WO2017122044A1 - Équipement pour traitement de nitruration/nitrocarburation ionique comprenant deux chambres de four à ressources partagées, pouvant effectuer un traitement par décharge luminescente de façon continue entre les deux chambres - Google Patents

Équipement pour traitement de nitruration/nitrocarburation ionique comprenant deux chambres de four à ressources partagées, pouvant effectuer un traitement par décharge luminescente de façon continue entre les deux chambres Download PDF

Info

Publication number
WO2017122044A1
WO2017122044A1 PCT/IB2016/050144 IB2016050144W WO2017122044A1 WO 2017122044 A1 WO2017122044 A1 WO 2017122044A1 IB 2016050144 W IB2016050144 W IB 2016050144W WO 2017122044 A1 WO2017122044 A1 WO 2017122044A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
glow discharge
chambers
equipment
treatment
Prior art date
Application number
PCT/IB2016/050144
Other languages
English (en)
Inventor
Andrés BERNAL DUQUE
Santiago VARGAS GIRALDO
Original Assignee
Ion Heat S.A.S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ion Heat S.A.S filed Critical Ion Heat S.A.S
Priority to PCT/IB2016/050144 priority Critical patent/WO2017122044A1/fr
Publication of WO2017122044A1 publication Critical patent/WO2017122044A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32018Glow discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/339Synthesising components

Definitions

  • Equipment for ion nitriding/nitrocarburizing treatment comprising two furnace chambers with shared resources, able to run glow discharge treatment continuously between the two chambers.
  • This invention relates to an ion nitriding treatment plant or equipment in which ionized gases, generated by an applied electrical field, are used to form nitrides at the surface of different materials with the aim of producing local hardening of the same.
  • Ion nitriding treatment is generally carried out at temperatures between 200-600 °C in a vacuum furnace. At this temperature, the parts to be nitrided are subjected to a glow discharge, generated by an applied electrical field. The parts to nitrided are connected as cathode and the furnace walls act as the anode. When nitrogen containing gas is released in the vacuum furnace, it is ionized and the atoms accelerate toward the cathode (work piece) creating a bombardment of ions on its surface, thereby forming a nitride containing layer on the work piece. In this way, the plasma nitriding process uses the active species that are generated during an electrical discharge in gases at low pressures to obtain a nitriding potential.
  • the processes of ionization and recombination of the plasma generate active species that allow the formation of nitrides.
  • the parts are cooled in the furnace in a controlled atmosphere to minimize dimensional deformations and the formation of oxides.
  • the ion nitriding treatment can be divided into three steps consisting of heating in a controlled atmosphere (1), glow discharge treatment for plasma cleaning and nitriding/nitrocarburizing (2), and cooling (3).
  • heating of the pa rts was carried out by the glow discharge in a vacuum, however later systems incorporated heating elements elements in the exterior furnace walls to heat its interior, thereby increasing the thermal efficiency of the process and reducing the problems of arcing and degasing of the vacuum chamber.
  • the heating elements can thus be used to provide step 1 of the ion nitriding process.
  • the process has a fourth step: loading/unloading of the parts.
  • tandem systems For treating large volumes, more than one load is often needed and to improve process efficiency, nitriding systems with two furnace chambers have been developed, often referred to as tandem systems. These provide the possibility of running a treatment in one chamber while the other chamber is being loaded, therefore saving the time for this fourth step between two treatments.
  • the second chamber can be loaded and sealed while treatment in the first chamber is running, currently it cannot be heated until the cooling step begins in the first chamber. The reason for this is that to be able to run the heating step in the second chamber while the first one is still under glow discharge treatment, it is necessary to design and build a number of features in the hardware and the software that allow this.
  • the state of the art include a plurality of disclosure related to this kind of equipment or treatment process, such as document EP 0159222, which teaches the treatment, which endows steel or cast iron parts with resistance to wear and to corrosion, being characterized in that the surface of the parts is subjected successively to ionic nitriding, ionic oxynitriding and ionic oxidation.
  • document US 4194930 discloses an ion-nitriding process wherein a workpiece having at least one aperture is subjected to a DC voltage in an atmosphere of nitrogen-containing gas, characterized in that a first nitriding step is carried out under a vacuum which is strong enough to suppress arc discharge on the workpiece, and a second nitriding step is carried out under a weaker vacuum as compared to that in the first step such that glow discharge is produced even in the aperture of the workpiece.
  • document US 4109157 divulges an apparatus for ion-nitriding comprising: (a) a vacuum chamber sectioned into a heating area having insulating chamber walls and a discharge nitriding area having electrically conductive chamber walls; (b) a first transferring means disposed in said heating area for transferring a workpiece; (c) heating means disposed in said heating area for pre-heating the workpiece up to the temperature at which the workpiece can be glow discharge nitrided; (d) electrically conductive transferring means disposed in said discharge nitriding area for receiving the pre-heated workpiece from said first transferring means; (e) heat- retaining means disposed in said discharge nitriding area for maintaining the pre-heated workpiece at a temperature suitable for glow discharge nitriding; and (f) discharge means to generate glow discharge between said conductive chamber wall of said discharge nitriding area as anode and said electrically conductive transferring means as cathode.
  • US 4179617 discloses an ion- nitriding apparatus wherein heating and nitriding of workpieces can be carried out at high thermal efficiency, with excellent uniformity and in a short time by the combined use of glow discharge and heat generated by a heat-producing element. Heating efficiency can be raised in heating of workpieces by lessening the heat value to be released out of the furnace, and overheating of workpieces can be prevented during nitriding by increasing the heat value to be released out of the furnace in proportion to the increase of glow discharge output, and thus the nitriding efficiency can be raised.
  • document US 4460415 discloses a method for nitriding materials using a glow discharge in an atmosphere of nitrogen or gas mixture at a suitable pressure, wherein the nitriding treatment can be combined with a plasma aided coating process and the temperature control during both processes can be achieved with the aid of separate filament.
  • the nitriding unit can be a separate rig or a part of the coating unit.
  • the method can be used to increase the wear resistance of a work piece by increasing the hardness of its surface. Because of the low pressure used in the nitriding process the same equipment can be used to produce a separate hard and wear resistant compound or alloy coating on the nitrided surface to further increase the hardness of the uppermost surface.
  • the main goal of the method is in increasing the wear and corrosion resistance of machine parts and tools.
  • document US 5176760 describes a hard wear-resistant and corrosion- and oxidation- resistant stainless steel article made by precision machining a work piece of approximately the size and shape of the desired article, then subjecting the resulting cold worked article to ion bombardment until the article is nitrided to a depth of about 0.002 inch. Finally the nitrided article is subjected to an atmosphere of argon, nitrogen, and oxygen until the resulting ion bombardment has penetrated to a depth in the article surface of about 0.0001 inch.
  • document US 6179933 discloses a process of manufacturing a rolling-element bearing component from pre-hardened steel, wherein as a final step in the manufacturing process the component is subjected to a plasma (ion) nitriding treatment by exposing the component to plasma created by subjecting a gaseous atmosphere composed of substantially 2 % N 2 and 98 % H 2 to electrical energy for a short time duration of about 1 to 2 hours, to create a hardened outer surface case which is devoid of any compound layer.
  • a plasma (ion) nitriding treatment by exposing the component to plasma created by subjecting a gaseous atmosphere composed of substantially 2 % N 2 and 98 % H 2 to electrical energy for a short time duration of about 1 to 2 hours, to create a hardened outer surface case which is devoid of any compound layer.
  • document US 2003141186 divulges a system for performing Physical Vapor Deposition (PVD) of metallic nitride, wherein the improved performance is provided by a method of increasing the partial pressures of nitrogen or other active gases near the wafer surface through initial introduction of the argon or other neutral gases alone into an ionized metal plasma PVD chamber through an upper gas inlet at or near the target, initiating the plasma in the presence of argon or other neutral gases alone, after which nitrogen or other active gases are introduced into the chamber through a lower gas inlet at or near the wafer surface to increase deposition rates and lower electrical resistivity of the deposited metallic layer.
  • This document also discloses an apparatus for carrying out the invention including a source of argon near the target surface and a source of nitrogen integral to the substrate support thereby delivering nitrogen near the substrate surface.
  • the present invention provides a tandem nitriding system which aims at increasing the efficiency of the process by allowing continuous glow discharge treatment between two furnace chambers in a tandem nitriding plant, in part by sharing the resources used for gas flow control, vacuum lines, and glow discharge generation.
  • the invented system has the following features which makes this possible: 1) Special software algorithm which allows simultaneous control of the atmospheres in the two chambers. 2) Special hardware configuration which allows gas flows to the two chambers at the same time. 3) Special software algorithm which allows control of the heating ramp in both chambers at the same time. 4) Specia l hardware configuration with SCR controls which allow electrical power to be fed to independent heating elements of both chambers at the same time.
  • FIG. 1 depicts a descriptive diagram of the equipment.
  • FIG. 2 depicts overlapping curves of the processes running in the two chambers in a temperature against time graph.
  • FIG. 1 the tandem nitriding plant with its two furnace chambers (0), each consisting of a fixed base plate (1) and a removable case (2), is shown.
  • Elements 3 are locking rings which seal each of the chambers with the base plate.
  • Each chamber contains a rack with three levels or treatment zones; elements 4 are supporting plates on which the load is placed, elements 5 are temperature sensors that generate the signals that are sent to the controller which in turn regulates the heating (6) and cooling (7) devices.
  • Elements 8, 9, and 10 correspond to an internal ventilator, pressure sensor, and ventilation valves, respectively. Selection of nitrogen input in each chamber is done through automatic valves (11) on each tube line of this gas, and the flow of nitrogen and other gases from their respective tanks (12) is regulated by flow controllers (13).
  • Elements 14, 15, and 16 correspond to isolating valves for the vacuum line, the vacuum pump, and a conductance controlling valve, respectively.
  • the system uses a source of controlled potential (17), which allows generation of the electrical glow discharge between the load to be treated on the plates (element 1, cathode) and the furnace wall (element 2, anode).
  • the glow discharge will take place in chamber 1 or 2 according to the configuration of the potential selecting switches (18).
  • each furnace chamber has two operating modes: A) Convection heating furnace with controlled atmosphere at positive pressure with forced circulation.
  • Gas mixtures of nitrogen, hydrogen, methane and argon are introduced into the furnace chamber in the upper part and regulated by flow controllers (12).
  • element (17) is activated and directed to the concerned chamber by the potential selecting switches (18) to generate the plasma glow discharge, according to the above description.
  • Each batch of work pieces ran in each chamber is called a production order (PO).
  • Each production order has several steps governed by a recipe.
  • Each step of the recipe demands the use of different shared resources of the plant, i.e. vacuum pump (15), mass flow controllers (12) and plasma generator (17), according to the recipe parameters set by the user.
  • the software algorithm allows the user to run two production orders, one in each chamber, simultaneously and predicts when to start or change from one step to the next one according to the usage of the shared resources previously described. It calculates the ideal point in time to start heating the second PO in mode A, in its corresponding chamber, as to comply with the graph in Fig 2, i.e. matching the point in time where the first PO reaches the cooling starting point and the second PO reaches the set process temperature according to its respective recipe.
  • figure 2 shows the functioning of the equipment of the present invention, in which the solid line corresponds to one of the chambers (0) and the dotted line corresponds to the other chamber (0), wherein once the process temperature is reached by the first chamber, that temperature is kept during the entire process.
  • the first chamber is ready to begin the cooling stage the other chamber has already reached the process temperature, as can be seen in the graph.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

La présente invention concerne un équipement pour traitement de nitruration/nitrocarburation ionique comprenant deux chambres de traitement qui peuvent partager les ressources pour l'alimentation en gaz, la génération de plasma et le système de vide, impliquant en outre des configurations matérielles et logicielles spéciales qui permettent un traitement par décharge luminescente continu entre les deux chambres. Chaque chambre possède deux modes de fonctionnement ; l'un concerne le chauffage de pièces à la température nécessaire pour le traitement de nitruration/nitrocarburation, qui est effectué par chauffage par convection dans une atmosphère contrôlée à une pression positive avec circulation forcée. L'autre concerne le traitement par décharge luminescente, effectué dans une atmosphère contrôlée avec commande d'alimentation en gaz, de température et de vide qui, combinée avec un champ électrique externe appliqué, génère la décharge luminescente entre la pièce (cathode) et une paroi de four (anode). Deux ordres de fabrication peuvent être exécutés simultanément, un dans chaque chambre, de manière que le chauffage dans une chambre puisse être achevé pendant qu'un traitement par décharge luminescente est effectué dans l'autre chambre.
PCT/IB2016/050144 2016-01-13 2016-01-13 Équipement pour traitement de nitruration/nitrocarburation ionique comprenant deux chambres de four à ressources partagées, pouvant effectuer un traitement par décharge luminescente de façon continue entre les deux chambres WO2017122044A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/IB2016/050144 WO2017122044A1 (fr) 2016-01-13 2016-01-13 Équipement pour traitement de nitruration/nitrocarburation ionique comprenant deux chambres de four à ressources partagées, pouvant effectuer un traitement par décharge luminescente de façon continue entre les deux chambres

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2016/050144 WO2017122044A1 (fr) 2016-01-13 2016-01-13 Équipement pour traitement de nitruration/nitrocarburation ionique comprenant deux chambres de four à ressources partagées, pouvant effectuer un traitement par décharge luminescente de façon continue entre les deux chambres

Publications (1)

Publication Number Publication Date
WO2017122044A1 true WO2017122044A1 (fr) 2017-07-20

Family

ID=55436123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2016/050144 WO2017122044A1 (fr) 2016-01-13 2016-01-13 Équipement pour traitement de nitruration/nitrocarburation ionique comprenant deux chambres de four à ressources partagées, pouvant effectuer un traitement par décharge luminescente de façon continue entre les deux chambres

Country Status (1)

Country Link
WO (1) WO2017122044A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113604774A (zh) * 2021-07-30 2021-11-05 清华大学 离子氮碳共渗磁场辅助设备、处理系统及方法
DE102021104666A1 (de) 2021-02-26 2022-09-01 Plasmanitriertechnik Dr. Böhm GmbH Vorrichtung und Verfahren zum Plasmanitrieren einer Oberfläche eines Bauteils
CN115418602A (zh) * 2022-10-14 2022-12-02 贵州黎阳国际制造有限公司 一种奥氏体不锈钢碳氮共渗方法
EP4249626A1 (fr) 2022-03-22 2023-09-27 Plasmanitriertechnik Dr. Böhm GmbH Procédé et dispositif de nitruration par plasma et d'oxydation ultérieure d'une surface d'un composant

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4109157A (en) 1975-12-18 1978-08-22 Kawasaki Jukogyo Kabushiki Kaisha Apparatus for ion-nitriding
US4179618A (en) * 1976-12-01 1979-12-18 Kawasaki Jukogyo Kabushiki Kaisha Apparatus for ion-nitriding treatment
US4179617A (en) 1976-12-01 1979-12-18 Kawasaki Jukogyo Kabushiki Kaisha Ion-nitriding apparatus
US4194930A (en) 1977-10-20 1980-03-25 Kawasaki Jukogyo Kabushiki Kaisha Ion-nitriding process
US4212686A (en) 1978-03-03 1980-07-15 Ab Atomenergi Zirconium alloys
US4342918A (en) * 1975-12-29 1982-08-03 Kawasaki Jukogyo Kabushiki Kaisha Ion-nitriding apparatus
US4460415A (en) 1981-09-30 1984-07-17 Kymi Kymmene Oy Method for nitriding materials at low pressures using a glow discharge
EP0159222A1 (fr) 1984-03-12 1985-10-23 Automobiles Peugeot Procédé de traitement superficiel de pièces en acier ou en fonte par bombardement ionique
US4704168A (en) 1984-10-16 1987-11-03 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Ion-beam nitriding of steels
US5176760A (en) 1991-11-22 1993-01-05 Albert Young Steel article and method
US6179933B1 (en) 1996-07-08 2001-01-30 Nsk-Rhp European Technology Co., Limited Surface treatment of rolling element bearing steel
US20030141186A1 (en) 2000-02-16 2003-07-31 Wei Wang Method and apparatus for ionized plasma deposition
DE102014104997A1 (de) * 2014-03-21 2015-09-24 J&L Tech Co., Ltd. Verfahren und System zum Nitrieren einer Bohrung eines Rohrs mit Hohlkathodenentladung

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4109157A (en) 1975-12-18 1978-08-22 Kawasaki Jukogyo Kabushiki Kaisha Apparatus for ion-nitriding
US4342918A (en) * 1975-12-29 1982-08-03 Kawasaki Jukogyo Kabushiki Kaisha Ion-nitriding apparatus
US4179618A (en) * 1976-12-01 1979-12-18 Kawasaki Jukogyo Kabushiki Kaisha Apparatus for ion-nitriding treatment
US4179617A (en) 1976-12-01 1979-12-18 Kawasaki Jukogyo Kabushiki Kaisha Ion-nitriding apparatus
US4194930A (en) 1977-10-20 1980-03-25 Kawasaki Jukogyo Kabushiki Kaisha Ion-nitriding process
US4212686A (en) 1978-03-03 1980-07-15 Ab Atomenergi Zirconium alloys
US4460415A (en) 1981-09-30 1984-07-17 Kymi Kymmene Oy Method for nitriding materials at low pressures using a glow discharge
EP0159222A1 (fr) 1984-03-12 1985-10-23 Automobiles Peugeot Procédé de traitement superficiel de pièces en acier ou en fonte par bombardement ionique
US4704168A (en) 1984-10-16 1987-11-03 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Ion-beam nitriding of steels
US5176760A (en) 1991-11-22 1993-01-05 Albert Young Steel article and method
US6179933B1 (en) 1996-07-08 2001-01-30 Nsk-Rhp European Technology Co., Limited Surface treatment of rolling element bearing steel
US20030141186A1 (en) 2000-02-16 2003-07-31 Wei Wang Method and apparatus for ionized plasma deposition
DE102014104997A1 (de) * 2014-03-21 2015-09-24 J&L Tech Co., Ltd. Verfahren und System zum Nitrieren einer Bohrung eines Rohrs mit Hohlkathodenentladung

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021104666A1 (de) 2021-02-26 2022-09-01 Plasmanitriertechnik Dr. Böhm GmbH Vorrichtung und Verfahren zum Plasmanitrieren einer Oberfläche eines Bauteils
CN113604774A (zh) * 2021-07-30 2021-11-05 清华大学 离子氮碳共渗磁场辅助设备、处理系统及方法
CN113604774B (zh) * 2021-07-30 2023-08-29 清华大学 离子氮碳共渗磁场辅助设备、处理系统及方法
EP4249626A1 (fr) 2022-03-22 2023-09-27 Plasmanitriertechnik Dr. Böhm GmbH Procédé et dispositif de nitruration par plasma et d'oxydation ultérieure d'une surface d'un composant
DE102022106661A1 (de) 2022-03-22 2023-09-28 Plasmanitriertechnik Dr. Böhm GmbH Verfahren und Vorrichtung zum Plasmanitrieren und anschließendem Oxidieren einer Oberfläche eines Bauteils
CN115418602A (zh) * 2022-10-14 2022-12-02 贵州黎阳国际制造有限公司 一种奥氏体不锈钢碳氮共渗方法
CN115418602B (zh) * 2022-10-14 2023-09-22 贵州黎阳国际制造有限公司 一种奥氏体不锈钢碳氮共渗方法

Similar Documents

Publication Publication Date Title
WO2017122044A1 (fr) Équipement pour traitement de nitruration/nitrocarburation ionique comprenant deux chambres de four à ressources partagées, pouvant effectuer un traitement par décharge luminescente de façon continue entre les deux chambres
EP0797838B1 (fr) Procede et dispositif de traitement au plasma
EP0872569B1 (fr) Procédé et four de nitruration
CN102099891B (zh) 用于处理金属工件的等离子体方法和反应器
Georges et al. Active screen plasma nitriding
CN114369804B (zh) 薄膜沉积方法
JP2931173B2 (ja) 金属部材のイオン窒化法
JP4859523B2 (ja) プラズマ源、成膜装置および膜の製造方法
Elwar et al. Plasma (Ion) Nitriding and Nitrocarburizing of Steels
JP2006206959A (ja) アルミニウム合金の窒化方法
KR20100105128A (ko) 다목적 플라즈마 열처리 장치
JPH0741848A (ja) 熱処理炉装置
JP3537049B2 (ja) 連続真空浸炭方法およびその装置
JP2006249508A (ja) チタンおよびチタン合金の窒化方法
RU2777250C1 (ru) Установка для ионного азотирования в плазме тлеющего разряда
CN219731037U (zh) 一种外加热式离子渗氮炉加热控制系统
RU2711067C1 (ru) Способ ионного азотирования в скрещенных электрических и магнитных полях
JP2000054108A (ja) 鍛造用金型
US9676010B2 (en) Installation and process for the treatment of metallic pieces by a plasma reactor
CN114107883B (zh) 一种沉淀硬化不锈钢环形零件内腔局部离子渗氮方法
KR20020095853A (ko) 다단계 온도처리 질화방법
CN106591771A (zh) 一种高效控制38CrMoAl模具表层脉状氮化物形成的离子渗氮方法
JPS6134505B2 (fr)
CN116815111A (zh) 一种离子渗氮炉
Niedbała et al. Development of glow discharge devices for steel and cast iron nitrification

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16706429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16706429

Country of ref document: EP

Kind code of ref document: A1