WO2017122297A1 - 電子機器及びfa機器 - Google Patents

電子機器及びfa機器 Download PDF

Info

Publication number
WO2017122297A1
WO2017122297A1 PCT/JP2016/050843 JP2016050843W WO2017122297A1 WO 2017122297 A1 WO2017122297 A1 WO 2017122297A1 JP 2016050843 W JP2016050843 W JP 2016050843W WO 2017122297 A1 WO2017122297 A1 WO 2017122297A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocoupler
primary side
value
switches
current
Prior art date
Application number
PCT/JP2016/050843
Other languages
English (en)
French (fr)
Inventor
謙吾 加藤
順也 中村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/050843 priority Critical patent/WO2017122297A1/ja
Publication of WO2017122297A1 publication Critical patent/WO2017122297A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/05Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters

Definitions

  • the present invention relates to an electronic device and an FA (Factory Automation) device that operate by receiving an on / off signal of an external device.
  • FA Vectory Automation
  • an on / off signal at each input point is input to a bus interface ASIC (Application Specific Integrated Circuit) as a parallel signal.
  • ASIC Application Specific Integrated Circuit
  • the same number of insulating elements as the number of input points is required, and as the number of input points increases, the component mounting area increases and the component cost increases.
  • a programmable logic controller can be exemplified as an electronic device that operates by receiving an on / off signal of an external device.
  • Patent Document 1 which is a conventional technique, the number of parts is reduced by converting an external input signal from a parallel signal to a serial signal in an input circuit.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain an electronic device that takes in an on / off signal of an external device and operates at a high response speed.
  • the present invention provides an analog conversion for converting a plurality of input terminals and at least one input from the plurality of input terminals into an analog value and outputting the analog value as one output value. And an insulating element in which the output from the analog conversion unit is input to the primary side and the secondary side and the primary side are insulated.
  • the analog conversion unit outputs different values of analog values when the on / off states of the plurality of input terminals are different.
  • the electronic device according to the present invention has an effect that it can operate at a high response speed by taking in an on / off signal of an external device.
  • FIG. 1 is a diagram illustrating an example of a configuration of an electronic device according to a first embodiment.
  • FIG. 6 is a diagram illustrating an example of a configuration of an electronic device according to a second embodiment.
  • FIG. 1 is a diagram illustrating an example of the configuration of the electronic apparatus according to the first embodiment of the present invention.
  • 1 includes an ASIC 30 connected to the bus 20, an AD (Analog to Digital) conversion circuit 40 connected to the ASIC 30, a photocoupler 50 whose secondary side is connected to the AD conversion circuit 40, A resistor 61 connected to the primary side of the photocoupler 50 and connected in series to the external switch 71, a resistor 62 connected in series to the external switch 72, a resistor 63 connected in series to the external switch 73, and a resistor 61, an input terminal 81 disposed between the switch 71, an input terminal 82 disposed between the resistor 62 and the switch 72, and an input terminal 83 disposed between the resistor 63 and the switch 73.
  • ASIC 30 connected to the bus 20
  • AD (Analog to Digital) conversion circuit 40 connected to the ASIC 30
  • a photocoupler 50 whose secondary side is connected to the AD conversion circuit 40
  • a resistor 61 connected
  • a constant voltage circuit 90 that outputs a constant voltage is connected to the primary side of the photocoupler 50, and an external power supply 100 is connected to the constant voltage circuit 90 to supply power. It has been.
  • An analog conversion unit 110 that converts an input from the input terminals 81, 82, and 83 into a current value that is one analog value and outputs the current value is provided between the photocoupler 50 and the input terminals 81, 82, and 83. .
  • the bus 20 is connected to a device (not shown) that requires information on the on / off state of the switches 71, 72, and 73.
  • the ASIC 30 is an integrated circuit including a processor, a storage unit, an input unit to which a digital signal from the AD conversion circuit 40 is input, and an output unit that outputs data to the bus 20, and is a bus interface ASIC.
  • the AD conversion circuit 40 converts the output voltage, which is an analog signal output from the secondary side of the photocoupler 50, into a digital signal and outputs the digital signal to the ASIC 30.
  • the photocoupler 50 includes a light emitting element that emits light with different intensity depending on the primary current value, and a light receiving element that receives light emitted from the light emitting element and outputs a voltage corresponding to the received light intensity from the secondary side. Prepare.
  • Each of the switches 71, 72, 73 that are external switches of the electronic device 10 is connected in series to each of the resistors 61, 62, 63, and each resistor connected in series when each switch is on. The current flows through the.
  • the current on the primary side of the photocoupler 50 has a current value corresponding to the on / off state of the switches 71, 72, 73.
  • the light intensity on the light emitting side that is the primary side of the photocoupler 50 is determined by the current value of the current flowing through the primary side of the photocoupler 50, and the light on the light emitting side is received by the light receiving side that is the secondary side of the photocoupler 50. Then, the light intensity received by the light receiving side is determined by the light intensity on the light emitting side, and the voltage value of the output voltage output from the secondary side of the photocoupler 50 is determined by the light intensity received by the light receiving side.
  • the output voltage output from the secondary side of the photocoupler 50 is input to the AD conversion circuit 40.
  • the AD conversion circuit 40 converts the value of the output voltage, which is an analog signal, into a digital signal and outputs it to the ASIC 30.
  • the ASIC 30 to which the digital signal output from the AD conversion circuit 40 is input refers to the table data in which the correspondence between the on / off states of the switches 71, 72, and 73 and the voltage value on the secondary side of the photocoupler 50 is recorded. Then, input point state information which is data of on / off states of the switches 71, 72 and 73 is obtained.
  • the ASIC 30 outputs this input point state information to the bus 20.
  • the bus 20 is connected to a device that requires information on the on / off state of the switches 71, 72, and 73. In such a device, the on / off state of the switches 71, 72, and 73 can be used.
  • the switches 71, 72, and 73 are reflected. It is necessary to set the resistance values of the resistors 61, 62, and 63 so that these values are different depending on the ON / OFF state.
  • the resistance values of the resistors 61, 62, and 63 are set so that the current value of the current that flows on the primary side of the photocoupler 50 varies depending on the on / off state of the switches 71, 72, and 73 connected to the outside of the electronic device 10.
