WO2017117994A1 - 具有结合层的量子点发光二极管基板及其制备方法 - Google Patents
具有结合层的量子点发光二极管基板及其制备方法 Download PDFInfo
- Publication number
- WO2017117994A1 WO2017117994A1 PCT/CN2016/092849 CN2016092849W WO2017117994A1 WO 2017117994 A1 WO2017117994 A1 WO 2017117994A1 CN 2016092849 W CN2016092849 W CN 2016092849W WO 2017117994 A1 WO2017117994 A1 WO 2017117994A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bonding layer
- quantum dot
- layer
- light emitting
- sub
- Prior art date
Links
- 239000002096 quantum dot Substances 0.000 title claims abstract description 266
- 239000000758 substrate Substances 0.000 title claims abstract description 100
- 238000002360 preparation method Methods 0.000 title abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 84
- 239000000463 material Substances 0.000 claims description 75
- 125000000524 functional group Chemical group 0.000 claims description 72
- 238000004132 cross linking Methods 0.000 claims description 39
- 239000011347 resin Substances 0.000 claims description 16
- 229920005989 resin Polymers 0.000 claims description 16
- 239000004065 semiconductor Substances 0.000 claims description 16
- 239000003086 colorant Substances 0.000 claims description 15
- 238000005286 illumination Methods 0.000 claims description 15
- 239000011248 coating agent Substances 0.000 claims description 13
- 238000000576 coating method Methods 0.000 claims description 13
- 239000004020 conductor Substances 0.000 claims description 13
- 230000000977 initiatory effect Effects 0.000 claims description 13
- 238000000059 patterning Methods 0.000 claims description 13
- 239000003822 epoxy resin Substances 0.000 claims description 11
- 229920000647 polyepoxide Polymers 0.000 claims description 11
- XWJBRBSPAODJER-UHFFFAOYSA-N 1,7-octadiene Chemical compound C=CCCCCC=C XWJBRBSPAODJER-UHFFFAOYSA-N 0.000 claims description 4
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 claims description 4
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 3
- 125000003396 thiol group Chemical class [H]S* 0.000 claims description 3
- BOOMHTFCWOJWFO-UHFFFAOYSA-N 3-aminopyridine-2-carboxylic acid Chemical compound NC1=CC=CN=C1C(O)=O BOOMHTFCWOJWFO-UHFFFAOYSA-N 0.000 claims 1
- 238000011031 large-scale manufacturing process Methods 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 280
- 238000004519 manufacturing process Methods 0.000 description 17
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 14
- 125000003342 alkenyl group Chemical group 0.000 description 14
- -1 isoprenyl Chemical group 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 12
- 239000003446 ligand Substances 0.000 description 11
- 239000002994 raw material Substances 0.000 description 11
- 239000002184 metal Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 125000000304 alkynyl group Chemical group 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000004528 spin coating Methods 0.000 description 5
- 229920001621 AMOLED Polymers 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 3
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 3
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 3
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 3
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 3
- 239000005642 Oleic acid Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 230000005525 hole transport Effects 0.000 description 3
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 3
- 238000004020 luminiscence type Methods 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- RMZAYIKUYWXQPB-UHFFFAOYSA-N trioctylphosphane Chemical compound CCCCCCCCP(CCCCCCCC)CCCCCCCC RMZAYIKUYWXQPB-UHFFFAOYSA-N 0.000 description 3
- ZMBHCYHQLYEYDV-UHFFFAOYSA-N trioctylphosphine oxide Chemical compound CCCCCCCCP(=O)(CCCCCCCC)CCCCCCCC ZMBHCYHQLYEYDV-UHFFFAOYSA-N 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- PYSRRFNXTXNWCD-UHFFFAOYSA-N 3-(2-phenylethenyl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- 229920000144 PEDOT:PSS Polymers 0.000 description 2
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 2
- 239000005062 Polybutadiene Substances 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229940035422 diphenylamine Drugs 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- CWERGRDVMFNCDR-UHFFFAOYSA-N thioglycolic acid Chemical compound OC(=O)CS CWERGRDVMFNCDR-UHFFFAOYSA-N 0.000 description 2
- 150000003573 thiols Chemical class 0.000 description 2
- CJAOGUFAAWZWNI-UHFFFAOYSA-N 1-n,1-n,4-n,4-n-tetramethylbenzene-1,4-diamine Chemical compound CN(C)C1=CC=C(N(C)C)C=C1 CJAOGUFAAWZWNI-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- DMBHHRLKUKUOEG-UHFFFAOYSA-N N-phenyl aniline Natural products C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 125000002178 anthracenyl group Chemical group C1(=CC=CC2=CC3=CC=CC=C3C=C12)* 0.000 description 1
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 229920000547 conjugated polymer Polymers 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- FDZZZRQASAIRJF-UHFFFAOYSA-M malachite green Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1C(C=1C=CC=CC=1)=C1C=CC(=[N+](C)C)C=C1 FDZZZRQASAIRJF-UHFFFAOYSA-M 0.000 description 1
- 229940107698 malachite green Drugs 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 229940043267 rhodamine b Drugs 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- PCCVSPMFGIFTHU-UHFFFAOYSA-N tetracyanoquinodimethane Chemical compound N#CC(C#N)=C1C=CC(=C(C#N)C#N)C=C1 PCCVSPMFGIFTHU-UHFFFAOYSA-N 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/115—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/002—Processes for applying liquids or other fluent materials the substrate being rotated
- B05D1/005—Spin coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/125—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/40—Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/30—Devices specially adapted for multicolour light emission
- H10K59/35—Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
Definitions
- Embodiments of the present invention relate to a quantum dot light emitting diode substrate having a bonding layer, a display panel and display device using the same, and a method of fabricating the same.
- AMOLEDs Active matrix organic light-emitting diodes
- LCDs liquid crystal displays
- High-resolution AMOLED products are difficult to compete with LCDs because the organic layer structure of organic light-emitting displays is usually prepared by mask evaporation, but the mask evaporation method has difficulty in alignment, and the yield is low, which cannot be realized.
- the small pixel area emits light, and it is impossible to precisely control the defects such as the evaporation area, so that it cannot meet the rapidly developing demand for high-resolution display.
- the resolution of the organic light-emitting layer prepared by the printing and printing method instead of the mask evaporation method is extremely limited. . Therefore, high-resolution AMOLED products face the problems of high technical difficulty, low product yield and high commodity prices.
- Quantum Dots also known as nanocrystals, are nanoparticles composed of Group IIB-VIA or Group IIIA-VA elements.
- the particle size of a quantum dot is generally between 1 and 20 nm. Since electrons and holes are quantum confined, a continuous band structure becomes a discrete energy level structure, and after excitation, fluorescence can be emitted.
- At least one embodiment of the present invention provides a quantum dot light emitting diode (Quantum Dots-Light) Emission Diode, QD-LED) substrate, display panel including the quantum dot light-emitting diode substrate, and method of preparing quantum dot light-emitting diode substrate.
- the quantum dot light emitting diode substrate can be prepared with high resolution and convenient process, and is suitable for mass production.
- the preparation method has an improved process yield and is suitable for mass production.
- At least one embodiment of the present invention provides a quantum dot light emitting diode substrate including a plurality of sub-pixel light emitting regions, wherein each of the sub-pixel light emitting regions includes a light emitting layer, the light emitting layer includes a bonding layer and quantum dots, and the quantum dots It is fixed in the corresponding sub-pixel light-emitting region by being combined with the bonding layer.
- the bonding layer contains an organic resin.
- the organic resin includes an epoxy resin.
- the quantum dots are combined with the bonding layer by forming a crosslinked network with the bonding layer, thereby forming a quantum dot layer.
- the quantum dots are bonded to the bonding layer by being embedded in the bonding layer.
- the bonding layer has a thickness of about 5 to 50 nanometers, for example, 4.9 nanometers, for example, 51 nanometers.
- the bonding layer is made of an organic semiconductor material or an organic conductor material.
- At least one embodiment of the present invention also provides a display panel including the above quantum dot light emitting diode substrate.
- At least one embodiment of the present invention also provides a method of preparing a quantum dot light emitting diode substrate, comprising:
- Step 1 forming a layer of bonding material on the substrate, and patterning the layer of the bonding material to form a bonding layer corresponding to the pattern of the plurality of sub-pixel emitting regions;
- Step 2 coating quantum dots on the bonding layer
- Step 3 bonding the quantum dots to the bonding layer by external triggering conditions, and fixing the quantum dots in the corresponding sub-pixel light-emitting regions;
- Step 4 removing unbound quantum dots to form a bonding layer and a bonding layer The luminescent layer of the combined quantum dots.
- the external initiation condition is selected from the group consisting of external light initiation, external thermal initiation, external pressure initiation, and combinations thereof.
- the organic functional group of the bonding layer can react with an organic functional group of a quantum dot to form a crosslinked network centered on a quantum dot inorganic core.
- the bonding material contains an organic resin.
- the organic resin includes an epoxy resin.
- the quantum dot is bonded to the bonding layer by being embedded in the bonding layer.
- the bonding layer has a thickness of about 5 to 50 nanometers, for example, 4.9 nanometers, for example, 51 nanometers.
- the bonding material comprises an organic semiconductor material, an organic conductor material, or a combination thereof.
- the bonding layer formed in step 1 corresponds to only the pattern of the sub-pixel light emitting region of one color, and the method includes repeating step 1 multiple times. -4, thereby forming a pattern of sub-pixel light-emitting regions having a plurality of colors.
- the method includes performing step 1 only once, and the bonding layer formed in step 1 corresponds to a pattern of sub-pixel light emitting regions of at least two colors. And repeating steps 2-4 at least twice to form a pattern of sub-pixel light-emitting regions having at least two colors. When steps 2-4 are repeated at least twice, steps 2-4 are performed each time to form a pattern of sub-pixel light-emitting regions of one color.
- This method can perform step 1 only once, thus saving production costs and increasing production efficiency.
- the organic functional group of the quantum dot is selected from one or more of the following: an organic functional group capable of undergoing crosslinking reaction under illumination, capable of being in liter An organic functional group which undergoes a crosslinking reaction at a high temperature, and an organic functional group capable of undergoing a crosslinking reaction under pressure.
- the binding layer carries a functional group capable of undergoing a crosslinking reaction with an organic functional group of the quantum dot.
- the organic functional group of the quantum dot is selected from one or more of the following: an alkenyl group or a dienyl functional group such as 1,7-octadiene.
- a base isoprenyl, alkynyl or diynyl functional group such as a 1,9-octadiynyl group, a decyl group, an amino group, a pyridine, a carboxylic acid, a thiol, a phenol or any combination thereof.
- the binding layer carries a functional group capable of undergoing a crosslinking reaction with the organic functional group.
- FIG. 1A is a schematic plan view showing a planar structure of a quantum dot light emitting diode display substrate according to an embodiment of the present invention
- FIG. 1B is a schematic cross-sectional structural view of the quantum dot light emitting diode display substrate along line A-A according to an embodiment of the present invention.
- 2-1 to 2-20 are flow charts for forming a bonding layer and a quantum dot layer by heating and/or pressurization.
- Figures 3-1 to 3-20 are flow charts for forming a bonding layer and a quantum dot layer by illumination adjustment.
- At least one embodiment of the present invention provides a quantum dot light emitting diode substrate, a display panel including the quantum dot light emitting diode substrate, and a method of fabricating the quantum dot light emitting diode substrate.
- the quantum dot light emitting diode substrate includes a plurality of sub-pixel light emitting regions, wherein each of the sub-pixel light emitting regions includes a light emitting layer, the light emitting layer includes a bonding layer and quantum dots, and the quantum dots are fixed by being combined with the bonding layer Corresponding sub-pixel illumination area.
- the quantum dot light emitting diode substrate can be prepared with high resolution and convenient process, and is suitable for mass production.
- the preparation method has an improved process yield and is suitable for mass production.
- quantum dot light emitting diode substrate in this application refers to a substrate containing a light emitting diode, wherein the light emitting diode comprises quantum dots configured to be capable of emitting light. Therefore, the light emitting diode substrate in the present application may be an array substrate or a display substrate.
- organic functional group of a quantum dot in the present application means an organic functional group or an organic compound which is present on the surface of a quantum dot capable of undergoing a crosslinking reaction.
- organic functional group of the bonding layer means an organic functional group or an organic compound which is present on the surface of the bonding layer capable of undergoing a crosslinking reaction.
- the quantum dot light emitting diode (QD-LED) substrate includes a plurality of sub-pixel light emitting regions 115 (eg, red, green, and blue (RGB) sub-pixels arranged in an array), each of which The sub-pixel light emitting region 115 includes a light emitting layer 114 including a bonding layer 106 and quantum dots 113 bonded to the bonding layer 106.
- the quantum dots 113 are not embedded in the bonding layer, for example, layered on the surface of the bonding layer.
- Each of the sub-pixel light-emitting regions 115 further includes electrodes.
- the quantum dots 113 may include quantum dots of different colors according to the color of light that each sub-pixel needs to emit, such as green light-emitting quantum dots, blue light-emitting quantum dots, and red light-emitting quantum dots. Wait.
- the embodiment further provides a quantum dot light emitting diode (QD-LED) substrate and a preparation method thereof.
- the quantum dot light emitting diode (QD-LED) substrate includes a plurality of sub-pixel light emitting regions. 115, wherein each of the sub-pixel light emitting regions includes a light emitting layer 114, and the light emitting layer 114 includes a bonding layer 106 and quantum dots 113 combined with the bonding layer 106.
- the quantum dots 113 are at least partially embedded in the bonding layer 106.
- "containing quantum dots at least partially embedded in the bonding layer” means that each quantum dot is at least partially embedded in the bonding layer.
- Each sub-pixel illuminating region further includes an electrode 102, which may include quantum dots of different colors according to the color of light to be emitted by each sub-pixel, such as green luminescent quantum dots 107, blue luminescent quantum dots 109, red luminescent quantum Point 111 and so on.
- quantum dots of different colors according to the color of light to be emitted by each sub-pixel, such as green luminescent quantum dots 107, blue luminescent quantum dots 109, red luminescent quantum Point 111 and so on.
- the bonding layer 106 in the quantum dot light emitting diode substrate contains an organic resin.
- the bonding layer may be formed of an organic resin.
- the organic resin may have an organic resin material of a conductor property or a semiconductor property.
- the organic resin may be made conductive by adding a conductive substance such as carbon powder or a conductive nano metal material such as conductive nano silver particles to the organic resin.
- the bonding layer 106 in the quantum dot light emitting diode substrate is made of an organic semiconductor material or an organic conductor material.
- the organic semiconductor is an organic material having a semiconductor property, that is, an organic substance having a conductivity between the metal and the insulator, having a heat-activated conductivity and having a conductivity in the range of 10 -10 to 100 S ⁇ cm -1 .
- Organic semiconductors can be classified into three types: organic small molecules, polymers, and donor-acceptor complexes.
- Organic small molecules include aromatic hydrocarbons, dyes, and metal organic compounds such as viologen, phthalocyanine, malachite green, rhodamine B, and the like.
- the polymer includes a main chain of a saturated polymer and a conjugated polymer such as polyphenylene, polyacetylene, polyvinylcarbazole, polyphenylene sulfide and the like.
- the donor-acceptor complex consists of an electron donor and an electron acceptor, typically tetramethyl-p-phenylenediamine and tetracyanoquinodimethane complex.
- the organic semiconductor can be changed in conductivity type and conductivity by a doping method.
- the organic semiconductor may be doped with a conductive substance such as carbon powder, a conductive nano metal material such as conductive nano silver particles to make the organic semiconductor material have better conductivity to form an organic conductor material.
- the organic conductor material is an organic compound having conductivity, which includes a conductive polymer material, and an organic material doped with a conductive substance to exhibit a conductor property.
- the organic resin in the quantum dot light emitting diode substrate includes an epoxy resin.
- Epoxy resin is a kind of resin material which can be cured under the acceptable conditions of a commonly used substrate, without affecting the performance of other components on the substrate, and can be modified by various means. Its electrical conductivity.
- the bonding layer 106 and the quantum dots 113 in the quantum dot light emitting diode substrate are bonded by forming a crosslinked network, and the quantum dots 113 form a quantum dot layer.
- Bonding layer 106 and quantum dots A crosslinked network is formed between 113 by a crosslinking reaction between the organic functional groups to fix the quantum dot layer.
- the quantum dots 113 in the quantum dot light-emitting diode substrate are combined with the bonding layer 106 by being embedded in the bonding layer 106, and the quantum dots 113 may also be bonded to the surface of the bonding layer 106, depending on the induced force. .
- the quantum dots 113 are both embedded in the bonding layer 106 and also undergo a crosslinking reaction with the bonding layer 106 to form a crosslinked network.
- the luminescent layer thus formed has a better bonding strength between the quantum dots and the bonding layer, and can ensure a high yield of the product.
- the thickness of the bonding layer 106 in the quantum dot light emitting diode substrate is about 5 to 50 nanometers, such as 4.9 nanometers, for example, 51 nanometers. In some embodiments, the thickness of the bonding layer 106 is from 0.8 to 2.0 times the quantum dot particle size, such as from 1.0 to 1.1 times the quantum dot particle size.
- a method of preparing the quantum dot light emitting diode substrate can form a process map of a bonding layer and a quantum dot layer by heating and/or pressurization.
- the exemplary process is described below in conjunction with the drawings as follows.
- a substrate 101 is provided, which is a base substrate.
- the base substrate is, for example, a glass substrate, a plastic substrate or the like.
- an electrode material layer is formed on the substrate 101 and patterned to obtain an electrode 102, which may be a cathode or an anode.
- an electrode 102 which may be a cathode or an anode.
- a structure such as a switching element (for example, a thin film transistor), a passivation layer, or the like may be formed on the base substrate.
- a bonding layer material 103 is formed (for example, coated or deposited) on a substrate substrate on which an electrode pattern is formed, and the bonding layer material 103 may be an organic semiconductor material or an organic conductor material.
- the layer of the bonding material 103 is patterned to form a bonding layer 106 corresponding to a pattern of a plurality of sub-pixel light emitting regions.
- the non-exposed area is blocked by the mask 104, the exposed area is irradiated with ultraviolet light, and after the development, the bonding layer 106 is formed in the exposed area.
- green quantum dots 107 are coated on the bonding layer 106, and green quantum dots 107 are laid on the electrodes 102 and the bonding layer 106 and the spaced regions of the two.
- the green quantum dots 107 are combined with the bonding layer 106 by external initiation conditions, such as heating, illumination, and application of external pressure, or by a combination thereof, and the green quantum is combined.
- Point 107 is fixed in the corresponding sub-pixel illumination area.
- a pressurizer 116 is used in Figures 2-7 to apply pressure to the quantum dots in the sub-pixel illumination region.
- the method of applying pressure is not Limited to this, it is also possible to apply pressure using a single plate. The amount of pressure applied can cause the quantum dots to be at least partially embedded in the bonding layer.
- the bonding layer softens at an elevated temperature, making it easier for the quantum dots to be pressed into the bonding layer.
- the unbound green quantum dots 107 are removed, thereby forming a green light-emitting layer 117 including the bonding layer 106 and the green quantum dot layer 108 bonded to the bonding layer 106, as shown in FIGS. 2-8.
- the quantum dots are partially or fully embedded in the bonding layer 106.
- the method of heating may be local heating or uniform heating as a whole. With external pressure, it is also possible to apply pressure locally or in whole.
- 2-9 to 2-14 illustrate a process of forming a light-emitting layer including a bonding layer and a blue quantum dot layer 110 bonded thereto by heating and applying an external pressure, specifically repeating the steps of FIGS. 2-3 to The process of 2-8 differs in the use of blue quantum dots.
- a new bonding layer may be formed using a screen printing method such that the position where the green quantum dot layer 108 has been formed is not covered by the new bonding layer; or The new bonding material is formed on the entire substrate, and then the bonding material at the position where the green quantum dot layer 108 is formed is removed by patterning to form a bonding layer.
- a blue luminescent layer 118 comprising a bonding layer and blue quantum dots 109 in combination with the bonding layer is formed.
- a new bonding layer may be formed using a screen printing method such that the position where the green quantum dot layer 108 and the blue quantum dot 109 have been formed is not affected by the new bonding layer.
- the new bonding material may be formed on the entire substrate, and then the bonding material at the position where the green quantum dot layer 108 and the blue quantum dot 109 are formed may be removed by patterning to form a bonding layer.
- a red luminescent layer 119 comprising a bonding layer and red quantum dots 111 in combination with the bonding layer is formed.
- the order in which the green light-emitting layer 117 is formed, the blue light-emitting layer 118 is formed, and the red light-emitting layer 119 is formed is not limited, and is not limited to forming red, green, and blue light-emitting layers. And in actual preparation, for example, one or both of the green light-emitting layer 117, the blue light-emitting layer 118, and the red light-emitting layer 119 may be formed only by quantum dots, and the other light-emitting layer may employ an organic light-emitting layer.
- the external initiation conditions can be selected from the group consisting of external thermal initiation, external pressure initiation, and combinations thereof.
- the organic functional group of the bonding layer 106 can interact with the organic functional group of the quantum dot to form a crosslinked network centered on the quantum dot inorganic core.
- the quantum dots are bonded to the bonding layer 106 by being embedded in the bonding layer 106, including partial embedding and full embedding, depending on factors such as the magnitude of the external force and the nature of the bonding layer such as thickness.
- the bonding layer 106 has a thickness of about 5 to 50 nanometers.
- the bonding layer 106 is made of an organic semiconductor material or an organic conductor material.
- the formed bonding layer 106 corresponds only to the pattern of sub-pixel light-emitting regions of one color, and the method includes repeating steps 2-3 to 2-8 a plurality of times to form a pattern of sub-pixel light-emitting regions having multiple colors. .
- the formed bonding layer 106 corresponds to a pattern of sub-pixel light-emitting regions of at least two colors
- the method comprising performing a layer of forming a bonding material on the substrate only once, and patterning the layer of the bonding material to form a corresponding a process of bonding layers of patterns of a plurality of sub-pixel light-emitting regions, and repeating the following process at least twice to form a pattern of sub-pixel light-emitting regions having at least two colors: coating quantum dots on the bonding layer; a condition that the quantum dots are combined with the binding layer to fix the quantum dots in the corresponding sub-pixel light-emitting regions; the unbound quantum dots are removed, thereby forming a light-emitting layer comprising the bonding layer and the quantum dots combined with the bonding layer The process of the layer.
- the organic functional group of the bonding layer can react with the organic functional group of the quantum dot to form a crosslinked network structure centered on the inorganic core of the quantum dot, and further fix the quantum dot at Corresponding sub-pixel area.
- the organic functional group of the quantum dot is selected from one or more of the following: an organic functional group capable of undergoing a crosslinking reaction under illumination, an organic functional group capable of undergoing a crosslinking reaction at an elevated temperature, and capable of being under pressure An organic functional group in which a crosslinking reaction occurs.
- the organic functional group in the bonding layer is a functional group capable of undergoing a crosslinking reaction with a functional group of the quantum dot.
- the functional groups of the bonding layer material and the functional groups of the quantum dots are two different functional groups, which can react with each other under illumination (for example, ultraviolet light, short-wavelength visible light), thereby causing cross-linking of quantum dots, thereby
- the functional group may be selected from an alkenyl group or a dienyl group such as a 1,7-octadienyl group, an alkynyl group or a diynyl group such as a 1,9-octadiynyl group, an anthryl group or the like.
- the functional groups of the bonding layer material and the functional groups of the quantum dots are two different functional groups, under a certain temperature, for example, a temperature of 60 ° C to 400 ° C, such as 90 ° C, 130 ° C, 230. °C and other temperatures, can react with each other, causing quantum dot cross-linking, thus playing a fixed quantum
- the function of the dots may be selected from functional groups such as an amino group and a pyridine.
- the functional groups of the bonding layer material and the functional groups of the quantum dots are two different functional groups, which can react with each other under pressure to cause quantum dot cross-linking, thereby functioning as a fixed quantum dot.
- the bonding layer material may be an epoxy resin having a carboxylic acid group containing a substance having a functional group capable of undergoing a crosslinking reaction, and the quantum dot may have a functional group such as a thiol or a phenol.
- the quantum dot light emitting diode (QD-LED) substrate provided by the embodiments of the present application can be prepared with high resolution and convenient process, and is suitable for mass production.
- the method of preparing the QD-LED substrate has an improved process yield and is suitable for mass production.
- This embodiment also exemplarily shows the structure and preparation method of a specific display panel.
- the display panel comprises: a substrate, a TFT array, a cathode, an electron common layer, a bonding layer, a red, green and blue three-color quantum dot sub-pixel, a hole common layer, an anode, an encapsulating material and an upper polarizer.
- the method of preparing the display panel is as follows.
- the transparent substrate is cleaned, and then a gate metal Mo (thickness: 200 nm) is sequentially deposited and patterned; a gate dielectric SiO 2 (thickness: 150 nm) is formed; an active layer IGZO (thickness: 40 nm) is formed, and the pattern is formed Forming a source and drain metal Mo (thickness: 200 nm) and patterning it; forming a passivation layer of SiO 2 (thickness: 300 nm) and patterning it; pixel electrode ITO (thickness: 40 nm), and patterning it; Finally, an acrylic material is spin-coated and photolithographically cured to form a pixel defining layer, about 1.5 um thick, to form a TFT array portion. Thereafter, a flat layer can be formed over the TFT array.
- the surface of the substrate on which the TFT array is formed may be treated by plasma; and then the low work function metal is sputtered or evaporated as a cathode, and then the electron injection layer is prepared by a spin coating process. And an electron transport layer, such as ZnO nanoparticles or LiF; and then coating the first layer of epoxy bonding material, leaving the bonding material in the green sub-pixel region after exposure, development, and fixing to form a bonding layer for the green sub-pixel Then, the green quantum dot raw material is coated.
- an electron transport layer such as ZnO nanoparticles or LiF
- the quantum dot raw material is synthesized according to a conventional thermal injection method, and the ligands thereof include ligands such as trioctylphosphine, trioctylphosphine oxide, oleylamine, and oleic acid. Then, using 200 ° C, 0.5-5 MPa pressure conditions, the epoxy resin is combined with the quantum dot raw material, and then developed and fixed to form a green sub-pixel; similarly, the second epoxy resin bonding material is coated, exposed and developed.
- ligands thereof include ligands such as trioctylphosphine, trioctylphosphine oxide, oleylamine, and oleic acid.
- the bonding material is retained in the blue sub-pixel region to form a bonding layer for the blue sub-pixel, and then the blue quantum dot material is coated (the quantum dot material is synthesized according to the conventional thermal implantation method, and the The body includes trioctylphosphine, trioctylphosphine oxide, oleylamine, oleic acid and the like), and the epoxy resin is mixed with the quantum dot raw material at a pressure of 200 ° C and 0.5-5 MPa.
- the red quantum dot material is made of 200 ° C, 0.5-5 MPa, and the epoxy resin is combined with the quantum dot raw material, and then developed and fixed to form a red sub-pixel; then spin-coated or vapor-deposited the second common layer: cavity Injecting layer and hole transporting layer, such as spin coating PEDOT:PSS (poly(3,4-ethylenedioxythiophene): poly(styrenesulfonic acid), Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) )))) and TFB(Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-(N-(4-(N-(4-(N-(4-(N-(4-(N-(4-(N-(4-(N-(4-(N-(4-(N-(4-(N-(4-(N
- the manner for achieving elevated temperatures and pressures is not particularly limited, and a manner generally known to those skilled in the art can be used.
- the temperature of the heating is achieved by heating the sample carrying station (i.e., a machine containing a heating function), or by infrared radiation heating.
- the method of applying pressure is a roller rolling application of pressure, and a method of applying pressure using a plain plate or patterned plate.
- the AM-QD-LED panel emits light in an ejector manner, and the minimum sub-pixel size that can be prepared is 10-30 microns, about 300-800 ppi.
- the bonding layer and the quantum dot layer are formed by illumination, and crosslinking occurs between the bonding layer and the quantum dot layer to form a crosslinked network centered on the quantum dot inorganic core.
- the present embodiment provides a quantum dot light emitting diode (QD-LED) substrate.
- the quantum dot light emitting diode (QD-LED) substrate includes a plurality of sub-pixel light emitting regions 115, wherein each sub-pixel light emitting region 115 includes a light emitting layer 114 including a bonding layer 106 and quantum dots 113 bonded to the bonding layer 106.
- the quantum dots 113 are not embedded in the bonding layer and are only present on the surface of the bonding layer.
- the quantum dots 113 are partially embedded in the bonding layer.
- Each sub-pixel light emitting region 115 further includes an electrode, and the quantum dots 113 include different colors. Quantum dots, such as green luminescent quantum dots, blue luminescent quantum dots, red luminescent quantum dots, and the like.
- the light emitting layer includes a bonding layer and a quantum dot layer bonded to the bonding layer.
- the quantum dot layer and the bonding layer undergo a crosslinking reaction on the bonding surface to form a crosslinked network.
- the quantum dots used in this embodiment are photosensitive crosslinkable quantum dots having a functional group such as an alkenyl group, an alkynyl group or a fluorenyl group which can undergo a crosslinking reaction.
- the bonding layer has a functional group capable of undergoing a crosslinking reaction with the photosensitive crosslinkable quantum dot, such as an alkenyl group, a dienyl group, an alkynyl group, a diynyl group or the like.
- Embodiment 1 The teachings in Embodiment 1 are equally applicable to Embodiment 2 unless contrary to the explicit teaching in Embodiment 2.
- the method for preparing the quantum dot light-emitting diode substrate causes cross-linking reaction between the bonding layer and the quantum dot layer by ultraviolet light irradiation to form a cross-linkage centered on the quantum dot inorganic core.
- the network thus forming a process map of the luminescent layer.
- a substrate 101 is provided, which is a base substrate.
- an electrode material layer is formed on the substrate 101 and patterned to obtain an electrode 102, which may be a cathode or an anode.
- a switching element such as a thin film transistor may be formed on the base substrate before the electrode 102 is formed.
- a bonding layer material 103 is formed (for example, coated or deposited) on a substrate substrate on which an electrode pattern is formed, and the bonding layer material 103 may be an organic semiconductor material or an organic conductor material.
- the layer of the bonding material 103 is coated on the substrate 101, the layer of the bonding material is patterned to form a bonding layer 106 corresponding to the pattern of the plurality of sub-pixel emitting regions. .
- the non-exposed area is blocked by the mask 104, the exposed area is irradiated with ultraviolet light, and after the development, the bonding layer 106 is formed in the exposed area.
- a green quantum dot 107 is coated on the bonding layer 106, and the green quantum dot 107 is laid on the electrode 102 and the bonding layer 106 and the spaced regions of the two.
- a cross-linking reaction occurs between the green quantum dots 107 and the bonding layer 106 by ultraviolet light irradiation to form a cross-linked network centering on the inorganic core of the quantum dots, and The green quantum dots 107 are fixed in the corresponding sub-pixel light-emitting regions.
- the unbound green quantum dots 107 are removed, thereby forming a green light-emitting layer 117 comprising a bonding layer 106 and a green quantum dot layer 108 bonded to the bonding layer 106, as shown in Figures 3-8.
- Quantum dot formation a quantum dot layer on the surface of the bonding layer.
- 3-9 to 3-14 illustrate a process of forming a light-emitting layer including a bonding layer and a blue quantum dot layer 110 by a method of ultraviolet crosslinking, specifically repeating the process of steps 3-3 to 3-8. The difference is the use of blue crosslinkable quantum dots. As shown in FIGS. 3-14, a blue light-emitting layer 118 including a bonding layer and a blue quantum dot layer 110 bonded to the bonding layer is formed.
- 3-15 to 3-20 illustrate a process of forming a light-emitting layer including a bonding layer and a red quantum dot layer 112 by a method of ultraviolet crosslinking, specifically repeating the processes of steps 3-3 to 3-8. The difference is the use of red crosslinkable quantum dots.
- a red luminescent layer 119 comprising a bonding layer and a red quantum dot layer 112 in combination with the bonding layer is formed.
- the order in which the green light-emitting layer 117 is formed, the blue light-emitting layer 118 is formed, and the red light-emitting layer 119 is formed is not limited. And in actual preparation, one or both of the green light-emitting layer 117, the blue light-emitting layer 118, and the red light-emitting layer 119 may be formed only by quantum dots, and the other light-emitting layer may employ an organic light-emitting layer.
- the bonding layer 106 has a thickness of about 5 to 50 nanometers.
- the bonding layer 106 is made of an organic semiconductor material or an organic conductor material.
- the formed bonding layer 106 corresponds only to the pattern of sub-pixel light-emitting regions of one color, and the method includes repeating steps 3-3 to 3-8 a plurality of times to form a pattern of sub-pixel light-emitting regions having multiple colors. .
- the formed bonding layer 106 corresponds to a pattern of sub-pixel light-emitting regions of at least two colors, the method comprising performing a layer of forming a bonding material on the substrate only once, and patterning the layer of the bonding material to form a corresponding a process of bonding layers of patterns of a plurality of sub-pixel light-emitting regions, and repeating the following process at least twice to form a pattern of sub-pixel light-emitting regions having at least two colors: coating quantum dots on the bonding layer; a condition that the quantum dots are combined with the binding layer to fix the quantum dots in the corresponding sub-pixel light-emitting regions; the unbound quantum dots are removed, thereby forming a light-emitting layer comprising the bonding layer and the quantum dots combined with the bonding layer The process of the layer.
- the external initiation condition is ultraviolet light illumination.
- the organic functional group of the bonding layer can react with the organic functional group of the quantum dot to form a crosslinked network structure centered on the inorganic core of the quantum dot, and the quantum dot is fixed in the corresponding Subpixel area.
- the organic functional group of the quantum dot is selected from one or more of the following: an organic functional group capable of undergoing a crosslinking reaction under illumination.
- the organic functional group is a functional group capable of undergoing a crosslinking reaction with a functional group of a quantum dot.
- the functional groups of the bonding layer material and the functional groups of the quantum dots are two different functional groups, which can react with each other under illumination (for example, ultraviolet light, short-wavelength visible light), thereby causing cross-linking of quantum dots, thereby
- the functional group may be selected from the group consisting of a dienyl group such as a 1,7-octadienyl group, a diynyl group such as 1,9-octadiyne, an anthracenyl group, an isoprene or the like.
- the functional group/quantum dot functional group of the bonding layer material may be configured, for example, as a mercapto/alkenyl group, a mercapto/dienyl group, a decyl/alkynyl group, a decyl group/diynyl group, an alkenyl group/alkenyl group, an alkenyl group/dienyl group, and a second group. Alkenyl/dienyl.
- the quantum dot light emitting diode (QD-LED) substrate provided by the embodiment of the present application can be prepared with high resolution and convenient process, and is suitable for mass production.
- the method of preparing the QD-LED substrate has an improved process yield and is suitable for mass production.
- This embodiment also exemplarily shows the structure and preparation method of a specific display panel.
- the display panel comprises: a substrate, a TFT array, a cathode, an electron common layer, a bonding layer, a red, green and blue three-color quantum dot sub-pixel, a hole common layer, an anode, an encapsulating material and an upper polarizer.
- the method of preparing the display panel is as follows.
- the transparent substrate is cleaned by a standard method, and then a gate metal Mo (thickness: 200 nm) is sequentially deposited and patterned; a gate dielectric SiO 2 (thickness: 150 nm) is formed; an active layer IGZO (thickness: 40 nm) is formed, and Patterning; forming source and drain metal Mo (thickness: 200 nm), and patterning; forming a passivation layer of SiO 2 (thickness: 300 nm) and patterning it; forming a pixel electrode ITO (thickness: 40 nm) and patterning it; Finally, the acrylic resin material is spin-coated and photolithographically cured to form a pixel defining layer, about 1.5 um, to form a TFT back plate portion.
- Photosensitive crosslinkable quantum dots were prepared as follows.
- the quantum dot raw material is synthesized according to a conventional thermal injection method, and the ligands thereof include ligands such as trioctylphosphine, trioctylphosphine oxide, oleylamine, and oleic acid.
- the green quantum dot raw material, the blue quantum dot raw material, and the red quantum dot raw material were respectively contacted with a pyridine solvent at a weight ratio of 1:5 under ambient conditions for 2 hours under stirring, thereby replacing the ligand of the quantum dot raw material with pyridine.
- the quantum dots bearing the pyridine ligand are then separated by centrifugation or the like.
- a quantum dot having a pyridine ligand is reacted with a cross-linking ligand raw material (mercaptoacetic acid) having a monofunctional group, and the pyridine ligand is substituted into a ligand having a monofunctional group, thereby obtaining a monofunctional group crosslinkable.
- Quantum dots including: green photosensitive quantum dots, blue photosensitive quantum dots, and red photosensitive quantum dots.
- the monofunctional crosslinkable quantum dots can react with a ligand having a plurality of alkenyl functional groups to form a crosslinked network.
- the surface of the back plate of the TFT is treated with plasma; Emitting or vaporizing a low work function metal as a cathode, and then preparing an inorganic electron injecting layer and an electron transporting layer, such as ZnO nanoparticles or LiF, by a spin coating process; then coating a first layer of negative photosensitive bonding material, followed by exposure and development Fixing, retaining the bonding material in the green sub-pixel region, forming a bonding layer for the green sub-pixel (the surface of the bonding layer is provided with an alkenyl functional group), and then coating the green photosensitive quantum dot, and exposing the whole to ultraviolet light, thereby The green photosensitive quantum dot is reacted with the alkenyl functional group in the binding layer, and then developed and fixed to form green sub-pixel luminescence; similarly, the second negative photosensitive bonding material is coated, and then exposed and developed to be fixed in blue.
- a first layer of negative photosensitive bonding material followed by exposure and development Fixing, retaining the bonding
- the color sub-pixel region retains the bonding material, forms a bonding layer for the blue sub-pixel (the surface of the bonding layer carries an alkenyl functional group), and then coats the blue photosensitive quantum dot, which is exposed to ultraviolet light and then developed.
- a blue sub-pixel luminescence Fixing to form a blue sub-pixel luminescence; finally coating a third layer of negative photosensitive bonding material, followed by exposure and development and fixing, in the red sub-pixel region Retaining the bonding material to form a bonding layer for the red sub-pixel (the surface of the bonding layer is provided with an alkenyl functional group), coating the red photosensitive quantum dots, exposing the whole with ultraviolet light, and then developing and fixing to form red sub-pixel luminescence; Finally, spin-coating or vapor-depositing a second common layer: a hole injection layer and a hole transport layer, such as spin coating PEDOT: PSS and TFB, respectively; wherein the hole injection layer and the hole transport layer have an overall thickness of 50-100 nm; Thereafter, the anode metal thin layer is vapor-deposited and sputtered, and an Au:ITO layer or the like is used, and the thickness is about 500 to 1000 nm. After the vapor deposition is completed, the package is cut and cut
- the bonding material for forming the bonding layer is not particularly limited as long as the purpose of the embodiment of the present invention can be attained, and a functional group (for example, an alkenyl group or an alkynyl group) capable of undergoing a crosslinking reaction on the bonding layer.
- the isofunctional group is formed by including a substance having a functional group capable of undergoing a crosslinking reaction, such as a polybutadiene or a styrene-maleic anhydride copolymer, in the binding material, or by coating these substances on the surface of the bonding layer.
- the surface of the bonding layer is provided with a functional group capable of undergoing a crosslinking reaction.
- the tie layer is formed from a polybutadiene or styrene-maleic anhydride copolymer.
- the AM-QD-LED display panel emits light in an ejector manner, and the minimum sub-pixel size that can be prepared is 10-30 microns, about 300-800 ppi.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
提供一种具有结合层的量子点发光二极管基板及其制备方法。所述量子点发光二极管基板包括多个亚像素发光区域(115),其中每个亚像素发光区域包括发光层(114),所述发光层包括结合层(106)和与所述结合层结合的量子点(113)。所述量子点发光二极管基板可以以高的分辨率和方便的工艺制备,适合于大规模生产。
Description
本发明的实施例涉及具有结合层的量子点发光二极管基板,使用这种量子点发光二极管基板的显示面板和显示设备,及其制备方法。
有源矩阵有机发光二极管(AMOLED)曾被公认为有希望成为取代液晶显示器(LCD)的下一代显示,但是随着消费者的消费水平的提升,高分辨率产品成为显示产品的重点发展方向,而高分辨率的AMOLED产品很难同LCD竞争,这是因为通常采用掩模蒸发的方法制备有机发光显示的有机层结构,但是掩模蒸发方法存在着对位困难,良品率低,无法实现更小像素面积发光,无法精确控制蒸发区域等缺陷,从而无法满足目前迅速发展的对高分辨率显示的需求;而采用印刷和打印的方法取代掩模蒸发法制备的有机发光层的分辨率极其有限。因而高分辨率的AMOLED产品面临着技术难度高,产品良率低,商品价格高的问题。
量子点(Quantum Dots,QDs),又称为纳米晶,是一种由IIB-VIA族或IIIA-VA族元素构成的纳米颗粒。量子点的粒径一般介于1~20nm之间,由于电子和空穴被量子限域,连续的能带结构变成分立的能级结构,受激后可以发射荧光。
随着量子点技术的深入发展,电致量子点发光二极管的研究日益深入,量子效率不断提升,已基本达到产业化的水平,进一步采用新的工艺和技术来实现其产业化已成为未来的趋势。为了提升OLED分辨率,需要使OLED蒸镀掩模板进一步减小Mask工艺线宽,需要更高精度的打印喷头等,这在规模化生产工艺中往往较难满足。因此,需要大规模制备量子点发光二极管的方法,其能够实现高分辨率,提升工艺良率,提升量子点的使用率。
发明内容
本发明至少一个实施例提供一种量子点发光二极管(Quantum Dots-Light
Emission Diode,QD-LED)基板、包含该量子点发光二极管基板的显示面板及量子点发光二极管基板的制备方法。所述量子点发光二极管基板可以以高的分辨率和方便的工艺制备,适合于大规模生产。该制备方法具有提升的工艺良率,适合于大规模生产。
本发明至少一个实施例提供一种量子点发光二极管基板,其包括多个亚像素发光区域,其中每个亚像素发光区域包括发光层,所述发光层包括结合层和量子点,所述量子点通过与所述结合层结合固定在相应的亚像素发光区域中。
例如,在本发明一个实施例提供的量子点发光二极管基板中,所述结合层含有有机树脂。
例如,在本发明一个实施例提供的量子点发光二极管基板中,所述有机树脂包括环氧树脂。
例如,在本发明一个实施例提供的量子点发光二极管基板中,所述量子点通过与所述结合层形成交联网络而与所述结合层结合,进而形成量子点层。
例如,在本发明一个实施例提供的量子点发光二极管基板中,所述量子点通过嵌入所述结合层中而与所述结合层结合。
例如,在本发明一个实施例提供的量子点发光二极管基板中,所述结合层的厚度为大约5至50纳米,例如4.9纳米,又例如51纳米。
例如,在本发明一个实施例提供的量子点发光二极管基板中,所述结合层由有机半导体材料或者有机导体材料制成。
本发明至少一个实施例还提供一种包含上述量子点发光二极管基板的显示面板。
本发明至少一个实施例还提供一种制备量子点发光二极管基板的方法,包括:
步骤1:在基板上形成结合材料的层,并对该结合材料的层进行图案化从而形成对应于多个亚像素发光区域的图案的结合层;
步骤2:在该结合层上涂覆量子点;
步骤3:通过外部引发条件,使得所述量子点与所述结合层结合,而将量子点固定在相应的亚像素发光区域中;和
步骤4:除去未结合的量子点,从而形成包含结合层和与所述结合层结
合的量子点的发光层。
例如,在本发明一个实施例提供的量子点发光二极管基板的制备方法中,所述外部引发条件选自外部光引发、外部热引发、外部压力引发及其组合。
例如,在本发明一个实施例提供的量子点发光二极管基板的制备方法中,所述结合层的有机官能团可以与量子点的有机官能团相互反应,从而形成以量子点无机核为中心的交联网络。
例如,在本发明一个实施例提供的量子点发光二极管基板的制备方法中,所述结合材料含有有机树脂。
例如,在本发明一个实施例提供的量子点发光二极管基板的制备方法中,所述有机树脂包括环氧树脂。
例如,在本发明一个实施例提供的量子点发光二极管基板的制备方法中,所述量子点通过嵌入所述结合层中而与所述结合层结合。
例如,在本发明一实施例提供的量子点发光二极管基板的制备方法中,所述结合层的厚度为大约5至50纳米,例如4.9纳米,又例如51纳米。
例如,在本发明一个实施例提供的量子点发光二极管基板的制备方法中,所述结合材料包括有机半导体材料、有机导体材料或其组合。
例如,在本发明一个实施例提供的量子点发光二极管基板的制备方法中,步骤1中形成的结合层仅对应于一种颜色的亚像素发光区域的图案,所述方法包括多次重复步骤1-4,从而形成具有多种颜色的亚像素发光区域的图案。
例如,在本发明一个实施例提供的量子点发光二极管基板的制备方法中,所述方法包括仅进行一次步骤1,步骤1中形成的结合层对应于至少两种颜色的亚像素发光区域的图案,和至少两次重复步骤2-4,从而形成具有至少两种颜色的亚像素发光区域的图案。在进行至少两次重复步骤2-4时,每次进行步骤2-4形成一种颜色的亚像素发光区域的图案。这种方法可以仅进行一次步骤1,因此节约了生产成本和提高了生产效率。
例如,在本发明一个实施例提供的量子点发光二极管基板的制备方法中,量子点的有机官能团选自以下的一种或多种:能够在光照下发生交联反应的有机官能团,能够在升高的温度下发生交联反应的有机官能团,和能够在压力作用下发生交联反应的有机官能团。本申请所述的在光照下是指在紫外光(波长为10nm至400nm,例如波长为110nm至180nm,例如波长为181至
290nm,例如波长为291nm至315nm,例如波长为316nm至400nm)照射下,在近紫外光(波长为200nm至400nm)照射下,或者在能够使量子点和结合层之间发生交联反应的其他光的照射下。在一些实施方式中,结合层带有与量子点的有机官能团能够发生交联反应的官能团。
例如,在本发明一个实施例提供的量子点发光二极管基板的制备方法中,量子点的有机官能团选自以下的一种或多种:烯基或二烯基官能团如1,7-辛二烯基、异戊二烯基、炔基或二炔基官能团如1,9-辛二炔基团、巯基、氨基、吡啶、羧酸、硫醇、酚或其任意组合。在一些实施方式中,结合层带有与该有机官能团能够发生交联反应的官能团。
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1A为根据本发明的实施例的量子点发光二极管显示基板的平面结构示意图,图1B为根据本发明的实施例的量子点发光二极管显示基板沿线A-A的剖面结构示意图。
图2-1至图2-20为通过加热和/或加压形成结合层和量子点层的流程图。
图3-1至图3-20为通过光照调节形成结合层和量子点层的流程图。
附图标记:
101-基板;102-电极;103-结合层材料;104-掩膜板;105-紫外光;106-结合层;107-绿色量子点;108-绿色量子点层;109-蓝色量子点;110-蓝色量子点层;111-红色量子点;112-红色量子点层;113-量子点;114-发光层;115-亚像素发光区;116-加压器;117-绿色发光层;118-蓝色发光层;119-红色发光层。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描
述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明至少一实施例提供一种量子点发光二极管基板、包含所述量子点发光二极管基板的显示面板及量子点发光二极管基板的制备方法。所述量子点发光二极管基板包括多个亚像素发光区域,其中每个亚像素发光区域包括发光层,所述发光层包括结合层和量子点,所述量子点通过与所述结合层结合固定在相应的亚像素发光区域中。
该量子点发光二极管基板可以以高的分辨率和方便的工艺制备,适合于大规模生产。该制备方法具有提升的工艺良率,适合于大规模生产。应该理解,本申请中的术语“量子点发光二极管基板”是指含有发光二极管的基板,其中所述发光二极管包含配置为能够用于发光的量子点。因此,本申请中的发光二极管基板可以是一种阵列基板或显示基板。
本申请中的术语“量子点的有机官能团”是指存在于量子点的表面上的能够发生交联反应的有机官能团或者有机化合物。类似地,术语“结合层的有机官能团”是指存在于结合层的表面上的能够发生交联反应的有机官能团或者有机化合物。
下面通过几个实施例进行说明。应该理解,实施例仅是对本发明的示例性说明,不应该解释为对本发明的限制。
实施例1
本实施例提供一种量子点发光二极管(QD-LED)基板。如图1A和图1B所示,该量子点发光二极管(QD-LED)基板包括多个亚像素发光区域115(例如按阵列排布的红、绿、蓝(RGB)亚像素),其中每个亚像素发光区域115包括发光层114,该发光层114包括结合层106和与该结合层106结合的量子点113。其中量子点113不包埋在结合层中,例如层状地存在于结合层的表面上。每个亚像素发光区域115还包括电极,根据每个亚像素需要发出的光的颜色,量子点113可包括不同颜色的量子点,例如绿色发光量子点、蓝色发光量子点、红色发光量子点等。
本实施例还提供一种量子点发光二极管(QD-LED)基板及其制备方法,如图2-20所示,该量子点发光二极管(QD-LED)基板包括多个亚像素发光区域
115,其中每个亚像素发光区域包括发光层114,该发光层114包括结合层106和与该结合层106结合的量子点113。其中量子点113至少部分包埋在结合层106中。在本申请中,“量子点至少部分包埋在结合层中”包含是指每个量子点至少部分包埋在结合层中。每个亚像素发光区域还包括电极102,根据每个亚像素需要发出的光的颜色,量子点可包括不同颜色的量子点,例如绿色发光量子点107,蓝色发光量子点109,红色发光量子点111等。
例如,该量子点发光二极管基板中的结合层106含有有机树脂。一般而言,结合层可以由有机树脂形成。该有机树脂可具有导体性质或者半导体性质的有机树脂材料。例如,可以通过向该有机树脂中添加导电物质例如碳粉、导电纳米金属材料如导电纳米银粒子而使该有机树脂导电。
在一些实施方式中,该量子点发光二极管基板中的结合层106由有机半导体材料或者有机导体材料制成。有机半导体是具有半导体性质的有机材料,即导电能力介于金属和绝缘体之间,具有热激活电导率且电导率在10-10~100S·cm-1范围内的有机物。有机半导体可分为有机小分子、聚合物和给体-受体络合物三类。有机小分子类包括芳烃、染料、金属有机化合物,如紫精、酞菁、孔雀石绿、若丹明B等。聚合物类包括主链为饱和类聚合物和共轭型聚合物,如聚苯、聚乙炔、聚乙烯咔唑、聚苯硫醚等。给体-受体络合物由电子给予体与电子接受体二部分组成,典型的有四甲基对苯二胺与四氰基醌二甲烷复合物。
有机半导体可用掺杂方法改变其导电类型和电导率。例如,该有机半导体中可以掺杂有导电物质例如碳粉、导电纳米金属材料如导电纳米银粒子从而使得该有机半导体材料具有较好的导电性从而形成有机导体材料。
有机导体材料是具有导电性的有机化合物,其包括导电高分子材料,以及掺杂有导电物质从而显示出导体性质的有机材料。
例如,该量子点发光二极管基板中的有机树脂包括环氧树脂。环氧树脂是一类树脂材料,能够在通常使用的衬底基板可接受的条件下进行固化,且不影响衬底基板上其它部件的性能,而且能够通过多种方式对其进行改性来调节其导电性。
例如,该量子点发光二极管基板中的结合层106和量子点113之间通过形成交联网络而结合,该量子点113形成量子点层。即结合层106和量子点
113之间通过有机官能团之间的交联反应形成交联网络,来固定量子点层。
例如,该量子点发光二极管基板中的量子点113通过嵌入结合层106中而与结合层106结合,量子点113也可在结合层106的表面与之结合,具体方式可根据引发的作用力决定。
在一些实施方式中,量子点113既嵌入结合层106中,也与结合层106之间发生交联反应,形成交联网络。这样形成的发光层具有更好的量子点与结合层之间的结合强度,能够确保产品的良品率较高。
例如,该量子点发光二极管基板中的结合层106的厚度为大约5至50纳米,例如4.9纳米,又例如51纳米。在一些实施方式中,结合层106的厚度为量子点颗粒尺寸的0.8至2.0倍,例如为量子点颗粒尺寸的1.0至1.1倍。
例如,制备该量子点发光二极管基板的方法,如图2-1至2-20所示,可以通过加热和/或加压形成结合层和量子点层的过程图。下面结合附图对该示例性的过程描述如下。
如图2-1所示,提供基板101,该基板为衬底基板。该衬底基板例如为玻璃基板、塑料基板等。
如图2-2所示,在基板101上形成电极材料层并将其图案化得到电极102,该电极102可为阴极或阳极。在形成电极102之前,可以在衬底基板上形成开关元件(例如薄膜晶体管)、钝化层等结构。
如图2-3所示,在形成有电极图案的衬底基板上形成(例如涂覆或沉积)结合层材料103,该结合层材料103可为有机半导体材料或者有机导体材料。
如图2-4至图2-5所示:在基板101上形成结合层材料103后,对该结合材料的层进行图案化从而形成对应于多个亚像素发光区域的图案的结合层106。在结合层形成的过程中,例如通过掩膜板104遮挡非曝光区域,用紫外光照射曝光区域,经显影之后,在曝光区域形成结合层106。
如图2-6所示,在该结合层106上涂覆绿色量子点107,绿色量子点107平铺在电极102和结合层106及二者的间隔区域上。
如图2-7至图2-8所示,通过外部引发条件,例如加热、光照和施加外部压力等方法之一或通过其组合,使得绿色量子点107与结合层106结合,而将绿色量子点107固定在相应的亚像素发光区域中。图2-7中使用了加压器116来向亚像素发光区域中的量子点施加压力。然而,施加压力的方法不
限于此,也可以使用整块平板来施加压力。施加的压力大小可以使得量子点至少部分包埋在结合层中。为了使得施加的压力较小,还可以在升高的温度的环境中施加压力,这是因为在升高的温度下结合层会变软,从而使得量子点更加容易被压入结合层中。在将量子点压入结合层之后,除去未结合的绿色量子点107,从而形成包含结合层106和与结合层106结合的绿色量子点层108的绿色发光层117,如图2-8所示。量子点部分或者全部嵌入结合层106中。例如,使用加热的方法可以是局部加热,也可以是整体均匀加热。使用外部压力,也可以是局部或整体施加压力。
图2-9至图2-14示出了通过加热和施加外部压力的方法形成包含结合层和与其结合的蓝色量子点层110的发光层的过程,具体是重复步骤图2-3至图2-8的过程,所不同的是使用蓝色量子点。例如在图2-9所示的步骤中,例如可以使用丝网印刷的方法形成新的结合层,使得已经形成有绿色量子点层108的位置不被该新的结合层覆盖;或者,可以在整个基板上形成该新的结合材料,然后通过图案化将形成有绿色量子点层108的位置的结合材料除去从而形成结合层。如图2-14中所示,其中形成了包含结合层和与结合层结合的蓝色量子点109的蓝色发光层118。
图2-15至图2-20示出了通过加热和施加外部压力的方法涂布红色量子点111形成红色量子点层112的过程,具体是重复步骤2-3至图2-8的过程,所不同的是使用红色量子点。例如在图2-15所示的步骤中,例如可以使用丝网印刷的方法形成新的结合层,使得已经形成有绿色量子点层108和蓝色量子点109的位置不被该新的结合层覆盖;或者,可以在整个基板上形成该新的结合材料,然后通过图案化将形成有绿色量子点层108和蓝色量子点109的位置的结合材料除去从而形成结合层。如图2-20中所示,其中形成了包含结合层和与结合层结合的红色量子点111的红色发光层119。
在本发明的实施例中,形成绿色发光层117、形成蓝色发光层118和形成红色发光层119的顺序没有限制,而且也不限于形成红色、绿色和蓝色发光层。并且在实际的制备中,例如,可以仅由量子点形成绿色发光层117、蓝色发光层118和红色发光层119中的一种或两种,而另外的发光层可以采用有机发光层。
例如,该外部引发条件可为选自外部热引发、外部压力引发及其组合。
例如,结合层106的有机官能团可以与量子点的有机官能团相互反应,从而形成以量子点无机核为中心的交联网络。
例如,该量子点通过嵌入结合层106中而与结合层106结合,包括部分嵌入和全部嵌入,根据外界作用力的大小和结合层的性质如厚度等因素来决定。
例如,该结合层106的厚度为大约5至50纳米。
例如,该结合层106由有机半导体材料或者有机导体材料制成。
例如,形成的结合层106仅对应于一种颜色的亚像素发光区域的图案,该方法包括多次重复步骤2-3至图2-8,从而形成具有多种颜色的亚像素发光区域的图案。
例如,形成的结合层106对应于至少两种颜色的亚像素发光区域的图案,所述方法包括仅进行一次在基板上形成结合材料的层,并对该结合材料的层进行图案化从而形成对应于多个亚像素发光区域的图案的结合层的过程,而至少两次重复以下过程从而形成具有至少两种颜色的亚像素发光区域的图案:在该结合层上涂覆量子点;通过外部引发条件,使得所述量子点与所述结合层结合,而将量子点固定在相应的亚像素发光区域中;除去未结合的量子点,从而形成包含结合层和与结合层结合的量子点的发光层的过程。
在发生交联反应形成交联网络的情况下,结合层的有机官能团可以同量子点的有机官能团相互反应,从而形成以量子点无机核为中心的交联网状结构,而进一步将量子点固定在相应的亚像素区。例如,量子点的有机官能团选自以下的一种或多种:能够在光照下发生交联反应的有机官能团,能够在升高的温度下发生交联反应的有机官能团,和能够在压力作用下发生交联反应的有机官能团。而结合层中的有机官能团是与量子点的官能团能够发生交联反应的官能团。比如,在光引发结合的情况下,结合层材料的官能团和量子点的官能团是两种不同的官能团,在光照下(例如紫外光,短波长可见光)能够相互反应,引起量子点交联,从而起到固定量子点的作用,官能团可选自:烯基或二烯基如1,7-辛二烯基、炔基或二炔基如1,9-辛二炔基、巯基等。比如,在热引发结合的情况下,结合层材料的官能团和量子点的官能团是两种不同的官能团,在一定温度作用下,例如60℃至400℃的温度,如90℃、130℃、230℃等温度,能够相互反应,引起量子点交联,从而起到固定量子
点的作用,官能团可选自:氨基、吡啶等官能团。比如,在压力引发结合的情况下,结合层材料的官能团和量子点的官能团是两种不同的官能团,在压力作用下能够相互反应,引起量子点交联,从而起到固定量子点的作用,结合层材料可以是带有羧酸基团的环氧树脂类,其包含具有可发生交联反应的官能团的物质,而量子点可以带有硫醇,酚等官能团。
本申请的实施例提供的量子点发光二极管(QD-LED)基板可以以高的分辨率和方便的工艺制备,适合于大规模生产。制备所述QD-LED基板的方法具有提升的工艺良率,适合于大规模生产。
本实施例还示例性地给出了一种具体的显示面板的结构和制备方法。
所述显示面板包括:衬底、TFT阵列、阴极、电子共同层、结合层、红绿蓝三色量子点亚像素、空穴共同层、阳极、封装材料以及上偏光片。制备所述显示面板的方法如下所述。
将透明衬底进行清洗,之后依次沉积栅极金属Mo(厚度200nm),并将其图形化;形成栅极介质SiO2(厚度150nm);形成有源层IGZO(厚度40nm),并将其图形化;形成源漏极金属Mo(厚度200nm),并将其图形化;形成钝化层SiO2(厚度300nm),并将其图形化;像素电极ITO(厚度40nm),并将其图形化;最后旋涂沉积丙烯酸类材料并光刻、固化出像素界定层,约1.5um厚,形成TFT阵列部分。之后,可以在TFT阵列之上形成平坦层。
在制备量子点发光二极管(QD-LED)部分之前,可以采用等离子体处理形成有TFT阵列的衬底表面;进而溅射或蒸镀低功函金属作为阴极,之后采用旋涂工艺制备电子注入层和电子传输层,如ZnO纳米颗粒或LiF等;之后涂布第一层环氧树脂结合材料,通过曝光、显影、定影后在绿色亚像素区保留结合材料,形成用于绿色亚像素的结合层,而后涂布绿色量子点原料。该量子点原料按照传统热注入法合成,其带有的配体包括三辛基膦、三辛基氧膦、油胺、油酸等配体。然后,采用200℃,0.5-5Mpa的压力条件使得环氧树脂同量子点原料相结合,而后显影、定影形成绿光亚像素;类似地,涂布第二层环氧树脂结合材料,曝光、显影、定影后在蓝色亚像素区保留结合材料,形成用于蓝色亚像素的结合层,而后再涂布蓝色量子点原料(该量子点原料按照传统热注入法合成,其带有的配体包括三辛基膦、三辛基氧膦、油胺、油酸等配体),采用200℃,0.5-5Mpa的压力条件使得环氧树脂同量子点原料相
结合,而后显影、定影形成蓝光亚像素;最后涂布第三层环氧树脂结合材料,曝光、显影、定影后在红色亚像素区保留结合材料,形成用于红色亚像素的结合层,而后涂布红色量子点原料,采用200℃,0.5-5Mpa的压力条件使得环氧树脂同量子点原料相结合,而后显影、定影形成红光亚像素;然后旋涂或蒸镀第二共同层:空穴注入层和空穴传输层,如分别旋涂PEDOT:PSS(聚(3,4-亚乙二氧基噻吩):聚(苯乙烯磺酸),Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate))和TFB(Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl)diphenyl amine)](9,9-二辛基芴)-(4,4’-N-异丁基苯-二苯胺)共聚物)等;空穴注入层和空穴传输层的整体厚度为50-100nm;最后蒸镀、溅射阳极金属薄层,例如采用Au:ITO层等,其厚度约为500-1000nm,蒸镀结束之后进行封装并切割,完成整个有源矩阵量子点发光二极管(Active Matrix-Quantum Dots-Light Emission Diode,AM-QD-LED)的面板部分。
在本实施例中,用来实现升高的温度和压力(例如200℃和0.5-5Mpa的压力)的方式没有特别限制,可以使用本领域技术人员通常已知的方式。在一些实施方式中,加热的温度是通过对样品承载机台加热(即含有加热功能的机台),或红外辐射加热等方法实现的。在一些实施方式中,施加压力方法是滚轮滚动施加压力,和使用纯平板或图案化平板施加压力的方法。
该AM-QD-LED面板的出光方式为顶出光,可制备的亚像素的最小尺寸为10-30微米,约300-800ppi。
实施例2
本实施例通过光照形成结合层和量子点层,结合层和量子点层之间发生交联,形成以量子点无机核为中心的交联网络。
本实施例提供一种量子点发光二极管(QD-LED)基板,如图1所示,该量子点发光二极管(QD-LED)基板包括多个亚像素发光区域115,其中每个亚像素发光区域115包括发光层114,该发光层114包括结合层106和与该结合层106结合的量子点113。在一些实施方式中,量子点113不包埋在结合层中,仅存在于结合层的表面上。在一些实施方式中,量子点113部分包埋在结合层中。每个亚像素发光区域115还包括电极,量子点113包括不同颜色
的量子点,例如绿色发光量子点、蓝色发光量子点、红色发光量子点等。
图3-1至图3-20示出了通过紫外光引发使结合层和量子点结合进而制备QD-LED基板的过程。在本实施例中,发光层包括结合层和与该结合层结合的量子点层。该量子点层与结合层在结合面上发生交联反应从而形成交联网络。在本实施例中使用的量子点是光敏性可交联量子点,其具有可以发生交联反应的官能团如烯基、炔基或者巯基。结合层具有与该光敏性可交联量子点可发生交联反应的官能团,例如烯基、二烯基、炔基、二炔基等。
除非与实施例2中的明确教导相反之外,实施例1中的教导同样可以适用于实施例2。
制备该量子点发光二极管基板的方法,如图3-1至3-20所示,通过紫外光照射使结合层与量子点层之间发生交联反应形成以量子点无机核为中心的交联网络,从而形成发光层的过程图。下面结合附图对该示例性的过程描述如下。
如图3-1所示,提供基板101,该基板为衬底基板。
如图3-2所示,在基板101上形成电极材料层并将其图案化得到电极102,该电极102可为阴极或阳极。在形成电极102之前,可以在衬底基板上形成开关元件例如薄膜晶体管。
如图3-3所示,在形成有电极图案的衬底基板上形成(例如涂覆或沉积)结合层材料103,该结合层材料103可为有机半导体材料或者有机导体材料。
如图3-4至图3-5所示:在基板101上涂覆结合层材料103后,对该结合材料的层进行图案化从而形成对应于多个亚像素发光区域的图案的结合层106。在结合层形成的过程中,通过掩膜板104遮挡非曝光区域,用紫外光照射曝光区域,经显影之后,在曝光区域形成结合层106。
如图3-6所示,在该结合层106上涂覆绿色量子点107,绿色量子点107平铺在电极102和结合层106及二者的间隔区域上。
如图3-7至图3-8所示,通过紫外光照射,使得绿色量子点107与结合层106之间发生交联反应从而形成以量子点的无机核为中心的交联网络,而将绿色量子点107固定在相应的亚像素发光区域中。在形成交联网络之后,除去未结合的绿色量子点107,从而形成包含结合层106和与结合层106结合的绿色量子点层108的绿色发光层117,如图3-8所示。该量子点形成位
于结合层表面上的量子点层。
图3-9至图3-14示出了通过紫外线交联的方法形成包含结合层和蓝色量子点层110的发光层的过程,具体是重复步骤图3-3至图3-8的过程,所不同的是使用蓝色可交联量子点。如图3-14中所示,其中形成了包含结合层和与结合层结合的蓝色量子点层110的蓝色发光层118。
图3-15至图3-20示出了通过紫外线交联的方法形成包含结合层和红色量子点层112的发光层的过程,具体是重复步骤3-3至图3-8的过程,所不同的是使用红色可交联量子点。如图3-20中所示,其中形成了包含结合层和与结合层结合的红色量子点层112的红色发光层119。
在本实施例中,形成绿色发光层117、形成蓝色发光层118和形成红色发光层119的顺序没有限制。并且在实际的制备中,可以仅由量子点形成绿色发光层117、蓝色发光层118和红色发光层119中的一种或两种,而另外的发光层可以采用有机发光层。
例如,该结合层106的厚度为大约5至50纳米。
例如,该结合层106由有机半导体材料或者有机导体材料制成。
例如,形成的结合层106仅对应于一种颜色的亚像素发光区域的图案,该方法包括多次重复步骤3-3至图3-8,从而形成具有多种颜色的亚像素发光区域的图案。
例如,形成的结合层106对应于至少两种颜色的亚像素发光区域的图案,所述方法包括仅进行一次在基板上形成结合材料的层,并对该结合材料的层进行图案化从而形成对应于多个亚像素发光区域的图案的结合层的过程,而至少两次重复以下过程从而形成具有至少两种颜色的亚像素发光区域的图案:在该结合层上涂覆量子点;通过外部引发条件,使得所述量子点与所述结合层结合,而将量子点固定在相应的亚像素发光区域中;除去未结合的量子点,从而形成包含结合层和与结合层结合的量子点的发光层的过程。在具体的实施方式中,外部引发条件为紫外光照射。
在发生交联反应形成交联网络的情况下,结合层的有机官能团可以同量子点的有机官能团相互反应,从而形成以量子点无机核为中心的交联网状结构,而将量子点固定在相应的亚像素区。例如,量子点的有机官能团选自以下的一种或多种:能够在光照下发生交联反应的有机官能团。而结合层中的
有机官能团是与量子点的官能团能够发生交联反应的官能团。比如,在光引发结合的情况下,结合层材料的官能团和量子点的官能团是两种不同的官能团,在光照下(例如紫外光,短波长可见光)能够相互反应,引起量子点交联,从而起到固定量子点的作用,官能团可选自:二烯基如1,7-辛二烯基、二炔基如1,9-辛二炔、巯基、异戊二烯等。结合层材料的官能团/量子点的官能团可以配置为例如巯基/烯基、巯基/二烯基、巯基/炔基、巯基/二炔基、烯基/烯基、烯基/二烯基、二烯基/二烯基。
本申请实施例提供的量子点发光二极管(QD-LED)基板可以以高的分辨率和方便的工艺制备,适合于大规模生产。制备所述QD-LED基板的方法具有提升的工艺良率,适合于大规模生产。
本实施例还示例性地给出一种具体的显示面板的结构和制备方法。
所述显示面板包括:衬底、TFT阵列、阴极、电子共同层、结合层、红绿蓝三色量子点亚像素、空穴共同层、阳极、封装材料以及上偏光片。制备所述显示面板的方法如下。
透明衬底采用标准方法清洗,之后依次沉积栅极金属Mo(厚度200nm),并将其图形化;形成栅极介质SiO2(厚度150nm);形成有源层IGZO(厚度40nm),并将其图形化;形成源漏极金属Mo(厚度200nm),并图形化;形成钝化层SiO2(厚度300nm),并将其图形化;形成像素电极ITO(厚度40nm),并将其图形化;最后旋涂沉积丙烯酸类树脂材料并光刻、固化出像素界定层,约1.5um,形成TFT背板部分。
如下制备光敏性可交联量子点。该量子点原料按照传统热注入法合成,其带有的配体包括三辛基膦、三辛基氧膦、油胺、油酸等配体。将绿色量子点原料、蓝色量子点原料和红色量子点原料分别与吡啶溶剂以1:5的重量比在环境条件下在搅拌下接触2小时,从而将该量子点原料的配体置换成为吡啶;然后通过离心等方法将带有吡啶配体的量子点分离。然后,将带有吡啶配体的量子点与带有单官能团的交联配体原料(巯基乙酸)反应,使吡啶配体被置换成为带有单官能团的配体,从而获得单官能团可交联的量子点(包括:绿色光敏性量子点,蓝色光敏性量子点和红色光敏性量子点)。所述单官能可交联量子点可以与带有多个烯基官能团的配体发生反应,形成交联网络。
在制备QD-LED部分前,采用等离子体处理TFT的背板表面;进而溅
射或蒸镀低功函金属作为阴极,之后采用旋涂工艺制备无机电子注入层和电子传输层,如ZnO纳米颗粒或LiF等;之后涂布第一层负性光敏性结合材料,之后曝光显影定影,在绿色亚像素区保留结合材料,形成用于绿色亚像素的结合层(该结合层的表面带有烯基官能团),而后涂布绿色光敏性量子点,采用紫外光对整体曝光,从而使得绿色光敏性量子点与结合层中的烯基官能团发生click反应,而后显影、定影形成绿色亚像素发光;类似地,涂布第二层负性光敏性结合材料,之后曝光显影定影,在蓝色亚像素区保留结合材料,形成用于蓝色亚像素的结合层(该结合层的表面带有烯基官能团),而后再涂布蓝色光敏性量子点,采用紫外线对整体曝光,而后显影、定影形成蓝色亚像素发光;最后涂布第三层负性光敏性结合材料,之后曝光显影定影,在红色亚像素区保留结合材料,形成用于红色亚像素的结合层(该结合层的表面带有烯基官能团),涂布红色光敏性量子点,采用紫外线对整体曝光,而后显影、定影形成红色亚像素发光;最后旋涂或蒸镀第二共同层:空穴注入层和空穴传输层,如分别旋涂PEDOT:PSS和TFB等;其中空穴注入层和空穴传输层的整体厚度为50-100nm;之后蒸镀、溅射阳极金属薄层,可采用Au:ITO层等,厚度约为500-1000nm,蒸镀结束之后进行封装并切割,完成整个AM-QD-LED的显示面板。
需要说明的是,在实施例中对于形成结合层的结合材料没有特别限制,只要能够达到本发明实施例的目的即可,结合层上的可发生交联反应的官能团(例如烯基、炔基等官能团)通过在结合材料中包含具有可发生交联反应的官能团的物质如聚丁二烯或苯乙烯-马来酸酐共聚物来形成,也可以通过在结合层的表面上涂布这些物质来使得结合层的表面上具有可发生交联反应的官能团。在一些实施方式中,结合层由聚丁二烯或苯乙烯-马来酸酐共聚物形成。
该AM-QD-LED显示面板的出光方式为顶出光,可制备的亚像素最小尺寸为10-30微米,约300-800ppi。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。
本专利申请要求于2016年1月8日递交的中国专利申请第201610012450.1号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
Claims (20)
- 一种量子点发光二极管基板,其包括多个亚像素发光区域,其中每个亚像素发光区域包括发光层,所述发光层包括结合层和量子点,所述量子点通过与所述结合层结合固定在相应的亚像素发光区域中。
- 权利要求1的量子点发光二极管基板,其中所述结合层含有有机树脂。
- 权利要求2的量子点发光二极管基板,其中所述有机树脂包括环氧树脂。
- 权利要求1或2的量子点发光二极管基板,其中所述量子点被配置为通过与所述结合层形成交联网络而与所述结合层结合,进而形成量子点层。
- 权利要求1或2的量子点发光二极管基板,其中所述量子点通过嵌入所述结合层中而与所述结合层结合。
- 权利要求1或2的量子点发光二极管基板,其中所述结合层的厚度为大约5至50纳米。
- 权利要求1或2的量子点发光二极管基板,其中所述结合层由有机半导体材料或者有机导体材料制成。
- 一种包含权利要求1至7中任一项的量子点发光二极管基板的显示面板。
- 一种制备量子点发光二极管基板的方法,包括:步骤1:在基板上形成结合材料的层,并对所述结合材料的层进行图案化从而形成对应于多个亚像素发光区域的图案的结合层;步骤2:在所述结合层上涂覆量子点;步骤3:通过外部引发条件,使得所述量子点与所述结合层结合,而将量子点固定在相应的亚像素发光区域中;和步骤4:除去未结合的量子点,从而形成包含结合层和与所述结合层结合的量子点的发光层。
- 权利要求9的方法,其中所述外部引发条件选自外部光引发、外部热引发、外部压力引发及其组合。
- 权利要求9或10的方法,其中所述结合层的有机官能团可以与量子点的有机官能团相互反应,从而形成以量子点无机核为中心的交联网络。
- 权利要求9至11中任一项的方法,其中所述结合材料含有有机树脂。
- 权利要求12的方法,其中所述有机树脂包括环氧树脂。
- 权利要求9或10所述的方法,其中所述量子点通过嵌入所述结合层中而与所述结合层结合。
- 权利要求9或10所述的方法,其中所述结合层的厚度为大约5至50纳米。
- 权利要求9或10所述的方法,其中所述结合材料包括有机半导体材料,有机导体材料或其组合。
- 权利要求9或10所述的方法,其中步骤1中形成的结合层仅对应于一种颜色的亚像素发光区域的图案,所述方法包括多次重复步骤1-4,从而形成具有多种颜色的亚像素发光区域的图案。
- 权利要求9或10所述的方法,其中所述方法包括仅进行一次步骤1,步骤1中形成的结合层对应于至少两种颜色的亚像素发光区域的图案,和至少两次重复步骤2-4,从而形成具有至少两种颜色的亚像素发光区域的图案。
- 权利要求11所述的方法,其中量子点的有机官能团选自以下的一种或多种:能够在光照下发生交联反应的有机官能团,能够在升高的温度下发生交联反应的有机官能团,和能够在压力作用下发生交联反应的有机官能团。
- 权利要求11所述的方法,其中量子点的有机官能团选自以下的一种或多种:1,7-辛二烯、1,9-辛二炔、巯基、异戊二烯、氨基、吡啶、羧酸、硫醇、酚或其任意组合。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16840275.8A EP3401970B1 (en) | 2016-01-08 | 2016-08-02 | Preparation method for a quantum dot light-emitting diode substrate |
US15/508,663 US20180062101A1 (en) | 2016-01-08 | 2016-08-02 | Quantum dot light-emitting diode substrate having a bonding layer, and method of preparing the same |
US16/585,599 US20200028106A1 (en) | 2016-01-08 | 2019-09-27 | Quantum dot light-emitting diode substrate having a bonding layer, and method of preparing the same |
US18/119,894 US20230232648A1 (en) | 2016-01-08 | 2023-03-10 | Quantum dot light-emitting diode substrate having a bonding layer, and method of preparing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610012450.1A CN105449111B (zh) | 2016-01-08 | 2016-01-08 | 具有结合层的量子点发光二极管基板及其制备方法 |
CN201610012450.1 | 2016-01-08 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/508,663 A-371-Of-International US20180062101A1 (en) | 2016-01-08 | 2016-08-02 | Quantum dot light-emitting diode substrate having a bonding layer, and method of preparing the same |
US16/585,599 Division US20200028106A1 (en) | 2016-01-08 | 2019-09-27 | Quantum dot light-emitting diode substrate having a bonding layer, and method of preparing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017117994A1 true WO2017117994A1 (zh) | 2017-07-13 |
Family
ID=55559082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/092849 WO2017117994A1 (zh) | 2016-01-08 | 2016-08-02 | 具有结合层的量子点发光二极管基板及其制备方法 |
Country Status (4)
Country | Link |
---|---|
US (3) | US20180062101A1 (zh) |
EP (1) | EP3401970B1 (zh) |
CN (1) | CN105449111B (zh) |
WO (1) | WO2017117994A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10581007B2 (en) | 2018-03-27 | 2020-03-03 | Sharp Kabushiki Kaisha | Crosslinked emissive layer containing quantum dots for light-emitting device and method for making same |
US10720591B2 (en) | 2018-03-27 | 2020-07-21 | Sharp Kabushiki Kaisha | Crosslinked emissive layer containing quantum dots for light-emitting device and method for making same |
US10826011B1 (en) | 2019-07-23 | 2020-11-03 | Sharp Kabushiki Kaisha | QLED fabricated by patterning with phase separated emissive layer |
TWI710832B (zh) * | 2018-06-22 | 2020-11-21 | 友達光電股份有限公司 | 量子點顯示面板 |
US11309506B2 (en) | 2020-06-24 | 2022-04-19 | Sharp Kabushiki Kaisha | Light-emitting device with crosslinked emissive layer including quantum dots with ligands bonded thereto |
US11309507B2 (en) | 2020-06-24 | 2022-04-19 | Sharp Kabushiki Kaisha | Control of the position of quantum dots in emissive layer of quantum dot light emitting diode |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10147749B2 (en) * | 2015-04-13 | 2018-12-04 | Carestream Health, Inc. | Reduction of TFT instability in digital x-ray detectors |
CN105449111B (zh) * | 2016-01-08 | 2018-03-20 | 京东方科技集团股份有限公司 | 具有结合层的量子点发光二极管基板及其制备方法 |
CN106129261B (zh) * | 2016-07-04 | 2019-09-17 | Tcl集团股份有限公司 | 一种量子点彩膜及其制备方法 |
US10818856B2 (en) * | 2017-05-18 | 2020-10-27 | Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | Method for fabricating thin film transistor, method for fabricating array substrate, and a display apparatus |
CN107799672B (zh) * | 2017-10-30 | 2020-12-29 | 京东方科技集团股份有限公司 | 量子点层图案化的方法、量子点发光器件及其制作方法 |
CN108172603A (zh) | 2018-01-03 | 2018-06-15 | 京东方科技集团股份有限公司 | 一种量子点发光二极管基板及其制备方法、显示面板 |
CN108447999B (zh) * | 2018-03-26 | 2021-04-30 | 京东方科技集团股份有限公司 | 量子点层图案化方法及显示装置的制作方法 |
CN108511390B (zh) * | 2018-05-09 | 2020-07-07 | 广东普加福光电科技有限公司 | 一种量子点全彩微显示器件的制备方法 |
CN110718637B (zh) * | 2018-07-11 | 2020-12-22 | Tcl科技集团股份有限公司 | 一种量子点发光二极管及其制备方法 |
CN112567526A (zh) * | 2018-08-29 | 2021-03-26 | 华为技术有限公司 | 一种采用混合型发光二极管的显示屏幕及其制备方法 |
CN109378395B (zh) * | 2018-10-18 | 2021-08-06 | 京东方科技集团股份有限公司 | 纳米粒子、显示基板的制备方法及显示装置 |
CN109346506A (zh) * | 2018-10-25 | 2019-02-15 | 京东方科技集团股份有限公司 | 一种阵列基板及其制备方法、显示面板 |
US12120901B2 (en) * | 2018-10-30 | 2024-10-15 | Sharp Kabushiki Kaisha | Light-emitting element for efficiently emitting light in different colors |
CN110137387B (zh) * | 2019-05-16 | 2021-11-16 | 京东方科技集团股份有限公司 | 纳米粒子层图案化的方法、量子点发光器件及显示装置 |
CN112289960B (zh) * | 2019-07-25 | 2022-08-23 | Tcl科技集团股份有限公司 | 一种量子点发光二极管及其制备方法 |
US20220352262A1 (en) * | 2019-08-05 | 2022-11-03 | Sharp Kabushiki Kaisha | Display device and method of manufacturing display device |
CN110707200B (zh) * | 2019-09-04 | 2021-01-15 | 深圳市华星光电半导体显示技术有限公司 | 量子点发光器件图案化方法及量子点发光器件 |
US20220293881A1 (en) * | 2019-09-06 | 2022-09-15 | Sharp Kabushiki Kaisha | Display device and method for producing same |
CN110628417A (zh) * | 2019-09-27 | 2019-12-31 | 京东方科技集团股份有限公司 | 一种量子点配体及其制备方法、以及量子点膜及其制备方法 |
US20220352481A1 (en) * | 2019-10-08 | 2022-11-03 | Sharp Kabushiki Kaisha | Light-emitting device |
WO2021152790A1 (ja) * | 2020-01-30 | 2021-08-05 | シャープ株式会社 | 表示装置、および表示装置の製造方法 |
KR20220003356A (ko) * | 2020-07-01 | 2022-01-10 | 삼성전자주식회사 | 발광 소자 및 이를 포함하는 표시 장치 |
CN112271269B (zh) * | 2020-10-23 | 2024-02-13 | 京东方科技集团股份有限公司 | 显示面板及其制造方法 |
CN114497410B (zh) * | 2020-10-27 | 2024-03-08 | 京东方科技集团股份有限公司 | 一种图案化量子点膜、量子点发光器件及制作方法 |
CN112310330B (zh) * | 2020-10-30 | 2024-06-04 | 北京京东方技术开发有限公司 | 一种量子点材料、量子点发光器件、显示装置及制作方法 |
WO2022126442A1 (zh) * | 2020-12-16 | 2022-06-23 | 京东方科技集团股份有限公司 | 量子点层图案化的方法 |
CN112750955A (zh) * | 2020-12-30 | 2021-05-04 | Tcl科技集团股份有限公司 | 一种量子点发光二极管及其制备方法 |
CN114695708A (zh) * | 2020-12-31 | 2022-07-01 | Tcl科技集团股份有限公司 | 发光器件及其制备方法 |
CN112916348B (zh) * | 2021-01-22 | 2022-05-17 | 中国计量大学 | 一种基于旋涂技术的可控量子点制备方法及量子点 |
CN113109974A (zh) * | 2021-03-25 | 2021-07-13 | 纳晶科技股份有限公司 | 一种量子点器件及其制备方法 |
US20240298459A1 (en) * | 2022-02-18 | 2024-09-05 | Beijing Boe Technology Development Co., Ltd. | Display substrate, electroluminescent device and manufacturing method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1960024A (zh) * | 2006-01-23 | 2007-05-09 | 邓先宇 | 电致发光聚合物全彩色显示制作方法 |
CN101207075A (zh) * | 2006-12-20 | 2008-06-25 | Lg.菲利浦Lcd株式会社 | 有机电致发光器件及其制造方法 |
CN103226260A (zh) * | 2013-04-09 | 2013-07-31 | 北京京东方光电科技有限公司 | 液晶显示屏、显示装置及量子点层图形化的方法 |
CN105449111A (zh) * | 2016-01-08 | 2016-03-30 | 京东方科技集团股份有限公司 | 具有结合层的量子点发光二极管基板及其制备方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005055330A1 (en) * | 2003-12-02 | 2005-06-16 | Koninklijke Philips Electronics N.V. | Electroluminescent device |
JP2009087781A (ja) * | 2007-09-28 | 2009-04-23 | Dainippon Printing Co Ltd | エレクトロルミネッセンス素子およびその製造方法 |
KR100943839B1 (ko) * | 2007-10-31 | 2010-02-24 | 한국과학기술연구원 | 불규칙 표면구조의 우선 도입에 의해 고수율의바이오-이미지용 나노입자를 제조하는 방법 |
US9525148B2 (en) * | 2008-04-03 | 2016-12-20 | Qd Vision, Inc. | Device including quantum dots |
US8642991B2 (en) * | 2008-11-11 | 2014-02-04 | Samsung Electronics Co., Ltd. | Photosensitive quantum dot, composition comprising the same and method of forming quantum dot-containing pattern using the composition |
KR101274068B1 (ko) * | 2010-05-25 | 2013-06-12 | 서울대학교산학협력단 | 양자점 발광 소자 및 이를 이용한 디스플레이 |
WO2012040331A2 (en) * | 2010-09-21 | 2012-03-29 | The General Hospital Corporation | Multistage nanoparticles |
EP3540300B1 (en) * | 2010-11-10 | 2024-05-08 | Shoei Chemical Inc. | Quantum dot films, lighting devices, and lighting methods |
US9425365B2 (en) * | 2012-08-20 | 2016-08-23 | Pacific Light Technologies Corp. | Lighting device having highly luminescent quantum dots |
CN104536198A (zh) * | 2015-02-03 | 2015-04-22 | 京东方科技集团股份有限公司 | 一种显示基板、显示面板和显示装置 |
CN105098075A (zh) * | 2015-07-14 | 2015-11-25 | Tcl集团股份有限公司 | 一种量子点发光层排布致密的发光器件及其制备方法 |
-
2016
- 2016-01-08 CN CN201610012450.1A patent/CN105449111B/zh active Active
- 2016-08-02 US US15/508,663 patent/US20180062101A1/en not_active Abandoned
- 2016-08-02 WO PCT/CN2016/092849 patent/WO2017117994A1/zh active Application Filing
- 2016-08-02 EP EP16840275.8A patent/EP3401970B1/en active Active
-
2019
- 2019-09-27 US US16/585,599 patent/US20200028106A1/en not_active Abandoned
-
2023
- 2023-03-10 US US18/119,894 patent/US20230232648A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1960024A (zh) * | 2006-01-23 | 2007-05-09 | 邓先宇 | 电致发光聚合物全彩色显示制作方法 |
CN101207075A (zh) * | 2006-12-20 | 2008-06-25 | Lg.菲利浦Lcd株式会社 | 有机电致发光器件及其制造方法 |
CN103226260A (zh) * | 2013-04-09 | 2013-07-31 | 北京京东方光电科技有限公司 | 液晶显示屏、显示装置及量子点层图形化的方法 |
CN105449111A (zh) * | 2016-01-08 | 2016-03-30 | 京东方科技集团股份有限公司 | 具有结合层的量子点发光二极管基板及其制备方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3401970A4 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10581007B2 (en) | 2018-03-27 | 2020-03-03 | Sharp Kabushiki Kaisha | Crosslinked emissive layer containing quantum dots for light-emitting device and method for making same |
US10720591B2 (en) | 2018-03-27 | 2020-07-21 | Sharp Kabushiki Kaisha | Crosslinked emissive layer containing quantum dots for light-emitting device and method for making same |
US10897024B2 (en) | 2018-03-27 | 2021-01-19 | Sharp Kabushiki Kaisha | Crosslinked emissive layer containing quantum dots for light-emitting device and method for making same |
US10991900B2 (en) | 2018-03-27 | 2021-04-27 | Sharp Kabushiki Kaisha | Crosslinked emissive layer containing quantum dots for light-emitting device and method for making same |
TWI710832B (zh) * | 2018-06-22 | 2020-11-21 | 友達光電股份有限公司 | 量子點顯示面板 |
US10826011B1 (en) | 2019-07-23 | 2020-11-03 | Sharp Kabushiki Kaisha | QLED fabricated by patterning with phase separated emissive layer |
US11309506B2 (en) | 2020-06-24 | 2022-04-19 | Sharp Kabushiki Kaisha | Light-emitting device with crosslinked emissive layer including quantum dots with ligands bonded thereto |
US11309507B2 (en) | 2020-06-24 | 2022-04-19 | Sharp Kabushiki Kaisha | Control of the position of quantum dots in emissive layer of quantum dot light emitting diode |
Also Published As
Publication number | Publication date |
---|---|
US20200028106A1 (en) | 2020-01-23 |
US20180062101A1 (en) | 2018-03-01 |
CN105449111B (zh) | 2018-03-20 |
US20230232648A1 (en) | 2023-07-20 |
EP3401970A4 (en) | 2019-10-23 |
EP3401970A1 (en) | 2018-11-14 |
EP3401970B1 (en) | 2021-09-29 |
CN105449111A (zh) | 2016-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017117994A1 (zh) | 具有结合层的量子点发光二极管基板及其制备方法 | |
US10224483B2 (en) | Crosslinkable quantum dot and preparing method thereof, array substrate and preparing method thereof | |
US11056650B2 (en) | Film of quantum dot, method for patterning the same and quantum dot light emitting device using the same | |
EP2744008B1 (en) | Array substrate, method for fabricating the same, and OLED display device | |
US10505115B2 (en) | Quantum dot light emitting diode subpixel array, method for manufacturing the same, and display device | |
US9825256B2 (en) | Display panel having a top surface of the conductive layer coplanar with a top surface of the pixel define layer | |
US20190305241A1 (en) | Crosslinked emissive layer containing quantum dots for light-emitting device and method for making same | |
US10826011B1 (en) | QLED fabricated by patterning with phase separated emissive layer | |
US10263220B2 (en) | Manufacturing method for QLED display | |
US7956530B2 (en) | Organic electroluminescent display device and method of fabricating the same | |
US20090021153A1 (en) | Electroluminescent device and method for preparing the same | |
Cheng et al. | High-resolution organic polymer light-emitting pixels fabricated by imprinting technique | |
CN110459691B (zh) | 显示基板及其制作方法、和显示装置 | |
KR101328577B1 (ko) | 편광 유기 발광 소자 및 그의 제조 방법 | |
KR20170093169A (ko) | 유기 전계 발광 소자 및 그 제조 방법, 및 디스플레이 장치 | |
US20230010474A1 (en) | Light-emitting thin film, preparation method therefor, light-emitting device and display substrate | |
CN101013744A (zh) | 有机电致发光装置及其制造方法,以及电子设备 | |
US20220158107A1 (en) | Structure and method for patterned quantum dots light emitting diodes (qleds) | |
KR102438632B1 (ko) | 표시장치 및 표시장치의 제조방법 | |
US11785830B2 (en) | Method of manufacturing electroluminescent device having light emitting layer by using transfer printing process | |
TWI783476B (zh) | 電致發光元件的製造方法 | |
US20230064348A1 (en) | Patterned light-emitting device | |
Sun et al. | Improved Charge Injection Balance in Quantum Dot Light-Emitting Diodes through Interface Texture | |
Li et al. | CdSe/ZnS Quantum Dot Patterned Arrays for Full-Color Light-Emitting Diodes in Active-Matrix QLED Display | |
Okamoto et al. | 23.2: Invited Paper: Challenges for Realizing QD‐LED |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 15508663 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2016840275 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016840275 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |