WO2017117960A1 - 化合物及其制备方法、有机电致发光器件 - Google Patents

化合物及其制备方法、有机电致发光器件 Download PDF

Info

Publication number
WO2017117960A1
WO2017117960A1 PCT/CN2016/089861 CN2016089861W WO2017117960A1 WO 2017117960 A1 WO2017117960 A1 WO 2017117960A1 CN 2016089861 W CN2016089861 W CN 2016089861W WO 2017117960 A1 WO2017117960 A1 WO 2017117960A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
organic light
layer
electroluminescent device
Prior art date
Application number
PCT/CN2016/089861
Other languages
English (en)
French (fr)
Inventor
陈建
陆相晚
李宾
朱涛
袁慧芳
唐文浩
方群
尹海斌
董安鑫
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/514,201 priority Critical patent/US20180114922A1/en
Publication of WO2017117960A1 publication Critical patent/WO2017117960A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D221/00Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
    • C07D221/02Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
    • C07D221/20Spiro-condensed ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes

Definitions

  • Embodiments of the present invention relate to a compound, a method of producing the same, and an organic electroluminescent device.
  • the organic electroluminescent device is a self-luminous device comprising a cathode, an anode, and a light-emitting layer disposed between the cathode and the anode.
  • a voltage is applied to the organic electroluminescent device, electrons injected from the cathode and holes injected from the anode recombine at the luminescent center to form molecular excitons, and the molecular excitons release energy and emit light upon returning to the ground state.
  • the organic electroluminescent device has the characteristics of low voltage, high brightness, wide viewing angle, fast response and good temperature adaptability, and is widely used in displays of electronic products such as televisions, mobile phones, and MP3s.
  • Organic electroluminescent materials are generally classified into singlet fluorescent dyes and triplet phosphorescent dyes, but singlet fluorescent dyes and triplet phosphorescent dyes have a strong concentration quenching effect, which reduces the luminous efficiency of the light emitting layer, resulting in an organic light emitting device. The luminescence performance is lowered.
  • organic electroluminescent devices mostly adopt a host-guest structure, that is, a fluorescent dye or a phosphorescent dye is doped as a guest material in a host material at a certain concentration to avoid concentration quenching and quenching of a triplet-triplet state, thereby improving the device. Luminous performance.
  • mCP N,N'-dicarbazolyl-3,5-substituted benzene
  • the host material not only has high triplet energy, the material itself is stable, electrons and holes are balanced, but also improves the luminous efficiency of the organic electroluminescent device.
  • Embodiments of the present invention provide a compound, a method for preparing the same, and an organic electroluminescent device, which is applied to a host material of an organic electroluminescent device, which can solve the current unstable performance of the host material, and the electron and hole imbalance.
  • the technical problem is to improve the luminous efficiency of the organic electroluminescent device.
  • R group is a substituent containing an N, O or S atom.
  • the R group is one of the following groups:
  • the compound is as shown in Formula I-1:
  • At least one embodiment of the present invention also provides a method of preparing a compound, comprising:
  • Coupling step a compound of formula II is coupled with a compound of formula III to give a compound of formula I-1;
  • the catalyst in the preparation method provided by an embodiment of the present invention, is used for catalysis.
  • the catalyst comprises tetrakistriphenylphosphine palladium.
  • the molar ratio of the compound of the formula II to the compound of the formula III is from 1:1.05 to 1:1.2.
  • the compound of the formula II is obtained by reacting a compound of the formula IV with a compound of the formula V;
  • the molar ratio of the compound represented by the formula IV to the compound represented by the formula V is 1:1.0 to 1:2.0.
  • the compound of the formula V is obtained by reacting a compound of the formula VI with a compound of the formula VII;
  • At least one embodiment of the present invention also provides an organic electroluminescent device whose host material of the organic light-emitting layer is a compound as described above.
  • 1 is a structure of an organic light emitting diode
  • Example 2 is an electroluminescence spectrum of an organic light emitting diode in Example 4 and Comparative Example 4.
  • R group is a substituent containing an N, O or S atom.
  • the compound contains a 4-aza spiro group having a certain steric structure, and if a compound containing the group is used for the host material of the organic light-emitting layer of the organic electroluminescent device, the intermolecular structure can be weakened.
  • the aggregation effect that is, the concentration quenching is reduced, thereby improving the luminous efficiency of the organic light emitting diode;
  • the group contains a nitrogen atom with strong electron absorption capability, which can enhance the electron transporting ability, thereby ensuring electrons in the organic light emitting layer.
  • the balance of hole transport improves the luminous efficiency of the organic light emitting diode; in addition, the compound containing the group has good moldability and thermal stability, and the compound is used for an organic electroluminescent device (eg, an organic light emitting diode) When the organic light-emitting layer is used, the lifetime and luminous efficiency of the organic electroluminescent device can be improved.
  • an organic electroluminescent device eg, an organic light emitting diode
  • R group is one of the following groups:
  • an R group is introduced into the compound, and the R group contains a nitrogen atom, an oxygen atom or a sulfur atom, and the nitrogen atom, the oxygen atom and the sulfur atom each have a strong electron-withdrawing ability, and the ability to transport electrons can be enhanced.
  • the R group may also be a carbazolyl group, a diphenylamino group, a triphenylamine group, and a diphenylphosphino group.
  • 2-benzothiophene is introduced as a substituent, and the substituent contains a sulfur atom, and the sulfur atom has a strong electron-withdrawing ability, and can enhance its ability to transport electrons, and is applied to an organic electrochemistry.
  • the balance of electron and hole transport in the organic light-emitting layer can be ensured, and the light-emitting efficiency of the organic light-emitting diode can be improved.
  • Embodiments of the present invention also provide a method of preparing a compound of Formula I-1, comprising:
  • Coupling step a compound of formula II is coupled with a compound of formula III to give a compound of formula I-1;
  • the yield of the compound of the formula I-1 can be more than 95%.
  • a catalytic reaction can be carried out using a catalyst.
  • the catalyst comprises tetrakistriphenylphosphine palladium.
  • the molar ratio of the compound of the formula II to the compound of the formula III is from 1:1.05 to 1:1.2.
  • the compound of the formula II and the compound of the formula III in the molar ratio range are used, and the yield of the obtained product (the compound of the formula I-1) is high.
  • a catalytic reaction is carried out using tetrakistriphenylphosphine palladium as a catalyst in the coupling step, and the reaction effect is better.
  • the coupling step is exemplified as follows: 1.0 mole of the compound of formula II (6-chloro-4-azaspirobiguanide) and 1.05 to 1.2 mole of the compound of formula III (dibenzothiophene) -4-boric acid) was added to the reactor, and tetrabutyltriphenylphosphine palladium containing 0.5 to 5% by mass of the compound represented by formula II was added as a catalyst, tetrahydrofuran was added as a solvent, and K 2 CO was added at a concentration of 2 mol/L. 3 The solution was refluxed for 24 hours under argon as a shielding gas. After cooling, it was extracted with dichloromethane.
  • the extracted organic layer was dried over anhydrous sodium sulfate and then dried with methylene chloride / petroleum ether (volume ratio) 1:5) After passing through a silica gel column, the compound represented by the formula I-1 (6-(4-dibenzothiophene)-4-azaspiroindole) was obtained by spin-drying, and the yield was 95% or more.
  • a compound of formula II can be obtained by reacting a compound of formula IV with a compound of formula V;
  • the yield of the compound of formula II prepared by this method can reach 80% or more.
  • the molar ratio of the compound of the formula IV to the compound of the formula V is from 1:1.0 to 2.0.
  • the yield of the compound of the formula II will be higher.
  • the procedure is as follows: 1.0 mole of the compound of formula IV (2-bromobiphenyl) is added to the reactor, argon is used as a shielding gas, anhydrous tetrahydrofuran is added as a solvent, and then cooled to -70. At a temperature of °C to -78 °C, 1.0 to 1.2 moles of a butyl lithium solution having a molar concentration of 2 mol/L is slowly added dropwise, and after reacting for 5 to 8 hours, 1.0 to 2.0 moles of a compound represented by the formula V (4-azainone) is added. The reaction is continued for 5-8 hours, quenched with anhydrous methanol, and then extracted with dichloromethane.
  • the organic layer is dried over anhydrous sodium sulfate and then dried.
  • the dried intermediate is directly added with an appropriate amount of acetic acid and an appropriate amount of hydrochloric acid. Heat and reflux for 5-8 hours, track the plate, confirm the reaction, extract with dichloromethane, use organic layer After drying with sodium sulfate, spin dry, and the crude product is passed through a column of dichloromethane/petroleum ether (volume ratio: 1:5), and then dried to give the compound of formula II (6-chloro-4-azaspiroindole). The yield is greater than 80.5%.
  • a compound of formula V is obtained by reacting a compound of formula VI with a compound of formula VII;
  • a compound of the formula V obtained by reacting a compound of the formula VI with a compound of the formula VII can have a yield of 83.7% or more.
  • a compound of formula VI and a compound of formula VII are intermediates formed in the presence of butyllithium, which is a compound of formula VI formed by ring closure in the presence of lead acetate.
  • the yield of the compound of formula V prepared under these conditions is higher.
  • the operation of this step is as follows: a compound of the formula VI (p-bromochlorobenzene) is added to the reactor, and under anhydrous argon as a shielding gas, anhydrous tetrahydrofuran is added as a solvent, and the mixture is cooled to -70. °C ⁇ -78°C, slowly add 1.0-2.0 moles of butyl lithium solution with a molar concentration of 2mol/L, react for 5-8 hours, add anhydrous methanol to quench, add dichloromethane to extract, and the organic layer is anhydrous.
  • a compound of the formula VI p-bromochlorobenzene
  • Embodiments of the present invention also provide an organic electroluminescent device in which the host material of the organic light-emitting layer is a compound of the above formula (I). Further, for example, the host material of the organic light-emitting layer in the organic electroluminescent device is a compound of the above formula (I).
  • the organic electroluminescent device (such as an organic light emitting diode) of the embodiment of the present invention can normally emit light, and its maximum brightness, highest current efficiency, and highest power efficiency are greatly improved.
  • Examples 1 to 3 are the preparation methods of the compound of the formula I-1 in the examples of the present invention, and the compounds used in the examples are as follows:
  • a compound of the formula VI is first reacted with a compound of the formula VII to give a compound of the formula V.
  • the operation of this step is as follows: a compound of the formula VI (p-bromochlorobenzene) is added to the reactor, and under anhydrous argon as a shielding gas, anhydrous tetrahydrofuran is added as a solvent, and the mixture is cooled to -70 ° C. 1.0 mol of a butyl lithium solution having a molar concentration of 2 mol/L was slowly added dropwise, and the reaction was carried out for 5 to 8 hours.
  • the compound of formula IV is then reacted with a compound of formula V to give a compound of formula II.
  • the operation of this step is as follows: 1.0 mole of the compound of formula IV (2-bromobiphenyl) is added to the reactor, argon is used as a shielding gas, anhydrous tetrahydrofuran is added as a solvent, and then cooled. To -70 ° C, 1.0 mol of a butyl lithium solution having a molar concentration of 2 mol/L was slowly added dropwise, and after reacting for 5 hours, 1.0 mol of the compound of the formula V (4-azainone) was added, and the reaction was continued for 5 hours.
  • a compound of the formula III is subjected to a coupling reaction with a compound of the formula III to give a compound of the formula I-1.
  • the operation of this step is as follows: 1.0 mole of the compound of formula II (6-chloro-4-azaspirobiguanide) and 1.05 mole of the compound of formula III (dibenzothiophene-4-boronic acid) Adding to the reactor, adding tetrakistriphenylphosphine palladium as a catalyst to 0.5% by mass of the compound of formula II, adding tetrahydrofuran as a solvent, and a molar solution of 2 mol/L of K 2 CO 3 in argon The mixture was refluxed for 24 hours under the conditions of a protective gas.
  • a compound of the formula V is first obtained by reacting a compound of the formula VI with a compound of the formula VII.
  • the operation of this step is as follows: a compound of the formula VI (p-bromochlorobenzene) is added to the reactor, and under anhydrous argon as a shielding gas, anhydrous tetrahydrofuran is added as a solvent, and the mixture is cooled to -78 ° C. 2.0 mol of a butyl lithium solution having a molar concentration of 2 mol/L was slowly added dropwise, and the mixture was reacted for 8 hours.
  • the compound of formula IV is then reacted with a compound of formula V to provide a compound of formula II.
  • the operation of this step is as follows: 1.0 mole of the compound of formula IV (2-bromobiphenyl) is added to the reactor, argon is used as a shielding gas, anhydrous tetrahydrofuran is added as a solvent, and then cooled to -78 °C, 1.2 mol of a butyl lithium solution having a molar concentration of 2 mol/L was slowly added dropwise, and after reacting for 8 hours, 2.0 mol of the compound of the formula V (4-azainone) was added, and the reaction was continued for 8 hours, and anhydrous was added.
  • the methanol was quenched, and then extracted with dichloromethane.
  • the organic layer was dried over anhydrous sodium sulfate and dried.
  • the spin-dried intermediate was directly added with an appropriate amount of acetic acid and an appropriate amount of hydrochloric acid to maintain an acidic environment.
  • the mixture was heated under reflux for 8 hours, and the plate was followed to confirm that the reaction was completed and then extracted with dichloromethane.
  • the organic layer was dried over anhydrous sodium sulfate and then dried.
  • the column was passed through dichloromethane/petroleum ether (1:5 by volume) and the compound of formula II (6-chloro-4-azaspiroindole) was spun off.
  • a compound of the formula III is subjected to a coupling reaction with a compound of the formula III to give a compound of the formula I-1.
  • the operation of this step is as follows: 1.0 mole of the compound of formula II (6-chloro-4-azaspirobiguanide) and 1.2 moles of the compound of formula III (dibenzothiophene-4-boronic acid) Adding to the reactor, adding tetrakistriphenylphosphine palladium as a catalyst to the compound of formula II as a catalyst, adding tetrahydrofuran as a solvent, and a molar solution of 2 mol/L of K 2 CO 3 in argon The mixture was refluxed for 24 hours under the conditions of a protective gas.
  • a compound of the formula V is first obtained by reacting a compound of the formula VI with a compound of the formula VII.
  • the operation of this step is as follows: a compound of the formula VI (p-bromochlorobenzene) is added to the reactor, argon is used as a shielding gas, anhydrous tetrahydrofuran is added as a solvent, and the mixture is cooled to -75 ° C, and slowly added dropwise.
  • the compound of formula IV is then reacted with a compound of formula V to give a compound of formula II.
  • the operation of this step is as follows: 1.0 mole of the compound of formula IV (2-bromobiphenyl) is added to the reactor, argon is used as a shielding gas, anhydrous tetrahydrofuran is added as a solvent, and then cooled to -74. °C, 1.1 mol of a butyl lithium solution having a molar concentration of 2 mol/L was slowly added dropwise, and after reacting for 6 hours, 1.5 mol of the compound of the formula V (4-azainone) was added, and the reaction was continued for 6 hours, and anhydrous was added.
  • a compound of the formula III is subjected to a coupling reaction with a compound of the formula III to give a compound of the formula I-1.
  • the operation of this step is as follows: 1.0 mole of the compound of formula II (6-chloro-4-azaspirobiguanide) and 1.1 mole of the compound of formula III (dibenzothiophene-4-boronic acid) Adding to the reactor, adding 3% by weight of the compound of formula II to tetratriphenylphosphine palladium as a catalyst, adding tetrahydrofuran as a solvent, and a molar concentration of 2 mol/L of K 2 CO 3 solution in argon The mixture was refluxed for 24 hours under the conditions of a protective gas.
  • the compounds of the formula I-1 can be produced by the methods of the first to third embodiments of the present invention, and the yields of the compounds represented by the formula I-1 are all above 95%.
  • An organic electroluminescent device prepared by using the compound of the present invention comprises an organic light emitting diode.
  • the structure of the organic light emitting diode includes, in order, a substrate 1, an anode layer 2, a hole injection layer 3, a hole transport layer 4, an organic light emitting layer 5, an electron transport layer 6, an electron injection layer 7, and a cathode.
  • the substrate 1 is made of ITO transparent conductive glass substrate; the hole injection layer is made of molybdenum trioxide (MoO 3 ) or 2,3,6,7,10,11-hexacyano-1,4,5,8,9,12 - hexazatriphenylene (HAT-CN); the hole transport layer is nitrophenol butyrate (NPB), CBP or TAPC, and the electron transport layer is TPBi, 4,7-diphenyl-1,10-phenanthrene Porphyrin (Bphen) or 1,3,5-tris[(3-pyridyl)-3-phenyl]benzene (TmPyPB); the organic light-emitting layer of the organic light-emitting diode may be a single-layer light-emitting layer or a multi-layer light-emitting layer Layers, each of the light-emitting layers may be a single-doped structure or a multi-doped structure.
  • MoO 3 molybdenum trioxide
  • the luminescent color is not limited (for example, red, yellow, blue, green or white), and the phosphorescent dye includes FIrpic, tris(2-phenylpyridine) ruthenium (Ir(ppy) 3 ), acetylacetonate bis(2-phenyl) Pyridine) iridium (Ir(ppy) 2 (acac)), tris(1-phenyl-isoquinoline) ruthenium (III) (Ir(piq)) or (acetylacetone) bis(2-methyldibenzo) [F, H] quinoxaline) ruthenium (Ir(MDQ) 2 (acac)) and the like.
  • FIrpic tris(2-phenylpyridine) ruthenium (Ir(ppy) 3 ), acetylacetonate bis(2-phenyl) Pyridine) iridium (Ir(ppy) 2 (acac)
  • the cathode may adopt a structure of a metal and a metal mixture, such as Mg:Al, Li:Al, etc., or a cathode structure of a common electron injecting layer/metal layer (such as LiF/Al, Liq/Al), wherein the electron injecting layer may be used. It is an elemental substance, a compound or a mixture of an alkali metal, an alkaline earth metal, a transition metal, or the like.
  • the organic light-emitting diode is prepared by using the above compound as a host material of the light-emitting layer, and the organic light-emitting diode is prepared by using mCP as a host material in Comparative Example 4, and other conditions are exactly the same as those in Embodiment 4, and then the prepared The performance of the organic light emitting diode is tested.
  • the compound represented by Formula I-1 in the embodiment of the present invention is used as a host material of an organic light-emitting layer in an organic light-emitting diode, and FIrpic is a blue phosphorescent dye, and the structure of the organic light-emitting diode is as shown in FIG.
  • the substrate 1 which is: substrate 1 , an anode layer 2, a hole injection layer 3, a hole transport layer 4, an organic light-emitting layer 5, an electron transport layer 6, an electron injection layer 7, a cathode layer 8, and a package film 9, wherein the substrate 1 is made of an ITO transparent conductive glass substrate
  • the hole injection layer 3 is selected from HAT-CN (thickness: 10 nm)
  • the electron injection layer is selected from TAPC (thickness: 45 nm)
  • the host material of the organic light-emitting layer is a compound of the formula I-1, and the guest material has a doping concentration of 8%.
  • the FIrpic blue phosphorescent dye has TmPyPB (thickness: 40 nm) for the electron transport layer, Liq (thickness: 2 nm) for the electron injection layer, and Al (thickness: 120 nm) for the cathode layer.
  • the preparation process of the organic light emitting diode is as follows: the ITO transparent conductive glass substrate 1 is placed in a cleaning agent for ultrasonic treatment, first rinsed with deionized water, and then repeatedly washed three times with deionized water, acetone and ethanol, and baked in a clean environment. Bake until the water is completely removed, and the ITO transparent conductive glass substrate is treated with an ultraviolet lamp and ozone.
  • the treated ITO transparent conductive glass substrate was placed in a vacuum chamber, vacuumed to 3.0 ⁇ 10 ⁇ 4 to 4.0 ⁇ 10 ⁇ 4 Pa, and HAT-CN was vacuum-deposited on the ITO transparent conductive glass substrate as a hole injection layer.
  • the evaporation rate is The thickness of the coating is 10 nm; under the hole injection layer, TAPC is vacuum-evaporated as a hole transport layer, and the evaporation rate is The thickness of the coating is 45 nm; then the organic light-emitting layer is prepared by using the compound I-1 in the embodiment of the invention as the host material, and the FIrpic blue phosphorescent dye is used as the guest material to control the evaporation rate.
  • the coating thickness was 20 nm and the doping concentration of FIrpic was 8%.
  • a layer of TmPyPB is vacuum evaporated on the organic light-emitting layer as an electron transport layer, and the evaporation rate is The coating thickness was 40 nm; Liq was vacuum-deposited on the electron transport layer as an electron injection layer and an Al layer as a cathode.
  • the compound mCP was used as the host material of the organic light emitting diode, and the device structure and other conditions of the preparation process were the same as in Example 4.
  • the current-brightness-voltage characteristics of OLEDs were performed by a Keithley source measurement system with a calibrated silicon photodiode (Keithley 2400 Sourcemeter, Keithley 2000 Current meter); electroluminescence spectroscopy was measured by Photo research's PR655 spectrometer, all measurements Both are done in the atmosphere at room temperature.
  • Example 4 It can be seen from the data of Table 1 that the maximum brightness, the maximum current efficiency, and the maximum power efficiency of Example 4 are both higher than that of Comparative Example 4, from which it can be seen that the compound of the embodiment of the present invention is used as an organic organic light emitting diode.
  • the host material of the light-emitting layer can effectively improve the light-emitting efficiency of the organic light-emitting diode, and the compound in the embodiment of the invention is suitable for the host material of the organic light-emitting layer of the organic light-emitting diode.
  • the compound in the embodiment of the present invention can be used as a host material of the organic light-emitting layer, and can be used in an organic electroluminescence device.
  • the compound in the embodiment of the present invention has a high triplet energy as a host material, and can improve the external quantum efficiency of the organic electroluminescent device.
  • the host material the glass transition temperature is high, the performance is stable, and it can balance the injection of electrons and holes, and improve the luminous efficiency of the organic electroluminescent device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种化合物及其制备方法、有机电致发光器件。所述化合物具有如式I所示的通式,其中,R基为含有N、O或S原子的取代基。将该化合物应用于发光层的主体材料制备有机电致发光器件可以提高发光效率。

Description

化合物及其制备方法、有机电致发光器件 技术领域
本发明的实施例涉及一种化合物及其制备方法、有机电致发光器件。
背景技术
有机电致发光器件是一种自发光器件,该发光器件包括阴极、阳极以及设置于阴极和阳极之间的发光层。对该有机电致发光器件施加电压时,从阴极注入的电子和从阳极注入的空穴在发光中心复合形成分子激子,分子激子在回到基态时释放出能量并发光。有机电致发光器件具有电压低、亮度高、视角宽、响应快和温度适应性好等特点,其广泛地应用于电视机、手机、MP3等电子产品的显示器中。
有机电致发光材料一般分为单线态荧光染料和三线态磷光染料,但单线态荧光染料和三线态磷光染料具有较强的浓度淬灭效应,会降低发光层的发光效率,导致有机发光器件的发光性能降低。目前,有机电致发光器件多采用主客体结构,即将荧光染料或磷光染料作为客体材料以一定的浓度掺杂在主体材料中,以避免浓度淬灭和三线态-三线态的湮灭,进而提高器件的发光性能。
1999年Forrest和Thompson等将绿色磷光材料Ir(ppy)3以6wt%的浓度掺杂在4,4’-N,N’-二咔唑-联苯(CBP)的主体材料中,获得的绿光有机电致发光器件的最大外量子效率达10%。不过CBP的三重激发态能量只有2.56eV,若掺杂具有高三线态激发能量的蓝色磷光材料,会发生能量回传给主体材料的现象,使器件的外量子效率下降至5.7%。为了进一步提高蓝色磷光器件的发光效率,必须使用高三线态能量的主体材料。
2003年Forrest研发出了N,N’-二咔唑基-3,5-取代苯(mCP),mCP可以将CBP的共轭体系缩小,将其三线态能量上升至2.9eV,使器件的外部量子效率提升至7.8%。但mCP的玻璃化转变温度较低,材料本身的稳定性不高;另外,mCP在器件中表现为注入的电子和空穴不平衡,导致器件中空穴过剩,从而降低了有机电致发光器件的发光效率。
因此,希望提供一种化合物作为有机电致发光器件的主体材料,该主体 材料不仅三线态能量高、材料本身稳定、电子和空穴平衡,还能提高有机电致发光器件的发光效率。
发明内容
本发明的实施例提供了一种化合物及其制备方法以及有机电致发光器件,将该化合物应用于有机电致发光器件的主体材料,可解决目前主体材料性能不稳定、电子和空穴不平衡的技术问题,可提高有机电致发光器件的发光效率。
本发明的至少一个实施例提供了一种化合物,该化合物具有如式I所示的通式:
Figure PCTCN2016089861-appb-000001
其中,R基为含有N、O或S原子的取代基。
例如,在本发明一实施例提供的化合物中,所述R基为下述基团中的一种:
Figure PCTCN2016089861-appb-000002
例如,在本发明一实施例提供的化合物中,所述化合物如式I-1所示:
Figure PCTCN2016089861-appb-000003
本发明的至少一个实施例还提供一种化合物的制备方法,包括:
偶联步骤:式II所示化合物与式III所示化合物进行偶联反应,得到式I-1所示化合物;
Figure PCTCN2016089861-appb-000004
例如,在本发明一实施例提供的制备方法中,在所述偶联步骤中,用催化剂进行催化。
例如,在本发明一实施例提供的制备方法中,所述催化剂包括四三苯基膦钯。
例如,在本发明一实施例提供的制备方法中,所述式II所示化合物和所述式III所示化合物的摩尔比为1:1.05~1:1.2。
例如,在本发明一实施例提供的制备方法中,所述式II所示化合物通过式IV所示化合物与式V所示化合物反应得到;
Figure PCTCN2016089861-appb-000005
例如,在本发明一实施例提供的制备方法中,所述式IV所示化合物和所述式V所示化合物的摩尔比为1:1.0~1:2.0。
例如,在本发明一实施例提供的制备方法中,所述式V所示化合物通过式VI所示化合物与式VII所示化合物反应得到;
Figure PCTCN2016089861-appb-000006
本发明的至少一个实施例还提供一种有机电致发光器件,该有机电致发光器件的有机发光层的主体材料为上述中的化合物。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图 作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为一种有机发光二极管的结构;
图2为实施例4和对比例4中有机发光二极管的电致发光光谱。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的实施例提供一种化合物,该化合物的通式如式I所示:
Figure PCTCN2016089861-appb-000007
其中,R基为含有N、O或S原子的取代基。
例如,该化合物含有4-氮杂螺环基团,该基团具有一定的立体结构,如果将含有该基团的化合物用于有机电致发光器件的有机发光层的主体材料,可以减弱分子间的聚集作用,即减小浓度淬灭,从而提高有机发光二极管的发光效率;该基团中含有吸电子能力强的氮原子,可增强其电子传输的能力,从而保证在有机发光层中电子和空穴传输的平衡,提高有机发光二极管的发光效率;另外,含有该基团的化合物具有较好的成模性以及热稳定性,将该化合物用于有机电致发光器件(如:有机发光二极管)的有机发光层时,可以提高有机电致发光器件的寿命和发光效率。
例如,R基为下述基团中的一种:
Figure PCTCN2016089861-appb-000008
例如,在该化合物中引入R基,R基中含有氮原子、氧原子或硫原子,氮原子、氧原子和硫原子均具有较强的吸电子能力,可增强其传输电子的能力,将其应用于有机发光层中时,可保证电子和空穴传输的平衡,提高有机发光二极管的发光效率。其中,R基还可以选用咔唑基、二苯胺基、三苯胺基和二苯基磷氧基。
例如,示例性地,该化合物如式I-1所示:
Figure PCTCN2016089861-appb-000009
例如,在该化合物中,引入了2-苯并噻吩作为取代基,该取代基含有硫原子,硫原子具有较强的吸电子能力,可增强其传输电子的能力,将其应用于有机电致发光器件时,可保证有机发光层中电子和空穴传输的平衡,提高有机发光二极管的发光效率。
本发明的实施例还提供了如式I-1所示化合物的制备方法,包括:
偶联步骤:式II所示化合物与式III所示化合物进行偶联反应,得到式I-1所示化合物;
Figure PCTCN2016089861-appb-000010
例如,应用本发明的实施例中的制备方法,式I-1所示化合物的收率可达到95%以上。
例如,在偶联步骤中,可用催化剂进行催化反应。
例如,该催化剂包括四三苯基膦钯。
例如,式II所示化合物与式III所示化合物进行偶联反应时,式II所示化合物和式III所示化合物的摩尔比为1:1.05~1:1.2。在偶联步骤中,采用该摩尔比范围的式II所示化合物和式III所示化合物,所得产物(式I-1所示化合物)的收率较高。
例如,在偶联步骤中用四三苯基膦钯作为催化剂进行催化反应,反应效果更好。
例如,示例性地,该偶联步骤如下:将1.0摩尔的式II所示化合物(6-氯-4-氮杂螺双芴)和1.05~1.2摩尔的式III所示化合物(二苯并噻吩-4-硼酸)加入反应器中,加入占式II所示化合物质量百分比为0.5~5%的四三苯基膦钯作为催化剂,再加入四氢呋喃做溶剂,以及浓度为2mol/L的K2CO3溶液,在氩气作为保护气的条件下回流24小时,冷却后用二氯甲烷萃取,萃取后的有机层用无水硫酸钠干燥后旋干,用二氯甲烷/石油醚(体积比优选1:5)过硅胶柱,旋干后得到式I-1所示化合物(6-(4二苯并噻吩)-4-氮杂螺双芴),其收率在95%以上。
例如,式II所示化合物可通过式IV所示化合物与式V所示化合物反应得到;
Figure PCTCN2016089861-appb-000011
例如,利用该方法制备得到的式II所示化合物的收率可达到80%以上。
例如,式IV所示化合物和式V所示化合物的摩尔比为1:1.0~2.0。例如,采用该摩尔比范围的式IV所示化合物和式V所示化合物反应,式II所示化合物的收率会更高。
例如,示例性地,该步骤如下:将1.0摩尔的式IV所示化合物(2-溴联苯)加入反应器中,用氩气作为保护气,加入无水四氢呋喃作为溶剂,然后冷却至-70℃~-78℃,缓慢滴加1.0~1.2摩尔的摩尔浓度为2mol/L的丁基锂溶液,反应5~8小时后加入1.0~2.0摩尔式V所示的化合物(4-氮杂芴酮),继续反应5~8小时,加入无水甲醇淬灭后加入二氯甲烷萃取,有机层用无水硫酸钠干燥后旋干,旋干后的中间体直接加入适量的醋酸和适量的盐酸,加热回流5~8小时,点板跟踪,确认反应完毕后用二氯甲烷萃取,有机层用无 水硫酸钠干燥后旋干,粗品用二氯甲烷/石油醚(体积比优选1:5)过柱,旋干后得到式II所示化合物(6-氯-4-氮杂螺双芴)的收率大于80.5%。
例如,式V所示化合物通过式VI所示化合物与式VII所示化合物反应得到;
Figure PCTCN2016089861-appb-000012
例如,采用式VI所示化合物与式VII所示化合物反应得到的式V所示化合物的收率可达83.7%以上。
例如,式VI所示化合物和式VII所示化合物为在丁基锂存在时形成的中间体,该中间体为在醋酸铅存在下关环生成的如式VI所示的化合物。在该条件下制备的式V所示的化合物的收率更高。
例如,示例性地,该步骤的操作如下:将式VI所示化合物(对溴氯苯)加入反应器中,在氩气作为保护气的条件下,加入无水四氢呋喃做溶剂,冷却至-70℃~-78℃,缓慢滴加1.0~2.0摩尔的摩尔浓度为2mol/L的丁基锂溶液,反应5~8小时,加入无水甲醇淬灭后加入二氯甲烷萃取,有机层用无水硫酸钠干燥后旋干,在旋干后的中间体中直接加入适量醋酸钯(例如,占式VI所示化合物的质量百分含量为20%的醋酸钯)和适量(占式VI所示化合物的质量百分含量为75%的无水醋酸钾)无水醋酸钾,保持酸性环境进行关环反应,继续反应10~12小时,点板跟踪,确认反应完毕后加入二氯甲烷萃取,有机层用无水硫酸钠干燥后旋干,用二氯甲烷/石油醚(例如,体积比1:5)过柱,旋干得到4-氮杂芴酮,该4-氮杂芴酮的收率大于83%。
本发明的实施例还提供一种有机电致发光器件,该有机电致发光器件中有机发光层的主体材料为上述中通式如式I所示的化合物。进一步地,例如,该有机电致发光器件中有机发光层的主体材料为上述中通式如式I-1所示的化合物。
例如,本发明实施例的有机电致发光器件(如:有机发光二极管)能正常发光,且其最高亮度、最高电流效率和最高功率效率均得到了极大的提高。
实施例1~3为本发明实施例中通式为式I-1所示化合物的制备方法,实施例中用到的化合物如下所示:
Figure PCTCN2016089861-appb-000013
实施例1
在本实施例中,首先通过式VI所示化合物与式VII所示化合物反应得到式V所示的化合物。示例性地,该步骤的操作如下:将式VI所示的化合物(对溴氯苯)加入反应器中,在氩气作为保护气的条件下,加入无水四氢呋喃做溶剂,冷却至-70℃缓慢滴加1.0摩尔的摩尔浓度为2mol/L的丁基锂溶液,反应5~8小时,加入无水甲醇淬灭后加入二氯甲烷萃取,有机层用无水硫酸钠干燥后旋干,在旋干后的中间体中直接加入适量的醋酸钯和适量的无水醋酸钾,继续反应10小时,点板跟踪,确认反应完毕后加入二氯甲烷萃取,有机层用无水硫酸钠干燥后旋干,用二氯甲烷/石油醚(体积比为1:5)过柱,旋干得4-氮杂芴酮。
然后通过式IV所示化合物与式V所示化合物反应得到式II所示化合物。示例性地,该步骤的操作如下:将1.0摩尔的式IV所示的化合物(2-溴联苯)加入反应器中,用氩气作为保护气,加入无水四氢呋喃作为溶剂,然后冷却 至-70℃,缓慢滴加1.0摩尔的摩尔浓度为2mol/L的丁基锂溶液,反应5小时后加入1.0摩尔式V所示化合物(4-氮杂芴酮),继续反应5小时,加入无水甲醇淬灭,后加入二氯甲烷萃取,有机层用无水硫酸钠干燥后旋干,旋干后的中间体直接加入适量的醋酸和适量的盐酸,保持酸性环境,加热回流5小时,点板跟踪,确认反应完毕后用二氯甲烷萃取,有机层用无水硫酸钠干燥后旋干,粗品用二氯甲烷/石油醚(体积比为1:5)过柱,旋干得式II所示化合物(6-氯-4-氮杂螺双芴)。
最后通过式II所示化合物与式III所示化合物进行偶联反应得到式I-1所示化合物。示例性地,该步骤的操作如下:将1.0摩尔的式II所示化合物(6-氯-4-氮杂螺双芴)和1.05摩尔的式III所示化合物(二苯并噻吩-4-硼酸)加入反应器中,加入占式II所示化合物质量百分比为0.5%的四三苯基膦钯作为催化剂,加入四氢呋喃做溶剂,以及摩尔浓度为2mol/L的K2CO3溶液,在氩气作为保护气的条件下回流24小时,冷却后用二氯甲烷萃取,萃取后的有机层用无水硫酸钠干燥后旋干,用二氯甲烷/石油醚(体积比为1:5)过硅胶柱,旋干后得到式I-1所示化合物(6-(4二苯并噻吩)-4-氮杂螺双芴)。
实施例2
在本实施例中,首先通过式VI所示化合物与式VII所示化合物反应得到合成式V所示化合物。示例性地,该步骤的操作如下:将式VI所示的化合物(对溴氯苯)加入反应器中,在氩气作为保护气的条件下,加入无水四氢呋喃做溶剂,冷却至-78℃,缓慢滴加2.0摩尔的摩尔浓度为2mol/L的丁基锂溶液,反应8小时,加入无水甲醇淬灭后加入二氯甲烷萃取,有机层用无水硫酸钠干燥后旋干,在旋干后的中间体中直接加入适量醋酸钯和适量无水醋酸钾,继续反应12小时,点板跟踪,确认反应完毕后加入二氯甲烷萃取,有机层用无水硫酸钠干燥后旋干,用二氯甲烷/石油醚(体积比为1:5)过柱,旋干得4-氮杂芴酮。
然后通过式IV所示化合物与式V所示化合物反应得到式II所示的化合物。示例性地,该步骤的操作如下:将1.0摩尔的式IV所示化合物(2-溴联苯)加入反应器中,用氩气作为保护气,加入无水四氢呋喃作为溶剂,然后冷却至-78℃,缓慢滴加1.2摩尔的摩尔浓度为2mol/L的丁基锂溶液,反应8小时后加入2.0摩尔式V所示的化合物(4-氮杂芴酮),继续反应8小时,加入无水甲醇淬灭,后加入二氯甲烷萃取,有机层用无水硫酸钠干燥后旋干, 旋干后的中间体直接加入适量醋酸和适量盐酸,保持酸性环境,加热回流8小时,点板跟踪,确认反应完毕后用二氯甲烷萃取,有机层用无水硫酸钠干燥后旋干,粗品用二氯甲烷/石油醚(体积比为1:5)过柱,旋干得式II所示化合物(6-氯-4-氮杂螺双芴)。
最后通过式II所示化合物与式III所示化合物进行偶联反应得到式I-1所示的化合物。示例性地,该步骤的操作如下:将1.0摩尔的式II所示化合物(6-氯-4-氮杂螺双芴)和1.2摩尔的式III所示化合物(二苯并噻吩-4-硼酸)加入反应器中,加入占式II所示化合物质量百分比为5%的四三苯基膦钯作为催化剂,加入四氢呋喃做溶剂,以及摩尔浓度为2mol/L的K2CO3溶液,在氩气作为保护气得条件下回流24小时,冷却后用二氯甲烷萃取,萃取后的有机层用无水硫酸钠干燥后旋干,用二氯甲烷/石油醚(体积比为1:5)过硅胶柱,旋干后得到式I-1所示化合物(6-(4二苯并噻吩)-4-氮杂螺双芴)。
实施例3
在本实施例中,首先通过式VI所示化合物与式VII所示化合物反应得到合成式V所示化合物。示例性地,该步骤的操作如下:将式VI所示化合物(对溴氯苯)加入反应器中,用氩气作为保护气,加入无水四氢呋喃做溶剂,冷却至-75℃,缓慢滴加1.5摩尔的摩尔浓度为2mol/L的丁基锂溶液,反应6小时后加入无水甲醇淬灭后加入二氯甲烷萃取,有机层用无水硫酸钠干燥后旋干,在旋干后的中间体中直接加入适量醋酸钯和适量无水醋酸钾,继续反应11小时,点板跟踪,确认反应完毕后加入二氯甲烷萃取,有机层用无水硫酸钠干燥后旋干,用二氯甲烷/石油醚(体积比为1:5)过柱,旋干得4-氮杂芴酮。
然后通过式IV所示化合物与式V所示化合物反应得到式II所示化合物。示例性地,该步骤的操作如下:将1.0摩尔的式IV所示化合物(2-溴联苯)加入反应器中,用氩气作为保护气,加入无水四氢呋喃作为溶剂,然后冷却至-74℃,缓慢滴加1.1摩尔的摩尔浓度为2mol/L的丁基锂溶液,反应6小时后加入1.5摩尔的式V所示化合物(4-氮杂芴酮),继续反应6小时,加入无水甲醇淬灭,后加入二氯甲烷萃取,有机层用无水硫酸钠干燥后旋干,旋干后的中间体直接加入适量醋酸和适量盐酸,加热回流7小时后,点板跟踪,确认反应完毕后用二氯甲烷萃取,有机层用无水硫酸钠干燥后旋干,粗品用二氯甲烷/石油醚(体积比为1:5)过柱,旋干得式II所示化合物(6-氯-4-氮 杂螺双芴)。
最后通过式II所示化合物与式III所示化合物进行偶联反应得到式I-1所示化合物。示例性地,该步骤的操作如下:将1.0摩尔式II所示的化合物(6-氯-4-氮杂螺双芴)和1.1摩尔式III所示的化合物(二苯并噻吩-4-硼酸)加入反应器中,加入占式II所示化合物质量百分比为3%的四三苯基膦钯作为催化剂,加入四氢呋喃做溶剂,以及摩尔浓度为2mol/L的K2CO3溶液,在氩气作为保护气得条件下回流24小时,冷却后用二氯甲烷萃取,萃取后的有机层用无水硫酸钠干燥后旋干,用二氯甲烷/石油醚(体积比为1:5)过硅胶柱,旋干后得到式I-1所示化合物(6-(4二苯并噻吩)-4-氮杂螺双芴)。
采用本发明的实施例1~3中的方法均可制备式I-1所示的化合物,且式I-1所示化合物的收率均在95%以上。
取实施例3中得到的化合物进行核磁谱图检测,检测得到的数据如下:1HNMR(400MHz,CDCL3):8.48~8.41(m,3H),8.20(d,J=8.5,1H),8.09(s,1H),7.98(s,1H),7.87(d,J=8.5,1H),8.50~8.58(m,5H),7.28~7.38(m,7H),6.67(s,1H),由此可知,得到的化合物为式I-1所示化合物。
在下述描述中涉及到的化合物HAT-CN、TAPC、Firpic、TmpypB、mCP、Liq和TPBi分别表示如下:
Figure PCTCN2016089861-appb-000014
Figure PCTCN2016089861-appb-000015
采用本发明的化合物制备得到的有机电致发光器件包括有机发光二极管。
如图1所示,有机发光二极管的结构依次包括:基片1、阳极层2、空穴注入层3、空穴传输层4、有机发光层5、电子传输层6、电子注入层7、阴极层8和封装薄膜9。基片1采用ITO透明导电玻璃基板;空穴注入层采用三氧化钼(MoO3)或2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂三亚苯(HAT-CN);空穴传输层采用硝基苯酚丁酸酯(NPB)、CBP或TAPC,电子传输层采用TPBi、4,7-二苯基-1,10-菲啰啉(Bphen)或1,3,5-三[(3-吡啶基)-3-苯基]苯(TmPyPB);有机发光二极管的有机发光层可以为单层发光层也可以为多层发光层,每层发光层可以为单掺杂结构也可以为多掺杂结构。发光颜色不限(例如为红、黄、蓝、绿或白色),磷光染料包括FIrpic、三(2-苯基吡啶)合铱(Ir(ppy)3)、乙酰丙酮酸二(2-苯基吡啶)铱(Ir(ppy)2(acac))、三(1-苯基-异喹啉)合铱(III)(Ir(piq))或(乙酰丙酮)双(2-甲基二苯并[F,H]喹喔啉)合铱(Ir(MDQ)2(acac))等。阴极可以采用金属及金属混合物的结构,例如Mg:Al、Li:Al等,也可以选用常见的电子注入层/金属层(如LiF/Al、Liq/Al)的阴极结构,其中电子注入层可以为碱金属、碱土金属、过渡金属的单质、化合物或混合物等。
实施例4
在本实施例中,采用上述化合物作为发光层的主体材料制备有机发光二极管,在对比例4中选用mCP作为主体材料制备有机发光二极管,而其他条件与实施例4完全相同,然后对制备得到的有机发光二极管的性能进行检测。
例如,采用本发明实施例中式I-1所示化合物作为有机发光二极管中有机发光层的主体材料,FIrpic为蓝色磷光染料,有机发光二极管的结构如图1所示,依次为:基片1、阳极层2、空穴注入层3、空穴传输层4、有机发光层5、电子传输层6、电子注入层7、阴极层8和封装薄膜9,其中,基板1选用ITO透明导电玻璃基板,空穴注入层3选用HAT-CN(厚度10nm),电子注入层选用TAPC(厚度为45nm),有机发光层的主体材料为式I-1所示化合物,客体材料为掺杂浓度为8%的FIrpic蓝色磷光染料,电子传输层选用TmPyPB(厚度为40nm),电子注入层选用Liq(厚度为2nm),阴极层选用Al(厚度为120nm)。
有机发光二极管的制备过程如下:将ITO透明导电玻璃基板1放入清洗剂中进行超声处理,先用去离子水冲洗,再用去离子水、丙酮、乙醇反复清洗三次,在洁净的环境下烘烤至完全除去水分,用紫外灯和臭氧处理ITO透明导电玻璃基板。把处理后的ITO透明导电玻璃基板置于真空腔内,抽真空至3.0×10-4~4.0×10-4Pa,在ITO透明导电玻璃基板上真空蒸镀HAT-CN作为空穴注入层,蒸镀速率为
Figure PCTCN2016089861-appb-000016
镀膜的厚度为10nm;在空穴注入层之上真空蒸镀TAPC作为空穴传输层,蒸镀速率为
Figure PCTCN2016089861-appb-000017
镀膜的厚度为45nm;然后采用双源蒸镀的工艺方法,以本发明实施例中的化合物I-1作为主体材料,采用FIrpic蓝色磷光染料作为客体材料制备有机发光层,控制蒸镀速率为
Figure PCTCN2016089861-appb-000018
镀膜厚度为20nm,FIrpic的掺杂浓度为8%。在有机发光层上真空蒸镀一层TmPyPB作为电子传输层,蒸镀速率为
Figure PCTCN2016089861-appb-000019
镀膜厚度为40nm;在电子传输层上真空蒸镀Liq作为电子注入层和Al层作为阴极。
对比例4
在本对比例中采用化合物mCP作为有机发光二极管的主体材料,其器件结构以及制备过程的其它条件均同实施例4。
有机发光二极管的电流-亮度-电压特性是由带有校正过的硅光电二极管的Keithley源测量系统(Keithley 2400Sourcemeter、Keithley 2000Currentmeter)完成;电致发光光谱是由Photo research公司PR655光谱仪测量的,所有测量均在室温大气中完成。
根据图2示出的实施例4(曲线a)和对比例4(曲线b)的有机发光二极管的电致发光光谱可以看出,实施例4的和对比例4制备得到的有机发光二极管均能正常发光,且实施例4中的有机发光二极管的发光效率比对比 例4中的有机发光二极管的发光效率高。
对实施例4和对比例4进行了最大亮度、最大电流效率、最大功率效率测试,测试结果如表1所示:
表1
Figure PCTCN2016089861-appb-000020
根据表1的数据可以看出,实施例4的最大亮度、最大电流效率、最大功率效率均高于对比例4,由此可以看出,使用本发明实施例中的化合物作为有机发光二极管的有机发光层的主体材料可以有效的提高有机发光二极管的发光效率,本发明实施例中的化合物适用于有机发光二极管的有机发光层的主体材料。
本发明实施例的有益效果如下:
本发明实施例中的化合物可以作为有机发光层的主体材料,可用于有机电致发光器件中。本发明实施例中的化合物作为主体材料,具有较高的三线态能量,可以提升有机电致发光器件的外部量子效率。作为主体材料其玻璃化温度较高,性能稳定,且其可以使电子和空穴的注入达到平衡,提高有机电致发光器件发光效率。
显然,本领域的技术人员可以对本发明进行各种改动或变型而不脱离本发明的精神和范围。如果这些修改或变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动或变型在内。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。
本申请要求于2016年1月04日递交的中国专利申请第201610006395.5号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (11)

  1. 一种化合物,具有如式I所示的通式:
    Figure PCTCN2016089861-appb-100001
    其中,R基为含有N、O或S原子的取代基。
  2. 如权利要求1所述的化合物,其中,所述R基为下述基团中的一种:
    Figure PCTCN2016089861-appb-100002
  3. 如权利要求2所述的化合物,其中,所述化合物如式I-1所示:
    Figure PCTCN2016089861-appb-100003
  4. 一种化合物的制备方法,该化合物如式I-1所示,该方法包括:
    偶联步骤:式II所示化合物与式III所示化合物进行偶联反应,得到所述式I-1所示化合物;
    Figure PCTCN2016089861-appb-100004
  5. 如权利要求4所述的制备方法,其中,在所述偶联步骤中,用催化 剂进行催化。
  6. 如权利要求5所述的制备方法,其中,所述催化剂包括四三苯基膦钯。
  7. 如权利要求4-6中任一项所述的制备方法,其中,所述式II所示化合物和所述式III所示化合物的摩尔比为1:1.05~1:1.2。
  8. 如权利要求4所述的制备方法,其中,所述式II所示化合物通过式IV所示化合物与式V所示化合物反应得到;
    Figure PCTCN2016089861-appb-100005
  9. 如权利要求8所述的制备方法,其中,所述式IV所示化合物和所述式V所示化合物的摩尔比为1:1.0~1:2.0。
  10. 如权利要求8所述的制备方法,其中,所述式V所示化合物由式VI所示化合物与式VII所示化合物反应得到;
    Figure PCTCN2016089861-appb-100006
  11. 一种有机电致发光器件,包括相对设置的阴极和阳极以及设置在阴极和阳极之间的有机发光层,其中,所述有机发光层的主体材料为如权利要求1-3中任一所述的化合物。
PCT/CN2016/089861 2016-01-04 2016-07-13 化合物及其制备方法、有机电致发光器件 WO2017117960A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/514,201 US20180114922A1 (en) 2016-01-04 2016-07-13 Compound and preparation method thereof, and organic electroluminescent device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610006395.5A CN105440024A (zh) 2016-01-04 2016-01-04 一种化合物及制备方法、有机电致发光器件
CN201610006395.5 2016-01-04

Publications (1)

Publication Number Publication Date
WO2017117960A1 true WO2017117960A1 (zh) 2017-07-13

Family

ID=55550717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/089861 WO2017117960A1 (zh) 2016-01-04 2016-07-13 化合物及其制备方法、有机电致发光器件

Country Status (3)

Country Link
US (1) US20180114922A1 (zh)
CN (1) CN105440024A (zh)
WO (1) WO2017117960A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110734445A (zh) * 2018-07-18 2020-01-31 江苏三月光电科技有限公司 一种以氮杂螺芴为核心的化合物及其应用
CN110734444A (zh) * 2018-07-18 2020-01-31 江苏三月光电科技有限公司 一种以氮杂螺芴为核心的化合物及其应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105754589B (zh) * 2016-04-08 2017-12-12 中节能万润股份有限公司 电子传输材料、其制备方法及包括该电子传输材料的有机电致发光器件
EP3733649A1 (en) * 2019-04-29 2020-11-04 Novaled GmbH Hetero-fluorene derivatives and their use in electronic devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006081973A1 (de) * 2005-02-03 2006-08-10 Merck Patent Gmbh Metallkomplexe
CN102911145A (zh) * 2012-09-20 2013-02-06 苏州大学 一种二苯并杂环连螺双芴化合物及其制备方法以及一种有机电致磷光器件
US20150060808A1 (en) * 2013-08-30 2015-03-05 Samsung Display Co., Ltd. Indenopyridine-based compound and organic light-emitting device including the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100613810B1 (ko) * 2004-12-17 2006-08-17 주식회사 두산 전계 발광 소자용 화합물 및 이를 포함하는 유기 전계발광소자
US20060186797A1 (en) * 2005-02-15 2006-08-24 Tosoh Corporation Pi-conjugated compound having cardo structure, process for preparing same and use of same
US20070116984A1 (en) * 2005-09-21 2007-05-24 Doosan Corporation Spiro-compound for electroluminescent display device and electroluminescent display device comprising the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006081973A1 (de) * 2005-02-03 2006-08-10 Merck Patent Gmbh Metallkomplexe
CN102911145A (zh) * 2012-09-20 2013-02-06 苏州大学 一种二苯并杂环连螺双芴化合物及其制备方法以及一种有机电致磷光器件
US20150060808A1 (en) * 2013-08-30 2015-03-05 Samsung Display Co., Ltd. Indenopyridine-based compound and organic light-emitting device including the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DHARA, S. ET AL.: "Synthesis of azafluorenone via oxidative intramolecular Heck cyclization", TETRAHEDRON LETTERS, vol. 54, no. 1, 26 October 2012 (2012-10-26) - 2 January 2013 (2013-01-02), pages 63 - 65, XP055599616, ISSN: 0040-4039, DOI: 10.1016/j.tetlet.2012.10.085 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110734445A (zh) * 2018-07-18 2020-01-31 江苏三月光电科技有限公司 一种以氮杂螺芴为核心的化合物及其应用
CN110734444A (zh) * 2018-07-18 2020-01-31 江苏三月光电科技有限公司 一种以氮杂螺芴为核心的化合物及其应用
CN110734445B (zh) * 2018-07-18 2022-03-15 江苏三月科技股份有限公司 一种以氮杂螺芴为核心的化合物及其应用

Also Published As

Publication number Publication date
US20180114922A1 (en) 2018-04-26
CN105440024A (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
KR101311934B1 (ko) 유기광전소자용 조성물 및 이를 이용한 유기광전소자
TWI531563B (zh) 有機電致發光元件
CN106467483A (zh) 一种以氧杂蒽酮为核心的五元环取代化合物及其应用
Zhou et al. Efficient solution-processed red organic light-emitting diode based on an electron-donating building block of pyrrolo [3, 2-b] pyrrole
CN104892578B (zh) 芴螺三苯胺衍生物及其用途
CN108250214B (zh) 氧杂螺芴三苯胺衍生物、制备方法及其用途
US20220411452A1 (en) Metal complex and application thereof
WO2017117960A1 (zh) 化合物及其制备方法、有机电致发光器件
CN112079841B (zh) 一种有机化合物、电致发光材料及其应用
JP5481057B2 (ja) 有機電界発光素子
KR101297162B1 (ko) 유기광전소자용 조성물 및 이를 이용한 유기광전소자
Wu et al. Multifunctional luminophores with dual emitting cores: TADF emitters with AIE properties for efficient solution-and evaporation-processed doped and non-doped OLEDs
Ha et al. Phenylpyridine and carbazole based host materials for highly efficient blue TADF OLEDs
KR101599965B1 (ko) 화합물, 이를 포함하는 유기 광전자 소자 및 표시장치
CN103525399B (zh) 双极性磷光主体化合物、制备方法和应用及电致发光器件
KR102615340B1 (ko) 유기 전계 발광 재료, 이의 제조 방법 및 유기 전계 발광 소자
WO2018166096A1 (zh) 一种有机发光器件及其制备方法
WO2020119326A1 (zh) 一种有机电致发光材料及其在光电器件中的应用
WO2020155525A1 (zh) 热激活延迟荧光材料、有机电致发光器件及显示面板
Jiang et al. A bipolar triphenylamine-dibenzothiophene S, S-dioxide hybrid compound for solution-processable single-layer green OLEDs and as a host for red emitters
WO2021088243A1 (zh) 热活化延迟荧光材料及其制备方法
JP6083642B2 (ja) フェニルカルバゾール基置換ジフェニルケトン化合物及びそれを用いた有機エレクトロルミネッセンス素子
KR101879790B1 (ko) 유기 광전자 소자용 화합물 및 이를 포함하는 유기 광전자 소자
WO2020211121A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2020211128A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15514201

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883095

Country of ref document: EP

Kind code of ref document: A1