WO2017117988A1 - 背光模组、显示装置及其驱动方法 - Google Patents

背光模组、显示装置及其驱动方法 Download PDF

Info

Publication number
WO2017117988A1
WO2017117988A1 PCT/CN2016/092349 CN2016092349W WO2017117988A1 WO 2017117988 A1 WO2017117988 A1 WO 2017117988A1 CN 2016092349 W CN2016092349 W CN 2016092349W WO 2017117988 A1 WO2017117988 A1 WO 2017117988A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
backlight module
display device
light source
grating
Prior art date
Application number
PCT/CN2016/092349
Other languages
English (en)
French (fr)
Inventor
高健
董学
陈小川
赵文卿
卢鹏程
杨明
王倩
牛小辰
许睿
王磊
王鹏鹏
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/509,358 priority Critical patent/US10520743B2/en
Publication of WO2017117988A1 publication Critical patent/WO2017117988A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/33Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving directional light or back-light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0016Grooves, prisms, gratings, scattering particles or rough surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/13362Illuminating devices providing polarized light, e.g. by converting a polarisation component into another one
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits

Definitions

  • Embodiments of the present disclosure relate to a backlight module, a display device, and a driving method thereof.
  • 3D display technology can be divided into two types: glasses type 3D and naked eye 3D. Compared with glasses type 3D display technology, the naked eye 3D display technology has received more attention because it does not need to wear glasses.
  • the naked-eye 3D display technology mainly includes three types: one, directional backlight type; second, parallax barrier type; and three, cylindrical lens array type.
  • An object of the present disclosure is to provide a backlight module, a display device, and a driving method thereof to improve the brightness of an image when the display device performs 3D display.
  • a first aspect of the present disclosure provides a backlight module including a light guide plate, a light splitting structure, and a side light source, wherein the light splitting structure is disposed on a light emitting surface of the light guide plate, and the side light source is disposed on a side of the light guide plate.
  • the light splitting structure includes a plurality of stripe first splitting units and a plurality of stripe shaped second splitting units, and the first splitting unit and the second splitting unit are alternately arranged on the light guiding plate
  • Each of the beam splitting units includes at least one grating strip, the first beam splitting unit is configured to emit light toward a first position outside the backlight module, and the second beam splitting unit is configured to direct light toward the surface The second position outside the backlight module is emitted.
  • the second aspect of the present disclosure provides a display device, including the backlight module of the first aspect of the present disclosure, and a display panel superimposed with the backlight module, wherein the The display panel includes a plurality of pixels arranged in an array, the width of each of the first and second light splitting units of the backlight module is equal to the width of the pixels of the display panel, and the first light splitting unit and the second The light splitting unit has a one-to-one correspondence with the pixel columns.
  • a third aspect of the present disclosure provides a driving method of a display device for driving the display device of the second aspect of the present disclosure
  • the driving method includes: driving the The display device performs the step of 3D display, wherein the left eye image signal is transmitted to the first pixel; and the right eye image signal is simultaneously transmitted to the second pixel.
  • the diffraction and interference of the light by the grating strip realize separation of the light, thereby enabling the display device to perform 3D display. Since the light splitting structure directly separates the light to provide appropriate light for the 3D display, most of the light provided by the backlight module can be utilized, thereby avoiding the low light utilization rate caused by the light blocking by the parallax barrier. The problem is that the light utilization rate is improved, thereby improving the image brightness of the display device when performing 3D display.
  • FIG. 1 is a side view of a backlight module according to Embodiment 1 of the present disclosure
  • FIG. 2 is a top plan view of a backlight module according to Embodiment 1 of the present disclosure
  • FIG. 3 is a side view of a first beam splitting unit in a backlight module according to Embodiment 1 of the present disclosure
  • FIG. 4 is a side view of a second beam splitting unit in a backlight module according to Embodiment 1 of the present disclosure
  • Figure 5 is a first positional relationship between the target position and the grating strip
  • Figure 6 is a second positional relationship between the target position and the grating strip
  • FIG. 7 is a side view of a display device according to Embodiment 2 of the present disclosure.
  • FIG. 8 is a first optical path diagram of the display device according to Embodiment 2 of the present disclosure when performing 3D display;
  • FIG. 9 is a second optical path diagram of the display device according to Embodiment 2 of the present disclosure when performing 3D display.
  • A1-slot surface a2-grating surface
  • A'-first grating strip a"-second grating strip
  • Parallax barrier type 3D display technology refers to superimposing a parallax barrier in front of the display module.
  • the parallax barrier has alternating light strips and shading strips, and the parallax barrier can be emitted from the display module.
  • the light is separated, part of the light enters the viewer's left eye, and the other part of the light enters the viewer's right eye.
  • the image seen by the viewer's left and right eyes is combined by the brain to produce a 3D effect.
  • the parallax barrier utilizes the occlusion of light
  • the light utilization efficiency of the parallax barrier type 3D display device is low, usually less than 50%, resulting in a lower brightness of the image displayed by the parallax barrier type 3D display device.
  • the backlight module 100 includes a light guide plate 1 , a light splitting structure 2 , and a side light source 3 .
  • the light splitting structure 2 is disposed on the light emitting surface of the light guide plate 1; the side light source 3 is disposed on one side of the light guide plate 1.
  • the side where the side light source 3 is located is the first side surface, and the side surface opposite to the first side surface is the second side surface.
  • the side light source 3 is turned on, the light emitted from the light source 1 enters the light guide plate 1 from the first side of the light guide plate 1. The light is continuously reflected in the light guide plate 1 and is conducted from the first side surface to the second side surface.
  • the beam splitting structure 2 includes a plurality of strip-shaped beam splitting units 21 and 22, each of which includes at least one grating strip extending in the same direction as the strip-shaped beam splitting units 21 and 22, the grating strip enabling light Exit in a specific direction.
  • the grating strip can cause the light to be diffracted and interfered by the grating and exit in a specific direction.
  • the "specific direction” is determined by the direction of the light exit that is actually required (for example, by receiving the target position of the outgoing light).
  • the outgoing light with "specific direction” can be obtained by designing the specific structure of the grating strip.
  • the light splitting structure 2 includes the first light splitting unit 21 and the second light splitting unit 22, that is, the light splitting unit in the light splitting structure 2 is, for example, the first light splitting unit 21 or the second light splitting unit 22.
  • the first beam splitting unit 21 and the second beam splitting unit 22 are alternately arranged on the light emitting surface of the light guide plate 1.
  • the first beam splitting unit 21 can have the function of emitting light toward the first position outside the backlight module, and secondly
  • the light splitting unit 22 has a function of emitting light toward a second position outside the backlight module.
  • the "outside the backlight module" The first position may be the left eye of the observer; correspondingly, the second position outside the backlight module may be the right eye of the observer. That is, the light is directed by the first beam splitting unit 21 The observer's left eye emerges and finally enters the observer's left eye. The light exits the observer's right eye under the action of the second beam splitting unit 22, and finally enters the observer's right eye, thereby providing 3D display for the 3D display device. Appropriate light.
  • the “first position outside the backlight module” and the “second position outside the backlight module” described in this embodiment do not refer to a fixed position, but are based on the observer. The position of the 3D display device changes and changes.
  • the backlight module 100 provided in the embodiment provides appropriate light for the 3D display of the display device by providing the light-splitting structure 2, and the display device can realize the 3D display function by providing the backlight module 100 provided in this embodiment.
  • the 3D display device does not need to be provided with a parallax barrier and a parallax barrier to implement a 3D display function, so that the backlight module 100 provided in the embodiment can enable the 3D display device to implement 3D without setting a parallax barrier. Display function.
  • the problem of low light utilization caused by the parallax barrier is avoided, and the brightness of the 3D image is improved; on the other hand, the cost of the 3D display device is reduced, the thickness of the 3D display device is thinned, and the 3D display is reduced. The volume and weight of the device.
  • the backlight module 100 provided in this embodiment provides appropriate light for 3D display of the display device through the beam splitting structure 2, and the technology is simple and easy to implement.
  • the backlight module 100 provided in this embodiment can provide not only the appropriate light for the display device to perform 3D display, but also the backlight module 100 described in this embodiment can provide light when the display device performs 2D display.
  • the display device has a function of 3D display and 2D display switching.
  • the 3D display function is realized by providing an optical lens in front of the display panel, but when such a display device is used for 2D display, the optical lens of the display panel causes a certain degree. Optical aberrations cause poor display of 2D images of such display devices.
  • the backlight module in this embodiment 100 provides appropriate light for 3D display of the display device by providing the light splitting structure 2 and the side light source 3, and the backlight module 100 can also provide light for 2D display of the display device.
  • the display device can have the functions of 3D display and 2D display switching without the need to provide an optical lens, thereby avoiding the optical 2D display image caused thereby.
  • the problem of aberrations improves the display effect when the 3D/2D display device performs 2D display.
  • a lower light source 4 may be disposed on a surface of the light guide plate 1 of the backlight module 100 opposite to the light emitting surface thereof, and the lower light source 4 is, for example, Surface light source.
  • the side light source 3 is turned off, and the lower light source 4 is turned on.
  • Most of the light emitted by the lower light source 4 is vertically incident into the light guide plate 1, so that a large amount of light passes through the grating strip in the light splitting structure 2. The light is emitted, thereby improving the image brightness when the 3D/2D display device performs 2D display.
  • the side light source 3 and the lower light source 4 may be simultaneously turned on to further improve the image brightness when the 3D/2D display device performs 2D display.
  • the side where the side light source 3 is located is the first side, and the extending direction of the light splitting units 21 and 22 (for example, the direction perpendicular to the paper surface in FIG. 1) can be, for example, The long sides of one side are parallel to each other to ensure that most of the light is incident into the light guide plate 1 substantially perpendicularly or approximately perpendicular to the extending direction of the light splitting units 21 and 22, and is reflected in the light guide plate 1 and can be incident at a certain incident angle.
  • the side light source 3 may be a strip light source extending in a direction parallel to the long sides of the first side such that light is uniformly incident into the light guide plate 1 from respective regions of the first side.
  • the grating strip a in the beam splitting unit is, for example, a blazed grating.
  • the blazed grating may have a structure in which the grating strip a is in a zigzag shape, the grating strip a includes a grating surface a2 and a groove surface a1; the grating surface a2 is parallel to the light emitting surface of the light guide plate 1, and the groove surface a1 is inclined with respect to the grating surface a2, and thus the grating
  • the surface a2 has a certain angle with the groove surface a1, and the angle is called a blaze angle.
  • the blaze angle of the grating strip a is represented by ⁇ .
  • the light exit surface of the light guide plate 1 when light emitted from the light exit surface of the light guide plate 1 is incident on the groove surface a1 of the grating strip a at a certain incident angle, the light is diffracted and interfered, and there is a +1 order dry direction in the direction perpendicular to the groove surface a1.
  • the main body is extremely large, and the +1-level interference main maximum coincides greatly with the diffraction center of the groove surface a1, and the diffraction minimum position of the groove surface a1 almost coincides with the main maximum of other interference orders, so that only + The level 1 spectrum gets shine and the maximum light intensity is obtained.
  • the grating strip a as a blazed grating can illuminate and illuminate a specific wavelength of light in a specific direction (i.e., in a direction perpendicular to the groove surface a1 of the grating strip a).
  • the outgoing ray is perpendicular to the groove surface a1 of the grating strip a, and the grating surface a2 of the grating strip a is parallel to the light-emitting surface of the light guide plate 1, thereby emitting light and the light-emitting surface of the light guide plate 1.
  • the angle between the perpendiculars is equal to the blaze angle ⁇ of the grating strip a.
  • the angle between the outgoing light and the perpendicular of the light exit surface of the light guide plate 1 is equal to the blaze angle ⁇ of the grating strip a, as shown in FIG.
  • the target line Q outside the backlight module to the blaze angle ⁇ corresponds to the vertical line of the groove surface of the grating strip a coincident or parallel with the outgoing light, and the target position Q reaches the perpendicular line of the backlight module 100 and the light emitting surface of the light guide plate 1.
  • the vertical lines are coincident or parallel, so the blaze angle ⁇ of the grating strip a is equal to the vertical position between the target position Q and the grating strip a corresponding to the blaze angle ⁇ and the target position Q to the perpendicular line of the backlight module 100.
  • Angle ⁇ Since the light to be emitted by the grating strip a finally reaches the target position, the direction of the light emitted by each of the grating strips a in the backlight module 100 can be determined on the premise that the external target position is constant, thereby determining the grating strips a.
  • the specific value of the blaze angle ⁇ is the specific value of the blaze angle ⁇ .
  • the “target position outside the backlight module” is “the first position outside the backlight module” or “the second position outside the backlight module”, and the backlight module 100 is used in the 3D display device. When the "target position outside the backlight module” is the observer's left or right eye.
  • the “increasing oblique directions” means that the groove faces a1 of the respective grating strips a are parallel to each other in the same splitting unit, or are approximately or tend to be parallel to each other.
  • the groove faces a1 of the respective strips a are inclined toward the right side; for example, as shown in FIG. 4, in the second beam splitting unit 22, each of the strips a The groove faces a1 are all inclined to the left side.
  • the target position of the first light splitting unit 21 toward the outgoing light is the observer's target position.
  • the target position of the second light splitting unit 22 toward the outgoing light is the right eye of the observer, and it can be seen that the direction of the light emitted from the adjacent first beam splitting unit 21 and the second beam splitting unit 22 should be separated, so the adjacent The oblique directions of the groove faces a1 of the grating strips a in the splitting unit 21 and the second splitting unit 22 do not coincide.
  • the inclination direction of the groove surface a1 of the grating strip a in the adjacent first and second light splitting units 21 and 22 may be symmetrical or substantially symmetrical with respect to the perpendicular to the light exit surface of the light guide plate 1.
  • the tilt direction of the grating strip a groove surface a1 in the first beam splitting unit 21 and the second beam splitting unit In 22 the oblique direction of the grating strip a groove surface a2 is different.
  • each of the light-splitting units may include three grating strips a, and the vertical line and the backlight module according to the external target position Q to the groove surface of the grating strip a
  • the angle ⁇ between the external target position Q and the perpendicular line of the backlight module 100 is equal to the blaze angle ⁇ of the grating strip a, and the blaze angle ⁇ of each of the three grating strips a can be obtained; different wavelengths required according to the synthetic white light Light, the wavelength ⁇ required for the light emerging from the groove a1 of the three grating strips a;
  • the respective widths d of the three grating strips a can be obtained; according to the respective blaze angles ⁇ and widths of the three grating strips a d.
  • the three grating strips a are arranged such that the wavelength ⁇ of the light emerging from the groove faces of the three grating strips a is the wavelength of the light required for synthesizing the white light, and the wavelengths ⁇ of the three kinds of light are different.
  • each of the light-emitting units includes three grating strips a. Since the positions of the grating strips a in the same light-emitting unit are in close proximity, the relative positional relationship between the grating strips a and the target position Q is almost the same, and the process for preparing the spectroscopic structure 2 is reduced in order to reduce the calculation amount when designing the grating strips a. Difficulty, it can be considered that the blaze angle ⁇ of each grating strip a in the same light-emitting unit is the same. Of course, in order to improve the accuracy of the direction of the outgoing light and thereby improve the 3D display effect, the blazed angle ⁇ of each of the grating strips a can be specifically calculated and designed.
  • each light splitting unit includes a red light grating strip, a green light grating strip, and a blue light grating strip, assuming that the wavelength of the red light is ⁇ 1
  • the blaze angle of the red grating strip is ⁇ 1
  • the width of the red grating strip Assuming that the wavelength of the green light is ⁇ 2 and the blazed angle of the green light grating strip is ⁇ 2
  • the width of the green light grating strip Assuming that the wavelength of the blue light is ⁇ 3 and the blazed angle of the blue light grating strip is ⁇ 3
  • the width of the blue light grating strip A red light grating strip is disposed according to ⁇ 1 and d 1
  • a green light grating strip is disposed according to ⁇ 2 and d 2
  • a blue light grating strip is disposed according to
  • the wavelength ⁇ 1 of the red light can be taken in the red light band
  • the wavelength ⁇ 2 of the green light can be taken in the green light band
  • the wavelength ⁇ 3 of the blue light can be in the blue light band.
  • the blaze angles ⁇ 1 , ⁇ 2 and ⁇ 3 may be the same to reduce the calculation amount at the time of design, and reduce the process difficulty of the spectroscopic structure 2; the blaze angles ⁇ 1 , ⁇ 2 and ⁇ 3 may also be according to the red grating strip and the green light.
  • each of the light splitting units may include other colors or strips of light of other wavelengths in addition to the red light grating strip, the green light grating strip, and the blue light grating strip.
  • each of the beam splitting units that can include the grating strips a includes, but is not limited to, three.
  • each of the beam splitting units may include four grating strips a, which synthesize white light from light of four colors.
  • the backlight module 100 provided in this embodiment provides a 3D display for the display device
  • the blaze angle ⁇ of the grating strip a in the backlight module 100 can be specifically designed. As shown in FIG.
  • the viewing distance between the observer and the display device ie, the vertical distance between the observer's eyes and the display device
  • the position of the observer may vary within a range of the distance from the current position to the left side by x and the distance to the right side by x, within the visible range ⁇ x
  • the observer's left eye always receives light from the left eye image
  • the right eye always receives light from the right eye image.
  • the target position Q outside the backlight module 100 may vary between the first critical position Q 1 and the second critical position Q 2 , between Q 1 and Q
  • the distance is x
  • the distance between Q 2 and Q is also x
  • the vertical distance (ie, the line of sight) of the external target position Q to the backlight module 100 is D.
  • a first grating strips critical final position Q 1 is assumed to have resorted to the light emitting direction of the grating strips of a first a ', the first grating strip
  • the blaze angle ⁇ 1 of a' is equal to the angle between the first critical position Q 1 to the perpendicular line of the groove surface of the first grating strip a' and the vertical line from the first critical position Q 1 to the backlight module 100
  • L 1 represents a vertical distance from the first critical position Q 1 to the groove surface of the first grating strip a'.
  • the grating strip for causing the outgoing light to have this direction is the second grating strip a′′
  • the second grating strip The blaze angle ⁇ 2 of a′′ is equal to the angle between the second critical position Q 2 to the perpendicular line of the groove surface of the second grating strip a′′ and the perpendicular line of the second critical position Q 2 to the backlight module 100 .
  • L 2 represents the vertical distance from the second critical position Q 2 to the groove surface of the second grating strip a′′.
  • the range of the outgoing light of each of the beam splitting units can be made the visible range ⁇ x, so that the target position (the left eye or the right eye of the observer) is between the first critical position Q 1 and the second critical position Q 2
  • the light from the corresponding beam splitting unit can be received during the change, so that the display device has a certain visual range ⁇ x when performing 3D display.
  • the magnitude of x in the visible range ⁇ x does not exceed the pupil distance of the human eye, that is, the first critical position.
  • the distance between Q 1 and the second critical position Q 2 is, for example, less than or equal to twice the distance of the human eye (for example, 100 mm or less) to ensure that the light from the light splitting unit in the backlight module 100 can only be observed by the observer. One eye receives and cannot be received by the other eye of the observer.
  • the light of the first beam splitting unit 21 enters only the observer's left eye and does not enter the observer's right eye
  • the light from the second beam splitting unit 22 only enters the observer's right eye and does not enter the observer's right eye. Left eye.
  • the side where the side light source 3 is located is the first side, and the side opposite to the first side.
  • a reflective film 31 may be disposed on the second side of the light guide plate 1. As shown in FIG. 1, the reflective film 31 may reflect the light conducted to the second side back into the light guide plate 1.
  • a reflective film may be disposed on the other side of the light guide plate 1 except the first side and the second side to reflect the light conducted to the other side back into the light guide plate 1.
  • the light splitting structure 2 can be integrated with the light guide plate 1 (for example, the light splitting structure 2 can be integrally formed with the light guide plate 1) to simplify the assembly process of the backlight module 100.
  • the light-splitting structure 2 and the light guide plate 1 may be simultaneously formed by an injection molding process, or after the light guide plate 1 is formed, the light-splitting structure 2 may be formed on the light-emitting surface thereof.
  • the light splitting structure 2 can also be a film or a substrate that is independently superimposed on the light emitting surface of the light guide plate 1 to simplify the formation process of the light guide plate 1.
  • the side light source 3 can be, for example, a white light source, so that the light provided by the backlight module 100 is white light.
  • the backlight module 100 further includes a lower light source 4, the lower light source 4 may also be a white light source.
  • the side light source 3 can be a natural light source, thereby The light provided by the backlight module 100 is natural light; the side light source 3 can also be a linearly polarized light source, so that the light provided by the backlight module 100 is linearly polarized light. If the backlight module 100 further includes a lower light source 4, it may be a natural light source or a linearly polarized light source. For example, the side light source 3 and the lower light source 4 are both natural light sources or linearly polarized light sources.
  • the present embodiment provides a display device.
  • the display device 10 includes a display panel 200 and a backlight module 100 , which are superposed together (for example, stacked together) ).
  • the display panel 200 includes a plurality of pixels arranged in an array, so that the display panel 200 includes a plurality of columns of pixels.
  • the backlight module 100 is, for example, a backlight module provided in the first embodiment.
  • the backlight module 100 includes a plurality of light splitting units and splits the light.
  • the unit has a strip shape extending in the same direction as the column arrangement of the pixels in the display panel 200.
  • the width of the light splitting unit in the backlight module 100 is equal to the width of the pixels of the display panel 200, and each of the light splitting units is in one-to-one correspondence with each pixel column.
  • the plurality of light splitting units in the backlight module 100 include a first splitting unit 21 and a second splitting unit 22, and the first splitting unit 21 and the second splitting unit 22 are alternately arranged, and each of the first splitting units 21 corresponds to each
  • the column pixels are the first pixels L
  • the columns of pixels corresponding to the second beam splitting units 22 are the second pixels R.
  • the light After passing through the first beam splitting unit 21, the light has a direction of transmission toward the left eye of the observer.
  • the light passes through the first pixel L and carries the image information of the first pixel L, which is received by the observer's left eye; After the light splitting unit 22 has a transmission direction toward the left eye of the observer, the light passes through the second pixel R, and the image information carrying the second pixel R is received by the right eye of the observer, thereby realizing the first pixel light and the first pixel
  • the separation of the two-pixel light can achieve 3D display by applying a left-eye image signal to the first pixel L while applying a right-eye image signal to the second pixel R.
  • the backlight module 100 can directly provide appropriate light for the display device to perform 3D display, thereby enabling the display device to implement a 3D display function, which is avoided compared to the parallax barrier type 3D display device.
  • the setting of the parallax barrier avoids the problem of low light utilization caused by setting the parallax barrier, improves the brightness of the 3D image, reduces the cost of the 3D display device, and reduces the thickness of the 3D display device. The volume and weight of the 3D display device are reduced.
  • the display device compared with a directional backlight type 3D display device, the display device provided in this embodiment
  • the line 3D display does not require time-division multiplexing of the light source, and the technology is simple and easy to implement.
  • the display device provided in the embodiment when the display device provided in the embodiment is required to perform 2D display, the driving mode of the display panel 200 is changed, and the 2D image signal is applied to the pixels of the display panel 200 to realize 2D display, compared to the cylindrical lens array type 3D display.
  • the display device provided by the embodiment realizes the functions of 3D display and 2D display switching, and does not need to provide an optical lens, thereby avoiding the problem that the 2D display image thus caused has optical aberration, and improving the 3D/2D display device.
  • the side light source 3 may be omitted, and other light sources may be used to provide light for the 2D display.
  • a lower light source 4 may be disposed on a surface of the light guide plate 1 of the backlight module 100 opposite to the light emitting surface thereof, and the lower light source 4 is a surface light source.
  • the side light source 3 is turned off, and the lower light source is turned on.
  • the light emitted by the light source 4 and the lower light source 4 is mostly incident on the light guide plate 1 of the backlight module 100, so that a large amount of light is emitted through the light splitting structure 2 of the backlight module 100, thereby improving the display device for 2D display.
  • Image brightness is mostly incident on the light guide plate 1 of the backlight module 100, so that a large amount of light is emitted through the light splitting structure 2 of the backlight module 100, thereby improving the display device for 2D display. Image brightness.
  • the side light source 3 and the lower light source 4 may be simultaneously turned on to further improve the image brightness when the display device performs 2D display.
  • each of the light splitting units of the light splitting structure 2 in the backlight module 100 may include a first grating strip and a second grating strip.
  • the blaze angle of the first grating strip is equal to
  • the blaze angle of the second grating strip is equal to
  • the blaze angles of the remaining grating strips are to
  • the range of values in the range enables the range of the outgoing light of each beam splitting unit to be within the visible range ⁇ x (the meaning of ⁇ x is described in the corresponding part of the first embodiment, so that the observer's left or right eye
  • the position can be received within the visible range ⁇ x to receive the light from the corresponding beam splitting unit, that is, the position of the observer can be changed within the visible range ⁇ x to see the 3D image, so that the display device has a certain 3D display.
  • the visual range is ⁇ x.
  • the value of x is, for example, less than or equal to the pupil distance of the human eye.
  • the display panel 200 and The backlight module 100 can be bonded and fixed by the adhesive 5, and the adhesive 5 can be a glue layer covering the whole surface or a glue located in a local area between the display panel 200 and the backlight module 100.
  • the shape of the adhesive 5 is, for example, a frame shape, and corresponds to the frame area of the display panel 200.
  • the adhesive 5 forms a cavity 6 between the display panel 200 and the backlight module 100, which can enable the display panel 200.
  • the pixel area corresponds to the cavity 6, avoiding the problem of light scattering and refraction caused by water vapor and bubbles in the rubber layer covered by the whole surface, improving the display quality; on the other hand, avoiding occlusion of the pixel area of the display panel 200, Improve light transmission; in addition, it can save material costs.
  • the shape of the adhesive 5 can be set to a closed frame shape, and the cavity 6 formed is evacuated, so that the inside of the cavity 6 is in a vacuum state to avoid the cavity 6 memory. Scattering or refracting light in the air or dust.
  • the display panel 200 can include a liquid crystal cell 8 including a first substrate 81 and a second substrate 83 disposed opposite to each other, and sandwiched between The liquid crystal layer 82 between the first substrate 81 and the second substrate 83.
  • a lower polarizer 7 is further disposed on the outer side of the first substrate 81 of the liquid crystal cell 8 (the side facing away from the liquid crystal layer 82), and is disposed on the outer side (the side facing away from the liquid crystal layer 82) of the second substrate 83 of the liquid crystal cell 8.
  • the side light source 3 of the backlight module 100 is a natural light source. If the backlight module 100 further includes a lower light source 4, the lower light source 4 is also a natural light source.
  • the side light source 3 of the backlight module 100 is a linearly polarized light source
  • the lower polarizer 7 in the display panel 200 can be omitted, the upper polarizer 9 can be left, and the side light source 3 can be placed.
  • the direction of polarization of the emitted light is perpendicular to the direction of polarization of the light passing through the upper polarizer 9. Since the lower polarizer 7 is omitted, the overall thickness of the display device can be reduced.
  • the side light source 3 of the backlight module 100 can be, for example, a white light source, so that the backlight module 100 provides white light for the display panel 200 to display. If the backlight module 100 further includes a lower light source 4, the lower light source 4 is also a white light source.
  • the display device may be any of a liquid crystal panel, an electronic paper, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • a product or part that has a display function may be any of a liquid crystal panel, an electronic paper, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • a product or part that has a display function may be any of a liquid crystal panel, an electronic paper, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the embodiment of the present invention provides a driving method of a display device.
  • the driving method is used to drive the display device according to the second embodiment, in which pixels are displayed and displayed.
  • the pixel corresponding to the first beam splitting unit 21 of the device is the first pixel L
  • the pixel corresponding to the second beam splitting unit 22 of the display device is the second pixel R.
  • the driving method provided by the embodiment includes the step of driving the display device to perform 3D display, the step comprising: transmitting a left eye image signal to the first pixel L while transmitting a right eye image signal to the second pixel R.
  • the side light source 3 of the display device can be turned on before driving, and the display panel of the display device can provide appropriate light for 3D display.
  • the light emitted by the side light source 3 is conducted by reflection in the light guide plate 1 of the backlight module 100, and when incident on the light splitting structure 2 of the backlight module 100, the light splitting structure 2 is Under the action of a splitting unit 21 and a second splitting unit 22, the light reaching the first beam splitting unit 21 is emitted toward the left eye of the observer, and the light reaching the second beam splitting unit 22 is emitted toward the right eye of the observer. Thereby the light is separated.
  • the light that is emitted toward the left eye of the observer passes through the first pixel L, and the first pixel L is applied with the left eye image signal, so that the light carries the left eye image information, and finally the observer
  • the left eye receives, so that the observer's left eye sees the left eye image
  • the light that is emitted toward the observer's right eye passes through the second pixel R, and the second pixel R is applied with the right eye image signal, so the light is carried.
  • the right eye image information is finally received by the observer's right eye so that the observer's right eye sees the right eye image.
  • the left eye image and the right eye image seen by the observer pass through the synthesis of the human brain, resulting in a 3D display effect.
  • the driving method provided by the embodiment may further include the step of driving the display device to perform 2D display.
  • the display device includes a plurality of pixel unit groups arranged in an array, and each pixel unit group includes one of the first pixels and one of the second pixels.
  • the step of driving the display device to perform 2D display includes transmitting a 2D image signal to pixels in each pixel unit group.
  • the 2D image signals transmitted to the first pixel and the second pixel in the same pixel unit group are the same.
  • a 2D image letter transmitted to pixels in different pixel unit groups The numbers can be different or the same.
  • the side light source 3 of the display device may be turned on to provide light for 2D display of the display device; if the backlight module of the display device includes a side light source 3 and a lower light source 4.
  • the lower light source 4 can be turned on before the driving, and the side light source 3 can be turned off to improve the brightness when the display device displays the 2D image.
  • the side light source 3 and the lower light source 4 may be simultaneously turned on to further improve the brightness when the display device displays a 2D image.
  • the step of driving the display device to perform 2D display may also include the following processes: turning on the lower light source 4, turning off the side light source 3, And transmitting a 2D image signal to all pixels of the display device, wherein the 2D image signals transmitted to the first pixel and the second pixel in the same pixel unit group may be different or the same.
  • the conventional 2D display driving method that is, "transmitting a 2D image signal to all pixels of the display device" described above, drives the display panel 200. Can achieve 2D display.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种背光模组(100)、显示装置(10)及其驱动方法,能够提高显示装置(10)进行3D显示时图像的亮度。所述背光模组(100)包括导光板(1)、分光结构(2)和侧置光源(3),所述分光结构(2)包括多个条形的第一分光单元(21)和多个条形的第二分光单元(22),所述第一分光单元(21)和所述第二分光单元(22)交替式排布于所述导光板(1)的出光面上,每个所述分光单元(21,22)包括至少一个光栅条(a),所述第一分光单元(21)用于使光线朝向所述背光模组(100)外部的第一位置出射,所述第二分光单元(22)用于使光线朝向所述背光模组(100)外部的第二位置出射。上述背光模组(100)可用于显示装置(10)中,使显示装置(10)实现3D显示功能。

Description

背光模组、显示装置及其驱动方法 技术领域
本公开的实施例涉及一种背光模组、显示装置及其驱动方法。
背景技术
近年来,三维空间(Three Dimension,3D)显示技术快速发展。3D显示技术可分为眼镜式3D和裸眼3D两种,相比于眼镜式3D显示技术,裸眼3D显示技术由于无需佩戴眼镜,得到了更多关注。
裸眼3D显示技术主要包括三种:一、指向性背光式;二、视差屏障式;三、柱透镜阵列式。
发明内容
本公开的目的在于提供一种背光模组、显示装置及其驱动方法,以提高显示装置进行3D显示时图像的亮度。
本公开的第一方面提供了一种背光模组,包括导光板、分光结构和侧置光源,其中,所述分光结构设置于导光板的出光面,所述侧置光源设置于导光板的侧面;所述分光结构包括多个条形的第一分光单元和多个条形的第二分光单元,所述第一分光单元和所述第二分光单元交替式排布于所述导光板的出光面上,每个所述分光单元包括至少一个光栅条,所述第一分光单元用于使光线朝向所述背光模组外部的第一位置出射,所述第二分光单元用于使光线朝向所述背光模组外部的第二位置出射。
基于上述背光模组的技术方案,本公开的第二方面提供了一种显示装置,包括本公开第一方面所述的背光模组以及与所述背光模组叠加的显示面板,其中,所述显示面板包括阵列式排布的多个像素,所述背光模组的第一分光单元和第二分光单元每个的宽度与显示面板的像素的宽度相等,且所述第一分光单元和第二分光单元与像素列一一对应。
基于上述显示装置的技术方案,本公开的第三方面提供了一种显示装置的驱动方法,所述驱动方法用于驱动本公开的第二方面所述的显示装置,所 述显示装置的像素中,与显示装置的第一分光单元相对应的像素为第一像素,与显示装置的第二分光单元相对应的像素为第二像素;所述驱动方法包括:驱动所述显示装置进行3D显示的步骤,其中,向所述第一像素传输左眼图像信号;同时向所述第二像素传输右眼图像信号。
本公开的实施例中通过在背光模组中设置具有光栅条的分光结构,利用光栅条对光线的衍射和干涉作用,实现对光线的分离,从而使显示装置能够进行3D显示。由于直接利用分光结构对光线进行分离,为3D显示提供适当的光线,因此背光模组所提供的大部分光线均能够被利用,避免了通过视差屏障遮挡光线实现分光所引起的光线利用率低的问题,提高了光线利用率,从而提高了显示装置在进行3D显示时的图像亮度。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本公开实施例一所提供的背光模组的侧视图;
图2为本公开实施例一所提供的背光模组的俯视图;
图3为本公开实施例一所提供的背光模组中第一分光单元的侧视图;
图4为本公开实施例一所提供的背光模组中第二分光单元的侧视图;
图5为目标位置与光栅条之间的位置关系图一;
图6为目标位置与光栅条之间的位置关系图二;
图7为本公开实施例二所提供的显示装置的侧视图;
图8为本公开实施例二所提供的显示装置的进行3D显示时的光路图一;以及
图9为本公开实施例二所提供的显示装置的进行3D显示时的光路图二。
附图标记
100-背光模组;                  1-导光板;
2-分光结构;                    10-显示装置;
21-第一分光单元;               22-第二分光单元;
31-反射膜;                     a-光栅条;
a1-槽面;                       a2-光栅面;
a′-第一光栅条;                a″-第二光栅条;
3-侧置光源;                    4-下置光源;
Q-目标位置;                    Q1-第一临界位置;
Q2-第二临界位置;               5-粘胶;
200-显示面板;                  6-空腔;
7-下偏光片;                    8-液晶盒;
81-第一基板;                   82-液晶层;
83-第二基板;                   9-上偏光片;
L-第一像素;                    R-第二像素。
具体实施方式
为使本公开的上述目的、技术方案和优点能够更加明显易懂,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,均属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
视差屏障式3D显示技术是指在显示模组之前叠加一视差屏障,该视差屏障具有交替排布的透光条纹和遮光条纹,视差屏障能够将从显示模组出射 的光线分开,一部分光线进入观看者的左眼,另一部分光线进入观看者的右眼,观看者的左眼和右眼看到的图像经过大脑的合成,产生3D效果。
但是,由于视差屏障利用对光线的遮挡作用进行分光,造成视差屏障式3D显示装置的光线利用率较低,通常低于50%,从而导致视差屏障式3D显示装置所显示的图像亮度较低。
实施例一
本实施例提供了一种背光模组,如图1和图2所示,背光模组100包括导光板1、分光结构2和侧置光源3。分光结构2设置于导光板1的出光面;侧置光源3设置于导光板1的一个侧面。
例如,在导光板1中,称侧置光源3所在的侧面为第一侧面,与第一侧面相对的侧面为第二侧面。在侧置光源3打开时,其所发出的光线从导光板1的第一侧面进入导光板1内,光线在导光板1内不断发生反射,由第一侧面传导至第二侧面。
例如,分光结构2包括多个条形的分光单元21和22,每个分光单元包括至少一个光栅条,光栅条的延伸方向与条形分光单元21和22的延伸方向相同,光栅条能够使光线以特定方向出射。当侧置光源3所提供的光线在导光板1内反射传导,且光线以一定入射角度入射至光栅条上时,光栅条能够使光线发生光栅衍射和干涉,并以特定方向出射。“特定方向”由实际需要的光线出射方向确定(例如通过接收出射光线的目标位置确定)。通过对光栅条的具体结构进行设计可获得具有“特定方向”的出射光线。
例如,基于分光单元的上述结构,分光结构2包括第一分光单元21和第二分光单元22,即分光结构2中的分光单元例如为第一分光单元21或第二分光单元22。第一分光单元21和第二分光单元22交替排布于导光板1的出光面上。通过分别设计第一分光单元21中光栅条的结构和第二分光单元22中光栅条的结构,可使第一分光单元21具有使光线朝向背光模组外部的第一位置出射的功能,第二分光单元22具有使光线朝向背光模组外部的第二位置出射的功能。
例如,在背光模组100用于3D显示装置中时,所述“背光模组外部的 第一位置”可为观察者的左眼;相应的,所述“背光模组外部的第二位置”可为观察者的右眼。也就是说,光线在第一分光单元21的作用下向观察者的左眼出射,最终进入观察者的左眼,光线在第二分光单元22的作用下向观察者的右眼出射,最终进入观察者的右眼,从而为3D显示装置进行3D显示提供了适当的光线。需要说明的是,本实施例中所述的“背光模组外部的第一位置”和“背光模组外部的第二位置”并非指固定的位置,而是根据观察者相对于3D显示装置的位置变化而变化。
例如,由于本实施例所提供的背光模组100通过设置分光结构2为显示装置进行3D显示提供了适当的光线,能够使显示装置通过设置本实施例所提供的背光模组100实现3D显示功能,无需像视差屏障式3D显示装置不仅要设置背光模组还要设置视差屏障才能实现3D显示功能,从而本实施例所提供的背光模组100能够使3D显示装置无需设置视差屏障即可实现3D显示功能。一方面,避免了视差屏障所引起的光线利用率低的问题,提高了3D图像的亮度;另一方面,降低了3D显示装置的成本,减薄了3D显示装置的厚度,减小了3D显示装置的体积和重量。
例如,需要说明的是,对于指向性背光式3D显示装置,由于其在进行3D显示时需要对光源进行分时复用,需要设计十分复杂的电路结构及控制程序来实现分时复用功能,导致指向性背光式3D显示装置的技术难度高。与此相比,本实施例所提供的背光模组100通过分光结构2为显示装置进行3D显示提供适当的光线,技术简单,容易实现。
例如,本实施例所提供的背光模组100不仅能够为显示装置进行3D显示提供适当的光线,而且当显示装置进行2D显示时,本实施例中所述的背光模组100也能够提供光线,从而使显示装置具有可3D显示和2D显示切换的功能。
需要说明的是,对于柱透镜阵列式3D显示装置,通过在显示面板前方设置光学透镜来实现3D显示功能,但是在这种显示装置用于进行2D显示时,显示面板的光学透镜会引起一定的光学像差,造成这种显示装置的2D图像显示效果差。相比柱透镜阵列式3D显示装置,本实施例中的上述背光模组 100通过设置分光结构2和侧置光源3为显示装置进行3D显示提供适当光线,并且背光模组100也能够为显示装置进行2D显示提供光线。也就是说仅通过对背光模组100结构上的改进,就能够使显示装置具有3D显示和2D显示切换的功能,不需要设置光学透镜,从而也就避免了由此引起的2D显示图像具有光学像差的问题,提高了3D/2D显示装置进行2D显示时的显示效果。
例如,如图1所示,为了提高显示装置进行2D显示时的显示质量,可在背光模组100的导光板1中与其出光面相对的一面设置下置光源4,该下置光源4例如为面光源。当需要进行2D显示时,关闭侧置光源3,打开下置光源4,下置光源4所发出的光大部分垂直射入导光板1中,因此会有大量的光线通过分光结构2中的光栅条出射,从而提高了3D/2D显示装置进行2D显示时的图像亮度。
例如,也可以同时打开侧置光源3和下置光源4,进一步提高3D/2D显示装置进行2D显示时的图像亮度。
例如,根据上面的描述,在导光板1中,侧置光源3所在的侧面为第一侧面,分光单元21和22的延伸方向(例如,图1中垂直于纸面的方向)例如可与第一侧面的长边相互平行,以保证光线大部分垂直于或近似垂直于分光单元21和22的延伸方向入射进导光板1中,在导光板1中发生反射,并能够以一定的入射角度入射至分光单元21和22上。例如,侧置光源3可为条形光源,其延伸方向与第一侧面的长边相互平行,以使光线均匀地从第一侧面的各个区域入射进导光板1中。
例如,如图3和图4所示,分光单元中的光栅条a例如为闪耀光栅。闪耀光栅可具有如下结构,光栅条a为锯齿状,光栅条a包括光栅面a2和槽面a1;光栅面a2平行于导光板1的出光面,槽面a1相对于光栅面a2倾斜,因而光栅面a2与槽面a1之间具有一定的夹角,该夹角称为闪耀角,本实施例中用γ表示光栅条a的闪耀角。
例如,当从导光板1出光面出射的光线以一定的入射角度入射至光栅条a的槽面a1上时,光线发生衍射和干涉,在垂直于槽面a1的方向有+1级干 涉主极大,且该+1级干涉主极大与槽面a1的衍射中央极大重合,同时槽面a1的衍射极小位置几乎都与其它干涉级次的主极大重合,使得只有+1级的光谱获得闪耀,并获得最大光强。也就是说,作为闪耀光栅的光栅条a能够使特定波长的光线以特定方向(即垂直于光栅条a的槽面a1的方向)闪耀加强出射。
例如,对于作为闪耀光栅的光栅条a,出射光线垂直于光栅条a的槽面a1,光栅条a的光栅面a2与导光板1的出光面相平行,因而出射光线与导光板1的出光面的垂线之间的夹角等于光栅条a的闪耀角γ。可见所述“特定方向”由实际所需要的光线的出射方向确定,并通过对光栅条的闪耀角γ的设计来获得具有“特定方向”的出射光线。
例如,对于作为闪耀光栅的光栅条a而言,光栅条a的闪耀角γ、光栅条a的宽度d及经过光栅条a的出射光线的波长λ(即所述“特定波长”)满足公式:2dsinγ=λ,因而所述“特定波长”具体为多大波长由实际所需要的光波长确定,并通过对光栅条a的闪耀角γ和宽度d的设计来获得“特定波长”的出射光线。
例如,由上面的分析可知,对于作为闪耀光栅的光栅条a而言,出射光线与导光板1的出光面的垂线之间的夹角等于光栅条a的闪耀角γ,如图5所示,背光模组外部的目标位置Q到闪耀角γ对应的光栅条a的槽面的垂线与出射光线相重合或平行,目标位置Q到背光模组100的垂线与导光板1的出光面的垂线相重合或平行,因此光栅条a的闪耀角γ等于目标位置Q到该闪耀角γ对应的光栅条a槽面的垂线与目标位置Q到背光模组100的垂线之间的夹角α。由于要由光栅条a出射的光线最终达到目标位置,因此在外部的目标位置一定的前提下,能够确定由背光模组100中各光栅条a出射的光线的方向,从而确定各光栅条a的闪耀角γ的具体值。在确定闪耀角γ后,根据实际需要的光线的波长(即最终从光栅条a的槽面a1出射的光的波长),能够根据公式
Figure PCTCN2016092349-appb-000001
确定各光栅条a的宽度d的具体值。需要说明的是,所谓“背光模组外部的目标位置”为上述“背光模组外部的第一位置”或者“背光模组外部的第二位置”,当背光模组100用于3D显示装置中时,“背 光模组外部的目标位置”为观察者的左眼或右眼。
例如,在分光结构2的同一个分光单元内,由于各光栅条a的出射光线朝向的目标位置相同,都为观察者的左眼或右眼,因此各光栅条a的槽面a1的倾斜方向一致。需要说明的是,所述“倾斜方向一致”是指同一个分光单元内,各光栅条a的槽面a1相互平行,或者近似或趋向相互平行。例如,如图3所示,第一分光单元21中,各光栅条a的槽面a1均朝右侧倾斜;又如,如图4所示,第二分光单元22中,各光栅条a的槽面a1均朝左侧倾斜。
例如,对于分光结构2中相邻的第一分光单元21和第二分光单元22,由于二者的出射光线朝向的目标位置不同,第一分光单元21的出射光线朝向的目标位置为观察者的左眼,第二分光单元22的出射光线朝向的目标位置为观察者的右眼,可见从相邻的第一分光单元21和第二分光单元22出射的光线方向应当分离,因此相邻的第一分光单元21和第二分光单元22中光栅条a的槽面a1的倾斜方向不一致。例如,相邻的第一分光单元21和第二分光单元22中光栅条a的槽面a1的倾斜方向可相对于导光板1的出光面的垂线对称或大致对称。例如,当图3所示出的第一分光单元21与图4所示出的第二分光单元22相邻时,第一分光单元21中光栅条a槽面a1的倾斜方向与第二分光单元22中光栅条a槽面a2的倾斜方向不同。
例如,为了使从分光结构2中每一个出光单元出射的光为白光,每个分光单元可包括三个光栅条a,根据外部的目标位置Q到光栅条a槽面的垂线与背光模组外部的目标位置Q到背光模组100的垂线之间的夹角α等于光栅条a的闪耀角γ,可以得到这三个光栅条a各自的闪耀角γ;根据合成白光所需要的不同波段的光线,可以得到从这三个光栅条a的槽面a1出射的光线所需要的波长λ;根据
Figure PCTCN2016092349-appb-000002
并且已知这三个光栅条a各自的闪耀角γ和出射光线所需要的波长λ,可以得到这三个光栅条a各自的宽度d;根据这三个光栅条a各自的闪耀角γ和宽度d来设置这三个光栅条a,可使从这三个光栅条a的槽面出射的光线的波长λ为合成白光所需要的光线的波长,这三种光线的波长λ各不相同。
需要说明的是,例如合成白光需要三种颜色的光,即需要三种波长的光, 因此每一个出光单元内包括三个光栅条a。由于同一个出光单元内各光栅条a的位置紧邻,因此各光栅条a与目标位置Q之间的相对位置关系相差无几,为了减少设计光栅条a时的计算量,降低制备分光结构2的工艺难度,可认为同一出光单元内各光栅条a的闪耀角γ相同。当然,为了提高出射光线方向的精度,进而提高3D显示效果,可以对每个光栅条a的闪耀角γ进行具体的计算与设计。
例如,基于上述技术方案,例如可利用红光、绿光和蓝光合成白光,相应的,每个分光单元包括红光光栅条、绿光光栅条和蓝光光栅条,假设红光的波长为λ1,红光光栅条的闪耀角为γ1,则红光光栅条的宽度
Figure PCTCN2016092349-appb-000003
假设绿光的波长为λ2,绿光光栅条的闪耀角为γ2,则绿光光栅条的宽度
Figure PCTCN2016092349-appb-000004
假设蓝光的波长为λ3,蓝光光栅条的闪耀角为γ3,则蓝光光栅条的宽度
Figure PCTCN2016092349-appb-000005
根据γ1和d1设置红光光栅条,根据γ2和d2设置绿光光栅条,根据γ3和d3设置蓝光光栅条,从而从红光光栅条槽面出射的光线为红光,从绿光光栅条槽面出射的光线为绿光,从蓝光光栅条槽面出射的光线为蓝光,由红光、绿光和蓝光合成白光。
例如,需要说明的是,红光的波长λ1可在红光光波段内取值,绿光的波长λ2可在绿光光波段内取值,蓝光的波长λ3可在蓝光光波段内取值。闪耀角γ1、γ2和γ3可相同,以减小设计时的计算量,降低分光结构2的工艺难度;闪耀角γ1、γ2和γ3也可根据红光光栅条、绿光光栅条和蓝光光栅条各自与外部的目标位置不同的相对位置关系来具体设计计算,以提高出射光线方向的精确度,提高3D显示效果。例如,每个分光单元内除包括红光光栅条、绿光光栅条和蓝光光栅条外,还可包括其它颜色或者出射光线为其它波长的光栅条。
例如,每个分光单元可包括光栅条a的数量包括但不局限于三个,例如,每个分光单元可包括四个光栅条a,由四种颜色的光合成白光。
例如,当本实施例所提供的背光模组100为显示装置提供进行3D显示 所需要的光线时,为了扩大显示装置的可视范围,可对背光模组100中光栅条a的闪耀角γ进行具体设计。如图6所示,例如要使显示装置的可视范围为±x,对于观察者的双眼而言,当观察者与显示装置的视距(即观察者的双眼到显示装置的垂直距离)为D,且观察者正对显示装置的中心时,观察者的位置可在由当前位置向左侧平移x的距离和向右侧平移x的距离的范围内变化,在该可视范围±x内观察者的左眼总能接收左眼图像的光线,右眼总能接收右眼图像的光线。要实现这一目的,需要使从背光模组100中每个分光单元的出射光线的范围为该可视范围±x。
例如,假设背光模组100的外部的目标位置Q(即观察者的左眼或右眼)可在第一临界位置Q1和第二临界位置Q2之间变化,Q1与Q之间的距离为x,Q2与Q之间的距离也为x,外部的目标位置Q到背光模组100的垂直距离(即视距)为D。当出射光线以垂直于光栅条槽面的方向出射,最终到达第一临界位置Q1时,假设用于使出射光线具有这一方向的光栅条为第一光栅条a′,该第一光栅条a′的闪耀角γ1等于第一临界位置Q1到第一光栅条a′槽面的垂线与第一临界位置Q1到背光模组100的垂线之间的夹角
Figure PCTCN2016092349-appb-000006
其中,L1表示第一临界位置Q1到第一光栅条a′槽面的垂直距离。当出射光线以垂直于光栅条槽面的方向出射,最终到达第二临界位置Q2时,假设用于使出射光线具有这一方向的光栅条为第二光栅条a″,该第二光栅条a″的闪耀角γ2等于第二临界位置Q2到第二光栅条a″槽面的垂线与第二临界位置Q2到背光模组100的垂线之间的夹角
Figure PCTCN2016092349-appb-000007
其中,L2表示第二临界位置Q2到第二光栅条a″槽面的垂直距离。
例如,在背光模组100的每个分光单元中,若包括第一光栅条a′和第二光栅条a″,第一光栅条a′的闪耀角
Figure PCTCN2016092349-appb-000008
第二光栅条a″的闪耀角
Figure PCTCN2016092349-appb-000009
并且除第一光栅条a′和第二光栅条a″外的其余各光栅条a的闪耀角γ满足
Figure PCTCN2016092349-appb-000010
则能够使每个分光单元 的出射光线的范围为可视范围±x,从而目标位置(观察者的左眼或右眼)在第一临界位置Q1和所述第二临界位置Q2之间变化的过程中均能够接收到来自对应分光单元的光线,使得显示装置进行3D显示时具有一定的可视范围±x。
需要说明的是,为了防止观察者在观看3D显示图像时发生左右眼图像之间串扰的问题,可视范围±x中x的取值大小例如不要超过人眼的瞳距,即第一临界位置Q1和第二临界位置Q2之间的距离例如小于或等于人眼瞳距的两倍(例如,小于等于100毫米),以保证来自背光模组100中分光单元的光线仅能够被观察者的一只眼接收,而不能被观察者的另一只眼接收。例如,保证第一分光单元21的光线仅进入观察者的左眼,不会进入观察者的右眼,且来自第二分光单元22的光线仅进入观察者的右眼,不会进入观察者的左眼。
例如,在本实施例所提供的背光模组100中,根据前面的叙述,在导光板1的四个侧面中,称侧置光源3所在的侧面为第一侧面,与第一侧面相对的侧面为第二侧面。为了提高光线的利用率,可在导光板1的第二侧面上设置反射膜31,如图1所示,反射膜31可将传导至第二侧面上的光线反射回导光板1内。例如,还可在导光板1中除第一侧面和第二侧面外的其它侧面上设置反射膜,以将传导至其它侧面上的光线反射回导光板1内。
例如,本实施例中,分光结构2可以与导光板1为一体结构(例如,分光结构2可以与导光板1一体形成),以简化背光模组100的装配工序。要实现该一体结构,可以采用注塑工艺一体成型来同时形成分光结构2与导光板1,也可在导光板1形成后,在其出光面上刻槽形成分光结构2。分光结构2还可以为独立叠加在导光板1出光面上的薄膜或基板,以简化导光板1的形成工艺。
例如,本实施例中的背光模组100,其侧置光源3例如可为白光光源,从而背光模组100所提供的光线为白光。若背光模组100还包括下置光源4,则下置光源4也可为白光光源。
例如,本实施例中的背光模组100,其侧置光源3可为自然光源,从而 背光模组100所提供的光线为自然光;侧置光源3也可为线偏振光源,从而背光模组100所提供的光线为线偏振光。若背光模组100还包括下置光源4,则可为自然光源或线偏振光源,例如侧置光源3和下置光源4均为自然光源或均为线偏振光源。
实施例二
基于实施例一,本实施例提供了一种显示装置,如图7和图8所示,该显示装置10包括显示面板200和背光模组100,二者叠加在一起(例如,层叠设置在一起)。显示面板200包括阵列式排布的多个像素,从而显示面板200包括多列像素;背光模组100例如为实施例一所提供的背光模组,该背光模组100包括多个分光单元,分光单元为条形,其延伸方向与显示面板200中像素排列的列方向相同。背光模组100中分光单元的宽度与显示面板200的像素的宽度相等,且各分光单元与各像素列一一对应。
例如,背光模组100中的多个分光单元包括第一分光单元21和第二分光单元22,第一分光单元21和第二分光单元22交替排布,各第一分光单元21所对应的各列像素为第一像素L,各第二分光单元22所对应的各列像素为第二像素R。光线经第一分光单元21后,具有朝向观察者左眼的传输方向,这些光线通过第一像素L,携带有第一像素L的图像信息,被观察者的左眼接收;同时光线经第二分光单元22后,具有朝向观察者左眼的传输方向,这些光线通过第二像素R,携带有第二像素R的图像信息,被观察者的右眼接收,从而实现了第一像素光线和第二像素光线的分离,通过向第一像素L施加左眼图像信号,同时向第二像素R施加右眼图像信号,即可实现3D显示。
例如,本实施例所提供的显示装置10中,背光模组100能够直接为显示装置进行3D显示提供适当的光线,进而使显示装置实现3D显示功能,相比视差屏障式3D显示装置,避免了视差屏障的设置,从而一方面避免了设置视差屏障所引起的光线利用率低的问题,提高了3D图像的亮度,另一方面降低了3D显示装置的成本,减薄了3D显示装置的厚度,减小了3D显示装置的体积和重量。
例如,相比指向性背光式3D显示装置,本实施例所提供的显示装置进 行3D显示无需对光源进行分时复用,技术简单,容易实现。
例如,在需要本实施例所提供的显示装置进行2D显示时,改变对显示面板200的驱动方式,对显示面板200的像素施加2D图像信号即可实现2D显示,相比柱透镜阵列式3D显示装置,本实施例所提供的显示装置实现3D显示和2D显示切换的功能,不需要设置光学透镜,从而避免了由此引起的2D显示图像具有光学像差的问题,提高了3D/2D显示装置进行2D显示时的图像显示效果。
例如,为了提高本实施例中的显示装置进行2D显示时图像的亮度,可以不使用侧置光源3,而是采用其它光源,来为2D显示提供光线。例如,可在背光模组100的导光板1中与其出光面相对的一面设置下置光源4,该下置光源4为面光源,当需要进行2D显示时,关闭侧置光源3,打开下置光源4,下置光源4所发出的光大部分垂直射入背光模组100的导光板1中,从而会有大量的光线经过背光模组100的分光结构2出射,提高了显示装置进行2D显示时的图像亮度。
例如,也可以同时开启侧置光源3和下置光源4,进一步提高显示装置进行2D显示时的图像亮度。
例如,如图9所示,为了增大显示装置在进行3D显示时的可视范围,可以使背光模组100中分光结构2的每个分光单元中包括第一光栅条和第二光栅条,第一光栅条的闪耀角等于
Figure PCTCN2016092349-appb-000011
第二光栅条的闪耀角等于
Figure PCTCN2016092349-appb-000012
且其余各光栅条的闪耀角在
Figure PCTCN2016092349-appb-000013
Figure PCTCN2016092349-appb-000014
范围内取值,则能够使每个分光单元的出射光线的范围为可视范围±x(±x所表示的意义请参见实施例一中相应部分的描述,从而观察者的左眼或右眼位置在可视范围±x之内变化均能够接收到来自对应分光单元的光线,即观察者的位置在可视范围±x内变化均能够看到3D图像,使得显示装置进行3D显示时具有一定的可视范围±x。为避免左右眼图像之间发生串扰,x的取值例如小于或等于人眼的瞳距。
例如,再次参见图7,本实施例所提供的显示装置中,显示面板200与 背光模组100之间可通过粘胶5进行粘接固定,粘胶5可为整面覆盖的胶层,也可为位于显示面板200与背光模组100之间局部区域的胶。粘胶5的形状例如为框形,且与显示面板200的边框区域相对应,该粘胶5在显示面板200与背光模组100之间形成一空腔6,这一方面能够使显示面板200的像素区域对应该空腔6,避免整面覆盖的胶层中存在水汽和气泡所引起的光线散射和折射的问题,提高了显示质量;另一方面能够避免对显示面板200的像素区域造成遮挡,提高光线透过率;此外还能够节省材料成本。为了进一步减少光线的散射和折射,例如可将粘胶5的形状设置为闭合的框形,并对所形成的空腔6抽真空,使空腔6内部处于真空状态,以避免空腔6内存在空气或灰尘对光线产生散射或折射。
例如,继续参见图7,在本实施例所提供的显示装置10中,显示面板200可包括液晶盒8,该液晶盒8包括相对设置的第一基板81和第二基板83,及夹设于第一基板81与第二基板83之间的液晶层82。在液晶盒8的第一基板81的外侧(背离液晶层82的一侧)还设有下偏光片7,在液晶盒8的第二基板83的外侧(背离液晶层82的一侧)还设有上偏光片9,下偏光片7的偏光轴与上偏光片9的偏光轴相互垂直,从而使通过下偏光片7的光线的偏振方向与通过上偏光片9的光线的偏振方向相垂直。背光模组100的侧置光源3为自然光源,若背光模组100还包括下置光源4,则该下置光源4也为自然光源。
例如,对于上述结构的显示装置,若背光模组100的侧置光源3为线偏振光源,则可省略显示面板200内的下偏光片7,保留上偏光片9,并使侧置光源3所发出的光线的偏振方向与通过上偏光片9的光线的偏振方向相垂直。由于省略了下偏光片7,因此可减小显示装置的整体厚度。
例如,本实施例中,背光模组100的侧置光源3例如可为白光光源,以使背光模组100为显示面板200进行显示提供白光。若背光模组100还包括下置光源4,则该下置光源4也为白光光源。
需要说明的是,本实施例所提供的显示装置可以为液晶面板、电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何 具有显示功能的产品或部件。
实施例三
基于实施例二,本实施例提供了一种显示装置的驱动方法,参见图7和图8,该驱动方法用于驱动实施例二所述的显示装置,在该显示装置的像素中,与显示装置的第一分光单元21相对应的像素为第一像素L,与显示装置的第二分光单元22相对应的像素为第二像素R。
例如,本实施例所提供的驱动方法包括驱动所述显示装置进行3D显示的步骤,该步骤包括:向第一像素L传输左眼图像信号,同时向第二像素R传输右眼图像信号。需要说明的是,在驱动前可打开显示装置的侧置光源3,为所述显示装置的显示面板进行3D显示提供适当的光线。
例如,在此过程中,侧置光源3所发出的光线在背光模组100的导光板1内通过反射进行传导,当入射至背光模组100的分光结构2上时,在分光结构2的第一分光单元21和第二分光单元22的作用下,到达第一分光单元21的光线以朝向观察者左眼的方向出射,到达第二分光单元22的光线以朝向观察者右眼的方向出射,从而光线实现了分离。
例如,在光线分离后,朝向观察者左眼出射的光线经过第一像素L,此时第一像素L被施加了左眼图像信号,因此这部分光线携带了左眼图像信息,最终被观察者的左眼接收,从而观察者的左眼看到左眼图像;朝向观察者右眼出射的光线经过第二像素R,此时第二像素R被施加了右眼图像信号,因此这部分光线携带了右眼图像信息,最终被观察者的右眼接收,从而观察者的右眼看到右眼图像。观察者看到的左眼图像和右眼图像经过人脑的合成,产生了3D显示的效果。
例如,本实施例所提供的驱动方法还可包括驱动所述显示装置进行2D显示的步骤。所述显示装置包括多个像素单元组,这些像素单元组呈阵列式排布,且每个像素单元组包括一个上述的第一像素和一个上述的第二像素。驱动所述显示装置进行2D显示的步骤包括:向每个像素单元组中的像素传输2D图像信号。例如,向同一像素单元组中的第一像素和第二像素所传输的2D图像信号相同。例如,向不同像素单元组中的像素所传输的2D图像信 号可不同,也可相同。需要说明的是,在驱动前,可打开所述显示装置的侧置光源3,为所述显示装置进行2D显示提供光线;若所述显示装置的背光模组包括侧置光源3和下置光源4,则在驱动前可打开下置光源4,关闭侧置光源3,以提高所述显示装置显示2D图像时的亮度。例如,也可以同时打开侧置光源3和下置光源4,进一步提高显示装置显示2D图像时的亮度。
例如,对于显示装置的背光模组包括侧置光源3和下置光源4的情况,驱动所述显示装置进行2D显示的步骤也可包括以下过程:打开下置光源4,关闭侧置光源3,并且向显示装置的全部像素传输2D图像信号,其中向同一像素单元组中的第一像素和第二像素所传输的2D图像信号可不同,也可相同。需要说明的是,由于采用下置光源4为显示装置的显示面板提供光线,因此会有大量的光线入射至背光模组100的分光结构2上,造成分光结构2的分光效果不明显,从而大量光线以垂直于或近似垂直于显示面板200的方向进入显示面板200,因此采用常规2D显示驱动的方法,即上面所述的“向显示装置的全部像素传输2D图像信号”,驱动显示面板200就能够实现2D显示。
以上所述仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。
本专利申请要求于2016年1月8日递交的中国专利申请第201610012115.1号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (20)

  1. 一种背光模组,包括导光板、分光结构和侧置光源,其中,所述分光结构设置于所述导光板的出光面,所述侧置光源设置于所述导光板的侧面;所述分光结构包括多个条形的第一分光单元和多个条形的第二分光单元,所述第一分光单元和所述第二分光单元交替式排布于所述导光板的出光面上,所述第一分光单元和所述第二分光单元每个包括至少一个光栅条,所述第一分光单元用于使光线朝向所述背光模组外部的第一位置出射,所述第二分光单元用于使光线朝向所述背光模组外部的第二位置出射。
  2. 根据权利要求1所述的背光模组,还包括下置光源,其中,所述下置光源设置于所述导光板的与所述出光面相对的一面。
  3. 根据权利要求1或2所述的背光模组,其中,所述光栅条为闪耀光栅,所述光栅条包括光栅面和槽面,所述光栅面平行于所述导光板的出光面,所述槽面相对于所述光栅面倾斜,所述光栅面与所述槽面的夹角为闪耀角γ;
    所述光栅条的闪耀角γ等于外部的目标位置到该闪耀角γ对应的光栅条槽面的垂线与所述外部的目标位置到所述导光板的出光面的垂线之间的夹角;
    所述光栅条的宽度
    Figure PCTCN2016092349-appb-100001
    其中λ表示从所述光栅条槽面出射的光的波长。
  4. 根据权利要求1-3任一项所述的背光模组,其中,所述第一分光单元和所述第二分光单元每个包括至少三个光栅条,从三个所述光栅条的槽面出射的光线的波长不同,从三个所述光栅条的槽面出射的光线能够合成白光。
  5. 根据权利要求4所述的背光模组,其中,所述第一分光单元和所述第二分光单元每个至少包括红光光栅条、绿光光栅条和蓝光光栅条,从所述红光光栅条的槽面出射的光线为红光,从所述绿光光栅条的槽面出射的光线为绿光,从所述蓝光光栅条的槽面出射的光线为蓝光。
  6. 根据权利要求4所述的背光模组,其中,所述第一分光单元和所述第二分光单元每个包括第一光栅条和第二光栅条,所述第一光栅条的闪耀角γ
    Figure PCTCN2016092349-appb-100002
    所述第二光栅条的闪耀角
    Figure PCTCN2016092349-appb-100003
    每个所述分光单元中其余的各光栅条的闪耀角γ的取值范围为:
    Figure PCTCN2016092349-appb-100004
    D表示所述外部的目标位置到所述背光模组的垂直距离,L1表示第一临界位置到所述第一光栅条槽面的垂直距离,L2表示第二临界位置到所述第二光栅条槽面的垂直距离,所述第一临界位置和所述第二临界位置之间的距离小于或等于100毫米。
  7. 根据权利要求1-6任一项所述的背光模组,其中,设置有所述侧置光源的导光板侧面为第一侧面,所述条形分光单元的延伸方向与所述第一侧面的长边平行。
  8. 根据权利要求1-7任一项所述的背光模组,其中,设置有所述侧置光源的导光板侧面为第一侧面,与所述第一侧面相对的导光板侧面为第二侧面,所述第二侧面上设置有反射膜。
  9. 根据权利要求1-8任一项所述的背光模组,其中,所述分光结构与所述导光板为一体结构;或者,所述分光结构为叠加在所述导光板的出光面上的薄膜或基板。
  10. 根据权利要求1-9任一项所述的背光模组,其中,所述侧置光源为白光光源,且若所述背光模组还包括下置光源,则所述下置光源也为白光光源。
  11. 根据权利要求1-9任一项所述的背光模组,其中,所述侧置光源为自然光源或者线偏振光源,且若所述背光模组还包括下置光源,则所述下置光源为自然光源或者线偏振光源。
  12. 一种显示装置,包括如权利要求1-11任一项所述的背光模组以及与所述背光模组叠加的显示面板,其中,所述显示面板包括阵列式排布的多个像素,所述背光模组的第一分光单元和第二分光单元每个的宽度与显示面板的像素的宽度相等,且所述第一分光单元和所述第二分光单元与像素列一一对应。
  13. 根据权利要求12所述的显示装置,其中,所述背光模组与所述显示面板之间通过粘胶相粘接。
  14. 根据权利要求13所述的显示装置,其中,所述粘胶为框形,且所述粘胶对应所述显示面板的边框区域。
  15. 根据权利要求14所述的显示装置,其中,所述背光模组、所述显示面板和所述粘胶形成一空腔,所述空腔为真空腔。
  16. 根据权利要求12-15任一项所述的显示装置,其中,所述背光模组的侧置光源为自然光源,所述显示面板包括液晶盒、上偏光片和下偏光片,所述上偏光片设置于所述液晶盒远离所述背光模组的一侧,所述下偏光片设置于所述液晶盒靠近所述背光模组的一侧,所述上偏光片的偏光轴与所述下偏光片的偏光轴相互垂直;或者,
    所述背光模组的侧置光源为线偏振光源,所述显示面板包括液晶盒和上偏光片,所述上偏光片设置于所述液晶盒远离所述背光模组的一侧,所述线偏振光源所发出的光线的偏振方向与通过所述上偏光片的光线的偏振方向相互垂直。
  17. 一种显示装置的驱动方法,用于驱动权利要求12-16任一项所述的显示装置,所述显示装置的像素中,与所述显示装置的第一分光单元相对应的像素为第一像素,与所述显示装置的第二分光单元相对应的像素为第二像素;所述驱动方法包括:
    驱动所述显示装置进行3D显示,其中,向所述第一像素传输左眼图像信号,同时向所述第二像素传输右眼图像信号。
  18. 根据权利要求17所述的显示装置的驱动方法,其中,所述显示装置包括阵列式排布的多个像素单元组,每个所述像素单元组包括一个所述第一像素和一个所述第二像素,所述驱动方法还包括:
    驱动所述显示装置进行2D显示,其中,向每个所述像素单元组中的像素传输2D图像信号。
  19. 根据权利要求18所述的显示装置的驱动方法,其中,向同一像素单元组中的第一像素和第二像素所传输的2D图像信号相同。
  20. 根据权利要求18或19所述的显示装置的驱动方法,其中,所述显示装置包括侧置光源和下置光源,所述驱动方法还包括:
    驱动所述显示装置进行2D显示,其中,打开所述下置光源,关闭所述侧置光源,并向所述显示装置的全部像素传输2D图像信号。
PCT/CN2016/092349 2016-01-08 2016-07-29 背光模组、显示装置及其驱动方法 WO2017117988A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/509,358 US10520743B2 (en) 2016-01-08 2016-07-29 Backlight module, display device and method for driving the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610012115.1A CN106959520B (zh) 2016-01-08 2016-01-08 背光模组、显示装置及其驱动方法
CN201610012115.1 2016-01-08

Publications (1)

Publication Number Publication Date
WO2017117988A1 true WO2017117988A1 (zh) 2017-07-13

Family

ID=59273375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/092349 WO2017117988A1 (zh) 2016-01-08 2016-07-29 背光模组、显示装置及其驱动方法

Country Status (3)

Country Link
US (1) US10520743B2 (zh)
CN (1) CN106959520B (zh)
WO (1) WO2017117988A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107085307B (zh) * 2017-06-23 2020-01-31 厦门天马微电子有限公司 一种显示装置
CN108303824A (zh) 2018-01-31 2018-07-20 武汉华星光电技术有限公司 直下式背光模组以及液晶显示器
CN108445576B (zh) * 2018-03-05 2021-02-19 张家港康得新光电材料有限公司 导光板、背光模组及显示装置
CN108735168B (zh) * 2018-05-25 2022-03-01 京东方科技集团股份有限公司 一种背光模组、3d显示装置及其驱动方法
CN108717243B (zh) * 2018-05-29 2022-09-27 京东方科技集团股份有限公司 显示装置
CN109031757A (zh) 2018-08-08 2018-12-18 京东方科技集团股份有限公司 显示装置及电子设备
JP7065798B2 (ja) * 2019-02-13 2022-05-12 三菱電機株式会社 表示装置及び自動車
JP7368192B2 (ja) * 2019-11-15 2023-10-24 ファナック株式会社 加工方法及び物品
CN113325601B (zh) * 2021-08-03 2021-10-26 成都工业学院 一种高视点密度光场立体显示装置
CN115047558A (zh) * 2022-07-15 2022-09-13 深圳小豆视觉科技有限公司 光学复合膜及显示装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000029026A (ja) * 1998-07-15 2000-01-28 Konica Corp 導光板及びその蒸着方法
US6879355B1 (en) * 1999-08-19 2005-04-12 Lg. Philips Lcd Co., Ltd. Back light unit in liquid crystal display
CN101261389A (zh) * 2007-03-06 2008-09-10 奇美电子股份有限公司 背光模块及其应用
CN101576215A (zh) * 2009-03-30 2009-11-11 上海广电光电子有限公司 用于3d显示的背光模组
US20100214514A1 (en) * 2007-09-06 2010-08-26 Entire Technology Co., Ltd. Optical diffusion device
CN103454807A (zh) * 2013-09-02 2013-12-18 京东方科技集团股份有限公司 阵列基板及其制作方法、3d显示装置
CN104460115A (zh) * 2014-12-31 2015-03-25 苏州大学 一种多视角像素指向型背光模组及裸眼3d显示装置
CN105572889A (zh) * 2016-01-08 2016-05-11 京东方科技集团股份有限公司 一种3d显示装置
CN105676474A (zh) * 2016-04-19 2016-06-15 京东方科技集团股份有限公司 导光板、背光模组和显示装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6449096B1 (en) * 2000-07-13 2002-09-10 Network Photonics, Inc. Diffraction grating with reduced polarization-dependent loss
WO2003004931A2 (en) * 2001-06-30 2003-01-16 Samsung Electro-Mechanics Co., Ltd. Backlight using planar hologram for flat display device
JP2004048702A (ja) * 2002-05-17 2004-02-12 Canon Inc 立体画像表示装置および立体画像表示システム
TWI266117B (en) * 2004-07-06 2006-11-11 Au Optronics Corp Backlight module capable of polarized light interchange
DE102005012348B3 (de) * 2005-03-09 2006-07-27 Seereal Technologies Gmbh Sweet-Spot-Einheit für ein Multi-User-Display mit erweitertem Betrachterbereich
KR100674850B1 (ko) * 2005-05-02 2007-01-26 삼성전기주식회사 하이브리드 백라이트 장치
KR20070002210A (ko) * 2005-06-30 2007-01-05 삼성전자주식회사 평판 형광 램프와 이를 포함하는 표시장치
JP5162834B2 (ja) * 2006-02-28 2013-03-13 カシオ計算機株式会社 表示モジュール
KR101593515B1 (ko) * 2009-04-21 2016-02-29 삼성디스플레이 주식회사 입체영상 표시 장치
JP5667752B2 (ja) * 2009-08-20 2015-02-12 株式会社ジャパンディスプレイ 立体映像表示装置
KR101632317B1 (ko) * 2010-02-04 2016-06-22 삼성전자주식회사 2차원/3차원 전환가능한 영상 표시 장치
JP5055398B2 (ja) * 2010-03-12 2012-10-24 株式会社ジャパンディスプレイイースト 照明装置および液晶表示装置
CN203688918U (zh) * 2013-12-17 2014-07-02 京东方科技集团股份有限公司 立体显示装置
CN103792672B (zh) * 2014-02-14 2016-03-23 成都京东方光电科技有限公司 立体显示组件、液晶面板和显示装置
TWI499805B (zh) * 2014-03-19 2015-09-11 Innolux Corp 顯示裝置
CN104406015A (zh) 2014-10-16 2015-03-11 安徽轩扬包装科技有限公司 印刷机防震的显示器托架
KR20160067546A (ko) * 2014-12-04 2016-06-14 한국전자통신연구원 지향성 백라이트 유닛

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000029026A (ja) * 1998-07-15 2000-01-28 Konica Corp 導光板及びその蒸着方法
US6879355B1 (en) * 1999-08-19 2005-04-12 Lg. Philips Lcd Co., Ltd. Back light unit in liquid crystal display
CN101261389A (zh) * 2007-03-06 2008-09-10 奇美电子股份有限公司 背光模块及其应用
US20100214514A1 (en) * 2007-09-06 2010-08-26 Entire Technology Co., Ltd. Optical diffusion device
CN101576215A (zh) * 2009-03-30 2009-11-11 上海广电光电子有限公司 用于3d显示的背光模组
CN103454807A (zh) * 2013-09-02 2013-12-18 京东方科技集团股份有限公司 阵列基板及其制作方法、3d显示装置
CN104460115A (zh) * 2014-12-31 2015-03-25 苏州大学 一种多视角像素指向型背光模组及裸眼3d显示装置
CN105572889A (zh) * 2016-01-08 2016-05-11 京东方科技集团股份有限公司 一种3d显示装置
CN105676474A (zh) * 2016-04-19 2016-06-15 京东方科技集团股份有限公司 导光板、背光模组和显示装置

Also Published As

Publication number Publication date
US10520743B2 (en) 2019-12-31
US20180143447A1 (en) 2018-05-24
CN106959520B (zh) 2019-10-29
CN106959520A (zh) 2017-07-18

Similar Documents

Publication Publication Date Title
WO2017117988A1 (zh) 背光模组、显示装置及其驱动方法
US9977251B2 (en) Display device and a driving method for the display device
US10684408B2 (en) Display device and image display method
JP4471785B2 (ja) マルチプルビュー方向性ディスプレイ
CN110178072A (zh) 用于成像定向背光源的光学叠堆
KR101265483B1 (ko) 입체 영상 디스플레이 장치 및 그 제조 방법
KR20150126034A (ko) 투명한 무안경 입체영상 디스플레이
US9190019B2 (en) Image display apparatus
KR20120069432A (ko) 입체영상표시장치 및 그 구동 방법
KR20120126561A (ko) 영상 표시장치
US20130107146A1 (en) Display apparatus
US9405125B2 (en) Image display apparatus
CN109870822B (zh) 一种显示系统及其控制方法、介质
WO2017118048A1 (zh) 显示装置及其驱动方法
KR101298874B1 (ko) 편광 안경
WO2018196002A1 (zh) 一种指向性光波导、指向性背光模组及显示装置
US8334952B2 (en) 2D and 3D switchable display device
KR20120075319A (ko) 영상 표시장치
KR101365449B1 (ko) 입체 영상 디스플레이 장치
US20140063379A1 (en) Liquid crystal lens panel, three dimensional panel assembly, and display apparatus having the same
US20140133025A1 (en) Stereoscopic display device and method for forming the same
KR20120108729A (ko) 표시 장치
KR101861616B1 (ko) 액정표시장치 및 그 제조방법
US20140160378A1 (en) Display apparatus
KR20120125001A (ko) 영상 표시장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15509358

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883122

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 14/06/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16883122

Country of ref document: EP

Kind code of ref document: A1