  • the relationship between the on / off state of the switches 71, 72, 73 and the current value I OI flowing on the primary side of the photocoupler 50 will be described below.
  • a constant voltage applied by the constant voltage circuit 90 is defined as a constant voltage value Vc.
  • the resistance values R1, R2, and R3 are set so that the current values of the currents flowing to the primary side of the photocoupler 50 are different in all states of the switches 71, 72, and 73.
  • the resistance value R1 of the resistor 61, the resistance value R2 of the resistor 62, and the resistance value R3 of the resistor 63 are different from each other.
  • the resistance value R1, the resistance value R2, the resistance value R3, the two combined resistance values R1 ⁇ R2 / (R1 + R2), the two combined resistance values R2 / R3 / (R2 + R3), and the two combined resistance values R1 ⁇ R3 / (R1 + R3) and the three combined resistance values R1 ⁇ R2 ⁇ R3 / (R2 ⁇ R3 + R1 ⁇ R3 + R1 ⁇ R2) are different from each other.
  • two combined resistance values R1 ⁇ R3 / (R1 + R3) 3 / 4 ⁇
  • three combined resistance values R1 ⁇ R2 ⁇ R3 / (R2 ⁇ R3 + R1 ⁇ R3 + R1 ⁇ R2) 6 / 11 ⁇ .
  • the current value I OI flowing on the primary side of the photocoupler 50 reflects the on / off state of the switches 71, 72, 73, that is, the input terminals 81, 82. , 83, the resistance values of the resistors 61, 62, 63 are set so as to become values corresponding to the signals inputted from them. That is, the resistance values R1, R2, and R3 are set so that the ranges of the current values corresponding to the on / off states of the switches 71, 72, and 73 do not overlap each other.
  • the conventional configuration there is a problem that the response speed is lowered by the conversion process from the parallel signal to the serial signal. Further, the conventional configuration requires a multiplexer which is a conversion circuit from a parallel signal to a serial signal in the input circuit and a DCDC converter which supplies a power supply voltage to the multiplexer, and there is a problem that a component mounting area is large. And since the component cost of a DCDC converter is high, there existed a problem that manufacturing cost was high with the conventional structure.
  • the electronic device converts the input terminal 81, 82, 83 and at least one input from the input terminal 81, 82, 83 into an analog value and converts the current value I as one output value.
  • An analog conversion unit 110 that outputs as OI , and a photocoupler 50 that is an insulating element in which an output from the analog conversion unit 110 is input to the primary side and the secondary side and the primary side are insulated are provided.
  • the analog conversion unit 110 outputs the current values I OI differently.
  • the conversion process from the parallel signal to the serial signal is not required, the response speed is high, and since the conversion circuit from the parallel signal to the serial signal is not required, the component mounting area is reduced and the size is reduced.
  • the cost can be reduced because no DCDC converter is required.
  • the number of parts can be reduced and the cost can be reduced. .
  • the yield is improved, and the manufacturing cost can be suppressed by improving the yield.
  • the first embodiment it is possible to realize an electronic device that takes in an on / off signal of an external device and operates at a high response speed.
  • FIG. 2 is a diagram illustrating an example of the configuration of the electronic apparatus according to the second embodiment of the present invention.
  • the electronic device 10a illustrated in FIG. 2 includes resistors 61a, 62a, and 63a having a resistance value R0 instead of the resistors 61, 62, and 63 illustrated in FIG.
  • a resistor 64a having a resistance value R0 is provided between the primary side of the photocoupler 50 and the resistor 62a, and resistors 64a and 65a having a resistance value R0 are provided between the primary side of the photocoupler 50 and the resistor 63a. That is, the resistors 61a, 62a, 63a, 64a, and 65a all have the resistance value R0, and the resistance values of all the resistors are equal.
  • An analog conversion unit 110a that converts an input from the input terminals 81, 82, and 83 into a current value that is one analog value and outputs the current value is provided between the photocoupler 50 and the input terminals 81, 82, and 83.
  • Other configurations are the same as those of the electronic apparatus 10 shown in FIG.
  • the current value of the current flowing to the primary side of the photocoupler 50 varies depending on the on / off state of the switches 71, 72, 73 connected to the outside of the electronic device 10a.
  • the relationship between the on / off state of the switches 71, 72, 73 and the current value I OI flowing on the primary side of the photocoupler 50 will be described below.
  • a constant voltage applied by the constant voltage circuit 90 is defined as a constant voltage value Vc.
  • the current value I OI flowing on the primary side of the photocoupler 50 reflects the on / off state of the switches 71, 72, 73 in consideration of the fluctuation of the current value.
  • the resistance value R0 is set. That is, the resistance value R0 is set so that the ranges of the respective current values corresponding to the on / off states of the switches 71, 72, and 73 do not overlap each other.
  • the configuration of the first embodiment has an advantage that only one resistance element is added even if one switch is added. Therefore, any one of the configuration of the first embodiment and the configuration of the second embodiment may be appropriately selected depending on conditions required for the electronic device.
  • the current value on the primary side of the photocoupler 50 which is a fixed point in the circuit, is determined by the on / off states of a plurality of external switches connected in parallel to each other.
  • the current value on the primary side of the photocoupler 50 is configured to be different, so that only the current value on the primary side of the photocoupler 50 is acquired, It is possible to grasp the on / off state.
  • the voltage value on the secondary side of the photocoupler 50 which is a fixed point in the circuit, is determined by the on / off states of a plurality of external switches connected in parallel to each other, and the on / off states of the plurality of external switches are different. Since the voltage values on the secondary side of the photocoupler 50 are different, it is possible to grasp the on / off states of a plurality of external switches only by acquiring the voltage value on the secondary side of the photocoupler 50. It becomes.
  • the number of external switches is three.
  • the number of external switches is not limited.
  • resistors are connected in series to the external switch, the number of resistors is determined by the number of external switches.
  • the electronic device described in the first and second embodiments can be exemplified by a programmable logic controller connected to a FA (Factory Automation) device.
  • FA Fractory Automation
  • Embodiments 1 and 2 show an example of the contents of the present invention, and can be combined with other known techniques, and can be combined without departing from the gist of the present invention. It is also possible to omit or change a part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Programmable Controllers (AREA)
  • Electronic Switches (AREA)

Abstract

外部機器のオンオフ信号を取り込んで高い応答速度で動作する電子機器を得ることを目的とし、入力端子81,82,83と、入力端子81,82,83からの少なくとも1つの入力をアナログ値に変換して1つの出力値である電流値IOIとして出力するアナログ変換部110と、一次側にアナログ変換部110からの出力が入力され、二次側と一次側とが絶縁された絶縁素子であるフォトカプラ50とを備える。アナログ変換部110は、入力端子81,82,83からのオンオフ状態が異なる場合には、電流値IOIが異なるように出力する。

Description

電子機器及びFA機器
 本発明は、外部機器のオンオフ信号を取り込んで動作する電子機器及びFA(Factory Automation)機器に関する。
 外部機器のオンオフ信号を取り込んで動作する電子機器では、一般に、各入力点のオンオフ信号がパラレル信号でバスインターフェースASIC(Application Specific Integrated Circuit)に入力される。このような従来の構成では、入力点の数と同数の絶縁素子が必要であり、入力点の数が増えると部品実装面積が拡大し、部品コストが増大してしまう。なお、外部機器のオンオフ信号を取り込んで動作する電子機器には、プログラマブルロジックコントローラを例示することができる。
 従来の技術である特許文献1の構成では、入力回路において外部入力信号がパラレル信号からシリアル信号に変換されることで、部品点数を少なくしている。
特開平6-4114号公報
 しかしながら、上記従来の技術によれば、パラレル信号からシリアル信号への変換の処理時間を要する。そのため、応答速度が低い、という問題があった。
 本発明は、上記に鑑みてなされたものであって、外部機器のオンオフ信号を取り込んで高い応答速度で動作する電子機器を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、複数の入力端子と、複数の入力端子からの少なくとも1つの入力をアナログ値に変換して1つの出力値として出力するアナログ変換部と、一次側にアナログ変換部からの出力が入力され、二次側と一次側とが絶縁された絶縁素子とを備える。アナログ変換部は、複数の入力端子のオンオフ状態が異なる場合には、アナログ値が異なる値を出力することを特徴とする。
 本発明にかかる電子機器は、外部機器のオンオフ信号を取り込んで高い応答速度で動作することができるという効果を奏する。
実施の形態1にかかる電子機器の構成の一例を示す図 実施の形態2にかかる電子機器の構成の一例を示す図
 以下に、本発明の実施の形態にかかる電子機器及びFA機器を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1にかかる電子機器の構成の一例を示す図である。図1に示す電子機器10は、バス20に接続されたASIC30と、ASIC30に接続されたAD(Analog to Digital)変換回路40と、AD変換回路40に二次側が接続されたフォトカプラ50と、フォトカプラ50の一次側に接続され、外部のスイッチ71に直列接続された抵抗61と、外部のスイッチ72に直列接続された抵抗62と、外部のスイッチ73に直列接続された抵抗63と、抵抗61とスイッチ71との間に配された入力端子81と、抵抗62とスイッチ72との間に配された入力端子82と、抵抗63とスイッチ73との間に配された入力端子83とを備え、フォトカプラ50の一次側に一定の電圧を出力する定電圧回路90が接続され、定電圧回路90には外部電源100が接続されて電力が供給されている。入力端子81,82,83からの入力を1つのアナログ値である電流値に変換して出力するアナログ変換部110は、フォトカプラ50と入力端子81,82,83との間に設けられている。
 バス20は、スイッチ71,72,73のオンオフ状態の情報を必要とする図示しない機器に接続される。ASIC30は、プロセッサと、記憶部と、AD変換回路40からのデジタル信号が入力される入力部と、バス20へデータを出力する出力部とを備える集積回路であり、バスインターフェースASICである。AD変換回路40は、フォトカプラ50の二次側から出力されたアナログ信号である出力電圧をデジタル信号に変換してASIC30に出力する。フォトカプラ50は、一次側の電流値によって発光する光強度が異なる発光素子と、この発光素子からの発光を受光して受光した光強度に対応した電圧を二次側から出力する受光素子とを備える。
 電子機器10の外部のスイッチであるスイッチ71,72,73の各々は、抵抗61,62,63の各々に直列接続されており、各スイッチがオンしている場合には直列接続された各抵抗に電流が流れる構成である。
 図1において、フォトカプラ50の一次側の電流は、スイッチ71,72,73のオンオフ状態に対応した電流値となる。そして、フォトカプラ50の一次側に流れる電流の電流値によってフォトカプラ50の一次側である発光側の光強度が決まり、この発光側の光がフォトカプラ50の二次側である受光側で受光されると、この発光側の光強度によって受光側が受光する光強度が決まり、この受光側が受光した光強度によってフォトカプラ50の二次側が出力する出力電圧の電圧値が決まる。フォトカプラ50の二次側が出力した出力電圧はAD変換回路40に入力される。AD変換回路40は、アナログ信号である出力電圧の値をデジタル信号に変換してASIC30に出力する。AD変換回路40が出力したデジタル信号が入力されたASIC30は、スイッチ71,72,73のオンオフ状態とフォトカプラ50の二次側の電圧値との対応が記録されたテーブルデータを参照することで、スイッチ71,72,73のオンオフ状態のデータである入力点状態情報を得る。
 なお、スイッチ71,72,73のオンオフ状態とフォトカプラ50の二次側の電圧値との対応が記録されたテーブルデータは、ASIC30が有する記憶部に予め保存されている。ASIC30は、この入力点状態情報をバス20に出力する。バス20は、スイッチ71,72,73のオンオフ状態の情報を必要とする機器に接続されており、このような機器において、スイッチ71,72,73のオンオフ状態を利用することができる。
 上記説明したように、スイッチ71,72,73のオンオフ状態を、フォトカプラ50の一次側の電流値又はフォトカプラ50の二次側の電圧値に反映させるためには、スイッチ71,72,73のオンオフ状態によって、これらの値が異なるものとなるように抵抗61,62,63の抵抗値を設定することを要する。
 電子機器10の外部に接続されたスイッチ71,72,73のオンオフ状態によってフォトカプラ50の一次側に流れる電流の電流値が異なるように抵抗61,62,63の抵抗値を設定する。スイッチ71,72,73のオンオフ状態と、フォトカプラ50の一次側に流れる電流値IOIとの関係について以下に説明する。なお、以下の説明において、定電圧回路90が印加する一定の電圧を定電圧値Vcとする。
 スイッチ71,72,73が全てオフしている場合には、フォトカプラ50の一次側には電流が流れない。すなわち、フォトカプラ50の一次側に流れる電流は、電流値IOI=0である。
 スイッチ71がオンし、スイッチ72,73がオフしている場合には、定電圧回路90の出力電流は、抵抗61を流れ、抵抗62,63を流れない。そのため、フォトカプラ50の一次側に流れる電流は、電流値IOI=Vc/R1である。
 スイッチ72がオンし、スイッチ71,73がオフしている場合には、定電圧回路90の出力電流は、抵抗62を流れ、抵抗61,63を流れない。そのため、フォトカプラ50の一次側に流れる電流は、電流値IOI=Vc/R2である。
 スイッチ73がオンし、スイッチ71,72がオフしている場合には、定電圧回路90の出力電流は、抵抗63を流れ、抵抗61,62を流れない。そのため、フォトカプラ50の一次側に流れる電流は、電流値IOI=Vc/R3である。
 スイッチ71,72がオンし、スイッチ73がオフしている場合には、定電圧回路90の出力電流は、抵抗61,62を流れ、抵抗63を流れない。そのため、合成抵抗の逆数が、抵抗61の逆数と抵抗62の逆数との和により表され、フォトカプラ50の一次側に流れる電流は、電流値IOI=Vc・(R1+R2)/R1・R2である。
 スイッチ72,73がオンし、スイッチ71がオフしている場合には、定電圧回路90の出力電流は、抵抗62,63を流れ、抵抗61を流れない。そのため、合成抵抗の逆数が、抵抗62の逆数と抵抗63の逆数との和により表され、フォトカプラ50の一次側に流れる電流は、電流値IOI=Vc・(R2+R3)/R2・R3である。
 スイッチ71,73がオンし、スイッチ72がオフしている場合には、定電圧回路90の出力電流は、抵抗61,63を流れ、抵抗62を流れない。そのため、合成抵抗の逆数が、抵抗61の逆数と抵抗63の逆数との和により表され、フォトカプラ50の一次側に流れる電流は、電流値IOI=Vc・(R1+R3)/R1・R3である。
 スイッチ71,72,73が全てオンしている場合には、定電圧回路90の出力電流は、抵抗61,62,63のすべてを流れる。そのため、合成抵抗の逆数が、抵抗61の逆数と、抵抗62の逆数と、抵抗63の逆数との和により表され、フォトカプラ50の一次側に流れる電流は、電流値IOI=Vc・(R2・R3+R1・R3+R1・R2)/R1・R2・R3である。
 本実施の形態1においては、スイッチ71,72,73のすべての状態において、フォトカプラ50の一次側に流れる電流の各電流値が異なるように抵抗値R1,R2,R3を設定する。まず、抵抗61の抵抗値R1と、抵抗62の抵抗値R2と、抵抗63の抵抗値R3とは、各々異なる値とする。そして、抵抗値R1と、抵抗値R2と、抵抗値R3と、2つの合成抵抗値R1・R2/(R1+R2)と、2つの合成抵抗値R2・R3/(R2+R3)と、2つの合成抵抗値R1・R3/(R1+R3)と、3つの合成抵抗値R1・R2・R3/(R2・R3+R1・R3+R1・R2)とは各々異なる値とする。
 ここで、R1=1Ωとし、R2=2Ωとし、R3=3Ωとする場合を例示すると、2つの合成抵抗値R1・R2/(R1+R2)=2/3Ωであり、2つの合成抵抗値R2・R3/(R2+R3)=6/5Ωであり、2つの合成抵抗値R1・R3/(R1+R3)=3/4Ωであり、3つの合成抵抗値R1・R2・R3/(R2・R3+R1・R3+R1・R2)=6/11Ωである。そのため、R1=1Ωとし、R2=2Ωとし、R3=3Ωとすれば、抵抗値R1と、抵抗値R2と、抵抗値R3と、これらの合成抵抗値とは異なる値をとるため、フォトカプラ50の一次側に流れる電流値IOIは、スイッチ71,72,73のオンオフ状態を反映したものとなる。
 なお、ここでは電流値の変動について考慮していないが、実際の回路においては電流値の変動が生じる。そのため、電流値の変動を考慮した上で、フォトカプラ50の一次側に流れる電流値IOIがスイッチ71,72,73のオンオフ状態を反映したものとなるように、すなわち、入力端子81,82,83から入力される信号に対応した値となるように抵抗61,62,63の抵抗値を設定する。すなわち、スイッチ71,72,73のオンオフ状態に対応した各電流値の範囲が各々重ならないように抵抗値R1,R2,R3を設定する。
 従来の構成では、パラレル信号からシリアル信号への変換処理により応答速度が低下する、という問題があった。また、従来の構成では、入力回路にパラレル信号からシリアル信号への変換回路であるマルチプレクサ及びこのマルチプレクサに電源電圧を供給するDCDCコンバータを要し、部品実装面積が大きい、という問題があった。そして、DCDCコンバータの部品コストが高いため、従来の構成では、製造コストが高い、という問題があった。
 そこで、本実施の形態1の電子機器は、入力端子81,82,83と、入力端子81,82,83からの少なくとも1つの入力をアナログ値に変換して1つの出力値である電流値IOIとして出力するアナログ変換部110と、一次側にアナログ変換部110からの出力が入力され、二次側と一次側とが絶縁された絶縁素子であるフォトカプラ50とを備える。アナログ変換部110は、入力端子81,82,83からのオンオフ状態が異なる場合には、電流値IOIが異なるように出力する。本実施の形態1の構成では、パラレル信号からシリアル信号への変換処理が不要であるため応答速度が高く、パラレル信号からシリアル信号への変換回路が不要であるため部品実装面積が削減されて小型化が可能であり、DCDCコンバータが不要であるため低コスト化が可能である。また、複数の入力点であるスイッチ71,72,73に対して、絶縁素子であるフォトカプラ50を1つ設ければよいため、部品点数を少なくすることができ、低コスト化が可能である。また、部品点数が少なくなるため歩留まりが向上し、歩留まりの向上によっても製造コストが抑えられる。
 本実施の形態1によれば、外部機器のオンオフ信号を取り込んで高い応答速度で動作する電子機器を実現することができる。
実施の形態2.
 実施の形態1では、スイッチに直列接続される抵抗の抵抗値を各々異ならせる形態について説明したが、本発明はこれに限定されるものではない。図2は、本発明の実施の形態2にかかる電子機器の構成の一例を示す図である。図2に示す電子機器10aは、図1に示す抵抗61,62,63に代えて抵抗値R0の抵抗61a,62a,63aを備える。そして、フォトカプラ50の一次側と抵抗62aとの間には抵抗値R0の抵抗64aを備え、フォトカプラ50の一次側と抵抗63aとの間には抵抗値R0の抵抗64a,65aを備える。すなわち、抵抗61a,62a,63a,64a,65aはすべて抵抗値R0であり、すべての抵抗の抵抗値が等しいものとなっている。入力端子81,82,83からの入力を1つのアナログ値である電流値に変換して出力するアナログ変換部110aは、フォトカプラ50と入力端子81,82,83との間に設けられている。その他の構成は、図1に示す電子機器10と同様である。
 本実施の形態2においても実施の形態1と同様に、電子機器10aの外部に接続されたスイッチ71,72,73のオンオフ状態によってフォトカプラ50の一次側に流れる電流の電流値が異なるように設定する。スイッチ71,72,73のオンオフ状態と、フォトカプラ50の一次側に流れる電流値IOIとの関係について以下に説明する。なお、以下の説明において、定電圧回路90が印加する一定の電圧を定電圧値Vcとする。
 スイッチ71,72,73が全てオフしている場合には、フォトカプラ50の一次側には電流が流れない。すなわち、フォトカプラ50の一次側に流れる電流は、電流値IOI=0である。
 スイッチ71がオンし、スイッチ72,73がオフしている場合には、定電圧回路90の出力電流は、抵抗61aを流れ、フォトカプラ50の一次側に流れる電流は、電流値IOI=Vc/R0である。
 スイッチ72がオンし、スイッチ71,73がオフしている場合には、定電圧回路90の出力電流は、抵抗62a,64aを流れ、フォトカプラ50の一次側に流れる電流は、電流値IOI=Vc/2R0である。
 スイッチ73がオンし、スイッチ71,72がオフしている場合には、定電圧回路90の出力電流は、抵抗63a,64a,65aを流れ、フォトカプラ50の一次側に流れる電流は、電流値IOI=Vc/3R0である。
 スイッチ71,72がオンし、スイッチ73がオフしている場合には、定電圧回路90の出力電流は、抵抗61a,62a,64aを流れ、フォトカプラ50の一次側に流れる電流は、電流値IOI=2Vc/3R0である。
 スイッチ72,73がオンし、スイッチ71がオフしている場合には、定電圧回路90の出力電流は、抵抗62a,63a,64a,65aを流れ、フォトカプラ50の一次側に流れる電流は、電流値IOI=3Vc/5R0である。
 スイッチ71,73がオンし、スイッチ72がオフしている場合には、定電圧回路90の出力電流は、抵抗61a,63a,64a,65aを流れ、フォトカプラ50の一次側に流れる電流は、電流値IOI=4Vc/3R0である。
 スイッチ71,72,73が全てオンしている場合には、定電圧回路90の出力電流は、抵抗61a,62a,63a,64a,65aを流れ、フォトカプラ50の一次側に流れる電流は、電流値IOI=8Vc/5R0である。
 このように、スイッチ71,72,73の全てがオフしている場合にはフォトカプラ50の一次側に流れる電流値IOI=0であり、スイッチ71のみがオンしている場合にはフォトカプラ50の一次側に流れる電流値IOI=Vc/R0であり、スイッチ72のみがオンしている場合にはフォトカプラ50の一次側に流れる電流値IOI=Vc/2R0であり、スイッチ73のみがオンしている場合にはフォトカプラ50の一次側に流れる電流値IOI=Vc/3R0であり、スイッチ73のみがオフしている場合にはフォトカプラ50の一次側に流れる電流値IOI=2Vc/3R0であり、スイッチ71のみがオフしている場合にはフォトカプラ50の一次側に流れる電流値IOI=3Vc/5R0であり、スイッチ72のみがオフしている場合にはフォトカプラ50の一次側に流れる電流値IOI=4Vc/3R0であり、スイッチ71,72,73の全てがオンしている場合にはフォトカプラ50の一次側に流れる電流値IOI=8Vc/5R0である。本実施の形態2においても、スイッチ71,72,73のすべての状態において、フォトカプラ50の一次側に流れる電流の各電流値が異なる。
 なお、本実施の形態2においても、電流値の変動を考慮した上で、フォトカプラ50の一次側に流れる電流値IOIがスイッチ71,72,73のオンオフ状態を反映したものとなるように、抵抗値R0を設定する。すなわち、スイッチ71,72,73のオンオフ状態に対応した各電流値の範囲が各々重ならないように抵抗値R0を設定する。
 本実施の形態2によっても外部機器のオンオフ信号を取り込んで高い応答速度で動作する電子機器を実現することができる。
 なお、本実施の形態2においては抵抗値が等しい抵抗を用いるため、同一規格の抵抗を用いればよく、調達が容易であるというメリットがある。他方、実施の形態1の構成においてはスイッチが1つ増えても抵抗素子が1つしか増えないというメリットがある。従って、電子機器に求められる条件によって、実施の形態1の構成及び本実施の形態2の構成のいずれかを適宜選択すればよい。
 実施の形態1,2にて説明したように、回路内の定点であるフォトカプラ50の一次側における電流値が、互いに並列に接続された複数の外部のスイッチのオンオフ状態によって決定され、複数の外部のスイッチのオンオフ状態が異なる場合には、フォトカプラ50の一次側におけるこの電流値が異なる構成とすることで、フォトカプラ50の一次側の電流値を取得するのみで複数の外部のスイッチのオンオフ状態を把握することが可能となる。
 又は、回路内の定点であるフォトカプラ50の二次側における電圧値が、互いに並列に接続された複数の外部のスイッチのオンオフ状態によって決定され、複数の外部のスイッチのオンオフ状態が異なる場合には、フォトカプラ50の二次側におけるこの電圧値が異なる構成とすることで、フォトカプラ50の二次側の電圧値を取得するのみで複数の外部のスイッチのオンオフ状態を把握することが可能となる。
 なお、実施の形態1,2においては、外部のスイッチの個数が3つであるが、本発明において、外部のスイッチの個数は限定されない。ただし、外部のスイッチには抵抗が直列接続されるため、抵抗の個数は、外部のスイッチの個数によって決まる。
 なお、実施の形態1,2において説明した電子機器には、FA(Factory Automation)機器に接続されるプログラマブルロジックコントローラを例示することができる。
 実施の形態1,2に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 10,10a 電子機器、20 バス、30 ASIC、40 AD変換回路、50 フォトカプラ、61,61a,62,62a,63,63a,64a,65a 抵抗、71,72,73 スイッチ、81,82,83 入力端子、90 定電圧回路、100 外部電源、110 アナログ変換部。

Claims (7)

  1.  複数の入力端子と、
     複数の前記入力端子からの少なくとも1つの入力をアナログ値に変換して1つの出力値として出力するアナログ変換部と、
     一次側に前記アナログ変換部からの出力が入力され、二次側と前記一次側とが絶縁された絶縁素子とを備え、
     前記アナログ変換部は、複数の前記入力端子のオンオフ状態が異なる場合には、前記アナログ値が異なるように出力することを特徴とする電子機器。
  2.  前記アナログ値は、電流値であることを特徴とする請求項1に記載の電子機器。
  3.  前記絶縁素子の前記二次側からの出力をアナログ値からデジタル値に変換するAD変換部を備えることを特徴とする請求項1に記載の電子機器。
  4.  前記アナログ変換部では、
     前記複数の入力端子からの電流が足し合わされて前記絶縁素子の前記一次側に入力され、
     前記絶縁素子の前記二次側から出力される電圧が前記変換部に入力されることを特徴とする請求項3に記載の電子機器。
  5.  前記アナログ変換部は、
     前記複数の入力端子の各々と前記絶縁素子の前記一次側との間の抵抗値が異なることを特徴とする請求項4に記載の電子機器。
  6.  前記絶縁素子はフォトカプラであることを特徴とする請求項1から請求項5のいずれか一項に記載の電子機器。
  7.  請求項1から請求項6のいずれか一項に記載の電子機器であるプログラマブルロジックコントローラが接続されるFA機器。
PCT/JP2016/050843 2016-01-13 2016-01-13 電子機器及びfa機器 WO2017122297A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/050843 WO2017122297A1 (ja) 2016-01-13 2016-01-13 電子機器及びfa機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/050843 WO2017122297A1 (ja) 2016-01-13 2016-01-13 電子機器及びfa機器

Publications (1)

Publication Number Publication Date
WO2017122297A1 true WO2017122297A1 (ja) 2017-07-20

Family

ID=59311755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050843 WO2017122297A1 (ja) 2016-01-13 2016-01-13 電子機器及びfa機器

Country Status (1)

Country Link
WO (1) WO2017122297A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6635238B1 (ja) * 2019-03-11 2020-01-22 三菱電機株式会社 安全制御装置および安全制御システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02131640A (ja) * 1988-11-11 1990-05-21 Nec Corp 光モジュール用電気信号多重化回路
JPH064114A (ja) * 1992-06-22 1994-01-14 Hitachi Ltd プログラマブルコントローラ
JP2000138682A (ja) * 1998-10-30 2000-05-16 Omron Corp スレーブ装置および省配線システム
JP2001127634A (ja) * 1999-11-01 2001-05-11 Rohm Co Ltd ディジタル・アナログ変換器
JP2005040418A (ja) * 2003-07-24 2005-02-17 Aloka Co Ltd 超音波診断装置
US20050075134A1 (en) * 2003-09-23 2005-04-07 Jack Steenstra Non-wireless communication using sound

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02131640A (ja) * 1988-11-11 1990-05-21 Nec Corp 光モジュール用電気信号多重化回路
JPH064114A (ja) * 1992-06-22 1994-01-14 Hitachi Ltd プログラマブルコントローラ
JP2000138682A (ja) * 1998-10-30 2000-05-16 Omron Corp スレーブ装置および省配線システム
JP2001127634A (ja) * 1999-11-01 2001-05-11 Rohm Co Ltd ディジタル・アナログ変換器
JP2005040418A (ja) * 2003-07-24 2005-02-17 Aloka Co Ltd 超音波診断装置
US20050075134A1 (en) * 2003-09-23 2005-04-07 Jack Steenstra Non-wireless communication using sound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6635238B1 (ja) * 2019-03-11 2020-01-22 三菱電機株式会社 安全制御装置および安全制御システム
WO2020183559A1 (ja) * 2019-03-11 2020-09-17 三菱電機株式会社 安全制御装置および安全制御システム

Similar Documents

Publication Publication Date Title
US9307612B2 (en) Light emitting device driver circuit and driving method of light emitting device circuit
JP6135940B2 (ja) 入出力モジュール
KR102697193B1 (ko) 구동 모듈 및 디스플레이 장치
JP6428753B2 (ja) 電力変換装置の制御システム
WO2017122297A1 (ja) 電子機器及びfa機器
US9429629B1 (en) Electronic loads
CN106921379B (zh) 输入电路
KR20150071821A (ko) 과전류 검출 장치 및 방법
US8174151B2 (en) Power supply control apparatus
US20140133058A1 (en) Driving circuit
JP2015215287A (ja) 電圧検出装置
JP2015177223A (ja) 操作スイッチ検出システム
JPWO2018134920A1 (ja) アイソレータ回路
KR101833856B1 (ko) 차동 모드 변환 장치, 차동 모드 변환 장치를 이용한 계측 장치
JP5225170B2 (ja) 保護制御装置
JP2015220812A (ja) 電圧検出装置
KR101548349B1 (ko) 다채널 스위치 구동 장치
US9271072B2 (en) Analog input module
US8766622B2 (en) Voltage measuring apparatus for buck circuit
CN106468897B (zh) 接口装置和处理系统
JP5353684B2 (ja) 電気回路
JP2017118814A (ja) 電力変換装置の制御システム
JP4830058B2 (ja) 2線式伝送器
JP2020017003A (ja) 電源ユニット、及び電源
SU1765777A1 (ru) Устройство дл преобразовани напр жени в ток

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16884900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP