WO2017121288A1 - 一种凝血检测仪器 - Google Patents

一种凝血检测仪器 Download PDF

Info

Publication number
WO2017121288A1
WO2017121288A1 PCT/CN2017/070438 CN2017070438W WO2017121288A1 WO 2017121288 A1 WO2017121288 A1 WO 2017121288A1 CN 2017070438 W CN2017070438 W CN 2017070438W WO 2017121288 A1 WO2017121288 A1 WO 2017121288A1
Authority
WO
WIPO (PCT)
Prior art keywords
cup
magnetic body
sample
rotating rod
blood coagulation
Prior art date
Application number
PCT/CN2017/070438
Other languages
English (en)
French (fr)
Inventor
杨顺闻
Original Assignee
广州阳普医疗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州阳普医疗科技股份有限公司 filed Critical 广州阳普医疗科技股份有限公司
Publication of WO2017121288A1 publication Critical patent/WO2017121288A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/86Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood coagulating time or factors, or their receptors

Definitions

  • the invention relates to the field of blood detection, in particular to a blood coagulation detecting instrument.
  • the hospital usually uses a thromboelastograph to monitor the patient's coagulation from the entire dynamic process, and uses a thromboelastometer to analyze the patient's blood and then output a thromboelastogram.
  • FIG. 1 An existing blood viscoelasticity detecting instrument is shown in FIG. 1, the apparatus includes a testing mechanism for detecting blood elasticity, a sample placing mechanism for placing a blood sample, and a method for implementing the testing mechanism to approach or away from the sample placing mechanism. Transmission mechanism.
  • the test unit includes a signal generator and a processor.
  • the signal generator includes a code wheel 123 and a signal transceiver 125.
  • the signal transceiver 125 sends the generated pulse signal to the processor, and the processor will utilize the received signal.
  • the pulse signal is used to draw a thromboelastogram.
  • at least one window 1231 is disposed on the disk surface of the code wheel 123.
  • the rotating rod 114 passes through the center of the code wheel 123 and is fixedly connected to the code wheel 123.
  • the signal transceiver 125 A pair of pulse emitters and pulse receivers are disposed on both sides of the code wheel 123.
  • the pulse emitter transmits a pulse signal to the code wheel 123, passes through a window 1231 of the code wheel 123, and the pulse receiver receives the pulse signal as a pulse emitter.
  • the pulse signal does not pass through the window 1231, and the pulse receiving end does not receive the pulse signal.
  • the viscoelastic force is the largest when the blood is coagulated, and the corner of the code disc is the smallest.
  • the corner of the code wheel will appear less than the width of the window gap, at which time the number of pulses cannot be calculated.
  • the window gap width is reduced, the resolution will be greatly reduced, and the two contradict each other.
  • the present invention provides a blood coagulation detecting instrument.
  • a blood coagulation detecting apparatus comprising a test mechanism for detecting blood elasticity, a sample placement mechanism for placing a blood sample, and a transmission mechanism for implementing the test mechanism to approach or away from the sample placement mechanism, the test
  • the mechanism includes an optical mouse sensor, a code wheel for converting blood elasticity into a rotational angle, and a displacement processor electrically coupled to the optical mouse sensor, the optical mouse sensor detecting the code
  • the rotation of the disk generates a rotation signal and sends the rotation signal to the displacement processor, and the displacement processor draws a thromboelastogram based on the rotation signal.
  • the surface of the code wheel is provided with a rough surface of the frosted layer.
  • the optical mouse sensor further includes a filter for focus sampling.
  • the testing mechanism further includes a rotating unit, the rotating unit includes a first magnetic body, a second magnetic body, a first servo motor, and a rotating rod, and the code wheel is mounted on the rotating rod, The first magnetic body and the second magnetic body are spaced apart, the first magnetic body is fixedly coupled to the first servo motor, and the second magnetic body is fixedly coupled to the rotating rod such that the first magnetic body rotates The second magnetic body is driven to rotate.
  • the rotating unit includes a first magnetic body, a second magnetic body, a first servo motor, and a rotating rod
  • the code wheel is mounted on the rotating rod
  • the first magnetic body and the second magnetic body are spaced apart, the first magnetic body is fixedly coupled to the first servo motor, and the second magnetic body is fixedly coupled to the rotating rod such that the first magnetic body rotates
  • the second magnetic body is driven to rotate.
  • the sample placement mechanism includes a thermostatic unit for holding a blood sample and a sample cup assembly for holding a blood sample, the sample cup assembly including a cup and a lid, the cup being a container having an opening at one end
  • the cup cover is closed with the opening of the cup body, the cup cover is provided with a stirrer facing the surface of the cup body, the stirrer is accommodated in the cup body, and the cup cover is provided with the rotation a through hole of the rod, so that the rotating rod is inserted into the through hole to drive the cup cover to rotate;
  • the rotating rod When the testing mechanism is in the first position, the rotating rod is inserted into the through hole of the cup cover to realize the connection between the rotating rod and the lid;
  • the rotating rod drives the cup cover away from the cup body and Having the agitator located inside the cup body
  • the first servo motor drives the first magnetic body to rotate at a preset rotation angle
  • the first magnetic body drives the second magnetic body to rotate under the action of the magnetic force.
  • the second magnetic body drives the agitator to rotate in the cup body.
  • the thermostatic unit comprises a mounting support and a thermostatic control assembly on the mounting support, the thermostatic control assembly comprising an insulating support plate for fixing and supporting the thermostatic auxiliary plate and preventing its temperature from diverging, mounted on a constant temperature auxiliary plate on the heat insulating support plate and a thermostat holder for heating and detecting the temperature of the constant temperature auxiliary plate mounted on the lower surface of the constant temperature auxiliary plate, so that the temperature of the constant temperature auxiliary plate is higher than a desired temperature threshold
  • the holder stops heating the thermostat auxiliary plate, and the thermostat holder heats the thermostatic auxiliary plate when the temperature of the thermostatic auxiliary plate is lower than a desired temperature threshold.
  • the thermostatic auxiliary plate is provided with a positioning groove for accommodating the sample cup assembly, the sample cup assembly is placed in the positioning groove, and a rectangular notch is disposed on the end surface of the positioning groove, and the sample cup assembly is The outer surface of the cup is provided with a handle that cooperates with the notch, the sample cup assembly being placed in a positioning slot, the handle being snapped into the notch.
  • the sample placement mechanism further includes a capping unit for disengaging the cup cover from the rotating rod after the end of the test, the capping unit includes a force applying component, and one end is mounted on the force applying component
  • the connecting plate and the detaching cover plate mounted at the other end of the connecting plate, the detaching cover plate can be rotated by a certain angle under the action of the urging assembly to directly above the positioning groove.
  • the code wheel is located at an end of the rotating rod near the second magnetic body, the end of the rotating rod is provided with a through hole in a radial direction, and the second magnetic body passes through the through hole, and the second magnetic body The center of gravity is located in the through hole.
  • the transmission mechanism includes a ball screw and a guide rail, and the guide rail is provided with a reciprocating sliding slider, the ball screw includes a screw and a nut rotating around the screw, the testing mechanism Brackets are respectively coupled to the nut and the slider.
  • the blood coagulation detecting instrument detects the rotation of the code wheel by using an optical mouse sensor, and detects the rotation of the code wheel by using an optical mouse sensor, so that the accurate measurement during the detection process makes the device more precise and the test efficiency is improved.
  • Higher, anti-interference ability, and magnetic attraction, through the traction of the first magnetic body and the second magnetic body to pull the blood sample in the cup stirring cup, and the blood coagulation process through the code wheel and signal transceiver Complex biological changes in the middle and micro are converted into pulse signals for acquisition and processing
  • the thrombus elastic diagram makes the test process simple, reduces the workload of the operator, and saves costs.
  • Figure 1 is a schematic view of the structure of the prior art
  • Figure 2 is a structural view showing an embodiment of the blood coagulation detecting instrument of the present invention
  • Figure 3 is an exploded view of an embodiment of the blood coagulation detecting apparatus of the present invention.
  • Figure 4 is a schematic view showing an embodiment of a blood coagulation detecting apparatus of the present invention in which a sample cup assembly is placed;
  • Figure 5 is a schematic view showing an embodiment of a blood coagulation detecting apparatus of the present invention for adding a blood sample to a cup;
  • Figure 6 is a schematic view showing the stirring of a blood sample by a test mechanism of an embodiment of the blood coagulation detecting apparatus of the present invention
  • Figure 7 is a schematic view of another perspective of Figure 6;
  • Figure 8 is a schematic view showing an operation of taking off the lid of an embodiment of the blood coagulation detecting apparatus of the present invention.
  • Figure 9 is a schematic view of the embodiment of the blood coagulation detecting apparatus of the present invention after the cup cover is removed;
  • Figure 10 is a schematic view showing an embodiment of the blood coagulation detecting apparatus of the present invention for removing the sample cup assembly by removing the cover plate;
  • Figure 11 is a structural view of a sample cup assembly of an embodiment of the blood coagulation detecting apparatus of the present invention.
  • Figure 12 is a structural view showing the connection of the code wheel and the rotating rod of an embodiment of the blood coagulation detecting instrument of the present invention
  • Figure 13 is a structural view of another perspective of Figure 12;
  • Figure 14 is a structural view showing an embodiment of a constant temperature auxiliary plate of an embodiment of the blood coagulation detecting apparatus of the present invention.
  • Figure 15 is a schematic view showing the coordinate system when the blood coagulation intensity is low, when the optical mouse is detected by the optical mouse sensor of the present invention
  • Figure 16 is a schematic view showing the coordinate system when the blood coagulation intensity is high in the state where the blood coagulation intensity is high when the optical mouse sensor of the present invention is detected;
  • Figure 17 is a schematic view showing the thrombus elasticity diagram of the optical mouse sensor of the blood coagulation detecting instrument of the present invention.
  • Fig. 18 is another schematic view showing the thrombus elasticity diagram of the optical mouse sensor of the present invention.
  • the embodiment of the invention provides a blood coagulation detecting instrument, which is used for solving the complicated operation process of the blood coagulation detector on the market, the failure of the blood sample detection, the misdiagnosis caused by the inaccurate detection result, the large workload of the medical staff and the high cost. problem.
  • an embodiment of the coagulation testing apparatus of the present invention includes a testing mechanism 110 for detecting blood elasticity, a sample placement mechanism 120 for placing a blood sample, and for implementing the testing mechanism toward or away from The transmission mechanism 130 of the sample placement mechanism;
  • the testing mechanism includes a rotating unit, a testing unit, and a bracket supporting the above components, the rotating unit including a first magnetic body 111, a second magnetic body 112, a first servo motor 113, and a rotating lever 114, the first magnetic body 111 and The second magnetic body 112 is spaced apart, the first magnetic body 111 is fixedly coupled to the first servo motor, and the second magnetic body 112 is fixedly coupled to the rotating rod 114 to drive the first magnetic body 111 when rotated.
  • the second magnetic body 112 rotates.
  • the sample placement mechanism includes a thermostat unit 121 for holding a blood sample and a sample cup assembly 122 for holding a blood sample.
  • the sample cup assembly 122 includes a cup body 1221 and a cup lid 1222.
  • the cup body 1221 has an opening at one end.
  • the lid 1222 is closed to the opening of the cup 1221.
  • the lid 1222 is disposed toward the surface of the cup 1221 with an agitator 1223.
  • the agitator 1223 is received in the cup 1221.
  • the cup cover 1222 is provided with a through hole that cooperates with the rotating rod 114, so that the rotating rod is inserted into the through hole to drive the cup cover 1222 to rotate.
  • the rotating lever 114 When the testing mechanism is in the first position, the rotating lever 114 is inserted into the through hole of the cup cover 1222 to connect the rotating lever 114 with the cup cover 1222.
  • the rotating rod drives the cup cover 1222 away from the cup body 1221 and the agitator 1223 is located inside the cup body 1221, and the first servo motor 113 has a preset rotation angle
  • the first magnetic body 111 is rotated by the first magnetic body 111
  • the second magnetic body 112 is rotated by the magnetic force.
  • the second magnetic body 112 drives the agitator 1223 in the cup 1221. Turn.
  • the test unit includes an optical mouse sensor 125 and a code wheel 123 mounted on the rotating rod And a processor electrically coupled to the optical mouse sensor 125, the optical mouse sensor 125 detecting the rotation of the code wheel to generate a rotation signal of the rotating lever 114 and transmitting the rotation signal To the processor, the processor draws a thromboelastogram based on the rotation signal.
  • the center of the code wheel 123 is fixedly coupled to the rotating lever 114.
  • the surface of the code wheel 123 is perpendicular to the central axis of the rotating lever 114, and the code wheel 123 is rotated by the rotation of the second magnetic body 112 and the rotating lever 114.
  • An optical mouse sensor 125 is placed in parallel with the middle of the first magnetic body 201.
  • the lower surface of the optical mouse sensor 125 is parallel to the upper surface of the code wheel 123.
  • the optical mouse sensor 125 The emitted light beam is irradiated on a surface of the code wheel 123, and the information of the beam feedback is analyzed to obtain the rotation of the code wheel 123.
  • the blood coagulation detecting instrument detects the rotation of the code wheel by using an optical mouse sensor, so that the accurate measurement during the detection process makes the device more precise, the test efficiency is higher, the anti-interference ability is stronger, and the magnetic force is adopted.
  • the attraction function is to pull the cup cover 1222 to stir the blood sample in the cup body 1221 by the traction force of the first magnetic body 111 and the second magnetic body 112, and to perform microscopic complex biological changes during the blood coagulation process through the code wheel 123 and the signal transceiver. It is converted into a displacement signal for collection and processing into a thrombus elastic map, which makes the test process simple, reduces the workload of the operator, and saves costs.
  • the structure of the coagulation detecting instrument will be specifically described below.
  • the blood coagulation detecting instrument includes a testing mechanism, a sample placing mechanism, and a transmission mechanism for realizing that the testing mechanism is close to or away from the sample placing mechanism;
  • the testing mechanism includes a rotating unit, a testing unit, and a bracket 124 supporting the above components;
  • the rotating unit includes a first magnetic body 111, a second magnetic body 112, a first servo motor 113, and a rotating rod 114, that is, the N pole of the first magnetic body 111 and the S pole of the second magnetic body 112 are on the same side,
  • the S pole of the magnetic body 111 is located on the same side as the N pole of the second magnetic body 112, and the magnetic attraction between the first magnetic body 111 and the second magnetic body 112 is generated, and the rotation of the first magnetic body 111 can drive the second
  • the magnetic body 112 rotates, the position of the center of gravity of the first magnetic body 111 is fixedly connected to the rotating shaft of the first servo motor 113, and the second magnetic body 112 is mounted at one end of the rotating rod 114, and the center of gravity of the second magnetic body 112 The position is connected to the rotating rod 114, and the straight line of the N pole and the S pole of the first magnetic body 111 is perpendicular to the rotating shaft.
  • the first magnetic body 111 and the second magnetic body 112 are cylindrical, and the magnetic value of the first magnetic body 111 is greater than the magnetic value of the second magnetic body 112, so that the first magnetic body 111 can be smoothly performed.
  • the second magnetic body 112 is easily rotated, wherein the center distance between the first magnetic body and the second magnetic body 112 is greater than the sum of the radii of the two, so that the first magnetic body 111 and the second magnetic body 112 are vertically spaced apart and Parallel arrangement avoids the problem of inaccurate test results due to contact between the first magnetic body and the second magnetic body.
  • the bracket 124 includes a mounting plate 1241 for mounting a first servo motor 113 at a top end of the bracket 124, and a positioning plate 1242 for supporting rotation of the second magnetic body 112 at a bottom end of the bracket 124.
  • a mounting plate 1241 (FIG. 3 is under the capping device) and a vertical plate 1243 of the positioning plate 1242 are used.
  • the positioning plate 1242 is made of polytetrafluoroethylene or polyetheretherketone (PEEK) having a small friction factor.
  • the test unit includes an optical mouse sensor, a code wheel mounted on the rotating rod, and a processor electrically connected to the optical mouse sensor, the optical mouse sensor detecting the code
  • the rotation of the disk generates a rotation signal of the rotation lever and transmits the rotation signal to the processor, and the processor draws a thromboelastogram according to the rotation signal.
  • the optical mouse sensor 125 takes a point A on the surface of the code wheel 123 as a test point and establishes a coordinate system, and sets the coordinates of the point A to the origin coordinates (0, 0).
  • the coordinate system X and Y axis directions are determined by the optical mouse sensor 125 itself, that is, the center of the optical mouse sensor 125 is taken as the coordinate system origin, and the shorter side of the optical mouse sensor 125 is taken as the Y axis.
  • the direction from the center of the code wheel 123 to the center of the optical mouse sensor 125 is the positive direction of the Y axis
  • the X axis is perpendicular to the Y axis
  • the positive direction of the X axis is from the left side of the positive direction of the Y axis to the right side, wherein the radius R
  • the code wheel 123 is stopped after the magnetic force is pulled by the angle ⁇ 1 , and the test point position is the point B on the code wheel, and the optical mouse sensor 125 records the coordinate position (X 1 , Y 1 ) of the point B.
  • the displacement of the test point that is, the line spacing between the two points A and B is:
  • the length of the motion track of the test point is the arc length between the test points, that is,
  • the optical mouse sensor delays the coordinate position of the test point for a period of time, and the time period can be 800-1000 ms, which can ensure The code wheel is stable during sampling to ensure the accuracy of the sampled data.
  • the optical mouse sensor 125 first zeros the coordinates of the point B, that is, sets the B' point coordinate to be (0, 0). Then the code wheel rotates in the opposite direction to point A' (X 2 , Y 2 ), then the displacement of the test point changes to
  • the length of the motion track of the test point is the arc length between the test points, that is,
  • T1 is the time from the start of the blood coagulation test to the current time.
  • the processor uploads the rotation information (ST1, T1) of the code wheel 123 in the current blood coagulation state to the processor.
  • the code wheel 123 is rotated from C (0, 0,) to D (X 3 , Y 3 ), and the test point displacement is changed to
  • the code wheel 123 is rotated at an angle of
  • the length of the motion track of the test point is the arc length between the test points, that is,
  • the code wheel 123 rotates from D'(0, 0,) to C' (X 4 , Y 4 ), and the test point displacement changes to
  • the code wheel 123 is rotated at an angle of
  • the length of the motion track of the test point is the arc length between the test points, that is,
  • T2 is the time from the start of the blood coagulation test to the current time.
  • the processor uploads the rotation information (ST2, T2) of the code wheel 123 in the current blood coagulation state to the processor, and as the blood solidifies, the blood viscoelastic force gradually becomes larger, and the rotation angle ⁇ of the test point gradually becomes smaller, and the test point is The length of the motion track gradually becomes smaller.
  • the blood viscoelastic force is the smallest, the rotation angle ⁇ of the code wheel 123 is the largest, and the movement track length ST of the test point is the largest; when the blood is coagulated, the viscoelastic force of the blood is the largest, and the rotation angle ⁇ of the code wheel 123 is the smallest, the test point
  • the length of the motion track ST is the smallest.
  • the optical mouse sensor 125 records its displacement coordinates in the form of pixel points in the set resolution mode, so the arc length calculated by the processor is also represented by pixel points.
  • the collected data can be expressed as a function
  • the maximum value of F(i) is the reference value of the data, ie
  • the maximum amplitude value is the maximum value of F(i) minus the minimum value, ie
  • the smooth connection process is performed, and then the T-axis is used as the symmetry axis for mirror image processing to obtain the thrombus elastic force map.
  • the arc length pixel value of the average motion track of the test point of the reciprocating motion of the code disc 123 gradually decreases.
  • the arc length pixel value detected by the optical mouse sensor 125 is the smallest, which is the lowest value.
  • the graph drawn by Ti] can be obtained by smoothing the line and then mirroring to obtain the thrombus elasticity map.
  • processor may be implemented by using the upper computer software, and those of ordinary skill in the art should understand that the specifics are not limited.
  • the whole blood sample 2 is tested.
  • the optical mouse sensor 125 detects the pixel number reference value of 160, the lowest value is 88, and the maximum amplitude value is 72. According to the data processing of the whole blood sample one.
  • the method obtained a thromboelastogram.
  • the blood coagulation state of the blood sample can be judged. Since the index values that can be used for reference are large, this example is explained by taking the maximum amplitude value as an example.
  • the blood reference range of a normal person is assumed to be 40 to 80.
  • the blood sample is judged to be in a hypercoagulable state; if the maximum amplitude value of the test result is less than 40, the blood sample is judged to be in a hypocoagulable state; if the test result is the largest When the amplitude value falls within the range of 40 to 80, the blood sample is judged to be in a normal coagulation state. Based on the combined results of the tests and judgments obtained, the doctor can help the doctor to take different treatment measures.
  • the code wheel 123 is located at one end of the rotating rod 114 near the second magnetic body 112.
  • the end of the rotating rod 114 is provided with a through hole 1226 in the radial direction, and the second magnetic body 112 passes through.
  • the through hole 1226 and the center of gravity of the second magnetic body 112 are located in the through hole 1226, so that when the second magnetic body 112 rotates, vibration is not generated due to the asymmetry of the center of gravity.
  • a tapered boss 1141 is disposed on the rotating rod 114 on the side of the code wheel 123 facing away from the second magnetic body 112.
  • the positioning plate 1242 is provided with a positioning hole, and the rotating rod 114 is disposed. Through the positioning hole, the tapered boss 1141 abuts against the hole wall of the positioning hole, so that the contact area between the rotating rod 114 and the positioning plate 1242 becomes smaller during the rotation of the rotating rod 114, and the friction Reduce the force, minimize the impact of friction on the test results, and improve the accuracy of the test results.
  • the rod body of the rotating rod 114 passing through the positioning hole is provided with a limiting slot 1142, and the limiting slot 1142 is a surrounding rotating rod.
  • the annular groove is arranged in the circumferential direction of the 114, and the limit buckle 1143 is added to the limiting slot 1142.
  • the rotation lever 114 is restricted due to the cooperation of the limiting buckle 1143 and the limiting slot 1142.
  • the axial movement displacement makes the rotating rods 114 located on both sides of the positioning holes less prone to axial sway.
  • the other end of the rotating lever 114 includes a guiding tip 1143 and a tapered portion 1144, which is located at the end of the rotating lever 114 and is tapered to serve when mated with the cup cover 1222.
  • the tapered portion 1144 itself has a certain taper, that is, the diameter of the tapered portion 1144 gradually decreases toward the guiding tip 1143, and is continuously disposed integrally with the guiding tip 1143, and the cup cover 1222 is fitted.
  • the sample placement mechanism includes a thermostatic unit 121, a sample cup assembly 122, and a capping unit.
  • the structure of each part is specifically described below:
  • the thermostat unit 121 includes a mounting bracket 1211 and a thermostatic control assembly on the mounting bracket 1211.
  • the thermostatic control assembly includes an insulating support plate 1212 and a thermostatic auxiliary plate mounted on the thermal insulating support plate 1212. 1213 and a thermostat holder 1214 mounted on the lower surface of the thermostatic auxiliary plate 1213.
  • the heat insulating support plate 1212 is made of a non-metallic material with high heat insulation and high hardness for fixing and supporting the thermostatic auxiliary plate 1213 and preventing the temperature from diverging.
  • the thermostat holder 1214 is used to heat and detect the temperature of the thermostat auxiliary plate 1213, and to detect whether the temperature of the thermostatic auxiliary plate 1213 is a required temperature threshold.
  • the thermostat holder 1214 stops heating the thermostatic auxiliary plate 1213. If the temperature is lower than the required temperature threshold, the thermostat holder 1214 heats the constant temperature auxiliary plate 1213, thereby achieving the purpose of keeping the temperature of the constant temperature auxiliary plate 1213 constant at a desired temperature threshold.
  • the required temperature is required.
  • the threshold is 37 degrees Celsius.
  • the thermostatic auxiliary plate 1213 is provided with a positioning groove 1215 for accommodating the sample cup assembly 122.
  • the sample cup assembly 122 is placed in the positioning groove 1215.
  • the positioning groove 1215 is a cylinder.
  • the axial direction of the cylinder is perpendicular to the surface of the thermostatic auxiliary plate 1213.
  • a rectangular notch 1216 is disposed on the end surface of the positioning groove 1215, and a handle corresponding to the rectangular notch 1216 is disposed on the outer surface of the cup 1221 of the sample cup assembly 122.
  • the sample cup assembly 122 is placed in the positioning groove 1215, the handle 1224 is stuck in the rectangular notch 1216, of course, the shape of the positioning groove 1215 can be a square tube or other structural shape, and the sample cup assembly 122 is placed in the positioning groove 1215.
  • the relative rotation does not occur, and the positioning groove 1215 is used for positioning the sample cup assembly 122 to prevent the sloshing of the fibrin viscosity of the blood sample during the test, thereby affecting the test result.
  • the sample cup assembly 122 includes a cup 1221 which is a container having an opening at one end, the bottom of the cup 1221 having a taper for easier placement in the positioning groove 1215, the cup body.
  • the shape of the 1221 is adapted to the positioning groove 1215.
  • the positioning groove 1215 is a cylinder, and the cup 1221 is also referred to as a cylinder.
  • the wall thickness of the cup 1221 is preferably 0.5 mm to 3 mm, and the volume is set to be More than 100 microliters, a handle is provided on the side wall of the cup 1221. 1224.
  • the handle 1224 is a right-angled triangle.
  • the handle 1224 is disposed on a side wall of the cup 1221 near the opening.
  • the handle 1224 can cooperate with the rectangular notch 1216 on the positioning groove 1215 to restrain the cup 1221 and the positioning.
  • the relative rotation between the slots 1215 prevents the rotation of the cup 1221 from affecting the test result when the blood sample is tested, and is also convenient to take by hand, thereby avoiding the inaccurate test result and the test failure due to the failure of the artificially assembled cup cover 1222 and vibration. , greatly reducing the cost of human and material resources.
  • the sample cup assembly 122 further includes a cup cover 1222.
  • the cup cover 1222 is circular and can be adapted to the opening of the cup body 1221.
  • the upper surface of the cup cover 1222 is provided with a through hole, the through hole being specific. It may be a tapered hole 1225.
  • the tapered hole 1225 is located at the center of the cup cover 1222.
  • the taper of the tapered hole 1225 is designed by Morse taper and can be matched with the tapered portion 1144 of the rotating rod 114.
  • the structure utilizes the self-locking function of the Morse taper itself to convert the axial force into a rotating radial force such that the cup cover 1222 is tightly coupled to the tapered portion 1144 of the rotating rod 114.
  • At least one agitator 1223 is disposed on the lower surface of the lid 1222.
  • the agitator 1223 is evenly distributed on the lower surface of the lid 1222.
  • the agitator 1223 can stir the blood sample in the cup 1221 by the rotating rod 114 and stir by the agitator.
  • the blood sample can make the agitator better contact, can increase the contact area and the stirring resistance, and is convenient for drawing the degree of blood sample coagulation and improving the test accuracy.
  • agitators 1223 are uniformly disposed around the center of the lower surface of the cup cover 1222, and the four agitators 1223 are symmetrically distributed on the lower surface of the cup cover 1222 so that the cup cover 1222 is subjected to the rotation process. Uniform force to avoid vibration due to unbalanced mixer distribution.
  • each of the agitators 1223 has an n-shape, that is, each agitator 1223 has two pieces of agitating teeth, and the two agitating teeth are arranged in parallel, and the structure is used to increase the agitation during the agitation.
  • the toughness of the device 1223 and the resistance of the blood sample to the agitator 1223 can more accurately monitor the degree of coagulation of the blood sample and improve the test accuracy.
  • the cup cover 1222 and the cup body 1221 of the sample cup assembly 122 are made of a biocompatible polymer material and have a certain toughness, and are all disposable supplies, and the lid 1222 is used before use.
  • the cup body 1221 is fastened and sealed to ensure the inside of the cup body 1221 to be cleaned and to avoid contamination of the blood sample.
  • the sample placement mechanism further includes a capping unit for the end of the test.
  • the cup lid 1222 is then detached from the rotating rod 114 to facilitate the operator to remove the sample cup assembly 122 as a whole.
  • the capping unit includes a force applying component 126, a connecting plate 1261 whose one end is mounted on the force applying component 126, and a stripping cover 1262 installed at the other end of the connecting plate 1261, the capping cover
  • the plate 1262 can be rotated by a force applying member 126 to directly above the positioning groove 1215 to block the sample cup assembly 122 from rising following the rotating rod 114, that is, the sample cup assembly 122 is prevented from rising in the axial direction of the rotating rod 114.
  • the sample cup assembly 122 is separated from the rotating rod 114, which can play the role of automatic capping, and solves the inaccurate, wrong or test result caused by the different working steps of the medical staff, the large workload, and the artificial assembly.
  • the cup cover 1222 is automatically assembled with the rotating rod 114. After the test is completed, the lid 1222 is automatically removed by the stripping cover 1262 to solve the problem of large workload and complicated operation process of the medical staff.
  • the force applying component 126 can be a servo motor
  • the servo motor is mounted on the support of the thermostat unit 121
  • the connecting plate 1261 is connected to the rotating shaft of the servo motor, and the servo is controlled by outputting a control signal.
  • the connecting plate 1261 is driven to drive the stripping cover 1262 to rotate.
  • the rotating surface of the stripping cover 1262 can be parallel to the upper surface of the lid 1222, that is, rotate in the horizontal direction, and of course, can also be rotated in the vertical direction. That is, the detaching cover plate 1262 is rotated from the top to the bottom to the directly above the positioning groove 1215. In the embodiment, the detachable cover plate 1262 is rotated in the horizontal direction to rotate directly above the positioning groove 1215.
  • the stripping cover 1262 has a cylindrical boss connected to the connecting plate 1261 at one end, and the other end of the stripping cover 1262 has a semi-circular notch, so that the stripping cover 1262 can be better rotated above the lid 1222. This makes the stripping process smoother and less prone to deflection.
  • the capping unit further includes a first positioning sensor switch for positioning the initial position of the stripping cover 1262.
  • the angle from the initial position to the directly above the positioning slot 1215 can be set as needed, and the rotation angle is greater than zero degrees.
  • the first positioning sensor switch is located on the mounting bracket 1211.
  • the rotation angle of the stripping cover 1262 is 90 degrees, and is rotated to the first positioning sensor switch 1263 after the stripping cover 1262 completes the capping.
  • the first positioning sensor switch 1263 is a pulse transceiver, the pulse signal is reflected by the stripping cover 1262, the first positioning sensor switch 1263 outputs a signal, and the servo motor stops rotating, so that the stripping cover 1262 is positioned at the initial position.
  • the transmission mechanism 130 includes a ball screw 131 and a guide rail 132.
  • the ball screw 131 includes a screw 1311 and a nut 1312.
  • the ball screw 131 can also adopt other devices that can slowly raise or lower the test mechanism.
  • the shock absorbing buffer problem can also be replaced by a cylinder, which is not limited.
  • the bracket 124 of the testing mechanism includes an adapter plate 1241 for connecting the nut 1312 and the slider, and a slider 1321 that is reciprocally slidable on the rail 132.
  • the screw 1311 of the ball screw serves as an active body.
  • a servo motor is disposed at a bottom end of the screw 1311, and the servo motor drives the screw 1311 to rotate.
  • the slider can slide up and down to guide the rail 132, and the nut 1312 is linearly moved by the rotation of the screw 1311, so that the test mechanism is located on the nut 1312. It can be achieved close to or away from the sample placement mechanism.
  • the testing mechanism further includes a receiving plate 115 for mounting the guide rail 132, the guide rail 132 is mounted on a surface of the receiving plate 115, the receiving plate 115 is placed perpendicular to the support of the sample placing mechanism, that is, the receiving plate 115 is disposed in the vertical direction, and the guide rails 132 are disposed on the receiving plate 115 in the vertical direction.
  • the testing mechanism further includes a second positioning sensing switch (not shown) for positioning the slider position and a third positioning sensing switch (not shown), the second positioning sensing switch and The third positioning sensor switches are disposed on the receiving plate 115 on the same side of the rail 132, and the second positioning sensor switch and the third positioning sensor switch are disposed on the receiving plate on the same side of the rail, and the second positioning sensor
  • the switch is configured to output a signal when the test mechanism is in the first position.
  • the rotating lever 114 is coupled to the cup cover 1222.
  • the third positioning sensing switch is configured to output a signal when the testing mechanism is in the second position. In the second position, the rotating lever 114 causes the cup cover 1222 to rotate and agitate the sample located in the cup 1221.
  • the receiving plate is provided with a fourth positioning sensor switch 1264 for outputting a signal when the slider is at the top end of the rail to prompt the cup cover 1222 to move away from the cup body 1221 by the testing mechanism.
  • a four-position sensing switch is disposed on the receiving plate 115 near the top end of the guide rail 132 for placing the sample or removing the sample at the end of the test.
  • the positioning sensor switch can be set at a predetermined position for prompting positioning.
  • the sensor switch can include a transmitter and a receiver.
  • the transmitter emits a light signal to the receiver, and a blocking plate 1265 can be mounted on the slider.
  • the blocking plate 1265 on the slider moves between the transmitter and the receiver, and the positioning sensing switch can output a signal to prompt the slider to move to a predetermined position.
  • the instrument further comprises a display screen for displaying the measurement result
  • the processor generates a thrombus elastic map according to the pulse signal, and sends the thrombus elastic force diagram to the display screen.
  • the display screen can not only display the measurement result, but also Other parameters, such as operation time, etc., can be displayed, and are not specifically limited.
  • the instrument further comprises a level meter for detecting whether the instrument is currently in a horizontally placed state, and the level meter can also display the horizontal state through the display screen, so that the operator can adjust the state of the instrument to avoid the unstable condition of the instrument and improve the condition.
  • the detection accuracy of the instrument is a level meter for detecting whether the instrument is currently in a horizontally placed state, and the level meter can also display the horizontal state through the display screen, so that the operator can adjust the state of the instrument to avoid the unstable condition of the instrument and improve the condition. The detection accuracy of the instrument.
  • the blood coagulation detecting instrument comprises an electric control unit, and the electric control unit is electrically connected to the first positioning inductive switch 1263, the second positioning inductive switch and the third positioning inductive switch, the first positioning inductive switch 1263, the second positioning inductive switch and the third positioning
  • the inductive switch electric power transmits the collected signal to the electric control unit, and the electric control unit controls the movement of the servo motor according to the signals of the respective positioning inductive switches, and controls the servo motor to stop rotating when moving to the designated position, and the electric control unit can also be used to implement the control device.
  • the overall electrical work can supply power to the display, etc., and will not be described in detail.
  • the coagulation test instrument is started up and the system is initialized;
  • the test mechanism performs initial position correction on the code wheel 123 and the signal transceiver 125, so that the signal transceiver 125 can normally complete the transmission or reception of the pulse signal after the code wheel 123 is rotated by the moving angle.
  • the sample cup assembly 122 is placed in the positioning slot 1215 of the sample placement mechanism, the thermostat unit 121 starts heating, and the temperature is kept constant, the test mechanism moves to the first position under the driving mechanism, and the second positioning sensor switch outputs The signal prompting test mechanism is in the first position.
  • the rotating rod 114 is inserted into the tapered hole 1225 of the cup cover 1222, and the rotating rod 114 is coupled with the cup cover 1222.
  • the transmission structure drives the testing mechanism to move upward to the top of the guide rail 132.
  • the four positioning sensor switch output signals indicate that the testing mechanism is at the top end of the guide rail 132, and the cup body 1221 and the cup cover 1222 are completely divided.
  • the detecting personnel adds a blood sample to the cup body 1221, and the testing mechanism moves downward to the second position under the driving mechanism, and the third positioning sensing switch output signal prompts the current position.
  • the agitator on the cup cover 1222 1223 extends into the blood sample in the cup 1221, and the first servo motor 113 of the testing mechanism rotates, and the first magnetic body 111 rotates regularly with a certain value angle ⁇ under the driving of the first servo motor 113.
  • the angle ⁇ of the rotation of the first magnetic body 111 is a fixed value and should be greater than the angle ⁇ ′ of the rotation of the code wheel 123, and the first magnetic body 111 is driven by the driving motor at a certain rotation speed.
  • v and the angular width ⁇ are periodically reciprocatingly rotated, and the second magnetic body 112 is pulled under the magnetic attraction to rotate reciprocally at a rotational angle ⁇ ', so that the agitator 1223 on the cup cover 1222 is stirred in the blood sample.
  • the resistance to the cup cover 1222 is increased, causing the angular extent ⁇ ' of the code wheel 123 to gradually decrease, that is, the rotation angle of the code wheel 123 decreases as the blood viscoelastic force increases, and the optical slip
  • the mouse sensor 125 takes a point on the code wheel 123 as a test point. By monitoring the coordinate displacement change of the test point, the rotation information of the code wheel 123 can be obtained, and after the signal processing, the whole picture of the hemorrhagic condensation process is reflected and drawn. Blood elasticity map.
  • the blood elastic drawing can be displayed or printed through the display screen, and the capping unit is rotated above the positioning groove 1215 to block the cup cover 1222.
  • the testing mechanism moves upwards under the driving mechanism, and the rotating rod 114 also rises as the testing mechanism rises. At this time, the cup cover 1222 on the rotating rod 114 can not continue to move upward due to the blocking of the capping unit, so that the cup cover 1222 is separated from the rotating rod 114 to achieve the purpose of automatic capping.
  • the function of the invention is to solve the problem that the operation process of the blood coagulation detector on the market is complicated, the blood sample detection is easy to fail, the misdiagnosis caused by the detection result is inaccurate, the workload of the medical staff is large, and the cost is high.
  • the invention connects the sample cup cover 1222 with the automatic assembly of the tapered section of the lower end of the code wheel 123, and automatically removes the cup cover 1222 through the stripping cover 1262 after the test is completed, thereby solving the problem that the medical staff has a large workload and a complicated operation process.
  • the problem that the blood sample detection is easy to fail and the detection result is inaccurate due to the assembly failure and vibration caused by the artificial assembly is avoided.
  • the material selected in the invention is a common common material, and the structural design specifically solves the high cost caused by the equipment being easy to be damaged. problem.
  • the doctor only needs to place the sample cup, press the test button, and add the blood sample to the sample cup. After the test, the sample cup can be taken away.
  • the instrument is easy to operate and greatly reduces the labor of the medical staff. The workload improves the working efficiency and avoids the inaccurate test results and test failures due to the failure of the artificially assembled cup cover 1222 and the vibration, which greatly reduces the labor and material costs.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. You can choose some or all of them according to actual needs.
  • the unit is to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

一种凝血检测仪器,所述凝血检测仪器采用光学滑鼠感测器(125)检测码盘(123)转动,使得对检测过程中的精确测量,使得设备精确度更高、测试效率更高、抗干扰能力更强,并且采用磁力吸引的作用,通过第一磁力体(111)和第二磁力体(112)的牵引力来牵动杯盖(1222)搅拌杯体(1221)中血样,并通过码盘(123)和光学滑鼠感测器(125)将血凝过程中微观发生复杂的生物变化转换成位移信号进行采集处理成血栓弹力图,使得测试过程操作简单,降低操作人员的工作量,节省了成本。

Description

一种凝血检测仪器
本申请要求于2016年1月11日提交中国专利局、申请号为201610019337.6、发明名称为“一种凝血检测仪器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及血液检测领域,特别涉及一种凝血检测仪器。
背景技术
目前医院通常采用血栓弹力图仪从整个动态过程来监测病人的凝血全貌,利用血栓弹力仪对病人的血液进行分析而后输出血栓弹力图。
现有血液粘弹力检测仪器如图1所示,所述仪器包括用于检测血液弹力的测试机构、用于放置血液样本的样品放置机构以及用于实现测试机构靠近或者远离所述样品放置机构的传动机构。
其中,所述测试单元包括信号生成器及处理器,所述信号生成器包括码盘123、信号收发器125,信号收发器125将产生的脉冲信号发送至处理器,处理器将利用收到的脉冲信号绘制血栓弹力图,具体为所述码盘123的盘面设置至少一个窗口1231,所述转动杆114穿过所述码盘123的中心并与码盘123固定连接,所述信号收发器125包括位于码盘123两侧的一对脉冲发射极和脉冲接收极,脉冲发射极向码盘123发射脉冲信号,经过码盘123的窗口1231,脉冲接收极接收到该脉冲信号,当脉冲发射极发射的脉冲信号经过码盘123上阻挡时,脉冲信号不会穿过窗口1231,脉冲接收极不会接收到该脉冲信号。
现有技术的局限、缺点及该些缺点存在的原因:
1、码盘窗口的加工存在一定精度误差,导致不同缺口的尺寸、形状有一定差异,造成信号采集器接受到的脉冲数量不同,进而影响测试结果的精确度、重复性。
2、测试前,需校准码盘窗口位置,增加了测试等待时间。
3、外部震动会影响码盘转动速度,从而影响码盘窗口的脉冲计数,造成结果误差。
4、在血液凝固时粘弹力最大,码盘的转角最小。当测试特高凝血样时,码盘的转角会出现小于窗口间隙宽度的情况,这时无法计算脉冲个数。反而如果将窗口间隙宽度改小,会大大降低其分辨率,两者互相矛盾。
发明内容
有鉴于此,本发明提供了一种凝血检测仪器。
一种凝血检测仪器,所述仪器包括用于检测血液弹力的测试机构、用于放置血液样本的样品放置机构以及用于实现测试机构靠近或者远离所述样品放置机构的传动机构,,所述测试机构包括光学滑鼠感测器、用于将血液弹力转化为转动角度的码盘以及与所述光学滑鼠感测器电连接的位移处理器,所述光学滑鼠感测器检测所述码盘的转动情况生成转动信号并将所述转动信号发送至所述位移处理器,所述位移处理器根据所述转动信号绘制血栓弹力图。
可选地,所述码盘的表面设置磨砂层的粗糙表面。
可选地,所述光学滑鼠感测器还包括用于对焦采样的滤镜。
可选地,所述测试机构还包括转动单元,所述转动单元包括第一磁力体、第二磁力体、第一伺服电机以及转动杆,所述码盘安装在所述转动杆上,所述第一磁力体和第二磁力体间隔设置,所述第一磁力体与第一伺服电机固定连接,所述第二磁力体与所述转动杆固定连接,以使得所述第一磁力体转动时带动所述第二磁力体转动。
可选地,所述样品放置机构包括用于保持血样的恒温单元及用于盛放血样的样本杯组件,所述样本杯组件包括杯体及杯盖,所述杯体为有一端开口的容器,所述杯盖与所述杯体的开口盖合,所述杯盖朝向杯体的表面设有搅拌器,所述搅拌器容纳与所述杯体内,所述杯盖设有与所述转动杆配合的通孔,以使得所述转动杆插入所述通孔带动杯盖转动;
所述测试机构处于第一位置时,所述转动杆插入所述杯盖的通孔以实现所述转动杆与杯盖连接;
所述测试机构处于第二位置时,所述转动杆带动所述杯盖远离所述杯体且 使得搅拌器位于所述杯体内部,以及所述第一伺服电机以预设转动角度带动所述第一磁力体转动,第一磁力体在磁力的作用下带动所述第二磁力体转动,所述第二磁力体带动所述搅拌器在所述杯体内转动。
可选地,所述恒温单元包括安装支座及位于安装支座上的恒温控制组件,所述恒温控制组件包括用于固定和支撑恒温辅助板并防止其温度发散的隔热支撑板、安装在隔热支撑板上的恒温辅助板以及安装在恒温辅助板下表面的用于加热和探测恒温辅助板的温度的恒温保持器,以使得在恒温辅助板的温度高于所需的温度阈值时恒温保持器停止对恒温辅助板加热,在所述恒温辅助板的温度低于所需的温度阈值时所述恒温保持器对所述恒温辅助板进行加热。
可选地,所述恒温辅助板设有一用于容纳样本杯组件的定位槽,所述样本杯组件放置在定位槽中,所述定位槽的端面上设置有一矩形缺口,所述样本杯组件的杯体外表面设置与该缺口配合的把手,所述样本杯组件放置在定位槽内,所述把手卡在所述缺口中。
可选地,所述样品放置机构还包括脱盖单元,用于在测试结束后将所述杯盖从转动杆上进行脱离,所述脱盖单元包括施力组件、一端安装在施力组件上的连接板以及安装在连接板另一端的脱盖板,所述脱盖板可在所述施力组件的作用下转动一定角度转至定位槽正上方。
可选地,所述码盘位于转动杆靠近第二磁力体的一端,所述转动杆的端部沿径向设有贯通孔,所述第二磁力体穿过该贯通孔,第二磁力体的重心位置位于该贯通孔内。
可选地,所述传动机构包括滚珠丝杠和导轨,所述导轨上设有可往复滑动的滑块,所述滚珠丝杠包括螺杆和环绕所述螺杆转动行进的螺母,所述测试机构的支架分别与所述螺母及所述滑块连接。
从以上技术方案可以看出,本发明实施例具有以下优点:
本发明提供的凝血检测仪器,采用光学滑鼠感测器检测码盘转动,采用光学滑鼠感测器检测码盘转动,使得对检测过程中的精确测量,使得设备精确度更高、测试效率更高、抗干扰能力更强,并且采用磁力吸引的作用,通过第一磁力体和第二磁力体的牵引力来牵动杯盖搅拌杯体中血样,并通过码盘和信号收发器将血凝过程中微观发生复杂的生物变化转换成脉冲信号进行采集处理 成血栓弹力图,使得测试过程操作简单,降低操作人员的工作量,节省了成本。
附图说明
图1是现有技术的结构示意图;
图2是本发明凝血检测仪器的一种实施例的结构图;
图3是本发明凝血检测仪器的一种实施例的爆炸视图;
图4是本发明凝血检测仪器的一种实施例放置样品杯组件的示意图;
图5是本发明凝血检测仪器的一种实施例向杯体中加入血样的示意图;
图6是本发明凝血检测仪器的一种实施例测试机构对血样进行搅拌的示意图;
图7是图6另一视角的示意图;
图8是本发明凝血检测仪器的一种实施例进行脱掉杯盖操作的示意图;
图9是本发明凝血检测仪器的一种实施例杯盖脱掉后的示意图;
图10是本发明凝血检测仪器的一种实施例脱盖板复位取走样品杯组件的示意图;
图11是本发明凝血检测仪器的一种实施例样品杯组件的结构图;
图12是本发明凝血检测仪器的一种实施例码盘与转动杆连接的结构图;
图13是图12另一视角的结构图;
图14是本发明凝血检测仪器的一种实施例恒温辅助板的结构图;
图15是本发明凝血检测仪器的光学滑鼠感测器检测时,在血液凝固强度较低的状态下转动时坐标系的示意图;
图16是本发明凝血检测仪器的光学滑鼠感测器检测时,在血液凝固强度较高的状态下转动时坐标系的示意图;
图17是本发明凝血检测仪器的光学滑鼠感测器检测时血栓弹力图的一种示意图;
图18是本发明凝血检测仪器的光学滑鼠感测器检测时血栓弹力图的另一种示意图。
具体实施方式
本发明实施例提供了一种凝血检测仪器,用于解决目前市面上的凝血全貌检测仪的操作过程复杂、血样检测容易失败、检测结果不准导致的误诊、医务人员工作量大和高昂的成本的问题。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
结合图2所示,本发明凝血检测仪器的一种实施例,所述仪器包括用于检测血液弹力的测试机构110、用于放置血液样本的样品放置机构120以及用于实现测试机构靠近或者远离所述样品放置机构的传动机构130;
测试机构包括转动单元、测试单元以及支撑上述部件的支架,所述转动单元包括第一磁力体111、第二磁力体112、第一伺服电机113以及转动杆114,所述第一磁力体111和第二磁力体112间隔设置,所述第一磁力体111与第一伺服电机固定连接,所述第二磁力体112与转动杆114固定连接,以使得所述第一磁力体111转动时带动所述第二磁力体112转动。
所述样品放置机构包括用于保持血样的恒温单元121及用于盛放血样的样本杯组件122,所述样本杯组件122包括杯体1221及杯盖1222,所述杯体1221为有一端开口的容器,所述杯盖1222与所述杯体1221的开口盖合,所述杯盖1222朝向杯体1221的表面设有搅拌器1223,所述搅拌器1223容纳与所述杯体1221内,所述杯盖1222设有与所述转动杆114配合的通孔,以使得所述转动杆插入所述通孔带动杯盖1222转动。
测试机构处于第一位置时,所述转动杆114插入所述杯盖1222的通孔以实现所述转动杆114与杯盖1222连接。
测试机构处于第二位置时,所述转动杆带动所述杯盖1222远离所述杯体1221且使得搅拌器1223位于所述杯体1221内部,以及所述第一伺服电机113以预设转动角度带动所述第一磁力体111转动,第一磁力体111在磁力的作用下带动所述第二磁力体112转动,所述第二磁力体112带动所述搅拌器1223在所述杯体1221内转动。
所述测试单元包括光学滑鼠感测器125、安装在所述转动杆上的码盘123 以及与所述光学滑鼠感测器125电连接的处理器,所述光学滑鼠感测器125检测所述码盘的转动情况生成所述转动杆114的转动信号并将所述转动信号发送至所述处理器,所述处理器根据所述转动信号绘制血栓弹力图。
结合图3所示,码盘123的中心与转动杆114固定连接,码盘123的表面与转动杆114的中轴线垂直,码盘123随着第二磁力体112和转动杆114的转动而转动。在码盘123与第一磁力体201的中间平行放置有光学滑鼠感测器125,光学滑鼠感测器125下表面平行于码盘123上表面,采样时,光学滑鼠感测器125发射的光束照射在码盘123表面某一处,通过光束反馈的信息分析得到码盘123的转动情况。
本发明提供的凝血检测仪器,采用光学滑鼠感测器检测码盘转动,使得对检测过程中的精确测量,使得设备精确度更高、测试效率更高、抗干扰能力更强,并且采用磁力吸引的作用,通过第一磁力体111和第二磁力体112的牵引力来牵动杯盖1222搅拌杯体1221中血样,并通过码盘123和信号收发器将血凝过程中微观发生复杂的生物变化转换成位移信号进行采集处理成血栓弹力图,使得测试过程操作简单,降低操作人员的工作量,节省了成本。
下面对凝血检测仪器的结构进行具体介绍。
所述凝血检测仪器包括测试机构、样品放置机构以及用于实现测试机构靠近或者远离所述样品放置机构的传动机构;
测试机构包括转动单元、测试单元以及支撑上述部件的支架124;
所述转动单元包括第一磁力体111、第二磁力体112、第一伺服电机113以及转动杆114,即第一磁力体111的N极与第二磁力体112的S极位于同一侧,第一磁力体111的S极与第二磁力体112的N极位于同一侧,第一磁力体111和第二磁力体112之间产生磁性相吸的作用,第一磁力体111转动可带动第二磁力体112转动,所述第一磁力体111的重心位置与所述第一伺服电机113的转轴固定连接,所述第二磁力体112安装在转动杆114的一端,第二磁力体112的重心位置与转动杆114连接,所述第一磁力体111的N极和S极所在直线与所述转轴垂直。
优选地,所述第一磁力体111和所述第二磁力体112为圆柱体,第一磁力体111的磁力值大于第二磁力体112的磁力值,从而使第一磁力体111能顺利 轻松的带动第二磁力体112转动,其中第一磁力体和第二磁力体112的中心距离大于两者的半径之和,即第一磁力体111与第二磁力体112沿竖直方向间隔且平行设置,避免了由于第一磁力体和第二磁力体的接触而导致测试结果的不准的问题。
结合图2和图3所示,所述支架124包括位于支架124顶端用于安装第一伺服电机113的安装板1241、位于支架124底端用于支撑第二磁力体112转动的定位板1242以及连接安装板1241(图3为脱盖装置下)与定位板1242的竖直板1243,所述定位板1242采用材料为摩擦因数较小的聚四氟乙烯或聚醚醚酮(PEEK),也可采用其他具有自润滑性良好、机械强度高、耐高温、耐冲击、阻燃、耐酸碱、耐水解、耐磨、耐疲劳、耐辐照性能的材料,尤其用于与码盘123接触面的材料,使其配合的摩擦力降低到最小。
所述测试单元包括光学滑鼠感测器、安装在所述转动杆上的码盘以及与所述光学滑鼠感测器电连接的处理器,所述光学滑鼠感测器检测所述码盘的转动情况生成所述转动杆的转动信号并将所述转动信号发送至所述处理器,所述处理器根据所述转动信号绘制血栓弹力图。
对于如何生成血栓弹力图的过程需要重点说明:
结合图15左图所示,在码盘123转动前,光学滑鼠感测器125在码盘123表面取一点A作为测试点并建立坐标系,并将A点坐标设置为原点坐标(0,0)。坐标系X、Y轴方向由光学滑鼠感测器125自身确定,即以光学滑鼠感测器125的中心为坐标系原点,平行于光学滑鼠感测器125较短的一边作为Y轴,由码盘123中心指向光学滑鼠感测器125中心的方向为Y轴正方向,X轴垂直于Y轴,X轴正方向由Y轴正方向的左侧指向右侧,其中,半径R为光学滑鼠感测器125在码盘123的测试点与码盘123圆心之间的距离。
码盘123在磁力牵引下转动角度α1后停止,此时测试点位置为码盘上的B点,光学滑鼠感测器125记录下B点的坐标位置(X1,Y1)。
测试点的位移变化,即A、B两点之间的直线间距为:
Figure PCTCN2017070438-appb-000001
根据三角形余弦定理有
Figure PCTCN2017070438-appb-000002
(应改为α1)
则码盘123转动角度为
Figure PCTCN2017070438-appb-000003
则测试点的运动轨迹长度为测试点间的弧长,即
Figure PCTCN2017070438-appb-000004
为了使得测量时码盘保持静止,当码盘123转动角度α后停止时,光学滑鼠感测器延后一个时间周期再记录测试点的坐标位置,时间周期可以为800-1000ms,这样可以保证采样时码盘处于稳定状态,确保采样数据的准确性。
结合图15右图所示,在码盘进行反向转动时,光学滑鼠感测器125先将B点的坐标归零,即设置B′点坐标为(0,0)。随后码盘反方向转动到点A′(X2,Y2),则测试点的位移变化为
Figure PCTCN2017070438-appb-000005
根据余弦定理计算转动角度
Figure PCTCN2017070438-appb-000006
则测试点的运动轨迹长度为测试点间的弧长,即
Figure PCTCN2017070438-appb-000007
备注:随着血液的凝固,血液粘弹力变大,码盘的转动阻力加大,导致α2略小于α1,故S2略小于S1。计算码盘123往复转动一次测试点的平均运动轨迹的弧线长度为
Figure PCTCN2017070438-appb-000008
其中,T1为凝血测试开始到当前时刻的时间。
然后,处理器将当前血液凝固状态下码盘123的转动信息(ST1,T1)上传至处理器。
随着血液的逐渐凝固,血液的粘弹力变大,码盘123转动受到的阻力变大,码盘123的转角幅度α变小。
结合图16所示,码盘123从C(0,0,)转动到D(X3,Y3),测试点位移变化为
Figure PCTCN2017070438-appb-000009
码盘123转动角度为
Figure PCTCN2017070438-appb-000010
则测试点的运动轨迹长度为测试点间的弧长,即
Figure PCTCN2017070438-appb-000011
码盘123从D′(0,0,)转动到C′(X4,Y4),测试点位移变化为
Figure PCTCN2017070438-appb-000012
码盘123转动角度为
Figure PCTCN2017070438-appb-000013
则测试点的运动轨迹长度为测试点间的弧长,即
Figure PCTCN2017070438-appb-000014
其中,随着血液的凝固,血液粘弹力变大,码盘的转动阻力加大,导致α4略小于α3,故S4略小于S3。码盘123往复转动一次测试点的平均运动轨迹的弧线长度为
Figure PCTCN2017070438-appb-000015
其中,T2为凝血测试开始到当前时刻的时间。
处理器将当前血液凝固状态下码盘123的转动信息(ST2,T2)上传至处理器,随着血液的凝固,血液粘弹力逐渐变大,测试点的转动角度α逐渐变小,测试点的运动轨迹长度逐渐变小。在测试开始时,血液粘弹力最小,码盘123的转动角度α最大,测试点的运动轨迹长度ST最大;在血液凝固时,血液的粘弹力最大,码盘123的转动角度α最小,测试点的运动轨迹长度ST最小。
光学滑鼠感测器125在已设定的分辨率模式下,以像素点形式来记录其位移坐标,所以处理器计算得到的弧长也是以像素点来表示。
采集到的数据可用函数表示为
Figure PCTCN2017070438-appb-000016
其中,STi表示Ti时刻采集到测试点平均运动轨迹长度,i=1、2、3、……、n。
F(i)的最大值为数据的基准值,即
F(i)max=a
其中,a为一常数。
F(i)的最小值为数据的最低值,即
F(i)min=b
其中,b为一常数。
最大振幅值为F(i)的最大值减去最小值,即
F(i)ma=F(i)max-F(i)min
用基准值减去F(i)可得到实时振幅值,即
G(i)=F(i)max-F(i)
根据[G(i),Ti]绘制的图形进行平滑连线处理后再以T轴为对称轴作镜像处理可得到血栓弹力图。
结合图17所示,使用人体全血样一进行测试,光学滑鼠感测器125采集到的弧长像素值数据可表示为
Figure PCTCN2017070438-appb-000017
其中,STi表示Ti时刻采集到测试点平均运动轨迹长度,i=1、2、3、……、n。在测试开始时,也即血凝块强度最小时,光学滑鼠感测器125检测到的弧长像素值最大(此即基准值),即F(i)max=160。基准值160减去此时的弧长像素值160可得到振幅值G=0。码盘123往复运动一次测试点的平均运动轨迹的弧长像素值逐渐减小,在血凝块强度达到最大时,光学滑鼠感测器125检测到的弧长像素值最小,此即最低值为59,将基准值160减去最低值59可得到最大振幅值G=101。以此类推,用基准值160减去所有弧长像素值可得到当前时间的振幅值,该振幅值函数为G(i)=F(i)max-F(i),根据[G(i),Ti]绘制的图形进行平滑连线处理后再作镜像处理可得到血栓弹力图。
需要说明的是,处理器可以采用上位机软件进行实现,本领域普通技术人员应当理解具体不做限定。
结合图18所示,用人体全血样二进行测试,光学滑鼠感测器125检测到的像素点数基准值为160,最低值为88,最大振幅值为72,按照对全血样一的数据处理方法得到血栓弹力图。
通过血栓弹力图可得到一系列指标值,通过指标值与参考范围进行比较, 可判断血样的凝血状态。由于可用于参考的指标值较多,本例以最大振幅值为例进行讲解。正常人的血液参考范围假定为40~80,若测试结果最大振幅值大于80,则判断血样为高凝状态;若测试结果最大振幅值小于40,则判断血样为低凝状态;若测试结果最大振幅值落在40~80区间,则判断血样为正常凝血状态。根据得到的测试及判断综合结果,可帮助医生采取不同的治疗措施。
结合图14所示,所述码盘123位于转动杆114靠近第二磁力体112的一端,所述转动杆114的端部沿径向设有贯通孔1226,所述第二磁力体112穿过该贯通孔1226,第二磁力体112的重心位置位于该贯通孔1226内,这样在第二磁力体112自转的时候,不会因为重心不对称导致震动的产生。
结合图14所示,在码盘123背离第二磁力体112一侧的转动杆114上环绕圆周方向设有锥形凸台1141,所述定位板1242上设有定位孔,所述转动杆114穿过所述定位孔,所述锥形凸台1141抵靠在所述定位孔的孔壁上,这样在转动杆114转动的过程中,转动杆114与定位板1242的接触面积变小,摩擦力降低,尽量减小摩擦对测试结果的影响,提高测试结果的准确性。
结合图3所示,为了防止转动杆114在定位板1242上沿着上下方向窜动,所述转动杆114穿过定位孔的杆体设有限位槽1142,所述限位槽1142为环绕转动杆114圆周方向设置的环形沟槽,在限位槽1142中加装限位扣1143,转动杆114在受到外力作用时候,由于限位扣1143和限位槽1142的配合存在,限制了转动杆114轴向的运动位移,使得位于定位孔两侧的转动杆114不易发生轴向窜动。
结合图14所示,所述转动杆114的另一端包括导向尖端1143和锥形部1144,所述导向尖端1143位于转动杆114的末端且成锥形体,用于在与杯盖1222配合时起到导向定位作用,方便插入杯盖1222,锥形部1144自身具有一定锥度,即锥形部1144的直径朝向导向尖端1143逐渐减小,与导向尖端1143连续设置成一体,在于杯盖1222配合的时候,也通过过盈配合实现轻松装配并且不容易脱落,避免了由于人为装配出现装配不到位和震动导致的血样检测 容易失败和检测结果不准的问题。
样品放置机构包括恒温单元121、样本杯组件122以及脱盖单元,下面对各部分结构进行具体说明:
结合图3所示,恒温单元121包括安装支座1211及位于安装支座1211上的恒温控制组件,所述恒温控制组件包括隔热支撑板1212、安装在隔热支撑板1212上的恒温辅助板1213以及安装在恒温辅助板1213下表面的恒温保持器1214,所述隔热支撑板1212采用隔热和硬度高的非金属材料,用于固定和支撑恒温辅助板1213并防止其温度发散,所述恒温保持器1214用于加热和探测恒温辅助板1213的温度,检测恒温辅助板1213的温度是否所需的温度阈值,如果高于所需的温度阈值恒温保持器1214停止对恒温辅助板1213加热,如果温度低于所需的温度阈值恒温保持器1214对恒温辅助板1213进行加热,从而达到保持恒温辅助板1213温度恒定在所需的温度阈值的目的,在本实施例中,所需的温度阈值为37摄氏度。
结合图15所示,所述恒温辅助板1213设有一用于容纳样本杯组件122的定位槽1215,所述样本杯组件122放置在定位槽1215中,本实施例中,定位槽1215采用圆筒结构,圆筒的轴向方向与恒温辅助板1213的表面垂直,在定位槽1215的端面上设置有一矩形缺口1216,在样本杯组件122的杯体1221外表面设置与该矩形缺口1216配合的把手1224,样本杯组件122放置在定位槽1215内,该把手1224卡在所述矩形缺口1216中,当然定位槽1215的形状可以为方筒或者其他结构形状,满足样本杯组件122放置在定位槽1215中不会发生相对转动即可,具体可不做限定,定位槽1215为用于定位样本杯组件122,防止在测试过程中由于血样的纤维蛋白粘度增加带动其一起晃动,影响测试结果。
结合图11所示,样本杯组件122包括杯体1221,所述杯体1221为具有一端开口的容器,所述杯体1221的底部具有一定锥度,以便更容易放置在定位槽1215内,杯体1221形状与定位槽1215相适合即可,例如,定位槽1215采用圆筒,则杯体1221也涉及为圆柱体,在本实施例中杯体1221壁厚优选0.5毫米~3毫米,容积设为大于100微升,在杯体1221的侧壁上设有一把手 1224,优选地,所述把手1224呈直角三角形,所述把手1224设置在杯体1221靠近开口的侧壁上,该把手1224可以定位槽1215上的矩形缺口1216相配合,限制杯体1221与定位槽1215之间发生相对转动,防止在测试血样时候杯体1221转动影响测试结果,也方便用手拿取,避免了由于人为装配杯盖1222不到位和震动的因素造成测试结果不准确和测试失败,大大的降低了人力和物力成本。
结合图11所示,样本杯组件122还包括杯盖1222,杯盖1222为圆形,可以与杯体1221的开口相适合,所述杯盖1222上表面设有一通孔,该通孔具体的可以为锥形孔1225,优选地,所述锥形孔1225位于杯盖1222的中心,所述锥形孔1225的锥度采用莫氏锥度设计并可与转动杆114的锥形部1144配合,本结构利用莫氏锥度本身具有的自锁功能,能把轴向的力转化为转动的径向力的原理使得杯盖1222与转动杆114的锥形部1144紧密连接。杯盖1222下表面设有至少一个搅拌器1223,所述搅拌器1223均匀分布在杯盖1222的下表面,搅拌器1223可在转动杆114的带动下搅拌杯体1221中血样,通过搅拌器搅拌血样,可以使得搅拌器更好的接触,可以增加接触面积和搅拌阻力,便于绘制血样凝固的程度,提高测试准确性。
结合图11所示,优选地,在杯盖1222的下表面围绕圆心均匀设置四个搅拌器1223,四个搅拌器1223对称分布在杯盖1222的下表面,使得杯盖1222在转动过程中受力均匀,避免因为搅拌器分布不平衡产生振动。
结合图11所示,优选地,每个搅拌器1223的形状为n形,即每个搅拌器1223具有两片搅拌齿,两个搅拌齿平行设置,通过该结构使得在搅拌的过程中提高搅拌器1223的韧性以及增大血样对搅拌器1223的阻力,更准确的监测出血样凝固的程度,提高测试准确性。
优选地,所述样本杯组件122的杯盖1222和杯体1221采用具有生物相容性的高分子材料制成并带有一定的韧性,均为一次性耗材用品,在使用之前杯盖1222与杯体1221扣合密封,保证了杯体1221内部的清洁,避免血样受到污染。
结合图9和图10所示,样品放置机构还包括脱盖单元,用于在测试结束 后将所述杯盖1222从转动杆114上进行脱离,便于操作人员将样本杯组件122整体取下。
结合图9和图10所示,所述脱盖单元包括施力组件126、一端安装在施力组件126上的连接板1261以及安装在连接板1261另一端的脱盖板1262,所述脱盖板1262可在施力组件126的作用下转动一定角度转至定位槽1215正上方,阻挡样本杯组件122跟随转动杆114提升,即阻挡样本杯组件122沿转动杆114的轴向方向上持续上升,使得样本杯组件122与转动杆114分离,这样可以起到自动脱盖的作用,解决了医护人员操作步骤繁多、工作量大、人为装配出现的用力不一导致的结果不准、错误或测试失败的问题,杯盖1222与转动杆114的自动化装配连接,测试完毕后通过脱盖板1262自动卸掉杯盖1222来解决医务人员工作量大、操作过程复杂的问题。
结合图9和图10所示,优选地,施力组件126可以采用伺服电机,伺服电机安装在恒温单元121的支座上,连接板1261与伺服电机的转轴连接,通过输出控制信号,控制伺服电机转动,带动连接板1261,进而带动脱盖板1262转动,脱盖板1262的转动面可以与杯盖1222的上表面平行,即沿着水平方向转动,当然也可以在竖直方向上转动,即脱盖板1262由上至下转动到定位槽1215正上方,在本实施例中采用脱盖板1262水平方向转动的方式转动至定位槽1215正上方。
优选地,所述脱盖板1262一端具有与连接板1261连接的圆柱凸台,脱盖板1262的另一端具有半圆形缺口,使得脱盖板1262可以更好的转动到杯盖1222的上方,使得脱盖过程更平稳,不容易发生偏转。
优选地,所述脱盖单元还包括第一定位感应开关,用于定位脱盖板1262的初始位置,从初始位置转动到定位槽1215正上方的角度可以根据需要设置,转动角度大于零度即可,所述第一定位感应开关位于所述安装支座1211上,本实施例中,脱盖板1262的转动角度为90度,在脱盖板1262完成脱盖后转动到第一定位感应开关1263正上方,第一定位感应开关1263为脉冲收发器,脉冲信号经过脱盖板1262的反射,第一定位感应开关1263输出信号,伺服电机停止转动,使得脱盖板1262定位在初始位置。
结合图2和图3所示,下面介绍一下实现测试机构靠近或远离样品放置机构的传动机构的结构,具体包括以下:
所述传动机构130包括滚珠丝杠131和导轨132,所述滚珠丝杠131包括螺杆1311和螺母1312,滚珠丝杠131也可以采用其他可以缓慢提升或者降落测试机构的装置,当然如果能够解决好减震缓冲问题,也可以采用气缸代替,不做限定。
所述测试机构的支架124包括用于连接螺母1312和滑块的转接板1241,在导轨132上可往复滑动的设置滑块1321,本实施例中,滚珠丝杠的螺杆1311作为主动体,在螺杆1311的底端设置有伺服电机,伺服电机带动螺杆1311转动,滑块在导轨132可以上下滑动起到导向作用,通过螺杆1311的转动带动螺母1312直线运动,这样位于螺母1312上的测试机构可以实现靠近或者远离样品放置机构。
优选地,所述测试机构还包括用于安装导轨132的承接板115,导轨132安装在承接板115的表面,所述承接板115与所述样品放置机构的支座成垂直放置,即承接板115沿竖直方向设置,所述导轨132沿竖直方向设置在承接板115上。
优选地,所述测试机构还包括用于定位滑块位置的第二定位感应开关(图中未示出)和第三定位感应开关(图中未示出),所述第二定位感应开关和第三定位感应开关均设置在导轨132的同一侧的承接板115上,所述第二定位感应开关和第三定位感应开关均设置在导轨的同一侧的承接板上,所述第二定位感应开关用于在测试机构处于第一位置时输出信号,处于第一位置时,转动杆114与杯盖1222连接,所述第三定位感应开关用于在测试机构处于第二位置时输出信号,处于第二位置时,转动杆114带动杯盖1222转动搅拌位于杯体1221中的样品。
所述承接板设有第四定位感应开关1264,用于在所述滑块处于导轨顶端时输出信号,以提示所述杯盖1222在测试机构的带动下远离所述杯体1221,所述第四定位感应开关设置在靠近导轨132顶端的承接板115上,用于放置样品或者结束测试时候移除样品的操作
需要说明的是,定位感应开关可以设置在预定的位置,用于提示定位,感应开关可以包括发射器和接收器,发射器向接收器发射光信号,可以在滑块上安装阻隔板1265,用于遮挡光信号,接收器没有接收到光信号时则说明滑块上的阻隔板1265移动到了发射器和接收器之间,定位感应开关可以输出信号提示滑块运动到预定位置。
优选的,所述仪器还包括用于显示测量结果的显示屏,处理器根据脉冲信号生成血栓弹力图,再将血栓弹力图发送至显示屏显示,当然,显示屏不仅仅可以显示测量结果,也可以显示其他参数,例如操作时间等,具体不进行限定。
优选的,所述仪器还包括水平仪,用于检测仪器当前是否处于水平放置的状态,所述水平仪也可以通过显示屏将水平状态显示,方便操作人员调整仪器状态,避免仪器不平稳的情况,提高仪器的检测精度。
凝血检测仪器包括电气控制单元,电气控制单元与第一定位感应开关1263、第二定位感应开关和第三定位感应开关电性连接,第一定位感应开关1263、第二定位感应开关和第三定位感应开关电将采集的信号输送至电气控制单元,电气控制单元根据各个定位感应开关的信号控制伺服电机运动,到运动到指定位置则控制伺服电机停止转动,电气控制单元也可以用于实现控制装置整体的电气工作,可以为显示屏进行供电等等,具体不作赘述。
结合图4至图10所示,为了方便对本发明的理解,下面提供凝血检测仪器的一种实施例的应用场景加以说明:
凝血检测仪器开机启动,进行系统初始化;
测试机构对码盘123和信号收发器125进行初始位置矫正,使得码盘123转动移动角度之后信号收发器125可以正常的完成发送或接收脉冲信号。
将样本杯组件122放置在样品放置机构的定位槽1215中,恒温单元121开始进行加热,并保持温度恒定不变,测试机构在传动机构的带动下运动到第一位置,第二定位感应开关输出信号提示测试机构处于第一位置,此时转动杆114插入杯盖1222的锥形孔1225中,转动杆114与杯盖1222配合连接在一起,传动结构带动测试机构向上运动至导轨132顶端,第四定位感应开关输出信号提示测试机构处于导轨132顶端,此时杯体1221和杯盖1222处于完全分 离状态,检测人员向杯体1221内加入血样,测试机构在传动机构的带动下向下运动至第二位置,第三定位感应开关输出信号提示当前位置,此时,杯盖1222上的搅拌器1223伸入到杯体1221内的血样中,测试机构的第一伺服电机113转动,所述第一磁力体111在第一伺服电机113的带动下以一定值角度α幅度有规律的正反转动,在测试血液粘度最大时,所述第一磁力体111转动的角度α为定值且应大于码盘123的转动的角度α',第一磁力体111在驱动电机的带动下,以一定转速v和转角幅度ω做周期性往复转动运动,并在磁力吸引作用下牵引第二磁力体112以转角幅度ω’有规律地往复转动,从而使杯盖1222上的搅拌器1223在血样中搅拌。随着血液的凝固,杯盖1222搅拌时受到的阻力变大,导致码盘123的转角幅度ω’逐渐变小,即码盘123的转角幅度随着血液粘弹力的增加而减小,光学滑鼠感测器125在码盘123上取一点作为测试点,通过监测测试点的坐标位移变化,可以得到码盘123的转动信息,经过信号的处理后反应出血凝过程的全貌,并画出血液弹力图。
血液弹力图绘制完成可以通过显示屏显示或者打印,脱盖单元转动到定位槽1215上方以阻挡杯盖1222,测试机构在传动机构的带动下向上运动,转动杆114也随着测试机构上升而上升,此时处在转动杆114上的杯盖1222由于脱盖单元的阻挡,杯盖1222不能继续向上运动,使得杯盖1222与转动杆114分离,达到自动脱盖的目的。
本发明的作用是解决目前市面上的凝血全貌检测仪的操作过程复杂、血样检测容易失败、检测结果不准导致的误诊、医务人员工作量大和高昂的成本的问题。
本发明通过将样品杯盖1222与码盘123下端的锥形段的自动化装配连接,测试完毕后通过脱盖板1262自动卸掉杯盖1222来解决医务人员工作量大、操作过程复杂的问题,避免了由于人为装配出现装配不到位和震动导致的血样检测容易失败和检测结果不准的问题,本发明选用材料为常见的普通材料,结构设计特殊解决了由于设备易坏导致的高昂的成本的问题。
整个操作过程中医生只需放置样品杯,按下测试按钮,并向样品杯加入血样,测试完后拿走样品杯即可,本仪器操作简便,大大地降低了医护人员的工 作量,提高了工作效率,避免了由于人为装配杯盖1222不到位和震动的因素造成测试结果不准确和测试失败,大大的降低了人力和物力成本。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部 单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
以上对本发明所提供的一种凝血检测仪器进行了详细介绍,对于本领域的一般技术人员,依据本发明实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种凝血检测仪器,所述仪器包括用于检测血液弹力的测试机构、用于放置血液样本的样品放置机构以及用于实现测试机构靠近或者远离所述样品放置机构的传动机构,其特征在于,所述测试机构包括光学滑鼠感测器、用于将血液弹力转化为转动角度的码盘以及与所述光学滑鼠感测器电连接的位移处理器,所述光学滑鼠感测器检测所述码盘的转动情况生成转动信号并将所述转动信号发送至所述位移处理器,所述位移处理器根据所述转动信号绘制血栓弹力图。
  2. 根据权利要求1所述的凝血检测仪器,其特征在于,所述码盘的表面设置磨砂层的粗糙表面。
  3. 根据权利要求1所述的凝血检测仪器,其特征在于,所述光学滑鼠感测器还包括用于对焦采样的滤镜。
  4. 根据权利要求1所述的凝血检测仪器,其特征在于,所述测试机构还包括转动单元,所述转动单元包括第一磁力体、第二磁力体、第一伺服电机以及转动杆,所述码盘安装在所述转动杆上,所述第一磁力体和第二磁力体间隔设置,所述第一磁力体与第一伺服电机固定连接,所述第二磁力体与所述转动杆固定连接,以使得所述第一磁力体转动时带动所述第二磁力体转动。
  5. 根据权利要求4所述的凝血检测仪器,其特征在于,所述样品放置机构包括用于保持血样的恒温单元及用于盛放血样的样本杯组件,所述样本杯组件包括杯体及杯盖,所述杯体为有一端开口的容器,所述杯盖与所述杯体的开口盖合,所述杯盖朝向杯体的表面设有搅拌器,所述搅拌器容纳与所述杯体内,所述杯盖设有与所述转动杆配合的通孔,以使得所述转动杆插入所述通孔带动杯盖转动;
    所述测试机构处于第一位置时,所述转动杆插入所述杯盖的通孔以实现所述转动杆与杯盖连接;
    所述测试机构处于第二位置时,所述转动杆带动所述杯盖远离所述杯体且使得搅拌器位于所述杯体内部,以及所述第一伺服电机以预设转动角度带动所述第一磁力体转动,第一磁力体在磁力的作用下带动所述第二磁力体转动,所述第二磁力体带动所述搅拌器在所述杯体内转动。
  6. 根据权利要求5所述的凝血检测仪器,其特征在于,所述恒温单元包括安装支座及位于安装支座上的恒温控制组件,所述恒温控制组件包括用于固定和支撑恒温辅助板并防止其温度发散的隔热支撑板、安装在隔热支撑板上的恒温辅助板以及安装在恒温辅助板下表面的用于加热和探测恒温辅助板的温度的恒温保持器,以使得在恒温辅助板的温度高于所需的温度阈值时恒温保持器停止对恒温辅助板加热,在所述恒温辅助板的温度低于所需的温度阈值时所述恒温保持器对所述恒温辅助板进行加热。
  7. 根据权利要求4所述的凝血检测仪器,其特征在于,所述恒温辅助板设有一用于容纳样本杯组件的定位槽,所述样本杯组件放置在定位槽中,所述定位槽的端面上设置有一矩形缺口,所述样本杯组件的杯体外表面设置与该缺口配合的把手,所述样本杯组件放置在定位槽内,所述把手卡在所述缺口中。
  8. 根据权利要求1所述的凝血检测仪器,其特征在于,所述样品放置机构还包括脱盖单元,用于在测试结束后将所述杯盖从转动杆上进行脱离,所述脱盖单元包括施力组件、一端安装在施力组件上的连接板以及安装在连接板另一端的脱盖板,所述脱盖板可在所述施力组件的作用下转动一定角度转至定位槽正上方。
  9. 根据权利要求4所述的凝血检测仪器,其特征在于,所述码盘位于转动杆靠近第二磁力体的一端,所述转动杆的端部沿径向设有贯通孔,所述第二磁力体穿过该贯通孔,第二磁力体的重心位置位于该贯通孔内。
  10. 根据权利要求1所述的凝血检测仪器,其特征在于,所述传动机构包 括滚珠丝杠和导轨,所述导轨上设有可往复滑动的滑块,所述滚珠丝杠包括螺杆和环绕所述螺杆转动行进的螺母,所述测试机构的支架分别与所述螺母及所述滑块连接。
PCT/CN2017/070438 2016-01-11 2017-01-06 一种凝血检测仪器 WO2017121288A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610019337.6A CN105548583B (zh) 2016-01-11 2016-01-11 一种凝血检测仪器
CN201610019337.6 2016-01-11

Publications (1)

Publication Number Publication Date
WO2017121288A1 true WO2017121288A1 (zh) 2017-07-20

Family

ID=55827912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/070438 WO2017121288A1 (zh) 2016-01-11 2017-01-06 一种凝血检测仪器

Country Status (2)

Country Link
CN (1) CN105548583B (zh)
WO (1) WO2017121288A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107462628A (zh) * 2017-09-14 2017-12-12 重庆南方数控设备有限责任公司 一种基于磁粉的血栓弹力检测装置及检测方法
CN110389211A (zh) * 2019-07-02 2019-10-29 中国科学院苏州生物医学工程技术研究所 血液动力学检测装置
CN110749727A (zh) * 2019-11-20 2020-02-04 重庆鼎润医疗器械有限责任公司 一种血栓弹力图仪
CN111380782A (zh) * 2019-05-25 2020-07-07 郑州普湾医疗技术有限公司 一种传感器合金悬垂丝及具有该悬垂丝的血栓弹力图仪
CN111707812A (zh) * 2020-07-16 2020-09-25 广州万孚生物技术股份有限公司 一种自动上下杯组件及自动上下杯方法
WO2020200046A1 (zh) * 2019-03-29 2020-10-08 赫安仕科技(苏州)有限公司 一种全自动的血栓弹力检测装置及检测方法
CN114130293A (zh) * 2021-11-17 2022-03-04 西安南风日化有限责任公司 一种洗衣粉实心颗粒的搅拌装置及其检测方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105548583B (zh) * 2016-01-11 2018-06-29 广州阳普医疗科技股份有限公司 一种凝血检测仪器
CN106405063B (zh) * 2016-08-30 2019-06-04 诺泰科生物科技(苏州)有限公司 一种血栓弹力仪及盛血杯杯盖装卸方法
CN106226178B (zh) * 2016-07-15 2018-08-17 重庆鼎润医疗器械有限责任公司 一种采用毛细管内血样振动检测凝血状态的装置
CN107957499A (zh) * 2018-01-12 2018-04-24 宝锐生物科技泰州有限公司 血栓弹力图仪
CN108318699B (zh) * 2018-04-12 2024-03-12 赫安仕科技(苏州)有限公司 一种盛血杯装卸装置及其装卸方法
CN110208511B (zh) * 2019-07-11 2024-03-08 北京森美希克玛生物科技有限公司 弹力图仪和可视化弹力图设备
CN113587782A (zh) * 2021-10-08 2021-11-02 长沙康飞电子科技有限公司 一种用于计量小口径容器深度的装置及其使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202382746U (zh) * 2011-12-09 2012-08-15 沈阳工业大学 一种移动机器人行驶轨迹定位装置
US20130141336A1 (en) * 2009-05-26 2013-06-06 Honeywell International Inc. System and method for linear and angular measurements of a moving object
CN104062207A (zh) * 2014-07-15 2014-09-24 中国科学院苏州生物医学工程技术研究所 一种血液粘弹力监测装置
CN204479595U (zh) * 2014-12-12 2015-07-15 广州阳普医疗科技股份有限公司 一种样品杯组件及具有该组件的凝血检测仪器
CN105548583A (zh) * 2016-01-11 2016-05-04 广州阳普医疗科技股份有限公司 一种凝血检测仪器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104634252A (zh) * 2013-11-11 2015-05-20 成都中远信电子科技有限公司 基于光学鼠标传感器的中远距离微位移测量装置
CN204065105U (zh) * 2014-08-22 2014-12-31 中国科学院苏州生物医学工程技术研究所 一种血栓弹力测试装置
CN104458503B (zh) * 2014-12-12 2016-11-30 广州阳普医疗科技股份有限公司 一种凝血检测仪器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130141336A1 (en) * 2009-05-26 2013-06-06 Honeywell International Inc. System and method for linear and angular measurements of a moving object
CN202382746U (zh) * 2011-12-09 2012-08-15 沈阳工业大学 一种移动机器人行驶轨迹定位装置
CN104062207A (zh) * 2014-07-15 2014-09-24 中国科学院苏州生物医学工程技术研究所 一种血液粘弹力监测装置
CN204479595U (zh) * 2014-12-12 2015-07-15 广州阳普医疗科技股份有限公司 一种样品杯组件及具有该组件的凝血检测仪器
CN105548583A (zh) * 2016-01-11 2016-05-04 广州阳普医疗科技股份有限公司 一种凝血检测仪器

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107462628A (zh) * 2017-09-14 2017-12-12 重庆南方数控设备有限责任公司 一种基于磁粉的血栓弹力检测装置及检测方法
WO2020200046A1 (zh) * 2019-03-29 2020-10-08 赫安仕科技(苏州)有限公司 一种全自动的血栓弹力检测装置及检测方法
CN111380782A (zh) * 2019-05-25 2020-07-07 郑州普湾医疗技术有限公司 一种传感器合金悬垂丝及具有该悬垂丝的血栓弹力图仪
CN110389211A (zh) * 2019-07-02 2019-10-29 中国科学院苏州生物医学工程技术研究所 血液动力学检测装置
CN110389211B (zh) * 2019-07-02 2024-03-22 中国科学院苏州生物医学工程技术研究所 血液动力学检测装置
CN110749727A (zh) * 2019-11-20 2020-02-04 重庆鼎润医疗器械有限责任公司 一种血栓弹力图仪
CN111707812A (zh) * 2020-07-16 2020-09-25 广州万孚生物技术股份有限公司 一种自动上下杯组件及自动上下杯方法
CN111707812B (zh) * 2020-07-16 2023-11-03 广州万孚生物技术股份有限公司 一种自动上下杯组件及自动上下杯方法
CN114130293A (zh) * 2021-11-17 2022-03-04 西安南风日化有限责任公司 一种洗衣粉实心颗粒的搅拌装置及其检测方法

Also Published As

Publication number Publication date
CN105548583B (zh) 2018-06-29
CN105548583A (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
WO2017121288A1 (zh) 一种凝血检测仪器
WO2016090739A1 (zh) 一种凝血检测仪器
EP0645017B1 (en) Liquid dispensing system
CN204479595U (zh) 一种样品杯组件及具有该组件的凝血检测仪器
US5167145A (en) Measurement of blood coagulation time using infrared electromagnetic energy
JP4926854B2 (ja) 血小板凝集測定方法および血小板凝集測定装置
US10295554B2 (en) Blood testing system and method
JP2005334650A (ja) エンド・エフェクタを被検者の体内の目標位置まで案内するシステム、方法並びに製造物品
CN208140723U (zh) 一种全自动进样血细胞分析测量装置
EP3112872B1 (en) Blood testing system and method
CN115144574B (zh) 一种用于血栓弹力图的检测装置
CN106526211B (zh) 取样装置及电解质分析仪
CN115144575A (zh) 一种用于血栓弹力图的检测探头
JP3725522B2 (ja) 超音波診断装置及びその保守管理方法並びにその保守管理システム
CN204287208U (zh) 一种凝血检测仪器
CN211122890U (zh) 一种血栓弹力图仪
CN204422551U (zh) 一种凝血检测仪器
CN210465441U (zh) 弹力图仪和可视化弹力图设备
JP6302585B2 (ja) 血液検査システムおよび方法
CN110208511B (zh) 弹力图仪和可视化弹力图设备
JP6175601B2 (ja) 血液検査システムおよび方法
CN210090476U (zh) 一种凝血功能检测的测试杯
CN209499858U (zh) 超声引导穿刺装置及系统
CA2439891A1 (en) Apparatus and method for processing and testing a biological specimen
JP2015161629A (ja) 臨床検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17738102

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17738102

Country of ref document: EP

Kind code of ref document: A1