충격과 같은 자극에 대해, 구조적 안정성을 유지하고, 다양한 습도 및 온도에서 전지팩의 안전성을 확보할 수 있어야 한다.
이에 따라, 자동차의 동력원으로서 이용되는 일부 전지팩은 탑재 공간을 용이하게 확보하고, 외부의 충격, 습도와 같은 다양한 요인에 의한 자극을 감소시킬 수 있도록, 차량의 트렁크 내지 좌석의 일부와 같은 내부 공간에 탑재된다.
그러나, 이러한 차량용 전지팩은 큰 부피로 인해, 상기 내부 공간에 큰 부분을 차지하게 되며, 상대적으로, 트렁크 공간을 충분히 활용할 수 없게 되거나, 자동차의 좌석을 줄일 수 밖에 없는 문제점이 있다.
따라서, 이러한 문제점을 근본적으로 해결할 수 있는 기술에 대한 필요성이 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 이후 설명하는 바와 같이, 커버 부재의 외주면이 디바이스의 전지팩 탑재부에 대면한 상태로 장착되도록 구성함으로써, 자동차와 같은 디바이스의 하부에 전지팩이 장착되도록 구성할 수 있으며, 이에 따라, 상기 디바이스 내에서, 전지팩의 탑재를 위해 소요되는 공간을 최소화함으로써, 상기 전지팩의 탑재 위치에 대한 제한을 극복하고, 디바이스의 공간 활용성을 극대화시킬 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.
이러한 목적을 달성하기 위한 본 발명에 따른 전지팩은,
전원의 공급을 위해 디바이스의 전지팩 탑재부에 장착되는 전지팩으로서,
각각 복수의 전지셀들이 배열되어 있는 둘 이상의 전지모듈 어셈블리들이 소정의 간격을 두고 서로 이격된 상태로 일면에 탑재되는 베이스 플레이트(base plate);
상기 전지모듈 어셈블리들을 감싸면서 베이스 플레이트의 일면 상에 장착되는 커버(cover) 부재; 및
상기 베이스 플레이트에 대한 커버 부재의 장착 상태를 지지하면서, 전지모듈 어셈블리들 사이의 이격 부위에 위치하는 보강 지지부재;
를 포함하고 있고,
상기 전지팩은 상기 커버 부재의 외주면이 디바이스의 전지팩 탑재부에 대면한 상태에서 장착되는 구조일 수 있다.
따라서, 상기 탑재 구조에 따라, 자동차와 같은 디바이스의 하부에 전지팩이 장착되도록 구성할 수 있으며, 이에 따라, 상기 디바이스 내에서, 전지팩의 탑재를 위해 소요되는 공간을 최소화함으로써, 상기 전지팩의 탑재 위치에 대한 제한을 극복하고, 디바이스의 공간 활용성을 극대화시킬 수 있다.
하나의 구체적인 예에서, 상기 커버 부재의 외주면은 디바이스의 전지팩 탑재부의 형상에 대응되는 구조로 이루어질 수 있다.
따라서, 상기 커버 부재의 외주면과 디바이스의 전지팩 탑재부가 대면하는 면적이 극대화된 상태에서 밀착될 수 있으며, 이에 따라, 상기 다비이스의 전지팩 탑재부에 대한 전지팩의 결합력을 향상시킬 수 있으며, 상기 전지팩을 탑재하기 위해 소요되는 공간을 최소화할 수 있다.
이때, 상기 커버 부재는, 전지모듈 어셈블리들이 외관상으로 상호 구분되도록, 전지모듈 어셈블리들 사이의 이격 공간에 대응하는 부위가 내측으로 만입된 구조로 이루어질 수 있다.
따라서, 상기 각 전지모듈 어셈블리들은 커버 부재에 의해 안정적으로 고정 및 유지되며, 이에 따라, 전지팩 내에서의 유동을 억제함으로써, 구조적 안정성을 향상시킬 수 있다.
특히, 상기 커버 부재가 내측으로 만입된 부위의 내주면에 전지팩 탑재부의 일부가 대면하여 결합되는 구조일 수 있다.
더욱 구체적으로, 상기 전지팩이 탑재되는 디바이스는, 상세하게는, 자동차일 수 있으며, 이러한 경우에, 상기 전지팩 탑재부는 다수의 선형 빔으로 이루어진 자동차의 하부 프레임일 수 있다.
따라서, 상기 다수의 선형 빔으로 이루어진 자동차의 하부 프레임의 일부는 전지모듈 어셈블리들 사이의 이격 공간에 대응하는 형상으로 만입된 커버 부재 부위의 내주면에 대면하여 결합될 수 있으며, 이에 따라, 상기 전지팩은 전지모듈 어셈블리들을 감싸는 커버 부재에 의해 유동이 방지되어, 외부의 충격으로부터 손상을 방지하고, 안전하게 보호될 수 있다.
또한, 상기 전지팩 탑재부는 디바이스를 구성하는 프레임으로 구성되므로, 전지팩의 외주면 형상에 대응하는 구조를 갖는 별도의 전지팩 탑재부를 제작할 필요가 없어, 전체적인 제조 비용 및 시간을 절약할 수 있으며, 전체적인 구성 요소의 종류를 감소시켜, 보다 간소화된 구조로 전지팩을 탑재할 수 있다.
한편, 상기 전지팩은 베이스 플레이트로부터 삽입 및 결합되는 체결구에 의해 전지팩 탑재부에 장착되는 구조일 수 있다.
앞서 설명한 바와 마찬가지로, 본 발명에 따른 전지팩은 커버 부재의 외주면이 디바이스의 전지팩 탑재부에 대면한 상태에서 장착되는 구조일 수 있다.
따라서, 상기 전지팩은 디바이스의 전지팩 탑재부에 장착시키기 위한 체결구가 상기 커버 부재에 대향하는 베이스 플레이트로부터 삽입 및 결합됨으로써, 디바이스의 전지팩 탑재부에 용이하게 장착될 수 있다.
이러한 경우에, 상기 체결구는 베이스 플레이트로부터 보강 지지부재 및 커버 부재를 경유하여 전지팩 탑재부에 결합되는 구조일 수 있다.
즉, 상기 전지팩은 베이스 플레이트로부터 삽입 및 결합되는 하나의 체결구에 의해, 상기 베이스 플레이트와 보강 지지부재 및 커버 부재가 일체로 결합되는 동시에, 디바이스의 전지팩 탑재부에 장착될 수 있으며, 이에 따라, 상기 전지팩을 탑재하기 위해 소요되는 체결구의 수량을 감소시키는 동시에, 전지팩의 전체적인 무게를 경량화시킴으로써, 디바이스의 작동 효율을 향상시킬 수 있다.
하나의 구체적인 예에서, 상기 보강 지지부재는 적어도 둘 이상의 지지부들 사이에 커넥트 빔(connect beam)이 연결된 구조로 이루어질 수 있다.
따라서, 상기 보강 지지부재는 상대적으로 경량화된 무게 및 콤팩트한 크기로서, 베이스 플레이트에 대해 커버 부재의 장착 상태를 안정적으로 지지할 수 있다.
이때, 상기 지지부들 및 커넥트 빔은 구조적 안정성을 보다 향상시킬 수 있도록, 일체형 구조로 이루어질 수 있다.
또한, 상기 지지부들 사이에 연결된 커넥트 빔의 길이는 보강 지지부재의 전체 길이에 대해 10% 내지 30%의 크기로 이루어진 구조일 수 있다.
만일, 상기 지지부들 사이에 연결된 커넥트 빔의 길이가 보강 지지부재의 전체 길이에 대해 10% 미만의 크기로 이루어질 경우, 상기 보강 지지부재가 소망하는 지지력을 발휘하기 위해 요구되는 강도에 비해, 무게 및/또는 크기가 증가할 수 있다.
이와 반대로, 상기 지지부들 사이에 연결된 커넥트 빔의 길이가 보강 지지부재의 전체 길이에 대해 30%를 초과하는 경우에는, 상기 지지부들 사이의 거리가 지나치게 멀어져, 베이스 플레이트에 대해 커버 부재의 장착 상태를 안정적으로 지지하지 못할 수 있다.
또한, 상기 보강 지지부재는, 서로 대향하는 지지부의 양면이, 각각 커버 부재의 만입된 내주면 부위, 및 베이스 플레이트 상의 전지셀 어셈블리들의 이격 부위에 대면하여 결합되는 구조일 수 있다.
앞서 설명한 바와 마찬가지로, 상기 보강 지지부재는 베이스 플레이트에 대해 커버 부재의 장착 상태를 지지하면서, 전지모듈 어셈블리들 사이의 이격 부위에 위치하며, 이때, 상기 커버 부재는, 전지모듈 어셈블리들이 구분되도록, 전지모듈 어셈블리들 사이의 이격 공간에 대응하는 부위가 내측으로 만입된 구조로 이루어질 수 있다.
따라서, 상기 보강 지지부재는 지지부의 서로 대향하는 양면이 각각 커버 부재의 만입된 내주면 부위 및 베이스 플레이트 상의 전지셀 어셈블리들의 이격 부위에 대면하여 결합됨으로써, 안정적으로, 상기 베이스 플레이트에 대해 커버 부재의 장착 상태를 지지할 수 있다.
이러한 경우에, 상기 지지부는 커버 부재 및 베이스 플레이트에 대면하여 결합되는 양면에 체결구가 결합되는 제 1 체결공이 관통 구조로 형성되어 있는 구조일 수 있다.
또한, 상기 지지부의 제 1 체결공에 대응하는 커버 부재의 부위 및 베이스 플레이트의 부위에는 각각 제 2 체결공 및 제 3 체결공이 형성되어 있는 구조일 수 있다.
다시 말해, 상기 보강 지지부재의 지지부에 관통 구조로 형성된 제 1 체결공과 커버 부재의 제 2 체결공, 및 베이스 플레이트의 제 3 체결공과 서로 대응되는 위치에서 형성되어 있는 구조일 수 있다.
이에 따라, 상기 체결구는 베이스 플레이트의 제 3 체결공으로부터 보강 지지부재의 지지부에 형성된 제 1 체결공 및 커버 부재의 제 2 체결공에 동시에 결합되므로, 상기 베이스 플레이트와 보강 지지부재, 및 커버 부재가 동일한 체결구에 의해 동시에 결합될 수 있다.
이때, 체결구는, 베이스 플레이트로부터 이에 대향하는 커버 부재 쪽으로 상기 체결공들을 통해 삽입 및 결합된 상태에서, 일측 단부가 커버 부재로부터 돌출되어, 디바이스의 전지팩 탑재부에 결합되는 구조일 수 있다.
따라서, 상기 체결구는 베이스 플레이트로부터 보강 지지부재 및 커버 부재를 경유하여 전지팩 탑재부에 결합될 수 있으며, 보다 간소화된 구조로 전지팩을 디바이스에 장착시킬 수 있다.
이러한 경우에, 상기 체결구가 커버 부재로부터 돌출된 높이는 지지부의 높이에 대해 10% 내지 90%의 크기일 수 있다.
만일, 상기 체결구가 커버 부재로부터 돌출된 높이가 지지부의 높이에 대해 10% 미만일 경우에는, 상기 체결구가 지나치게 짧게 돌출되어 있어, 전지팩을 디바이스의 전지팩 탑재부에 장착시킨 상태에서 안정적인 고정 상태를 유지할 수 없다.
이와 반대로, 상기 체결구가 커버 부재로부터 돌출된 높이가 지지부의 높이에 대해 90%를 초과할 경우에는, 상기 체결구가 지나치게 길게 돌출되어 있어, 디바이스의 운용간 인가되는 진동 내지 충격에 의해, 오히려 상기 체결구가 손상될 수 있는 문제점이 있다.
한편, 상기 지지부는 베이스 플레이트 및 커버 부재에 대면하여 결합되는 양면 부위에 수밀용 가스켓이 개재되어 있는 구조일 수 있다.
따라서, 상기 지지부가 베이스 플레이트 및 커버 부재와 대면하여 결합되는 부위를 통해, 외부로부터 수분 및 오물이 유입되는 현상을 효과적으로 방지할 수 있다.
이때, 상기 수밀용 가스켓은 지지부의 체결공에 대응되는 부위가 관통되어 있는 구조로 이루어질 수 있다.
따라서, 상기 베이스 플레이트 및 커버 부재와 지지부를 결합하는 체결구는 수밀용 가스켓의 간섭 없이, 용이하게 체결될 수 있으며, 상기 체결구의 외주면과 베이스 플레이트 및 커버 부재의 체결공들의 내주면 사이를 통해, 외부로부터 수분 및 오물이 유입되는 현상을 효과적으로 방지할 수 있다.
하나의 구체적인 예에서, 상기 수밀용 가스켓의 소재는 지지부와 베이스 플레이트 및 커버 부재 사이에 개재되어 소정의 밀봉력과 수분 및 오물 침투 방지 효과를 발휘할 수 있는 소재라면 특별히 제한되는 것은 아니며, 상세하게는, 합성 고무, 천연 고무, 실리콘 수지, 및 PVC(Polyvinyl Chloride)로 이루어진 군으로부터 선택되는 어느 하나 이상일 수 있다.
이러한 경우에, 상기 합성 고무는 스티렌-부타디엔 고무, 폴리클로로프렌 고무, 니트릴 고무, 부틸 고무, 부타디엔 고무, 이소프렌 고무, 에틸렌프리필렌 고무, 다황화물계 고무, 실리콘 고무, 플루오로계 고무, 우레탄 고무, 및 아크릴 고무로 이루어진 군으로부터 선택되는 하나 이상일 수 있다.
한편, 상기 베이스 플레이트의 일면에는 각각의 전지모듈 어셈블리들이 탑재되기 위한 탑재 공간이 만입된 구조로 형성되어 있는 구조일 수 있다.
더욱 구체적으로, 상기 베이스 플레이트의 일면에는 둘 이상의 전지모듈 어셈블리들이 소정의 간격을 두고 서로 이격된 상태로 탑재되어 있으며, 상기 전지모듈 어셈블리들이 탑재되기 위한 탑재 공간은 만입된 구조로 형성됨으로써, 상기 이격된 부위를 사이에 두고 독립적인 탑재 공간을 제공하는 구조일 수 있다.
따라서, 상기 전지모듈 어셈블리들 사이의 이격된 부위는 상대적으로돌출된 구조로 형성되며, 이에 따라, 각각의 전지모듈 어셈블리들은 인접한 전지모듈 어셈블리들과의 사이에 위치한 이격된 부위에 의해, 전지팩 내에서의 유동이 억제될 수 있으며, 보다 안정적인 탑재 상태를 유지할 수 있다.
이러한 경우에, 상기 전지모듈 어셈블리 탑재 공간이 만입된 깊이는 상기 전지모듈 어셈블리의 유동을 방지할 수 있도록, 전지모듈 어셈블리의 탑재 방향에 대응하는 높이를 기준으로 10% 내지 50%의 크기로 형성되어 있는 구조일 수 있다.
만일, 상기 전지모듈 어셈블리 탑재 공간이 만입된 깊이가 전지모듈 어셈블리의 탑재 방향에 대응하는 높이를 기준으로 10% 미만의 크기로 형성될 경우에는, 각각의 전지모듈 어셈블리가 안정적인 탑재 상태를 유지하지 못할 수 있다.
이와 반대로, 상기 전지모듈 어셈블리 탑재 공간이 만입된 깊이가 전지모듈 어셈블리의 탑재 방향에 대응하는 높이를 기준으로 50%를 초과하는 크기로 형성될 경우에는, 상기 이격 부위를 통해 대면 결합하는 디바이스의 전지팩 탑재부로부터 이에 대향하는 베이스 플레이트의 타면까지의 길이가 지나치게 커질 수 있으며, 이에 따라, 전지팩이 탑재될 수 있는 공간 및 위치에 제약이 발생할 수 있는 문제점이 있다.
한편, 각각의 전지모듈 어셈블리는 일측 외주변의 길이가 나머지 외주변의 길이에 비해 상대적으로 큰 직육면체 구조로 형성되어 있으며, 상기 전지모듈 어셈블리들은 상대적으로 큰 크기로 이루어진 외주변이 서로 대면하는 상태로 베이스 플레이트 상에 탑재되어 있는 구조일 수 있다.
더욱 구체적으로, 각각의 전지모듈 어셈블리는 복수의 전지셀들이 배열되어 형성되며, 이러한 경우에, 상기 전지모듈 어셈블리는 전지셀들의 전기적 연결 구조 형성의 용이성, 차량의 제한된 탑재 공간에 대한 적용의 용이성 등을 고려하여, 직육면체 구조로 형성될 수 있다.
이때, 상기 전지모듈 어셈블리들은 상대적으로 큰 크기로 이루어진 외주변이 서로 대면하는 상태로 베이스 플레이트 상에 탑재됨으로써, 보다 콤팩트한 구조로 전지팩을 구성할 수 있다.
그러나, 상기 전지모듈 어셈블리들의 탑재 구조가 이에 한정되는 것은 아니며, 상기 전지모듈 어셈블리들은 전지팩의 탑재 위치 및 탑재 공간의 형상에 따라, 다양한 구조로 베이스 플레이트 상에 탑재 및 배열될 수도 있음은 물론이다.
하나의 구체적인 예에서, 하나의 전지모듈 어셈블리를 구성하는 전지셀들은 각각 직렬로 연결되어 있고, 모듈 어셈블리 집합체를 구성하는 각각의 전지모듈 어셈블리들은 병렬로 연결되어 있는 구조일 수 있다.
더욱 구체적으로, 본 발명에 따른 전지팩은 자동차와 같은 디바이스에 장착되어, 전원을 공급하는 역할을 수행할 수 있으며, 이에 따라, 상기 자동차에 대한 전원의 공급이 갑작스럽게 차단될 경우에는, 큰 사고로 이어질 가능성이 있다.
따라서, 본 발명에 따른 전지팩은 하나의 전지모듈 어셈블리를 구성하는 전지셀들은 각각 직렬로 연결됨으로써, 소망하는 전기적 특성을 발휘하는 동시에, 모듈 어셈블리 집합체를 구성하는 각각의 전지모듈 어셈블리들은 병렬로 연결됨으로써, 일부의 전지모듈 어셈블리에 이상이 발생하더라도, 나머지 전지모듈 어셈블리에 의해, 디바이스에 대한 전원 공급 상태를 유지할 수 있고, 이에 따라, 디바이스에 대한 전원이 갑작스럽게 차단됨으로써, 상기 디바이스의 작동이 정지되는 현상을 방지할 수 있으며, 이로 인한 안전 사고의 발생을 효과적으로 예방할 수 있다.
또한, 상기 전지셀은 그것의 종류가 특별히 한정되는 것은 아니지만, 구체적인 예로서, 높은 에너지 밀도, 방전 전압, 출력 안정성 등의 장점을 가진 리튬이온 전지, 리튬이온 폴리머 전지 등과 같은 리튬 이차전지일 수 있다.
일반적으로, 리튬 이차전지는 양극, 음극, 분리막, 및 리튬염 함유 비수 전해액으로 구성되어 있다.
상기 양극은, 예를 들어, 양극 집전체 상에 양극 활물질, 도전재 및 바인더의 혼합물을 도포한 후 건조하여 제조되며, 필요에 따라서는, 상기 혼합물에 충진제를 더 첨가하기도 한다.
상기 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1 - xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2 - xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
상기 음극은 음극 집전체 상에 음극 활물질을 도포, 건조하여 제작되며, 필요에 따라, 앞서 설명한 바와 같은 성분들이 선택적으로 더 포함될 수도 있다.
상기 음극 활물질로는, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1 - xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료 등을 사용할 수 있다.
상기 분리막 및 분리필름은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 130 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
또한, 하나의 구체적인 예에서, 전지의 안전성의 향상을 위하여, 상기 분리막 및/또는 분리필름은 유/무기 복합 다공성의 SRS(Safety-Reinforcing Separators) 분리막일 수 있다.
상기 SRS 분리막은 폴리올레핀 계열 분리막 기재상에 무기물 입자와 바인더 고분자를 활성층 성분으로 사용하여 제조되며, 이때 분리막 기재 자체에 포함된 기공 구조와 더불어 활성층 성분인 무기물 입자들간의 빈 공간(interstitial volume)에 의해 형성된 균일한 기공 구조를 갖는다.
이러한 유/무기 복합 다공성 분리막을 사용하는 경우 통상적인 분리막을 사용한 경우에 비하여 화성 공정(Formation)시의 스웰링(swelling)에 따른 전지 두께의 증가를 억제할 수 있다는 장점이 있고, 바인더 고분자 성분으로 액체 전해액 함침시 겔화 가능한 고분자를 사용하는 경우 전해질로도 동시에 사용될 수 있다.
또한, 상기 유/무기 복합 다공성 분리막은 분리막 내 활성층 성분인 무기물 입자와 바인더 고분자의 함량 조절에 의해 우수한 접착력 특성을 나타낼 수 있으므로, 전지 조립 공정이 용이하게 이루어질 수 있다는 특징이 있다.
상기 무기물 입자는 전기화학적으로 안정하기만 하면 특별히 제한되지 않는다. 즉, 본 발명에서 사용할 수 있는 무기물 입자는 적용되는 전지의 작동 전압 범위(예컨대, Li/Li+ 기준으로 0~5V)에서 산화 및/또는 환원 반응이 일어나지 않는 것이면 특별히 제한되지 않는다. 특히, 이온 전달 능력이 있는 무기물 입자를 사용하는경우, 전기 화학 소자 내의 이온 전도도를 높여 성능 향상을 도모할 수 있으므로, 가능한 이온 전도도가 높은 것이 바람직하다. 또한, 상기 무기물 입자가 높은 밀도를 갖는 경우, 코팅시 분산시키는데 어려움이 있을 뿐만 아니라 전지 제조시 무게 증가의 문제점도 있으므로, 가능한 밀도가 작은 것이 바람직하다. 또한, 유전율이 높은 무기물인 경우, 액체 전해질 내 전해질 염, 예컨대 리튬염의 해리도 증가에 기여하여 전해액의 이온 전도도를 향상시킬 수 있다.
리튬염 함유 비수 전해액은, 극성 유기 전해액과 리튬염으로 이루어져 있다. 전해액으로는 비수계 액상 전해액, 유기 고체 전해질, 무기 고체 전해질 등이 사용된다.
상기 비수계 액상 전해액으로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 비수계 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있다.
본 발명은 또한, 상기 전지팩을 포함하는 디바이스를 제공하는 바, 상기 디바이스는 전기자동차, 하이브리드 전기자동차, 또는 플러그인 하이브리드 전기자동차로 이루어진 군에서 선택되는 어느 하나일 수 있다.
즉, 본 발명에 따른 전지팩은 자동차와 같은 디바이스의 전원으로서 사용될 수 있으며, 이러한 경우에, 상기 디바이스 내에서 전지팩은 자동차의 프레임 하부에 위치하도록 탑재되어 있는 구조일 수 있으며, 더욱 상세하게는, 자동차의 운전석 및 보조석에 대응하는 위치의 프레임 하부에 탑재되어 있는 구조일 수 있다.
따라서, 상기 전지팩은 자동차의 트렁크와 같은 내부 공간에 탑재되지 않으므로, 상기 내부 공간을 보다 효율적으로 활용할 수 있으며, 자동차와 같은 디바이스에서의 탑재 위치에 대한 제한을 없애거나, 최소화할 수 있다.
상기와 같은 디바이스 내지 장치들의 기타 구성은 당업계에 공지되어 있으므로, 본 명세서에서는 그에 대한 구체적인 설명을 생략한다.
도 1은 본 발명의 하나의 실시예에 따른 전지팩의 구조를 개략적으로 나타낸 분해도이다;
도 2는 도 1의 보강 지지부재가 장착된 베이스 플레이트의 구조를 개략적으로 나타낸 평면도이다;
도 3은 도 1의 보강 지지부재의 구조를 개략적으로 나타낸 모식도이다;
도 4는 도 1의 전지팩에 장착된 보강 지지부재의 구조를 개략적으로 나타낸 수직 단면도이다;
도 5는 디바이스에 대한 도 1의 전지팩의 장착 구조를 개략적으로 나타낸 수직 단면도이다.
이하에서는, 본 발명의 실시예에 따른 도면들을 참조하여 본 발명을 더욱 상술하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
도 1에는 본 발명의 하나의 실시예에 따른 전지팩의 구조를 개략적으로 나타낸 분해도가 도시되어 있다.
도 1을 참조하면, 전지팩(100)은 베이스 플레이트(110), 커버 부재(120) 및 2개의 보강 지지부재들(131, 132)을 포함하고 있다.
베이스 플레이트(110)는 3개의 전지모듈 어셈블리들이 소정의 간격을 두고 서로 이격된 상태로 탑재될 수 있도록, 전지모듈 어셈블리들 사이의 이격 부위들(111, 112)을 제외한 탑재 공간들(114, 115, 116)이 하면 방향으로 만입된 판상형 구조로 이루어져 있다.
전지모듈 어셈블리들 사이의 이격 부위들(111, 112)은 2개의 보강 지지부재들(131, 132)이 각각 위치할 수 있도록, 베이스 플레이트(110)로부터 커버 부재(120) 방향으로 소정의 높이로 돌출된 격벽 구조로 형성되어 있다.
따라서, 전지모듈 어셈블리들의 탑재 공간들(114, 115, 116)은 이격 부위들(111, 112)에 의해 상호 구분되며, 이에 따라, 전지팩(100) 내에 탑재되는 각 전지모듈 어셈블리들의 유동이 억제되어, 구조적 안정성이 향상될 수 있다.
이격 부위들(111, 112)에는 보강 지지부재들(131, 132)의 지지부와 대응되는 부위에 체결구가 삽입 및 결합될 수 있도록, 관통구(113)가 형성되어 있다.
커버 부재(120)는 외주면이 디바이스의 전지팩 탑재부의 형상에 대응되는 동시에, 내주면이 전지모듈 어셈블리 집합체의 외주면에 대응하는 구조로 이루어져 있으며, 상세하게는, 각 전지모듈 어셈블리들이 구분되도록, 전지모듈 어셈블리들 사이의 이격 부위들(111, 112)에 대응하는 부위들(121, 122)이 내측으로 만입된 구조로 이루어져 있다.
커버 부재(120)는 전지모듈 어셈블리들 사이의 이격 부위들(111, 112)에 대응하는 부위들(121, 122) 이외에, 다양한 외면 형상을 갖는 디바이스의 전지팩 탑재부에 대응하여, 양측에 위치하는 전지모듈 어셈블리의 상면에 대응하는 부위에 추가로 더 만입된 부위들(123, 124)을 포함하고 있다.
따라서, 전지팩(100)은 차량의 프레임 하면과 같이 다양한 형상을 갖는 전지팩 탑재부에 안정적으로 장착되어 고정될 수 있다.
커버 부재(120)는 중앙 부위에 위치하는 전지모듈 어셈블리의 상면을 덮는 부위에서 디바이스의 전지팩 탑재부에 대응하는 구조로 형성된 경사부(125)를 포함하고 있다.
이에 따라, 커버 부재(120)의 경사부(125)는 디바이스의 전지팩 탑재부에 대응하는 구조로 외형을 구성하는 동시에, 중앙 부위에 위치하는 전지모듈 어셈블리의 상면에 BMS 등의 전기적 연결 장치 및 안전 장치들이 탑재될 수 있는 공간을 제공할 수 있다.
커버 부재(120)의 경사부(125)에는 전지모듈 어셈블리의 상면에 탑재되는 전기적 연결 장치 및 안전 장치들에 대응되는 부위에 홀들(126, 127)이 형성되어 있다.
따라서, 상기 전기적 연결 장치 및 안전 장치들에 대한 수리 내지 검사 시에, 전지팩(100)을 완전히 분해하지 않고도, 커버 부재(120)의 경사부(125)에 형성된 홀들(126, 127)을 통해, 보다 용이하게 상기 수리 내지 검사를 수행할 수 있다.
2개의 보강 지지부재들(131, 132)은 베이스 플레이트(110) 상에서, 전지모듈 어셈블리들 사이의 이격 부위들(111, 112)에 각각 위치하며, 베이스 플레이트(110) 및 커버 부재(120)와 대면하여 결합됨으로써, 베이스 플레이트(110)에 대해 커버 부재(120)의 장착 상태를 안정적으로 지지할 수 있다.
도 2에는 도 1의 보강 지지부재가 장착된 베이스 플레이트의 구조를 개략적으로 나타낸 평면도가 도시되어 있다.
도 2를 참조하면, 베이스 플레이트(110)의 상면에는 3개의 전지모듈 어셈블리 탑재 공간들(114, 115, 116)이 형성되어 있으며, 각 전지모듈 어셈블리 탑재 공간들(114, 115, 116) 사이의 이격 부위들(111, 112)에는 보강 지지부재들(131, 132)이 위치하여 장착된다.
전지모듈 어셈블리의 탑재 공간들(114, 115, 116)은 직육면체 구조로 형성되어 있는 전지모듈 어셈블리를 탑재할 수 있도록, 일측 외주변의 길이(211)가 이에 인접한 타측 외주변의 길이(212)에 비해 상대적으로 큰 구조로 이루어져 있다.
전지모듈 어셈블리의 탑재 공간들(114, 115, 116)에는 강성을 보강할 수 있도록, 전지모듈 어셈블리 탑재 방향으로 볼록하게 돌출된 보강 비드(118)가 다수 형성되어 있다.
이격 부위들(111, 112)의 폭(222)은 보강 지지부재들(131, 132)의 폭(221)에 대해 약 200%의 크기로 이루어져 있다.
따라서, 전지모듈 어셈블리 탑재 공간들(114, 115, 116) 사이의 이격 부위들(111, 112)에는 보강 지지부재들(131, 132) 이외에, 전지모듈들 또는 전지모듈 어셈블리들을 전기적으로 연결하기 위한 전기적 연결 부재들이 용이하게 수납될 수 있다.
베이스 플레이트(110)의 외주변에는 디바이스에 대한 장착을 위한 체결공(119)이 다수 형성되어 있으며, 두 개의 모서리 부위에는 디바이스의 전지팩 탑재부 형상에 대응하여, 경사부들(117a, 117b)이 각각 형성되어 있다.
도 3에는 도 1의 보강 지지부재의 구조를 개략적으로 나타낸 모식도가 도시되어 있다.
도 3을 참조하면, 보강 지지부재(131)는 지지부들(131a) 사이에 커넥트 빔(131b)이 연속적으로 연결되어 있는 구조로서, 지지부들(131a) 및 커넥트 빔(131b)은 일체형 구조로 이루어져 있다.
지지부(131a)는 서로 대향하는 양면이 각각 커버 부재의 만입된 내주면 부위 및 베이스 플레이트 상의 전지셀 어셈블리들 사이의 이격 부위에 대면하여 결합되는 원통형 구조로 이루어져 있다.
커버 부재 및 베이스 플레이트에 대면하여 결합되는 지지부(131a)의 양면에는 체결구가 결합되는 체결공(131d)이 관통 구조로 형성되어 있다.
지지부(131a)의 양면 부위에는 커버 부재 및 베이스 플레이트와의 사이에 개재되는 수밀용 가스켓(131c)이 위치한다.
수밀용 가스켓(131c)은 지지부(131a)의 수평 단면 형상과 동일한 원형으로 이루어져 있으며, 지지부(131a)의 체결공(131d)에 대응되는 부위가 관통되어 있는 구조로 이루어져 있다.
지지부들(131a) 사이에 연결된 커넥트 빔(131b)의 길이(L1)는 보강 지지부재(131)의 전체 길이(L2)에 대해 약 10%의 크기로 이루어져 있다.
도 4에는 도 1의 전지팩에 장착된 보강 지지부재의 구조를 개략적으로 나타낸 수직 단면도가 도시되어 있다.
도 4를 참조하면, 커버 부재(120) 및 베이스 플레이트(110)와 대면하는 보강 지지부재(131)의 지지부(131a) 양면에는 수밀성 가스켓(131c)이 장착되는 가스켓 장착 홈(431)이 지지부(131a)의 체결공 주위에 연속적으로 형성되어 있다.
수밀성 가스켓(131c)은 가스켓 장착 홈(431)에 장착된 상태에서, 지지부(131a)의 양면로부터 소정의 높이로 돌출되어 있으며, 소정의 탄성력을 발휘하므로, 커버 부재(120) 및 베이스 플레이트(110)와의 사이에서, 소망하는 밀봉력을 발휘할 수 있다.
보강 지지부재(131)의 지지부(131a)의 제 1 체결공(131d)은 관통 구조로서, 내면에 나사 구조의 홈(435)이 형성되어 있다.
보강 지지부재(131)의 지지부(131a)의 제 1 체결공(131d)에 대응되는 커버 부재(120) 및 베이스 플레이트(110)의 부위에는 각각 제 2 체결공(432) 및 제 3 체결공(433)이 각각 형성되어 있다.
따라서, 하나의 체결구(434)는 베이스 플레이트(110)로부터 이에 대향하는 커버 부재(120) 방향으로 체결공들(432, 433, 131d)을 통해 나사 구조로 삽입 및 결합되며, 이에 따라, 베이스 플레이트(110), 보강 지지부재(131) 및 커버 부재(120)가 안정적으로 결합 및 유지될 수 있다.
체결구(434)의 일측 단부(434a)는 지지부(131a)의 높이(H1)에 대해, 커버 부재(120)로부터 약 20%의 높이(H2)로 돌출되어 있다.
따라서, 전지팩의 베이스 플레이트(110)와 커버 부재(120) 및 보강 지지부재(131)는 동일한 체결구(434)에 의해 결합되는 동시에, 디바이스의 전지팩 탑재부에 장착될 수 있으며, 이에 따라, 보다 간소하고 경량화된 구조로 전지팩을 구성할 수 있다.
도 5에는 디바이스에 대한 도 1의 전지팩의 장착 구조를 개략적으로 나타낸 수직 단면도가 도시되어 있다.
도 5를 참조하면, 전지모듈 어셈블리들(141, 142, 143)이 탑재되기 위한 베이스 플레이트(110)의 탑재 공간들(114, 115, 116)은 이에 대응하는 전지모듈 어셈블리들(141, 142, 143)의 높이(H3)를 기준으로 하면 방향으로 약 50%의 깊이(H4)로 만입된 구조로 이루어져 있다.
따라서, 탑재 공간들(114, 115, 116) 사이의 이격 부위들(111, 112)은 상대적으로 상면 방향으로 돌출되어 있으며, 보강 지지부재들(131, 132)을 사이에 두고 커버 부재(120)의 만입된 내주면 부위와 대면하여 결합되어 있다.
커버 부재(120)의 내측으로 만입된 부위의 상면에는 디바이스의 전지팩 탑재부로서, 자동차의 하부 프레임(510)이 위치해 있다.
체결구(434)는, 베이스 플레이트(110)로부터 커버 부재(120) 쪽으로 삽입 및 결합된 상태에서, 일측 단부가 커버 부재(120)로부터 돌출되어, 자동차의 하부 프레임(510)에 결합되어 있다.
따라서, 전지팩(100)은 자동차의 하부 프레임(510) 형상에 대응하여 밀착된 구조로 장착될 수 있으며, 자동차의 다양한 작동 환경에서, 전지팩(100)의 결합 상태를 보다 안정적으로 유지할 수 있다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
이상에서 설명한 바와 같이, 본 발명에 따른 전지팩은, 커버 부재의 외주면이 디바이스의 전지팩 탑재부에 대면한 상태로 장착되도록 구성함으로써, 자동차와 같은 디바이스의 하부에 전지팩이 장착되도록 구성할 수 있으며, 이에 따라, 상기 디바이스 내에서, 전지팩의 탑재를 위해 소요되는 공간을 최소화함으로써, 상기 전지팩의 탑재 위치에 대한 제한을 극복하고, 디바이스의 공간 활용성을 극대화시킬 수 있는 효과가 있다.

Claims (23)

  1. 전원의 공급을 위해 디바이스의 전지팩 탑재부에 장착되는 전지팩으로서,
    각각 복수의 전지셀들이 배열되어 있는 둘 이상의 전지모듈 어셈블리들이 소정의 간격을 두고 서로 이격된 상태로 일면에 탑재되는 베이스 플레이트(base plate);
    상기 전지모듈 어셈블리들을 감싸면서 베이스 플레이트의 일면 상에 장착되는 커버(cover) 부재; 및
    상기 베이스 플레이트에 대한 커버 부재의 장착 상태를 지지하면서, 전지모듈 어셈블리들 사이의 이격 부위에 위치하는 보강 지지부재;
    를 포함하고 있고,
    상기 전지팩은 상기 커버 부재의 외주면이 디바이스의 전지팩 탑재부에 대면한 상태에서 장착되는 것을 특징으로 하는 전지팩.
  2. 제 1 항에 있어서, 상기 커버 부재의 외주면은 디바이스의 전지팩 탑재부의 형상에 대응되는 구조로 이루어진 것을 특징으로 하는 전지팩.
  3. 제 2 항에 있어서, 상기 커버 부재는, 전지모듈 어셈블리들이 외관상으로 상호 구분되도록, 전지모듈 어셈블리들 사이의 이격 공간에 대응하는 부위가 내측으로 만입된 구조로 이루어진 것을 특징으로 하는 전지팩.
  4. 제 3 항에 있어서, 상기 커버 부재가 내측으로 만입된 부위의 내주면에 전지팩 탑재부의 일부가 대면하여 결합되는 것을 특징으로 하는 전지팩.
  5. 제 1 항에 있어서, 상기 전지팩은 베이스 플레이트로부터 삽입 및 결합되는 체결구에 의해 전지팩 탑재부에 장착되는 것을 특징으로 하는 전지팩.
  6. 제 5 항에 있어서, 상기 체결구는 베이스 플레이트로부터 보강 지지부재 및 커버 부재를 경유하여 전지팩 탑재부에 결합되는 것을 특징으로 하는 전지팩.
  7. 제 1 항에 있어서, 상기 보강 지지부재는 적어도 둘 이상의 지지부들 사이에 커넥트 빔(connect beam)이 연결된 구조로 이루어진 것을 특징으로 하는 전지팩.
  8. 제 7 항에 있어서, 상기 보강 지지부재는, 서로 대향하는 지지부의 양면이, 각각 커버 부재의 만입된 내주면 부위, 및 베이스 플레이트 상의 전지셀 어셈블리들의 이격 부위에 대면하여 결합되는 것을 특징으로 하는 전지팩.
  9. 제 8 항에 있어서, 상기 지지부는 커버 부재 및 베이스 플레이트에 대면하여 결합되는 양면에 체결구가 결합되는 제 1 체결공이 관통 구조로 형성되어 있는 것을 특징으로 하는 전지팩.
  10. 제 9 항에 있어서, 상기 지지부의 제 1 체결공에 대응하는 커버 부재의 부위 및 베이스 플레이트의 부위에는 각각 제 2 체결공 및 제 3 체결공이 형성되어 있는 것을 특징으로 하는 전지팩.
  11. 제 10 항에 있어서, 체결구는, 베이스 플레이트로부터 이에 대향하는 커버 부재 쪽으로 상기 체결공들을 통해 삽입 및 결합된 상태에서, 일측 단부가 커버 부재로부터 돌출되어, 디바이스의 전지팩 탑재부에 결합되는 것을 특징으로 하는 전지팩.
  12. 제 11 항에 있어서, 상기 체결구가 커버 부재로부터 돌출된 높이는 지지부의 높이에 대해 10% 내지 90%의 크기인 것을 특징으로 하는 전지팩.
  13. 제 7 항에 있어서, 상기 지지부는 베이스 플레이트 및 커버 부재에 대면하여 결합되는 양면 부위에 수밀용 가스켓이 개재되어 있는 것을 특징으로 하는 전지팩.
  14. 제 13 항에 있어서, 상기 수밀용 가스켓은 지지부의 체결공에 대응되는 부위가 관통되어 있는 구조로 이루어진 것을 특징으로 하는 전지팩.
  15. 제 13 항에 있어서, 상기 수밀용 가스켓의 소재는 합성 고무, 천연 고무, 실리콘 수지, 및 PVC(Polyvinyl Chloride)로 이루어진 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는 전지팩.
  16. 제 15 항에 있어서, 상기 합성고무는 스티렌-부타디엔 고무, 폴리클로로프렌 고무, 니트릴 고무, 부틸 고무, 부타디엔 고무, 이소프렌 고무, 에틸렌프리필렌 고무, 다황화물계 고무, 실리콘 고무, 플루오로계 고무, 우레탄 고무, 및 아크릴 고무로 이루어진 군으로부터 선택되는 하나 이상인 것을 특징으로 하는 전지팩.
  17. 제 1 항에 있어서, 상기 베이스 플레이트의 일면에는 각각의 전지모듈 어셈블리들이 탑재되기 위한 탑재 공간이 만입된 구조로 형성되어 있는 것을 특징으로 하는 전지팩.
  18. 제 17 항에 있어서, 상기 전지모듈 어셈블리 탑재 공간이 만입된 깊이는 상기 전지모듈 어셈블리의 유동을 방지할 수 있도록, 전지모듈 어셈블리의 탑재 방향에 대응하는 높이를 기준으로 10% 내지 50%의 크기로 형성되어 있는 것을 특징으로 하는 전지팩.
  19. 제 1 항에 있어서, 각각의 전지모듈 어셈블리는 일측 외주변의 길이가 나머지 외주변의 길이에 비해 상대적으로 큰 직육면체 구조로 형성되어 있으며, 상기 전지모듈 어셈블리들은 상대적으로 큰 크기로 이루어진 외주변이 서로 대면하는 상태로 베이스 플레이트 상에 탑재되어 있는 것을 특징으로 하는 전지팩.
  20. 제 1 항에 있어서, 하나의 전지모듈 어셈블리를 구성하는 전지셀들은 각각 직렬로 연결되어 있고, 모듈 어셈블리 집합체를 구성하는 각각의 전지모듈 어셈블리들은 병렬로 연결되어 있는 것을 특징으로 하는 전지팩.
  21. 제 1 항에 있어서, 상기 전지셀은 리튬 이차전지인 것을 특징으로 하는 전지팩.
  22. 제 1 항에 따른 전지팩을 포함하는 것을 특징으로 하는 디바이스.
  23. 제 22 항에 있어서, 상기 디바이스는 전기자동차, 하이브리드 전기자동차, 또는 플러그인 하이브리드 전기자동차로 이루어진 군에서 선택되는 어느 하나인 것을 특징으로 하는 디바이스.
PCT/KR2017/000174 2016-01-12 2017-01-06 디바이스에 대한 탑재 공간이 최소화된 전지팩 WO2017122967A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17738596.0A EP3336927A4 (en) 2016-01-12 2017-01-06 Battery pack having minimized loading space for device
US15/752,899 US10707463B2 (en) 2016-01-12 2017-01-06 Battery pack minimized with mounting space for device
CN201780003013.6A CN107949931B (zh) 2016-01-12 2017-01-06 对于装置最小化安装空间的电池组
JP2018531284A JP6633760B2 (ja) 2016-01-12 2017-01-06 デバイスに対する搭載空間が最小化された電池パック

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0003598 2016-01-12
KR1020160003598A KR102072220B1 (ko) 2016-01-12 2016-01-12 디바이스에 대한 탑재 공간이 최소화된 전지팩

Publications (1)

Publication Number Publication Date
WO2017122967A1 true WO2017122967A1 (ko) 2017-07-20

Family

ID=59311968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000174 WO2017122967A1 (ko) 2016-01-12 2017-01-06 디바이스에 대한 탑재 공간이 최소화된 전지팩

Country Status (6)

Country Link
US (1) US10707463B2 (ko)
EP (1) EP3336927A4 (ko)
JP (1) JP6633760B2 (ko)
KR (1) KR102072220B1 (ko)
CN (1) CN107949931B (ko)
WO (1) WO2017122967A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108859829A (zh) * 2018-07-25 2018-11-23 朱娟娟 一种新能源汽车供电装置及备用充电电池管理系统
CN110970613B (zh) * 2018-09-29 2021-06-15 宁德时代新能源科技股份有限公司 一种正极极片以及使用该正极极片的锂离子电池
JP7059918B2 (ja) * 2018-12-18 2022-04-26 トヨタ自動車株式会社 車両用電池ケース構造
US11165119B2 (en) * 2019-05-30 2021-11-02 Mazda Motor Corporation Battery unit mounting structure of electric vehicle
KR20210013861A (ko) 2019-07-29 2021-02-08 에스케이이노베이션 주식회사 전지팩
CN112776653B (zh) * 2019-11-01 2022-11-15 爱驰汽车有限公司 电池快换系统以及电动车
JP7091381B2 (ja) * 2020-03-06 2022-06-27 本田技研工業株式会社 バッテリパック
KR20220032933A (ko) * 2020-09-08 2022-03-15 주식회사 엘지에너지솔루션 전지 팩 내부를 관통하는 보강 폴을 포함하는 전지 팩 및 이를 포함하는 자동차

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008056194A (ja) * 2006-09-04 2008-03-13 Toyota Motor Corp 蓄電装置用トレイ
JP2009146795A (ja) * 2007-12-17 2009-07-02 Daikyonishikawa Corp バッテリーパック
KR20100003138A (ko) * 2008-06-30 2010-01-07 주식회사 엘지화학 전지 탑재 시스템
KR20140140678A (ko) * 2013-05-29 2014-12-10 삼성에스디아이 주식회사 배터리 팩
KR20150015179A (ko) * 2013-07-31 2015-02-10 주식회사 엘지화학 외부 장착 구조를 포함하는 전지팩

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5501289A (en) * 1993-01-22 1996-03-26 Nissan Motor Co., Ltd. Floor structure of electric vehicle
JP5091060B2 (ja) 2007-11-21 2012-12-05 本田技研工業株式会社 車両用電源装置
KR101106429B1 (ko) * 2009-12-01 2012-01-18 삼성에스디아이 주식회사 이차 전지
KR101210095B1 (ko) 2010-09-29 2012-12-07 기아자동차주식회사 고전압 배터리의 차량 설치구조
JP5541100B2 (ja) * 2010-11-10 2014-07-09 三菱自動車工業株式会社 電池パックトレー
US20120161472A1 (en) * 2010-12-22 2012-06-28 Tesla Motors, Inc. System for Absorbing and Distributing Side Impact Energy Utilizing an Integrated Battery Pack
WO2012140727A1 (ja) * 2011-04-12 2012-10-18 日立ビークルエナジー株式会社 二次電池モジュール
JP5694516B2 (ja) * 2011-04-12 2015-04-01 日立オートモティブシステムズ株式会社 二次電池モジュール
KR101307369B1 (ko) 2011-05-23 2013-09-11 주식회사 엘지화학 안전성이 향상된 전지팩
JP5513445B2 (ja) * 2011-06-08 2014-06-04 本田技研工業株式会社 車両用電源装置
CN202174924U (zh) 2011-07-29 2012-03-28 比亚迪股份有限公司 一种车辆动力电池的安装结构
US9227582B2 (en) * 2011-11-14 2016-01-05 Honda Motor Co., Ltd. Vehicle mounting structure for batteries
JP2013147137A (ja) 2012-01-19 2013-08-01 Mitsubishi Motors Corp 電動車両のフロア構造
KR101315741B1 (ko) * 2012-03-23 2013-10-10 현대자동차주식회사 치수안정성이 우수한 전기자동차용 배터리 팩 케이스 어셈블리와 그 제조 방법
JP5790628B2 (ja) * 2012-12-04 2015-10-07 三菱自動車工業株式会社 電池パック
WO2014206352A1 (zh) * 2013-06-28 2014-12-31 苏州宝时得电动工具有限公司 电解液及电池
CN104253283A (zh) * 2013-06-28 2014-12-31 苏州宝时得电动工具有限公司 电池
JP5692556B2 (ja) * 2014-02-26 2015-04-01 三菱自動車工業株式会社 車両用バッテリの固定構造
CN104953055B (zh) * 2014-03-31 2017-10-31 比亚迪股份有限公司 动力电池模组及其电池容纳组件、车辆
EP3185336B1 (en) * 2014-08-22 2019-07-31 Hitachi Automotive Systems, Ltd. On-board battery pack
KR102127273B1 (ko) * 2015-11-05 2020-06-26 주식회사 엘지화학 보강 지지부재를 포함하고 있는 전지팩

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008056194A (ja) * 2006-09-04 2008-03-13 Toyota Motor Corp 蓄電装置用トレイ
JP2009146795A (ja) * 2007-12-17 2009-07-02 Daikyonishikawa Corp バッテリーパック
KR20100003138A (ko) * 2008-06-30 2010-01-07 주식회사 엘지화학 전지 탑재 시스템
KR20140140678A (ko) * 2013-05-29 2014-12-10 삼성에스디아이 주식회사 배터리 팩
KR20150015179A (ko) * 2013-07-31 2015-02-10 주식회사 엘지화학 외부 장착 구조를 포함하는 전지팩

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3336927A4 *

Also Published As

Publication number Publication date
JP6633760B2 (ja) 2020-01-22
US10707463B2 (en) 2020-07-07
JP2018532244A (ja) 2018-11-01
KR20170084501A (ko) 2017-07-20
CN107949931A (zh) 2018-04-20
KR102072220B1 (ko) 2020-01-31
US20180241021A1 (en) 2018-08-23
CN107949931B (zh) 2020-11-06
EP3336927A1 (en) 2018-06-20
EP3336927A4 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
WO2017078264A1 (ko) 보강 지지부재를 포함하고 있는 전지팩
WO2017122967A1 (ko) 디바이스에 대한 탑재 공간이 최소화된 전지팩
WO2016048002A1 (ko) 둘 이상의 케이스 부재들을 포함하는 각형 전지셀
WO2016167457A1 (ko) 전극 탭들과 전극 리드의 탭-리드 결합부가 공간부에 위치하는 전극조립체
WO2015170852A1 (ko) 홀드다운 브라켓을 포함하는 전지팩
WO2017123014A1 (ko) 2 층으로 장착된 전지모듈들을 포함하는 전지팩
WO2015030405A1 (ko) 방열 구조를 가지는 단위모듈 제조용 모듈 하우징 및 이를 포함하는 전지모듈
KR102066911B1 (ko) 가스켓 부재를 포함하는 팩 하우징 및 이를 포함하는 전지팩
WO2017188605A1 (ko) 규격화된 구조에 기반하여 제조 공정성이 우수하면서도 전극리드의 절연 성능이 향상된 전지셀 및 이를 포함하는 전지팩
WO2017095002A1 (ko) 셀 케이스의 밀봉 신뢰성이 향상된 비정형 구조의 전지셀
WO2016056875A2 (ko) 전극조립체 및 이의 제조방법
WO2017105098A1 (ko) 가압과 열 인가 면적이 증대된 전지케이스의 밀봉 장치
WO2017034210A1 (ko) 상대 전극전위의 측정을 위한 기준 전극을 포함하고 있는 전지셀의 제조 방법 및 이로 제조된 전지셀
WO2017082530A1 (ko) 돌출 연장부와 탭 연결부를 구비한 전극 리드를 포함하고 있는 전지셀
WO2015126074A1 (ko) 홀을 포함하고 있는 전지셀
WO2017069453A1 (ko) 복수의 전극 탭들이 형성되어 있는 단위 전극을 포함하는 파우치형 전지셀
WO2013002497A2 (ko) 우수한 제조 공정성과 안전성의 이차전지
WO2017213344A1 (ko) 다공성 구조의 냉각 겸용 완충 부재를 포함하는 전지모듈
WO2017099333A1 (ko) 가스 흡착제가 포함되어 있는 전극 리드를 구비한 전지셀
WO2015102221A1 (ko) 계단 구조의 하이브리드 전극조립체
KR102101905B1 (ko) 복층으로 장착된 전지모듈들을 포함하는 전지팩
WO2018097500A1 (ko) 가스켓 압축 리미터를 포함하고 있는 전지팩
WO2021054595A1 (ko) 2개 이상의 금속 호일 사이에 저항층을 포함하는 전극 집전체, 이를 포함하는 전극 및 리튬 이차전지
WO2015016568A1 (ko) 안전성이 강화된 리튬 이차전지
WO2017217646A1 (ko) 수명 특성이 향상된 전지시스템 및 전지시스템의 가동 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738596

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15752899

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2018531284

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017738596

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE