WO2017119342A1 - 研磨材 - Google Patents

研磨材 Download PDF

Info

Publication number
WO2017119342A1
WO2017119342A1 PCT/JP2016/088721 JP2016088721W WO2017119342A1 WO 2017119342 A1 WO2017119342 A1 WO 2017119342A1 JP 2016088721 W JP2016088721 W JP 2016088721W WO 2017119342 A1 WO2017119342 A1 WO 2017119342A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
abrasive
abrasive grains
polishing layer
layer
Prior art date
Application number
PCT/JP2016/088721
Other languages
English (en)
French (fr)
Inventor
賢治 下山
和夫 西藤
啓佑 笹島
歳和 田浦
Original Assignee
バンドー化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バンドー化学株式会社 filed Critical バンドー化学株式会社
Priority to CN201680076410.1A priority Critical patent/CN108430701B/zh
Priority to KR1020187017946A priority patent/KR102039587B1/ko
Priority to JP2016575709A priority patent/JP6279108B2/ja
Publication of WO2017119342A1 publication Critical patent/WO2017119342A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D11/00Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/04Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
    • B24D3/14Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic ceramic, i.e. vitrified bondings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives

Definitions

  • the present invention relates to an abrasive.
  • the present invention has been made in view of such inconveniences, and an object of the present invention is to provide an abrasive having an excellent polishing rate and a polishing rate that is difficult to decrease over a relatively long period of time.
  • the inventors made the binder of the polishing layer an inorganic substance, and the surface of the polishing layer was divided by grooves. It was found that a decrease in the polishing rate can be suppressed by providing a plurality of convex portions and controlling the average area of the convex portions and the total area occupation ratio of the plurality of convex portions with respect to the entire polishing layer. Completed.
  • the invention made to solve the above problems is an abrasive comprising a base sheet and a polishing layer laminated on the surface side of the base sheet and containing abrasive grains and a binder thereof, and the binder
  • the main component is an inorganic substance
  • the polishing layer has a plurality of convex portions divided on the surface thereof by grooves, the average area of the convex portions is 1 mm 2 or more and 300 mm 2 or less, The total area occupancy of the convex portion with respect to the entire polishing layer is 4% or more and 15% or less.
  • the abrasive since the main component of the binder is an inorganic substance, the holding power of the abrasive grains is high, and it is possible to prevent the abrasive grains having high polishing power before crushing from being spilled from the polishing layer. As a result, the abrasive is excellent in the polishing rate. Further, the abrasive has a total area occupancy ratio of the plurality of convex portions with respect to the entire polishing layer within the above range, so that the abrasive grains that have been crushed are spilled due to wear of the binder, and new abrasive The amount of abrasion of the polishing layer is controlled so that the abrasive grains are exposed.
  • the ratio of abrasive grains having high polishing power before crushing with respect to the abrasive grains on the surface of the polishing layer is increased, and a reduction in the polishing rate due to crushing of the abrasive grains can be suppressed. Furthermore, since the said abrasive makes the average area of a convex part more than the said minimum, it can suppress peeling of a convex part. Further, since the abrasive has the average area of the convex portions below the above upper limit, the grooves are positioned at an appropriate interval, and the grinding dust generated on the polishing layer surface does not stay on the polishing layer surface, and the Easy to remove. As a result, the abrasive is unlikely to clog the polishing layer surface. Therefore, the abrasive is excellent in the polishing rate and is difficult to decrease over a relatively long period of time.
  • the abrasive may further include a filling portion that is filled in the groove, contains a resin or an inorganic substance as a main component, and does not substantially contain abrasive grains.
  • polishing material further has a filling part, while a convex-shaped part becomes difficult to peel, it can suppress that a to-be-cut body falls in a groove
  • biting occurs in which the convex portion of one polishing pad fits into the groove portion of the other polishing pad during polishing. Can be suppressed. For this reason, generation
  • the ratio of the average thickness of the filling portion to the average thickness of the polishing layer is preferably 0.1 or more and 1 or less.
  • the above abrasive grains are preferably diamond abrasive grains.
  • Diamond abrasive is hard. Therefore, by making the above abrasive grains diamond abrasive grains, it becomes difficult to crush the abrasive grains, so that the wear amount of the polishing layer can be easily controlled, and the polishing rate of the abrasive and the maintenance of the polishing rate are further improved. it can.
  • the inorganic material is preferably silicate.
  • the abrasive grain retention power of a binder can further be improved by making the said inorganic substance into a silicate.
  • the binder preferably contains a filler mainly composed of an oxide.
  • the elastic modulus of the binder is improved and the abrasion of the polishing layer can be easily controlled. Therefore, the maintainability of the polishing rate of the abrasive can be further improved.
  • the average thickness of the polishing layer is preferably 25 ⁇ m or more and 4000 ⁇ m or less. By setting the average thickness of the polishing layer within the above range, the durability of the polishing layer can be enhanced while suppressing the manufacturing cost.
  • the “area of the entire polishing layer” is a concept including the area of the groove of the polishing layer.
  • the “average thickness of the polishing layer” means the average thickness of only the convex portion of the polishing layer.
  • the “average thickness of the filling portion” means the average distance between the surface of the base material and the surface of the filling portion.
  • filled portion substantially free of abrasive grains means that the content of abrasive grains is less than 0.001% by volume, preferably less than 0.0001% by volume.
  • the abrasive of the present invention is excellent in the polishing rate and hardly decreases in the polishing rate for a relatively long period of time.
  • FIG. 1B is a schematic end view taken along line AA in FIG. 1A. It is a typical end view showing an abrasive of an embodiment different from FIG. 1B.
  • [Abrasive] 1A and 1B includes a base material sheet 10, a polishing layer 20 laminated on the front surface side of the base material sheet 10, and an adhesive layer 30 laminated on the back surface side of the base material sheet 10. With.
  • the abrasive 1 further includes a filling portion 25.
  • the base sheet 10 is a member for supporting the polishing layer 20.
  • the material of the base sheet 10 is not particularly limited, and examples thereof include polyethylene terephthalate (PET), polypropylene (PP), polyethylene (PE), polyimide (PI), polyethylene naphthalate (PEN), aramid, aluminum, copper, and the like. It is done. Among these, aluminum having good adhesion to the polishing layer 20 is preferable. Moreover, the process which improves adhesiveness, such as a chemical process, a corona process, and a primer process, may be performed on the surface of the base material sheet 10.
  • PET polyethylene terephthalate
  • PP polypropylene
  • PE polyethylene
  • PI polyimide
  • PEN polyethylene naphthalate
  • aramid aluminum, copper, and the like. It is done. Among these, aluminum having good adhesion to the polishing layer 20 is preferable.
  • the process which improves adhesiveness such as a chemical process, a corona process, and a primer process, may be performed on the surface of the base material sheet 10.
  • the base sheet 10 may be flexible or ductile.
  • the abrasive 1 follows the surface shape of the workpiece, and the contact area between the polishing surface and the workpiece is increased. Is further increased.
  • Examples of the material of the base sheet 10 having such flexibility include PET and PI.
  • Examples of the material of the base sheet 10 having ductility include aluminum and copper.
  • the shape and size of the substrate sheet 10 are not particularly limited, and may be, for example, a square shape with one side of 140 mm or more and 160 mm or less, or an annular shape with an outer shape of 200 mm or more and 2022 mm or less and an inner diameter of 100 mm or more and 658 mm or less. Moreover, the structure by which the several base material sheet 10 juxtaposed on the plane is supported by a single support body may be sufficient.
  • the average thickness of the substrate sheet 10 is not particularly limited, but can be, for example, 75 ⁇ m or more and 1 mm or less.
  • the strength and flatness of the abrasive 1 may be insufficient.
  • the average thickness of the base sheet 10 exceeds the upper limit, the abrasive 1 is unnecessarily thick and may be difficult to handle.
  • the polishing layer 20 is laminated on the surface side of the base sheet 10 and includes abrasive grains 21 and a binder 22 thereof.
  • the polishing layer 20 has a plurality of convex portions 24 divided by grooves 23 on the surface thereof, the main component of the binder 22 being an inorganic substance.
  • the lower limit of the average thickness of the polishing layer 20 (average thickness of only the convex portion 24 portion) is preferably 25 ⁇ m, more preferably 30 ⁇ m, and even more preferably 200 ⁇ m.
  • the upper limit of the average thickness of the polishing layer 20 is preferably 4000 ⁇ m, more preferably 3000 ⁇ m, and further preferably 2500 ⁇ m.
  • the average thickness of the polishing layer 20 is less than the lower limit, the durability of the polishing layer 20 may be insufficient.
  • the average thickness of the polishing layer 20 exceeds the upper limit, the homogeneity of the polishing layer 20 is lowered, and it may be difficult to exhibit stable polishing ability.
  • the abrasive 1 may become unnecessarily thick, making it difficult to handle and increasing manufacturing costs.
  • Examples of the inorganic substance that is the main component of the binder 22 include silicates, phosphates, and polyvalent metal alkoxides. Among them, a silicate having a high abrasive grain holding power is preferable. Examples of the silicate include sodium silicate and potassium silicate.
  • the binder 22 may contain a filler mainly composed of an oxide.
  • the elastic modulus of the binder 22 is improved and the abrasion of the polishing layer 20 can be easily controlled.
  • the filler examples include oxides such as alumina, silica, cerium oxide, magnesium oxide, zirconia, and titanium oxide, and composite oxides such as silica-alumina, silica-zirconia, and silica-magnesia. You may use these individually or in combination of 2 or more types as needed. Among these, alumina that can provide high polishing power is preferable.
  • the lower limit of the average particle diameter of the filler is preferably 0.01 ⁇ m and more preferably 2 ⁇ m.
  • the upper limit of the average particle diameter of the filler is preferably 20 ⁇ m, and more preferably 15 ⁇ m.
  • the average particle diameter of the filler is less than the lower limit, the effect of improving the elastic modulus of the binder 22 by the filler may not be sufficiently obtained.
  • the average particle diameter of the filler exceeds the upper limit, the filler may hinder the polishing power of the abrasive grains 21.
  • the “average particle size” refers to a 50% value (50% particle size, D50) of a volume-based cumulative particle size distribution curve measured by a laser diffraction method or the like.
  • the average particle diameter of the filler is preferably smaller than the average particle diameter of the abrasive grains 21.
  • the lower limit of the ratio of the average particle diameter of the filler to the average particle diameter of the abrasive grains 21 is preferably 0.1, and more preferably 0.2.
  • the upper limit of the ratio of the average particle diameter of the filler to the average particle diameter of the abrasive grains 21 is preferably 0.8, and more preferably 0.6.
  • the content of the filler with respect to the polishing layer 20 depends on the content of the abrasive grains 21, but the lower limit of the content of the filler with respect to the polishing layer 20 is preferably 15% by volume, more preferably 30% by volume. preferable.
  • the upper limit of the content of the filler with respect to the polishing layer 20 is preferably 75% by volume, more preferably 60% by volume.
  • the binder 22 may appropriately contain various auxiliary agents such as a dispersant, a coupling agent, a surfactant, a lubricant, an antifoaming agent, and a colorant, and additives depending on the purpose.
  • auxiliary agents such as a dispersant, a coupling agent, a surfactant, a lubricant, an antifoaming agent, and a colorant, and additives depending on the purpose.
  • abrasive grains 21 examples include diamond, alumina, silica, ceria, silicon carbide, and the like. Of these, hard diamond abrasive grains are preferred. By making the abrasive grains 21 diamond grains, it becomes difficult for the abrasive grains 21 to be clogged, so that the amount of wear of the polishing layer 20 can be easily controlled, and the polishing rate of the abrasive 1 and the maintenance of the polishing rate are improved. it can.
  • the diamond abrasive grains may be single crystal or polycrystal, and may be diamond subjected to treatment such as Ni coating or Cu coating.
  • the average particle diameter of the abrasive grains 21 is appropriately selected from the viewpoint of the polishing rate and the surface roughness of the workpiece after polishing. As a minimum of the average particle diameter of abrasive grain 21, 2 micrometers is preferred, 10 micrometers is more preferred, and 15 micrometers is still more preferred.
  • the upper limit of the average particle diameter of the abrasive grains 21 is preferably 50 ⁇ m, more preferably 45 ⁇ m, and even more preferably 30 ⁇ m. When the average particle diameter of the abrasive grains 21 is less than the above lower limit, the polishing power of the abrasive 1 is insufficient and the polishing efficiency may be reduced. Conversely, when the average particle diameter of the abrasive grains 21 exceeds the above upper limit, the polishing accuracy may be reduced.
  • the upper limit of the content of the abrasive grains 21 with respect to the polishing layer 20 is preferably 55% by volume, more preferably 45% by volume, and still more preferably 35% by volume.
  • the polishing power of the polishing layer 20 may be insufficient.
  • the polishing layer 20 may not be able to hold the abrasive grains 21.
  • the plurality of convex portions 24 are divided by the grooves 23.
  • the grooves 23 are arranged on the surface of the polishing layer 20 in a lattice pattern with equal intervals. That is, the shape of the plurality of convex portions 24 is a regularly arranged block pattern shape.
  • the lower limit of the total area occupation ratio of the plurality of convex portions 24 with respect to the entire polishing layer 20 is 4%, more preferably 4.4%, and further preferably 8%.
  • the upper limit of the total area occupancy ratio of the plurality of convex portions 24 is 15%, more preferably 14%, and still more preferably 13%.
  • abrasive grains on the surface of the polishing layer contributing to the polishing are worn out, and clogging occurs that reduces the polishing power of the abrasive grains themselves.
  • the binder of the polishing layer is gradually scraped and worn. As the wear of the binder proceeds, the binder cannot hold the abrasive grains completely, and the abrasive grains on the surface of the polishing layer spill over.
  • the abrasive receives a polishing pressure applied at the time of polishing in a wide area.
  • the clogged abrasive grains do not spill, and the polishing rate tends to decrease.
  • the total area occupancy ratio of the plurality of convex portions with respect to the entire polishing layer is smaller than the lower limit, the abrasive and the binder are more worn out because the abrasive receives a polishing pressure applied during polishing in a smaller area.
  • the abrasive grains are more easily worn. Even in this case, since the abrasive grains are worn before the binder, the clogged abrasive grains are not spilled, and the polishing rate tends to decrease.
  • the present inventors control the wear of the abrasive grains and the binder by setting the area occupancy ratio of the convex portion within the above range, and the abrasive grains are clogged and the abrasive grains are spilled at a relatively close timing. I learned that it can be generated. That is, the inventors of the present invention have generated abrasive clogging and spilling of the abrasive grains at a relatively close timing so that the clogged abrasive grains are removed by the spilling, and a new one is generated from within the polishing layer. It has been found that the reduction of the polishing rate can be suppressed by exposing the abrasive grains to the surface of the polishing layer.
  • the lower limit of the average area of the convex portion 24 is 1 mm 2 , and 2 mm 2 is more preferable.
  • the upper limit of the average area of the convex portion 24 is 300 mm 2, more preferably 150 mm 2, more preferably 130 mm 2, 30 mm 2 is particularly preferred.
  • the average area of the convex part 24 is less than the said minimum, there exists a possibility that the convex part 24 may peel from the base material sheet 10.
  • the average area of the convex portion 24 exceeds the above upper limit, the interval between the grooves 23 is too wide, so that grinding dust generated on the surface of the polishing layer 20 may stay on the surface of the polishing layer 20 and clog. is there.
  • the grooves 23 are arranged on the surface of the polishing layer 20 in a lattice pattern with equal intervals. Further, the bottom surface of the groove 23 is constituted by the surface of the base sheet 10.
  • the average width and average interval of the grooves 23 are appropriately determined so as to satisfy the average area and area occupancy of the convex portions 24.
  • the lower limit of the average width of the grooves 23 is preferably 1.5 mm, and more preferably 3.5 mm.
  • the upper limit of the average width of the grooves 23 is preferably 48 mm, and more preferably 10 mm.
  • the average width of the groove 23 is less than the above lower limit, there is a possibility that grinding waste generated by polishing may clog the groove 23.
  • the average width of the groove 23 exceeds the above upper limit, the end portion of the workpiece tends to be inclined downward when the end portion of the workpiece crosses the groove 23 from one side to the other side during polishing. For this reason, there is a possibility that the workpiece is caught on the upper part of the other side surface of the groove 23 and the workpiece is damaged.
  • the lower limit of the average interval of the grooves 23 is preferably 1 mm, and more preferably 1.5 mm.
  • the upper limit of the average interval between the grooves 23 is preferably 12 mm, and more preferably 5.4 mm.
  • the average interval of the grooves 23 is less than the lower limit, in order to make the area occupancy ratio of the convex portions 24 within a desired range, the area of the convex portions 24 needs to be reduced. There is a risk of peeling from the material sheet 10.
  • the average interval of the grooves 23 exceeds the above upper limit, the average width of the grooves 23 needs to be increased in order to make the area occupancy ratio of the convex portions 24 in a desired range. Is easily caught on the upper part of the side surface of the groove 23. For this reason, there exists a possibility that a damage may arise in a work body.
  • the filling portion 25 is filled in the groove 23, contains resin or an inorganic substance as a main component, and does not substantially contain abrasive grains 21. That is, the filling portion 25 is disposed between the adjacent convex portions 24.
  • the abrasive 1 becomes difficult to peel off the convex portion 24 and can prevent the workpiece from falling into the groove during polishing. Further, when the abrasive 1 is used for the upper polishing pad and the lower polishing pad of the double-side polishing apparatus, the occurrence of biting can be suppressed.
  • the resin examples include polyurethane, polyphenol, epoxy, polyester, cellulose, ethylene copolymer, polyvinyl acetal, polyacryl, acrylic ester, polyvinyl alcohol, polyvinyl chloride, polyvinyl acetate, and polyamide.
  • polyacryl, epoxy, polyester, and polyurethane which are easy to ensure good adhesion to the substrate 10, are preferable. Further, at least a part of the resin may be crosslinked.
  • the inorganic substance examples include silicate, phosphate, and polyvalent metal alkoxide.
  • the same inorganic material as the main component of the binder 22 is preferable from the viewpoint of adhesion to the polishing layer 20.
  • the filling part 25 is good to contain the filler which has the same oxide as the binder 22 as a main component.
  • the filling part 25 may appropriately contain various auxiliary agents such as a dispersant, a coupling agent, a surfactant, a lubricant, an antifoaming agent, and a colorant, and additives depending on the purpose.
  • auxiliary agents such as a dispersant, a coupling agent, a surfactant, a lubricant, an antifoaming agent, and a colorant, and additives depending on the purpose.
  • the lower limit of the ratio of the average thickness of the filling portion 25 to the average thickness of the polishing layer 20 is preferably 0.1, more preferably 0.5, still more preferably 0.8, and particularly preferably 0.95.
  • the upper limit of the ratio of the average thickness of the filling portion 25 is preferably 1, and more preferably 0.98. When the ratio of the average thickness of the filling portion 25 is less than the above lower limit, the effect of suppressing the drop of the work body into the groove during polishing may be insufficient.
  • the polishing layer 20 may not sufficiently come into contact with the work body at the start of polishing, or the polishing pressure may be dispersed in the filling portion 25 and polishing.
  • the polishing pressure applied to the layer 20 may be insufficient.
  • the present inventors have found that the wear of the filling portion 25 is faster than the wear of the convex portion 24 of the polishing layer 20. For this reason, when the ratio of the average thickness of the filling portion 25 to the average thickness of the polishing layer 20 is 1, or when the polishing layer 20 is worn, there is a difference between the average thickness of the filling portion 25 and the average thickness of the polishing layer 20. Even when it becomes minute, since the filling portion 25 is worn first when the abrasive 1 is used, the surface of the convex portion 24 of the polishing layer 20 and the filling portion 25 can be obtained in a relatively short time from the start of polishing. The inventors of the present invention know that a step is generated between the two and a recess (groove) from which grinding scraps can be removed appears.
  • the adhesive layer 30 is a layer that supports the abrasive 1 and fixes the abrasive 1 to a support for mounting on the polishing apparatus.
  • the adhesive used for the adhesive layer 30 is not particularly limited, and examples thereof include a reactive adhesive, an instantaneous adhesive, a hot melt adhesive, and a pressure sensitive adhesive that can be replaced.
  • a pressure-sensitive adhesive is preferable.
  • a pressure-sensitive adhesive As the adhesive used for the adhesive layer 30, a pressure-sensitive adhesive is preferable.
  • a pressure-sensitive adhesive As the adhesive used for the adhesive layer 30, the abrasive 1 can be peeled off from the support and can be replaced, so that the abrasive 1 and the support can be easily reused.
  • Such an adhesive is not particularly limited.
  • the lower limit of the average thickness of the adhesive layer 30 is preferably 0.05 mm, more preferably 0.1 mm. Moreover, as an upper limit of the average thickness of the contact bonding layer 30, 0.3 mm is preferable and 0.2 mm is more preferable. When the average thickness of the adhesive layer 30 is less than the above lower limit, the adhesive force is insufficient, and the abrasive 1 may be peeled off from the support. On the other hand, when the average thickness of the adhesive layer 30 exceeds the above upper limit, for example, due to the thickness of the adhesive layer 30, there is a possibility that workability may be deteriorated, for example, when the abrasive 1 is cut into a desired shape.
  • the abrasive 1 includes a step of preparing a polishing layer composition, a step of preparing a filling portion composition, a step of coating the polishing layer 20 by printing the polishing layer composition, and the filling portion. 25 can be manufactured by a process of coating the composition for filling part by printing and a process of heat-curing the printed coating liquid.
  • a polishing layer composition containing a binder 22 forming material mainly composed of an inorganic substance, a filler, and abrasive grains 21 is prepared as a coating liquid.
  • a diluent such as water or alcohol is added to control the viscosity and fluidity of the coating solution.
  • a diluent such as water or alcohol is added to control the viscosity and fluidity of the coating solution.
  • a filling part composition containing a forming material of the filling part 25 mainly composed of a resin or an inorganic substance is prepared as a coating liquid. Further, in order to control the viscosity and fluidity of this coating solution, a diluent such as water and alcohol is added. In addition, you may perform this composition preparation process for filling parts before the composition preparation process for polishing layers, or after a polishing layer formation process.
  • the coating liquid prepared in the polishing layer composition preparing step is used, and the surface of the base sheet 10 is configured by a plurality of convex portions 24 divided by grooves 23 by a printing method.
  • a polishing layer 20 is formed.
  • a mask having a shape corresponding to the shape of the groove 23 is prepared, and the coating liquid is printed through the mask.
  • this printing method for example, screen printing, metal mask printing or the like can be used.
  • the filling portion 25 for filling the groove 23 is formed by a printing method using the coating liquid prepared in the filling portion composition preparing step.
  • this printing method for example, squeegee printing, bar coater printing, applicator printing, or the like can be used.
  • the polishing layer 20 and the filling portion 25 are formed by heat dehydrating and heat curing the printed coating liquid. Specifically, the coating liquid is dried at room temperature (25 ° C.), heated and dehydrated at a temperature of 70 ° C. to 90 ° C., and then heated at 140 ° C. to 300 ° C. for 2 hours to 4 hours. And the binder 22 and the filling portion 25 are formed. Since the abrasive layer 20 is formed by the printing method as described above, the abrasive grains 21 are easily exposed to the surface of the polishing layer 20 when the polishing layer 20 is formed. Therefore, the abrasive 1 is used for polishing the workpiece. Excellent polishing rate from the beginning.
  • the abrasive 1 Since the main component of the binder 22 is an inorganic material, the abrasive 1 has high holding power of the abrasive grains 21 and can prevent the abrasive grains 21 having high polishing power before crushing from being spilled from the polishing layer 20. . As a result, the abrasive 1 is excellent in the polishing rate. Further, the abrasive 1 has the total area occupancy ratio of the plurality of convex portions 24 with respect to the entire polishing layer 20 within the above range, so that the abrasive grains 21 whose crushing has progressed are worn by the wear of the binder 22. The amount of wear of the polishing layer 20 is controlled so that new abrasive grains 21 are exposed.
  • the abrasive 1 has a higher proportion of abrasive grains 21 with high polishing power before crushing with respect to the abrasive grains 21 on the surface of the polishing layer 20, and can suppress a decrease in the polishing rate due to crushing of the abrasive grains 21. Furthermore, since the abrasive 1 has the average area of the convex portions 24 equal to or more than the above lower limit, peeling of the convex portions 24 can be suppressed. In addition, since the abrasive 1 has the average area of the convex portions 24 equal to or less than the above upper limit, the grooves 23 are positioned at an appropriate interval, and grinding dust generated on the surface of the polishing layer 20 is retained on the surface of the polishing layer 20.
  • the abrasive 1 is less likely to clog the polishing layer 20 surface. Therefore, the abrasive 1 has an excellent polishing rate, and the polishing rate is difficult to decrease over a relatively long period of time.
  • the present invention is not limited to the above-described embodiment, and can be implemented in a mode in which various changes and improvements are made in addition to the above-described mode.
  • the grooves are formed in a lattice shape with equal intervals.
  • the intervals between the lattices do not have to be equal, and for example, the intervals may be changed between the vertical direction and the horizontal direction.
  • the groove interval is different, anisotropy may occur in the polishing, and therefore an equal interval is preferable.
  • planar shape of the grooves may not be a lattice shape, and may be, for example, a shape in which a polygon other than a quadrangle is repeated, a circular shape, a shape having a plurality of parallel lines, or the like, or a concentric shape. . Further, the planar shape of the groove may be a striped shape arranged in only one direction.
  • the groove may be formed by etching, laser processing, or the like.
  • the filling portion filled in the groove is provided.
  • the filling portion is not an essential constituent element, and the groove may be a space not filled with the composition.
  • the abrasive 2 may include a support 40 laminated via a back-side adhesive layer 30 and a second adhesive layer 31 laminated on the back side of the support 40.
  • the abrasive 2 includes the support 40, the handling of the abrasive 2 is facilitated.
  • the material of the support 40 examples include thermoplastic resins such as polypropylene, polyethylene, polytetrafluoroethylene, and polyvinyl chloride, and engineering plastics such as polycarbonate, polyamide, and polyethylene terephthalate.
  • thermoplastic resins such as polypropylene, polyethylene, polytetrafluoroethylene, and polyvinyl chloride
  • engineering plastics such as polycarbonate, polyamide, and polyethylene terephthalate.
  • the average thickness of the support 40 can be, for example, 0.5 mm or more and 3 mm or less.
  • the strength of the abrasive 2 may be insufficient.
  • the average thickness of the support 40 exceeds the upper limit, it may be difficult to attach the support 40 to a polishing apparatus or the flexibility of the support 40 may be insufficient.
  • the second adhesive layer 31 can use the same adhesive as the adhesive layer 30.
  • the second adhesive layer 31 can have an average thickness similar to that of the adhesive layer 30.
  • Example 1 Diamond abrasive grains were prepared, and the average particle diameter was measured using “Microtrac MT3300EXII” manufactured by Nikkiso Co., Ltd. The average particle diameter of the diamond abrasive grains was 44 ⁇ m.
  • the kind of this diamond abrasive grain is the process diamond which carried out 55 mass% nickel coating of the single crystal diamond.
  • Silicate No. 3 sodium silicate
  • the above-mentioned diamond abrasive grains, and alumina Al 2 O 3 , average particle diameter of 12 ⁇ m
  • the content of diamond abrasive grains in the polishing layer is 30% by volume.
  • content with respect to the polishing layer of a filler might be 40 volume%, and obtained the coating liquid of the composition for polishing layers.
  • silicate No. 3 sodium silicate
  • alumina Al 2 O 3 , average particle size 12 ⁇ m
  • An aluminum plate having an average thickness of 300 ⁇ m was prepared as a base material, and a polishing layer having lattice-like grooves at equal intervals was formed on the surface of the base material by printing using the coating liquid for the polishing layer composition.
  • a mask having a pattern corresponding to the groove was used.
  • the individual convex portions divided by the grooves had an area of 2.25 mm 2 (square shape with a side of 1.5 mm in plan view), and the average thickness of the polishing layer was 300 ⁇ m.
  • the plurality of convex portions have a regularly arranged block pattern shape, and the area occupation ratio of the convex portions with respect to the entire polishing layer is 4.5%.
  • a filling portion for filling the groove was formed by squeegee printing using a coating solution of the composition for filling portion.
  • the ratio of the average thickness of the filling portion to the average thickness of the polishing layer was 1.
  • the coating liquid for the polishing layer composition and the coating liquid for the filling portion composition were dried at room temperature (25 ° C.), heated and dehydrated at a temperature of 60 ° C. or higher and 100 ° C. or lower, and then at 150 ° C. Curing was performed for 2 hours to 4 hours.
  • a hard vinyl chloride resin plate having an average thickness of 1 mm is used as a support that supports the substrate and is fixed to the polishing apparatus, and the back surface of the substrate and the surface of the support are bonded with an adhesive having an average thickness of 130 ⁇ m. Combined. A double-sided tape was used as the adhesive. In this way, an abrasive of Example 1 was obtained.
  • Examples 2 to 6 The abrasives of Examples 2 to 6 were obtained by changing the area of the convex portion of Example 1 and the area occupancy ratio with respect to the entire polishing layer as shown in Table 1.
  • Example 7 The abrasive of Example 7 was obtained in the same manner as Example 3 except that Cu surface-treated diamond abrasive grains (average particle diameter 45 ⁇ m) were used as the abrasive grains.
  • Example 8 As in Example 2, except that polycrystalline surface untreated diamond abrasive grains (average particle diameter of 12 ⁇ m) were used as the abrasive grains and alumina (Al 2 O 3 , average particle diameter of 4 ⁇ m) was used as the filler. The abrasive of Example 8 was obtained.
  • Example 9 An abrasive of Example 9 was obtained in the same manner as in Example 1 except that the convex portion had an area of 7.07 mm 2 (circular shape with a diameter of 3 mm in plan view) and the average thickness of the polishing layer was 2400 ⁇ m. .
  • [Comparative Example 1] Add the epoxy resin, diamond abrasive grains (average particle size 44 ⁇ m), alumina as filler (Al 2 O 3 , average particle size 12 ⁇ m), a curing agent, and an appropriate amount of curing catalyst to a diluting solvent (isophorone) and mix.
  • the content of the diamond abrasive grains with respect to the polishing layer was adjusted to 30% by volume and the content of the filler with respect to the polishing layer was adjusted to 40% by volume to obtain a coating liquid for the polishing layer composition.
  • an epoxy resin, alumina as a filler (Al 2 O 3 , average particle diameter 12 ⁇ m), a curing agent, and an appropriate amount of a curing catalyst are added to a diluting solvent (isophorone) and mixed to contain the filler in the filling part. The amount was adjusted to 70% by volume to obtain a coating liquid for the composition for filling part.
  • a polishing material of Comparative Example 1 was obtained in the same manner as Example 1 except that the above coating solution was used as the coating solution for the polishing layer composition and the filling portion composition.
  • the coating solution was dried at 120 ° C. for 3 minutes or more and then cured at 120 ° C. for 16 hours or more and 20 hours or less.
  • Comparative Example 2 A polishing material of Comparative Example 2 was obtained in the same manner as Comparative Example 1 except that the area occupation ratio of the convex portion to the entire polishing layer was 12%.
  • Comparative Examples 3 to 12 The abrasives of Comparative Examples 3 to 12 were obtained by changing the area of the convex portion of Example 1, the area occupation ratio with respect to the entire polishing layer, and the type of abrasive grains as shown in Table 1.
  • the glass substrate was polished using the abrasives obtained in Examples 1 to 9 and Comparative Examples 1 to 12.
  • soda lime glass having a diameter of 5.08 cm and a specific gravity of 2.4 was used.
  • a commercially available double-side polishing machine was used for the polishing.
  • the carrier of the double-side polishing machine is an epoxy glass having a thickness of 0.6 mm. Polishing was performed under the conditions of a polishing pressure of 200 g / cm 2 , an upper surface plate rotation speed of 60 rpm, a lower surface plate rotation speed of 90 rpm, and a SUN gear rotation speed of 30 rpm. At that time, as a coolant, 120 cc of “Daffney Cut GS50K” of Idemitsu Kosan Co., Ltd. was supplied per minute.
  • ⁇ Polishing rate> Regarding the polishing rate, the glass substrate was polished for 15 minutes, and the weight change (g) of the substrate before and after polishing was divided by the surface area of the substrate (cm 2 ), the specific gravity of the substrate (g / cm 3 ), and the polishing time (minutes). And calculated.
  • Example 8 and Comparative Example 12 Regarding the polishing rate, it was divided into Examples and Comparative Examples except Example 8 and Comparative Example 12, and Examples 8 and Comparative Example 12 according to the average particle size of the abrasive grains, and 3 according to the following criteria.
  • Graded. (Criteria for polishing rate other than Example 8 and Comparative Example 12) A: 100 ⁇ m / min or more B: 50 ⁇ m / min or more and less than 100 ⁇ m / min C: less than 50 ⁇ m / min (Criteria for polishing rate of Example 8 and Comparative Example 12) A: 10 ⁇ m / min or more B: 5 ⁇ m / min or more and less than 10 ⁇ m / min C: Less than 5 ⁇ m / min
  • Example 8 For Example 8 and Comparative Example 12 in which the average particle size of the abrasive grains is smaller than the other examples, three batches of polishing with a polishing amount per batch of about 30 ⁇ m were continuously performed, and the third batch The polishing rate was calculated by dividing by the polishing rate of the first batch.
  • polishing rate maintainability was evaluated in three stages according to the following criteria. (Criteria for polishing rate maintenance) A: 90% or more B: 80% or more and less than 90% C: less than 80%
  • polishing rate and the maintenance of the polishing rate are excellent, and good polishing is possible.
  • polishing rate does not appear due to peeling or the like, or the polishing rate maintenance property is remarkably inferior and polishing is impossible.
  • “impossible to polish” means that polishing could not be performed due to peeling of the convex portion or catching on the upper part of the side surface of the groove of the workpiece, and the polishing rate and the polishing rate maintainability could not be measured. Means that.
  • the polishing materials of Examples 1 to 9 have a higher polishing rate and the polishing rate maintainability exceeds 80% compared to the polishing materials of Comparative Examples 1 to 12.
  • Comparative Example 1 and Comparative Example 2 since the main component of the binder is not inorganic, the abrasive grains are likely to spill and the polishing rate is considered to be low.
  • the area of a convex part is too small, the convex part peels off and the comparative examples 3, 4, 10, and 11 cannot be polished.
  • Comparative Example 5 since the area of the convex portion is too large, the width of the groove is too large in order to obtain a desired area occupancy rate, and the glass substrate that is the work body cannot be supported and the upper surface of the groove is It is thought that it is caught and cannot be polished.
  • Comparative Examples 6 and 8 since the area occupancy of the convex portion is too small, the pressure applied to the convex portion is high, crushing due to abrasion of abrasive grains occurs, and the polishing rate maintenance property is considered low.
  • the abrasive grains may be Cu surface-treated diamond abrasive grains or polycrystalline surface untreated diamond abrasive grains.
  • the polishing material of Example 7 provides excellent polishing rate and polishing rate maintenance. From this, it can be seen that the polishing rate and the polishing rate maintainability are excellent by setting the area of the convex portion and the area occupation ratio within the predetermined range regardless of the type of abrasive grains.
  • the abrasive of the present invention is excellent in the polishing rate and hardly decreases in the polishing rate for a relatively long period of time. Accordingly, the abrasive is suitably used for planar polishing of a substrate such as glass.

Abstract

本発明は、研磨レートに優れると共に、比較的長期間に渡り研磨レートが低下し難い研磨材を提供することを目的とする。本発明は、基材シートと、この基材シートの表面側に積層され、砥粒及びそのバインダーを含む研磨層とを備える研磨材であって、上記バインダーの主成分が無機物であり、上記研磨層が、その表面に溝により区分された複数の凸状部を有し、上記凸状部の平均面積が1mm以上300mm以下であり、上記複数の凸状部の上記研磨層全体に対する合計面積占有率が4%以上15%以下であることを特徴とする。当該研磨材は、上記溝に充填され、樹脂又は無機物を主成分とし、かつ砥粒を実質的に含まない充填部をさらに備えるとよい。上記充填部の平均厚さの研磨層の平均厚さに対する比としては、0.1以上1以下が好ましい。上記砥粒がダイヤモンド砥粒であるとよい。上記無機物がケイ酸塩であるとよい。

Description

研磨材
 本発明は、研磨材に関する。
 近年、ハードディスク等の電子機器の精密化が進んでいる。このような電子機器の基板材料としては、小型化や薄型化に対応できる剛性、耐衝撃性及び耐熱性を考慮し、ガラスが用いられることが多い。このガラス基板は脆性材料であり、表面の傷により著しく機械的強度が損なわれる。このため、このような基板の研磨には、研磨レートと共に、傷の少ない平坦化精度が要求される。
 一般に仕上がりの平坦化精度を向上しようとすると加工時間は長くなる傾向にあり、研磨レートと平坦化精度とはトレードオフの関係となる。このため研磨レートと平坦化精度とを両立することが難しい。これに対し、研磨レートと平坦化精度との両立のため、研磨粒子と充填剤とを分散した研磨部を有する研磨材が提案されている(特表2002-542057号公報参照)。
 しかし、このような従来の研磨材は一定時間の研磨を実施すると、砥粒の目つぶれや研磨層表面の目詰まりにより研磨レートが低下する。この低下した研磨レートを再生するためには、研磨材の表面を削り落とし新たな面を表面に出す、いわゆるドレスを行う必要がある。このドレス前後には研磨材の清掃も必要であり、このドレスは時間を要する作業である。ドレスの間、被削体であるガラス基板の研磨は中断されるため、従来の研磨材はドレスを行うことによる研磨効率の低下が大きい。
特表2002-542057号公報
 本発明はこのような不都合に鑑みてなされたものであり、研磨レートに優れると共に、比較的長期間に渡り研磨レートが低下し難い研磨材を提供することを目的とする。
 本発明者らが、砥粒の目つぶれや研磨層表面の目詰まりによる研磨レートの低下について鋭意検討を行った結果、研磨層のバインダーを無機物とすると共に、研磨層の表面に溝により区分された複数の凸状部を設け、この凸状部の平均面積及び複数の凸状部の研磨層全体に対する合計面積占有率を制御することで、研磨レートの低下を抑止できることを見出し、本発明を完成させた。
 すなわち、上記課題を解決するためになされた発明は、基材シートと、この基材シートの表面側に積層され、砥粒及びそのバインダーを含む研磨層とを備える研磨材であって、上記バインダーの主成分が無機物であり、上記研磨層が、その表面に溝により区分された複数の凸状部を有し、上記凸状部の平均面積が1mm以上300mm以下であり、上記複数の凸状部の上記研磨層全体に対する合計面積占有率が4%以上15%以下であることを特徴とする。
 当該研磨材は、バインダーの主成分が無機物であるので、砥粒の保持力が高く、目つぶれする前の研磨力が高い砥粒が研磨層から目こぼれすることを抑止できる。その結果、当該研磨材は研磨レートに優れる。また、当該研磨材は、上記複数の凸状部の上記研磨層全体に対する合計面積占有率を上記範囲内とすることで、目つぶれが進行した砥粒がバインダーの摩耗により目こぼれし、新たな砥粒が露出するように研磨層の摩耗量が制御される。その結果、当該研磨材は、研磨層表面の砥粒に対する目つぶれする前の研磨力が高い砥粒の割合が高まり、砥粒の目つぶれによる研磨レートの低下を抑止できる。さらに、当該研磨材は、凸状部の平均面積を上記下限以上とするので、凸状部の剥離を抑止できる。また、当該研磨材は、凸状部の平均面積を上記上限以下とするので、溝が適度な間隔で位置し、研磨層表面に発生する研削屑が研磨層表面に滞留せず、溝を介して除去され易い。その結果、当該研磨材は、研磨層表面の目詰まりを生じ難い。従って、当該研磨材は、研磨レートに優れると共に、比較的長期間に渡り研磨レートが低下し難い。
 当該研磨材は、上記溝に充填され、樹脂又は無機物を主成分とし、かつ砥粒を実質的に含まない充填部をさらに備えるとよい。このように当該研磨材が充填部をさらに備えることにより、凸状部が剥離し難くなると共に、研磨時に被削体が溝に落ち込むことを抑止できる。また、当該研磨材を両面研磨装置の上研磨パッド及び下研磨パッドに用いる場合、研磨時に一方の研磨パッドの凸状部が他方の研磨パッドの溝部分に嵌まり込む、いわゆる噛み込みの発生を抑止できる。このため、噛み込みによる研磨層の剥離や研磨材の破壊の発生が抑止される。
 上記充填部の平均厚さの研磨層の平均厚さに対する比としては、0.1以上1以下が好ましい。このように上記充填部の平均厚さの研磨層の平均厚さに対する比を上記範囲内とすることで、研磨時に被削体が溝に落ち込むことを抑止しつつ、溝を介して研削屑を除去できる。
 上記砥粒がダイヤモンド砥粒であるとよい。ダイヤモンド砥粒は硬質である。従って、上記砥粒をダイヤモンド砥粒とすることで、砥粒が目つぶれし難くなるため、研磨層の摩耗量の制御が容易となり、当該研磨材の研磨レート及び研磨レートの維持性をさらに向上できる。
 上記無機物がケイ酸塩であるとよい。このように上記無機物をケイ酸塩とすることで、バインダーの砥粒保持力をさらに向上できる。
 上記バインダーが酸化物を主成分とする充填剤を含有するとよい。このように上記バインダーが酸化物を主成分とする充填剤を含有することで、上記バインダーの弾性率が向上し、研磨層の摩耗を制御し易い。従って、当該研磨材の研磨レートの維持性をさらに向上できる。
 上記研磨層の平均厚さとしては、25μm以上4000μm以下が好ましい。上記研磨層の平均厚さを上記範囲内とすることで、製造コストを抑えつつ研磨層の耐久性を高めることができる。
 なお、「研磨層全体の面積」は、研磨層の溝の面積も含む概念である。また、「研磨層の平均厚さ」とは、研磨層の凸状部部分のみの平均厚さを意味する。また、「充填部の平均厚さ」とは、基材の表面と充填部の表面との距離の平均を意味する。また、「砥粒を実質的に含まない充填部」とは、砥粒の含有量が0.001体積%未満、好ましくは0.0001体積%未満であることを意味する。
 以上説明したように、本発明の研磨材は、研磨レートに優れると共に、比較的長期間に渡り研磨レートが低下し難い。
本発明の実施形態に係る研磨材を示す模式的平面図である。 図1AのA-A線での模式的端面図である。 図1Bとは異なる実施形態の研磨材を示す模式的端面図である。
 以下、本発明の実施の形態を適宜図面を参照しつつ詳説する。
[研磨材]
 図1A及び図1Bに示す研磨材1は、基材シート10と、この基材シート10の表面側に積層される研磨層20と、上記基材シート10の裏面側に積層される接着層30とを備える。また、当該研磨材1は、充填部25をさらに備える。
<基材シート>
 基材シート10は、研磨層20を支持するための部材である。
 基材シート10の材質としては、特に限定されないが、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリイミド(PI)、ポリエチレンナフタレート(PEN)、アラミド、アルミニウム、銅等が挙げられる。中でも研磨層20との接着性が良好なアルミニウムが好ましい。また、基材シート10の表面に化学処理、コロナ処理、プライマー処理等の接着性を高める処理が行われてもよい。
 また、基材シート10は可撓性又は延性を有するとよい。このように基材シート10が可撓性又は延性を有することで、当該研磨材1が被削体の表面形状に追従し、研磨面と被削体との接触面積が大きくなるため、研磨レートがさらに高まる。このような可撓性を有する基材シート10の材質としては、例えばPETやPI等を挙げることができる。また、延性を有する基材シート10の材質としては、アルミニウムや銅等を挙げることができる。
 上記基材シート10の形状及び大きさとしては、特に制限されないが、例えば一辺が140mm以上160mm以下の正方形状や外形200mm以上2022mm以下及び内径100mm以上658mm以下の円環状とすることができる。また、平面上に並置した複数の基材シート10が単一の支持体により支持される構成であってもよい。
 上記基材シート10の平均厚さとしては、特に制限されないが、例えば75μm以上1mm以下とできる。上記基材シート10の平均厚さが上記下限未満である場合、当該研磨材1の強度や平坦性が不足するおそれがある。逆に、上記基材シート10の平均厚さが上記上限を超える場合、当該研磨材1が不要に厚くなり取扱いが困難になるおそれがある。
<研磨層>
 研磨層20は、基材シート10の表面側に積層され、砥粒21及びそのバインダー22を含む。また、研磨層20は、バインダー22の主成分が無機物であり、その表面に溝23により区分された複数の凸状部24を有する。
 上記研磨層20の平均厚さ(凸状部24部分のみの平均厚さ)の下限としては、25μmが好ましく、30μmがより好ましく、200μmがさらに好ましい。一方、上記研磨層20の平均厚さの上限としては、4000μmが好ましく、3000μmがより好ましく、2500μmがさらに好ましい。上記研磨層20の平均厚さが上記下限未満である場合、研磨層20の耐久性が不足するおそれがある。逆に、上記研磨層20の平均厚さが上記上限を超える場合、上記研磨層20の均質性が低下するため、安定した研磨能力の発揮が困難となるおそれがある。また、当該研磨材1が不要に厚くなり取扱いが困難になるおそれや製造コストが増大するおそれがある。
 上記バインダー22の主成分である無機物としては、ケイ酸塩、リン酸塩、多価金属アルコキシド等を挙げることができる。中でも砥粒保持力が高いケイ酸塩が好ましい。上記ケイ酸塩としては、ケイ酸ナトリウム、ケイ酸カリウム等を挙げることができる。
 また、バインダー22は酸化物を主成分とする充填剤を含有するとよい。このようにバインダー22が充填剤を含有することで、上記バインダー22の弾性率が向上し、研磨層20の摩耗を制御し易い。
 上記充填剤としては、例えばアルミナ、シリカ、酸化セリウム、酸化マグネシウム、ジルコニア、酸化チタン等の酸化物及びシリカ-アルミナ、シリカ-ジルコニア、シリカ-マグネシア等の複合酸化物を挙げることができる。これらは単独で又は必要に応じて2種以上を組み合わせて用いてもよい。中でも高い研磨力が得られるアルミナが好ましい。
 上記充填剤の平均粒子径は砥粒21の平均粒子径にも依存するが、上記充填剤の平均粒子径の下限としては、0.01μmが好ましく、2μmがより好ましい。一方、上記充填剤の平均粒子径の上限としては、20μmが好ましく、15μmがより好ましい。上記充填剤の平均粒子径が上記下限未満である場合、上記充填剤によるバインダー22の弾性率向上効果が十分に得られないおそれがある。一方、上記充填剤の平均粒子径が上記上限を超える場合、充填剤が砥粒21の研磨力を阻害するおそれがある。ここで、「平均粒子径」とは、レーザー回折法等により測定された体積基準の累積粒度分布曲線の50%値(50%粒子径、D50)をいう。
 また、上記充填剤の平均粒子径は砥粒21の平均粒子径よりも小さいとよい。砥粒21の平均粒子径に対する上記充填剤の平均粒子径の比の下限としては、0.1が好ましく、0.2がより好ましい。一方、砥粒21の平均粒子径に対する上記充填剤の平均粒子径の比の上限としては、0.8が好ましく、0.6がより好ましい。砥粒21の平均粒子径に対する上記充填剤の平均粒子径の比が上記下限未満である場合、上記充填剤によるバインダー22の弾性率向上効果が低下し、研磨層20の摩耗の制御が不十分となるおそれがある。逆に、砥粒21の平均粒子径に対する上記充填剤の平均粒子径の比が上記上限を超える場合、充填剤が砥粒21の研磨力を阻害するおそれがある。
 上記充填剤の研磨層20に対する含有量は、砥粒21の含有量にも依存するが、上記充填剤の研磨層20に対する含有量の下限としては、15体積%が好ましく、30体積%がより好ましい。一方、上記充填剤の研磨層20に対する含有量の上限としては、75体積%が好ましく、60体積%がより好ましい。上記充填剤の研磨層20に対する含有量が上記下限未満である場合、上記充填剤によるバインダー22の弾性率向上効果が十分に得られないおそれがある。逆に、上記充填剤の研磨層20に対する含有量が上記上限を超える場合、充填剤が砥粒21の研磨力を阻害するおそれがある。
 さらにバインダー22には、分散剤、カップリング剤、界面活性剤、潤滑剤、消泡剤、着色剤等の各種助剤、添加剤などを目的に応じて適宜含有させてもよい。
(砥粒)
 砥粒21としては、ダイヤモンド、アルミナ、シリカ、セリア、炭化ケイ素等の砥粒が挙げられる。中でも硬質であるダイヤモンド砥粒が好ましい。砥粒21をダイヤモンド砥粒とすることで、砥粒21が目つぶれし難くなるため、研磨層20の摩耗量の制御が容易となり、当該研磨材1の研磨レート及び研磨レートの維持性を向上できる。このダイヤモンド砥粒としては、単結晶でも多結晶でもよく、またNiコーティング、Cuコーティング等の処理がされたダイヤモンドであってもよい。
 砥粒21の平均粒子径は、研磨速度と研磨後の被削体の表面粗さとの観点から適宜選択される。砥粒21の平均粒子径の下限としては、2μmが好ましく、10μmがより好ましく、15μmがさらに好ましい。一方、砥粒21の平均粒子径の上限としては、50μmが好ましく、45μmがより好ましく、30μmがさらに好ましい。砥粒21の平均粒子径が上記下限未満である場合、当該研磨材1の研磨力が不足し、研磨効率が低下するおそれがある。逆に、砥粒21の平均粒子径が上記上限を超える場合、研磨精度が低下するおそれがある。
 砥粒21の研磨層20に対する含有量の下限としては、3体積%が好ましく、4体積%がより好ましく、8体積%がさらに好ましい。一方、砥粒21の研磨層20に対する含有量の上限としては、55体積%が好ましく、45体積%がより好ましく、35体積%がさらに好ましい。砥粒21の研磨層20に対する含有量が上記下限未満である場合、研磨層20の研磨力が不足するおそれがある。逆に、砥粒21の研磨層20に対する含有量が上記上限を超える場合、研磨層20が砥粒21を保持できないおそれがある。
(凸状部)
 複数の凸状部24は、溝23により区分されている。上記溝23は、研磨層20の表面に等間隔の格子状に配設される。すなわち上記複数の凸状部24の形状は、規則的に配列されたブロックパターン状である。
 上記複数の凸状部24の上記研磨層20全体に対する合計面積占有率の下限としては、4%であり、4.4%がより好ましく、8%がさらに好ましい。一方、上記複数の凸状部24の合計面積占有率の上限としては、15%であり、14%がより好ましく、13%がさらに好ましい。上記複数の凸状部24の合計面積占有率を上記範囲内とすることで、砥粒21の摩耗とバインダー22の摩耗とが適度にバランスし、砥粒21の目つぶれによる研磨レートの低下を抑止できる。以下にその理由について説明する。
 研磨材により研磨を行っている間、研磨に寄与している研磨層表面の砥粒自体が摩耗し、砥粒自体の研磨力が低下する目つぶれが発生する。また、研磨材により研磨を行っている間、研磨層のバインダーも徐々に削られ摩耗していく。バインダーの摩耗が進むとバインダーが砥粒を保持し切れなくなり、研磨層表面の砥粒の目こぼれが発生する。ここで複数の凸状部の上記研磨層全体に対する合計面積占有率が上記上限より大きい場合、研磨材が研磨時に加えられる研磨圧力を広い面積で受けることになるため、バインダーの摩耗が生じ難く、目つぶれした砥粒が目こぼれせず、研磨レートの低下が発生し易い。一方、複数の凸状部の上記研磨層全体に対する合計面積占有率が上記下限より小さい場合、研磨材が研磨時に加えられる研磨圧力を少ない面積で受けることになるため、砥粒及びバインダーはより摩耗し易くなるが、その摩耗量の研磨圧力依存性には差があり、砥粒がより摩耗し易い。この場合においても、砥粒の摩耗がバインダーの摩耗よりも先に生じるため、目つぶれした砥粒が目こぼれせず、研磨レートの低下が発生し易い。本発明者らは、凸状部の面積占有率を上記範囲内とすることで、砥粒及びバインダーの摩耗を制御し、砥粒の目つぶれとこの砥粒の目こぼれを比較的近いタイミングで発生させることができることを知得した。つまり、本発明者らは、砥粒の目つぶれとこの砥粒の目こぼれを比較的近いタイミングで発生させることで、目つぶれの発生した砥粒が目こぼれにより除去され、研磨層内から新たな砥粒が研磨層表面に露出することにより研磨レートの低下を抑止できることを見出した。
 凸状部24の平均面積の下限としては、1mmであり、2mmがより好ましい。一方、凸状部24の平均面積の上限としては、300mmであり、150mmがより好ましく、130mmがさらに好ましく、30mmが特に好ましい。凸状部24の平均面積が上記下限未満である場合、凸状部24が基材シート10から剥離するおそれがある。逆に、凸状部24の平均面積が上記上限を超える場合、溝23の間隔が広過ぎるため、研磨層20表面に発生する研削屑が研磨層20表面に滞留し、目詰まりを生ずるおそれがある。
(溝)
 上記溝23は、研磨層20の表面に等間隔の格子状に配設される。また、溝23の底面は、基材シート10の表面で構成される。
 溝23の平均幅及び平均間隔は、凸状部24の平均面積及び面積占有率を満たすように適宜定められる。溝23の平均幅の下限としては、1.5mmが好ましく、3.5mmがより好ましい。一方、溝23の平均幅の上限としては、48mmが好ましく、10mmがより好ましい。溝23の平均幅が上記下限未満である場合、研磨により発生する研削屑が溝23に詰まるおそれがある。一方、溝23の平均幅が上記上限を超える場合、研磨時に被削体の端部が溝23を一方側から他方側へ横断する際、被削体の端部が下方に傾き易い。このため、被削体が溝23の他方側の側面上部に引っ掛かり、被削体に傷が生じるおそれがある。
 溝23の平均間隔の下限としては、1mmが好ましく、1.5mmがより好ましい。一方、溝23の平均間隔の上限としては、12mmが好ましく、5.4mmがより好ましい。溝23の平均間隔が上記下限未満である場合、凸状部24の面積占有率を所望の範囲とするためには、凸状部24の面積を小さくする必要があり、凸状部24が基材シート10から剥離するおそれがある。逆に、溝23の平均間隔が上記上限を超える場合、凸状部24の面積占有率を所望の範囲とするためには、溝23の平均幅を大きくする必要があり、研磨時に被削体が溝23の側面上部に引っ掛かり易くなる。このため、被削体に傷が生じるおそれがある。
<充填部>
 充填部25は、上記溝23に充填され、樹脂又は無機物を主成分とし、かつ砥粒21を実質的に含まない。つまり、充填部25は、隣接する凸状部24間に配設されている。この充填部25により、当該研磨材1は、凸状部24が剥離し難くなると共に、研磨時に被削体が溝に落ち込むことを抑止できる。また、当該研磨材1を両面研磨装置の上研磨パッド及び下研磨パッドに用いる場合、噛み込みの発生を抑止できる。
 上記樹脂としては、ポリウレタン、ポリフェノール、エポキシ、ポリエステル、セルロース、エチレン共重合体、ポリビニルアセタール、ポリアクリル、アクリルエステル、ポリビニルアルコール、ポリ塩化ビニル、ポリ酢酸ビニル、ポリアミド等を挙げることができる。中でも基材10への良好な密着性が確保し易いポリアクリル、エポキシ、ポリエステル及びポリウレタンが好ましい。また、上記樹脂は、少なくとも一部が架橋していてもよい。
 上記無機物としては、ケイ酸塩、リン酸塩、多価金属アルコキシド等を挙げることができる。充填部25の主成分と無機物とする場合は、研磨層20との密着性の観点から、バインダー22の主成分と同じ無機物がよい。また、充填部25は、バインダー22と同様の酸化物を主成分とする充填剤を含有するとよい。
 さらに充填部25には、分散剤、カップリング剤、界面活性剤、潤滑剤、消泡剤、着色剤等の各種助剤、添加剤などを目的に応じて適宜含有させてもよい。
 上記充填部25の平均厚さの研磨層20の平均厚さに対する比の下限としては、0.1が好ましく、0.5がより好ましく、0.8がさらに好ましく、0.95が特に好ましい。一方、上記充填部25の平均厚さの比の上限としては、1が好ましく、0.98がより好ましい。上記充填部25の平均厚さの比が上記下限未満である場合、研磨時の被削体の溝への落ち込み抑止効果が不十分となるおそれがある。逆に、上記充填部25の平均厚さの比が上記上限を超える場合、研磨開始時に研磨層20が十分に被削体に接しないおそれや、研磨圧力が充填部25にも分散し、研磨層20に加わる研磨圧力が不十分となるおそれがある。
 なお、本発明者らは充填部25の摩耗が研磨層20の凸状部24の摩耗よりも速いことを見出している。このため、充填部25の平均厚さの研磨層20の平均厚さに対する比が1である場合や、研磨層20の摩耗により充填部25の平均厚さと研磨層20の平均厚さとの差異が微小となった場合であっても、当該研磨材1の使用時には充填部25が先に摩耗するため、研磨開始から比較的短い時間で、研磨層20の凸状部24の表面と充填部25との間に段差が生じ、研削屑を除去できる凹部(溝)が出現することを本発明者らは知得している。
<接着層>
 接着層30は、当該研磨材1を支持し研磨装置に装着するための支持体に当該研磨材1を固定する層である。
 この接着層30に用いられる接着剤としては、特に限定されないが、例えば反応型接着剤、瞬間接着剤、ホットメルト接着剤、貼り替え可能な接着剤である粘着剤等が挙げられる。
 この接着層30に用いられる接着剤としては、粘着剤が好ましい。接着層30に用いられる接着剤として粘着剤を用いることで、支持体から当該研磨材1を剥がして貼り替えることができるため当該研磨材1及び支持体の再利用が容易になる。このような粘着剤としては、特に限定されないが、例えばアクリル系粘着剤、アクリル-ゴム系粘着剤、天然ゴム系粘着剤、ブチルゴム系等の合成ゴム系粘着剤、シリコーン系粘着剤、ポリウレタン系粘着剤等が挙げられる。
 接着層30の平均厚さの下限としては、0.05mmが好ましく、0.1mmがより好ましい。また、接着層30の平均厚さの上限としては、0.3mmが好ましく、0.2mmがより好ましい。接着層30の平均厚さが上記下限未満である場合、接着力が不足し、研磨材1が支持体から剥離するおそれがある。一方、接着層30の平均厚さが上記上限を超える場合、例えば接着層30の厚みのため当該研磨材1を所望する形状に切る際に支障をきたすなど、作業性が低下するおそれがある。
<研磨材の製造方法>
 当該研磨材1は、研磨層用組成物を準備する工程と、充填部用組成物を準備する工程と、上記研磨層20を研磨層用組成物の印刷により塗工する工程と、上記充填部25を充填部用組成物の印刷により塗工する工程と、印刷した塗工液を加熱硬化させる工程とにより製造できる。
 まず、研磨層用組成物準備工程において、無機物を主成分とするバインダー22の形成材料、充填剤及び砥粒21を含む研磨層用組成物を塗工液として準備する。
 また、塗工液の粘度や流動性を制御するために、水、アルコール等の希釈剤等を添加する。この希釈により、凸状部24に含まれる砥粒21の一部をバインダー22の表面から突出させることができる。この時、希釈量を多くすることで、上記研磨層用組成物を次工程で乾燥させたときにバインダー22の厚さが減少し、上記砥粒21の突出量を増やすことができる。
 次に、充填部用組成物準備工程において、樹脂又は無機物を主成分とする充填部25の形成材料を含む充填部用組成物を塗工液として準備する。また、この塗工液の粘度や流動性を制御するために、水、アルコール等の希釈剤等を添加する。なお、この充填部用組成物準備工程は、研磨層用組成物準備工程の前、又は研磨層形成工程の後に行ってもよい。
 次に、研磨層形成工程において、上記研磨層用組成物準備工程で準備した塗工液を用い、基材シート10表面に印刷法により溝23で区分された複数の凸状部24から構成される研磨層20を形成する。この溝23を形成するために、溝23の形状に対応する形状を有するマスクを用意し、このマスクを介して上記塗工液を印刷する。この印刷方式としては、例えばスクリーン印刷、メタルマスク印刷等を用いることができる。
 次に、充填部形成工程において、上記充填部用組成物準備工程で準備した塗工液を用い、印刷法により溝23を充填する充填部25を形成する。この印刷方式としては、例えばスキージ印刷、バーコーター印刷、アプリケーター印刷等を用いることができる。
 最後に、加熱硬化工程において、印刷した塗工液を加熱脱水及び加熱硬化させることで研磨層20及び充填部25を形成する。具体的には、塗工液を室温(25℃)で乾燥させ、70℃以上90℃以下の温度で加熱脱水させた後、140℃以上300℃以下の熱で2時間以上4時間以下の範囲で硬化させ、バインダー22及び充填部25を形成する。上述のように研磨層20を印刷法で形成することで、研磨層20の形成時に砥粒21が研磨層20表面に露出し易いため、当該研磨材1が、被削体の研磨への使用開始時から研磨レートに優れる。
<利点>
 当該研磨材1は、バインダー22の主成分が無機物であるので、砥粒21の保持力が高く、目つぶれする前の研磨力が高い砥粒21が研磨層20から目こぼれすることを抑止できる。その結果、当該研磨材1は研磨レートに優れる。また、当該研磨材1は、上記複数の凸状部24の上記研磨層20全体に対する合計面積占有率を上記範囲内とすることで、目つぶれが進行した砥粒21がバインダー22の摩耗により目こぼれし、新たな砥粒21が露出するように研磨層20の摩耗量が制御される。その結果、当該研磨材1は、研磨層20表面の砥粒21に対する目つぶれする前の研磨力が高い砥粒21の割合が高まり、砥粒21の目つぶれによる研磨レートの低下を抑止できる。さらに、当該研磨材1は、凸状部24の平均面積を上記下限以上とするので、凸状部24の剥離を抑止できる。また、当該研磨材1は、凸状部24の平均面積を上記上限以下とするので、溝23が適度な間隔で位置し、研磨層20表面に発生する研削屑が研磨層20表面に滞留せず、溝23を介して除去され易い。その結果、当該研磨材1は、研磨層20表面の目詰まりを生じ難い。従って、当該研磨材1は、研磨レートに優れると共に、比較的長期間に渡り研磨レートが低下し難い。
[その他の実施形態]
 本発明は上記実施形態に限定されるものではなく、上記態様の他、種々の変更、改良を施した態様で実施することができる。上記実施形態では、溝を等間隔の格子状に構成したが、格子の間隔は、等間隔でなくともよく、例えば縦方向と横方向とで間隔を変えてもよい。ただし、溝の間隔が異なる場合、研磨に異方性が生じるおそれがあるため、等間隔が好ましい。
 また、溝の平面形状は格子状でなくともよく、例えば四角形以外の多角形が繰り返される形状、円形状、平行な線を複数有する形状等であってもよいし、同心円状であってもよい。また、溝の平面形状は一方向のみに配設された縞状であってもよい。
 上記実施形態において、溝の形成方法としてマスクを用いる方法を示したが、基材表面の全面に研磨層用組成物を印刷した後、エッチング加工やレーザー加工等により溝を形成してもよい。
 また、上記実施形態において、溝に充填される充填部を備える場合を示したが、充填部は必須の構成要件ではなく、溝は組成物が充填されない空間であってもよい。
 さらに、図2に示すように当該研磨材2は裏面側の接着層30を介して積層される支持体40及びその支持体40の裏面側に積層される第二接着層31を備えてもよい。当該研磨材2が支持体40を備えることにより、当該研磨材2の取扱いが容易となる。
 上記支持体40の材質としては、ポリプロピレン、ポリエチレン、ポリテトラフルオロエチレン、ポリ塩化ビニル等の熱可塑性を有する樹脂やポリカーボネート、ポリアミド、ポリエチレンテレフタレート等のエンジニアリングプラスチックを挙げることができる。上記支持体40にこのような材質を用いることにより上記支持体40が可撓性を有し、当該研磨材2が被削体の表面形状に追従し、研磨面と被削体とが接触し易くなるため研磨レートがさらに向上する。
 上記支持体40の平均厚さとしては、例えば0.5mm以上3mm以下とすることができる。上記支持体40の平均厚さが上記下限未満である場合、当該研磨材2の強度が不足するおそれがある。一方、上記支持体40の平均厚さが上記上限を超える場合、上記支持体40を研磨装置に取り付け難くなるおそれや上記支持体40の可撓性が不足するおそれがある。
 上記第二接着層31は、接着層30と同様の接着剤を用いることができる。また、第二接着層31は、接着層30と同様の平均厚さとできる。
 以下、実施例及び比較例を挙げて本発明をさらに詳細に説明するが、当該発明は以下の実施例に限定されるものではない。
[実施例1]
 ダイヤモンド砥粒を用意し、日機装株式会社の「MicrotracMT3300EXII」を用いて平均粒子径を計測した。このダイヤモンド砥粒の平均粒子径は44μmであった。なお、このダイヤモンド砥粒の種類は、単結晶ダイヤモンドを55質量%ニッケルコーティングした処理ダイヤモンドである。
 ケイ酸塩(3号ケイ酸ソーダ)、上記ダイヤモンド砥粒、及び充填剤としてのアルミナ(Al、平均粒子径12μm)を混合し、ダイヤモンド砥粒の研磨層に対する含有量が30体積%及び充填剤の研磨層に対する含有量が40体積%となるよう調整し、研磨層用組成物の塗工液を得た。
 また、ケイ酸塩(3号ケイ酸ソーダ)、及び充填剤としてのアルミナ(Al、平均粒子径12μm)を混合し、充填剤の充填部に対する含有量が70体積%となるよう調整し、充填部用組成物の塗工液を得た。
 基材として平均厚さ300μmのアルミニウム板を用意し、上記研磨層用組成物の塗工液を用いてこの基材の表面に印刷により等間隔の格子状の溝を有する研磨層を形成した。なお、印刷には、溝に対応するパターンを有するマスクを用いた。溝で区分された個々の凸状部を面積2.25mm(平面視で1辺1.5mmの正方形状)とし、研磨層の平均厚さを300μmとした。また、上記複数の凸状部は、規則的に配列したブロックパターン状であり、凸状部の研磨層全体に対する面積占有率は4.5%とした。
 次に、充填部用組成物の塗工液を用いてスキージ印刷により上記溝を充填する充填部を形成した。充填部の平均厚さの研磨層の平均厚さに対する比は、1とした。
 なお、研磨層用組成物の塗工液及び充填部用組成物の塗工液は、室温(25℃)で乾燥させ、60℃以上100℃以下の温度で加熱脱水させた後、150℃で2時間以上4時間以下の時間で硬化させた。
 また、基材を支持し研磨装置に固定する支持体として平均厚さ1mmの硬質塩化ビニル樹脂板を用い、上記基材の裏面と上記支持体の表面とを平均厚さ130μmの粘着剤で貼り合わせた。上記粘着剤としては、両面テープを用いた。このようにして実施例1の研磨材を得た。
[実施例2~6]
 実施例1の凸状部の面積及び研磨層全体に対する面積占有率を表1のように変化させて、実施例2~6の研磨材を得た。
[実施例7]
 砥粒として、Cu表面処理ダイヤモンド砥粒(平均粒子径45μm)を用いた以外は、実施例3と同様にして実施例7の研磨材を得た。
[実施例8]
 砥粒として、多結晶の表面未処理ダイヤモンド砥粒(平均粒子径12μm)を用い、充填剤として、アルミナ(Al、平均粒子径4μm)用いた以外は、実施例2と同様にして実施例8の研磨材を得た。
[実施例9]
 凸状部を面積7.07mm(平面視で直径3mmの円形状)とし、研磨層の平均厚さを2400μmとした以外は、実施例1と同様にして実施例9の研磨材を得た。
[比較例1]
 希釈溶剤(イソホロン)に、エポキシ樹脂、ダイヤモンド砥粒(平均粒子径44μm)、充填剤としてのアルミナ(Al、平均粒子径12μm)、硬化剤、及び適量の硬化触媒を加えて混合し、ダイヤモンド砥粒の研磨層に対する含有量が30体積%及び充填剤の研磨層に対する含有量が40体積%となるよう調整し、研磨層用組成物の塗工液を得た。
 また、希釈溶剤(イソホロン)に、エポキシ樹脂、充填剤としてのアルミナ(Al、平均粒子径12μm)、硬化剤、及び適量の硬化触媒を加えて混合し、充填剤の充填部に対する含有量が70体積%となるよう調整し、充填部用組成物の塗工液を得た。
 研磨層用組成物の塗工液及び充填部用組成物の塗工液として、上記塗工液を用いた以外は、実施例1と同様にして比較例1の研磨材を得た。なお、塗工液は、120℃で3分間以上乾燥させた後、120℃で16時間以上20時間以下の時間で硬化させた。
[比較例2]
 凸状部の研磨層全体に対する面積占有率を12%とした以外は、比較例1と同様にして比較例2の研磨材を得た。
[比較例3~12]
 実施例1の凸状部の面積及び研磨層全体に対する面積占有率並びに砥粒の種類を表1のように変化させて、比較例3~12の研磨材を得た。
[研磨条件]
 上記実施例1~9及び比較例1~12で得られた研磨材を用いて、ガラス基板の研磨を行った。上記ガラス基板には、直径5.08cm、比重2.4のソーダライムガラスを用いた。上記研磨には、市販の両面研磨機を用いた。両面研磨機のキャリアは、厚さ0.6mmのエポキシガラスである。研磨は、研磨圧力を200g/cmとし、上定盤回転数60rpm、下定盤回転数90rpm及びSUNギア回転数30rpmの条件で行った。その際、クーラントとして、出光興産株式会社の「ダフニーカットGS50K」を毎分120cc供給した。
[評価方法]
 実施例1~9及び比較例1~12の研磨材を用いて研磨したガラス基板について、研磨レート及び研磨レート維持性の評価を行った。結果を表1に示す。
<研磨レート>
 研磨レートについて、ガラス基板の研磨を15分間行い、研磨前後の基板の重量変化(g)を、基板の表面積(cm)、基板の比重(g/cm)及び研磨時間(分)で除し、算出した。
 研磨レートについては、砥粒の平均粒子径の大きさにより実施例8及び比較例12を除く実施例及び比較例と、実施例8及び比較例12とに分けて、以下の判断基準にて3段階評価した。
(実施例8及び比較例12以外の研磨レートの判定基準)
 A:100μm/分以上
 B:50μm/分以上100μm/分未満
 C:50μm/分未満
(実施例8及び比較例12の研磨レートの判定基準)
 A:10μm/分以上
 B:5μm/分以上10μm/分未満
 C:5μm/分未満
<研磨レート維持性>
 研磨レート維持性について、実施例8及び比較例12を除く実施例及び比較例では、ガラス基板の研磨を50分間行い、最後の10分間(40分から50分の間)の研磨レートを最初の10分間(0分から10分の間)の研磨レートで除し、算出した。
 砥粒の平均粒子径が他の実施例等よりも小さい実施例8及び比較例12については、1バッチ当たりの研磨量を約30μmとする研磨を連続して3バッチ実施し、3バッチ目の研磨レートを1バッチ目の研磨レートで除して算出した。
 研磨レート維持性については、以下の判断基準にて3段階評価した。
(研磨レート維持性の判定基準)
 A:90%以上
 B:80%以上90%未満
 C:80%未満
<総合評価>
 総合評価については、研磨レート及び研磨レート維持性を総合的に判断し、下記の判断基準にて3段階で評価した。
(研磨性能の基準)
 A:研磨レート及び研磨レート維持性共に優れ、良好に研磨可能である。
 B:研磨レート又は研磨レート維持性のいずれかに劣るが、研磨可能である。
 C:剥離等により研磨レートが発現せず、又は研磨レート維持性が著しく劣り、研磨不可である。
Figure JPOXMLDOC01-appb-T000001
 表1中で「研磨不可」とは、凸状部の剥離又は被削体の溝の側面上部への引っ掛かりのため研磨を行うことができず、研磨レート及び研磨レート維持性が測定できなかったことを意味する。
 表1の結果から、実施例1~9の研磨材は、比較例1~12の研磨材と比べ研磨レートが高く、かつ研磨レート維持性が80%を超える。これに対して、比較例1及び比較例2は、バインダーの主成分が無機物ではないため、砥粒が目こぼれし易く、研磨レートが低いと考えられる。また、比較例3、4、10、11は、凸状部の面積が小さ過ぎるため、凸状部が剥離し、研磨できないと考えられる。比較例5は、凸状部の面積が大き過ぎるため、所望の面積占有率とするためには溝の幅が大き過ぎ、被削体であるガラス基板が支えきれずに溝の側面上部への引っ掛かりが発生し、研磨できないと考えられる。比較例6及び8は凸状部の面積占有率が小さ過ぎるため、凸状部に加わる圧力が高く、砥粒の摩耗による目つぶれが発生し、研磨レート維持性が低いと考えられる。さらに、比較例7、9、12は凸状部の面積占有率が大き過ぎるため、バインダーの摩耗が生じ難くなり、砥粒の摩耗による目つぶれが発生し、研磨レート維持性が低いと考えられる。このことから、実施例1~9の研磨材は、凸状部の面積及び面積占有率が所定範囲内であるので、研磨レート及び研磨レート維持性に優れることが分かる。
 また、実施例3と実施例7との比較及び実施例8と比較例12との比較から、砥粒をCu表面処理ダイヤモンド砥粒又は多結晶の表面未処理ダイヤモンド砥粒としても実施例6及び実施例7の研磨材は、優れた研磨レート及び研磨レート維持性が得られる。このことから、砥粒の種類によらず、凸状部の面積及び面積占有率を所定範囲内とすることで、研磨レート及び研磨レート維持性に優れることが分かる。
 本発明の研磨材は、研磨レートに優れると共に、比較的長期間に渡り研磨レートが低下し難い。従って、当該研磨材は、ガラス等の基板の平面研磨に好適に用いられる。
1、2 研磨材
10 基材シート
20 研磨層
21 砥粒
22 バインダー
23 溝
24 凸状部
25 充填部
30 接着層
31 第二接着層
40 支持体

Claims (7)

  1.  基材シートと、この基材シートの表面側に積層され、砥粒及びそのバインダーを含む研磨層とを備える研磨材であって、
     上記バインダーの主成分が無機物であり、
     上記研磨層が、その表面に溝により区分された複数の凸状部を有し、
     上記凸状部の平均面積が1mm以上300mm以下であり、
     上記複数の凸状部の上記研磨層全体に対する合計面積占有率が4%以上15%以下であることを特徴とする研磨材。
  2.  上記溝に充填され、樹脂又は無機物を主成分とし、かつ砥粒を実質的に含まない充填部をさらに備える請求項1に記載の研磨材。
  3.  上記充填部の平均厚さの研磨層の平均厚さに対する比が0.1以上1以下である請求項2に記載の研磨材。
  4.  上記砥粒がダイヤモンド砥粒である請求項1、請求項2又は請求項3に記載の研磨材。
  5.  上記無機物がケイ酸塩である請求項1から請求項4のいずれか1項に記載の研磨材。
  6.  上記バインダーが酸化物を主成分とする充填剤を含有する請求項1から請求項5のいずれか1項に記載の研磨材。
  7.  上記研磨層の平均厚さが25μm以上4000μm以下である請求項1から請求項6のいずれか1項に記載の研磨材。
     
     
PCT/JP2016/088721 2016-01-06 2016-12-26 研磨材 WO2017119342A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680076410.1A CN108430701B (zh) 2016-01-06 2016-12-26 研磨材
KR1020187017946A KR102039587B1 (ko) 2016-01-06 2016-12-26 연마재
JP2016575709A JP6279108B2 (ja) 2016-01-06 2016-12-26 研磨材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-000971 2016-01-06
JP2016000971 2016-01-06

Publications (1)

Publication Number Publication Date
WO2017119342A1 true WO2017119342A1 (ja) 2017-07-13

Family

ID=59274240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088721 WO2017119342A1 (ja) 2016-01-06 2016-12-26 研磨材

Country Status (5)

Country Link
JP (1) JP6279108B2 (ja)
KR (1) KR102039587B1 (ja)
CN (1) CN108430701B (ja)
TW (1) TWI707743B (ja)
WO (1) WO2017119342A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109968187A (zh) * 2017-12-27 2019-07-05 阪东化学株式会社 研磨材的制造方法及研磨材
CN110177654A (zh) * 2017-12-19 2019-08-27 阪东化学株式会社 研磨材

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109202696A (zh) * 2018-09-10 2019-01-15 台山市远鹏研磨科技有限公司 一种金刚石陶瓷减薄垫

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0236074A (ja) * 1988-07-23 1990-02-06 Yoshinori Uematsu 研摩素材
JPH03501371A (ja) * 1988-06-30 1991-03-28 ミッチェル,リチャード・ジェイ 研磨粒子の少ない研磨製品
JP2003527974A (ja) * 2000-03-23 2003-09-24 サンーゴバン アブレイシブズ,インコーポレイティド ビトリファイド結合剤で結合した研磨工具
WO2014008049A2 (en) * 2012-07-06 2014-01-09 3M Innovative Properties Company Coated abrasive article
WO2015046543A1 (ja) * 2013-09-28 2015-04-02 Hoya株式会社 磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法、並びに研削工具
WO2015194278A1 (ja) * 2014-06-17 2015-12-23 バンドー化学株式会社 研磨パッド及び研磨パッドの製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2958349B2 (ja) * 1989-06-29 1999-10-06 旭ダイヤモンド工業株式会社 有気孔研削砥石及びその製造法
JPH04322972A (ja) * 1991-04-24 1992-11-12 Osaka Diamond Ind Co Ltd ダイヤモンド砥粒の結合剤材料
US5454844A (en) * 1993-10-29 1995-10-03 Minnesota Mining And Manufacturing Company Abrasive article, a process of making same, and a method of using same to finish a workpiece surface
CN1162283A (zh) * 1994-09-30 1997-10-15 美国3M公司 涂敷磨具及其制备和使用方法
US6102789A (en) * 1998-03-27 2000-08-15 Norton Company Abrasive tools
US6458018B1 (en) 1999-04-23 2002-10-01 3M Innovative Properties Company Abrasive article suitable for abrading glass and glass ceramic workpieces
JP2001071268A (ja) * 1999-09-02 2001-03-21 Tokyo Diamond Kogu Seisakusho:Kk 超砥粒研削砥石
JP3501371B2 (ja) 2001-10-12 2004-03-02 株式会社サンエイ 記録媒体収納ケースの施錠装置並びにその解錠装置
US7491251B2 (en) * 2005-10-05 2009-02-17 3M Innovative Properties Company Method of making a structured abrasive article
TW201223699A (en) * 2010-09-03 2012-06-16 Saint Gobain Abrasives Inc Bonded abrasive articles, method of forming such articles, and grinding performance of such articles
TWI613285B (zh) * 2010-09-03 2018-02-01 聖高拜磨料有限公司 粘結的磨料物品及形成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03501371A (ja) * 1988-06-30 1991-03-28 ミッチェル,リチャード・ジェイ 研磨粒子の少ない研磨製品
JPH0236074A (ja) * 1988-07-23 1990-02-06 Yoshinori Uematsu 研摩素材
JP2003527974A (ja) * 2000-03-23 2003-09-24 サンーゴバン アブレイシブズ,インコーポレイティド ビトリファイド結合剤で結合した研磨工具
WO2014008049A2 (en) * 2012-07-06 2014-01-09 3M Innovative Properties Company Coated abrasive article
WO2015046543A1 (ja) * 2013-09-28 2015-04-02 Hoya株式会社 磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法、並びに研削工具
WO2015194278A1 (ja) * 2014-06-17 2015-12-23 バンドー化学株式会社 研磨パッド及び研磨パッドの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110177654A (zh) * 2017-12-19 2019-08-27 阪东化学株式会社 研磨材
CN109968187A (zh) * 2017-12-27 2019-07-05 阪东化学株式会社 研磨材的制造方法及研磨材

Also Published As

Publication number Publication date
JP6279108B2 (ja) 2018-02-14
KR20180087346A (ko) 2018-08-01
CN108430701B (zh) 2020-11-10
KR102039587B1 (ko) 2019-11-01
TWI707743B (zh) 2020-10-21
JPWO2017119342A1 (ja) 2018-01-11
TW201728407A (zh) 2017-08-16
CN108430701A (zh) 2018-08-21

Similar Documents

Publication Publication Date Title
JP6091704B2 (ja) 研磨材及び研磨材の製造方法
JP6279108B2 (ja) 研磨材
JP6085723B1 (ja) 研磨材及び研磨材の製造方法
JP6836532B2 (ja) 研磨材
JP6316460B2 (ja) 研磨材
JP6340142B2 (ja) 研磨材
WO2018008551A1 (ja) 研磨材
JP2018001368A (ja) 研磨材の製造方法及び研磨材
WO2019123922A1 (ja) 研磨材及び研磨材の製造方法
JP2019115966A (ja) 研磨材の製造方法及び研磨材
JP6937494B2 (ja) 研磨材
JP3224896U (ja) 研磨パッド
JP2023068452A (ja) 研磨パッド
JP2022098876A (ja) 研磨パッド

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016575709

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883841

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187017946

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187017946

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883841

Country of ref document: EP

Kind code of ref document: A1