WO2017119331A1 - Solid-state image capture device, method for driving solid-state image capture device, and electronic equipment - Google Patents
Solid-state image capture device, method for driving solid-state image capture device, and electronic equipment Download PDFInfo
- Publication number
- WO2017119331A1 WO2017119331A1 PCT/JP2016/088653 JP2016088653W WO2017119331A1 WO 2017119331 A1 WO2017119331 A1 WO 2017119331A1 JP 2016088653 W JP2016088653 W JP 2016088653W WO 2017119331 A1 WO2017119331 A1 WO 2017119331A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- input
- pixel
- read
- readout
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 38
- 238000012545 processing Methods 0.000 claims abstract description 65
- 238000006243 chemical reaction Methods 0.000 claims abstract description 57
- 238000003384 imaging method Methods 0.000 claims description 64
- 230000015572 biosynthetic process Effects 0.000 claims description 9
- 238000003786 synthesis reaction Methods 0.000 claims description 9
- 230000002194 synthesizing effect Effects 0.000 claims description 8
- 230000003287 optical effect Effects 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 2
- 230000000717 retained effect Effects 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 29
- 238000009792 diffusion process Methods 0.000 description 17
- 238000007667 floating Methods 0.000 description 17
- 238000012546 transfer Methods 0.000 description 13
- 239000003990 capacitor Substances 0.000 description 10
- 230000008569 process Effects 0.000 description 9
- 230000006870 function Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 230000003321 amplification Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 108091022873 acetoacetate decarboxylase Proteins 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 101710170230 Antimicrobial peptide 1 Proteins 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 2
- 101710096660 Probable acetoacetate decarboxylase 2 Proteins 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 101150042711 adc2 gene Proteins 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
- H04N25/78—Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/50—Control of the SSIS exposure
- H04N25/57—Control of the dynamic range
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
Definitions
- the present invention relates to a solid-state imaging device, a driving method for the solid-state imaging device, and an electronic apparatus.
- CMOS Complementary Metal Oxide Semiconductor
- image sensor solid-state imaging device
- CMOS image sensors are widely applied as a part of various electronic devices such as digital cameras, video cameras, surveillance cameras, medical endoscopes, personal computers (PCs), and mobile terminal devices (mobile devices) such as mobile phones. Yes.
- the CMOS image sensor has an FD amplifier having a photodiode (photoelectric conversion element) and a floating diffusion layer (FD: Floating Diffusion) for each pixel, and the readout selects one row in the pixel array.
- FD floating diffusion layer
- a column parallel output type in which these are simultaneously read in the column direction is the mainstream.
- CMOS image sensor for example, for one photodiode (photoelectric conversion element), a transfer transistor as a transfer element, a reset transistor as a reset element, and a source follower element
- a transfer transistor as a transfer element
- a reset transistor as a reset element
- a source follower element A pixel having a four-transistor (4Tr) configuration that includes one source follower transistor and one selection transistor as a selection element can be exemplified.
- the transfer transistor is selected during a predetermined transfer period and becomes conductive, and transfers the charges (electrons) photoelectrically converted and accumulated by the photodiode to the floating diffusion FD.
- the reset transistor is selected during a predetermined reset period and becomes conductive, and resets the floating diffusion FD to the potential of the power supply line.
- the selection transistor is selected during the reading scan and becomes conductive.
- the source follower transistor outputs a column output read signal obtained by converting the charge of the floating diffusion FD into a voltage signal corresponding to the charge amount (potential) to the vertical signal line.
- the charge of the floating diffusion FD is changed to a voltage signal corresponding to the amount of charge (potential) by the source follower transistor.
- the converted signal is output to the vertical signal line as a reference level read reset voltage (reference level signal) Vrst.
- Vrst reference level read reset voltage
- the charge of the floating diffusion FD is converted into a voltage signal corresponding to the amount of electric charge (potential) by the source follower transistor, and is output as a read signal voltage (signal level signal) Vsig to the vertical signal line.
- the output signal of the pixel is processed as a difference signal (Vsig ⁇ Vrst).
- a normal pixel readout signal (hereinafter sometimes referred to as a pixel signal) PS is formed by one reference level readout reset voltage Vrst and one signal level readout signal voltage Vsig.
- CMOS image sensor having a high dynamic range
- HDR High Dynamic Range
- the solid-state imaging device as a method for increasing (enlarging) the dynamic range, for example, two types of signals having different accumulation times are read from the same pixel of the image sensor, and these two types of signals are combined (combined).
- a method for expanding the dynamic range a method for expanding the dynamic range by combining (combining) signals in the low illuminance area obtained with high sensitivity pixels and signals in the high illuminance area obtained with low sensitivity pixels, etc. It has been known.
- Patent Document 1 discloses a high dynamic range technology that divides into two or more different exposure times for imaging corresponding to a high illuminance side with a short exposure time and imaging corresponding to a low illuminance with a long exposure time. .
- the pixel readout signal (pixel signal) PSD in this case is processed as a so-called uninterrupted readout signal.
- FIG. 1A and 1B show a normal pixel readout signal (pixel signal) of a solid-state imaging device (CMOS image sensor) and an uninterrupted pixel readout signal when a high dynamic range technology is adopted (no interruption). It is a figure which shows an example of a pixel signal.
- FIG. 1A shows an example of a normal pixel readout signal (pixel signal) PS
- FIG. 1B shows an example of a pixel readout signal without interruption (pixel signal without interruption) PSD.
- the normal pixel signal PS [N] includes one reference level signal (hereinafter also simply referred to as a reference level) Vrst [N] and one signal level signal ( Hereinafter, it may be simply referred to as a signal level) Vsig [N]. That is, one reference level Vrst [N] and one signal level Vsig [N] are included in one pixel signal PS [N].
- the output data OD [N] in this case is the reference level Vrst [N] ⁇ the signal level Vsig [N].
- one reference level Vrst [N + 1] and one signal level Vsig [N + 1] are included in one pixel signal PS [N + 1]. In this case, the output data OD [N + 1] becomes the reference level Vrst [N + 1] ⁇ the signal level Vsig [N + 1].
- the output data OD [N, 1] is the reference level Vrst [N, 1] ⁇ the signal level Vsig [N, 1], and the output data OD [N, 2] is the reference level Vrst [N, 2].
- the output data OD [N + 1,1] is the reference level Vrst [N + 1,1] ⁇ the signal level Vsig [N + 1,1]
- the output data OD [N + 1,2] is the reference level Vrst [N + 1,2].
- the signal level is Vsig [N + 1, 2].
- the pixel signal PSD without interruption includes M reference levels Vrst and M signal levels Vsig in one pixel signal PSD, and the arrangement order is one output data OD [N , M], a plurality of reference levels Vrst [N, M] must be input first and then the signal level Vsig [N, M] is input.
- the uninterrupted pixel signal PSD can have different amplification factors K for M signals for the same light quantity.
- the output data OD [*, 1] and OD [*, 2] obtained from the uninterrupted pixel signal PSD shown in FIG. 1B are signals having different characteristics as shown in FIG. .
- the output data OD [*, 2] is amplified according to the ratio to obtain one synthesized final output data ODA as shown in FIG.
- the first method by switching shown in FIG. 2C or the second method by averaging shown in FIG. 2D is adopted, and the final output data ODA is obtained.
- FIG. 3 is a diagram illustrating an example of a readout circuit including a new reference level setting function in a normal pixel readout signal (pixel signal) processing system.
- pixels PXL (N) and PXL (N + 1) in the same column are connected to a common readout signal line LS.
- a clamp circuit 1 for setting a new reference level is disposed at an input stage between the signal line LS and an input node [Y] of an analog digital converter (ADC) (not shown).
- the clamp circuit 1 includes an amplifier AMP1, capacitors C1 and C2, and a switch SW1.
- the reference level Vrst [N] and the reference level Vrst [N + 1] may have different levels due to individual variations of the pixel PXL. Therefore, in the example of FIG. 3, individual variations of pixels are deleted using a new reference level [V1] by the clamp circuit 1 in the readout circuit.
- FIGS. 4A and 4B are diagrams illustrating an example of a normal pixel readout signal (pixel signal) when a new reference level Vrst [V1] by the clamp circuit 1 is applied.
- 4A shows the clamp circuit of FIG. 3 in a simplified manner with a capacitor C and a switch SW1
- FIG. 4B shows an example of a normal pixel readout signal (pixel signal).
- FIGS. 5A and 5B are diagrams for explaining a configuration for deleting individual variations generated in the ADC.
- FIG. 5A shows an example of a state of AD conversion and output processing of a normal pixel readout signal (pixel signal)
- FIG. 5B shows a configuration example of a column parallel processing unit including an ADC. .
- ADCs 2 are arranged in each column corresponding to the column output of the pixel portion, and a switch is connected to the output side of each ADC 2.
- a holding unit 3-1 that holds the reference level Vrst and a holding unit 3-2 that holds the signal level Vsig are arranged via SW3-1 and SW3-2, and further calculates the difference between the signal level Vsig and the reference level Vrst.
- a vessel 4 is arranged.
- FIG. 6 is a diagram illustrating an example of a column readout system having a configuration for deleting individual variations corresponding to a pixel readout signal without interruption (a pixel signal without interruption).
- FIG. 7 is a diagram illustrating an example of a state of AD conversion processing of an uninterrupted pixel readout signal (an uninterrupted pixel signal).
- ADCs 2A are arranged in each column corresponding to the column output of the pixel portion, and the reference level Vrst and the signal level Vsig are provided on the output side of the ADC 2A via the switches SW3-1 to SW3-2M.
- Holding units 3-1 to 3-2M are arranged, and a synthesis processing unit 5 for synthesizing the signals held in the holding units 3-1 to 3-2M is arranged.
- the ADC 2A includes a clamp circuit 1A having the same configuration as that in FIG. 4A and a conversion unit 2-1 connected to the input node [Y].
- the readout system of FIG. 6 requires 2M holding units for M uninterrupted pixel signals.
- this requires 2M AD conversion operations, there is a disadvantage that the circuit area increases and the processing time becomes longer.
- the clamping operation is desired to be performed twice within the same pixel signal, if the clamping operation is performed at the reference level Vrst [N, 2], the state at the first reference level Vrst [N, 1] is lost. That is, the clamping operation can be performed only once. For this reason, the readout system of FIG. 6 degrades AD conversion accuracy.
- the third disadvantage is in the synthesis process.
- the first method by switching shown in FIG. 2C or the second method by averaging shown in FIG. 2D is adopted.
- the second method is superior to the first method, but the processing time of the second method is increased because the processing is complicated.
- the present invention can prevent degradation of AD conversion accuracy while suppressing an increase in circuit area and processing time, and can also realize a wide dynamic range and thus high image quality.
- An object of the present invention is to provide a solid-state imaging device, a driving method for the solid-state imaging device, and an electronic apparatus.
- a first aspect of the present invention is a solid-state imaging device capable of expanding a dynamic range by synthesizing a plurality of readout signals, and is arranged corresponding to a pixel unit in which pixels are arranged and a column output of the pixel unit
- a read unit including a column signal processing unit, wherein the column signal processing unit converts the plurality of read signals read from the pixels and input to an input node from analog signals to digital signals.
- An analog / digital converter that performs (AD) conversion, a level of the input node to which the readout signal read out from the pixel is input, and a preset reference voltage are compared, and the reference voltage is set according to a comparison result
- a comparison / selection unit that selects an input state of the readout signal read from the pixel to the input node.
- a second aspect of the present invention includes a pixel unit in which pixels are arranged, and a readout unit including a column signal processing unit arranged corresponding to a column output of the pixel unit, and the column signal processing unit Includes an analog-to-digital converter (ADC) that converts the plurality of readout signals read from the pixels and input to the input node from analog signals to digital signals, and synthesizes the plurality of readout signals.
- ADC analog-to-digital converter
- the level of the input node to which the readout signal read from the pixel is input and a preset reference are provided. The voltage is compared, and the input state of the read signal read from the pixel to the input node is selected according to the comparison result.
- An electronic apparatus includes a solid-state imaging device capable of expanding a dynamic range by combining a plurality of readout signals, and an optical system that forms a subject image on the solid-state imaging device
- the solid-state imaging device includes a pixel unit in which pixels are arranged, and a reading unit including a column signal processing unit arranged corresponding to the column output of the pixel unit, and the column signal processing unit includes the column signal processing unit,
- An analog-to-digital converter (ADC) that converts the plurality of readout signals read from the pixels and input to the input node from analog signals to digital signals by analog-to-digital (AD), and the readout signals read from the pixels
- ADC analog-to-digital converter
- AD analog-to-digital
- the present invention it is possible to prevent the deterioration of AD conversion accuracy while suppressing an increase in circuit area and an increase in processing time, and further, it is possible to realize a wide dynamic range and thus to realize a high image quality. Can do.
- FIG. 1 shows an example of a normal pixel readout signal (pixel signal) of a solid-state imaging device (CMOS image sensor) and an uninterrupted pixel readout signal (non-interrupted pixel signal) when a high dynamic range technology is employed.
- FIG. 3 is a diagram illustrating an example of a readout circuit including a new reference level setting function in a normal pixel readout signal (pixel signal) processing system.
- FIG. 4 is a diagram illustrating an example of a normal pixel readout signal (pixel signal) when a new reference level is applied by the clamp circuit.
- FIG. 5 is a diagram for explaining a configuration for deleting individual variations generated in the ADC.
- FIG. 6 is a diagram illustrating an example of a column readout system having a configuration for deleting individual variations corresponding to a pixel readout signal without interruption (a pixel signal without interruption).
- FIG. 7 is a diagram illustrating an example of a state of AD conversion processing of an uninterrupted pixel readout signal (an uninterrupted pixel signal).
- FIG. 8 is a block diagram illustrating a configuration example of the solid-state imaging device according to the first embodiment of the present invention.
- FIG. 9 is a circuit diagram illustrating an example of a pixel according to the first embodiment.
- FIG. 10 is a diagram for explaining a configuration example of a column output readout system of the pixel unit of the solid-state imaging device according to the embodiment of the present invention.
- FIG. 11 illustrates an ADC that forms a column output readout system of the pixel unit of the solid-state imaging device according to the first embodiment of the present invention, a comparison / selection unit, a holding unit arranged on the output side of the ADC, and a synthesis process It is a figure which shows the structural example of a part.
- FIG. 15 is a diagram illustrating a configuration example of a clamp circuit disposed in an input unit of an ADC that forms a column output readout system of a pixel unit of a solid-state imaging device according to the second embodiment of the present invention.
- FIG. 16 is a diagram illustrating an operation example of the circuit of FIG. FIG.
- FIG. 17 is a diagram illustrating a configuration example of a clamp circuit and a comparison / selection unit arranged in an input unit of an ADC forming a column output readout system of a pixel unit of a solid-state imaging device according to the third embodiment of the present invention. is there.
- FIG. 18 is a diagram illustrating an operation example of the circuit of FIG.
- FIG. 19 illustrates an ADC forming a column output readout system of a pixel unit of a solid-state imaging device according to the fourth embodiment of the present invention, a comparison / selection unit, a holding unit arranged on the output side of the ADC, and a combining process It is a figure which shows the structural example of a part.
- FIG. 20 is a diagram illustrating an example of the configuration of an electronic apparatus to which the solid-state imaging device according to the embodiment of the present invention is applied.
- FIG. 8 is a block diagram illustrating a configuration example of the solid-state imaging device according to the first embodiment of the present invention.
- the solid-state imaging device 10 is configured by, for example, a CMOS image sensor.
- the solid-state imaging device 10 includes a pixel unit 20 as an imaging unit, a vertical scanning circuit (row scanning circuit) 30, a reading circuit (column reading circuit) 40, and a horizontal scanning circuit (column scanning circuit) 50.
- a timing control circuit 60 and a digital signal processor (DSP) unit 70 including a function as a signal synthesis processing unit, for example, are included as main components.
- the vertical scanning circuit 30, the readout circuit 40, the horizontal scanning circuit 50, and the timing control circuit 60 constitute a pixel signal readout unit 80.
- the solid-state imaging device 10 is configured to be able to expand a dynamic range by synthesizing a plurality (M) of readout signals (pixel signals) read from the pixel unit 20. Yes.
- a method of expanding the dynamic range by combining (combining) is applied.
- the reading unit 80 applies a method of expanding a dynamic range by combining (synthesizing) a signal of a low illuminance region obtained by a high sensitivity pixel and a signal of a high illuminance region obtained by a low sensitivity pixel. Is possible.
- the pixel readout signal (pixel signal) PSD in this case is processed as a so-called uninterrupted readout signal.
- an uninterrupted pixel signal PSD includes M reference levels (reference level signals) Vrst and M signal levels (signal level signals) Vsig in one pixel signal PSD.
- the arrangement order of the pixel signals PSD without interruption is, for example, the signal level Vsig [after the reference level Vrst [N, M] constituting one output data OD [N, M] is always input first. N, M] are input, and there are a plurality of such restrictions.
- the readout unit 80 includes a plurality of column signal processing units arranged corresponding to the column (column) output of the pixel unit 20, and each column signal processing unit converts a plurality of readout signals read from the pixels from analog signals. It includes an ADC (analog-digital converter) that converts AD (analog-digital) into a digital signal.
- the readout unit 80 compares the input node [Y] to which each readout signal read from the pixel is input with the level of the input node [Y] and a preset reference voltage [V20], and the comparison result is obtained. And a comparison / selection unit that selects an input state of the read signal read from the pixel to the input node [Y].
- the ADC receives the signal level signal Vsig after the reference level signal Vrst is input first, for example.
- the comparison / selection unit compares the signal level of the input node [Y] with a preset reference voltage V [20] when a signal of a signal level appears at the input node [Y], and compares According to the result, the input state of the read signal read from the pixel to the input node [Y] is selected.
- the comparison / selection unit reads the current comparison target read signal. A state in which subsequent read signals are continuously input to the input node [Y] is selected, and the subsequent read signals are controlled to be AD conversion targets to be held.
- the comparison selection unit selects a state in which a subsequent read signal is not input to the input node as the current comparison target read signal, and Control is performed so that the read signal to be compared becomes an AD conversion target to be held.
- the ADC includes a clamp unit that fixes a signal of a reference level that is input at least first to the input node [Y] to a clamp level [V10] set in advance according to the clamp signal CLP. It has a clamp circuit.
- a plurality of pixels including photodiodes (photoelectric conversion elements) and in-pixel amplifiers are arranged in a two-dimensional matrix (matrix) of n rows ⁇ m columns.
- FIG. 9 is a circuit diagram illustrating an example of a pixel according to the present embodiment.
- the pixel PXL includes, for example, a photodiode (PD) that is a photoelectric conversion element.
- a photodiode (PD) that is a photoelectric conversion element.
- a transfer transistor TG-Tr as a transfer element
- a reset transistor RST-Tr as a reset element
- a source follower transistor SF-Tr as a source follower element
- a select transistor SEL-Tr as a select element
- the photodiode PD generates and accumulates signal charges (electrons here) in an amount corresponding to the amount of incident light.
- signal charges electron here
- each transistor is an n-type transistor
- the signal charge may be a hole or each transistor may be a p-type transistor.
- This embodiment is also effective when a plurality of photodiodes share each transistor or when a three-transistor (3Tr) pixel that does not have a selection transistor is employed.
- the transfer transistor TG-Tr is connected between the photodiode PD and a floating diffusion FD (floating diffusion layer), and is controlled through a control line TG.
- the transfer transistor TG-Tr is selected when the control line TG is at the high level (H) and becomes conductive, and transfers the charges (electrons) photoelectrically converted and accumulated by the photodiode PD to the floating diffusion FD.
- the reset transistor RST-Tr is connected between the power supply line VRst and the floating diffusion FD, and is controlled through the control line RST.
- the reset transistor RST-Tr may be connected between the power supply line VDD and the floating diffusion FD, and may be configured to be controlled through the control line RST.
- the reset transistor RST-Tr is selected during the period when the control line RST is at the H level, and becomes conductive, and resets the floating diffusion FD to the potential of the power supply line VRst (or VDD).
- the source follower transistor SF-Tr and the selection transistor SEL-Tr are connected in series between the power supply line VDD and the vertical signal line LSGN.
- a floating diffusion FD is connected to the gate of the source follower transistor SF-Tr, and the selection transistor SEL-Tr is controlled through a control line SEL.
- the selection transistor SEL-Tr is selected during the period when the control line SEL is at the H level and becomes conductive.
- the source follower transistor SF-Tr serves as a signal path for transmitting a column output pixel readout signal (pixel signal) VSL (PSD) obtained by converting the charge of the floating diffusion FD into a voltage signal corresponding to the charge amount (potential). Output to the vertical signal line LSGN.
- the pixel readout signal (pixel signal) PSD in this case is processed as a so-called uninterrupted readout signal.
- the gates of the transfer transistor TG-Tr, the reset transistor RST-Tr, and the selection transistor SEL-Tr are connected in units of rows. Is called.
- the pixel unit 20 includes n control lines SEL, RST, and TG, and m vertical signal lines LSGN.
- each control line SEL, RST, TG is represented as one row scanning control line.
- the vertical scanning circuit 30 drives the pixels through the row scanning control lines in the shutter row and the readout row in accordance with the control of the timing control circuit 60. In addition, the vertical scanning circuit 30 outputs a row selection signal of a row address of a read row that reads out the signal and a shutter row that resets the charge accumulated in the photodiode PD in accordance with the address signal.
- a shutter scan is performed by driving by the vertical scanning circuit 30 of the readout unit 80, and then the readout scan is performed.
- the readout circuit 40 includes a plurality of column signal processing units (not shown) arranged corresponding to the respective column outputs of the pixel unit 20, and is configured such that column parallel processing can be performed by the plurality of column signal processing units.
- the read circuit 40 can be configured to include, for example, an ADC and a memory.
- the column signal processing unit 400 of the readout circuit 40 includes, for example, an ADC 410 that converts the readout signal VSL output from each column of the pixel unit 20 into a digital signal, as shown in FIG.
- the horizontal scanning circuit 50 scans the signals processed by the plurality of column signal processing units 400 such as ADCs of the reading circuit 40, transfers them in the horizontal direction, and outputs them to the DSP unit 70.
- the timing control circuit 60 generates timing signals necessary for signal processing of the pixel unit 20, the vertical scanning circuit 30, the readout circuit 40, the horizontal scanning circuit 50, and the like.
- the ADC 410 including the clamp circuit according to the first embodiment, the configuration of the holding unit arranged on the output side of the ADC 410, the composition processing unit, the readout processing related thereto, and the like will be described in detail.
- FIG. 11 illustrates an ADC that forms a column output readout system of the pixel unit of the solid-state imaging device according to the first embodiment of the present invention, a comparison / selection unit, a holding unit arranged on the output side of the ADC, and a synthesis process It is a figure which shows the structural example of a part.
- FIG. 11 shows one readout system including a column signal processing unit 400 corresponding to one column output of the pixel unit 20 in order to simplify the drawing and facilitate understanding.
- the readout system including the column signal processing unit 400 corresponding to another column output of the pixel unit 20 has the same configuration.
- the ADC 410 is arranged in each column with respect to the vertical signal line LSGN which is the column output line and signal path of the pixel unit 20, and the AD conversion state of the ADC 410 is selected in parallel with the ADC 410.
- a comparator 420 constituting a part of the comparison selection unit 430 to be controlled is arranged.
- holding units 440-1 and 440-2 for holding the reference level Vrst and the signal level Vsig are arranged via the switches SW440-1 and SW440-2, and further holding units 440-1 and 440-
- a synthesis processing unit 450 that synthesizes the signals held in 2 is arranged.
- the composition processing unit 450 is disposed in the DSP unit 70, for example.
- the ADC 410 includes an input node [Y], an input switch (S) 411, a clamp circuit 412, and a conversion unit 413 as main components.
- the ADC 410 AD converts a plurality of readout signals read from the pixel PXL and input to the input node [Y] from analog signals to digital signals.
- each of the plurality of readout signals is formed by a reference level signal and a signal level signal, and the ADC 410 receives the signal level signal Vsig after the reference level signal Vrst is input first.
- the input switch 411 includes a connection state (on state) and a non-connection state (off state) of the signal path to the input node [Y] of the readout signal read from the pixel PXL in accordance with the signal S420 indicating the comparison result of the comparator 420. Switch status).
- the input switch 411 and the comparator 420 constitute a comparison / selection unit 430.
- the clamp circuit 412 includes a clamp unit 412A that fixes a reference level signal Vrst input at least first to the input node [Y] to a clamp level [V10] set in advance according to the clamp signal CLP.
- the clamp circuit 412 includes an amplifier AMP1, capacitors C1 and C2, and a switch SW1.
- a clamp circuit 412 in FIG. 11 is illustrated by simplifying the clamp circuit in FIG. 3 with a capacitor C11 and a switch SW11, and the clamp unit 412A includes the capacitor C11 and the switch SW11.
- the clamp circuit 412 turns on the switch SW11 with the clamp signal CLP, thereby changing the reference level Vrst appearing at the node [Y] using the new reference level [V10].
- the signal level Vsig [N] becomes a new signal level Vsig [N ′] based on the new reference level [V10].
- the difference between the reference level [V10] and the signal level Vsig [N ′] is constant.
- the conversion unit 413 AD converts a plurality of read signals read from the pixel PXL and input to the input node [Y] from analog signals to digital signals.
- the comparator 420 constitutes a comparison / selection unit 430 together with the input switch 411.
- the comparator 420 included in the comparison / selection unit 430 includes a signal level of the input node [Y] and a preset reference voltage [V20] when the signal level signal Vsig appears at the input node [Y].
- the input switch 411 is switched on and off so as to select the input state of the read signal read from the pixel to the input node [Y] by the signal S420 corresponding to the comparison result.
- the reference voltage [V20] is a level (for example, the coupling position X in FIG. 2B) corresponding to the coupling position of a plurality of readout signals to be synthesized.
- the comparison / selection unit 430 continuously inputs the read signal subsequent to the current comparison target read signal to the input node [Y]. Is selected and control is performed so that the subsequent read signal becomes an AD conversion target to be held.
- the output signal S420 of the comparator 420 is “1”, for example, and the input switch 411 is controlled to be in an on state (connected state).
- the comparison selection unit 430 selects a state in which a subsequent read signal is not input to the input node [Y] as the current comparison target read signal. Control is performed so that the current comparison target read signal becomes the AD conversion target to be held.
- the output signal S420 of the comparator 420 is “0”, for example, and the input switch 411 is controlled to be in an off state (non-connected state).
- the holding units 440-1 and 440-2 are connected in parallel to the output of the ADC 410 via the switches SW 440-1 and SW 440-2, and a reference level signal or a signal level signal AD-converted by the ADC 410 is selected. Retained, At least one of the holding units 440-1 and 440-2 is configured to be overwritten while the ADC 410 performs AD conversion processing. Note that the number of holding units is set to a number corresponding to a number smaller than 2M, which is twice the number of read signals to be combined. In this embodiment, the minimum two holding units 440-1 and 440-2 are arranged.
- the synthesis processing unit 450 generates output data OD by synthesizing the digital signals held in the plurality of holding units 440-1 and 440-2.
- the pixel signal PSD without interruption includes M reference levels Vrst and M signal levels Vsig in one pixel signal PSD, and the arrangement order is one output data OD [N , M], a plurality of reference levels Vrst [N, M] must be input first and then the signal level Vsig [N, M] is input.
- Vrst [N, 1] and Vrst [N, 2] are input to the uninterrupted pixel signal PSD [N], and then two signal levels Vsig [N, 1], Vsig [N, 2] are input.
- Vsig [N + 1,1] are input after two reference levels Vrst [N + 1,1] and Vrst [N + 1,2] are input.
- Vsig [N + 1, 2] are input.
- the reference levels Vrst [N, 1] and Vrst [N, 2] are input first.
- the comparator 420 is in a reset state without performing comparison processing, and its output is “1”.
- the input switch 411 of the ADC 410 is held in the on state (connected state).
- the first input reference level Vrst [N, 1] is transmitted to the input node [Y] via the input switch 411.
- the reference level Vrst appearing at the node [Y] is changed using the new reference level [V10] by turning on the switch SW11 of the clamp circuit 412 by the clamp signal CLP.
- the signal level Vsig [N] becomes a new signal level Vsig [N ′] based on the new reference level [V10].
- the difference between the reference level [V10] and the signal level Vsig is constant.
- the reference level Vrst [N] of the level V10 appearing at the input node [Y] is converted from an analog signal to a digital signal by the conversion unit 413 (first AD conversion (ADCNV) -1).
- the digital signal is written and held in the holding unit 440-1 via, for example, the switch SW440-1.
- the input switch 411 is held in the ON state, and the reference level Vrst [N, 2] is input to the input node [Y].
- the reference level Vrst [N, 2] that appears subsequently at the input node [Y] is converted from an analog signal to a digital signal by the conversion unit 413 (second AD conversion (ADCNV) -2).
- the digital signal is written and held in the holding unit 440-2 through the switch SW440-2, for example.
- the signal level Vsig [N, 1] is input to the input node [Y] while the input switch 411 is held in the on state.
- the signal level Vsig appears at the input node [Y] of the ADC 410
- V20] and the input switch 411 is controlled to be turned on / off by a signal S420 indicating the result.
- the input switch 411 When the input switch 411 is kept on, the signal level Vsig of the pixel signal PSD continues to appear at the input node [[Y]. When the input switch 411 is selected to be off, the input node [Y] Holds the state of the input node [Y] as it is.
- the input switch 411 remains in the ON state, and the signal level Vsig [N, 2] is input subsequently to the signal level Vsig [N, 1].
- the signal level Vsig [N, 2] is the target of the third AD conversion (ADCNV) -3.
- the output signal S420 of the comparator 420 is It becomes “0”, and the input switch 411 is controlled to be in the OFF state.
- the AD conversion result of the signal level Vsig [N + 1, 1] subsequent to the signal level Vsig [N + 1, 1] becomes unnecessary. That is, in the example of the pixel signal PSD [N + 1] in FIG. 12, the input switch 411 is turned off, the signal level Vsig [N + 1, 1] is continuously held at the input node [Y], and the signal level Vsig [N + 1, 1] is the target of the third AD conversion (ADCNV) -3.
- the AD conversion result of the signal level Vsig [N + 1, 2] is unnecessary, and therefore, the reference level Vrst [N + 1, 2] paired therewith is unnecessary.
- the digital reference level Vrst [N + 1, 2] already held in the holding unit 440-2 becomes unnecessary. Therefore, in the circuit of FIG. 11, the signal level Vsig [N + 1, 1] converted into a digital signal by the conversion unit 413 is overwritten and held in the holding unit 440-2 via the switch SW440-2, for example.
- the AD conversion operation that is conventionally required four times is performed three times, and the number of holding units 440 is basically changed from four to three.
- the number of holding units 440 is basically changed from four to three.
- other than the reference level that is paired with the signal level selected for the third AD conversion (ADCNV) -3 is not necessary.
- the number of holding units becomes two. That is, according to the circuit of FIG. 11 according to the present embodiment, the number of holding units is not increased, and a minimum of two can be reduced.
- the output data OD [*, 1], OD [*, 2], OD [*, 3], OS [*, 4] obtained by the uninterrupted pixel signal PSD are shown in FIG. Signals having different characteristics as shown in FIG.
- the output data OD [*, 2], OD [*, 3], OS [*, 4] are amplified according to the ratio, and one synthesized as shown in FIG.
- the final output data ODA is obtained.
- the coupling position (point) [X] becomes three points [X1], [X2], and [X3].
- [X1] indicates a connection point between the output data OD [*, 1] and OD [*, 2]
- [X2] indicates a connection point between the output data OD [*, 2] and OD [*, 3]
- [X3] indicates a connection point between the output data OD [*, 3] and OD [*, 4].
- the reference voltage [V20] is set to [V20 1], [V20 2], [V20 3].
- FIG. 14A shows a case where the signal level Vsig [N, 2] is selected as the target of the third AD conversion (ADCNV) -3.
- FIG. 14B shows the case where the signal level Vsig [N, 3] is selected as the target of the third AD conversion (ADCNV) -3.
- the comparator operations in the comparator 420 of the comparison / selection unit 430 are the signal levels Vsig [N, 1], Vsig [N, 2], Vsig [N, 3 ] Is performed.
- the example of FIG. 14A is a case where the signal level Vsig [N, 2] is selected as the target of the third AD conversion-3 as described above.
- the comparator 420 the first comparison operation is performed at the signal level Vsig [N, 1] and the reference voltage [V20_1].
- the AD conversion result of the signal level Vsig [N, 1] becomes unnecessary. That is, in the example of the pixel signal PSD [N] in FIG. 14A, the signal level Vsig [N, 2] is input subsequent to the signal level Vsig [N, 1] while the input switch 411 remains on.
- the second comparison operation is performed at the signal level Vsig [N, 2] and the reference voltage [V20_2].
- the signal level Vsig [N, 2] is lower than the reference voltage [V20_2]
- all subsequent signal processing is unnecessary. That is, the input switch 411 is held in the OFF state, the signal level Vsig [N, 2] is held at the input node [Y] until the third AD conversion-3, and the conversion operation is performed by the conversion unit 413.
- the holding unit 440-1 temporarily holds the reference level Vrst [N, 1], and the holding unit 440-2 holds the reference level Vrst [N, 2]).
- the signal level Vsig [N, 2] is selected as the target of the third AD conversion-3 by the second comparison operation, the reference level Vrst [N, 1] held in the holding unit 440-1 is unnecessary. become.
- the holding unit 440-1 is overwritten with the signal level Vsig [N, 2] by the third AD conversion-3.
- the example of FIG. 14B is a case where the signal level Vsig [N, 3] is selected as the target of the third AD conversion-3 as described above.
- the signal level Vsig is higher than the reference voltages [V20_1] and [V20_2] in the first and second comparison operations, and thus the input switch 411 is held in the on state.
- the third comparison operation is performed with the signal level Vsig [N, 3] and the reference voltage [V20_3].
- the signal level Vsig [N, 3] is lower than the reference voltage [V20_3]
- all subsequent signal processing becomes unnecessary. That is, the input switch 411 is held in the OFF state, the signal level Vsig [N, 3] is held at the input node [Y] until the third AD conversion-3, and the conversion operation is performed by the conversion unit 413.
- the holding unit 440-2 is overwritten with the signal level Vsig [N, 3] by the third AD conversion-3.
- the number of holding units remains two. That is, there is no increase in the holding portion.
- the reading unit 80 includes the comparator 420 that constitutes the ADC 410 and the comparison / selection unit 430.
- the comparison selection unit 430 compares the signal level of the input node [Y] with a preset reference voltage [V20] when the signal level signal Vsig appears at the force node [Y], and the comparison result
- the input switch 411 is switched on and off so as to select the input state of the readout signal read from the pixel to the input node.
- the comparison / selection unit 430 receives the subsequent read signal continuously from the read signal to be compared to the input node [Y].
- the state to be input to is selected, and control is performed so that the subsequent read signal becomes the AD conversion target to be held.
- the comparison selection unit 430 selects a state in which the subsequent readout signal is not input to the input node [Y] as the readout signal to be compared. Then, control is performed so that the current comparison target read signal becomes the AD conversion target to be held.
- the first embodiment it is possible to cope with M uninterrupted pixel signals with 2 or more holding units less than 2M, and to perform AD conversion operation less than 2M times. It is possible to suppress an increase in circuit area and an increase in processing time. Further, the comparison operation using the reference voltage [V20] can prevent the boundary from being emphasized by its own analog noise, and prevents the deterioration of the AD conversion accuracy while suppressing an increase in circuit area and an increase in processing time. It becomes possible.
- the first embodiment it is possible to prevent the deterioration of the AD conversion accuracy while suppressing an increase in circuit area and an increase in processing time, and it is possible to realize a wide dynamic range. It becomes possible to realize image quality.
- FIG. 15 is a diagram illustrating a configuration example of a clamp circuit disposed in an input unit of an ADC that forms a column output readout system of a pixel unit of a solid-state imaging device according to the second embodiment of the present invention.
- FIG. 15 shows an example in which the input stage of the clamp circuit is extracted, and the clamp circuit 412B is not simplified and is shown as an example including an amplifier AMP11, capacitors C11 and C12, and a switch SW11.
- FIG. 16 is a diagram illustrating an operation example of the circuit of FIG.
- the reading system of the second embodiment is different from the reading system of the first embodiment as follows.
- the readout system of the second embodiment basically has two clamp circuits.
- an example in which no comparison / selection unit is provided is shown.
- the amplifier AMP11, the capacitor C12, and the switch SW11 are shared to form a clamp unit 412A, and only the path selection switches 462-1 and 462-2 and the capacitors C11-1 and C11-2 are added. Is provided. As a result, an increase in circuit area is suppressed.
- a path selection unit 460 is disposed on the input side of the clamp unit 412A of the clamp circuit 412B.
- the path selection unit 460 selects a plurality of signal paths 461-1 [A] and 461-2 [B] through which each of a plurality (2 in this example) of readout signals to be combined read from the pixel PXL is individually transmitted.
- a read signal transmitted through any one of the signal paths 461-1 and 461-2 is supplied to the clamp unit 412A according to the path selection signal.
- the route selection unit 460 is disposed in each of the signal routes 461-1 [A] and 461-2 [B], and the connection state of the signal routes 461-1 and 461-2 according to the corresponding route selection signals WA and WB.
- a plurality of route selection switches 462-1 and 462-2 for switching the non-connected state are included.
- a capacitor C11-1 is arranged in the signal path 461-1, and a capacitor C11-2 is arranged in the signal path 461-2.
- the clamp circuit 412B in FIG. 15 is connected to the input node [Y] through the signal path 461-1 [A] or 461-2 [B] by the path selection signals WA and WB.
- the two reference levels are held through the signal path 461-1 [A] or 461-2 [B], respectively, so that AD conversion can be performed with high accuracy even for a pixel signal without interruption.
- FIG. 17 is a diagram illustrating a configuration example of a clamp circuit and a comparison / selection unit arranged in an input unit of an ADC forming a column output readout system of a pixel unit of a solid-state imaging device according to the third embodiment of the present invention. is there.
- FIG. 17 shows an example in which the input stage of the clamp circuit is extracted, and the clamp circuit 412C shows the clamp unit 412A in a simplified manner as in FIG.
- FIG. 18 is a diagram illustrating an operation example of the circuit of FIG.
- the read system of the third embodiment is different from the read system of the second embodiment as follows.
- the comparison / selection unit 430 described in the first embodiment is arranged, and the output signal S420 of the comparator 420 of the comparison / selection unit 430 and the path selection signals WA and WB are obtained.
- the path selection switches 462-1 and 462-2 are switched on and off (connected state and non-connected state).
- the path selection switch and the input switch are shared, and the shared switches 462-1 and 462-2 indicate the comparison result of the comparator and the state of the corresponding path selection signals WA and WB.
- the connection state and the non-connection state are switched in association.
- the route selection signals WA and WB necessary for route selection are ANDed with the outputs of the comparators 420 in AND gates 470-1 and 470-2, and AND gates 470-1 and 470-2.
- the path selection switches 462-1 and 462-2 that also have the function of the input switch are controlled by the output of.
- FIG. 19 illustrates an ADC forming a column output readout system of a pixel unit of a solid-state imaging device according to the fourth embodiment of the present invention, a comparison / selection unit, a holding unit arranged on the output side of the ADC, and a combining process It is a figure which shows the structural example of a part.
- the difference between the read system of the fourth embodiment and the read system of the first embodiment is that the level of the reference voltage [V20] can be changed with time.
- the simplest method for combining a plurality of read signals is the first method shown in FIG.
- the combination point [X] of a plurality of read signals is determined by the reference voltage [V20]. That is, the state in which the reference voltage [V20] changes with time is equivalent to changing the coupling point [X], and the emphasis on the boundary can be relaxed.
- FIG. 19 shows a configuration example for changing the reference voltage [V20] with time.
- voltage waveforms [V20_A], [V20_B], and [V20_C] can be selected through the switches 480-1, 480-2, and 480-3.
- [V20_A] is a sine wave
- [V20_B] is a square wave having a plurality of levels
- [V20_C] is a noise waveform. Each waveform is centered on the level of the reference voltage [V20] originally required.
- the boundary due to analog noise can be not emphasized, and as a result, the boundary is not emphasized.
- Complex signal processing becomes unnecessary, and it becomes possible to suppress an increase in circuit area and an increase in processing time.
- the solid-state imaging device 10 described above can be applied as an imaging device to an electronic apparatus such as a digital camera, a video camera, a portable terminal, a monitoring camera, or a medical endoscope camera.
- FIG. 20 is a diagram illustrating an example of a configuration of an electronic device equipped with a camera system to which the solid-state imaging device according to the embodiment of the present invention is applied.
- the electronic apparatus 100 includes a CMOS image sensor 110 to which the solid-state imaging device 10 according to the present embodiment can be applied.
- the electronic device 100 further includes an optical system (lens or the like) 120 that guides incident light (forms a subject image) to the pixel region of the CMOS image sensor 110.
- the electronic device 100 includes a signal processing circuit (PRC) 130 that processes an output signal of the CMOS image sensor 110.
- PRC signal processing circuit
- the signal processing circuit 130 performs predetermined signal processing on the output signal of the CMOS image sensor 110.
- the image signal processed by the signal processing circuit 130 can be displayed as a moving image on a monitor composed of a liquid crystal display or the like, or output to a printer, or directly recorded on a recording medium such as a memory card. Is possible.
- CMOS image sensor 110 As described above, by mounting the above-described solid-state imaging device 10 as the CMOS image sensor 110, it is possible to provide a high-performance, small, and low-cost camera system.
- Electronic devices such as surveillance cameras and medical endoscope cameras are used for applications where the camera installation requirements include restrictions such as mounting size, number of connectable cables, cable length, and installation height. Can be realized.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
A solid-state image capture device 10 capable of expanding dynamic range by combining a plurality of readout signals. A column signal processing unit includes an ADC 410 and a comparison/selection unit 430 which compares the level of an input node [Y] to which a readout signal read from a pixel is input to a pre-set reference voltage [V20], and selects an input state of the readout signal, read from the pixel, into the input node [Y] in accordance with the result of the comparison. This configuration makes it possible to prevent a decrease in AD conversion accuracy while suppressing an increase in circuit area or processing time, and to also achieve a wide dynamic range and hence high image quality.
Description
本発明は、固体撮像装置、固体撮像装置の駆動方法、および電子機器に関するものである。
The present invention relates to a solid-state imaging device, a driving method for the solid-state imaging device, and an electronic apparatus.
光を検出して電荷を発生させる光電変換素子を用いた固体撮像装置(イメージセンサ)として、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサが実用に供されている。
CMOSイメージセンサは、デジタルカメラ、ビデオカメラ、監視カメラ、医療用内視鏡、パーソナルコンピュータ(PC)、携帯電話等の携帯端末装置(モバイル機器)等の各種電子機器の一部として広く適用されている。 A CMOS (Complementary Metal Oxide Semiconductor) image sensor has been put to practical use as a solid-state imaging device (image sensor) using a photoelectric conversion element that detects light and generates charges.
CMOS image sensors are widely applied as a part of various electronic devices such as digital cameras, video cameras, surveillance cameras, medical endoscopes, personal computers (PCs), and mobile terminal devices (mobile devices) such as mobile phones. Yes.
CMOSイメージセンサは、デジタルカメラ、ビデオカメラ、監視カメラ、医療用内視鏡、パーソナルコンピュータ(PC)、携帯電話等の携帯端末装置(モバイル機器)等の各種電子機器の一部として広く適用されている。 A CMOS (Complementary Metal Oxide Semiconductor) image sensor has been put to practical use as a solid-state imaging device (image sensor) using a photoelectric conversion element that detects light and generates charges.
CMOS image sensors are widely applied as a part of various electronic devices such as digital cameras, video cameras, surveillance cameras, medical endoscopes, personal computers (PCs), and mobile terminal devices (mobile devices) such as mobile phones. Yes.
CMOSイメージセンサは、画素毎にフォトダイオード(光電変換素子)および浮遊拡散層(FD:Floating Diffusion、フローティングディフュージョン)を有するFDアンプを持ち合わせており、その読み出しは、画素アレイの中のある一行を選択し、それらを同時に列(カラム)方向へと読み出すような列並列出力型が主流である。
The CMOS image sensor has an FD amplifier having a photodiode (photoelectric conversion element) and a floating diffusion layer (FD: Floating Diffusion) for each pixel, and the readout selects one row in the pixel array. However, a column parallel output type in which these are simultaneously read in the column direction is the mainstream.
ところで、固体撮像装置(CMOSイメージセンサ)の画素の構成としては、たとえば一つのフォトダイオード(光電変換素子)に対して、転送素子としての転送トランジスタ、リセット素子としてのリセットトランジスタ、ソースフォロワ素子としてのソースフォロワトランジスタ、および選択素子としての選択トランジスタをそれぞれ一つずつ有する4トランジスタ(4Tr)構成の画素を例示することができる。
By the way, as a pixel configuration of the solid-state imaging device (CMOS image sensor), for example, for one photodiode (photoelectric conversion element), a transfer transistor as a transfer element, a reset transistor as a reset element, and a source follower element A pixel having a four-transistor (4Tr) configuration that includes one source follower transistor and one selection transistor as a selection element can be exemplified.
転送トランジスタは、所定の転送期間に選択されて導通状態となり、フォトダイオードで光電変換され蓄積された電荷(電子)をフローティングディフュージョンFDに転送する。
リセットトランジスタは、所定のリセット期間に選択されて導通状態となり、フローティングディフュージョンFDを電源線の電位にリセットする。
選択トランジスタは、読み出しスキャン時に選択されて導通状態となる。これにより、ソースフォロワトランジスタはフローティングディフュージョンFDの電荷を電荷量(電位)に応じた電圧信号に変換した列出力の読み出し信号を垂直信号線に出力する。 The transfer transistor is selected during a predetermined transfer period and becomes conductive, and transfers the charges (electrons) photoelectrically converted and accumulated by the photodiode to the floating diffusion FD.
The reset transistor is selected during a predetermined reset period and becomes conductive, and resets the floating diffusion FD to the potential of the power supply line.
The selection transistor is selected during the reading scan and becomes conductive. As a result, the source follower transistor outputs a column output read signal obtained by converting the charge of the floating diffusion FD into a voltage signal corresponding to the charge amount (potential) to the vertical signal line.
リセットトランジスタは、所定のリセット期間に選択されて導通状態となり、フローティングディフュージョンFDを電源線の電位にリセットする。
選択トランジスタは、読み出しスキャン時に選択されて導通状態となる。これにより、ソースフォロワトランジスタはフローティングディフュージョンFDの電荷を電荷量(電位)に応じた電圧信号に変換した列出力の読み出し信号を垂直信号線に出力する。 The transfer transistor is selected during a predetermined transfer period and becomes conductive, and transfers the charges (electrons) photoelectrically converted and accumulated by the photodiode to the floating diffusion FD.
The reset transistor is selected during a predetermined reset period and becomes conductive, and resets the floating diffusion FD to the potential of the power supply line.
The selection transistor is selected during the reading scan and becomes conductive. As a result, the source follower transistor outputs a column output read signal obtained by converting the charge of the floating diffusion FD into a voltage signal corresponding to the charge amount (potential) to the vertical signal line.
たとえば、読み出しスキャン期間において、リセット期間にフローティングディフュージョンFDがたとえば電源線の電位(基準電位)にリセットされた後、ソースフォロワトランジスタによりフローティングディフュージョンFDの電荷が電荷量(電位)に応じた電圧信号に変換されて、基準レベルの読み出しリセット電圧(基準レベルの信号)Vrstとして垂直信号線に出力される。
続いて、所定の転送期間に、フォトダイオードで光電変換され蓄積された電荷(電子)がフローティングディフュージョンFDに転送される。そして、ソースフォロワトランジスタによりフローティングディフュージョンFDの電荷が電荷量(電位)に応じた電圧信号に変換されて、信号レベルの読み出し信号電圧(信号レベルの信号)Vsigとして垂直信号線に出力される。
画素の出力信号は差分信号(Vsig-Vrst)として処理される。 For example, in the read scan period, after the floating diffusion FD is reset to, for example, the potential (reference potential) of the power supply line in the reset period, the charge of the floating diffusion FD is changed to a voltage signal corresponding to the amount of charge (potential) by the source follower transistor. The converted signal is output to the vertical signal line as a reference level read reset voltage (reference level signal) Vrst.
Subsequently, in a predetermined transfer period, charges (electrons) photoelectrically converted and accumulated by the photodiode are transferred to the floating diffusion FD. Then, the charge of the floating diffusion FD is converted into a voltage signal corresponding to the amount of electric charge (potential) by the source follower transistor, and is output as a read signal voltage (signal level signal) Vsig to the vertical signal line.
The output signal of the pixel is processed as a difference signal (Vsig−Vrst).
続いて、所定の転送期間に、フォトダイオードで光電変換され蓄積された電荷(電子)がフローティングディフュージョンFDに転送される。そして、ソースフォロワトランジスタによりフローティングディフュージョンFDの電荷が電荷量(電位)に応じた電圧信号に変換されて、信号レベルの読み出し信号電圧(信号レベルの信号)Vsigとして垂直信号線に出力される。
画素の出力信号は差分信号(Vsig-Vrst)として処理される。 For example, in the read scan period, after the floating diffusion FD is reset to, for example, the potential (reference potential) of the power supply line in the reset period, the charge of the floating diffusion FD is changed to a voltage signal corresponding to the amount of charge (potential) by the source follower transistor. The converted signal is output to the vertical signal line as a reference level read reset voltage (reference level signal) Vrst.
Subsequently, in a predetermined transfer period, charges (electrons) photoelectrically converted and accumulated by the photodiode are transferred to the floating diffusion FD. Then, the charge of the floating diffusion FD is converted into a voltage signal corresponding to the amount of electric charge (potential) by the source follower transistor, and is output as a read signal voltage (signal level signal) Vsig to the vertical signal line.
The output signal of the pixel is processed as a difference signal (Vsig−Vrst).
このように、通常の画素読み出し信号(以下、画素信号という場合もある)PSは、1つの基準レベルの読み出しリセット電圧Vrstと1つの信号レベルの読み出し信号電圧Vsigにより形成される。
Thus, a normal pixel readout signal (hereinafter sometimes referred to as a pixel signal) PS is formed by one reference level readout reset voltage Vrst and one signal level readout signal voltage Vsig.
ところで、特性向上のため、高ダイナミックレンジ(HDR:High Dynamic Range)を持つ高画質の固体撮像装置(CMOSイメージセンサ)を実現する方法が種々提案されている。
Incidentally, various methods for realizing a high-quality solid-state imaging device (CMOS image sensor) having a high dynamic range (HDR: High Dynamic Range) have been proposed for improving characteristics.
固体撮像装置において、ダイナミックレンジを高める(拡大させる)方法としては、たとえば、イメージセンサの同一の画素から蓄積時間の異なる2種類の信号を読み出し、この2種類の信号を組み合わせて(合成して)、ダイナミックレンジを拡大させる方法や、高感度の画素で得た低照度領域の信号と、低感度の画素で得た高照度領域の信号を組み合わせて(合成して)ダイナミックレンジを拡大させる方法などが知られている。
In the solid-state imaging device, as a method for increasing (enlarging) the dynamic range, for example, two types of signals having different accumulation times are read from the same pixel of the image sensor, and these two types of signals are combined (combined). , A method for expanding the dynamic range, a method for expanding the dynamic range by combining (combining) signals in the low illuminance area obtained with high sensitivity pixels and signals in the high illuminance area obtained with low sensitivity pixels, etc. It has been known.
