WO2017122617A1 - 熱可塑性エラストマー組成物の製造方法 - Google Patents

熱可塑性エラストマー組成物の製造方法 Download PDF

Info

Publication number
WO2017122617A1
WO2017122617A1 PCT/JP2017/000429 JP2017000429W WO2017122617A1 WO 2017122617 A1 WO2017122617 A1 WO 2017122617A1 JP 2017000429 W JP2017000429 W JP 2017000429W WO 2017122617 A1 WO2017122617 A1 WO 2017122617A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrile rubber
highly saturated
saturated nitrile
elastomer composition
thermoplastic elastomer
Prior art date
Application number
PCT/JP2017/000429
Other languages
English (en)
French (fr)
Inventor
友則 中島
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN201780006080.3A priority Critical patent/CN108431097B/zh
Priority to EP17738371.8A priority patent/EP3404056A4/en
Priority to US16/068,710 priority patent/US20190016889A1/en
Priority to KR1020187022420A priority patent/KR20180102111A/ko
Priority to JP2017561104A priority patent/JP6881318B2/ja
Publication of WO2017122617A1 publication Critical patent/WO2017122617A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/02Hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/34Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with oxygen or oxygen-containing groups
    • C08C19/36Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with oxygen or oxygen-containing groups with carboxy radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2409/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2409/02Copolymers with acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/04Thermoplastic elastomer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking

Definitions

  • the present invention relates to a method for producing a thermoplastic elastomer composition.
  • Polyamide polymers are known as thermoplastic polymers having excellent heat resistance and moderate flexibility. However, since the polyamide polymer has high hardness and low flexibility, in order to improve these properties, a method of mixing rubber with the polyamide polymer is known, and various rubber blending techniques are known. Proposed.
  • rubber particles are mixed with a polyamide polymer to be softened, and rubber particles are finely dispersed in a polyamide polymer matrix in order to improve mechanical properties such as elongation and compression set, and It has been proposed to crosslink the rubber particles.
  • Patent Document 1 proposes a thermoplastic elastomer composition in which a polyamide polymer is mixed with rubber in which a gel content of 30% by weight or more is uniformly dispersed and dynamically crosslinked.
  • a hydrogenated nitrile rubber having a carboxyl group derived from methacrylic acid is used as a rubber in which a gel content of 30% by weight or more is uniformly dispersed, whereby heat resistance, compression set resistance and We are trying to improve fatigue resistance.
  • Patent Document 1 it is necessary to use a rubber having a gel content of 30% by weight or more and a relatively high gel content. Therefore, there is a problem that the rubber is low in dispersibility and stable production is difficult. There existed a subject that the characteristic of the molded object obtained is not stable, and the subject that the cold resistance of the molded object obtained was not enough. Moreover, in the technique of the above-mentioned Patent Document 1, hydrogenated nitrile rubber having a carboxyl group derived from methacrylic acid is used. However, when the present inventors have studied, when the gel content is reduced, production stability is improved. However, the resulting molded article is inferior in compression set resistance and fatigue resistance.
  • the present invention provides a method for producing a thermoplastic elastomer composition which can be stably produced and can provide a molded article having excellent heat resistance, compression set resistance, bending fatigue resistance and cold resistance. The purpose is to provide.
  • the present inventors have an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit and an ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid monoester monomer unit.
  • the above object is achieved by dynamically crosslinking a highly saturated nitrile rubber (A) having an iodine value of 120 or less in the presence of a polyamide polymer (B) and a polyamine crosslinking agent (C).
  • A highly saturated nitrile rubber
  • B polyamide polymer
  • C polyamine crosslinking agent
  • thermoplastic elastomer composition comprising a step of dynamically crosslinking a saturated nitrile rubber (A) in the presence of a polyamide polymer (B) and a polyamine crosslinking agent (C).
  • the dynamic crosslinking is carried out by subjecting the highly saturated nitrile rubber (A), the polyamide polymer (B), and the polyamine crosslinking agent (C) to 100 to 100%. It is preferable to carry out by mixing at 400 ° C.
  • the blending ratio of the highly saturated nitrile rubber (A) and the polyamide polymer (B) is “highly saturated nitrile rubber (A): polyamide polymer”.
  • the weight ratio of (B) ” is preferably 20:80 to 80:20.
  • the blending amount of the polyamine crosslinking agent (C) with respect to 100 parts by weight of the highly saturated nitrile rubber (A) is preferably 0.1 to 20 parts by weight.
  • the polyamide polymer (B) is preferably at least one selected from nylon 6 and nylon 66.
  • the step of dynamically crosslinking comprises the step of highly saturated nitrile rubber (A), polyamide polymer (B), polyamine crosslinking agent (C), and basicity.
  • a step of dynamic crosslinking in the presence of the crosslinking accelerator (D) is preferable.
  • the basic crosslinking accelerator (D) is added in an amount of 0.1 to 20 parts by weight with respect to 100 parts by weight of the highly saturated nitrile rubber (A). Is preferred.
  • thermoplastic elastomer composition obtained by any one of the above methods.
  • thermoplastic elastomer composition that can be stably produced and can provide a molded article excellent in heat resistance, compression set resistance, bending fatigue resistance, and cold resistance.
  • a method can be provided.
  • thermoplastic elastomer composition of the present invention has an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit and an ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid monoester monomer unit, and has an iodine value of
  • a step of dynamically crosslinking a highly saturated nitrile rubber (A) of 120 or less in the presence of a polyamide polymer (B) and a polyamine crosslinking agent (C) is provided.
  • the highly saturated nitrile rubber (A) used in the present invention has at least an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit and an ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid monoester monomer unit.
  • Monomers that form ⁇ , ⁇ -ethylenically unsaturated nitrile monomer units include ⁇ , ⁇ having a nitrile group.
  • ⁇ , ⁇ -ethylenically unsaturated nitriles include ⁇ , ⁇ having a nitrile group.
  • examples include acrylonitrile; ⁇ -halogenoacrylonitrile such as ⁇ -chloroacrylonitrile and ⁇ -bromoacrylonitrile; and ⁇ -alkylacrylonitrile such as methacrylonitrile.
  • acrylonitrile and methacrylonitrile are preferable, and acrylonitrile is particularly preferable.
  • These ⁇ , ⁇ -ethylenically unsaturated nitriles may be used in combination.
  • the content of the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit is preferably 10 to 60% by weight, more preferably 15 to 15%, based on all monomer units constituting the highly saturated nitrile rubber (A). It is 55% by weight, more preferably 20 to 50% by weight.
  • the monomer forming the ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid monoester monomer unit has one unsubstituted (free) carboxyl group that is not esterified, It is not particularly limited as long as it is a monoester monomer of saturated dicarboxylic acid.
  • the unsubstituted carboxyl group mainly acts as a crosslinkable group for performing dynamic crosslinking described later.
  • the organic group bonded to the carbonyl group through the oxygen atom in the ester part of the ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid monoester monomer is preferably an alkyl group, a cycloalkyl group or an alkylcycloalkyl group, The group is particularly preferred.
  • Such an alkyl group as an organic group bonded to a carbonyl group preferably has 1 to 12 carbon atoms, more preferably 2 to 6 carbon atoms.
  • the cycloalkyl group as the organic group bonded to the carbonyl group preferably has 5 to 12 carbon atoms, more preferably 6 to 10 carbon atoms.
  • the alkylcycloalkyl group as the organic group bonded to the carbonyl group preferably has 6 to 12 carbon atoms, more preferably 7 to 10 carbon atoms.
  • the processing stability of the thermoplastic elastomer composition can be improved, and the mechanical properties of the resulting molded article can be further improved. Can do.
  • ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid monoester monomers include monoalkyl maleates such as monomethyl maleate, monoethyl maleate, monopropyl maleate and mono n-butyl maleate.
  • Maleic acid monocycloalkyl esters such as monocyclopentyl maleate, monocyclohexyl maleate and monocycloheptyl maleate; monoalkyl cycloalkyl maleates such as monomethylcyclopentyl maleate and monoethylcyclohexyl maleate; monomethyl fumarate, fumarate Monoethyl fumarate such as monoethyl fumarate, monopropyl fumarate, mono-n-butyl fumarate; monocyclopentyl fumarate, monocyclohexyl fumarate, monocycloheptyl fumarate Fumaric acid monocycloalkyl esters such as monomethylcyclopentyl fumarate, monoalkyl cycloalkyl esters such as monoethylcyclohexyl fumarate; monomethyl citraconic acid, monoethyl citraconic acid, monopropyl citraconic acid, mono n-butyl citraconic acid, etc.
  • Citraconic acid monoalkyl ester citraconic acid monocyclopentyl, citraconic acid monocyclohexyl, citraconic acid monocycloalkyl ester such as citraconic acid monocycloheptyl; citraconic acid monomethylcyclopentyl, citraconic acid monoalkyl cycloalkyl ester such as citraconic acid monoethylcyclohexyl; Monomethyl itaconate, monoethyl itaconate, monopropyl itaconate, mono-n-butyl itaconate, etc.
  • Conic acid monoalkyl esters such as itaconic acid monocyclopentyl, itaconic acid monocyclohexyl, itaconic acid monocycloheptyl; itaconic acid monomethylcyclopentyl, itaconic acid monoethylcyclohexyl, etc .; Etc.
  • monopropyl maleate, mono-n-butyl maleate, monopropyl fumarate, fumarate, and the like can be further improved in the heat resistance, compression set resistance, and fatigue resistance of the obtained molded product.
  • Monoesters of dicarboxylic acids having a carboxyl group at each of two carbon atoms forming an ⁇ , ⁇ -ethylenically unsaturated bond such as mono-n-butyl acid, monopropyl citraconic acid, mono-n-butyl citraconic acid;
  • a monoalkyl ester of a dicarboxylic acid having a carboxyl group at each of two carbon atoms forming an ⁇ , ⁇ -ethylenically unsaturated bond is more preferred, and mono-n-butyl maleate is particularly preferred.
  • the number of carbon atoms of the monoalkyl ester of a dicarboxylic acid having a carboxyl group at each of the two carbon atoms forming the ⁇ , ⁇ -ethylenically unsaturated bond is preferably 2-6.
  • the content of the ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid monoester monomer unit is preferably 0.1 to 20% by weight, based on all monomer units constituting the highly saturated nitrile rubber (A), More preferably, it is 0.2 to 15% by weight, and further preferably 0.5 to 10% by weight.
  • the resulting molded article has better heat resistance, compression set resistance and fatigue resistance. It can be.
  • the highly saturated nitrile rubber (A) used in the present invention includes a diene monomer in addition to the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit and the ⁇ , ⁇ -ethylenic dicarboxylic acid monoester monomer unit. It preferably has a monomer unit and / or an ⁇ -olefin monomer unit. Thereby, the rubber elasticity of the obtained molded object can be improved.
  • the diene monomer forming the diene monomer unit include 4 or more carbon atoms such as 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, and 1,3-pentadiene. And conjugated diene monomers such as 1,4-pentadiene, 1,4-hexadiene and the like. Of these, conjugated diene monomers are preferred, and 1,3-butadiene is more preferred.
  • the ⁇ -olefin monomer forming the ⁇ -olefin monomer unit is preferably one having 2 to 12 carbon atoms, specifically, ethylene, propylene, 1-butene, 4-methyl-1-pentene. , 1-hexene, 1-octene and the like.
  • the content ratio thereof is the total monomer units constituting the highly saturated nitrile rubber (A). Is preferably 20 to 89.9% by weight, more preferably 30 to 84.8% by weight, and still more preferably 40 to 79.5% by weight.
  • the highly saturated nitrile rubber (A) used in the present invention includes an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer, an ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid monoester monomer, and a diene monomer.
  • ⁇ -olefin monomer other monomers copolymerizable therewith may be copolymerized. Examples of such other monomers include ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid monoester monomers other than ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid monoester monomers, ⁇ , ⁇ -ethylenically unsaturated monomers.
  • Saturated monocarboxylic acid monomer ⁇ , ⁇ -ethylenically unsaturated polyvalent carboxylic acid monomer, ⁇ , ⁇ -ethylenically unsaturated polyvalent carboxylic acid anhydride monomer, aromatic vinyl monomer, fluorine Examples thereof include vinyl monomers and copolymerizable anti-aging agents.
  • Examples of ⁇ , ⁇ -ethylenically unsaturated carboxylic acid ester monomers other than ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid monoester monomers include, for example, methyl acrylate, ethyl acrylate, propyl acrylate, acrylic acid (Meth) acrylic acid alkyl esters such as n-butyl, n-pentyl acrylate, 2-ethylhexyl acrylate, ethyl methacrylate, propyl methacrylate, etc. [means alkyl acrylate and / or alkyl methacrylate. The same applies below.
  • Monomers having an alkyl group with 1 to 18 carbon atoms (meth) acrylic acid alkoxyalkyl ester monomers such as methoxymethyl acrylate and ethoxymethyl methacrylate, the number of carbon atoms of the alkoxyalkyl group Having an alkyl group of 2 to 18 and an alkoxy group having 1 to 12 carbon atoms; an amino group-containing (meth) acrylic acid alkyl ester monomer such as 2-aminoethyl acrylate and aminomethyl methacrylate, and having an alkyl group carbon A monomer having 1 to 16; a (meth) acrylic acid hydroxyalkyl ester monomer such as 2-hydroxyethyl acrylate or 3-hydroxypropyl methacrylate having an alkyl group having 1 to 16 carbon atoms; acrylic Fluoroalkyl group-containing (meth) acrylic such as trifluoroethyl acid and difluoromethyl methacrylate An alkyl ester monomer having an alkyl group with 1
  • Examples of the ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid monomer include acrylic acid, methacrylic acid, and crotonic acid.
  • Examples of the ⁇ , ⁇ -ethylenically unsaturated polyvalent carboxylic acid monomer include itaconic acid, fumaric acid and maleic acid.
  • Examples of the ⁇ , ⁇ -ethylenically unsaturated polyvalent carboxylic acid anhydride monomer include maleic anhydride.
  • Examples of the aromatic vinyl monomer include styrene, ⁇ -methylstyrene, vinyl pyridine and the like.
  • fluorine-containing vinyl monomer examples include fluoroethyl vinyl ether, fluoropropyl vinyl ether, o-trifluoromethylstyrene, vinyl pentafluorobenzoate, difluoroethylene, and tetrafluoroethylene.
  • copolymerizable anti-aging agents examples include N- (4-anilinophenyl) acrylamide, N- (4-anilinophenyl) methacrylamide, N- (4-anilinophenyl) cinnamamide, N- (4-anilino).
  • Examples include phenyl) crotonamide, N-phenyl-4- (3-vinylbenzyloxy) aniline, N-phenyl-4- (4-vinylbenzyloxy) aniline and the like.
  • the content of other monomer units is preferably 50% by weight or less, more preferably 40% by weight or less, and still more preferably 10% by weight with respect to all monomer units constituting the highly saturated nitrile rubber (A). % Or less.
  • the content of carboxyl groups in the highly saturated nitrile rubber (A) used in the present invention is preferably 5 ⁇ 10 ⁇ 4 to 5 ⁇ 10 ⁇ . 1 ephr, more preferably 1 ⁇ 10 ⁇ 3 to 1 ⁇ 10 ⁇ 1 ephr, and even more preferably 5 ⁇ 10 ⁇ 3 to 6 ⁇ 10 ⁇ 2 ephr.
  • the mechanical properties and compression set resistance of the obtained molded product can be further improved while improving the production stability.
  • the highly saturated nitrile rubber (A) used in the present invention has an iodine value of 120 or less, preferably 80 or less, more preferably 25 or less, and even more preferably 15 or less. If the iodine value of the highly saturated nitrile rubber (A) is too high, the heat resistance and ozone resistance of the resulting molded product may be reduced.
  • the polymer Mooney viscosity (ML 1 + 4 , 100 ° C.) of the highly saturated nitrile rubber (A) is preferably 15 to 200, more preferably 20 to 150, and further preferably 30 to 120.
  • the highly saturated nitrile rubber (A) used in the present invention has good production stability, whereby the gel content is 30% by weight or less from the viewpoint of stabilizing the properties of the resulting molded article. Preferably, it is 25 wt% or less, more preferably 20 wt% or less.
  • the minimum of content of a gel part is not specifically limited, Usually, it is 0.1 weight% or more.
  • the gel content is a component that has already been crosslinked and is insoluble in the good solvent of the highly saturated nitrile rubber (A), and can usually be measured by the following method.
  • a predetermined amount of highly saturated nitrile rubber (A) is weighed, and a solution obtained by dissolving highly saturated nitrile rubber (A) in a good solvent (for example, methyl ethyl ketone or tetrahydrofuran) is filtered through a filter such as a wire mesh, It can be measured by measuring the solvent insoluble matter trapped above.
  • a good solvent for example, methyl ethyl ketone or tetrahydrofuran
  • the production method of the highly saturated nitrile rubber (A) used in the present invention is not particularly limited.
  • ⁇ , ⁇ -ethylenically unsaturated nitrile monomer, ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid monoester And a method of copolymerizing a monomer, a diene monomer and / or an ⁇ -olefin monomer, and other monomers which can be copolymerized therewith if necessary.
  • any of the known emulsion polymerization method, suspension polymerization method, bulk polymerization method and solution polymerization method can be used, but the emulsion polymerization method is preferable because the polymerization reaction can be easily controlled.
  • the iodine value of the copolymer obtained by copolymerization is higher than 120, it is good to perform hydrogenation (hydrogenation reaction) of a copolymer.
  • the hydrogenation method is not particularly limited, and a known method may be employed.
  • Polyamide polymer (B) The polyamide polymer (B) used in the present invention is not limited as long as it is a polymer having an acid amide bond (—CONH—), but a polyamide polymer generally used as a polyamide resin is used. preferable.
  • a polymer obtained by polycondensation of diamine and dibasic acid a polymer obtained by polycondensation of diamine derivative such as diformyl and dibasic acid, a dibasic acid derivative such as dimethyl ester, and diamine Polymer obtained by polycondensation of styrene, polymer obtained by reaction of dinitrile or diamide with formaldehyde, polymer obtained by polyaddition of diisocyanate and dibasic acid, obtained by self-condensation of amino acid or its derivative Examples thereof include polymers and polymers obtained by ring-opening polymerization of lactam. Moreover, these polyamide polymers may contain a polyether polymer block etc. as a copolymerization component.
  • polyamide polymer examples include aliphatic polyamide resins such as nylon 46, nylon 6, nylon 66, nylon 610, nylon 612, nylon 1010, nylon 1020, nylon 11, nylon 12, polyhexamethylenediamine terephthalamide , Polyhexamethylene isophthalamide, poly-p-phenylene terephthalamide, poly-p-benzamide, poly-p-amide hydrazide, poly-p-phenylene terephthalamide-3,4-diphenyl ether terephthalamide, copolyparaphenylene 3, Aromatic polyamide resin such as 4 ′ oxydiphenylene terephthalamide may be mentioned.
  • nylon 6, nylon 66, nylon 11, nylon 12 and the like are preferable from the viewpoint of versatility and heat resistance, and nylon 6 and nylon 66 are more preferable.
  • the polyamide polymer (B) has a melting point of preferably 100 to 350 ° C., more preferably 120 to 300 ° C., and further preferably 150 to 280 ° C.
  • the melting point of the polyamide polymer is a melting peak temperature measured by differential scanning calorimetry (DSC) as defined in JIS K7121.
  • the blending ratio of the highly saturated nitrile rubber (A) and the polyamide polymer (B) is preferably a weight ratio of “highly saturated nitrile rubber (A): polyamide polymer (B)”, preferably 20:80 to 80:20, more preferably 25:75 to 75:25, still more preferably 30:70 to 70:30, and particularly preferably 35:65 to 65:35.
  • the heat resistance, compression set resistance, fatigue resistance and cold resistance of the obtained molded body are further improved. Can be increased.
  • Polyamine crosslinking agent (C) The polyamine crosslinking agent (C) used in the present invention is not particularly limited as long as it is a compound having two or more amino groups or a compound having two or more amino groups at the time of crosslinking.
  • a compound in which a plurality of hydrogen atoms of an aromatic hydrocarbon or aromatic hydrocarbon are substituted with an amino group or a hydrazide structure (a structure represented by —CONHNH 2 , CO represents a carbonyl group) is preferable.
  • the polyamine crosslinking agent (C) acts as a crosslinking agent when the highly saturated nitrile rubber (A) is dynamically crosslinked.
  • the polyamine crosslinking agent (C) as the crosslinking agent, the molded article obtained may have excellent heat resistance, fatigue resistance and cold resistance, and excellent compression set resistance. it can.
  • polyamine crosslinking agent (C) examples include aliphatics such as hexamethylene diamine, hexamethylene diamine carbamate, N, N-dicinnamylidene-1,6-hexane diamine, tetramethylene pentamine, and hexamethylene diamine cinnamaldehyde adduct.
  • Aromatic polyamines such as diamine and 1,3,5-benzenetriamine; isophthalic acid dihydrazide, terephthalic acid dihydrazide, phthalic acid dihydrazide, 2,6-naphthalenedicarboxylic acid dihydrazide, naphthalene acid dihydra
  • aliphatic polyvalent amines and aromatic polyvalent amines are preferable from the viewpoint that the effects of the present invention can be made more remarkable, and hexamethylenediamine carbamate and 2,2-bis [ 4- (4-Aminophenoxy) phenyl] propane is more preferred, and hexamethylenediamine carbamate is particularly preferred.
  • the said polyamine crosslinking agent (C) may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the blending amount of the polyamine crosslinking agent (C) in the highly saturated nitrile rubber composition used in the present invention is preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of the highly saturated nitrile rubber (A).
  • the amount is more preferably 0.5 to 10 parts by weight, still more preferably 1 to 5 parts by weight.
  • thermoplastic elastomer composition of the present invention comprises the above-described highly saturated nitrile rubber (A), the presence of a polyamide polymer (B) and a polyamine crosslinking agent (C). Under the dynamic cross-linking.
  • dynamic crosslinking refers to highly saturated nitrile rubber (A), highly saturated nitrile rubber (A) in the presence of polyamide polymer (B) and polyamine crosslinking agent (C), This refers to crosslinking by the action of the polyamine crosslinking agent (C) while being dispersed in the polyamide polymer (B).
  • thermoplastic elastomer composition obtained by dynamically crosslinking the highly saturated nitrile rubber (A) while dispersing the highly saturated nitrile rubber (A) in the polyamide polymer (B).
  • a crosslinked product of the highly saturated nitrile rubber (A) is dispersed in the polyamide polymer (B), whereby the resulting molded product is heat resistant and compression set resistant. It can be made excellent in bending fatigue resistance and cold resistance.
  • thermoplastic elastomer composition of the present invention obtained as described above has a highly saturated nitrile rubber (A) in which the polyamide polymer (B) is dynamically crosslinked in the continuous phase by the action of the polyamine crosslinking agent (C). Is preferably a particulate dispersed phase.
  • the average particle size of the dispersed phase of the dynamically saturated highly saturated nitrile rubber (A) is preferably 0.01 to 5.00 ⁇ m.
  • the dynamic crosslinking method may be a general dynamic crosslinking method, but the following method is preferable. That is, first, a highly saturated nitrile rubber (A) is kneaded, and then a polyamide polymer (B) is heated and melted while the kneaded highly saturated nitrile rubber (A) is heated and melted polyamide. It is mixed with the polymer (B) and dispersed in the polyamide polymer (B) heated and melted.
  • the polyamine crosslinking agent (C) is added and kneaded, whereby the highly saturated nitrile rubber ( A) is preferably dynamically cross-linked.
  • the highly saturated nitrile rubber (A) can be suitably finely dispersed in the matrix of the polyamide-based polymer (B). The bending fatigue resistance of the molded product obtained can be further increased.
  • a batch-type kneader such as a Banbury mixer, a kneader, a Brabender plastic coder, a lab plast mill; a continuous kneader such as a single-screw extruder or a twin-screw extruder;
  • a kneader generally used can be used. Moreover, you may use combining these.
  • the kneading temperature at the time of dynamic crosslinking may be a temperature equal to or higher than the melting point of the polyamide polymer (B) to be used, but is preferably 100 to 400 ° C, more preferably 150 to 350 ° C, and still more preferably. 200 to 300 ° C.
  • the kneading temperature may be a temperature equal to or higher than the melting point of the polyamide polymer (B) to be used, but is preferably 100 to 400 ° C, more preferably 150 to 350 ° C, and still more preferably. 200 to 300 ° C.
  • the polyamine crosslinking agent (C) by providing an addition hole in the middle of the extruder barrel.
  • the thermoplastic elastomer produced by dynamic crosslinking may be pelletized.
  • a basic crosslinking accelerator (D) may be further added.
  • D basic crosslinking accelerator
  • DBU 1,8-diazabicyclo [5,4,0] undecene-7
  • DBN 1,5-diazabicyclo [4,3 , 0] nonene-5
  • 1-methylimidazole 1-ethylimidazole, 1-phenylimidazole, 1-benzylimidazole, 1,2-dimethylimidazole, 1-ethyl-2 -Methylimidazole, 1-methoxyethylimidazole, 1-phenyl-2-methylimidazole, 1-benzyl-2-methylimidazole, 1-methyl-2-phenylimidazole, 1-methyl-2-benzylimidazole, 1,4- Dimethylimidazole, 1,5-dimethylimidazole, 1,2,4-trimethylimidazole, 1,4-dimethyl-2-ethyl Imidazole, 1-methyl
  • a guanidine basic crosslinking accelerator, a secondary amine basic crosslinking accelerator and a basic crosslinking accelerator having a cyclic amidine structure are preferable, and a basic crosslinking accelerator having a cyclic amidine structure is more preferable.
  • 1,8-diazabicyclo [5,4,0] undecene-7 and 1,5-diazabicyclo [4,3,0] nonene-5 are more preferred, and 1,8-diazabicyclo [5,4,0] undecene-7 Is particularly preferred.
  • the basic crosslinking accelerator having a cyclic amidine structure may form a salt with an organic carboxylic acid or an alkyl phosphoric acid.
  • the secondary amine basic crosslinking accelerator may be a mixture of an alkylene glycol or an alcohol such as an alkyl alcohol having 5 to 20 carbon atoms, and further contains an inorganic acid and / or an organic acid. You may go out.
  • the secondary amine basic cross-linking accelerator and the inorganic acid and / or organic acid may form a salt and further form a complex with the alkylene glycol.
  • the blending amount in the thermoplastic elastomer composition of the present invention is preferably 0.1 to 20 weights with respect to 100 parts by weight of the highly saturated nitrile rubber (A). Part, more preferably 0.2 to 15 parts by weight, still more preferably 0.5 to 10 parts by weight.
  • the thermoplastic elastomer composition obtained by the production method of the present invention includes reinforcing agents such as various short fibers such as carbon black, silica, and aramid, calcium carbonate, talc, and clay within a range not impairing the effects of the present invention.
  • crosslinking accelerators other than crosslinking agents such as sulfur other than a polyamine crosslinking agent, organic peroxides, and a basic crosslinking accelerator.
  • Other polymers include acrylic rubber, ethylene-acrylic acid copolymer rubber, fluorine rubber, styrene-butadiene copolymer rubber, polybutadiene rubber, ethylene-propylene copolymer rubber, and ethylene-propylene-diene terpolymer.
  • thermoplastic elastomer composition obtained by the production method of the present invention can be formed into a molded body by molding into an arbitrary shape.
  • the molding method include press molding, extrusion molding, injection molding, blow molding, calendar molding, inflation molding, and slush molding.
  • the molding temperature is usually 100 to 400 ° C, preferably 200 to 300 ° C.
  • the molding time is usually 0.5 minutes to 24 hours, preferably 1 minute to 1 hour.
  • the molded object obtained in this way uses the thermoplastic elastomer composition obtained by the manufacturing method of this invention, stable manufacture is possible, and also heat resistance and compression set resistance It is excellent in fatigue resistance and cold resistance.
  • the molded product obtained by the present invention can be suitably used as various rubber parts by taking advantage of such characteristics.
  • Such rubber parts are not particularly limited, but O-rings, packings, diaphragms, oil seals, shaft seals, bearing seals, well head seals, pneumatic equipment seals, air conditioner cooling devices, and air conditioner refrigeration products.
  • Seal for sealing of fluorocarbons or fluorohydrocarbons or carbon dioxide used for compressors for machinery, sealing seal for supercritical carbon dioxide or subcritical carbon dioxide used for cleaning media for precision cleaning, rolling devices (rolling bearings, Seals for automobile hub units, automotive water pumps, linear guide devices, ball screws, etc.), valves and valve seats, BOP (Blow Out Out Preventor), platters, etc .; Joints between intake manifold and cylinder head Attached to Intake manifold gasket, cylinder head gasket attached to the connecting part between the cylinder block and cylinder head, rocker cover gasket attached to the connecting part between the rocker cover and cylinder head, connection between the oil pan and the cylinder block or transmission case
  • gaskets such as oil pan gaskets attached to the parts, gaskets for fuel cell separators attached between a pair of housings sandwiching a unit cell having a positive electrode, an electrolyte plate and a negative electrode, and top cover gaskets for hard disk drives; for printing Various rolls such as rolls such
  • the iodine value of the highly saturated nitrile rubber was measured according to JIS K 6235.
  • the content ratio of mono-n-butyl maleate unit and methacrylic acid unit was obtained by adding 100 ml of 2-butanone to 0.2 g of 2 mm square highly saturated nitrile rubber. After stirring for 16 hours, 20 ml of ethanol and 10 ml of water were added, and the mixture was stirred with a 0.02N aqueous ethanol solution of potassium hydroxide, and titrated with thymolphthalein as an indicator at room temperature to give carboxyl to 100 g of highly saturated nitrile rubber.
  • the number of moles of the group was determined, and the calculated number of moles was calculated by converting it to the amount of mono n-butyl maleate units or methacrylic acid units.
  • the content ratio of the 1,3-butadiene unit and the saturated butadiene unit was calculated by measuring the iodine value (according to JIS K 6235) before and after the hydrogenation reaction using a highly saturated nitrile rubber.
  • the content ratio of the acrylonitrile unit was calculated by measuring the nitrogen content in the highly saturated nitrile rubber by the Kjeldahl method according to JIS K6384.
  • the content ratio of methoxyethyl acrylate units and n-butyl acrylate units was calculated as the balance of each monomer unit.
  • Mooney viscosity (Polymer Mooney) The Mooney viscosity (polymer Mooney) of the highly saturated nitrile rubber was measured according to JIS K6300-1 (unit: [ML 1 + 4 , 100 ° C.]).
  • a heat-resistant thermoplastic elastomer composition was formed into a sheet having a thickness of 2 mm by a press machine preheated to a press temperature in advance, and punched into a predetermined shape to obtain a test piece.
  • press temperature was 250 degreeC except Example 3, and was 290 degreeC in Example 3.
  • the heat aging test is performed by holding
  • the compression set permanent thermoplastic elastomer composition was pressed using a mold with a press machine preheated to a press temperature in advance to obtain a cylindrical test piece having a diameter of 29 mm and a height of 12.5 mm.
  • press temperature was 250 degreeC except Example 3, and was 290 degreeC in Example 3.
  • the test piece was compressed by 25% and placed in an environment of 120 ° C. for 70 hours, and then the compression set was measured. It can be determined that the smaller the compression set rate, the better the compression set resistance.
  • Fatigue resistance Using the same test piece used for the above heat resistance evaluation, the test piece was extended by 50% and then returned to 0% extension at 300 rpm, and the test piece was broken. The number of times until it was measured was taken as the number of breaks. In this case, the upper limit of the number of tests was 1,000,000. The greater the number of breaks, the better the fatigue resistance.
  • Synthesis Example 1 Synthesis of highly saturated nitrile rubber (A-1)
  • A-1 highly saturated nitrile rubber
  • 180 parts of ion-exchanged water, 25 parts of a 10% strength by weight aqueous sodium dodecylbenzenesulfonate solution, 37 parts of acrylonitrile, 6 parts of mono-n-butyl maleate, and 0.5 t-dodecyl mercaptan (molecular weight regulator) The parts were charged in this order, and the internal gas was replaced with nitrogen three times, and then 57 parts of 1,3-butadiene was charged.
  • latex and palladium catalyst 1% by weight acetic acid were added to the latex obtained above in an autoclave so that the amount of palladium was 1,000 ppm by weight with respect to the dry weight of rubber contained in the latex.
  • composition of the resulting highly saturated nitrile rubber (A-1) was as follows: 35.6% by weight of acrylonitrile units, 59.0% by weight of 1,3-butadiene units (including saturated portions), mono-maleic acid
  • the butyl unit was 5.4% by weight
  • the iodine value was 10
  • the carboxyl group content was 3.1 ⁇ 10 ⁇ 2 ephr
  • the polymer Mooney viscosity [ML 1 + 4 , 100 ° C.] was 48.
  • the gel content of the highly saturated nitrile rubber (A-1) was 0.8% by weight.
  • Synthesis Example 2 Synthesis of highly saturated nitrile rubber (A-2)
  • A-2 highly saturated nitrile rubber
  • 180 parts of ion-exchanged water, 25 parts of a 10% strength by weight sodium dodecylbenzenesulfonate aqueous solution, 20 parts of acrylonitrile, 4.5 parts of mono n-butyl maleate, 35.5 parts of methoxyethyl acrylate, and t -0.5 part of dodecyl mercaptan (molecular weight modifier) was charged in this order, and the internal gas was replaced with nitrogen three times, and then 40 parts of 1,3-butadiene was charged.
  • the reactor was kept at 5 ° C., 0.1 part of cumene hydroperoxide (polymerization initiator) was charged, the polymerization reaction was continued with stirring, and when the polymerization conversion reached 80%, the concentration was 10%.
  • a 0.1% hydroquinone aqueous solution (polymerization terminator) was added to stop the polymerization reaction.
  • the residual monomer was removed by reducing the pressure at a water temperature of 60 ° C. to obtain a latex of nitrile rubber containing a mono-n-butyl maleate unit (solid content concentration of about 30% by weight).
  • latex and palladium catalyst 1% by weight acetic acid were added to the latex obtained above in an autoclave so that the amount of palladium was 1,000 ppm by weight with respect to the dry weight of rubber contained in the latex.
  • composition of the resulting highly saturated nitrile rubber (A-2) was composed of 24.0% by weight of acrylonitrile units, 47.8% by weight of 1,3-butadiene units (including the saturated portion), -Butyl unit 5.2 wt%, methoxyethyl acrylate unit 23.0 wt%, carboxyl group content 0.030 ephr, iodine value 9, polymer Mooney viscosity [ML 1 + 4 , 100 ° C.] 53 there were.
  • the gel content of the highly saturated nitrile rubber (A-2) was 2.5% by weight.
  • Synthesis Example 3 (Synthesis of highly saturated nitrile rubber (A-3)) The amount of acrylonitrile used was changed from 20 parts to 20.4 parts, and the amount of mono-n-butyl maleate was changed from 4.5 parts to 5 parts, respectively, and acrylic acid was replaced with 35.5 parts of methoxyethyl acrylate.
  • a highly saturated nitrile rubber (A--) was used in the same manner as in Synthesis Example 2 except that 35.2 parts of n-butyl was used and the amount of 1,3-butadiene was changed from 40 parts to 39.4 parts. 3) was obtained.
  • composition of the resulting highly saturated nitrile rubber (A-3) was as follows: 21.0% by weight of acrylonitrile units, 44.0% by weight of 1,3-butadiene units (including the saturated portion), mono-maleic acid -4.5% by weight of butyl unit, 30.5% by weight of n-butyl acrylate unit, carboxyl group content is 0.026 ephr, iodine value is 10, polymer Mooney viscosity [ML 1 + 4 , 100 ° C] is 55 Met.
  • the gel content of the highly saturated nitrile rubber (A-3) was 2.2% by weight.
  • Synthesis Example 4 (Synthesis of highly saturated nitrile rubber (B-1)) High saturation as in Synthesis Example 1 except that 4 parts of methacrylic acid was used instead of 6 parts of mono n-butyl maleate and the amount of 1,3-butadiene was changed from 57 parts to 59 parts. Nitrile rubber (B-1) was obtained.
  • the composition of the resulting highly saturated nitrile rubber (B-1) was as follows: 36.0% by weight of acrylonitrile units, 61.0% by weight of 1,3-butadiene units (including saturated portions), 3 units of methacrylic acid units
  • the iodine value was 11, the carboxyl group content was 3.5 ⁇ 10 ⁇ 2 ephr, and the polymer Mooney viscosity [ML 1 + 4 , 100 ° C.] was 60.
  • the gel content of the highly saturated nitrile rubber (B-1) was 0.8% by weight.
  • Synthesis Example 5 (Synthesis of highly saturated nitrile rubber (B-2)) A highly saturated nitrile rubber (B-2) was prepared in the same manner as in Synthesis Example 1 except that the amount of 1,3-butadiene used was changed from 57 parts to 63 parts and mono n-butyl maleate was not used. Got.
  • the composition of the resulting highly saturated nitrile rubber (B-2) was 36.2% by weight of acrylonitrile units, 63.8% by weight of 1,3-butadiene units (including the saturated portion), and iodine value Was 8, and the polymer Mooney viscosity [ML 1 + 4 , 100 ° C.] was 57.
  • the gel content of the highly saturated nitrile rubber (B-2) was 0.3% by weight.
  • Example 1 Using a Brabender plastic coder (content 250 ml) manufactured by Brabender, which is a batch kneader, 40 parts and 4 parts of the highly saturated nitrile rubber (A-1) obtained in Synthesis Example 1 were added to a mixer preheated to 230 ° C. , 4′-di- ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine (trade name “NOCRACK CD”, manufactured by Ouchi Shinko Chemical Co., Ltd., anti-aging agent) is added and masticated for 1 minute. 60 parts of nylon 6 (trade name “1013B”, Ube Industries, melting point 220 ° C., polyamide polymer (B)) was added to the mixer and mixed for 5 minutes.
  • A-1 highly saturated nitrile rubber
  • thermoplastic elastomer composition 1 part of hexamethylenediamine carbamate (trade name “Diak # 1”, manufactured by DuPont) as a polyamine cross-linking agent (C) was further added to this mixer, and the mixture was further maintained at 230 ° C.
  • the highly saturated nitrile rubber (A-1) was dynamically crosslinked to obtain a thermoplastic elastomer composition.
  • each evaluation of heat resistance, compression set resistance, fatigue resistance, and cold resistance was performed according to the said method using the obtained thermoplastic elastomer composition. The results are shown in Table 1.
  • Example 2 Using a Brabender plastic coder (content 250 ml) manufactured by Brabender, which is a batch kneader, 40 parts and 4 parts of the highly saturated nitrile rubber (A-1) obtained in Synthesis Example 1 were added to a mixer preheated to 230 ° C. , 4′-di- ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine (trade name “NOCRACK CD”, manufactured by Ouchi Shinko Chemical Co., Ltd., anti-aging agent) is added and masticated for 1 minute. 60 parts of nylon 6 (trade name “1013B”, Ube Industries, melting point 220 ° C., polyamide polymer (B)) was added to the mixer and mixed for 5 minutes.
  • A-1 highly saturated nitrile rubber
  • thermoplastic elastomer composition 1 part of hexamethylenediamine carbamate (trade name “Diak # 1”, manufactured by DuPont) as polyamine crosslinking agent (C) and 1,8-diazabicyclo [5,4,0] undecene-7 ( DBU) (trade name “RHENOGRAN XLA-60 (GE2014)”, manufactured by Rhein Chemie, DBU 60% (including zinc dialkyldiphosphate salt), 1.6 parts of basic crosslinking accelerator)
  • DBU 1,8-diazabicyclo [5,4,0] undecene-7
  • DBU 1,8-diazabicyclo [5,4,0] undecene-7
  • Example 3 Using a Brabender plastic coder (internal volume: 250 ml) manufactured by Brabender, which is a batch kneader, 40 parts and 4 parts of the highly saturated nitrile rubber (A-1) obtained in Synthesis Example 1 were added to a mixer preheated to 275 ° C. , 4′-di- ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine (trade name “NOCRACK CD”, manufactured by Ouchi Shinko Chemical Co., Ltd., anti-aging agent) is added and masticated for 1 minute.
  • A-1 highly saturated nitrile rubber
  • nylon 66 (trade name “Amilan CM3006”, manufactured by Toray Industries, Inc., melting point 265 ° C., polyamide polymer (B)) was added to the mixer and mixed for 3 minutes. Then, 1 part of hexamethylenediamine carbamate (trade name “Diak # 1”, manufactured by DuPont) as polyamine crosslinking agent (C) and 1,8-diazabicyclo [5,4,0] undecene-7 were added to this mixer.
  • nylon 66 trade name “Amilan CM3006”, manufactured by Toray Industries, Inc., melting point 265 ° C., polyamide polymer (B)
  • hexamethylenediamine carbamate (trade name “Diak # 1”, manufactured by DuPont) as polyamine crosslinking agent (C) and 1,8-diazabicyclo [5,4,0] undecene-7 were added to this mixer.
  • thermoplastic elastomer composition (trade name “RHENOGRAN XLA-60 (GE2014)”, manufactured by Rhein Chemie, DBU 60% (including a part that is a zinc dialkyldiphosphate salt), 1.6 parts of basic crosslinking accelerator)
  • DBU highly saturated nitrile rubber
  • A-1 highly saturated nitrile rubber
  • Example 4 Example 2 except that 40 parts of the highly saturated nitrile rubber (A-2) obtained in Synthesis Example 2 was used instead of 40 parts of the highly saturated nitrile rubber (A-1) obtained in Synthesis Example 1. Similarly, a thermoplastic elastomer composition was obtained and evaluated in the same manner. The results are shown in Table 1.
  • Example 5 Example 2 except that 40 parts of the highly saturated nitrile rubber (A-3) obtained in Synthesis Example 3 was used instead of 40 parts of the highly saturated nitrile rubber (A-1) obtained in Synthesis Example 1. Similarly, a thermoplastic elastomer composition was obtained and evaluated in the same manner. The results are shown in Table 1.
  • Comparative Example 1 The same procedure as in Example 1 was conducted except that the highly saturated nitrile rubber (B-1) obtained in Synthesis Example 4 was used in place of 40 parts of the highly saturated nitrile rubber (A-1) obtained in Synthesis Example 1. A thermoplastic elastomer composition was obtained and evaluated in the same manner. The results are shown in Table 1.
  • Comparative Example 2 The same procedure as in Example 1 was conducted except that the highly saturated nitrile rubber (B-1) obtained in Synthesis Example 5 was used instead of 40 parts of the highly saturated nitrile rubber (A-1) obtained in Synthesis Example 1. A thermoplastic elastomer composition was obtained and evaluated in the same manner. The results are shown in Table 1.
  • Comparative Example 3 A thermoplastic elastomer composition was obtained in the same manner as in Example 1 except that hexamethylenediamine carbamate (trade name “Diak # 1”, manufactured by DuPont) was not used as the polyamine crosslinking agent (C). The same evaluation was performed. The results are shown in Table 1. In Comparative Example 3, since no crosslinking agent was added, dynamic crosslinking did not substantially proceed.
  • thermoplastic elastomer composition obtained by dynamic crosslinking in the presence of the crosslinking agent (C), heat resistance (elongation change rate before and after thermal aging), compression set resistance (compression set rate) ), Fatigue resistance (number of times of bending at break), and cold resistance (embrittlement temperature) were obtained (Examples 1 to 5).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

α,β-エチレン性不飽和ニトリル単量体単位およびα,β-エチレン性不飽和ジカルボン酸モノエステル単量体単位を有し、ヨウ素価が120以下である高飽和ニトリルゴム(A)を、ポリアミド系重合体(B)と、ポリアミン架橋剤(C)との存在下で、動的架橋させる工程を備える熱可塑性エラストマー組成物の製造方法を提供する。

Description

熱可塑性エラストマー組成物の製造方法
 本発明は、熱可塑性エラストマー組成物の製造方法に関する。
 ポリアミド系重合体は、耐熱性に優れ、かつ適度な柔軟性を有する熱可塑性重合体として知られている。しかしながら、ポリアミド系重合体は、硬度が高く、かつ柔軟性が低いため、これらの特性を改良するために、ポリアミド系重合体にゴムを混合する方法が知られており、種々のゴムブレンド技術が提案されている。
 とりわけ近年は、ポリアミド系重合体にゴムを混合して柔軟化し、伸びや圧縮永久歪み等の機械的特性を改良するために、ポリアミド系重合体のマトリクス中にゴム粒子を微細に分散させ、かつ、該ゴム粒子を架橋させることが提案されている。
 たとえば、特許文献1では、ポリアミド系重合体に、ゲル分30重量%以上が均一に分散したゴムを混合し、動的架橋させてなる熱可塑性エラストマー組成物が提案されている。この特許文献1では、ゲル分30重量%以上が均一に分散したゴムとして、メタクリル酸由来のカルボキシル基を有する水素化ニトリルゴムを用いるものであり、これにより、耐熱性、耐圧縮永久歪み性および耐疲労性の向上を図っている。
国際公開第2005/030869号
 しかしながら、上記特許文献1の技術では、ゲル分30重量%以上と比較的ゲル含量の高いゴムを用いる必要があるため、ゴムの分散性が低く、安定した製造が困難であるという課題や、得られる成形体の特性が安定しないという課題や、得られる成形体の耐寒性が十分でないという課題があった。また、上記特許文献1の技術では、メタクリル酸由来のカルボキシル基を有する水素化ニトリルゴムを用いているものであるが、本発明者等が検討したところ、ゲル分を低減させると、製造安定性は向上するものの、得られる成形体は、耐圧縮永久歪み性および耐疲労性に劣るものとなってしまう。
 本発明は、安定した製造が可能であり、かつ、耐熱性、耐圧縮永久歪み性、耐屈曲疲労性および耐寒性に優れた成形体を与えることのできる、熱可塑性エラストマー組成物の製造方法を提供することを目的とする。
 本発明者等は、上記目的を達成するために鋭意研究した結果、α,β-エチレン性不飽和ニトリル単量体単位およびα,β-エチレン性不飽和ジカルボン酸モノエステル単量体単位を有し、ヨウ素価が120以下である高飽和ニトリルゴム(A)を、ポリアミド系重合体(B)と、ポリアミン架橋剤(C)との存在下で、動的架橋させることにより、上記目的を達成できることを見出し、本発明を完成させるに至った。
 すなわち、本発明によれば、α,β-エチレン性不飽和ニトリル単量体単位およびα,β-エチレン性不飽和ジカルボン酸モノエステル単量体単位を有し、ヨウ素価が120以下である高飽和ニトリルゴム(A)を、ポリアミド系重合体(B)と、ポリアミン架橋剤(C)との存在下で、動的架橋させる工程を備える熱可塑性エラストマー組成物の製造方法が提供される。
 本発明の熱可塑性エラストマー組成物の製造方法において、前記動的架橋を、前記高飽和ニトリルゴム(A)と、前記ポリアミド系重合体(B)と、前記ポリアミン架橋剤(C)とを100~400℃で混合することにより行うことが好ましい。
 本発明の熱可塑性エラストマー組成物の製造方法において、前記高飽和ニトリルゴム(A)と、前記ポリアミド系重合体(B)との配合割合が、「高飽和ニトリルゴム(A):ポリアミド系重合体(B)」の重量比率で、20:80~80:20であることが好ましい。
 本発明の熱可塑性エラストマー組成物の製造方法において、前記高飽和ニトリルゴム(A)100重量部に対する、前記ポリアミン架橋剤(C)の配合量が、0.1~20重量部であることが好ましい。
 本発明の熱可塑性エラストマー組成物の製造方法において、前記ポリアミド系重合体(B)が、ナイロン6およびナイロン66から選択される少なくとも一種であることが好ましい。
 本発明の熱可塑性エラストマー組成物の製造方法において、前記動的架橋させる工程が、前記高飽和ニトリルゴム(A)を、ポリアミド系重合体(B)と、ポリアミン架橋剤(C)と、塩基性架橋促進剤(D)との存在下で、動的架橋させる工程であることが好ましい。
 本発明の熱可塑性エラストマー組成物の製造方法において、前記高飽和ニトリルゴム(A)100重量部に対する、前記塩基性架橋促進剤(D)の配合量が、0.1~20重量部であることが好ましい。
 また、本発明によれば、上記いずれかの方法により得られた熱可塑性エラストマー組成物を成形する工程を備える成形体の製造方法が提供される。
 本発明によれば、安定した製造が可能であり、かつ、耐熱性、耐圧縮永久歪み性、耐屈曲疲労性および耐寒性に優れた成形体を与えることのできる、熱可塑性エラストマー組成物の製造方法を提供することができる。
 本発明の熱可塑性エラストマー組成物の製造方法は、α,β-エチレン性不飽和ニトリル単量体単位およびα,β-エチレン性不飽和ジカルボン酸モノエステル単量体単位を有し、ヨウ素価が120以下である高飽和ニトリルゴム(A)を、ポリアミド系重合体(B)と、ポリアミン架橋剤(C)との存在下で、動的架橋させる工程を備える。
 高飽和ニトリルゴム(A)
 本発明で用いる高飽和ニトリルゴム(A)は、少なくともα,β-エチレン性不飽和ニトリル単量体単位およびα,β-エチレン性不飽和ジカルボン酸モノエステル単量体単位を有するものである。
 α,β-エチレン性不飽和ニトリル単量体単位を形成する単量体(以下、「α,β-エチレン性不飽和ニトリル」と記すことがある。)としては、ニトリル基を有するα,β-エチレン性不飽和化合物であれば特に限定されず、たとえば、アクリロニトリル;α-クロロアクリロニトリル、α-ブロモアクリロニトリルなどのα-ハロゲノアクリロニトリル;メタクリロニトリルなどのα-アルキルアクリロニトリルなどが挙げられる。これらのなかでも、アクリロニトリルおよびメタクリロニトリルが好ましく、アクリロニトリルが特に好ましい。α,β-エチレン性不飽和ニトリルはこれらの複数種を併用してもよい。
 α,β-エチレン性不飽和ニトリル単量体単位の含有量は、高飽和ニトリルゴム(A)を構成する全単量体単位に対して、好ましくは10~60重量%、より好ましくは15~55重量%、さらに好ましくは20~50重量%である。α,β-エチレン性不飽和ニトリル単量体単位の含有量を上記範囲とすることにより、得られる成形体の耐油性および耐寒性を良好なものとすることができる。
 α,β-エチレン性不飽和ジカルボン酸モノエステル単量体単位を形成する単量体は、エステル化されていない無置換の(フリーの)カルボキシル基を1個有する、α,β-エチレン性不飽和ジカルボン酸のモノエステル単量体であれば特に限定されない。無置換のカルボキシル基は、主として後述する動的架橋を行うための架橋性基として作用する。α,β-エチレン性不飽和ジカルボン酸モノエステル単量体単位を有することにより、得られる成形体を引張応力や低発熱性、耐熱性、耐圧縮永久ひずみ性、耐疲労性、耐寒性に優れたものとすることができる。
 α,β-エチレン性不飽和ジカルボン酸モノエステル単量体のエステル部の、酸素原子を介してカルボニル基と結合する有機基としては、アルキル基、シクロアルキル基およびアルキルシクロアルキル基が好ましく、アルキル基が特に好ましい。このようなカルボニル基と結合する有機基としてのアルキル基は、炭素数が1~12のものが好ましく、より好ましくは2~6である。また、カルボニル基と結合する有機基としてのシクロアルキル基は、炭素数が5~12のものが好ましく、より好ましくは6~10である。さらに、カルボニル基と結合する有機基としてのアルキルシクロアルキル基は、炭素数が6~12のものが好ましく、より好ましくは7~10である。カルボニル基と結合する有機基の炭素数を上記範囲とすることにより、熱可塑性エラストマー組成物の加工安定性を良好なものとすることができるとともに、得られる成形体の機械的特性をより高めることができる。
 このようなα,β-エチレン性不飽和ジカルボン酸モノエステル単量体の具体例としては、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノプロピル、マレイン酸モノn-ブチルなどのマレイン酸モノアルキルエステル;マレイン酸モノシクロペンチル、マレイン酸モノシクロヘキシル、マレイン酸モノシクロヘプチルなどのマレイン酸モノシクロアルキルエステル;マレイン酸モノメチルシクロペンチル、マレイン酸モノエチルシクロヘキシルなどのマレイン酸モノアルキルシクロアルキルエステル;フマル酸モノメチル、フマル酸モノエチル、フマル酸モノプロピル、フマル酸モノn-ブチルなどのフマル酸モノアルキルエステル;フマル酸モノシクロペンチル、フマル酸モノシクロヘキシル、フマル酸モノシクロヘプチルなどのフマル酸モノシクロアルキルエステル;フマル酸モノメチルシクロペンチル、フマル酸モノエチルシクロヘキシルなどのフマル酸モノアルキルシクロアルキルエステル;シトラコン酸モノメチル、シトラコン酸モノエチル、シトラコン酸モノプロピル、シトラコン酸モノn-ブチルなどのシトラコン酸モノアルキルエステル;シトラコン酸モノシクロペンチル、シトラコン酸モノシクロヘキシル、シトラコン酸モノシクロヘプチルなどのシトラコン酸モノシクロアルキルエステル;シトラコン酸モノメチルシクロペンチル、シトラコン酸モノエチルシクロヘキシルなどのシトラコン酸モノアルキルシクロアルキルエステル;イタコン酸モノメチル、イタコン酸モノエチル、イタコン酸モノプロピル、イタコン酸モノn-ブチルなどのイタコン酸モノアルキルエステル;イタコン酸モノシクロペンチル、イタコン酸モノシクロヘキシル、イタコン酸モノシクロヘプチルなどのイタコン酸モノシクロアルキルエステル;イタコン酸モノメチルシクロペンチル、イタコン酸モノエチルシクロヘキシルなどのイタコン酸モノアルキルシクロアルキルエステル;などが挙げられる。
 これらの中でも、得られる成形体の耐熱性、耐圧縮永久歪み性、および耐疲労性をより高めることができるという点より、マレイン酸モノプロピル、マレイン酸モノn-ブチル、フマル酸モノプロピル、フマル酸モノn-ブチル、シトラコン酸モノプロピル、シトラコン酸モノn-ブチル;などのα,β-エチレン性不飽和結合を形成する二つの炭素原子の各々にカルボキシル基を有するジカルボン酸のモノエステルが好ましく、α,β-エチレン性不飽和結合を形成する二つの炭素原子の各々にカルボキシル基を有するジカルボン酸のモノアルキルエステルがより好ましく、マレイン酸モノn-ブチルが特に好ましい。なお、上記α,β-エチレン性不飽和結合を形成する二つの炭素原子の各々にカルボキシル基を有するジカルボン酸のモノアルキルエステルのアルキル基の炭素数は、2~6が好ましい。
 α,β-エチレン性不飽和ジカルボン酸モノエステル単量体単位の含有量は、高飽和ニトリルゴム(A)を構成する全単量体単位に対して、好ましくは0.1~20重量%、より好ましくは0.2~15重量%、さらに好ましくは0.5~10重量%である。α,β-エチレン性不飽和ジカルボン酸モノエステル単量体単位の含有量を上記範囲とすることにより、得られる成形体の耐熱性、耐圧縮永久歪み性、および耐疲労性をより良好なものとすることができる。
 また、本発明で用いる高飽和ニトリルゴム(A)は、上記α,β-エチレン性不飽和ニトリル単量体単位およびα,β-エチレン性ジカルボン酸モノエステル単量体単位の他に、ジエン単量体単位および/またはα-オレフィン単量体単位を有していることが好ましい。これにより、得られる成形体のゴム弾性を向上させることができる。
 ジエン単量体単位を形成するジエン単量体の具体例としては、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエンなどの炭素数が4以上の共役ジエン単量体;1,4-ペンタジエン、1,4-ヘキサジエンなどの炭素数が5~12の非共役ジエン単量体;などが挙げられる。これらの中では共役ジエン単量体が好ましく、1,3-ブタジエンがより好ましい。
 α-オレフィン単量体単位を形成するα-オレフィン単量体としては、炭素数が2~12のものが好ましく、具体的には、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテンなどが挙げられる。
 高飽和ニトリルゴム(A)にジエン単量体単位および/またはα-オレフィン単量体単位を含有させる場合における、これらの含有割合は、高飽和ニトリルゴム(A)を構成する全単量体単位に対して、好ましくは20~89.9重量%、より好ましくは30~84.8重量%、さらに好ましくは40~79.5重量%である。ジエン単量体単位および/またはα-オレフィン単量体単位の含有量を上記範囲とすることにより、得られる成形体を、耐熱性や耐化学的安定性を良好に保ちながら、ゴム弾性に優れたものとすることができる。
 また、本発明で用いる高飽和ニトリルゴム(A)は、α,β-エチレン性不飽和ニトリル単量体、α,β-エチレン性不飽和ジカルボン酸モノエステル単量体、並びに、ジエン単量体および/またはα-オレフィン単量体とともに、これらと共重合可能なその他の単量体を共重合したものであってもよい。このようなその他の単量体としては、α,β-エチレン性不飽和ジカルボン酸モノエステル単量体以外のα,β-エチレン性不飽和カルボン酸エステル単量体、α,β-エチレン性不飽和モノカルボン酸単量体、α,β-エチレン性不飽和多価カルボン酸単量体、α,β-エチレン性不飽和多価カルボン酸無水物単量体、芳香族ビニル単量体、フッ素含有ビニル単量体、共重合性老化防止剤などが例示される。
 α,β-エチレン性不飽和ジカルボン酸モノエステル単量体以外のα,β-エチレン性不飽和カルボン酸エステル単量体としては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸n-ペンチル、アクリル酸2-エチルヘキシル、メタクリル酸エチル、メタクリル酸プロピルなどの(メタ)アクリル酸アルキルエステル〔アクリル酸アルキルエステルおよび/またはメタクリル酸アルキルエステルの意。以下同様。〕単量体であってアルキル基の炭素数が1~18のもの;アクリル酸メトキシメチル、メタクリル酸エトキシメチルなどの (メタ)アクリル酸アルコキシアルキルエステル単量体であってアルコキシアルキル基の炭素数が2~18でアルコキシ基の炭素数が1~12のもの;アクリル酸2-アミノエチル、メタクリル酸アミノメチルなどのアミノ基含有(メタ)アクリル酸アルキルエステル単量体であってアルキル基の炭素数が1~16のもの;アクリル酸2-ヒドロキシエチル、メタクリル酸3-ヒドロキシプロピルなどの(メタ)アクリル酸ヒドロキシアルキルエステル単量体であってアルキル基の炭素数が1~16のもの;アクリル酸トリフルオロエチル、メタクリル酸ジフルオロメチルなどのフルオロアルキル基含有(メタ)アクリル酸アルキルエステル単量体であってアルキル基の炭素数が1~16のもの;マレイン酸ジメチル、マレイン酸ジn-ブチルなどのマレイン酸ジアルキルエステルであってアルキル基の炭素数が1~18のもの;フマル酸ジメチル、フマル酸ジn-ブチルなどのフマル酸ジアルキルエステルであってアルキル基の炭素数が1~18のもの;マレイン酸ジシクロペンチル、マレイン酸ジシクロヘキシルなどのマレイン酸ジシクロアルキルエステルであってシクロアルキル基の炭素数が4~16のもの;フマル酸ジシクロペンチル、フマル酸ジシクロヘキシルなどのフマル酸ジシクロアルキルエステルであってシクロアルキル基の炭素数が4~16のもの;イタコン酸ジメチル、イタコン酸ジn-ブチルなどのイタコン酸ジアルキルエステルであってアルキル基の炭素数が1~18のもの:イタコン酸ジシクロヘキシルなどのイタコン酸ジシクロアルキルエステルであってシクロアルキル基の炭素数が4~16のもの;などが挙げられる。
 α,β-エチレン性不飽和モノカルボン酸単量体としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。
 α,β-エチレン性不飽和多価カルボン酸単量体としては、イタコン酸、フマル酸、マレイン酸などが挙げられる。
 α,β-エチレン性不飽和多価カルボン酸無水物単量体としては、無水マレイン酸などが挙げられる。
 芳香族ビニル単量体としては、スチレン、α-メチルスチレン、ビニルピリジンなどが挙げられる。
 フッ素含有ビニル単量体としては、フルオロエチルビニルエーテル、フルオロプロピルビニルエーテル、o-トリフルオロメチルスチレン、ペンタフルオロ安息香酸ビニル、ジフルオロエチレン、テトラフルオロエチレンなどが挙げられる。
 共重合性老化防止剤としては、N-(4-アニリノフェニル)アクリルアミド、N-(4-アニリノフェニル)メタクリルアミド、N-(4-アニリノフェニル)シンナムアミド、N-(4-アニリノフェニル)クロトンアミド、 N-フェニル-4-(3-ビニルベンジルオキシ)アニリン、N-フェニル-4-(4-ビニルベンジルオキシ)アニリンなどが例示される。
 これらの共重合可能なその他の単量体は、複数種類を併用してもよい。その他の単量体単位の含有量は、高飽和ニトリルゴム(A)を構成する全単量体単位に対して、好ましくは50重量%以下、より好ましくは40重量%以下、さらに好ましくは10重量%以下である。
 本発明で用いる高飽和ニトリルゴム(A)中におけるカルボキシル基の含有量、すなわち、高飽和ニトリルゴム(A)100g当たりのカルボキシル基のモル数は、好ましくは5×10-4~5×10-1ephr、より好ましくは1×10-3~1×10-1ephr、さらに好ましくは5×10-3~6×10-2ephrである。製造安定性を良好なものとしながら、得られる成形体の機械特性および耐圧縮永久歪み性をより高めることができる。
 本発明で用いる高飽和ニトリルゴム(A)は、そのヨウ素価が120以下であり、好ましくは80以下、より好ましくは25以下、さらに好ましくは15以下のものである。高飽和ニトリルゴム(A)のヨウ素価が高すぎると、得られる成形体の耐熱性および耐オゾン性が低下するおそれがある。
 高飽和ニトリルゴム(A)のポリマー・ムーニー粘度(ML1+4、100℃)は、好ましくは15~200、より好ましくは20~150、さらに好ましくは30~120である。高飽和ニトリルゴム(A)のポリマー・ムーニー粘度を上記範囲とすることにより、製造安定性を良好なものとしながら、得られる成形体の機械特性および耐圧縮永久歪み性をより高めることができる。
 また、本発明で用いる高飽和ニトリルゴム(A)は、製造安定性を良好なものとし、これにより、得られる成形体の特性を安定させるという観点より、ゲル分の含有量が30重量%以下であることが好ましく、より好ましくは25重量%以下、さらに好ましくは20重量%以下である。ゲル分の含有量の下限は、特に限定されないが、通常、0.1重量%以上である。なお、ゲル分は、既に架橋しており、高飽和ニトリルゴム(A)の良溶媒に不溶な成分であり、通常、次の方法により測定することができる。すなわち、高飽和ニトリルゴム(A)を所定量秤量し、高飽和ニトリルゴム(A)を良溶媒(たとえば、メチルエチルケトンやテトラヒドロフラン)に溶解させて得られた溶液を金網等のフィルターで濾過し、フィルター上に捕捉された溶媒不溶解分を測定することにより測定することができる。
 本発明で用いる高飽和ニトリルゴム(A)の製造方法は、特に限定されず、たとえば、α,β-エチレン性不飽和ニトリル単量体、α,β-エチレン性不飽和ジカルボン酸モノエステル単量体、ジエン単量体および/またはα-オレフィン単量体、および、必要に応じて加えられるこれらと共重合可能なその他の単量体を共重合する方法が便利で好ましい。重合法としては、公知の乳化重合法、懸濁重合法、塊状重合法および溶液重合法のいずれをも用いることができるが、重合反応の制御が容易であることから乳化重合法が好ましい。なお、共重合して得られた共重合体のヨウ素価が120より高い場合には、共重合体の水素化(水素添加反応)を行うとよい。この場合における、水素化の方法は特に限定されず、公知の方法を採用すればよい。
 ポリアミド系重合体(B)
 本発明で用いるポリアミド系重合体(B)としては、酸アミド結合(-CONH-)を有する重合体であれば限定されないが、ポリアミド樹脂として一般的に使用されているポリアミド重合体を用いるのが好ましい。
 具体的には、ジアミンと二塩基酸との重縮合により得られる重合体、ジホルミルなどのジアミン誘導体と二塩基酸との重縮合により得られる重合体、ジメチルエステルなどの二塩基酸誘導体とジアミンとの重縮合により得られる重合体、ジニトリルまたはジアミドとホルムアルデヒドとの反応により得られる重合体、ジイソシアナートと二塩基酸との重付加により得られる重合体、アミノ酸またはその誘導体の自己縮合により得られる重合体、ラクタムの開環重合により得られる重合体などが挙げられる。また、これらのポリアミド重合体は、ポリエーテル重合体ブロックなどを共重合成分として含んでいてもよい。
 ポリアミド重合体の具体例としては、ナイロン46、ナイロン6、ナイロン66、ナイロン610、ナイロン612、ナイロン1010、ナイロン1020、ナイロン11、ナイロン12、のような脂肪族ポリアミド樹脂;ポリヘキサメチレンジアミンテレフタルアミド、ポリヘキサメチレンイソフタルアミド、ポリ-p-フェニレンテレフタルアミド、ポリ-p-ベンズアミド、ポリ-p-アミドヒドラジド、ポリ-p-フェニレンテレフタルアミド-3,4-ジフェニルエーテルテレフタルアミド、コポリパラフェニレン・3,4’オキシジフェニレン・テレフタラミドのような芳香族ポリアミド樹脂が挙げられる。
 これらの中でも、汎用性および耐熱性などの観点から、ナイロン6、ナイロン66、ナイロン11、ナイロン12などが好ましく、ナイロン6、ナイロン66がより好ましい。
 また、ポリアミド系重合体(B)としては、融点が、好ましくは100~350℃、より好ましくは120~300℃、さらに好ましくは150~280℃である。なおポリアミド重合体の融点とは、JIS K7121にて定義される、示差走査熱量分析(DSC)によって測定される融解ピーク温度である。
 本発明における、高飽和ニトリルゴム(A)と、ポリアミド系重合体(B)との配合割合は、「高飽和ニトリルゴム(A):ポリアミド系重合体(B)」の重量比率で、好ましくは20:80~80:20、より好ましくは25:75~75:25、さらに好ましくは30:70~70:30、特に好ましくは35:65~65:35である。高飽和ニトリルゴム(A)と、ポリアミド系重合体(B)との配合割合を上記範囲とすることにより、得られる成形体の耐熱性、耐圧縮永久歪み性、耐疲労性および耐寒性をより高めることができる。
 ポリアミン架橋剤(C)
 本発明で用いるポリアミン架橋剤(C)は、2つ以上のアミノ基を有する化合物、または、架橋時に2つ以上のアミノ基を有する化合物の形態になるもの、であれば特に限定されないが、脂肪族炭化水素や芳香族炭化水素の複数の水素原子が、アミノ基またはヒドラジド構造(-CONHNHで表される構造、COはカルボニル基を表す。)で置換された化合物が好ましい。ポリアミン架橋剤(C)は、高飽和ニトリルゴム(A)を動的架橋させる際における、架橋剤として作用する。架橋剤として、ポリアミン架橋剤(C)を用いることにより、得られる成形体を、耐熱性、耐疲労性および耐寒性を良好なものとしながら、耐圧縮永久歪み性に優れたものとすることができる。
 ポリアミン架橋剤(C)の具体例としては、ヘキサメチレンジアミン、ヘキサメチレンジアミンカルバメート、N,N-ジシンナミリデン-1,6-ヘキサンジアミン、テトラメチレンペンタミン、ヘキサメチレンジアミンシンナムアルデヒド付加物などの脂肪族多価アミン類;4,4-メチレンジアニリン、m-フェニレンジアミン、4,4-ジアミノジフェニルエーテル、3,4-ジアミノジフェニルエーテル、4,4-(m-フェニレンジイソプロピリデン)ジアニリン、4,4-(p-フェニレンジイソプロピリデン)ジアニリン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、4,4-ジアミノベンズアニリド、4,4-ビス(4-アミノフェノキシ)ビフェニル、m-キシリレンジアミン、p-キシリレンジアミン、1,3,5-ベンゼントリアミンなどの芳香族多価アミン類;イソフタル酸ジヒドラジド、テレフタル酸ジヒドラジド、フタル酸ジヒドラジド、2,6-ナフタレンジカルボン酸ジヒドラジド、ナフタレン酸ジヒドラジド、シュウ酸ジヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、グルタミン酸ジヒドラジド、アジピン酸ジヒドラジド、ピメリン酸ジヒドラジド、スベリン酸ジヒドラジド、アゼライン酸ジヒドラジド、セバシン酸ジヒドラジド、ブラッシル酸ジヒドラジド、ドデカン二酸ジヒドラジド、アセトンジカルボン酸ジヒドラジド、フマル酸ジヒドラジド、マレイン酸ジヒドラジド、イタコン酸ジヒドラジド、トリメリット酸ジヒドラジド、1,3,5-ベンゼントリカルボン酸ジヒドラジド、アコニット酸ジヒドラジド、ピロメリット酸ジヒドラジドなどの多価ヒドラジド類;が挙げられる。これらの中でも、本発明の効果をより一層顕著なものとすることができるという点より、脂肪族多価アミン類および芳香族多価アミン類が好ましく、ヘキサメチレンジアミンカルバメートおよび2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンがより好ましく、ヘキサメチレンジアミンカルバメートが特に好ましい。なお、上記ポリアミン架橋剤(C)は、1種単独で用いても、2種以上を併用して用いてもよい。
 本発明で用いる高飽和ニトリルゴム組成物中における、ポリアミン架橋剤(C)の配合量は、高飽和ニトリルゴム(A)100重量部に対して、好ましくは0.1~20重量部であり、より好ましくは0.5~10重量部、さらに好ましくは1~5重量部である。ポリアミン架橋剤(C)の配合量を上記範囲とすることにより、得られる成形体の機械特性および耐圧縮永久歪み性をより適切に高めることができる。なお、ポリアミン架橋剤(C)を配合しない場合には、高飽和ニトリルゴム(A)の動的架橋が不十分となり、得られる成形体は、耐圧縮永久歪み性、耐屈曲疲労性および耐寒性に劣るものとなってしまう。
 熱可塑性エラストマー組成物の製造方法
 本発明の熱可塑性エラストマー組成物の製造方法は、上述した高飽和ニトリルゴム(A)を、ポリアミド系重合体(B)と、ポリアミン架橋剤(C)との存在下で、動的架橋させるものである。
 本発明において、動的架橋とは、高飽和ニトリルゴム(A)を、ポリアミド系重合体(B)と、ポリアミン架橋剤(C)との存在下にて、高飽和ニトリルゴム(A)を、ポリアミド系重合体(B)中に分散させながら、ポリアミン架橋剤(C)の作用により架橋させることをいい、このような動的架橋としては、高飽和ニトリルゴム(A)とポリアミド系重合体(B)とを、ポリアミン架橋剤(C)の存在下で、バッチ式混練機や、二軸押出機などの連続式混練機を用いて剪断を与えつつ混合しながら、高飽和ニトリルゴム(A)中に含まれる、カルボキシル基などの架橋性基を架橋させる方法が挙げられる。このように、高飽和ニトリルゴム(A)を、ポリアミド系重合体(B)中に分散させながら、高飽和ニトリルゴム(A)を動的架橋させることにより、これにより得られる熱可塑性エラストマー組成物を、ポリアミド系重合体(B)中に、高飽和ニトリルゴム(A)の架橋物が分散された構成とすることができ、これにより、得られる成形体を、耐熱性、耐圧縮永久歪み性、耐屈曲疲労性および耐寒性に優れたものとすることができる。
 以上のようにして得られる本発明の熱可塑性エラストマー組成物は、ポリアミド系重合体(B)が連続相に、ポリアミン架橋剤(C)の作用により動的架橋された高飽和ニトリルゴム(A)が粒子状の分散相となっている構成であることが好ましい。動的架橋された高飽和ニトリルゴム(A)の分散相の平均粒子径は好ましくは0.01~5.00μmである。分散相の平均粒子径をこのような範囲とすることにより、耐圧縮永久ひずみ性、耐屈曲疲労性、および耐寒性をより高めることができる。連続相、分散相の確認および平均粒子径は、透過型電子顕微鏡、走査型電子顕微鏡、原子間力顕微鏡により測定することができる。
 なお、本発明において、動的架橋の方法としては一般的な動的架橋法であればよいが、以下の方法が好ましい。
 すなわち、まず、高飽和ニトリルゴム(A)を素練りしておき、次いで、ポリアミド系重合体(B)を加熱溶融させつつ、素練りした高飽和ニトリルゴム(A)を、加熱溶融させたポリアミド系重合体(B)と混合し、加熱溶融させたポリアミド系重合体(B)中に分散させる。そして、高飽和ニトリルゴム(A)が、ポリアミド系重合体(B)のマトリクス中に十分に微分散した時点で、ポリアミン架橋剤(C)を添加し、混練することで、高飽和ニトリルゴム(A)を動的架橋させることが好ましい。このような順序で各成分を配合し、動的架橋させることで、高飽和ニトリルゴム(A)をポリアミド系重合体(B)のマトリクス中に好適に微分散させることができ、これにより、得られる成形体の耐屈曲疲労性をより高めることができる。
 混練に用いる混練機としては、バンバリーミキサー、ニーダー、ブラベンダープラスチコーダ、ラボプラストミルなどのバッチ式混練機;単軸押出機、二軸押出機などの連続式混練機;などの、動的架橋に一般的に用いる混練機を用いることができる。また、これらを組み合わせて用いてもよい。動的架橋を行う際における混練温度としては、使用するポリアミド系重合体(B)の融点以上の温度とすればよいが、好ましくは100~400℃、より好ましくは150~350℃、さらに好ましくは200~300℃である。混練温度を上記範囲とすることにより、より適切に動的架橋を行うことができ、本発明の作用効果をより一層顕著なものとすることができる。なお、押出機などの連続式混練機を用いる場合には、ポリアミン架橋剤(C)は、押出機バレル途中に添加孔を設けて添加するのが好ましい。
 動的架橋によって製造された熱可塑性エラストマーはペレット状にしても良い。 
 また、本発明においては、上述した高飽和ニトリルゴム(A)、ポリアミド系樹脂(B)、およびポリアミン架橋剤(C)に加えて、塩基性架橋促進剤(D)をさらに添加しても良い。
 塩基性架橋促進剤(D)の具体例としては、1,8-ジアザビシクロ[5,4,0]ウンデセン-7(以下「DBU」と略す場合がある)、1,5-ジアザビシクロ[4,3,0]ノネン-5(以下「DBN」と略す場合がある)、1-メチルイミダゾール、1-エチルイミダゾール、1-フェニルイミダゾール、1-ベンジルイミダゾール、1,2-ジメチルイミダゾール、1-エチル-2-メチルイミダゾール、1-メトキシエチルイミダゾール、1-フェニル-2-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-メチル-2-フェニルイミダゾール、1-メチル-2-ベンジルイミダゾール、1,4-ジメチルイミダゾール、1,5-ジメチルイミダゾール、1,2,4-トリメチルイミダゾール、1,4-ジメチル-2-エチルイミダゾール、1-メチル-2-メトキシイミダゾール、1-メチル-2-エトキシイミダゾール、1-メチル-4-メトキシイミダゾール、1-メチル-2-メトキシイミダゾール、1-エトキシメチル-2-メチルイミダゾール、1-メチル-4-ニトロイミダゾール、1,2-ジメチル-5-ニトロイミダゾール、1,2-ジメチル-5-アミノイミダゾール、1-メチル-4-(2-アミノエチル)イミダゾール、1-メチルベンゾイミダゾール、1-メチル-2-ベンジルベンゾイミダゾール、1-メチル-5-ニトロベンゾイミダゾール、1-メチルイミダゾリン、1,2-ジメチルイミダゾリン、1,2,4-トリメチルイミダゾリン、1,4-ジメチル-2-エチルイミダゾリン、1-メチル-フェニルイミダゾリン、1-メチル-2-ベンジルイミダゾリン、1-メチル-2-エトキシイミダゾリン、1-メチル-2-ヘプチルイミダゾリン、1-メチル-2-ウンデシルイミダゾリン、1-メチル-2-ヘプタデシルイミダゾリン、1-メチル-2-エトキシメチルイミダゾリン、1-エトキシメチル-2-メチルイミダゾリンなどの環状アミジン構造を有する塩基性架橋促進剤;テトラメチルグアニジン、テトラエチルグアニジン、ジフェニルグアニジン、1,3-ジ-オルト-トリルグアニジン、オルトトリルビグアニドなどのグアニジン系塩基性架橋促進剤;n-ブチルアルデヒドアニリン、アセトアルデヒドアンモニアなどのアルデヒドアミン系塩基性架橋促進剤;ジシクロペンチルアミン、ジシクロヘキシルアミン、ジシクロヘプチルアミンなどのジシクロアルキルアミン;N-メチルシクロペンチルアミン、N-ブチルシクロペンチルアミン、N-ヘプチルシクロペンチルアミン、N-オクチルシクロペンチルアミン、N-エチルシクロヘキシルアミン、N-ブチルシクロヘキシルアミン、N-ヘプチルシクロヘキシルアミン、N-オクチルシクロオクチルアミン、N-ヒドロキシメチルシクロペンチルアミン、N-ヒドロキシブチルシクロヘキシルアミン、N-メトキシエチルシクロペンチルアミン、N-エトキシブチルシクロヘキシルアミン、N-メトキシカルボニルブチルシクロペンチルアミン、N-メトキシカルボニルヘプチルシクロヘキシルアミン、N-アミノプロピルシクロペンチルアミン、N-アミノヘプチルシクロヘキシルアミン、ジ(2-クロロシクロペンチル)アミン、ジ(3-クロロシクロペンチル)アミンなどの二級アミン系塩基性架橋促進剤;などが挙げられる。これらのなかでも、グアニジン系塩基性架橋促進剤、二級アミン系塩基性架橋促進剤および環状アミジン構造を有する塩基性架橋促進剤が好ましく、環状アミジン構造を有する塩基性架橋促進剤がより好ましく、1,8-ジアザビシクロ[5,4,0]ウンデセン-7および1,5-ジアザビシクロ[4,3,0]ノネン-5がさらに好ましく、1,8-ジアザビシクロ[5,4,0]ウンデセン-7が特に好ましい。なお、上記環状アミジン構造を有する塩基性架橋促進剤は、有機カルボン酸やアルキルリン酸などと塩を形成していてもよい。また、上記二級アミン系塩基性架橋促進剤は、アルキレングリコールや炭素数5~20のアルキルアルコールなどのアルコール類が混合されたものであってもよく、さらに無機酸および/または有機酸を含んでいてもよい。そして、当該二級アミン系塩基性架橋促進剤と前記無機酸および/または有機酸とが塩を形成しさらに前記アルキレングリコールと複合体を形成していてもよい。
 塩基性架橋促進剤(D)を配合する場合における、本発明の熱可塑性エラストマー組成物中の配合量は、高飽和ニトリルゴム(A)100重量部に対して、好ましくは0.1~20重量部であり、より好ましくは0.2~15重量部、さらに好ましくは0.5~10重量部である。塩基性架橋促進剤(D)の配合量を上記範囲とすることにより、本発明の効果をより一層高めることができる。
 なお、本発明の製造方法により得られる熱可塑性エラストマー組成物には、本発明の効果を損なわない範囲で、カーボンブラックやシリカ、アラミド等の各種短繊維などの補強剤、炭酸カルシウム、タルクやクレイなどの充填剤、可塑剤、滑剤、老化防止剤、光安定剤、一級アミンなどのスコーチ防止剤、ジエチレングリコールなどの活性剤、シランカップリング剤、可塑剤、加工助剤、滑剤、粘着剤、潤滑剤、難燃剤、防黴剤、受酸剤、帯電防止剤、顔料などの、ゴムや樹脂に一般的に配合される配合剤を配合して用いてもよい。またポリアミン架橋剤以外の硫黄、有機過酸化物等の架橋剤、塩基性架橋促進剤以外の各種架橋促進剤を配合してもよい。
 また、本発明の効果を損なわない範囲で、高飽和ニトリルゴム(A)、ポリアミド重合体(B)以外のその他の重合体を配合してもよい。その他の重合体としてはアクリルゴム、エチレン-アクリル酸共重合体ゴム、フッ素ゴム、スチレン-ブタジエン共重合体ゴム、ポリブタジエンゴム、エチレン-プロピレン共重合体ゴム、エチレン-プロピレン-ジエン三元共重合体ゴム、エピクロロヒドリンゴム、ウレタンゴム、クロロプレンゴム、シリコーンゴム、フルオロシリコーンゴム、クロロスルフォン化ポリエチレンゴム、天然ゴム、ポリイソプレンゴム、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリメチルメタクリレート、ポリアセタール、ポリカーボネート、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ポリアリレート、ポリスルホン、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリ-p-フェニレンテレフタルアミド、ポリ-p-ベンズアミド、ポリ-p-アミドヒドラジド、ポリ-p-フェニレンテレフタルアミド-3,4-ジフェニルエーテルテレフタルアミド、コポリパラフェニレン・3,4’オキシジフェニレン・テレフタラミドなどの融点が350℃を超える(加熱しても融解せずに、灰化するものも含む)芳香族ポリアミド重合体、フェノール樹脂、エポキシ樹脂、ユリア樹脂、ポリウレタン、などを挙げることができる。
 これらの配合剤、重合体は、動的架橋時を行う際に添加しても良いし、動的架橋によって得られた熱可塑性エラストマー組成物に、別途配合して混練することで添加しても良い。
 また、本発明の製造方法により得られる熱可塑性エラストマー組成物は、任意の形状に成形することにより、成形体とすることができる。成形方法としてはプレス成形、押出成形、射出成形、ブロー成形、カレンダー成形、インフレーション成形、スラッシュ成形などが挙げられる。成形温度は、通常、100~400℃、好ましくは200~300℃である。また、成形時間は、通常、0.5分~24時間、好ましくは1分~1時間である。そして、このようにして得られる成形体は、本発明の製造方法により得られる熱可塑性エラストマー組成物を用いるものであるため、安定した製造が可能であり、かつ、耐熱性、耐圧縮永久歪み性、耐疲労性および耐寒性に優れたものである。
 そのため、本発明により得られる成形体は、このような特性を活かし、各種ゴム部品として好適に用いることができる。このようなゴム部品としては、特に限定されないが、O-リング、パッキン、ダイアフラム、オイルシール、シャフトシール、ベアリングシール、ウェルヘッドシール、空気圧機器用シール、エアコンディショナの冷却装置や空調装置の冷凍機用コンプレッサに使用されるフロン若しくはフルオロ炭化水素または二酸化炭素の密封用シール、精密洗浄の洗浄媒体に使用される超臨界二酸化炭素または亜臨界二酸化炭素の密封用シール、転動装置(転がり軸受、自動車用ハブユニット、自動車用ウォーターポンプ、リニアガイド装置およびボールねじ等)用のシール、バルブおよびバルブシート、BOP(Blow Out Preventar)、プラターなどの各種シール材;インテークマニホールドとシリンダヘッドとの連接部に装着されるインテークマニホールドガスケット、シリンダブロックとシリンダヘッドとの連接部に装着されるシリンダヘッドガスケット、ロッカーカバーとシリンダヘッドとの連接部に装着されるロッカーカバーガスケット、オイルパンとシリンダブロックあるいはトランスミッションケースとの連接部に装着されるオイルパンガスケット、正極、電解質板および負極を備えた単位セルを挟み込む一対のハウジング間に装着される燃料電池セパレーター用ガスケット、ハードディスクドライブのトップカバー用ガスケットなどの各種ガスケット;印刷用ロール、製鉄用ロール、製紙用ロール、工業用ロール、事務機用ロールなどの各種ロール;平ベルト(フィルムコア平ベルト、コード平ベルト、積層式平ベルト、単体式平ベルト等)、Vベルト(ラップドVベルト、ローエッジVベルト等)、Vリブドベルト(シングルVリブドベルト、ダブルVリブドベルト、ラップドVリブドベルト、背面ゴムVリブドベルト、上コグVリブドベルト等)、CVT用ベルト、タイミングベルト、歯付ベルト、コンベアーベルト、などの各種ベルト;燃料ホース、ターボエアーホース、オイルホース、ラジェターホース、ヒーターホース、ウォーターホース、バキュームブレーキホース、コントロールホース、エアコンホース、ブレーキホース、パワーステアリングホース、エアーホース、マリンホース、ライザー、フローラインなどの各種ホース;CVJブーツ、プロペラシャフトブーツ、等速ジョイントブーツ、ラックアンドピニオンブーツなどの各種ブーツ;クッション材、ダイナミックダンパ、ゴムカップリング、空気バネ、防振材などの減衰材ゴム部品;ダストカバー、自動車内装部材、タイヤ、被覆ケーブル、靴底、電磁波シールド、フレキシブルプリント基板用接着剤等の接着剤、燃料電池セパレーターの他、化粧品、および医薬品の分野、食品と接触する分野、エレクトロニクス分野など幅広い用途に使用することができる。
 以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。なお、以下において、「部」は、特に断りのない限り重量基準である。また、試験および評価は下記によった。
 ヨウ素価
 高飽和ニトリルゴムのヨウ素価は、JIS K 6235に準じて測定した。
 カルボキシル基含有量
 2mm角の高飽和ニトリルゴム0.2gに、2-ブタノン100mlを加えて16時間攪拌した後、エタノール20mlおよび水10mlを加え、攪拌しながら水酸化カリウムの0.02N含水エタノール溶液を用いて、室温でチモールフタレインを指示薬とする滴定により、高飽和ニトリルゴム100gに対するカルボキシル基のモル数として求めた(単位はephr)。
 高飽和ニトリルゴムを構成する各単量体単位の含有割合
 マレイン酸モノn-ブチル単位およびメタクリル酸単位の含有割合は、2mm角の高飽和ニトリルゴム0.2gに、2-ブタノン100mlを加えて16時間攪拌した後、エタノール20mlおよび水10mlを加え、攪拌しながら水酸化カリウムの0.02N含水エタノール溶液を用いて、室温でチモールフタレインを指示薬とする滴定により、高飽和ニトリルゴム100gに対するカルボキシル基のモル数を求め、求めたモル数をマレイン酸モノn-ブチル単位またはメタクリル酸単位の量に換算することにより算出した。
 1,3-ブタジエン単位および飽和化ブタジエン単位の含有割合は、高飽和ニトリルゴムを用いて、水素添加反応前と水素添加反応後のヨウ素価(JIS K 6235による)を測定することにより算出した。
 アクリロニトリル単位の含有割合は、JIS K6384に従い、ケルダール法により、高飽和ニトリルゴム中の窒素含量を測定することにより算出した。
 アクリル酸メトキシエチル単位およびアクリル酸n-ブチル単位の含有割合は、上記各単量体単位の残部として算出した。
 高飽和ニトリルゴム中のゲル分量
 高飽和ニトリルゴム0.2gを秤量し、メチルエチルケトンに浸漬させ、23℃で24時間放置後、325メッシュ金網を用いてろ過し、金網に捕捉された不溶解分の、溶媒除去後の重量を測定し、溶解させたゴム全重量に対する割合を計算し、これをゲル分量(重量%)とした。
 ムーニー粘度(ポリマー・ムーニー)
 高飽和ニトリルゴムのムーニー粘度(ポリマー・ムーニー)は、JIS K6300-1に従って測定した(単位は〔ML1+4、100℃〕)。
 耐熱性
 熱可塑性エラストマー組成物をあらかじめプレス温度に予熱したプレス機により、2mm厚のシートに成形し、所定の形状に打ち抜くことで、試験片を得た。なお、プレス温度は、実施例3以外は250℃とし、実施例3では290℃とした。そして、得られた試験片について、JIS  K6251に従い、耐熱老化試験前の伸びを、また、温度140℃、168時間の条件でギヤーオーブンに保持することで、耐熱老化試験を行い、JIS  K6251に従い、耐熱老化試験後の伸びを、それぞれ測定し、耐熱老化試験前後の伸び変化率を算出した。伸び変化率の絶対値が低いほど、耐熱性に優れると評価できる。
 耐圧縮永久歪み性
 熱可塑性エラストマー組成物を、あらかじめプレス温度に予熱したプレス機により金型を用いてプレスすることにより、直径29mm、高さ12.5mmの円柱型の試験片を得た。なお、プレス温度は、実施例3以外は250℃とし、実施例3では290℃とした。そして、得られた試験片を用いて、JIS  K6262に従い、試験片を25%圧縮させた状態で、120℃の環境下に70時間置いた後、圧縮永久歪み率を測定した。圧縮永久歪み率が小さいほど、耐圧縮永久歪み性に優れると判断できる。
 耐疲労性
 上記耐熱性の評価に用いた試験片と同様のものを用いて、該試験片を50%伸長させ、次いで、0%伸張状態に戻す、という操作を300rpmで繰り返し、試験片が破断するまでの回数を測定し、これを破断時回数とした。なお、この際の試験回数は、1,000,000回を上限とした。破断時回数が多いほど、耐疲労性に優れると破断できる。
 耐寒性
 上記耐熱性の評価に用いた試験片と同様のものを用いて、JIS  K6261に従い、低温衝撃ぜい化試験を行い、50%衝撃ぜい化温度を測定した。50%衝撃ぜい化温度が低いほど、耐寒性に優れると評価できる。50%衝撃ぜい化温度が-20℃以下の場合に「○」、脆化温度が-20℃より高い場合は「×」とした。
 合成例1(高飽和ニトリルゴム(A-1)の合成)
 反応器に、イオン交換水180部、濃度10重量%のドデシルベンゼンスルホン酸ナトリウム水溶液25部、アクリロニトリル37部、マレイン酸モノn-ブチル6部、およびt-ドデシルメルカプタン(分子量調整剤)0.5部を、この順に仕込み、内部の気体を窒素で3回置換した後、1,3-ブタジエン57部を仕込んだ。反応器を5℃に保ち、クメンハイドロパーオキサイド(重合開始剤)0.1部、還元剤、およびキレート剤適量を仕込み、攪拌しながら重合反応を継続した。次いで、次いで、重合添加率が80%になった時点で濃度10重量%のハイドロキノン水溶液(重合停止剤)0.1部を加えて重合反応を停止した後、水温60℃のロータリーエバポレータを用いて残留単量体を除去し、マレイン酸モノn―ブチル単位を含有するニトリルゴムのラテックス(固形分濃度約30重量%)を得た。
 次いで、上記にて得られたラテックスに、ラテックスに含有されるゴムの乾燥重量に対して、パラジウム量が1,000重量ppmになるように、オートクレーブ中に、ラテックスおよびパラジウム触媒(1重量%酢酸パラジウムアセトン溶液と等重量のイオン交換水を混合した溶液)を添加して、水素圧3MPa、温度50℃で6時間水素添加反応を行い、高飽和ニトリルゴム(A-1)のラテックスを得た。
 そして、得られたラテックスに2倍容量のメタノールを加えて凝固した後、ろ過して固形物(クラム)を取り出し、これを60℃で12時間真空乾燥することにより、高飽和ニトリルゴム(A-1)を得た。得られた高飽和ニトリルゴム(A-1)の組成は、アクリロニトリル単位35.6重量%、1,3-ブタジエン単位(飽和化されている部分を含む)59.0重量%、マレイン酸モノn-ブチル単位5.4重量%であり、ヨウ素価は10、カルボキシル基含有量は3.1×10-2ephr、ポリマー・ムーニー粘度〔ML1+4、100℃〕は48であった。また、高飽和ニトリルゴム(A-1)のゲル分量は0.8重量%であった。
 合成例2(高飽和ニトリルゴム(A-2)の合成)
 反応器に、イオン交換水180部、濃度10重量%のドデシルベンゼンスルホン酸ナトリウム水溶液25部、アクリロニトリル20部、マレイン酸モノn-ブチル4.5部、アクリル酸メトキシエチル35.5部、およびt-ドデシルメルカプタン(分子量調整剤)0.5部を、この順に仕込み、内部の気体を窒素で3回置換した後、1,3-ブタジエン40部を仕込んだ。次いで、反応器を5℃に保ち、クメンハイドロパーオキサイド(重合開始剤)0.1部を仕込み、攪拌しながら重合反応を継続し、重合転化率が80%になった時点で、濃度10重量%のハイドロキノン水溶液(重合停止剤)0.1部を加えて重合反応を停止した。次いで、水温60℃で減圧にして残留単量体を除去し、マレイン酸モノn―ブチル単位を含有するニトリルゴムのラテックス(固形分濃度約30重量%)を得た。
 次いで、上記にて得られたラテックスに、ラテックスに含有されるゴムの乾燥重量に対して、パラジウム量が1,000重量ppmになるように、オートクレーブ中に、ラテックスおよびパラジウム触媒(1重量%酢酸パラジウムアセトン溶液と等重量のイオン交換水を混合した溶液)を添加して、水素圧3MPa、温度50℃で6時間水素添加反応を行い、高飽和ニトリルゴム(A-2)のラテックスを得た。
 そして、得られたラテックスに2倍容量のメタノールを加えて凝固した後、ろ過して固形物(クラム)を取り出し、これを60℃で12時間真空乾燥することにより、有高飽和ニトリルゴム(A-2)を得た。得られた高飽和ニトリルゴム(A-2)の組成は、アクリロニトリル単位24.0重量%、1,3-ブタジエン単位(飽和化されている部分を含む)47.8重量%、マレイン酸モノn―ブチル単位5.2重量%、アクリル酸メトキシエチル単位23.0重量%であり、カルボキシル基含有量は0.030ephr、ヨウ素価は9、ポリマー・ムーニー粘度〔ML1+4、100℃〕は53であった。また、高飽和ニトリルゴム(A-2)のゲル分量は2.5重量%であった。
 合成例3(高飽和ニトリルゴム(A-3)の合成)
 アクリロニトリルの使用量を20部から20.4部に、マレイン酸モノn-ブチルの使用量を4.5部から5部に、それぞれ変更し、アクリル酸メトキシエチル35.5部に代えてアクリル酸n-ブチル35.2部を使用するとともに、1,3-ブタジエンの使用量を40部から39.4部に変更したこと以外は、合成例2と同様にして、高飽和ニトリルゴム(A-3)を得た。得られた高飽和ニトリルゴム(A-3)の組成は、アクリロニトリル単位21.0重量%、1,3-ブタジエン単位(飽和化されている部分を含む)44.0重量%、マレイン酸モノn―ブチル単位4.5重量%、アクリル酸n-ブチル単位30.5重量%であり、カルボキシル基含有量は0.026ephr、ヨウ素価は10、ポリマー・ムーニー粘度〔ML1+4、100℃〕は55であった。また、高飽和ニトリルゴム(A-3)のゲル分量は2.2重量%であった。
 合成例4(高飽和ニトリルゴム(B-1)の合成)
 マレイン酸モノn-ブチル6部に代えて、メタクリル酸4部を使用し、1,3-ブタジエンの使用量を57部から59部に変更した以外は、合成例1と同様にして、高飽和ニトリルゴム(B-1)を得た。得られた高飽和ニトリルゴム(B-1)の組成は、アクリロニトリル単位36.0重量%、1,3-ブタジエン単位(飽和化されている部分を含む)61.0重量%、メタクリル酸単位3.0重量%であり、ヨウ素価は11、カルボキシル基含有量は3.5×10-2ephr、ポリマー・ムーニー粘度〔ML1+4、100℃〕は60であった。また、高飽和ニトリルゴム(B-1)のゲル分量は0.8重量%であった。
 合成例5(高飽和ニトリルゴム(B-2)の合成)
 1,3-ブタジエンの使用量を57部から63部に変更するとともに、マレイン酸モノn-ブチルを使用しなかった以外は、合成例1と同様にして、高飽和ニトリルゴム(B-2)を得た。得られた高飽和ニトリルゴム(B-2)の組成は、アクリロニトリル単位36.2重量%、1,3-ブタジエン単位(飽和化されている部分を含む)63.8重量%であり、ヨウ素価は8、ポリマー・ムーニー粘度〔ML1+4、100℃〕は57であった。また、高飽和ニトリルゴム(B-2)のゲル分量は0.3重量%であった。
 実施例1
 バッチ式混練機であるブラベンダー社製ブラベンダープラスチコーダ(内容量250ml)を用い、230℃に予熱したミキサーに、合成例1で得られた高飽和ニトリルゴム(A-1)40部および4,4’-ジ-(α,α-ジメチルベンジル)ジフェニルアミン(商品名「ノクラックCD」、大内振興化学社製、老化防止剤)0.5部を入れて1分間素練りし、次いで、このミキサーに、ナイロン6(商品名「1013B」、宇部興産社製、融点220℃、ポリアミド系重合体(B))60部を投入して5分間混合した。そして、このミキサーに、ポリアミン架橋剤(C)としてのヘキサメチレンジアミンカーバメート(商品名「Diak#1」、デュポン社製)1部をさらに投入して、230℃に保持した状態にて、さらに7分間混合することで、高飽和ニトリルゴム(A-1)を動的架橋させて、熱可塑性エラストマー組成物を得た。
 そして、得られた熱可塑性エラストマー組成物を用いて、上記方法にしたがって、耐熱性、耐圧縮永久歪み性、耐疲労性、および耐寒性の各評価を行った。結果を表1に示す。
 実施例2
 バッチ式混練機であるブラベンダー社製ブラベンダープラスチコーダ(内容量250ml)を用い、230℃に予熱したミキサーに、合成例1で得られた高飽和ニトリルゴム(A-1)40部および4,4’-ジ-(α,α-ジメチルベンジル)ジフェニルアミン(商品名「ノクラックCD」、大内振興化学社製、老化防止剤)0.5部を入れて1分間素練りし、次いで、このミキサーに、ナイロン6(商品名「1013B」、宇部興産社製、融点220℃、ポリアミド系重合体(B))60部を投入して5分間混合した。そして、このミキサーに、ポリアミン架橋剤(C)としてのヘキサメチレンジアミンカーバメート(商品名「Diak#1」、デュポン社製)1部および1,8-ジアザビシクロ[5,4,0]ウンデセン-7(DBU)(商品名「RHENOGRAN XLA-60(GE2014)」、RheinChemie社製、DBU60%(ジンクジアルキルジフォスフェイト塩になっている部分も含む)、塩基性架橋促進剤)1.6部をさらに投入して、230℃に保持した状態にて、さらに7分間混合することで、高飽和ニトリルゴム(A-1)を動的架橋させて、熱可塑性エラストマー組成物を得た。
 そして、得られた熱可塑性エラストマー組成物を用いて、上記方法にしたがって、耐熱性、耐圧縮永久歪み性、耐疲労性、および耐寒性の各評価を行った。結果を表1に示す。
 実施例3
 バッチ式混練機であるブラベンダー社製ブラベンダープラスチコーダ(内容量250ml)を用い、275℃に予熱したミキサーに、合成例1で得られた高飽和ニトリルゴム(A-1)40部および4,4’-ジ-(α,α-ジメチルベンジル)ジフェニルアミン(商品名「ノクラックCD」、大内振興化学社製、老化防止剤)0.5部を入れて1分間素練りし、次いで、このミキサーに、ナイロン66(商品名「アミランCM3006」、東レ社製、融点265℃、ポリアミド系重合体(B))60部を投入して3分間混合した。そして、このミキサーに、ポリアミン架橋剤(C)としてのヘキサメチレンジアミンカーバメート(商品名「Diak#1」、デュポン社製)1部、および1,8-ジアザビシクロ[5,4,0]ウンデセン-7(DBU)(商品名「RHENOGRAN XLA-60(GE2014)」、RheinChemie社製、DBU60%(ジンクジアルキルジフォスフェイト塩になっている部分も含む)、塩基性架橋促進剤)1.6部をさらに投入して、275℃に保持した状態にて、さらに3分間混合することで、高飽和ニトリルゴム(A-1)を動的架橋させて、熱可塑性エラストマー組成物を得た。
 そして、得られた熱可塑性エラストマー組成物を用いて、実施例1と同様にして評価を行った。結果を表1に示す。
 実施例4
 合成例1で得られた高飽和ニトリルゴム(A-1)40部に代えて、合成例2で得られた高飽和ニトリルゴム(A-2)40部を使用したこと以外は実施例2と同様にして、熱可塑性エラストマー組成物を得て、同様に評価を行った。結果を表1に示す。
 実施例5
 合成例1で得られた高飽和ニトリルゴム(A-1)40部に代えて、合成例3で得られた高飽和ニトリルゴム(A-3)40部を使用したこと以外は実施例2と同様にして、熱可塑性エラストマー組成物を得て、同様に評価を行った。結果を表1に示す。
 比較例1
 合成例1で得られた高飽和ニトリルゴム(A-1)40部に代えて、合成例4で得られた高飽和ニトリルゴム(B-1)を使用した以外は、実施例1と同様にして、熱可塑性エラストマー組成物を得て、同様に評価を行った。結果を表1に示す。
 比較例2
 合成例1で得られた高飽和ニトリルゴム(A-1)40部に代えて、合成例5で得られた高飽和ニトリルゴム(B-2)を使用した以外は、実施例1と同様にして、熱可塑性エラストマー組成物を得て、同様に評価を行った。結果を表1に示す。
 比較例3
 ポリアミン架橋剤(C)としてのヘキサメチレンジアミンカーバメート(商品名「Diak#1」、デュポン社製)を使用しなかったこと以外は、実施例1と同様にして、熱可塑性エラストマー組成物を得て、同様に評価を行った。結果を表1に示す。なお、比較例3においては架橋剤を添加しないため、動的架橋が実質的に進行しないものであった。
Figure JPOXMLDOC01-appb-T000001
 なお、表1中、疲労性の評価において、1,000,000回の耐疲労性試験を行った後においても、試験片が破断しなかったものについては、破断時回数を「>1,000,000」として示した。
 表1より、α,β-エチレン性不飽和ジカルボン酸モノエステル単量体単位としてのマレイン酸モノn―ブチル単位を備える高飽和ニトリルゴム(A)を、ポリアミド系重合体(B)と、ポリアミン架橋剤(C)との存在下で、動的架橋させることにより得られる熱可塑性エラストマー組成物によれば、耐熱性(熱老化前後の伸び変化率)、耐圧縮永久歪み性(圧縮永久歪み率)、耐疲労性(破断時曲回数)、および耐寒性(脆化温度)に優れた成形体を与えるものであった(実施例1~5)。
 一方、カルボキシル基含有単量体単位として、メタクリル酸単位を備える高飽和ニトリルゴムを用いた場合や、カルボキシル基含有単量体単位を有しない高飽和ニトリルゴムを用いた場合には、ポリアミド系重合体(B)と、ポリアミン架橋剤(C)との存在下で、動的架橋させた場合でも、得られる成形体は、耐熱性、耐圧縮永久歪み性、耐屈曲疲労性、および耐寒性に劣るものとなった(比較例1,2)。
 また、マレイン酸モノn―ブチル単位を備える高飽和ニトリルゴム(A)を用いた場合でも、動的架橋を行わなかった場合には、得られる成形体は、耐熱性、耐圧縮永久歪み性、耐疲労性、および耐寒性に劣るものとなった(比較例3)。

Claims (8)

  1.  α,β-エチレン性不飽和ニトリル単量体単位およびα,β-エチレン性不飽和ジカルボン酸モノエステル単量体単位を有し、ヨウ素価が120以下である高飽和ニトリルゴム(A)を、ポリアミド系重合体(B)と、ポリアミン架橋剤(C)との存在下で、動的架橋させる工程を備える熱可塑性エラストマー組成物の製造方法。
  2.  前記動的架橋を、前記高飽和ニトリルゴム(A)と、前記ポリアミド系重合体(B)と、前記ポリアミン架橋剤(C)とを100~400℃で混合することにより行う請求項1に記載の熱可塑性エラストマー組成物の製造方法。
  3.  前記高飽和ニトリルゴム(A)と、前記ポリアミド系重合体(B)との配合割合が、「高飽和ニトリルゴム(A):ポリアミド系重合体(B)」の重量比率で、20:80~80:20である請求項1または2に記載の熱可塑性エラストマー組成物の製造方法。
  4.  前記高飽和ニトリルゴム(A)100重量部に対する、前記ポリアミン架橋剤(C)の配合量が、0.1~20重量部である請求項1~3のいずれかに記載の熱可塑性エラストマー組成物の製造方法。
  5.  前記ポリアミド系重合体(B)が、ナイロン6およびナイロン66から選択される少なくとも一種である請求項1~4のいずれかに記載の熱可塑性エラストマー組成物の製造方法。
  6.  前記動的架橋させる工程が、前記高飽和ニトリルゴム(A)を、ポリアミド系重合体(B)と、ポリアミン架橋剤(C)と、塩基性架橋促進剤(D)との存在下で、動的架橋させる工程である請求項1~5のいずれかに記載の熱可塑性エラストマー組成物の製造方法。
  7.  前記高飽和ニトリルゴム(A)100重量部に対する、前記塩基性架橋促進剤(D)の配合量が、0.1~20重量部である請求項6に記載の熱可塑性エラストマー組成物の製造方法。
  8.  請求項1~7のいずれかに記載の製造方法により得られた熱可塑性エラストマー組成物を成形する工程を備える成形体の製造方法。
PCT/JP2017/000429 2016-01-12 2017-01-10 熱可塑性エラストマー組成物の製造方法 WO2017122617A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780006080.3A CN108431097B (zh) 2016-01-12 2017-01-10 热塑性弹性体组合物的制造方法
EP17738371.8A EP3404056A4 (en) 2016-01-12 2017-01-10 METHOD FOR PRODUCING A THERMOPLASTIC ELASTOMER COMPOSITION
US16/068,710 US20190016889A1 (en) 2016-01-12 2017-01-10 Method for producing thermoplastic elastomer composition
KR1020187022420A KR20180102111A (ko) 2016-01-12 2017-01-10 열가소성 엘라스토머 조성물의 제조 방법
JP2017561104A JP6881318B2 (ja) 2016-01-12 2017-01-10 熱可塑性エラストマー組成物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016003264 2016-01-12
JP2016-003264 2016-01-12

Publications (1)

Publication Number Publication Date
WO2017122617A1 true WO2017122617A1 (ja) 2017-07-20

Family

ID=59311006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000429 WO2017122617A1 (ja) 2016-01-12 2017-01-10 熱可塑性エラストマー組成物の製造方法

Country Status (6)

Country Link
US (1) US20190016889A1 (ja)
EP (1) EP3404056A4 (ja)
JP (1) JP6881318B2 (ja)
KR (1) KR20180102111A (ja)
CN (1) CN108431097B (ja)
WO (1) WO2017122617A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049510A1 (ja) * 2017-09-11 2019-03-14 株式会社クラレ 非水電解質電池セパレータ用塗工液、並びに、それを用いた非水電解質電池用セパレータ及び非水電解質電池
WO2019087788A1 (ja) * 2017-11-02 2019-05-09 Nok株式会社 エチレンアクリレートゴム組成物とその成形品
JPWO2018173699A1 (ja) * 2017-03-24 2020-01-23 日本ゼオン株式会社 ニトリル共重合ゴム組成物、架橋性ニトリル共重合ゴム組成物、及びニトリル共重合ゴム架橋物
WO2021201009A1 (ja) * 2020-03-31 2021-10-07 株式会社大阪ソーダ アクリルゴム、アクリルゴム含有組成物およびゴム架橋物
JP2021161272A (ja) * 2020-03-31 2021-10-11 株式会社豊田中央研究所 熱可塑性エラストマー組成物及びその製造方法
JP7338411B2 (ja) 2019-11-06 2023-09-05 日本ゼオン株式会社 架橋性ゴム組成物およびゴム架橋物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110042725B (zh) * 2019-05-10 2022-01-07 广东中星体育设施有限公司 一种耐冲击超弹性的塑胶跑道
CN113550154B (zh) * 2021-07-22 2023-08-01 泉州天勤箱包有限公司 一种箱包布涂覆用tpe组合物及其制备方法
CN114736510A (zh) * 2022-04-28 2022-07-12 苏州博利迈新材料科技有限公司 汽车发动机油路系统专用尼龙复合材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762248A (ja) * 1993-08-25 1995-03-07 Polytec Design:Kk 耐衝撃性の熱可塑性樹脂
JPH11349734A (ja) * 1998-06-05 1999-12-21 Yokohama Rubber Co Ltd:The 熱可塑性エラストマー組成物およびホース
WO2010087431A1 (ja) * 2009-01-30 2010-08-05 日本ゼオン株式会社 ニトリル基含有高飽和共重合体ゴム
JP2012057111A (ja) * 2010-09-13 2012-03-22 Nippon Zeon Co Ltd ニトリル基含有高飽和共重合体ゴム組成物
WO2015194539A1 (ja) * 2014-06-19 2015-12-23 日本ゼオン株式会社 ゴム架橋物
WO2015199058A1 (ja) * 2014-06-26 2015-12-30 日本ゼオン株式会社 液化ガスシール用ゴム架橋物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591798A (en) * 1988-04-11 1997-01-07 Advanced Elastomer Systems, L.P. High temperature stable, low solvent swelling thermoplastic elastomer compositions
JP4062828B2 (ja) * 1999-08-20 2008-03-19 日本ゼオン株式会社 架橋性ゴム組成物および架橋物
CN100467533C (zh) 2003-09-29 2009-03-11 日本瑞翁株式会社 热塑性弹性体组合物和成形体
WO2016104056A1 (ja) * 2014-12-25 2016-06-30 日本ゼオン株式会社 架橋性ニトリルゴム組成物およびゴム架橋物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762248A (ja) * 1993-08-25 1995-03-07 Polytec Design:Kk 耐衝撃性の熱可塑性樹脂
JPH11349734A (ja) * 1998-06-05 1999-12-21 Yokohama Rubber Co Ltd:The 熱可塑性エラストマー組成物およびホース
WO2010087431A1 (ja) * 2009-01-30 2010-08-05 日本ゼオン株式会社 ニトリル基含有高飽和共重合体ゴム
JP2012057111A (ja) * 2010-09-13 2012-03-22 Nippon Zeon Co Ltd ニトリル基含有高飽和共重合体ゴム組成物
WO2015194539A1 (ja) * 2014-06-19 2015-12-23 日本ゼオン株式会社 ゴム架橋物
WO2015199058A1 (ja) * 2014-06-26 2015-12-30 日本ゼオン株式会社 液化ガスシール用ゴム架橋物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3404056A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018173699A1 (ja) * 2017-03-24 2020-01-23 日本ゼオン株式会社 ニトリル共重合ゴム組成物、架橋性ニトリル共重合ゴム組成物、及びニトリル共重合ゴム架橋物
JP7136082B2 (ja) 2017-03-24 2022-09-13 日本ゼオン株式会社 ニトリル共重合ゴム組成物、架橋性ニトリル共重合ゴム組成物、及びニトリル共重合ゴム架橋物
WO2019049510A1 (ja) * 2017-09-11 2019-03-14 株式会社クラレ 非水電解質電池セパレータ用塗工液、並びに、それを用いた非水電解質電池用セパレータ及び非水電解質電池
WO2019087788A1 (ja) * 2017-11-02 2019-05-09 Nok株式会社 エチレンアクリレートゴム組成物とその成形品
CN110546197A (zh) * 2017-11-02 2019-12-06 Nok株式会社 乙烯丙烯酸酯橡胶组合物及其成型品
US11459442B2 (en) 2017-11-02 2022-10-04 Nok Corporation Ethylene acrylate rubber composition and molded article thereof
CN110546197B (zh) * 2017-11-02 2023-02-17 Nok株式会社 乙烯丙烯酸酯橡胶组合物及其成型品
JP7338411B2 (ja) 2019-11-06 2023-09-05 日本ゼオン株式会社 架橋性ゴム組成物およびゴム架橋物
WO2021201009A1 (ja) * 2020-03-31 2021-10-07 株式会社大阪ソーダ アクリルゴム、アクリルゴム含有組成物およびゴム架橋物
JP2021161272A (ja) * 2020-03-31 2021-10-11 株式会社豊田中央研究所 熱可塑性エラストマー組成物及びその製造方法
JP7140792B2 (ja) 2020-03-31 2022-09-21 株式会社豊田中央研究所 熱可塑性エラストマー組成物及びその製造方法

Also Published As

Publication number Publication date
KR20180102111A (ko) 2018-09-14
JP6881318B2 (ja) 2021-06-02
CN108431097B (zh) 2021-07-16
JPWO2017122617A1 (ja) 2018-11-01
EP3404056A4 (en) 2019-10-02
US20190016889A1 (en) 2019-01-17
EP3404056A1 (en) 2018-11-21
CN108431097A (zh) 2018-08-21

Similar Documents

Publication Publication Date Title
JP6881318B2 (ja) 熱可塑性エラストマー組成物の製造方法
JP5476996B2 (ja) 架橋性ニトリルゴム組成物およびゴム架橋物
JP5742719B2 (ja) 架橋性ニトリルゴム組成物およびその製造方法
WO2017010370A1 (ja) ニトリルゴム組成物およびゴム架橋物
US10287382B2 (en) Nitrile rubber composition and cross-linked rubber
JP5152451B2 (ja) 架橋性ニトリルゴム組成物およびゴム架橋物
JP6733551B2 (ja) 架橋性ニトリルゴム組成物およびゴム架橋物
JP2008163074A (ja) 架橋性ニトリルゴム組成物およびゴム架橋物
JPWO2017086358A1 (ja) ゴム架橋物
JP5531729B2 (ja) ゴム組成物および架橋物
JP6380107B2 (ja) ニトリルゴム組成物およびゴム架橋物
JP5521550B2 (ja) 架橋性ニトリルゴム組成物およびゴム架橋物
JP6439704B2 (ja) 架橋性ニトリルゴム組成物およびゴム架橋物
JP2008179671A (ja) 架橋性ニトリルゴム組成物およびゴム架橋物
WO2018180207A1 (ja) 架橋性ゴム組成物、及びゴム架橋物
JPWO2016148054A1 (ja) ニトリルゴム組成物およびゴム架橋物
JP5644485B2 (ja) ゴム積層体
WO2019049855A1 (ja) カルボキシル基含有ニトリルゴム、架橋性ニトリルゴム組成物およびゴム架橋物
JP7484426B2 (ja) ニトリルゴム組成物およびゴム架橋物
WO2015194539A1 (ja) ゴム架橋物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738371

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017561104

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187022420

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187022420

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2017738371

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017738371

Country of ref document: EP

Effective date: 20180813