たとえば特許文献1には、短い露光時間による高照度側に対応した撮像と長い露光時間による低照度に対応した撮像の異なる2回以上の露光時間に分割する高ダイナミックレンジ化技術が開示されている。
For example, Patent Document 1 discloses a high dynamic range technology that divides into two or more different exposure times for imaging corresponding to a high illuminance side with a short exposure time and imaging corresponding to a low illuminance with a long exposure time. .
この高ダイナミックレンジ化技術を採用した場合の画素読み出し信号(画素信号)PSDは、複数M(たとえばM=2)の基準レベルの読み出しリセット電圧(基準レベルの信号)Vrstと複数M(M=2)の信号レベルの読み出し信号電圧(信号レベルの信号)Vsigにより形成される。
この場合の画素読み出し信号(画素信号)PSDは、いわゆる途切れのない読み出し信号として処理される。 A pixel readout signal (pixel signal) PSD when this high dynamic range technology is adopted is a plurality of M (for example, M = 2) reference level readout reset voltages (reference level signals) Vrst and a plurality of M (M = 2). ) Signal level read signal voltage (signal level signal) Vsig.
The pixel readout signal (pixel signal) PSD in this case is processed as a so-called uninterrupted readout signal.
この場合の画素読み出し信号(画素信号)PSDは、いわゆる途切れのない読み出し信号として処理される。 A pixel readout signal (pixel signal) PSD when this high dynamic range technology is adopted is a plurality of M (for example, M = 2) reference level readout reset voltages (reference level signals) Vrst and a plurality of M (M = 2). ) Signal level read signal voltage (signal level signal) Vsig.
The pixel readout signal (pixel signal) PSD in this case is processed as a so-called uninterrupted readout signal.
図1(A)および(B)は、固体撮像装置(CMOSイメージセンサ)の通常の画素読み出し信号(画素信号)と高ダイナミックレンジ化技術を採用した場合の途切れのない画素読み出し信号(途切れのない画素信号)の一例を示す図である。
図1(A)が通常の画素読み出し信号(画素信号)PSの一例を示し、図1(B)が途切れのない画素読み出し信号(途切れのない画素信号)PSDの一例を示している。 1A and 1B show a normal pixel readout signal (pixel signal) of a solid-state imaging device (CMOS image sensor) and an uninterrupted pixel readout signal when a high dynamic range technology is adopted (no interruption). It is a figure which shows an example of a pixel signal.
FIG. 1A shows an example of a normal pixel readout signal (pixel signal) PS, and FIG. 1B shows an example of a pixel readout signal without interruption (pixel signal without interruption) PSD.
図1(A)が通常の画素読み出し信号(画素信号)PSの一例を示し、図1(B)が途切れのない画素読み出し信号(途切れのない画素信号)PSDの一例を示している。 1A and 1B show a normal pixel readout signal (pixel signal) of a solid-state imaging device (CMOS image sensor) and an uninterrupted pixel readout signal when a high dynamic range technology is adopted (no interruption). It is a figure which shows an example of a pixel signal.
FIG. 1A shows an example of a normal pixel readout signal (pixel signal) PS, and FIG. 1B shows an example of a pixel readout signal without interruption (pixel signal without interruption) PSD.
通常の画素信号PS[N]は、図1(A)に示すように、1つの基準レベルの信号(以下、単に基準レベルという場合もある)Vrst[N]と,1つの信号レベルの信号(以下、単に信号レベルという場合もある)Vsig[N]により形成される。
すなわち、1つの画素信号PS[N]内には1つの基準レベルVrst[N]と1つの信号レベルVsig[N]が含まれる。
この場合の出力データOD[N]は、基準レベルVrst[N]-信号レベルVsig[N]となる。
同様に、1つの画素信号PS[N+1]内には1つの基準レベルVrst[N+1]と1つの信号レベルVsig[N+1]が含まれる。
この場合の出力データOD[N+1]は、基準レベルVrst[N+1]-信号レベルVsig[N+1]となる。 As shown in FIG. 1A, the normal pixel signal PS [N] includes one reference level signal (hereinafter also simply referred to as a reference level) Vrst [N] and one signal level signal ( Hereinafter, it may be simply referred to as a signal level) Vsig [N].
That is, one reference level Vrst [N] and one signal level Vsig [N] are included in one pixel signal PS [N].
The output data OD [N] in this case is the reference level Vrst [N] −the signal level Vsig [N].
Similarly, one reference level Vrst [N + 1] and one signal level Vsig [N + 1] are included in one pixel signal PS [N + 1].
In this case, the output data OD [N + 1] becomes the reference level Vrst [N + 1] −the signal level Vsig [N + 1].
すなわち、1つの画素信号PS[N]内には1つの基準レベルVrst[N]と1つの信号レベルVsig[N]が含まれる。
この場合の出力データOD[N]は、基準レベルVrst[N]-信号レベルVsig[N]となる。
同様に、1つの画素信号PS[N+1]内には1つの基準レベルVrst[N+1]と1つの信号レベルVsig[N+1]が含まれる。
この場合の出力データOD[N+1]は、基準レベルVrst[N+1]-信号レベルVsig[N+1]となる。 As shown in FIG. 1A, the normal pixel signal PS [N] includes one reference level signal (hereinafter also simply referred to as a reference level) Vrst [N] and one signal level signal ( Hereinafter, it may be simply referred to as a signal level) Vsig [N].
That is, one reference level Vrst [N] and one signal level Vsig [N] are included in one pixel signal PS [N].
The output data OD [N] in this case is the reference level Vrst [N] −the signal level Vsig [N].
Similarly, one reference level Vrst [N + 1] and one signal level Vsig [N + 1] are included in one pixel signal PS [N + 1].
In this case, the output data OD [N + 1] becomes the reference level Vrst [N + 1] −the signal level Vsig [N + 1].
途切れのない画素信号PSD[N]は、図1(B)に示すように、1つの画素信号PSD[N]内にM個(本例ではM=2)の基準レベルVrst[N,1]、Vrst[N,2]とM個の信号レベルVsig[N,1]、Vsig[N,2]により形成される。
すなわち、1つの途切れのない画素信号PSD[N]内にはM個の基準レベルVrst[N,1],Vrst[N,2]とM個の信号レベルVsig[N,1],Vsig[N,2]が含まれる。
この場合の出力データOD[N,1]は、基準レベルVrst[N,1]-信号レベルVsig[N,1]となり、出力データOD[N,2]は、基準レベルVrst[N,2]-信号レベルVsig[N,2]となる。
同様に、1つの途切れのない画素信号PSD[N+1]内にはM個の基準レベルVrst[N+1,1],Vrst[N+1,2]とM個の信号レベルVsig[N+1,1],Vsig[N+1,2]が含まれる。
この場合の出力データOD[N+1,1]は、基準レベルVrst[N+1,1]-信号レベルVsig[N+1,1]となり、出力データOD[N+1,2]は、基準レベルVrst[N+1,2]-信号レベルVsig[N+1,2]となる。 As shown in FIG. 1B, the uninterrupted pixel signal PSD [N] includes M (M = 2 in this example) reference levels Vrst [N, 1] in one pixel signal PSD [N]. , Vrst [N, 2] and M signal levels Vsig [N, 1] and Vsig [N, 2].
That is, in one uninterrupted pixel signal PSD [N], M reference levels Vrst [N, 1], Vrst [N, 2] and M signal levels Vsig [N, 1], Vsig [N , 2].
In this case, the output data OD [N, 1] is the reference level Vrst [N, 1] −the signal level Vsig [N, 1], and the output data OD [N, 2] is the reference level Vrst [N, 2]. The signal level Vsig [N, 2].
Similarly, in one uninterrupted pixel signal PSD [N + 1], M reference levels Vrst [N + 1, 1], Vrst [N + 1, 2] and M signal levels Vsig [N + 1, 1], Vsig [ N + 1, 2].
In this case, the output data OD [N + 1,1] is the reference level Vrst [N + 1,1] −the signal level Vsig [N + 1,1], and the output data OD [N + 1,2] is the reference level Vrst [N + 1,2]. The signal level is Vsig [N + 1, 2].
すなわち、1つの途切れのない画素信号PSD[N]内にはM個の基準レベルVrst[N,1],Vrst[N,2]とM個の信号レベルVsig[N,1],Vsig[N,2]が含まれる。
この場合の出力データOD[N,1]は、基準レベルVrst[N,1]-信号レベルVsig[N,1]となり、出力データOD[N,2]は、基準レベルVrst[N,2]-信号レベルVsig[N,2]となる。
同様に、1つの途切れのない画素信号PSD[N+1]内にはM個の基準レベルVrst[N+1,1],Vrst[N+1,2]とM個の信号レベルVsig[N+1,1],Vsig[N+1,2]が含まれる。
この場合の出力データOD[N+1,1]は、基準レベルVrst[N+1,1]-信号レベルVsig[N+1,1]となり、出力データOD[N+1,2]は、基準レベルVrst[N+1,2]-信号レベルVsig[N+1,2]となる。 As shown in FIG. 1B, the uninterrupted pixel signal PSD [N] includes M (M = 2 in this example) reference levels Vrst [N, 1] in one pixel signal PSD [N]. , Vrst [N, 2] and M signal levels Vsig [N, 1] and Vsig [N, 2].
That is, in one uninterrupted pixel signal PSD [N], M reference levels Vrst [N, 1], Vrst [N, 2] and M signal levels Vsig [N, 1], Vsig [N , 2].
In this case, the output data OD [N, 1] is the reference level Vrst [N, 1] −the signal level Vsig [N, 1], and the output data OD [N, 2] is the reference level Vrst [N, 2]. The signal level Vsig [N, 2].
Similarly, in one uninterrupted pixel signal PSD [N + 1], M reference levels Vrst [N + 1, 1], Vrst [N + 1, 2] and M signal levels Vsig [N + 1, 1], Vsig [ N + 1, 2].
In this case, the output data OD [N + 1,1] is the reference level Vrst [N + 1,1] −the signal level Vsig [N + 1,1], and the output data OD [N + 1,2] is the reference level Vrst [N + 1,2]. The signal level is Vsig [N + 1, 2].
このように、途切れのない画素信号PSDは、1つの画素信号PSD内にM個の基準レベルVrstとM個の信号レベルVsigが含まれており、その配列順は、1つの出力データOD[N,M]を構成する基準レベルVrst[N,M]が必ず先に入力されてから信号レベルVsig[N,M]が入力されることを制約とした上で複数存在する。
図1(B)は、M=2かつ、その中で取りうる配列の1つを示したものである。 As described above, the pixel signal PSD without interruption includes M reference levels Vrst and M signal levels Vsig in one pixel signal PSD, and the arrangement order is one output data OD [N , M], a plurality of reference levels Vrst [N, M] must be input first and then the signal level Vsig [N, M] is input.
FIG. 1B shows one of M = 2 and one of the possible arrangements.
図1(B)は、M=2かつ、その中で取りうる配列の1つを示したものである。 As described above, the pixel signal PSD without interruption includes M reference levels Vrst and M signal levels Vsig in one pixel signal PSD, and the arrangement order is one output data OD [N , M], a plurality of reference levels Vrst [N, M] must be input first and then the signal level Vsig [N, M] is input.
FIG. 1B shows one of M = 2 and one of the possible arrangements.
図2(A)~(D)は、固体撮像装置において、ダイナミックレンジを高める(拡大させる)方法であって、合成する読み出し信号の数Mが2(M=2)の場合の途切れのない画素信号の合成処理方法を説明するための図である。
FIGS. 2A to 2D show a method for increasing (enlarging) the dynamic range in a solid-state imaging device, and there are no discontinuous pixels when the number M of readout signals to be combined is 2 (M = 2). It is a figure for demonstrating the synthetic | combination processing method of a signal.
途切れのない画素信号PSDは同一の光量に対してM個の信号が異なる増幅率Kを持ちうる。
図2(A)~(D)は、M=2、かつ、増幅率の比K(M=1)/K(M=2)=4とした例である。 The uninterrupted pixel signal PSD can have different amplification factors K for M signals for the same light quantity.
2A to 2D are examples in which M = 2 and the amplification factor ratio K (M = 1) / K (M = 2) = 4.
図2(A)~(D)は、M=2、かつ、増幅率の比K(M=1)/K(M=2)=4とした例である。 The uninterrupted pixel signal PSD can have different amplification factors K for M signals for the same light quantity.
2A to 2D are examples in which M = 2 and the amplification factor ratio K (M = 1) / K (M = 2) = 4.
図1(B)に示す途切れのない画素信号PSDにより得られた出力データOD[*,1]とOD[*,2]は図2(A)に示すような傾きの異なる特性の信号となる。
合成処理においては、出力データOD[*,2]をその比に合わせて増幅し、図2(B)に示すように、一つの合成された最終的な出力データODAを得る。 The output data OD [*, 1] and OD [*, 2] obtained from the uninterrupted pixel signal PSD shown in FIG. 1B are signals having different characteristics as shown in FIG. .
In the synthesizing process, the output data OD [*, 2] is amplified according to the ratio to obtain one synthesized final output data ODA as shown in FIG.
合成処理においては、出力データOD[*,2]をその比に合わせて増幅し、図2(B)に示すように、一つの合成された最終的な出力データODAを得る。 The output data OD [*, 1] and OD [*, 2] obtained from the uninterrupted pixel signal PSD shown in FIG. 1B are signals having different characteristics as shown in FIG. .
In the synthesizing process, the output data OD [*, 2] is amplified according to the ratio to obtain one synthesized final output data ODA as shown in FIG.
その合成方法は、図2(C)に示す切り替えによる第1の方法、または、図2(D)に示す平均処理のよる第2の方法が採用されて、最終出力データODAとなる。
As the synthesis method, the first method by switching shown in FIG. 2C or the second method by averaging shown in FIG. 2D is adopted, and the final output data ODA is obtained.
このため従来、第1の方法では誤差が顕著に境目(結合位置(点))[X]を強調し、それを緩和するための第2の方法での演算は必ず2つの出力データOD[*,1]とOD[*,2]を必要とし、さらに信号処理を複雑にする。
For this reason, conventionally, in the first method, the error significantly emphasizes the boundary (joining position (point)) [X], and the operation in the second method for relaxing the error always requires two output data OD [*]. , 1] and OD [*, 2], which further complicates signal processing.
以下に、画素読み出し信号(画素信号)を処理する回路系において、個体バラツキ等を低減(削除)する構成について説明する。
ここでは、通常の画素信号について出力データを生成する構成に関連付けて説明する。 Hereinafter, a configuration for reducing (deleting) individual variations and the like in a circuit system that processes pixel readout signals (pixel signals) will be described.
Here, a description will be given in association with a configuration for generating output data for a normal pixel signal.
ここでは、通常の画素信号について出力データを生成する構成に関連付けて説明する。 Hereinafter, a configuration for reducing (deleting) individual variations and the like in a circuit system that processes pixel readout signals (pixel signals) will be described.
Here, a description will be given in association with a configuration for generating output data for a normal pixel signal.
図3は、通常の画素読み出し信号(画素信号)の処理系における新たな基準レベルの設定機能を含む読み出し回路の一例を示す図である。
図3において、同一列の画素PXL(N)、PXL(N+1)が共通の読み出し用の信号線LSに接続されている。そして、信号線LSと図示しないアナログデジタコンバータ(ADC)の入力ノード[Y]との間の入力段に、新たな基準レベルを設定するためのクランプ回路1が配置されている。
クランプ回路1は、増幅器AMP1、容量C1、C2、およびスイッチSW1を含んで構成されている。 FIG. 3 is a diagram illustrating an example of a readout circuit including a new reference level setting function in a normal pixel readout signal (pixel signal) processing system.
In FIG. 3, pixels PXL (N) and PXL (N + 1) in the same column are connected to a common readout signal line LS. Aclamp circuit 1 for setting a new reference level is disposed at an input stage between the signal line LS and an input node [Y] of an analog digital converter (ADC) (not shown).
Theclamp circuit 1 includes an amplifier AMP1, capacitors C1 and C2, and a switch SW1.
図3において、同一列の画素PXL(N)、PXL(N+1)が共通の読み出し用の信号線LSに接続されている。そして、信号線LSと図示しないアナログデジタコンバータ(ADC)の入力ノード[Y]との間の入力段に、新たな基準レベルを設定するためのクランプ回路1が配置されている。
クランプ回路1は、増幅器AMP1、容量C1、C2、およびスイッチSW1を含んで構成されている。 FIG. 3 is a diagram illustrating an example of a readout circuit including a new reference level setting function in a normal pixel readout signal (pixel signal) processing system.
In FIG. 3, pixels PXL (N) and PXL (N + 1) in the same column are connected to a common readout signal line LS. A
The
たとえば、図1(A)に示す通常の画素読み出し信号(画素信号)PSの処理において、基準レベルVrst[N]と基準レベルVrst[N+1]は画素PXLの個体バラツキ等で異なるレベルを持ちうる。
そこで、図3の例では、読み出し回路内部において、クランプ回路1による新たな基準レベル[V1]を用いて画素の個体バラツキを削除する。 For example, in the processing of the normal pixel readout signal (pixel signal) PS shown in FIG. 1A, the reference level Vrst [N] and the reference level Vrst [N + 1] may have different levels due to individual variations of the pixel PXL.
Therefore, in the example of FIG. 3, individual variations of pixels are deleted using a new reference level [V1] by theclamp circuit 1 in the readout circuit.
そこで、図3の例では、読み出し回路内部において、クランプ回路1による新たな基準レベル[V1]を用いて画素の個体バラツキを削除する。 For example, in the processing of the normal pixel readout signal (pixel signal) PS shown in FIG. 1A, the reference level Vrst [N] and the reference level Vrst [N + 1] may have different levels due to individual variations of the pixel PXL.
Therefore, in the example of FIG. 3, individual variations of pixels are deleted using a new reference level [V1] by the
図4(A)および(B)は、クランプ回路1による新たな基準レベルVrst[V1]を適用する場合の通常の画素読み出し信号(画素信号)の一例を示す図である。
図4(A)は図3のクランプ回路を容量CとスイッチSW1に簡略化して示し、図4(B)は通常の画素読み出し信号(画素信号)の一例を示している。 4A and 4B are diagrams illustrating an example of a normal pixel readout signal (pixel signal) when a new reference level Vrst [V1] by theclamp circuit 1 is applied.
4A shows the clamp circuit of FIG. 3 in a simplified manner with a capacitor C and a switch SW1, and FIG. 4B shows an example of a normal pixel readout signal (pixel signal).
図4(A)は図3のクランプ回路を容量CとスイッチSW1に簡略化して示し、図4(B)は通常の画素読み出し信号(画素信号)の一例を示している。 4A and 4B are diagrams illustrating an example of a normal pixel readout signal (pixel signal) when a new reference level Vrst [V1] by the
4A shows the clamp circuit of FIG. 3 in a simplified manner with a capacitor C and a switch SW1, and FIG. 4B shows an example of a normal pixel readout signal (pixel signal).
図4(A)および(B)に示すように、クランプ回路1においてクランプ信号CLPによりスイッチSW1をオンさせることにより、新たな基準レベル[V1]を用いて、ノード[Y]に現れる基準レベルVrstを変更する。
このとき信号レベルVsig[N]は、新たな基準レベル[V1]を基準とした新たな信号レベルVsig[N’]となる。
この場合においても、基準レベル[V1]と信号レベルVsig[N’]の差は一定である。 As shown in FIGS. 4A and 4B, when the switch SW1 is turned on by the clamp signal CLP in theclamp circuit 1, the reference level Vrst appearing at the node [Y] using the new reference level [V1]. To change.
At this time, the signal level Vsig [N] becomes a new signal level Vsig [N ′] based on the new reference level [V1].
Even in this case, the difference between the reference level [V1] and the signal level Vsig [N ′] is constant.
このとき信号レベルVsig[N]は、新たな基準レベル[V1]を基準とした新たな信号レベルVsig[N’]となる。
この場合においても、基準レベル[V1]と信号レベルVsig[N’]の差は一定である。 As shown in FIGS. 4A and 4B, when the switch SW1 is turned on by the clamp signal CLP in the
At this time, the signal level Vsig [N] becomes a new signal level Vsig [N ′] based on the new reference level [V1].
Even in this case, the difference between the reference level [V1] and the signal level Vsig [N ′] is constant.
図5(A)および(B)は、ADCで発生する個体バラツキを削除する構成を説明するための図である。
図5(A)は通常の画素読み出し信号(画素信号)のAD変換と出力処理の様子の一例を示しており、図5(B)はADCを含む列並列処理部の構成例を示している。 FIGS. 5A and 5B are diagrams for explaining a configuration for deleting individual variations generated in the ADC.
FIG. 5A shows an example of a state of AD conversion and output processing of a normal pixel readout signal (pixel signal), and FIG. 5B shows a configuration example of a column parallel processing unit including an ADC. .
図5(A)は通常の画素読み出し信号(画素信号)のAD変換と出力処理の様子の一例を示しており、図5(B)はADCを含む列並列処理部の構成例を示している。 FIGS. 5A and 5B are diagrams for explaining a configuration for deleting individual variations generated in the ADC.
FIG. 5A shows an example of a state of AD conversion and output processing of a normal pixel readout signal (pixel signal), and FIG. 5B shows a configuration example of a column parallel processing unit including an ADC. .
列並列出力型の固体撮像装置の読み出し回路においては、図5(B)に示すように、画素部の列出力に対応して各列にADC2が配置され、各ADC2の出力側には、スイッチSW3-1、SW3-2を介して基準レベルVrstを保持する保持部3-1、信号レベルVsigを保持する保持部3-2が配置され、さらに信号レベルVsigと基準レベルVrstの差分をとる演算器4が配置される。
In the readout circuit of the column parallel output type solid-state imaging device, as shown in FIG. 5B, ADCs 2 are arranged in each column corresponding to the column output of the pixel portion, and a switch is connected to the output side of each ADC 2. A holding unit 3-1 that holds the reference level Vrst and a holding unit 3-2 that holds the signal level Vsig are arranged via SW3-1 and SW3-2, and further calculates the difference between the signal level Vsig and the reference level Vrst. A vessel 4 is arranged.
列並列読み出しにおいて、個体バラツキはADCにおいても起きる。
そこで、図4(A)の入力ノード[Y]に生成された、基準レベル[V1]と信号レベルVsig[N’]はそれぞれADC2でAD変換され、デジタル演算処理により1つの出力データOD[N]を生成する。
これにより、ADC2の個体バラツキを削除する。 In column parallel reading, individual variations also occur in the ADC.
Therefore, the reference level [V1] and the signal level Vsig [N ′] generated at the input node [Y] in FIG. 4A are each AD-converted by theADC 2, and one output data OD [N] is obtained by digital arithmetic processing. ] Is generated.
Thereby, the individual variation of ADC2 is deleted.
そこで、図4(A)の入力ノード[Y]に生成された、基準レベル[V1]と信号レベルVsig[N’]はそれぞれADC2でAD変換され、デジタル演算処理により1つの出力データOD[N]を生成する。
これにより、ADC2の個体バラツキを削除する。 In column parallel reading, individual variations also occur in the ADC.
Therefore, the reference level [V1] and the signal level Vsig [N ′] generated at the input node [Y] in FIG. 4A are each AD-converted by the
Thereby, the individual variation of ADC2 is deleted.
図6は、途切れのない画素読み出し信号(途切れのない画素信号)に対応する、個体バラツキを削除する構成を有する列読み出し系の一例を示す図である。
図7は、途切れのない画素読み出し信号(途切れのない画素信号)のAD変換処理の様子の一例を示す図である。 FIG. 6 is a diagram illustrating an example of a column readout system having a configuration for deleting individual variations corresponding to a pixel readout signal without interruption (a pixel signal without interruption).
FIG. 7 is a diagram illustrating an example of a state of AD conversion processing of an uninterrupted pixel readout signal (an uninterrupted pixel signal).
図7は、途切れのない画素読み出し信号(途切れのない画素信号)のAD変換処理の様子の一例を示す図である。 FIG. 6 is a diagram illustrating an example of a column readout system having a configuration for deleting individual variations corresponding to a pixel readout signal without interruption (a pixel signal without interruption).
FIG. 7 is a diagram illustrating an example of a state of AD conversion processing of an uninterrupted pixel readout signal (an uninterrupted pixel signal).
図6の読み出し回路においては、画素部の列出力に対応して各列にADC2Aが配置され、ADC2Aの出力側には、スイッチSW3-1~SW3-2Mを介して基準レベルVrst、信号レベルVsigを保持する保持部3-1~3-2Mが配置され、さらに保持部3-1~3-2Mに保持された信号を合成する合成処理部5が配置される。
In the readout circuit of FIG. 6, ADCs 2A are arranged in each column corresponding to the column output of the pixel portion, and the reference level Vrst and the signal level Vsig are provided on the output side of the ADC 2A via the switches SW3-1 to SW3-2M. Holding units 3-1 to 3-2M are arranged, and a synthesis processing unit 5 for synthesizing the signals held in the holding units 3-1 to 3-2M is arranged.
なお、ADC2Aは、図4(A)と同様の構成を有するクランプ回路1Aと、入力ノード[Y]に接続された変換部2-1を含んで構成されている。
The ADC 2A includes a clamp circuit 1A having the same configuration as that in FIG. 4A and a conversion unit 2-1 connected to the input node [Y].
しかしながら、上記した図6の読み出し系は、主として以下に示すような3つの不利益がある。
However, the readout system of FIG. 6 described above has three disadvantages as shown below.
第1に、図6の読み出し系は、図6中からわかるように、M個の途切れのない画素信号に対して2M個の保持部が必要となる。また、このことから2M回のAD変換動作を必要とされるため、回路面積が増大し、処理時間も長くなるという不利益がある。
First, as shown in FIG. 6, the readout system of FIG. 6 requires 2M holding units for M uninterrupted pixel signals. In addition, since this requires 2M AD conversion operations, there is a disadvantage that the circuit area increases and the processing time becomes longer.
第2の不利益として、M=2を例にとって図7に関連付けて説明する。
クランプ動作は同一画素信号内で2回行いたいが、もし基準レベルVrst[N,2]でクランプ動作を行った場合、1回目の基準レベルVrst[N,1]での状態を失う。つまりクランプ動作は1回しか行えない。
このため、図6の読み出し系は、AD変換精度を劣化させる。 The second disadvantage will be described with reference to FIG. 7 taking M = 2 as an example.
Although the clamping operation is desired to be performed twice within the same pixel signal, if the clamping operation is performed at the reference level Vrst [N, 2], the state at the first reference level Vrst [N, 1] is lost. That is, the clamping operation can be performed only once.
For this reason, the readout system of FIG. 6 degrades AD conversion accuracy.
クランプ動作は同一画素信号内で2回行いたいが、もし基準レベルVrst[N,2]でクランプ動作を行った場合、1回目の基準レベルVrst[N,1]での状態を失う。つまりクランプ動作は1回しか行えない。
このため、図6の読み出し系は、AD変換精度を劣化させる。 The second disadvantage will be described with reference to FIG. 7 taking M = 2 as an example.
Although the clamping operation is desired to be performed twice within the same pixel signal, if the clamping operation is performed at the reference level Vrst [N, 2], the state at the first reference level Vrst [N, 1] is lost. That is, the clamping operation can be performed only once.
For this reason, the readout system of FIG. 6 degrades AD conversion accuracy.
第3の不利益は、合成処理にある。
上述したように、合成方法は、図2(C)に示す切り替えによる第1の方法、または、図2(D)に示す平均処理のよる第2の方法が採用されるが、複数の信号を結合するための信号処理においては、第1の方法より第2の方法が優れているが、第2の方法は処理が複雑なため、処理時間が増大する。 The third disadvantage is in the synthesis process.
As described above, as the synthesis method, the first method by switching shown in FIG. 2C or the second method by averaging shown in FIG. 2D is adopted. In signal processing for combining, the second method is superior to the first method, but the processing time of the second method is increased because the processing is complicated.
上述したように、合成方法は、図2(C)に示す切り替えによる第1の方法、または、図2(D)に示す平均処理のよる第2の方法が採用されるが、複数の信号を結合するための信号処理においては、第1の方法より第2の方法が優れているが、第2の方法は処理が複雑なため、処理時間が増大する。 The third disadvantage is in the synthesis process.
As described above, as the synthesis method, the first method by switching shown in FIG. 2C or the second method by averaging shown in FIG. 2D is adopted. In signal processing for combining, the second method is superior to the first method, but the processing time of the second method is increased because the processing is complicated.
本発明は、回路面積の増大、処理時間の増大を抑止しつつ、AD変換精度の劣化を防止することが可能で、しかも広ダイナミックレンジ化を実現でき、ひいては高画質化を実現することが可能な固体撮像装置、固体撮像装置の駆動方法、および電子機器を提供することにある。
The present invention can prevent degradation of AD conversion accuracy while suppressing an increase in circuit area and processing time, and can also realize a wide dynamic range and thus high image quality. An object of the present invention is to provide a solid-state imaging device, a driving method for the solid-state imaging device, and an electronic apparatus.
本発明の第1の観点は、複数の読み出し信号を合成してダイナミックレンジを拡大可能な固体撮像装置であって、画素が配置された画素部と、前記画素部の列出力に対応して配置された列信号処理部を含む読み出し部と、を有し、前記列信号処理部は、前記画素から読み出され入力ノードに入力される前記複数の読み出し信号を、アナログ信号からデジタル信号にアナログデジタル(AD)変換するアナログデジタルコンバータ(ADC)と、前記画素から読み出された前記読み出し信号が入力される前記入力ノードのレベルとあらかじめ設定された参照電圧とを比較し、比較結果に応じて前記画素から読み出された前記読み出し信号の前記入力ノードへの入力状態を選択する比較選択部と、を含む。
A first aspect of the present invention is a solid-state imaging device capable of expanding a dynamic range by synthesizing a plurality of readout signals, and is arranged corresponding to a pixel unit in which pixels are arranged and a column output of the pixel unit A read unit including a column signal processing unit, wherein the column signal processing unit converts the plurality of read signals read from the pixels and input to an input node from analog signals to digital signals. An analog / digital converter (ADC) that performs (AD) conversion, a level of the input node to which the readout signal read out from the pixel is input, and a preset reference voltage are compared, and the reference voltage is set according to a comparison result A comparison / selection unit that selects an input state of the readout signal read from the pixel to the input node.
本発明の第2の観点は、画素が配置された画素部と、前記画素部の列出力に対応して配置された列信号処理部を含む読み出し部と、を有し、前記列信号処理部は、前記画素から読み出され入ノードに入力される前記複数の読み出し信号を、アナログ信号からデジタル信号にアナログデジタル(AD)変換するアナログデジタルコンバータ(ADC)を含み、複数の読み出し信号を合成してダイナミックレンジを拡大可能な固体撮像装置の駆動方法であって、前記ADCのAD変換においては、前記画素から読み出された前記読み出し信号が入力される前記入力ノードのレベルとあらかじめ設定された参照電圧とを比較し、比較結果に応じて前記画素から読み出された前記読み出し信号の前記入力ノードへの入力状態を選択する。
A second aspect of the present invention includes a pixel unit in which pixels are arranged, and a readout unit including a column signal processing unit arranged corresponding to a column output of the pixel unit, and the column signal processing unit Includes an analog-to-digital converter (ADC) that converts the plurality of readout signals read from the pixels and input to the input node from analog signals to digital signals, and synthesizes the plurality of readout signals. In the AD conversion of the ADC, the level of the input node to which the readout signal read from the pixel is input and a preset reference are provided. The voltage is compared, and the input state of the read signal read from the pixel to the input node is selected according to the comparison result.
本発明の第3の観点の電子機器は、複数の読み出し信号を合成してダイナミックレンジを拡大可能な固体撮像装置と、前記固体撮像装置に被写体像を結像する光学系と、を有し、前記固体撮像装置は、画素が配置された画素部と、前記画素部の列出力に対応して配置された列信号処理部を含む読み出し部と、を有し、前記列信号処理部は、前記画素から読み出され入力ノードに入力される前記複数の読み出し信号を、アナログ信号からデジタル信号にアナログデジタル(AD)変換するアナログデジタルコンバータ(ADC)と、前記画素から読み出された前記読み出し信号が入力される前記入力ノードのレベルとあらかじめ設定された参照電圧とを比較し、比較結果に応じて前記画素から読み出された前記読み出し信号の前記入力ノードへの入力状態を選択する比較選択部と、を含む。
An electronic apparatus according to a third aspect of the present invention includes a solid-state imaging device capable of expanding a dynamic range by combining a plurality of readout signals, and an optical system that forms a subject image on the solid-state imaging device, The solid-state imaging device includes a pixel unit in which pixels are arranged, and a reading unit including a column signal processing unit arranged corresponding to the column output of the pixel unit, and the column signal processing unit includes the column signal processing unit, An analog-to-digital converter (ADC) that converts the plurality of readout signals read from the pixels and input to the input node from analog signals to digital signals by analog-to-digital (AD), and the readout signals read from the pixels The input node of the readout signal read out from the pixel according to the comparison result by comparing the level of the input node inputted with a preset reference voltage Comprising a comparison selector for selecting the input state of the.
本発明によれば、回路面積の増大、処理時間の増大を抑止しつつ、AD変換精度の劣化を防止することが可能で、しかも広ダイナミックレンジ化を実現でき、ひいては高画質化を実現することができる。
According to the present invention, it is possible to prevent the deterioration of AD conversion accuracy while suppressing an increase in circuit area and an increase in processing time, and further, it is possible to realize a wide dynamic range and thus to realize a high image quality. Can do.
以下、本発明の実施形態を図面に関連付けて説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(第1の実施形態)
図8は、本発明の第1の実施形態に係る固体撮像装置の構成例を示すブロック図である。
本実施形態において、固体撮像装置10は、たとえばCMOSイメージセンサにより構成される。 (First embodiment)
FIG. 8 is a block diagram illustrating a configuration example of the solid-state imaging device according to the first embodiment of the present invention.
In the present embodiment, the solid-state imaging device 10 is configured by, for example, a CMOS image sensor.
図8は、本発明の第1の実施形態に係る固体撮像装置の構成例を示すブロック図である。
本実施形態において、固体撮像装置10は、たとえばCMOSイメージセンサにより構成される。 (First embodiment)
FIG. 8 is a block diagram illustrating a configuration example of the solid-state imaging device according to the first embodiment of the present invention.
In the present embodiment, the solid-
この固体撮像装置10は、図8に示すように、撮像部としての画素部20、垂直走査回路(行走査回路)30、読み出し回路(カラム読み出し回路)40、水平走査回路(列走査回路)50、タイミング制御回路60、および、たとえば信号合成処理部としての機能を含むデジタルシグナルプロセッサ(DSP : Digital Signal Processor)部70を主構成要素として有している。
これらの構成要素のうち、たとえば垂直走査回路30、読み出し回路40、水平走査回路50、およびタイミング制御回路60により画素信号の読み出し部80が構成される。 As shown in FIG. 8, the solid-state imaging device 10 includes a pixel unit 20 as an imaging unit, a vertical scanning circuit (row scanning circuit) 30, a reading circuit (column reading circuit) 40, and a horizontal scanning circuit (column scanning circuit) 50. A timing control circuit 60 and a digital signal processor (DSP) unit 70 including a function as a signal synthesis processing unit, for example, are included as main components.
Among these components, for example, thevertical scanning circuit 30, the readout circuit 40, the horizontal scanning circuit 50, and the timing control circuit 60 constitute a pixel signal readout unit 80.
これらの構成要素のうち、たとえば垂直走査回路30、読み出し回路40、水平走査回路50、およびタイミング制御回路60により画素信号の読み出し部80が構成される。 As shown in FIG. 8, the solid-
Among these components, for example, the
本実施形態において、固体撮像装置10は、後で詳述するように、画素部20から読み出した複数(M個)の読み出し信号(画素信号)を合成してダイナミックレンジを拡大可能に構成されている。
In the present embodiment, as will be described in detail later, the solid-state imaging device 10 is configured to be able to expand a dynamic range by synthesizing a plurality (M) of readout signals (pixel signals) read from the pixel unit 20. Yes.
読み出し部80は、ダイナミックレンジを高める(拡大させる)方法としては、たとえば、イメージセンサの同一の画素から蓄積時間の異なる複数M(たとえばM=2)種類の信号を読み出し、このM種類の信号を組み合わせて(合成して)、ダイナミックレンジを拡大させる方法が適用される。
また、読み出し部80は、高感度の画素で得た低照度領域の信号と、低感度の画素で得た高照度領域の信号を組み合わせて(合成して)ダイナミックレンジを拡大させる方法などが適用可能である。 As a method for increasing (enlarging) the dynamic range, thereading unit 80 reads, for example, a plurality of M (for example, M = 2) types of signals having different accumulation times from the same pixel of the image sensor, and outputs the M types of signals. A method of expanding the dynamic range by combining (combining) is applied.
In addition, thereading unit 80 applies a method of expanding a dynamic range by combining (synthesizing) a signal of a low illuminance region obtained by a high sensitivity pixel and a signal of a high illuminance region obtained by a low sensitivity pixel. Is possible.
また、読み出し部80は、高感度の画素で得た低照度領域の信号と、低感度の画素で得た高照度領域の信号を組み合わせて(合成して)ダイナミックレンジを拡大させる方法などが適用可能である。 As a method for increasing (enlarging) the dynamic range, the
In addition, the
本実施形態において、この高ダイナミックレンジ化技術を採用した場合の画素読み出し信号(画素信号)PSDは、複数M(M=2,4、・・・)の基準レベルの読み出しリセット電圧(基準レベルの信号)Vrstと複数Mの信号レベルの読み出し信号電圧(信号レベルの信号)Vsigにより形成される。
この場合の画素読み出し信号(画素信号)PSDは、いわゆる途切れのない読み出し信号として処理される。 In this embodiment, the pixel readout signal (pixel signal) PSD when this high dynamic range technology is adopted is a readout reset voltage (reference level of a plurality of M (M = 2, 4,...)). Signal) Vrst and a read signal voltage (signal level signal) Vsig having a plurality of M signal levels.
The pixel readout signal (pixel signal) PSD in this case is processed as a so-called uninterrupted readout signal.
この場合の画素読み出し信号(画素信号)PSDは、いわゆる途切れのない読み出し信号として処理される。 In this embodiment, the pixel readout signal (pixel signal) PSD when this high dynamic range technology is adopted is a readout reset voltage (reference level of a plurality of M (M = 2, 4,...)). Signal) Vrst and a read signal voltage (signal level signal) Vsig having a plurality of M signal levels.
The pixel readout signal (pixel signal) PSD in this case is processed as a so-called uninterrupted readout signal.
このように、本実施形態において、途切れのない画素信号PSDは、1つの画素信号PSD内にM個の基準レベル(基準レベルの信号)VrstとM個の信号レベル(信号レベルの信号)Vsigが含まれている。
本実施形態において、途切れのない画素信号PSDの配列順は、たとえば1つの出力データOD[N,M]を構成する基準レベルVrst[N,M]が必ず先に入力されてから信号レベルVsig[N,M]が入力されることを制約とした上で複数存在する。 As described above, in this embodiment, an uninterrupted pixel signal PSD includes M reference levels (reference level signals) Vrst and M signal levels (signal level signals) Vsig in one pixel signal PSD. include.
In this embodiment, the arrangement order of the pixel signals PSD without interruption is, for example, the signal level Vsig [after the reference level Vrst [N, M] constituting one output data OD [N, M] is always input first. N, M] are input, and there are a plurality of such restrictions.
本実施形態において、途切れのない画素信号PSDの配列順は、たとえば1つの出力データOD[N,M]を構成する基準レベルVrst[N,M]が必ず先に入力されてから信号レベルVsig[N,M]が入力されることを制約とした上で複数存在する。 As described above, in this embodiment, an uninterrupted pixel signal PSD includes M reference levels (reference level signals) Vrst and M signal levels (signal level signals) Vsig in one pixel signal PSD. include.
In this embodiment, the arrangement order of the pixel signals PSD without interruption is, for example, the signal level Vsig [after the reference level Vrst [N, M] constituting one output data OD [N, M] is always input first. N, M] are input, and there are a plurality of such restrictions.
読み出し部80は、画素部20の列(カラム)出力に対応して配置された複数の列信号処理部を含み、各列信号処理部は、画素から読み出される複数の読み出し信号を、アナログ信号からデジタル信号にAD(アナログデジタル)変換するADC(アナログデジタルコンバータ)を含む。
読み出し部80は、画素から読み出された各読み出し信号が入力される入力ノード[Y]と、入力ノード[Y]のレベルとあらかじめ設定された参照電圧[V20]とを比較し、比較結果に応じて画素から読み出された読み出し信号の入力ノード[Y]への入力状態を選択する比較選択部と、を含んで構成される。
ADCは、たとえば基準レベルの信号Vrstが先に入力されてから信号レベルの信号Vsigが入力される。
そして、比較選択部は、信号レベルの信号が入力ノード[Y]に現出しているときに、入力ノード[Y]の信号レベルとあらかじめ設定された参照電圧V[20]とを比較し、比較結果に応じて画素から読み出された読み出し信号の入力ノード[Y]への入力状態を選択する。 Thereadout unit 80 includes a plurality of column signal processing units arranged corresponding to the column (column) output of the pixel unit 20, and each column signal processing unit converts a plurality of readout signals read from the pixels from analog signals. It includes an ADC (analog-digital converter) that converts AD (analog-digital) into a digital signal.
Thereadout unit 80 compares the input node [Y] to which each readout signal read from the pixel is input with the level of the input node [Y] and a preset reference voltage [V20], and the comparison result is obtained. And a comparison / selection unit that selects an input state of the read signal read from the pixel to the input node [Y].
The ADC receives the signal level signal Vsig after the reference level signal Vrst is input first, for example.
The comparison / selection unit compares the signal level of the input node [Y] with a preset reference voltage V [20] when a signal of a signal level appears at the input node [Y], and compares According to the result, the input state of the read signal read from the pixel to the input node [Y] is selected.
読み出し部80は、画素から読み出された各読み出し信号が入力される入力ノード[Y]と、入力ノード[Y]のレベルとあらかじめ設定された参照電圧[V20]とを比較し、比較結果に応じて画素から読み出された読み出し信号の入力ノード[Y]への入力状態を選択する比較選択部と、を含んで構成される。
ADCは、たとえば基準レベルの信号Vrstが先に入力されてから信号レベルの信号Vsigが入力される。
そして、比較選択部は、信号レベルの信号が入力ノード[Y]に現出しているときに、入力ノード[Y]の信号レベルとあらかじめ設定された参照電圧V[20]とを比較し、比較結果に応じて画素から読み出された読み出し信号の入力ノード[Y]への入力状態を選択する。 The
The
The ADC receives the signal level signal Vsig after the reference level signal Vrst is input first, for example.
The comparison / selection unit compares the signal level of the input node [Y] with a preset reference voltage V [20] when a signal of a signal level appears at the input node [Y], and compares According to the result, the input state of the read signal read from the pixel to the input node [Y] is selected.
本実施形態においては、後で具体的に説明するように、比較選択部は、入力ノード[Y]のレベルが参照電圧[V20]より高い(または低い)場合には、現比較対象の読み出し信号に後続の読み出し信号が連続して入力ノード[Y]に入力する状態を選択して、後続の読み出し信号が保持すべきAD変換対象となるように制御するように構成される。
比較選択部は、入力ノード[Y]のレベルが参照電圧V20より低い(または高い)場合には、現比較対象の読み出し信号に後続の読み出し信号が入力ノードに入力しない状態を選択して、現比較対象の読み出し信号が保持すべきAD変換対象となるように制御するように構成される。 In this embodiment, as will be described in detail later, when the level of the input node [Y] is higher (or lower) than the reference voltage [V20], the comparison / selection unit reads the current comparison target read signal. A state in which subsequent read signals are continuously input to the input node [Y] is selected, and the subsequent read signals are controlled to be AD conversion targets to be held.
When the level of the input node [Y] is lower (or higher) than the reference voltage V20, the comparison selection unit selects a state in which a subsequent read signal is not input to the input node as the current comparison target read signal, and Control is performed so that the read signal to be compared becomes an AD conversion target to be held.
比較選択部は、入力ノード[Y]のレベルが参照電圧V20より低い(または高い)場合には、現比較対象の読み出し信号に後続の読み出し信号が入力ノードに入力しない状態を選択して、現比較対象の読み出し信号が保持すべきAD変換対象となるように制御するように構成される。 In this embodiment, as will be described in detail later, when the level of the input node [Y] is higher (or lower) than the reference voltage [V20], the comparison / selection unit reads the current comparison target read signal. A state in which subsequent read signals are continuously input to the input node [Y] is selected, and the subsequent read signals are controlled to be AD conversion targets to be held.
When the level of the input node [Y] is lower (or higher) than the reference voltage V20, the comparison selection unit selects a state in which a subsequent read signal is not input to the input node as the current comparison target read signal, and Control is performed so that the read signal to be compared becomes an AD conversion target to be held.
また、後述するように、ADCは、入力ノード[Y]に少なくとも最初に入力される基準レベルの信号を、クランプ信号CLPに応じてあらかじめ設定されたクランプレベル[V10]に固定するクランプ部を含むクランプ回路を有する。
As will be described later, the ADC includes a clamp unit that fixes a signal of a reference level that is input at least first to the input node [Y] to a clamp level [V10] set in advance according to the clamp signal CLP. It has a clamp circuit.
以下、固体撮像装置10の各部の構成および機能の概要を説明した後、クランプ回路を含むADC等の構成、それに関連した読み出し処理等について詳述する。
Hereinafter, after describing the outline of the configuration and functions of each unit of the solid-state imaging device 10, the configuration of the ADC including the clamp circuit, the readout processing related thereto, and the like will be described in detail.
(画素部20および画素PXLの構成)
画素部20は、フォトダイオード(光電変換素子)と画素内アンプとを含む複数の画素がn行×m列の2次元の行列状(マトリクス状)に配列されている。 (Configuration of thepixel unit 20 and the pixel PXL)
In thepixel unit 20, a plurality of pixels including photodiodes (photoelectric conversion elements) and in-pixel amplifiers are arranged in a two-dimensional matrix (matrix) of n rows × m columns.
画素部20は、フォトダイオード(光電変換素子)と画素内アンプとを含む複数の画素がn行×m列の2次元の行列状(マトリクス状)に配列されている。 (Configuration of the
In the
図9は、本実施形態に係る画素の一例を示す回路図である。
FIG. 9 is a circuit diagram illustrating an example of a pixel according to the present embodiment.
この画素PXLは、たとえば光電変換素子であるフォトダイオード(PD)を有する。
このフォトダイオードPDに対して、転送素子としての転送トランジスタTG-Tr、リセット素子としてのリセットトランジスタRST-Tr、ソースフォロワ素子としてのソースフォロワトランジスタSF-Tr、および選択素子としての選択トランジスタSEL-Trをそれぞれ一つずつ有する。 The pixel PXL includes, for example, a photodiode (PD) that is a photoelectric conversion element.
For this photodiode PD, a transfer transistor TG-Tr as a transfer element, a reset transistor RST-Tr as a reset element, a source follower transistor SF-Tr as a source follower element, and a select transistor SEL-Tr as a select element Each one.
このフォトダイオードPDに対して、転送素子としての転送トランジスタTG-Tr、リセット素子としてのリセットトランジスタRST-Tr、ソースフォロワ素子としてのソースフォロワトランジスタSF-Tr、および選択素子としての選択トランジスタSEL-Trをそれぞれ一つずつ有する。 The pixel PXL includes, for example, a photodiode (PD) that is a photoelectric conversion element.
For this photodiode PD, a transfer transistor TG-Tr as a transfer element, a reset transistor RST-Tr as a reset element, a source follower transistor SF-Tr as a source follower element, and a select transistor SEL-Tr as a select element Each one.
フォトダイオードPDは、入射光量に応じた量の信号電荷(ここでは電子)を発生し、蓄積する。
以下、信号電荷は電子であり、各トランジスタがn型トランジスタである場合について説明するが、信号電荷がホールであったり、各トランジスタがp型トランジスタであっても構わない。
また、本実施形態は、複数のフォトダイオード間で、各トランジスタを共有している場合や、選択トランジスタを有していない3トランジスタ(3Tr)画素を採用している場合にも有効である。 The photodiode PD generates and accumulates signal charges (electrons here) in an amount corresponding to the amount of incident light.
Hereinafter, a case where the signal charge is an electron and each transistor is an n-type transistor will be described. However, the signal charge may be a hole or each transistor may be a p-type transistor.
This embodiment is also effective when a plurality of photodiodes share each transistor or when a three-transistor (3Tr) pixel that does not have a selection transistor is employed.
以下、信号電荷は電子であり、各トランジスタがn型トランジスタである場合について説明するが、信号電荷がホールであったり、各トランジスタがp型トランジスタであっても構わない。
また、本実施形態は、複数のフォトダイオード間で、各トランジスタを共有している場合や、選択トランジスタを有していない3トランジスタ(3Tr)画素を採用している場合にも有効である。 The photodiode PD generates and accumulates signal charges (electrons here) in an amount corresponding to the amount of incident light.
Hereinafter, a case where the signal charge is an electron and each transistor is an n-type transistor will be described. However, the signal charge may be a hole or each transistor may be a p-type transistor.
This embodiment is also effective when a plurality of photodiodes share each transistor or when a three-transistor (3Tr) pixel that does not have a selection transistor is employed.
転送トランジスタTG-Trは、フォトダイオードPDとフローティングディフュージョンFD(Floating Diffusion;浮遊拡散層)の間に接続され、制御線TGを通じて制御される。
転送トランジスタTG-Trは、制御線TGがハイレベル(H)の期間に選択されて導通状態となり、フォトダイオードPDで光電変換され蓄積された電荷(電子)をフローティングディフュージョンFDに転送する。 The transfer transistor TG-Tr is connected between the photodiode PD and a floating diffusion FD (floating diffusion layer), and is controlled through a control line TG.
The transfer transistor TG-Tr is selected when the control line TG is at the high level (H) and becomes conductive, and transfers the charges (electrons) photoelectrically converted and accumulated by the photodiode PD to the floating diffusion FD.
転送トランジスタTG-Trは、制御線TGがハイレベル(H)の期間に選択されて導通状態となり、フォトダイオードPDで光電変換され蓄積された電荷(電子)をフローティングディフュージョンFDに転送する。 The transfer transistor TG-Tr is connected between the photodiode PD and a floating diffusion FD (floating diffusion layer), and is controlled through a control line TG.
The transfer transistor TG-Tr is selected when the control line TG is at the high level (H) and becomes conductive, and transfers the charges (electrons) photoelectrically converted and accumulated by the photodiode PD to the floating diffusion FD.
リセットトランジスタRST-Trは、電源線VRstとフローティングディフュージョンFDの間に接続され、制御線RSTを通じて制御される。
なお、リセットトランジスタRST-Trは、電源線VDDとフローティングディフュージョンFDの間に接続され、制御線RSTを通じて制御されるように構成してもよい。
リセットトランジスタRST-Trは、制御線RSTがHレベルの期間に選択されて導通状態となり、フローティングディフュージョンFDを電源線VRst(またはVDD)の電位にリセットする。 The reset transistor RST-Tr is connected between the power supply line VRst and the floating diffusion FD, and is controlled through the control line RST.
The reset transistor RST-Tr may be connected between the power supply line VDD and the floating diffusion FD, and may be configured to be controlled through the control line RST.
The reset transistor RST-Tr is selected during the period when the control line RST is at the H level, and becomes conductive, and resets the floating diffusion FD to the potential of the power supply line VRst (or VDD).
なお、リセットトランジスタRST-Trは、電源線VDDとフローティングディフュージョンFDの間に接続され、制御線RSTを通じて制御されるように構成してもよい。
リセットトランジスタRST-Trは、制御線RSTがHレベルの期間に選択されて導通状態となり、フローティングディフュージョンFDを電源線VRst(またはVDD)の電位にリセットする。 The reset transistor RST-Tr is connected between the power supply line VRst and the floating diffusion FD, and is controlled through the control line RST.
The reset transistor RST-Tr may be connected between the power supply line VDD and the floating diffusion FD, and may be configured to be controlled through the control line RST.
The reset transistor RST-Tr is selected during the period when the control line RST is at the H level, and becomes conductive, and resets the floating diffusion FD to the potential of the power supply line VRst (or VDD).
ソースフォロワトランジスタSF-Trと選択トランジスタSEL-Trは、電源線VDDと垂直信号線LSGNの間に直列に接続されている。
ソースフォロワトランジスタSF-TrのゲートにはフローティングディフュージョンFDが接続され、選択トランジスタSEL-Trは制御線SELを通じて制御される。
選択トランジスタSEL-Trは、制御線SELがHレベルの期間に選択されて導通状態となる。これにより、ソースフォロワトランジスタSF-TrはフローティングディフュージョンFDの電荷を電荷量(電位)に応じた電圧信号に変換した列出力の画素読み出し信号(画素信号)VSL(PSD)を伝送する信号経路としての垂直信号線LSGNに出力する。
本実施形態においては、この場合の画素読み出し信号(画素信号)PSDは、いわゆる途切れのない読み出し信号として処理される。
これらの動作は、たとえば転送トランジスタTG-Tr、リセットトランジスタRST-Tr、および選択トランジスタSEL-Trの各ゲートが行単位で接続されていることから、1行分の各画素について同時並列的に行われる。 The source follower transistor SF-Tr and the selection transistor SEL-Tr are connected in series between the power supply line VDD and the vertical signal line LSGN.
A floating diffusion FD is connected to the gate of the source follower transistor SF-Tr, and the selection transistor SEL-Tr is controlled through a control line SEL.
The selection transistor SEL-Tr is selected during the period when the control line SEL is at the H level and becomes conductive. As a result, the source follower transistor SF-Tr serves as a signal path for transmitting a column output pixel readout signal (pixel signal) VSL (PSD) obtained by converting the charge of the floating diffusion FD into a voltage signal corresponding to the charge amount (potential). Output to the vertical signal line LSGN.
In this embodiment, the pixel readout signal (pixel signal) PSD in this case is processed as a so-called uninterrupted readout signal.
For example, the gates of the transfer transistor TG-Tr, the reset transistor RST-Tr, and the selection transistor SEL-Tr are connected in units of rows. Is called.
ソースフォロワトランジスタSF-TrのゲートにはフローティングディフュージョンFDが接続され、選択トランジスタSEL-Trは制御線SELを通じて制御される。
選択トランジスタSEL-Trは、制御線SELがHレベルの期間に選択されて導通状態となる。これにより、ソースフォロワトランジスタSF-TrはフローティングディフュージョンFDの電荷を電荷量(電位)に応じた電圧信号に変換した列出力の画素読み出し信号(画素信号)VSL(PSD)を伝送する信号経路としての垂直信号線LSGNに出力する。
本実施形態においては、この場合の画素読み出し信号(画素信号)PSDは、いわゆる途切れのない読み出し信号として処理される。
これらの動作は、たとえば転送トランジスタTG-Tr、リセットトランジスタRST-Tr、および選択トランジスタSEL-Trの各ゲートが行単位で接続されていることから、1行分の各画素について同時並列的に行われる。 The source follower transistor SF-Tr and the selection transistor SEL-Tr are connected in series between the power supply line VDD and the vertical signal line LSGN.
A floating diffusion FD is connected to the gate of the source follower transistor SF-Tr, and the selection transistor SEL-Tr is controlled through a control line SEL.
The selection transistor SEL-Tr is selected during the period when the control line SEL is at the H level and becomes conductive. As a result, the source follower transistor SF-Tr serves as a signal path for transmitting a column output pixel readout signal (pixel signal) VSL (PSD) obtained by converting the charge of the floating diffusion FD into a voltage signal corresponding to the charge amount (potential). Output to the vertical signal line LSGN.
In this embodiment, the pixel readout signal (pixel signal) PSD in this case is processed as a so-called uninterrupted readout signal.
For example, the gates of the transfer transistor TG-Tr, the reset transistor RST-Tr, and the selection transistor SEL-Tr are connected in units of rows. Is called.
画素部20には、画素PXLがn行×m列配置されているので、各制御線SEL、RST、TGはそれぞれn本、垂直信号線LSGNはm本ある。
図1においては、各制御線SEL、RST、TGを1本の行走査制御線として表している。 Since the pixel PXL includes n rows × m columns, thepixel unit 20 includes n control lines SEL, RST, and TG, and m vertical signal lines LSGN.
In FIG. 1, each control line SEL, RST, TG is represented as one row scanning control line.
図1においては、各制御線SEL、RST、TGを1本の行走査制御線として表している。 Since the pixel PXL includes n rows × m columns, the
In FIG. 1, each control line SEL, RST, TG is represented as one row scanning control line.
垂直走査回路30は、タイミング制御回路60の制御に応じてシャッター行および読み出し行において行走査制御線を通して画素の駆動を行う。
また、垂直走査回路30は、アドレス信号に従い、信号の読み出しを行うリード行と、フォトダイオードPDに蓄積された電荷をリセットするシャッター行の行アドレスの行選択信号を出力する。 Thevertical scanning circuit 30 drives the pixels through the row scanning control lines in the shutter row and the readout row in accordance with the control of the timing control circuit 60.
In addition, thevertical scanning circuit 30 outputs a row selection signal of a row address of a read row that reads out the signal and a shutter row that resets the charge accumulated in the photodiode PD in accordance with the address signal.
また、垂直走査回路30は、アドレス信号に従い、信号の読み出しを行うリード行と、フォトダイオードPDに蓄積された電荷をリセットするシャッター行の行アドレスの行選択信号を出力する。 The
In addition, the
通常,画素読み出し動作においては、読み出し部80の垂直走査回路30による駆動により、シャッタースキャンが行われ、その後、読み出しスキャンが行われる。
Usually, in the pixel readout operation, a shutter scan is performed by driving by the vertical scanning circuit 30 of the readout unit 80, and then the readout scan is performed.
読み出し回路40は、画素部20の各列出力に対応して配置された複数の列信号処理部(図示せず)を含み、複数の列信号処理部で列並列処理が可能に構成される。
読み出し回路40は、たとえば、ADCやメモリ等を含んで構成可能である。 Thereadout circuit 40 includes a plurality of column signal processing units (not shown) arranged corresponding to the respective column outputs of the pixel unit 20, and is configured such that column parallel processing can be performed by the plurality of column signal processing units.
Theread circuit 40 can be configured to include, for example, an ADC and a memory.
読み出し回路40は、たとえば、ADCやメモリ等を含んで構成可能である。 The
The
このように、読み出し回路40の列信号処理部400は、たとえば図10に示すように、画素部20の各列出力の読み出し信号VSLをデジタル信号に変換するADC410を含んで構成されている。
As described above, the column signal processing unit 400 of the readout circuit 40 includes, for example, an ADC 410 that converts the readout signal VSL output from each column of the pixel unit 20 into a digital signal, as shown in FIG.
水平走査回路50は、読み出し回路40のADC等の複数の列信号処理部400で処理された信号を走査して水平方向に転送し、DSP部70に出力する。
The horizontal scanning circuit 50 scans the signals processed by the plurality of column signal processing units 400 such as ADCs of the reading circuit 40, transfers them in the horizontal direction, and outputs them to the DSP unit 70.
タイミング制御回路60は、画素部20、垂直走査回路30、読み出し回路40、水平走査回路50等の信号処理に必要なタイミング信号を生成する。
The timing control circuit 60 generates timing signals necessary for signal processing of the pixel unit 20, the vertical scanning circuit 30, the readout circuit 40, the horizontal scanning circuit 50, and the like.
以上、固体撮像装置10の各部の構成および機能の概要について説明した。
次に、本第1の実施形態に係るクランプ回路を含むADC410,並びに、ADC410の出力側に配置される保持部、合成処理部の構成、それに関連した読み出し処理等について詳述する。 The outline of the configuration and function of each unit of the solid-state imaging device 10 has been described above.
Next, theADC 410 including the clamp circuit according to the first embodiment, the configuration of the holding unit arranged on the output side of the ADC 410, the composition processing unit, the readout processing related thereto, and the like will be described in detail.
次に、本第1の実施形態に係るクランプ回路を含むADC410,並びに、ADC410の出力側に配置される保持部、合成処理部の構成、それに関連した読み出し処理等について詳述する。 The outline of the configuration and function of each unit of the solid-
Next, the
図11は、本発明の第1の実施形態に係る固体撮像装置の画素部の列出力の読み出し系を形成するADC、比較選択部、並びに、ADCの出力側に配置される保持部、合成処理部の構成例を示す図である。
FIG. 11 illustrates an ADC that forms a column output readout system of the pixel unit of the solid-state imaging device according to the first embodiment of the present invention, a comparison / selection unit, a holding unit arranged on the output side of the ADC, and a synthesis process It is a figure which shows the structural example of a part.
図11においては、図面を簡略化し、理解を容易にするために、画素部20の一つの列出力に対応した列信号処理部400を含む1つの読み出し系を示している。画素部20の他の列出力に対応した列信号処理部400を含む読み出し系も同様の構成を有する。
FIG. 11 shows one readout system including a column signal processing unit 400 corresponding to one column output of the pixel unit 20 in order to simplify the drawing and facilitate understanding. The readout system including the column signal processing unit 400 corresponding to another column output of the pixel unit 20 has the same configuration.
図11の読み出し系においては、画素部20の列出力ラインであり信号経路である垂直信号線LSGNに対して各列にADC410が配置され、ADC410に対して並列にADC410のAD変換の状態を選択し制御する比較選択部430の一部を構成する比較器420が配置されている。
ADC410の出力側には、スイッチSW440-1,SW440-2を介して基準レベルVrst、信号レベルVsigを保持する保持部440-1,440-2が配置され、さらに保持部440-1,440-2に保持された信号を合成する合成処理部450が配置されている。
なお、合成処理部450は、たとえばDSP部70に配置される。 In the readout system of FIG. 11, theADC 410 is arranged in each column with respect to the vertical signal line LSGN which is the column output line and signal path of the pixel unit 20, and the AD conversion state of the ADC 410 is selected in parallel with the ADC 410. A comparator 420 constituting a part of the comparison selection unit 430 to be controlled is arranged.
On the output side of theADC 410, holding units 440-1 and 440-2 for holding the reference level Vrst and the signal level Vsig are arranged via the switches SW440-1 and SW440-2, and further holding units 440-1 and 440- A synthesis processing unit 450 that synthesizes the signals held in 2 is arranged.
Note that thecomposition processing unit 450 is disposed in the DSP unit 70, for example.
ADC410の出力側には、スイッチSW440-1,SW440-2を介して基準レベルVrst、信号レベルVsigを保持する保持部440-1,440-2が配置され、さらに保持部440-1,440-2に保持された信号を合成する合成処理部450が配置されている。
なお、合成処理部450は、たとえばDSP部70に配置される。 In the readout system of FIG. 11, the
On the output side of the
Note that the
ADC410は、入力ノード[Y],入力スイッチ(S)411、クランプ回路412、および変換部413を主構成要素として有している。
The ADC 410 includes an input node [Y], an input switch (S) 411, a clamp circuit 412, and a conversion unit 413 as main components.
ADC410は、画素PXLから読み出され入力ノード[Y]に入力される複数の読み出し信号を、アナログ信号からデジタル信号にAD変換する。
The ADC 410 AD converts a plurality of readout signals read from the pixel PXL and input to the input node [Y] from analog signals to digital signals.
前述したように、複数の読み出し信号の各々は、基準レベルの信号と信号レベルの信号により形成され、ADC410には、基準レベルの信号Vrstが先に入力されてから信号レベルの信号Vsigが入力される。
As described above, each of the plurality of readout signals is formed by a reference level signal and a signal level signal, and the ADC 410 receives the signal level signal Vsig after the reference level signal Vrst is input first. The
入力スイッチ411は、比較器420の比較結果を示す信号S420に応じて画素PXLから読み出された読み出し信号の入力ノード[Y]への信号経路の接続状態(オン状態)と非接続状態(オフ状態)を切り替える。
この入力スイッチ411と比較器420により比較選択部430が構成される。 Theinput switch 411 includes a connection state (on state) and a non-connection state (off state) of the signal path to the input node [Y] of the readout signal read from the pixel PXL in accordance with the signal S420 indicating the comparison result of the comparator 420. Switch status).
Theinput switch 411 and the comparator 420 constitute a comparison / selection unit 430.
この入力スイッチ411と比較器420により比較選択部430が構成される。 The
The
クランプ回路412は、入力ノード[Y]に少なくとも最初に入力される基準レベルの信号Vrstを、クランプ信号CLPに応じてあらかじめ設定されたクランプレベル[V10]に固定するクランプ部412Aを含む。
クランプ回路412は、図3に示すように、増幅器AMP1、容量C1、C2、およびスイッチSW1を含んで構成される。
図11のクランプ回路412は、図3のクランプ回路を容量C11とスイッチSW11に簡略化して示しており、クランプ部412Aは容量C11とスイッチSW11により構成される。 Theclamp circuit 412 includes a clamp unit 412A that fixes a reference level signal Vrst input at least first to the input node [Y] to a clamp level [V10] set in advance according to the clamp signal CLP.
As shown in FIG. 3, theclamp circuit 412 includes an amplifier AMP1, capacitors C1 and C2, and a switch SW1.
Aclamp circuit 412 in FIG. 11 is illustrated by simplifying the clamp circuit in FIG. 3 with a capacitor C11 and a switch SW11, and the clamp unit 412A includes the capacitor C11 and the switch SW11.
クランプ回路412は、図3に示すように、増幅器AMP1、容量C1、C2、およびスイッチSW1を含んで構成される。
図11のクランプ回路412は、図3のクランプ回路を容量C11とスイッチSW11に簡略化して示しており、クランプ部412Aは容量C11とスイッチSW11により構成される。 The
As shown in FIG. 3, the
A
ADC410において、クランプ回路412をクランプ信号CLPによりスイッチSW11をオンさせることにより、新たな基準レベル[V10]を用いて、ノード[Y]に現れる基準レベルVrstを変更する。
このとき信号レベルVsig[N]は、新たな基準レベル[V10]を基準とした新たな信号レベルVsig[N’]となる。
この場合において、基準レベル[V10]と信号レベルVsig[N’]の差は一定である。 In theADC 410, the clamp circuit 412 turns on the switch SW11 with the clamp signal CLP, thereby changing the reference level Vrst appearing at the node [Y] using the new reference level [V10].
At this time, the signal level Vsig [N] becomes a new signal level Vsig [N ′] based on the new reference level [V10].
In this case, the difference between the reference level [V10] and the signal level Vsig [N ′] is constant.
このとき信号レベルVsig[N]は、新たな基準レベル[V10]を基準とした新たな信号レベルVsig[N’]となる。
この場合において、基準レベル[V10]と信号レベルVsig[N’]の差は一定である。 In the
At this time, the signal level Vsig [N] becomes a new signal level Vsig [N ′] based on the new reference level [V10].
In this case, the difference between the reference level [V10] and the signal level Vsig [N ′] is constant.
変換部413は、画素PXLから読み出され入力ノード[Y]に入力される複数の読み出し信号を、アナログ信号からデジタル信号にAD変換する。
The conversion unit 413 AD converts a plurality of read signals read from the pixel PXL and input to the input node [Y] from analog signals to digital signals.
比較器420は、入力スイッチ411とともに比較選択部430を構成する。
比較選択部430を構成する比較器420は、信号レベルの信号Vsigが入力ノード[Y]に現出しているときに、入力ノード[Y]の信号レベルとあらかじめ設定された参照電圧[V20]とを比較し、比較結果に応じた信号S420により、画素から読み出された読み出し信号の入力ノード[Y]への入力状態を選択するように入力スイッチ411のオンオフを切り替え制御する。 Thecomparator 420 constitutes a comparison / selection unit 430 together with the input switch 411.
Thecomparator 420 included in the comparison / selection unit 430 includes a signal level of the input node [Y] and a preset reference voltage [V20] when the signal level signal Vsig appears at the input node [Y]. The input switch 411 is switched on and off so as to select the input state of the read signal read from the pixel to the input node [Y] by the signal S420 corresponding to the comparison result.
比較選択部430を構成する比較器420は、信号レベルの信号Vsigが入力ノード[Y]に現出しているときに、入力ノード[Y]の信号レベルとあらかじめ設定された参照電圧[V20]とを比較し、比較結果に応じた信号S420により、画素から読み出された読み出し信号の入力ノード[Y]への入力状態を選択するように入力スイッチ411のオンオフを切り替え制御する。 The
The
本実施形態において、参照電圧[V20]は、合成すべき複数の読み出し信号の結合位置に相当するレベル(たとえば図2(B)の結合位置X)である。
In this embodiment, the reference voltage [V20] is a level (for example, the coupling position X in FIG. 2B) corresponding to the coupling position of a plurality of readout signals to be synthesized.
比較選択部430は、たとえば入力ノード[Y]のレベルが参照電圧[V20]より高い場合には、現比較対象の読み出し信号に後続の読み出し信号が連続して入力ノード[Y]に入力する状態を選択して、後続の読み出し信号が保持すべきAD変換対象となるように制御する。
この場合、比較器420の出力信号S420はたとえば「1」となり、入力スイッチ411はオン状態(接続状態)に制御される。 For example, when the level of the input node [Y] is higher than the reference voltage [V20], the comparison /selection unit 430 continuously inputs the read signal subsequent to the current comparison target read signal to the input node [Y]. Is selected and control is performed so that the subsequent read signal becomes an AD conversion target to be held.
In this case, the output signal S420 of thecomparator 420 is “1”, for example, and the input switch 411 is controlled to be in an on state (connected state).
この場合、比較器420の出力信号S420はたとえば「1」となり、入力スイッチ411はオン状態(接続状態)に制御される。 For example, when the level of the input node [Y] is higher than the reference voltage [V20], the comparison /
In this case, the output signal S420 of the
比較選択部430は、たとえば入力ノード[Y]のレベルが参照電圧V20より低い場合には、現比較対象の読み出し信号に後続の読み出し信号が入力ノード[Y]に入力しない状態を選択して、現比較対象の読み出し信号が保持すべきAD変換対象となるように制御する。
この場合、比較器420の出力信号S420はたとえば「0」となり、入力スイッチ411はオフ状態(非接続状態)に制御される。 For example, when the level of the input node [Y] is lower than the reference voltage V20, thecomparison selection unit 430 selects a state in which a subsequent read signal is not input to the input node [Y] as the current comparison target read signal. Control is performed so that the current comparison target read signal becomes the AD conversion target to be held.
In this case, the output signal S420 of thecomparator 420 is “0”, for example, and the input switch 411 is controlled to be in an off state (non-connected state).
この場合、比較器420の出力信号S420はたとえば「0」となり、入力スイッチ411はオフ状態(非接続状態)に制御される。 For example, when the level of the input node [Y] is lower than the reference voltage V20, the
In this case, the output signal S420 of the
保持部440-1,440-2は、スイッチSW440-1,SW440-2を介してADC410の出力に対して並列に接続され、ADC410でAD変換された基準レベルの信号または信号レベルの信号が選択的に保持される、
保持部440-1,440-2は、少なくともいずれかが、ADC410がAD変換処理中に上書き可能に構成されている。
なお、保持部の数は、2個以上で合成する読み出し信号の2倍の数2Mより少ない数に応じた数に設定される。本実施形態では、最小の2個の保持部440-1,440-2が配置されている。 The holding units 440-1 and 440-2 are connected in parallel to the output of theADC 410 via the switches SW 440-1 and SW 440-2, and a reference level signal or a signal level signal AD-converted by the ADC 410 is selected. Retained,
At least one of the holding units 440-1 and 440-2 is configured to be overwritten while theADC 410 performs AD conversion processing.
Note that the number of holding units is set to a number corresponding to a number smaller than 2M, which is twice the number of read signals to be combined. In this embodiment, the minimum two holding units 440-1 and 440-2 are arranged.
保持部440-1,440-2は、少なくともいずれかが、ADC410がAD変換処理中に上書き可能に構成されている。
なお、保持部の数は、2個以上で合成する読み出し信号の2倍の数2Mより少ない数に応じた数に設定される。本実施形態では、最小の2個の保持部440-1,440-2が配置されている。 The holding units 440-1 and 440-2 are connected in parallel to the output of the
At least one of the holding units 440-1 and 440-2 is configured to be overwritten while the
Note that the number of holding units is set to a number corresponding to a number smaller than 2M, which is twice the number of read signals to be combined. In this embodiment, the minimum two holding units 440-1 and 440-2 are arranged.
合成処理部450は、複数の保持部440-1,440-2に保持されたデジタル信号を合成して出力データODを生成する。
The synthesis processing unit 450 generates output data OD by synthesizing the digital signals held in the plurality of holding units 440-1 and 440-2.
図12は、合成する読み出し信号の数Mが2(M=2)の場合の図11の回路の動作を説明するための図である。
ここで、合成する読み出し信号の数Mが2(M=2)の場合の図11の回路の動作を、図12に関連付けて説明する。 FIG. 12 is a diagram for explaining the operation of the circuit of FIG. 11 when the number M of read signals to be combined is 2 (M = 2).
Here, the operation of the circuit in FIG. 11 when the number M of read signals to be combined is 2 (M = 2) will be described with reference to FIG.
ここで、合成する読み出し信号の数Mが2(M=2)の場合の図11の回路の動作を、図12に関連付けて説明する。 FIG. 12 is a diagram for explaining the operation of the circuit of FIG. 11 when the number M of read signals to be combined is 2 (M = 2).
Here, the operation of the circuit in FIG. 11 when the number M of read signals to be combined is 2 (M = 2) will be described with reference to FIG.
この場合、途切れのない画素読み出し信号(画素信号)PSD[N]は、図12に示すように、1つの画素信号PSD[N]内にM個(本例ではM=2)の基準レベルVrst[N,1]、Vrst[N,2]とM個の信号レベルVsig[N,1]、Vsig[N,2]により形成される。
すなわち、1つの途切れのない画素信号PSD[N]内にはM個の基準レベルVrst[N,1],Vrst[N,2]とM個の信号レベルVsig[N,1],Vsig[N,2]が含まれる。
同様に、1つの途切れのない画素信号PSD[N+1]内にはM個の基準レベルVrst[N+1,1],Vrst[N+1,2]とM個の信号レベルVsig[N+1,1],Vsig[N+1,2]が含まれる。 In this case, the pixel read signal (pixel signal) PSD [N] without interruption is M (M = 2 in this example) reference level Vrst in one pixel signal PSD [N] as shown in FIG. [N, 1], Vrst [N, 2] and M signal levels Vsig [N, 1], Vsig [N, 2].
That is, in one uninterrupted pixel signal PSD [N], M reference levels Vrst [N, 1], Vrst [N, 2] and M signal levels Vsig [N, 1], Vsig [N , 2].
Similarly, in one uninterrupted pixel signal PSD [N + 1], M reference levels Vrst [N + 1, 1], Vrst [N + 1, 2] and M signal levels Vsig [N + 1, 1], Vsig [ N + 1, 2].
すなわち、1つの途切れのない画素信号PSD[N]内にはM個の基準レベルVrst[N,1],Vrst[N,2]とM個の信号レベルVsig[N,1],Vsig[N,2]が含まれる。
同様に、1つの途切れのない画素信号PSD[N+1]内にはM個の基準レベルVrst[N+1,1],Vrst[N+1,2]とM個の信号レベルVsig[N+1,1],Vsig[N+1,2]が含まれる。 In this case, the pixel read signal (pixel signal) PSD [N] without interruption is M (M = 2 in this example) reference level Vrst in one pixel signal PSD [N] as shown in FIG. [N, 1], Vrst [N, 2] and M signal levels Vsig [N, 1], Vsig [N, 2].
That is, in one uninterrupted pixel signal PSD [N], M reference levels Vrst [N, 1], Vrst [N, 2] and M signal levels Vsig [N, 1], Vsig [N , 2].
Similarly, in one uninterrupted pixel signal PSD [N + 1], M reference levels Vrst [N + 1, 1], Vrst [N + 1, 2] and M signal levels Vsig [N + 1, 1], Vsig [ N + 1, 2].
このように、途切れのない画素信号PSDは、1つの画素信号PSD内にM個の基準レベルVrstとM個の信号レベルVsigが含まれており、その配列順は、1つの出力データOD[N,M]を構成する基準レベルVrst[N,M]が必ず先に入力されてから信号レベルVsig[N,M]が入力されることを制約とした上で複数存在する。
As described above, the pixel signal PSD without interruption includes M reference levels Vrst and M signal levels Vsig in one pixel signal PSD, and the arrangement order is one output data OD [N , M], a plurality of reference levels Vrst [N, M] must be input first and then the signal level Vsig [N, M] is input.
図12の例では、途切れのない画素信号PSD[N]では、2個の基準レベルVrst[N,1],Vrst[N,2]が入力されてから、2個の信号レベルVsig[N,1],Vsig[N,2]が入力される。
同様に、1つの途切れのない画素信号PSD[N+1]では、2個の基準レベルVrst[N+1,1],Vrst[N+1,2]が入力されてから、2個の信号レベルVsig[N+1,1],Vsig[N+1,2]が入力される。 In the example of FIG. 12, two reference levels Vrst [N, 1] and Vrst [N, 2] are input to the uninterrupted pixel signal PSD [N], and then two signal levels Vsig [N, 1], Vsig [N, 2] are input.
Similarly, in one uninterrupted pixel signal PSD [N + 1], two signal levels Vsig [N + 1,1] are input after two reference levels Vrst [N + 1,1] and Vrst [N + 1,2] are input. ], Vsig [N + 1, 2] are input.
同様に、1つの途切れのない画素信号PSD[N+1]では、2個の基準レベルVrst[N+1,1],Vrst[N+1,2]が入力されてから、2個の信号レベルVsig[N+1,1],Vsig[N+1,2]が入力される。 In the example of FIG. 12, two reference levels Vrst [N, 1] and Vrst [N, 2] are input to the uninterrupted pixel signal PSD [N], and then two signal levels Vsig [N, 1], Vsig [N, 2] are input.
Similarly, in one uninterrupted pixel signal PSD [N + 1], two signal levels Vsig [N + 1,1] are input after two reference levels Vrst [N + 1,1] and Vrst [N + 1,2] are input. ], Vsig [N + 1, 2] are input.
このように、途切れのない画素信号PSD[N]では、まず、基準レベルVrst[N,1],Vrst[N,2]が先に入力されることから、この際には比較選択部430の比較器420は比較処理を行わずリセット状態にあり、その出力は「1」である。
その結果、ADC410の入力スイッチ411はオン状態(接続状態)に保持される。 As described above, in the pixel signal PSD [N] without interruption, first, the reference levels Vrst [N, 1] and Vrst [N, 2] are input first. Thecomparator 420 is in a reset state without performing comparison processing, and its output is “1”.
As a result, theinput switch 411 of the ADC 410 is held in the on state (connected state).
その結果、ADC410の入力スイッチ411はオン状態(接続状態)に保持される。 As described above, in the pixel signal PSD [N] without interruption, first, the reference levels Vrst [N, 1] and Vrst [N, 2] are input first. The
As a result, the
このような状態でADC410においては、最初に入力される基準レベルVrst[N,1]が入力スイッチ411を介して入力ノード[Y]に伝送される。そして、ADC410では、クランプ回路412をクランプ信号CLPによりスイッチSW11をオンさせることにより、新たな基準レベル[V10]を用いて、ノード[Y]に現れる基準レベルVrstが変更される。
このとき信号レベルVsig[N]は、新たな基準レベル[V10]を基準とした新たな信号レベルVsig[N’]となる。
この場合において、基準レベル[V10]と信号レベルVsigの差は一定である。 In this state, in theADC 410, the first input reference level Vrst [N, 1] is transmitted to the input node [Y] via the input switch 411. In the ADC 410, the reference level Vrst appearing at the node [Y] is changed using the new reference level [V10] by turning on the switch SW11 of the clamp circuit 412 by the clamp signal CLP.
At this time, the signal level Vsig [N] becomes a new signal level Vsig [N ′] based on the new reference level [V10].
In this case, the difference between the reference level [V10] and the signal level Vsig is constant.
このとき信号レベルVsig[N]は、新たな基準レベル[V10]を基準とした新たな信号レベルVsig[N’]となる。
この場合において、基準レベル[V10]と信号レベルVsigの差は一定である。 In this state, in the
At this time, the signal level Vsig [N] becomes a new signal level Vsig [N ′] based on the new reference level [V10].
In this case, the difference between the reference level [V10] and the signal level Vsig is constant.
ADC410では、入力ノード[Y]に現出したレベルV10の基準レベルVrst[N]は変換部413でアナログ信号からデジタル信号に変換される(第1のAD変換(ADCNV)-1)。
そして、このデジタル信号は、たとえばスイッチSW440-1を介して保持部440-1に書き込まれ保持される。 In theADC 410, the reference level Vrst [N] of the level V10 appearing at the input node [Y] is converted from an analog signal to a digital signal by the conversion unit 413 (first AD conversion (ADCNV) -1).
The digital signal is written and held in the holding unit 440-1 via, for example, the switch SW440-1.
そして、このデジタル信号は、たとえばスイッチSW440-1を介して保持部440-1に書き込まれ保持される。 In the
The digital signal is written and held in the holding unit 440-1 via, for example, the switch SW440-1.
次いで、ADC410では、入力スイッチ411がオン状態に保持され、入力ノード[Y]には基準レベルVrst[N,2]が入力される。
ADC410では、入力ノード[Y]に引き続き現出した基準レベルVrst[N、2]は変換部413でアナログ信号からデジタル信号に変換される(第2のAD変換(ADCNV)-2)。
そして、このデジタル信号は、たとえばスイッチSW440-2介して保持部440-2に書き込まれ保持される。 Next, in theADC 410, the input switch 411 is held in the ON state, and the reference level Vrst [N, 2] is input to the input node [Y].
In theADC 410, the reference level Vrst [N, 2] that appears subsequently at the input node [Y] is converted from an analog signal to a digital signal by the conversion unit 413 (second AD conversion (ADCNV) -2).
The digital signal is written and held in the holding unit 440-2 through the switch SW440-2, for example.
ADC410では、入力ノード[Y]に引き続き現出した基準レベルVrst[N、2]は変換部413でアナログ信号からデジタル信号に変換される(第2のAD変換(ADCNV)-2)。
そして、このデジタル信号は、たとえばスイッチSW440-2介して保持部440-2に書き込まれ保持される。 Next, in the
In the
The digital signal is written and held in the holding unit 440-2 through the switch SW440-2, for example.
次いで、ADC410では、入力スイッチ411がオン状態に保持された状態で、入力ノード[Y]には信号レベルVsig[N,1]が入力される。
ここで、ADC410の入力ノード[Y]に信号レベルVsigが現出することから、比較選択部430の比較器420において、入力ノード[Y]に現出した信号レベルVsig[N]と参照電圧[V20]とが比較され、その結果を示す信号S420により入力スイッチ411のオンオフが制御される。 Next, in theADC 410, the signal level Vsig [N, 1] is input to the input node [Y] while the input switch 411 is held in the on state.
Here, since the signal level Vsig appears at the input node [Y] of theADC 410, the signal level Vsig [N] appearing at the input node [Y] and the reference voltage [N] in the comparator 420 of the comparison / selection unit 430. V20] and the input switch 411 is controlled to be turned on / off by a signal S420 indicating the result.
ここで、ADC410の入力ノード[Y]に信号レベルVsigが現出することから、比較選択部430の比較器420において、入力ノード[Y]に現出した信号レベルVsig[N]と参照電圧[V20]とが比較され、その結果を示す信号S420により入力スイッチ411のオンオフが制御される。 Next, in the
Here, since the signal level Vsig appears at the input node [Y] of the
入力スイッチ411がオン状態のままに保持された場合、入力ノード[[Y]には画素信号PSDの信号レベルVsigが現れ続け、入力スイッチ411がオフ状態に選択された場合、入力ノード[Y]には入力ノード[Y]の状態がそのまま保持される。
When the input switch 411 is kept on, the signal level Vsig of the pixel signal PSD continues to appear at the input node [[Y]. When the input switch 411 is selected to be off, the input node [Y] Holds the state of the input node [Y] as it is.
以上の処理は、画素信号PSD[N]の続く画素信号[N+1]でも同様に行われる。したがって、その詳細な説明は省略する。
The above processing is similarly performed for a pixel signal [N + 1] following the pixel signal PSD [N]. Therefore, the detailed description is abbreviate | omitted.
図12の例の画素信号PSD[N]では、入力ノード[Y]に入力された信号レベルVsig[N,1]が参照電圧[V20]より高いため、信号レベルVsig[N,1]のAD変換結果は不要となる。
つまり、図12の画素信号PSD[N]の例では、入力スイッチ411はオン状態のままで、信号レベルVsig[N,1]に引き続いて信号レベルVsig[N,2]が入力されて、後続の信号レベルVsig[N,2]が第3のAD変換(ADCNV)-3の対象となる。 In the pixel signal PSD [N] in the example of FIG. 12, since the signal level Vsig [N, 1] input to the input node [Y] is higher than the reference voltage [V20], AD of the signal level Vsig [N, 1] The conversion result becomes unnecessary.
That is, in the example of the pixel signal PSD [N] in FIG. 12, theinput switch 411 remains in the ON state, and the signal level Vsig [N, 2] is input subsequently to the signal level Vsig [N, 1]. The signal level Vsig [N, 2] is the target of the third AD conversion (ADCNV) -3.
つまり、図12の画素信号PSD[N]の例では、入力スイッチ411はオン状態のままで、信号レベルVsig[N,1]に引き続いて信号レベルVsig[N,2]が入力されて、後続の信号レベルVsig[N,2]が第3のAD変換(ADCNV)-3の対象となる。 In the pixel signal PSD [N] in the example of FIG. 12, since the signal level Vsig [N, 1] input to the input node [Y] is higher than the reference voltage [V20], AD of the signal level Vsig [N, 1] The conversion result becomes unnecessary.
That is, in the example of the pixel signal PSD [N] in FIG. 12, the
この場合、信号レベルVsig[N,1]のAD変換結果は不要となることから、これと対をなす基準レベルVrst[N,1]は不要となる。その結果、保持部440-1に既に保持されているデジタルの基準レベルVrst[N,1]は不要となる。
したがって、図11の回路では、変換部413でデジタル信号に変換された信号レベルVsig[N,2]がたとえばスイッチSW440-1を介して保持部440-1に上書きされて保持される。 In this case, since the AD conversion result of the signal level Vsig [N, 1] is unnecessary, the reference level Vrst [N, 1] paired therewith is not required. As a result, the digital reference level Vrst [N, 1] already held in the holding unit 440-1 becomes unnecessary.
Therefore, in the circuit of FIG. 11, the signal level Vsig [N, 2] converted into a digital signal by theconversion unit 413 is overwritten and held in the holding unit 440-1 via, for example, the switch SW440-1.
したがって、図11の回路では、変換部413でデジタル信号に変換された信号レベルVsig[N,2]がたとえばスイッチSW440-1を介して保持部440-1に上書きされて保持される。 In this case, since the AD conversion result of the signal level Vsig [N, 1] is unnecessary, the reference level Vrst [N, 1] paired therewith is not required. As a result, the digital reference level Vrst [N, 1] already held in the holding unit 440-1 becomes unnecessary.
Therefore, in the circuit of FIG. 11, the signal level Vsig [N, 2] converted into a digital signal by the
また、図12の例の画素信号PSD[N+1]では、入力ノード[Y]に入力された信号レベルVsig[N+1,1]が参照電圧[V20]より低いため、比較器420の出力信号S420が「0」となり、入力スイッチ411がオフ状態に制御される。その結果、信号レベルVsig[N+1,1]の後続の信号レベルVsig[N+1,2]のAD変換結果は不要となる。
つまり、図12の画素信号PSD[N+1]の例では、入力スイッチ411はオフ状態となり、入力ノード[Y]には信号レベルVsig[N+1,1]が引き続いて保持され、信号レベルVsig[N+1,1]が第3のAD変換(ADCNV)-3の対象となる。 Further, in the pixel signal PSD [N + 1] in the example of FIG. 12, since the signal level Vsig [N + 1, 1] input to the input node [Y] is lower than the reference voltage [V20], the output signal S420 of thecomparator 420 is It becomes “0”, and the input switch 411 is controlled to be in the OFF state. As a result, the AD conversion result of the signal level Vsig [N + 1, 1] subsequent to the signal level Vsig [N + 1, 1] becomes unnecessary.
That is, in the example of the pixel signal PSD [N + 1] in FIG. 12, theinput switch 411 is turned off, the signal level Vsig [N + 1, 1] is continuously held at the input node [Y], and the signal level Vsig [N + 1, 1] is the target of the third AD conversion (ADCNV) -3.
つまり、図12の画素信号PSD[N+1]の例では、入力スイッチ411はオフ状態となり、入力ノード[Y]には信号レベルVsig[N+1,1]が引き続いて保持され、信号レベルVsig[N+1,1]が第3のAD変換(ADCNV)-3の対象となる。 Further, in the pixel signal PSD [N + 1] in the example of FIG. 12, since the signal level Vsig [N + 1, 1] input to the input node [Y] is lower than the reference voltage [V20], the output signal S420 of the
That is, in the example of the pixel signal PSD [N + 1] in FIG. 12, the
この場合、信号レベルVsig[N+1,2]のAD変換結果は不要となることから、これと対をなす基準レベルVrst[N+1,2]は不要となる。その結果、保持部440-2に既に保持されているデジタルの基準レベルVrst[N+1,2]は不要となる。
したがって、図11の回路では、変換部413でデジタル信号に変換された信号レベルVsig[N+1,1]がたとえばスイッチSW440-2を介して保持部440-2に上書きされて保持される。 In this case, the AD conversion result of the signal level Vsig [N + 1, 2] is unnecessary, and therefore, the reference level Vrst [N + 1, 2] paired therewith is unnecessary. As a result, the digital reference level Vrst [N + 1, 2] already held in the holding unit 440-2 becomes unnecessary.
Therefore, in the circuit of FIG. 11, the signal level Vsig [N + 1, 1] converted into a digital signal by theconversion unit 413 is overwritten and held in the holding unit 440-2 via the switch SW440-2, for example.
したがって、図11の回路では、変換部413でデジタル信号に変換された信号レベルVsig[N+1,1]がたとえばスイッチSW440-2を介して保持部440-2に上書きされて保持される。 In this case, the AD conversion result of the signal level Vsig [N + 1, 2] is unnecessary, and therefore, the reference level Vrst [N + 1, 2] paired therewith is unnecessary. As a result, the digital reference level Vrst [N + 1, 2] already held in the holding unit 440-2 becomes unnecessary.
Therefore, in the circuit of FIG. 11, the signal level Vsig [N + 1, 1] converted into a digital signal by the
このように、本実施形態に係る図11の回路によれば、従来4回必要であったAD変換動作が3回となり、基本的に保持部440も4個から3個になる。
さらにこのとき、第3のAD変換(ADCNV)-3に選ばれた信号レベルと対になる基準レベル以外は不要となるため、本例のように上書き可能な保持部を持った場合、保持部440-1または440-2に対して上書きすることで、保持部の数は2個になる。
つまり、本実施形態に係る図11の回路によれば、保持部の増加はなくなり、最小2個まで削減することが可能となる。 As described above, according to the circuit of FIG. 11 according to the present embodiment, the AD conversion operation that is conventionally required four times is performed three times, and the number of holding units 440 is basically changed from four to three.
At this time, other than the reference level that is paired with the signal level selected for the third AD conversion (ADCNV) -3 is not necessary. By overwriting 440-1 or 440-2, the number of holding units becomes two.
That is, according to the circuit of FIG. 11 according to the present embodiment, the number of holding units is not increased, and a minimum of two can be reduced.
さらにこのとき、第3のAD変換(ADCNV)-3に選ばれた信号レベルと対になる基準レベル以外は不要となるため、本例のように上書き可能な保持部を持った場合、保持部440-1または440-2に対して上書きすることで、保持部の数は2個になる。
つまり、本実施形態に係る図11の回路によれば、保持部の増加はなくなり、最小2個まで削減することが可能となる。 As described above, according to the circuit of FIG. 11 according to the present embodiment, the AD conversion operation that is conventionally required four times is performed three times, and the number of holding units 440 is basically changed from four to three.
At this time, other than the reference level that is paired with the signal level selected for the third AD conversion (ADCNV) -3 is not necessary. By overwriting 440-1 or 440-2, the number of holding units becomes two.
That is, according to the circuit of FIG. 11 according to the present embodiment, the number of holding units is not increased, and a minimum of two can be reduced.
以上、合成する読み出し信号の数Mが2(M=2)の場合の図11の回路の動作を、図12に関連付けて説明した。
本発明は、合成する読み出し信号の数Mが2(M=2)の場合だけでなく、さらに多い数、たとえば4つ(M=4)の読み出し信号を合成する場合にも適用することができる。 The operation of the circuit in FIG. 11 when the number M of read signals to be combined is 2 (M = 2) has been described above with reference to FIG.
The present invention can be applied not only when the number M of read signals to be combined is 2 (M = 2) but also when combining a larger number of read signals, for example, 4 (M = 4). .
本発明は、合成する読み出し信号の数Mが2(M=2)の場合だけでなく、さらに多い数、たとえば4つ(M=4)の読み出し信号を合成する場合にも適用することができる。 The operation of the circuit in FIG. 11 when the number M of read signals to be combined is 2 (M = 2) has been described above with reference to FIG.
The present invention can be applied not only when the number M of read signals to be combined is 2 (M = 2) but also when combining a larger number of read signals, for example, 4 (M = 4). .
図13(A)および(B)は、固体撮像装置において、ダイナミックレンジを高める(拡大させる)方法であって、合成する読み出し信号の数Mが4(M=4)の場合の途切れのない画素信号の合成処理方法を説明するための図である。
FIGS. 13A and 13B show a method for increasing (enlarging) the dynamic range in a solid-state imaging device, and a pixel without interruption when the number M of readout signals to be combined is 4 (M = 4). It is a figure for demonstrating the synthetic | combination processing method of a signal.
途切れのない画素信号PSDは同一の光量に対してM(=4)個の信号が異なる増幅率Kを持ちうる。
図13(A)および(B)は、M=4、かつ、増幅率の比K(1)/K(2)=2,比K(1)/K(3)=3,比K(1)/K(4)=4とした例である。 The uninterrupted pixel signal PSD can have different amplification factors K for M (= 4) signals for the same light quantity.
FIGS. 13A and 13B show that M = 4 and the ratio of amplification factors K (1) / K (2) = 2, the ratio K (1) / K (3) = 3, and the ratio K (1 ) / K (4) = 4.
図13(A)および(B)は、M=4、かつ、増幅率の比K(1)/K(2)=2,比K(1)/K(3)=3,比K(1)/K(4)=4とした例である。 The uninterrupted pixel signal PSD can have different amplification factors K for M (= 4) signals for the same light quantity.
FIGS. 13A and 13B show that M = 4 and the ratio of amplification factors K (1) / K (2) = 2, the ratio K (1) / K (3) = 3, and the ratio K (1 ) / K (4) = 4.
図2の例と同様に、途切れのない画素信号PSDにより得られた出力データOD[*,1]、OD[*,2]、OD[*、3]、OS[*,4]は図13(A)に示すような傾きの異なる特性の信号となる。
合成処理においては、出力データOD[*,2]、OD[*、3]、OS[*,4]をその比に合わせて増幅し、図13(B)に示すように、一つの合成された最終的な出力データODAを得る。 Similar to the example of FIG. 2, the output data OD [*, 1], OD [*, 2], OD [*, 3], OS [*, 4] obtained by the uninterrupted pixel signal PSD are shown in FIG. Signals having different characteristics as shown in FIG.
In the synthesizing process, the output data OD [*, 2], OD [*, 3], OS [*, 4] are amplified according to the ratio, and one synthesized as shown in FIG. The final output data ODA is obtained.
合成処理においては、出力データOD[*,2]、OD[*、3]、OS[*,4]をその比に合わせて増幅し、図13(B)に示すように、一つの合成された最終的な出力データODAを得る。 Similar to the example of FIG. 2, the output data OD [*, 1], OD [*, 2], OD [*, 3], OS [*, 4] obtained by the uninterrupted pixel signal PSD are shown in FIG. Signals having different characteristics as shown in FIG.
In the synthesizing process, the output data OD [*, 2], OD [*, 3], OS [*, 4] are amplified according to the ratio, and one synthesized as shown in FIG. The final output data ODA is obtained.
このとき、図13(B)に示すように、結合位置(点)[X]は[X1],[X2]、[X3]の3点となる。
[X1]は出力データOD[*,1]とOD[*,2]の結合点を示し、[X2]は出力データOD[*,2]とOD[*,3]の結合点を示し、[X3]は出力データOD[*,3]とOD[*,4]の結合点を示している。
それに伴い、参照電圧[V20]は[V20 1],[V20 2],[V20 3]となる。 At this time, as shown in FIG. 13B, the coupling position (point) [X] becomes three points [X1], [X2], and [X3].
[X1] indicates a connection point between the output data OD [*, 1] and OD [*, 2], [X2] indicates a connection point between the output data OD [*, 2] and OD [*, 3], [X3] indicates a connection point between the output data OD [*, 3] and OD [*, 4].
Accordingly, the reference voltage [V20] is set to [V20 1], [V20 2], [V20 3].
[X1]は出力データOD[*,1]とOD[*,2]の結合点を示し、[X2]は出力データOD[*,2]とOD[*,3]の結合点を示し、[X3]は出力データOD[*,3]とOD[*,4]の結合点を示している。
それに伴い、参照電圧[V20]は[V20 1],[V20 2],[V20 3]となる。 At this time, as shown in FIG. 13B, the coupling position (point) [X] becomes three points [X1], [X2], and [X3].
[X1] indicates a connection point between the output data OD [*, 1] and OD [*, 2], [X2] indicates a connection point between the output data OD [*, 2] and OD [*, 3], [X3] indicates a connection point between the output data OD [*, 3] and OD [*, 4].
Accordingly, the reference voltage [V20] is set to [V20 1], [V20 2], [V20 3].
図14(A)および(B)は、合成する読み出し信号の数Mが4(M=4)の場合の図11の回路の動作を説明するための図である。
図14(A)は信号レベルVsig[N,2]が第3のAD変換(ADCNV)-3の対象として選択された場合である。図14(B)は信号レベルVsig[N,3]が第3のAD変換(ADCNV)-3の対象に選択された場合である。 FIGS. 14A and 14B are diagrams for explaining the operation of the circuit of FIG. 11 when the number M of read signals to be combined is 4 (M = 4).
FIG. 14A shows a case where the signal level Vsig [N, 2] is selected as the target of the third AD conversion (ADCNV) -3. FIG. 14B shows the case where the signal level Vsig [N, 3] is selected as the target of the third AD conversion (ADCNV) -3.
図14(A)は信号レベルVsig[N,2]が第3のAD変換(ADCNV)-3の対象として選択された場合である。図14(B)は信号レベルVsig[N,3]が第3のAD変換(ADCNV)-3の対象に選択された場合である。 FIGS. 14A and 14B are diagrams for explaining the operation of the circuit of FIG. 11 when the number M of read signals to be combined is 4 (M = 4).
FIG. 14A shows a case where the signal level Vsig [N, 2] is selected as the target of the third AD conversion (ADCNV) -3. FIG. 14B shows the case where the signal level Vsig [N, 3] is selected as the target of the third AD conversion (ADCNV) -3.
ここで、合成する読み出し信号の数Mが4(M=4)の場合の図11の回路の動作を、図14(A)および(B)に関連付けて説明する。
ただし、基準レベルVrstに対する処理は、基本的に図12の場合と同様であることから、信号レベルVsigに対する処理を中心に説明する。 Here, the operation of the circuit in FIG. 11 when the number M of read signals to be combined is 4 (M = 4) will be described with reference to FIGS. 14 (A) and 14 (B).
However, since the processing for the reference level Vrst is basically the same as the case of FIG. 12, the processing for the signal level Vsig will be mainly described.
ただし、基準レベルVrstに対する処理は、基本的に図12の場合と同様であることから、信号レベルVsigに対する処理を中心に説明する。 Here, the operation of the circuit in FIG. 11 when the number M of read signals to be combined is 4 (M = 4) will be described with reference to FIGS. 14 (A) and 14 (B).
However, since the processing for the reference level Vrst is basically the same as the case of FIG. 12, the processing for the signal level Vsig will be mainly described.
図14(A)および(B)の例では、配列順は、M=2の配列を2回繰り返し、M=4の途切れのない画素信号PSD[N]が形成されている。
そして、図14(A)および(B)の例では、比較選択部430の比較器420における比較器動作は、信号レベルVsig[N,1]、Vsig[N,2]、Vsig[N,3]で行われる。 In the examples of FIGS. 14A and 14B, the arrangement order is such that the arrangement of M = 2 is repeated twice, and a pixel signal PSD [N] without interruption of M = 4 is formed.
14A and 14B, the comparator operations in thecomparator 420 of the comparison / selection unit 430 are the signal levels Vsig [N, 1], Vsig [N, 2], Vsig [N, 3 ] Is performed.
そして、図14(A)および(B)の例では、比較選択部430の比較器420における比較器動作は、信号レベルVsig[N,1]、Vsig[N,2]、Vsig[N,3]で行われる。 In the examples of FIGS. 14A and 14B, the arrangement order is such that the arrangement of M = 2 is repeated twice, and a pixel signal PSD [N] without interruption of M = 4 is formed.
14A and 14B, the comparator operations in the
図14(A)の例は、上述したように、信号レベルVsig[N,2]が第3のAD変換-3の対象として選択された場合である。
この場合、比較器420において、1回目の比較動作は、信号レベルVsig[N,1]と参照電圧[V20_1]で行われる。
図14(A)の例では、信号レベルVsig[N,1]の方が参照電圧[V20_1]より高いので、信号レベルVsig[N,1]のAD変換結果は不要となる。
つまり、図14(A)の画素信号PSD[N]の例では、入力スイッチ411はオン状態のままで、信号レベルVsig[N,1]に引き続いて信号レベルVsig[N,2]が入力される。 The example of FIG. 14A is a case where the signal level Vsig [N, 2] is selected as the target of the third AD conversion-3 as described above.
In this case, in thecomparator 420, the first comparison operation is performed at the signal level Vsig [N, 1] and the reference voltage [V20_1].
In the example of FIG. 14A, since the signal level Vsig [N, 1] is higher than the reference voltage [V20_1], the AD conversion result of the signal level Vsig [N, 1] becomes unnecessary.
That is, in the example of the pixel signal PSD [N] in FIG. 14A, the signal level Vsig [N, 2] is input subsequent to the signal level Vsig [N, 1] while theinput switch 411 remains on. The
この場合、比較器420において、1回目の比較動作は、信号レベルVsig[N,1]と参照電圧[V20_1]で行われる。
図14(A)の例では、信号レベルVsig[N,1]の方が参照電圧[V20_1]より高いので、信号レベルVsig[N,1]のAD変換結果は不要となる。
つまり、図14(A)の画素信号PSD[N]の例では、入力スイッチ411はオン状態のままで、信号レベルVsig[N,1]に引き続いて信号レベルVsig[N,2]が入力される。 The example of FIG. 14A is a case where the signal level Vsig [N, 2] is selected as the target of the third AD conversion-3 as described above.
In this case, in the
In the example of FIG. 14A, since the signal level Vsig [N, 1] is higher than the reference voltage [V20_1], the AD conversion result of the signal level Vsig [N, 1] becomes unnecessary.
That is, in the example of the pixel signal PSD [N] in FIG. 14A, the signal level Vsig [N, 2] is input subsequent to the signal level Vsig [N, 1] while the
比較器420において、2回目の比較動作は、信号レベルVsig[N,2]と参照電圧[V20_2]で行われる。
図14(A)の例では、信号レベルVsig[N,2]の方が参照電圧[V20_2]より低いので、後続する信号処理が全て不要となる。
つまり、入力スイッチ411はオフ状態に保持され、第3のAD変換-3まで入力ノード[Y]には信号レベルVsig[N,2]が保持され、その変換動作を変換部413で行われる。 In thecomparator 420, the second comparison operation is performed at the signal level Vsig [N, 2] and the reference voltage [V20_2].
In the example of FIG. 14A, since the signal level Vsig [N, 2] is lower than the reference voltage [V20_2], all subsequent signal processing is unnecessary.
That is, theinput switch 411 is held in the OFF state, the signal level Vsig [N, 2] is held at the input node [Y] until the third AD conversion-3, and the conversion operation is performed by the conversion unit 413.
図14(A)の例では、信号レベルVsig[N,2]の方が参照電圧[V20_2]より低いので、後続する信号処理が全て不要となる。
つまり、入力スイッチ411はオフ状態に保持され、第3のAD変換-3まで入力ノード[Y]には信号レベルVsig[N,2]が保持され、その変換動作を変換部413で行われる。 In the
In the example of FIG. 14A, since the signal level Vsig [N, 2] is lower than the reference voltage [V20_2], all subsequent signal processing is unnecessary.
That is, the
以下、この動作を保持部に関連付けて考察する。
図12の例で述べたように、保持部440-1には基準レベルVrst[N,1]が、保持部440-2には基準レベルVrst[N,2])が一旦保持される。
しかし、2回目の比較動作により信号レベルVsig[N,2]が第3のAD変換-3の対象に選択されたため、保持部440-1に保持された基準レベルVrst[N,1]が不要になる。
これにより、保持部440-1は第3のAD変換-3により、信号レベルVsig[N,2]に上書きされる。 Hereinafter, this operation will be considered in association with the holding unit.
As described in the example of FIG. 12, the holding unit 440-1 temporarily holds the reference level Vrst [N, 1], and the holding unit 440-2 holds the reference level Vrst [N, 2]).
However, since the signal level Vsig [N, 2] is selected as the target of the third AD conversion-3 by the second comparison operation, the reference level Vrst [N, 1] held in the holding unit 440-1 is unnecessary. become.
As a result, the holding unit 440-1 is overwritten with the signal level Vsig [N, 2] by the third AD conversion-3.
図12の例で述べたように、保持部440-1には基準レベルVrst[N,1]が、保持部440-2には基準レベルVrst[N,2])が一旦保持される。
しかし、2回目の比較動作により信号レベルVsig[N,2]が第3のAD変換-3の対象に選択されたため、保持部440-1に保持された基準レベルVrst[N,1]が不要になる。
これにより、保持部440-1は第3のAD変換-3により、信号レベルVsig[N,2]に上書きされる。 Hereinafter, this operation will be considered in association with the holding unit.
As described in the example of FIG. 12, the holding unit 440-1 temporarily holds the reference level Vrst [N, 1], and the holding unit 440-2 holds the reference level Vrst [N, 2]).
However, since the signal level Vsig [N, 2] is selected as the target of the third AD conversion-3 by the second comparison operation, the reference level Vrst [N, 1] held in the holding unit 440-1 is unnecessary. become.
As a result, the holding unit 440-1 is overwritten with the signal level Vsig [N, 2] by the third AD conversion-3.
図14(B)の例は、上述したように、信号レベルVsig[N,3]が第3のAD変換-3の対象に選択された場合である。
この場合、比較器420において、1回目と2回目の比較動作では信号レベルVsigが参照電圧[V20_1],[V20_2]より高いため、入力スイッチ411はオン状態のままに保持される。
比較器420において、3回目の比較動作は、信号レベルVsig[N,3]と参照電圧[V20_3]で行われる。
図14(B)の例では、信号レベルVsig[N,3]の方が参照電圧[V20_3]より低いので、後続する信号処理が全て不要となる。
つまり、入力スイッチ411はオフ状態に保持され、第3のAD変換-3まで入力ノード[Y]には信号レベルVsig[N,3]が保持され、その変換動作を変換部413で行われる。 The example of FIG. 14B is a case where the signal level Vsig [N, 3] is selected as the target of the third AD conversion-3 as described above.
In this case, in thecomparator 420, the signal level Vsig is higher than the reference voltages [V20_1] and [V20_2] in the first and second comparison operations, and thus the input switch 411 is held in the on state.
In thecomparator 420, the third comparison operation is performed with the signal level Vsig [N, 3] and the reference voltage [V20_3].
In the example of FIG. 14B, since the signal level Vsig [N, 3] is lower than the reference voltage [V20_3], all subsequent signal processing becomes unnecessary.
That is, theinput switch 411 is held in the OFF state, the signal level Vsig [N, 3] is held at the input node [Y] until the third AD conversion-3, and the conversion operation is performed by the conversion unit 413.
この場合、比較器420において、1回目と2回目の比較動作では信号レベルVsigが参照電圧[V20_1],[V20_2]より高いため、入力スイッチ411はオン状態のままに保持される。
比較器420において、3回目の比較動作は、信号レベルVsig[N,3]と参照電圧[V20_3]で行われる。
図14(B)の例では、信号レベルVsig[N,3]の方が参照電圧[V20_3]より低いので、後続する信号処理が全て不要となる。
つまり、入力スイッチ411はオフ状態に保持され、第3のAD変換-3まで入力ノード[Y]には信号レベルVsig[N,3]が保持され、その変換動作を変換部413で行われる。 The example of FIG. 14B is a case where the signal level Vsig [N, 3] is selected as the target of the third AD conversion-3 as described above.
In this case, in the
In the
In the example of FIG. 14B, since the signal level Vsig [N, 3] is lower than the reference voltage [V20_3], all subsequent signal processing becomes unnecessary.
That is, the
以下、この動作を保持部に関連付けて考察する。
1回目、2回目の比較動作によりスイッチ411がオン状態のままであった場合、保持部440-1,440-2に一旦保持された基準レベルVrst[N,1]、Vrst[N,2]は不要となる。
つまり、保持部440-1には基準レベルVrst[N,3]が、保持部440-2には基準レベルVrst[N,4]が上書きされる。
3回目の比較動作により信号レベルVsig[N,3]が第3のAD変換-3の対象に選択されたため、保持部440-2に保持格納された基準レベルVrst[N,4]が不要になる。
つまり、保持部440-2は第3のAD変換-3により、信号レベルVsig[N,3]に上書きされる。
この結果、M=2の配列を繰り返した拡張より形成された途切れのない画素信号はM個の場合においても、保持部は2個のままである。つまり、保持部の増加はない。 Hereinafter, this operation will be considered in association with the holding unit.
When theswitch 411 remains on by the first and second comparison operations, the reference levels Vrst [N, 1] and Vrst [N, 2] temporarily held in the holding units 440-1 and 440-2 Is no longer necessary.
That is, the holding unit 440-1 is overwritten with the reference level Vrst [N, 3], and the holding unit 440-2 is overwritten with the reference level Vrst [N, 4].
Since the signal level Vsig [N, 3] is selected as the target of the third AD conversion-3 by the third comparison operation, the reference level Vrst [N, 4] held and stored in the holding unit 440-2 becomes unnecessary. Become.
That is, the holding unit 440-2 is overwritten with the signal level Vsig [N, 3] by the third AD conversion-3.
As a result, even when the number of uninterrupted pixel signals formed by the expansion of repeating the M = 2 array is M, the number of holding units remains two. That is, there is no increase in the holding portion.
1回目、2回目の比較動作によりスイッチ411がオン状態のままであった場合、保持部440-1,440-2に一旦保持された基準レベルVrst[N,1]、Vrst[N,2]は不要となる。
つまり、保持部440-1には基準レベルVrst[N,3]が、保持部440-2には基準レベルVrst[N,4]が上書きされる。
3回目の比較動作により信号レベルVsig[N,3]が第3のAD変換-3の対象に選択されたため、保持部440-2に保持格納された基準レベルVrst[N,4]が不要になる。
つまり、保持部440-2は第3のAD変換-3により、信号レベルVsig[N,3]に上書きされる。
この結果、M=2の配列を繰り返した拡張より形成された途切れのない画素信号はM個の場合においても、保持部は2個のままである。つまり、保持部の増加はない。 Hereinafter, this operation will be considered in association with the holding unit.
When the
That is, the holding unit 440-1 is overwritten with the reference level Vrst [N, 3], and the holding unit 440-2 is overwritten with the reference level Vrst [N, 4].
Since the signal level Vsig [N, 3] is selected as the target of the third AD conversion-3 by the third comparison operation, the reference level Vrst [N, 4] held and stored in the holding unit 440-2 becomes unnecessary. Become.
That is, the holding unit 440-2 is overwritten with the signal level Vsig [N, 3] by the third AD conversion-3.
As a result, even when the number of uninterrupted pixel signals formed by the expansion of repeating the M = 2 array is M, the number of holding units remains two. That is, there is no increase in the holding portion.
以上説明したように、本第1の実施形態によれば、読み出し部80が、ADC410および比較選択部430を構成する比較器420を有する。
比較選択部430は、信号レベルの信号Vsigが力ノード[Y]に現出しているときに、入力ノード[Y]の信号レベルとあらかじめ設定された参照電圧[V20]とを比較し、比較結果に応じた信号S420により、画素から読み出された読み出し信号の入力ノードへの入力状態を選択するように入力スイッチ411のオンオフを切り替え制御する。
具体的には、比較選択部430は、入力ノード[Y]のレベルが参照電圧[V20]より高い場合には、現比較対象の読み出し信号に後続の読み出し信号が連続して入力ノード[Y]に入力する状態を選択して、後続の読み出し信号が保持すべきAD変換対象となるように制御する。
比較選択部430は、入力ノード[Y]のレベルが参照電圧[V20]より低い場合には、現比較対象の読み出し信号に後続の読み出し信号が入力ノード[Y]に入力しない状態を選択して、現比較対象の読み出し信号が保持すべきAD変換対象となるように制御する。 As described above, according to the first embodiment, thereading unit 80 includes the comparator 420 that constitutes the ADC 410 and the comparison / selection unit 430.
Thecomparison selection unit 430 compares the signal level of the input node [Y] with a preset reference voltage [V20] when the signal level signal Vsig appears at the force node [Y], and the comparison result In response to the signal S420, the input switch 411 is switched on and off so as to select the input state of the readout signal read from the pixel to the input node.
Specifically, when the level of the input node [Y] is higher than the reference voltage [V20], the comparison /selection unit 430 receives the subsequent read signal continuously from the read signal to be compared to the input node [Y]. The state to be input to is selected, and control is performed so that the subsequent read signal becomes the AD conversion target to be held.
When the level of the input node [Y] is lower than the reference voltage [V20], thecomparison selection unit 430 selects a state in which the subsequent readout signal is not input to the input node [Y] as the readout signal to be compared. Then, control is performed so that the current comparison target read signal becomes the AD conversion target to be held.
比較選択部430は、信号レベルの信号Vsigが力ノード[Y]に現出しているときに、入力ノード[Y]の信号レベルとあらかじめ設定された参照電圧[V20]とを比較し、比較結果に応じた信号S420により、画素から読み出された読み出し信号の入力ノードへの入力状態を選択するように入力スイッチ411のオンオフを切り替え制御する。
具体的には、比較選択部430は、入力ノード[Y]のレベルが参照電圧[V20]より高い場合には、現比較対象の読み出し信号に後続の読み出し信号が連続して入力ノード[Y]に入力する状態を選択して、後続の読み出し信号が保持すべきAD変換対象となるように制御する。
比較選択部430は、入力ノード[Y]のレベルが参照電圧[V20]より低い場合には、現比較対象の読み出し信号に後続の読み出し信号が入力ノード[Y]に入力しない状態を選択して、現比較対象の読み出し信号が保持すべきAD変換対象となるように制御する。 As described above, according to the first embodiment, the
The
Specifically, when the level of the input node [Y] is higher than the reference voltage [V20], the comparison /
When the level of the input node [Y] is lower than the reference voltage [V20], the
したがって、本第1の実施形態によれば、M個の途切れのない画素信号に対して2以上で2M個より少ない保持部で対応でき、また、2M回より少ないAD変換動作を行えば良く、回路面積が増大、処理時間の増大を抑止することが可能となる。
また、参照電圧[V20]を用いた比較動作は、自身のアナログノイズにより、境目を強調させないことが可能となり、回路面積の増大、処理時間の増大を抑止しつつAD変換精度の劣化を防止することが可能となる。 Therefore, according to the first embodiment, it is possible to cope with M uninterrupted pixel signals with 2 or more holding units less than 2M, and to perform AD conversion operation less than 2M times. It is possible to suppress an increase in circuit area and an increase in processing time.
Further, the comparison operation using the reference voltage [V20] can prevent the boundary from being emphasized by its own analog noise, and prevents the deterioration of the AD conversion accuracy while suppressing an increase in circuit area and an increase in processing time. It becomes possible.
また、参照電圧[V20]を用いた比較動作は、自身のアナログノイズにより、境目を強調させないことが可能となり、回路面積の増大、処理時間の増大を抑止しつつAD変換精度の劣化を防止することが可能となる。 Therefore, according to the first embodiment, it is possible to cope with M uninterrupted pixel signals with 2 or more holding units less than 2M, and to perform AD conversion operation less than 2M times. It is possible to suppress an increase in circuit area and an increase in processing time.
Further, the comparison operation using the reference voltage [V20] can prevent the boundary from being emphasized by its own analog noise, and prevents the deterioration of the AD conversion accuracy while suppressing an increase in circuit area and an increase in processing time. It becomes possible.
すなわち、本第1の実施形態によれば、回路面積の増大、処理時間の増大を抑止しつつ、AD変換精度の劣化を防止することが可能で、しかも広ダイナミックレンジ化を実現でき、ひいては高画質化を実現することが可能となる。
That is, according to the first embodiment, it is possible to prevent the deterioration of the AD conversion accuracy while suppressing an increase in circuit area and an increase in processing time, and it is possible to realize a wide dynamic range. It becomes possible to realize image quality.
(第2の実施形態)
図15は、本発明の第2の実施形態に係る固体撮像装置の画素部の列出力の読み出し系を形成するADCの入力部に配置されるクランプ回路の構成例を示す図である。
図15は、クランプ回路の入力段を抽出した一例を示し、クランプ回路412Bは、簡略化せず、増幅器AMP11、容量C11、C12、およびスイッチSW11を含んで構成されている例として示されている。
図16は、図15の回路の動作例を示す図である。 (Second Embodiment)
FIG. 15 is a diagram illustrating a configuration example of a clamp circuit disposed in an input unit of an ADC that forms a column output readout system of a pixel unit of a solid-state imaging device according to the second embodiment of the present invention.
FIG. 15 shows an example in which the input stage of the clamp circuit is extracted, and theclamp circuit 412B is not simplified and is shown as an example including an amplifier AMP11, capacitors C11 and C12, and a switch SW11. .
FIG. 16 is a diagram illustrating an operation example of the circuit of FIG.
図15は、本発明の第2の実施形態に係る固体撮像装置の画素部の列出力の読み出し系を形成するADCの入力部に配置されるクランプ回路の構成例を示す図である。
図15は、クランプ回路の入力段を抽出した一例を示し、クランプ回路412Bは、簡略化せず、増幅器AMP11、容量C11、C12、およびスイッチSW11を含んで構成されている例として示されている。
図16は、図15の回路の動作例を示す図である。 (Second Embodiment)
FIG. 15 is a diagram illustrating a configuration example of a clamp circuit disposed in an input unit of an ADC that forms a column output readout system of a pixel unit of a solid-state imaging device according to the second embodiment of the present invention.
FIG. 15 shows an example in which the input stage of the clamp circuit is extracted, and the
FIG. 16 is a diagram illustrating an operation example of the circuit of FIG.
本第2の実施形態の読み出し系が第1の実施形態の読み出し系が異なる点は、次の通りである。
第2の実施形態の読み出し系は、基本的にクランプ回路を2つ有している。
また、第2の実施形態では、比較選択部が設けられていない例が示されている。ただし、後述の第3の実施形態のように、比較選択部430を設けることも可能である。 The reading system of the second embodiment is different from the reading system of the first embodiment as follows.
The readout system of the second embodiment basically has two clamp circuits.
In the second embodiment, an example in which no comparison / selection unit is provided is shown. However, it is also possible to provide a comparison /selection unit 430 as in a third embodiment described later.
第2の実施形態の読み出し系は、基本的にクランプ回路を2つ有している。
また、第2の実施形態では、比較選択部が設けられていない例が示されている。ただし、後述の第3の実施形態のように、比較選択部430を設けることも可能である。 The reading system of the second embodiment is different from the reading system of the first embodiment as follows.
The readout system of the second embodiment basically has two clamp circuits.
In the second embodiment, an example in which no comparison / selection unit is provided is shown. However, it is also possible to provide a comparison /
クランプ回路412Bにおいては、増幅器AMP11、容量C12、およびスイッチSW11を共用してクランプ部412Aが形成され、経路選択用スイッチ462-1,462-2と容量C11-1,C11-2のみが追加されて設けられている。
これにより、回路面積の増大が抑止されている。 In theclamp circuit 412B, the amplifier AMP11, the capacitor C12, and the switch SW11 are shared to form a clamp unit 412A, and only the path selection switches 462-1 and 462-2 and the capacitors C11-1 and C11-2 are added. Is provided.
As a result, an increase in circuit area is suppressed.
これにより、回路面積の増大が抑止されている。 In the
As a result, an increase in circuit area is suppressed.
図15の回路では、クランプ回路412Bのクランプ部412Aの入力側に、経路選択部460が配置されている。
経路選択部460は、画素PXLから読み出される合成すべき複数(本例では2)の読み出し信号の各々が個別に伝送される複数の信号経路461-1[A],461-2[B]を含み、経路選択信号に応じていずれか一つの信号経路461-1,461-2を伝送される読み出し信号をクランプ部412Aに供給する。
経路選択部460は、各信号経路461-1[A],461-2[B]に配置され、対応する経路選択信号WA,WBに応じて信号経路461-1,461-2の接続状態と非接続状態を切り替える複数の経路選択スイッチ462-1,462-2を含む。
そして、信号経路461-1に容量C11-1が配置され、信号経路461-2に容量C11-2が配置されている。 In the circuit of FIG. 15, apath selection unit 460 is disposed on the input side of the clamp unit 412A of the clamp circuit 412B.
Thepath selection unit 460 selects a plurality of signal paths 461-1 [A] and 461-2 [B] through which each of a plurality (2 in this example) of readout signals to be combined read from the pixel PXL is individually transmitted. In addition, a read signal transmitted through any one of the signal paths 461-1 and 461-2 is supplied to the clamp unit 412A according to the path selection signal.
Theroute selection unit 460 is disposed in each of the signal routes 461-1 [A] and 461-2 [B], and the connection state of the signal routes 461-1 and 461-2 according to the corresponding route selection signals WA and WB. A plurality of route selection switches 462-1 and 462-2 for switching the non-connected state are included.
A capacitor C11-1 is arranged in the signal path 461-1, and a capacitor C11-2 is arranged in the signal path 461-2.
経路選択部460は、画素PXLから読み出される合成すべき複数(本例では2)の読み出し信号の各々が個別に伝送される複数の信号経路461-1[A],461-2[B]を含み、経路選択信号に応じていずれか一つの信号経路461-1,461-2を伝送される読み出し信号をクランプ部412Aに供給する。
経路選択部460は、各信号経路461-1[A],461-2[B]に配置され、対応する経路選択信号WA,WBに応じて信号経路461-1,461-2の接続状態と非接続状態を切り替える複数の経路選択スイッチ462-1,462-2を含む。
そして、信号経路461-1に容量C11-1が配置され、信号経路461-2に容量C11-2が配置されている。 In the circuit of FIG. 15, a
The
The
A capacitor C11-1 is arranged in the signal path 461-1, and a capacitor C11-2 is arranged in the signal path 461-2.
図15のクランプ回路412Bは、経路選択信号WA,WBにより、信号経路461-1[A]または461-2[B]を通して入力ノード[Y]に接続される。
これにより、2つの基準レベルは信号経路461-1[A]または461-2[B]を通してそれぞれ保持されるため、途切れのない画素信号でも精度良くAD変換が可能となる。 Theclamp circuit 412B in FIG. 15 is connected to the input node [Y] through the signal path 461-1 [A] or 461-2 [B] by the path selection signals WA and WB.
As a result, the two reference levels are held through the signal path 461-1 [A] or 461-2 [B], respectively, so that AD conversion can be performed with high accuracy even for a pixel signal without interruption.
これにより、2つの基準レベルは信号経路461-1[A]または461-2[B]を通してそれぞれ保持されるため、途切れのない画素信号でも精度良くAD変換が可能となる。 The
As a result, the two reference levels are held through the signal path 461-1 [A] or 461-2 [B], respectively, so that AD conversion can be performed with high accuracy even for a pixel signal without interruption.
(第3の実施形態)
図17は、本発明の第3の実施形態に係る固体撮像装置の画素部の列出力の読み出し系を形成するADCの入力部に配置されるクランプ回路および比較選択部の構成例を示す図である。
図17は、クランプ回路の入力段を抽出した一例を示し、クランプ回路412Cは、図11と同様に、クランプ部412Aを簡略化して示している。
図18は、図17の回路の動作例を示す図である。 (Third embodiment)
FIG. 17 is a diagram illustrating a configuration example of a clamp circuit and a comparison / selection unit arranged in an input unit of an ADC forming a column output readout system of a pixel unit of a solid-state imaging device according to the third embodiment of the present invention. is there.
FIG. 17 shows an example in which the input stage of the clamp circuit is extracted, and theclamp circuit 412C shows the clamp unit 412A in a simplified manner as in FIG.
FIG. 18 is a diagram illustrating an operation example of the circuit of FIG.
図17は、本発明の第3の実施形態に係る固体撮像装置の画素部の列出力の読み出し系を形成するADCの入力部に配置されるクランプ回路および比較選択部の構成例を示す図である。
図17は、クランプ回路の入力段を抽出した一例を示し、クランプ回路412Cは、図11と同様に、クランプ部412Aを簡略化して示している。
図18は、図17の回路の動作例を示す図である。 (Third embodiment)
FIG. 17 is a diagram illustrating a configuration example of a clamp circuit and a comparison / selection unit arranged in an input unit of an ADC forming a column output readout system of a pixel unit of a solid-state imaging device according to the third embodiment of the present invention. is there.
FIG. 17 shows an example in which the input stage of the clamp circuit is extracted, and the
FIG. 18 is a diagram illustrating an operation example of the circuit of FIG.
本第3の実施形態の読み出し系が第2の実施形態の読み出し系が異なる点は、次の通りである。
本第3の実施形態の読み出し系では、第1の実施形態で説明した比較選択部430が配置されており、比較選択部430の比較器420の出力信号S420と経路選択信号WA,WBとを関連つけて経路選択スイッチ462-1,462-2のオンオフ(接続状態と非接続状態)が切り替えられる。 The read system of the third embodiment is different from the read system of the second embodiment as follows.
In the readout system of the third embodiment, the comparison /selection unit 430 described in the first embodiment is arranged, and the output signal S420 of the comparator 420 of the comparison / selection unit 430 and the path selection signals WA and WB are obtained. In association therewith, the path selection switches 462-1 and 462-2 are switched on and off (connected state and non-connected state).
本第3の実施形態の読み出し系では、第1の実施形態で説明した比較選択部430が配置されており、比較選択部430の比較器420の出力信号S420と経路選択信号WA,WBとを関連つけて経路選択スイッチ462-1,462-2のオンオフ(接続状態と非接続状態)が切り替えられる。 The read system of the third embodiment is different from the read system of the second embodiment as follows.
In the readout system of the third embodiment, the comparison /
そして、本第3の実施形態では、経路選択スイッチと入力スイッチが共用され、この共用のスイッチ462-1,462-2は、比較器の比較結果および対応する経路選択信号WA,WBの状態に関連つけて接続状態と非接続状態が切り替えられる。
In the third embodiment, the path selection switch and the input switch are shared, and the shared switches 462-1 and 462-2 indicate the comparison result of the comparator and the state of the corresponding path selection signals WA and WB. The connection state and the non-connection state are switched in association.
図17の例では、経路選択に必要な経路選択信号WA,WBは、アンドゲート470-1,470-2において比較器420の出力と論理積がとられ、アンドゲート470-1,470-2の出力により、入力スイッチの機能を併せ持つ経路選択スイッチ462-1,462-2の制御が行われる。
In the example of FIG. 17, the route selection signals WA and WB necessary for route selection are ANDed with the outputs of the comparators 420 in AND gates 470-1 and 470-2, and AND gates 470-1 and 470-2. The path selection switches 462-1 and 462-2 that also have the function of the input switch are controlled by the output of.
図17の回路では、図18に示すように、比較器420の出力信号S420が「1」の場合、経路選択信号WA,WBが有効となるため入力ノード[Y]の状態そのものとなる。
しかし、信号レベルVsig[N+1,2]で比較器420の出力信号S420が「0」となるため、直後の経路選択信号WBは無効となる。
つまり、入力ノード[Y]には信号レベルVsig[N+1,1]が保持される。 In the circuit of FIG. 17, as shown in FIG. 18, when the output signal S420 of thecomparator 420 is “1”, the path selection signals WA and WB are valid, and the state of the input node [Y] itself is obtained.
However, since the output signal S420 of thecomparator 420 becomes “0” at the signal level Vsig [N + 1, 2], the immediately subsequent path selection signal WB becomes invalid.
That is, the signal level Vsig [N + 1, 1] is held at the input node [Y].
しかし、信号レベルVsig[N+1,2]で比較器420の出力信号S420が「0」となるため、直後の経路選択信号WBは無効となる。
つまり、入力ノード[Y]には信号レベルVsig[N+1,1]が保持される。 In the circuit of FIG. 17, as shown in FIG. 18, when the output signal S420 of the
However, since the output signal S420 of the
That is, the signal level Vsig [N + 1, 1] is held at the input node [Y].
本第3の実施形態によれば、上述した第1および第2の実施形態と同様の効果を得ることができる。
According to the third embodiment, the same effects as those of the first and second embodiments described above can be obtained.
(第4の実施形態)
図19は、本発明の第4の実施形態に係る固体撮像装置の画素部の列出力の読み出し系を形成するADC、比較選択部、並びに、ADCの出力側に配置される保持部、合成処理部の構成例を示す図である。 (Fourth embodiment)
FIG. 19 illustrates an ADC forming a column output readout system of a pixel unit of a solid-state imaging device according to the fourth embodiment of the present invention, a comparison / selection unit, a holding unit arranged on the output side of the ADC, and a combining process It is a figure which shows the structural example of a part.
図19は、本発明の第4の実施形態に係る固体撮像装置の画素部の列出力の読み出し系を形成するADC、比較選択部、並びに、ADCの出力側に配置される保持部、合成処理部の構成例を示す図である。 (Fourth embodiment)
FIG. 19 illustrates an ADC forming a column output readout system of a pixel unit of a solid-state imaging device according to the fourth embodiment of the present invention, a comparison / selection unit, a holding unit arranged on the output side of the ADC, and a combining process It is a figure which shows the structural example of a part.
本第4の実施形態の読み出し系が第1の実施形態の読み出し系が異なる点は、参照電圧[V20]のレベルを時間的に変化させることが可能に構成されていることにある。
The difference between the read system of the fourth embodiment and the read system of the first embodiment is that the level of the reference voltage [V20] can be changed with time.
複数の読み出し信号を合成する最も簡易的な方法は図2(C)に示す第1の方法である。
ただし、図11による構成を用いた場合、複数の読み出し信号の結合点[X]は参照電圧[V20]により決定される。
つまり、参照電圧[V20]が時間的に変化した様子は結合点[X]を変化させることと等価であり、その境目を強調することを緩和することが可能となる。 The simplest method for combining a plurality of read signals is the first method shown in FIG.
However, when the configuration according to FIG. 11 is used, the combination point [X] of a plurality of read signals is determined by the reference voltage [V20].
That is, the state in which the reference voltage [V20] changes with time is equivalent to changing the coupling point [X], and the emphasis on the boundary can be relaxed.
ただし、図11による構成を用いた場合、複数の読み出し信号の結合点[X]は参照電圧[V20]により決定される。
つまり、参照電圧[V20]が時間的に変化した様子は結合点[X]を変化させることと等価であり、その境目を強調することを緩和することが可能となる。 The simplest method for combining a plurality of read signals is the first method shown in FIG.
However, when the configuration according to FIG. 11 is used, the combination point [X] of a plurality of read signals is determined by the reference voltage [V20].
That is, the state in which the reference voltage [V20] changes with time is equivalent to changing the coupling point [X], and the emphasis on the boundary can be relaxed.
図19では、参照電圧[V20]を時間変化させるための構成例が示されている。
図19の例では、参照電圧[V20]は、スイッチ480-1,480-2,480-3を通して電圧波形[V20_A],[V20_B],[V20_C]が選択可能である。
[V20_A]は正弦波,[V20_B]は複数レベルを持った方形波,[V20_C]はノイズ波形となる。
なお、それぞれの波形は本来要求される参照電圧[V20]のレベルを中心とする。 FIG. 19 shows a configuration example for changing the reference voltage [V20] with time.
In the example of FIG. 19, as the reference voltage [V20], voltage waveforms [V20_A], [V20_B], and [V20_C] can be selected through the switches 480-1, 480-2, and 480-3.
[V20_A] is a sine wave, [V20_B] is a square wave having a plurality of levels, and [V20_C] is a noise waveform.
Each waveform is centered on the level of the reference voltage [V20] originally required.
図19の例では、参照電圧[V20]は、スイッチ480-1,480-2,480-3を通して電圧波形[V20_A],[V20_B],[V20_C]が選択可能である。
[V20_A]は正弦波,[V20_B]は複数レベルを持った方形波,[V20_C]はノイズ波形となる。
なお、それぞれの波形は本来要求される参照電圧[V20]のレベルを中心とする。 FIG. 19 shows a configuration example for changing the reference voltage [V20] with time.
In the example of FIG. 19, as the reference voltage [V20], voltage waveforms [V20_A], [V20_B], and [V20_C] can be selected through the switches 480-1, 480-2, and 480-3.
[V20_A] is a sine wave, [V20_B] is a square wave having a plurality of levels, and [V20_C] is a noise waveform.
Each waveform is centered on the level of the reference voltage [V20] originally required.
本第4の実施形態によれば、上述した第1の実施形態と同様の効果を得ることができることはもとより、アナログノイズによる境目を強調させないことが可能となり、その結果、境目が強調されないような複雑な信号処理が不要となり、回路面積の増大、処理時間の増大を抑止することが可能となる。
According to the fourth embodiment, not only can the same effect as in the first embodiment described above be obtained, but also the boundary due to analog noise can be not emphasized, and as a result, the boundary is not emphasized. Complex signal processing becomes unnecessary, and it becomes possible to suppress an increase in circuit area and an increase in processing time.
以上説明した固体撮像装置10は、デジタルカメラやビデオカメラ、携帯端末、あるいは監視用カメラ、医療用内視鏡用カメラなどの電子機器に、撮像デバイスとして適用することができる。
The solid-state imaging device 10 described above can be applied as an imaging device to an electronic apparatus such as a digital camera, a video camera, a portable terminal, a monitoring camera, or a medical endoscope camera.
図20は、本発明の実施形態に係る固体撮像装置が適用されるカメラシステムを搭載した電子機器の構成の一例を示す図である。
FIG. 20 is a diagram illustrating an example of a configuration of an electronic device equipped with a camera system to which the solid-state imaging device according to the embodiment of the present invention is applied.
本電子機器100は、図20に示すように、本実施形態に係る固体撮像装置10が適用可能なCMOSイメージセンサ110を有する。
さらに、電子機器100は、このCMOSイメージセンサ110の画素領域に入射光を導く(被写体像を結像する)光学系(レンズ等)120を有する。
電子機器100は、CMOSイメージセンサ110の出力信号を処理する信号処理回路(PRC)130を有する。 As shown in FIG. 20, theelectronic apparatus 100 includes a CMOS image sensor 110 to which the solid-state imaging device 10 according to the present embodiment can be applied.
Theelectronic device 100 further includes an optical system (lens or the like) 120 that guides incident light (forms a subject image) to the pixel region of the CMOS image sensor 110.
Theelectronic device 100 includes a signal processing circuit (PRC) 130 that processes an output signal of the CMOS image sensor 110.
さらに、電子機器100は、このCMOSイメージセンサ110の画素領域に入射光を導く(被写体像を結像する)光学系(レンズ等)120を有する。
電子機器100は、CMOSイメージセンサ110の出力信号を処理する信号処理回路(PRC)130を有する。 As shown in FIG. 20, the
The
The
信号処理回路130は、CMOSイメージセンサ110の出力信号に対して所定の信号処理を施す。
信号処理回路130で処理された画像信号は、液晶ディスプレイ等からなるモニタに動画として映し出し、あるいはプリンタに出力することも可能であり、またメモリカード等の記録媒体に直接記録する等、種々の態様が可能である。 Thesignal processing circuit 130 performs predetermined signal processing on the output signal of the CMOS image sensor 110.
The image signal processed by thesignal processing circuit 130 can be displayed as a moving image on a monitor composed of a liquid crystal display or the like, or output to a printer, or directly recorded on a recording medium such as a memory card. Is possible.
信号処理回路130で処理された画像信号は、液晶ディスプレイ等からなるモニタに動画として映し出し、あるいはプリンタに出力することも可能であり、またメモリカード等の記録媒体に直接記録する等、種々の態様が可能である。 The
The image signal processed by the
上述したように、CMOSイメージセンサ110として、前述した固体撮像装置10を搭載することで、高性能、小型、低コストのカメラシステムを提供することが可能となる。
そして、カメラの設置の要件に実装サイズ、接続可能ケーブル本数、ケーブル長さ、設置高さなどの制約がある用途に使われる、たとえば、監視用カメラ、医療用内視鏡用カメラなどの電子機器を実現することができる。 As described above, by mounting the above-described solid-state imaging device 10 as the CMOS image sensor 110, it is possible to provide a high-performance, small, and low-cost camera system.
Electronic devices such as surveillance cameras and medical endoscope cameras are used for applications where the camera installation requirements include restrictions such as mounting size, number of connectable cables, cable length, and installation height. Can be realized.
そして、カメラの設置の要件に実装サイズ、接続可能ケーブル本数、ケーブル長さ、設置高さなどの制約がある用途に使われる、たとえば、監視用カメラ、医療用内視鏡用カメラなどの電子機器を実現することができる。 As described above, by mounting the above-described solid-
Electronic devices such as surveillance cameras and medical endoscope cameras are used for applications where the camera installation requirements include restrictions such as mounting size, number of connectable cables, cable length, and installation height. Can be realized.
10・・・固体撮像装置、20・・・画素部、30・・・垂直走査回路、40・・・読み出し回路、410・・・ADC、411・・・入力スイッチ、412,412B,412C・・・クランプ回路、412A・・・クランプ部、413・・・変換部、420・・・比較器、430・・・比較選択部、440-1,440-2・・・保持部、450・・・合成処理部、460・・・経路選択部、461-1,461-2・・・信号経路、462-1,462-2・・・経路選択スイッチ、470-1,470-2・・・アンドゲート、480-1,480-2,480-3・・・スイッチ、50・・・水平走査回路、60・・・タイミング制御回路、70・・・DSP部、80・・・読み出し部、100・・・電子機器、110・・・CMOSイメージセンサ、120・・・光学系、130・・・信号処理回路(PRC)。
DESCRIPTION OF SYMBOLS 10 ... Solid-state imaging device, 20 ... Pixel part, 30 ... Vertical scanning circuit, 40 ... Reading circuit, 410 ... ADC, 411 ... Input switch, 412, 412B, 412C ... · Clamp circuit, 412A ... Clamping unit, 413 ... Conversion unit, 420 ... Comparator, 430 ... Comparison selection unit, 440-1, 440-2 ... Holding unit, 450 ... Synthesis processing unit, 460... Route selection unit, 461-1, 461-2 ... signal route, 462-1, 462-2 ... route selection switch, 470-1, 470-2 ... AND Gates, 480-1, 480-2, 480-3 ... switches, 50 ... horizontal scanning circuit, 60 ... timing control circuit, 70 ... DSP unit, 80 ... reading unit, 100. ..Electronic equipment, 110 ... C OS image sensor, 120 ... optical system, 130 ... signal processing circuit (PRC).
Claims (14)
- 複数の読み出し信号を合成してダイナミックレンジを拡大可能な固体撮像装置であって、
画素が配置された画素部と、
前記画素部の列出力に対応して配置された列信号処理部を含む読み出し部と、を有し、
前記列信号処理部は、
前記画素から読み出され入力ノードに入力される前記複数の読み出し信号を、アナログ信号からデジタル信号にアナログデジタル(AD)変換するアナログデジタルコンバータ(ADC)と、
前記画素から読み出された前記読み出し信号が入力される前記入力ノードのレベルとあらかじめ設定された参照電圧とを比較し、比較結果に応じて前記画素から読み出された前記読み出し信号の前記入力ノードへの入力状態を選択する比較選択部と、を含む
固体撮像装置。 A solid-state imaging device capable of expanding a dynamic range by combining a plurality of readout signals,
A pixel portion in which pixels are arranged;
A readout unit including a column signal processing unit arranged corresponding to the column output of the pixel unit,
The column signal processor is
An analog-to-digital converter (ADC) that converts the plurality of readout signals read from the pixels and input to an input node from analog signals to digital signals;
The level of the input node to which the read signal read from the pixel is input is compared with a preset reference voltage, and the input node of the read signal read from the pixel according to a comparison result A comparison / selection unit that selects an input state to the solid-state imaging device. - 前記比較選択部は、
前記入力ノードのレベルが前記参照電圧より高いまたは低い場合には、現比較対象の読み出し信号に後続の読み出し信号が連続して前記入力ノードに入力する状態を選択して、当該後続の読み出し信号が保持すべきAD変換対象となるように制御し、
前記入力ノードのレベルが前記参照電圧より低いまたは高い場合には、現比較対象の読み出し信号に後続の読み出し信号が前記入力ノードに入力しない状態を選択して、当該現比較対象の読み出し信号が保持すべきAD変換対象となるように制御する
請求項1記載の固体撮像装置。 The comparison / selection unit includes:
When the level of the input node is higher or lower than the reference voltage, a state in which a subsequent read signal is continuously input to the current comparison target read signal is selected and the subsequent read signal is selected. Control to be AD conversion target to be retained,
When the level of the input node is lower or higher than the reference voltage, a state in which a subsequent read signal is not input to the input node is selected as the read signal to be compared, and the read signal to be currently compared is held. The solid-state imaging device according to claim 1, wherein the solid-state imaging device is controlled so as to be an AD conversion target. - 前記複数の読み出し信号の各々は、基準レベルの信号と信号レベルの信号により形成され、
前記ADCは、
基準レベルの信号が先に入力されてから信号レベルの信号が入力され、
前記比較選択部は、
前記信号レベルの信号が前記入力ノードに現出しているときに、当該入力ノードの信号レベルとあらかじめ設定された参照電圧とを比較し、比較結果に応じて前記画素から読み出された前記読み出し信号の前記入力ノードへの入力状態を選択する
請求項1記載の固体撮像装置。 Each of the plurality of read signals is formed by a reference level signal and a signal level signal,
The ADC is
The signal of the signal level is input after the signal of the reference level is input first,
The comparison / selection unit includes:
When the signal level signal appears at the input node, the signal level of the input node is compared with a preset reference voltage, and the readout signal read from the pixel according to the comparison result The solid-state imaging device according to claim 1, wherein an input state to the input node is selected. - 前記ADCの出力に対して並列に接続され、前記ADCでAD変換された基準レベルの信号または信号レベルの信号が選択的に保持される、2個以上で合成する読み出し信号の2倍の数より少ない数の複数の保持部と、
前記複数の保持部に保持されたデジタル信号を合成して出力データを生成する合成処理部と、を含む
請求項3記歳の固体撮像装置。 A reference level signal or a signal level signal that is connected in parallel to the output of the ADC and AD-converted by the ADC is selectively held. A small number of holding parts,
The solid-state imaging device according to claim 3, further comprising: a synthesis processing unit that generates output data by synthesizing digital signals held in the plurality of holding units. - 前記保持部の少なくとも一つは、
前記ADCがAD変換処理中に上書き可能である
請求項4記歳の固体撮像装置。 At least one of the holding parts is
The solid-state imaging device according to claim 4, wherein the ADC can be overwritten during AD conversion processing. - 前記ADCは、
前記入力ノードに少なくとも最初に入力される基準レベルの信号を、クランプ信号に応じてあらかじめ設定されたクランプレベルに固定するクランプ部を含むクランプ回路を有する
請求項3記載の固体撮像装置。 The ADC is
The solid-state imaging device according to claim 3, further comprising: a clamp circuit including a clamp unit that fixes a signal of a reference level that is input at least first to the input node to a clamp level that is set in advance according to a clamp signal. - 前記クランプ回路は、前記クランプ部の入力側に、
前記画素から読み出される合成すべき複数の前記読み出し信号の各々が個別に伝送される複数の信号経路を含み、経路選択信号に応じていずれか一つの前記信号経路を伝送される読み出し信号を前記クランプ部に供給する経路選択部を有する
請求項6記載の固体撮像装置。 The clamp circuit is on the input side of the clamp unit,
Each of the plurality of readout signals to be combined read out from the pixels includes a plurality of signal paths that are individually transmitted, and the readout signal transmitted through any one of the signal paths according to a path selection signal is clamped. The solid-state imaging device according to claim 6, further comprising a path selection unit that supplies the unit. - 前記経路選択部は、
前記各信号経路に配置され、対応する経路選択信号に応じて信号経路の接続状態と非接続状態を切り替える複数の経路選択スイッチを含む
請求項7記載の固体撮像装置。 The route selection unit
The solid-state imaging device according to claim 7, further comprising: a plurality of path selection switches that are arranged in the signal paths and switch a connection state and a non-connection state of the signal path according to a corresponding path selection signal. - 前記比較選択部は、
前記入力ノードのレベルとあらかじめ設定された参照電圧とを比較する比較器と、
前記比較器の比較結果に応じて前記画素から読み出された前記読み出し信号の前記入力ノードへの信号経路の接続状態と非接続状態を切り替える入力スイッチと、を含む
請求項1記載の固体撮像装置。 The comparison / selection unit includes:
A comparator that compares the level of the input node with a preset reference voltage;
The solid-state imaging device according to claim 1, further comprising: an input switch that switches a connection state and a non-connection state of a signal path to the input node of the readout signal read from the pixel according to a comparison result of the comparator. . - 前記経路選択部は、
前記各信号経路に配置され、対応する経路選択信号に応じて信号経路の接続状態と非接続状態を切り替える複数の経路選択スイッチを含み、
前記比較選択部は、
前記入力ノードのレベルとあらかじめ設定された参照電圧とを比較する比較器と、
前記比較器の比較結果に応じて前記画素から読み出された前記読み出し信号の前記入力ノードへの信号経路の接続状態と非接続状態を切り替える入力スイッチと、を含み、
前記経路選択スイッチと前記入力スイッチが共用され、当該共用のスイッチは、前記比較器の比較結果および対応する前記経路選択信号の状態に関連つけて接続状態と非接続状態が切り替えられる
請求項7記載の固体撮像装置。 The route selection unit
A plurality of path selection switches that are arranged in each signal path and switch a connection state and a non-connection state of the signal path according to a corresponding path selection signal;
The comparison / selection unit includes:
A comparator that compares the level of the input node with a preset reference voltage;
An input switch for switching a connection state and a non-connection state of a signal path to the input node of the readout signal read from the pixel according to a comparison result of the comparator;
8. The path selection switch and the input switch are shared, and the shared switch is switched between a connection state and a non-connection state in association with a comparison result of the comparator and a state of the corresponding path selection signal. Solid-state imaging device. - 前記参照電圧は、
合成すべき複数の読み出し信号の結合位置に相当するレベルである
請求項1記載の固体撮像装置。 The reference voltage is
The solid-state imaging device according to claim 1, wherein the level corresponds to a combination position of a plurality of readout signals to be synthesized. - 前記参照電圧は、前記レベルを時間的に変化させることが可能である
請求項11記載の固体撮像装置。 The solid-state imaging device according to claim 11, wherein the reference voltage can change the level with time. - 画素が配置された画素部と、
前記画素部の列出力に対応して配置された列信号処理部を含む読み出し部と、を有し、
前記列信号処理部は、
前記画素から読み出され入ノードに入力される前記複数の読み出し信号を、アナログ信号からデジタル信号にアナログデジタル(AD)変換するアナログデジタルコンバータ(ADC)を含み、
複数の読み出し信号を合成してダイナミックレンジを拡大可能な固体撮像装置の駆動方法であって、
前記ADCのAD変換においては、
前記画素から読み出された前記読み出し信号が入力される前記入力ノードのレベルとあらかじめ設定された参照電圧とを比較し、
比較結果に応じて前記画素から読み出された前記読み出し信号の前記入力ノードへの入力状態を選択する
固体撮像装置の駆動方法。 A pixel portion in which pixels are arranged;
A readout unit including a column signal processing unit arranged corresponding to the column output of the pixel unit,
The column signal processor is
An analog-to-digital converter (ADC) that performs analog-to-digital (AD) conversion of the plurality of readout signals read from the pixels and input to the input node from analog signals to digital signals;
A driving method of a solid-state imaging device capable of expanding a dynamic range by combining a plurality of readout signals,
In the AD conversion of the ADC,
Comparing the level of the input node to which the readout signal read from the pixel is input and a preset reference voltage,
A method for driving a solid-state imaging device, wherein an input state of the readout signal read from the pixel to the input node is selected according to a comparison result. - 複数の読み出し信号を合成してダイナミックレンジを拡大可能な固体撮像装置と、
前記固体撮像装置に被写体像を結像する光学系と、を有し、
前記固体撮像装置は、
画素が配置された画素部と、
前記画素部の列出力に対応して配置された列信号処理部を含む読み出し部と、を有し、
前記列信号処理部は、
前記画素から読み出され入力ノードに入力される前記複数の読み出し信号を、アナログ信号からデジタル信号にアナログデジタル(AD)変換するアナログデジタルコンバータ(ADC)と、
前記画素から読み出された前記読み出し信号が入力される前記入力ノードのレベルとあらかじめ設定された参照電圧とを比較し、比較結果に応じて前記画素から読み出された前記読み出し信号の前記入力ノードへの入力状態を選択する比較選択部と、を含む
電子機器。 A solid-state imaging device capable of expanding a dynamic range by combining a plurality of readout signals;
An optical system that forms a subject image on the solid-state imaging device,
The solid-state imaging device
A pixel portion in which pixels are arranged;
A readout unit including a column signal processing unit arranged corresponding to the column output of the pixel unit,
The column signal processor is
An analog-to-digital converter (ADC) that converts the plurality of readout signals read from the pixels and input to an input node from analog signals to digital signals;
The level of the input node to which the read signal read from the pixel is input is compared with a preset reference voltage, and the input node of the read signal read from the pixel according to the comparison result And a comparison / selection unit for selecting an input state of the electronic device.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016002813A JP6731731B2 (en) | 2016-01-08 | 2016-01-08 | Solid-state imaging device, driving method thereof, and electronic device |
JP2016-002813 | 2016-01-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017119331A1 true WO2017119331A1 (en) | 2017-07-13 |
Family
ID=59274060
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/088653 WO2017119331A1 (en) | 2016-01-08 | 2016-12-26 | Solid-state image capture device, method for driving solid-state image capture device, and electronic equipment |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6731731B2 (en) |
WO (1) | WO2017119331A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7374586B2 (en) | 2019-01-17 | 2023-11-07 | ブリルニクス シンガポール プライベート リミテッド | Solid-state imaging device, driving method for solid-state imaging device, and electronic equipment |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008271278A (en) * | 2007-04-23 | 2008-11-06 | Sony Corp | Solid-state imaging device, signal processing method of solid-state imaging device, and imaging device |
JP2012080252A (en) * | 2010-09-30 | 2012-04-19 | Canon Inc | Solid state image pickup device |
JP2013078068A (en) * | 2011-09-30 | 2013-04-25 | Fujifilm Corp | Radiation image detection apparatus, radiation image detection method, and program |
JP2014146849A (en) * | 2013-01-25 | 2014-08-14 | Canon Inc | Imaging device, method for driving the same, and imaging system |
-
2016
- 2016-01-08 JP JP2016002813A patent/JP6731731B2/en active Active
- 2016-12-26 WO PCT/JP2016/088653 patent/WO2017119331A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008271278A (en) * | 2007-04-23 | 2008-11-06 | Sony Corp | Solid-state imaging device, signal processing method of solid-state imaging device, and imaging device |
JP2012080252A (en) * | 2010-09-30 | 2012-04-19 | Canon Inc | Solid state image pickup device |
JP2013078068A (en) * | 2011-09-30 | 2013-04-25 | Fujifilm Corp | Radiation image detection apparatus, radiation image detection method, and program |
JP2014146849A (en) * | 2013-01-25 | 2014-08-14 | Canon Inc | Imaging device, method for driving the same, and imaging system |
Also Published As
Publication number | Publication date |
---|---|
JP6731731B2 (en) | 2020-07-29 |
JP2019054303A (en) | 2019-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4609428B2 (en) | Solid-state imaging device, driving method of solid-state imaging device, and imaging device | |
US9338381B2 (en) | Solid-state image-pickup device, image-pickup device, and signal reading method | |
JP7374586B2 (en) | Solid-state imaging device, driving method for solid-state imaging device, and electronic equipment | |
JP6546457B2 (en) | Solid-state imaging device, method of driving the same, electronic device | |
US9906746B2 (en) | Solid-state image pickup device and image pickup apparatus | |
JP6951423B2 (en) | Solid-state image sensor, solid-state image sensor drive method, and electronic equipment | |
JP2010193437A (en) | Solid-state imaging apparatus | |
JP2008252605A (en) | Solid-state imaging apparatus, signal processing method of the solid-state imaging apparatus, and imaging apparatus | |
WO2011083541A1 (en) | Solid-state image capture device and image capture device | |
JP2016015680A (en) | Solid-state image sensor and imaging apparatus | |
WO2018012068A1 (en) | Solid-state image pickup device, method for driving solid-state image pickup device, and electronic apparatus | |
WO2018012088A1 (en) | Solid-state imaging element and control method for solid-state imaging element | |
JP5906596B2 (en) | Imaging device | |
WO2013084808A1 (en) | Solid-state imaging element, method for driving same, and camera system | |
JP2016058877A (en) | Imaging apparatus and control method thereof | |
WO2017119331A1 (en) | Solid-state image capture device, method for driving solid-state image capture device, and electronic equipment | |
JP2016220192A (en) | Solid-state image pickup device, driving method for the same and electronic equipment | |
JP2015207948A (en) | Imaging device and imaging apparatus | |
JP2009044458A (en) | Solid-state imaging apparatus | |
JP6751753B2 (en) | Solid-state image sensor and its driving method, electronic equipment | |
JP2016103701A (en) | Imaging element and method of controlling the same | |
JP2017220949A (en) | Imaging apparatus | |
JP2022184314A (en) | Imaging element and imaging device | |
JP2006352295A (en) | Solid state imaging device, its driving method and imaging apparatus | |
JP5633216B2 (en) | Solid-state image sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16883830 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16883830 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |