WO2017117813A1 - 调度方法、数据传输方法及装置 - Google Patents

调度方法、数据传输方法及装置 Download PDF

Info

Publication number
WO2017117813A1
WO2017117813A1 PCT/CN2016/070517 CN2016070517W WO2017117813A1 WO 2017117813 A1 WO2017117813 A1 WO 2017117813A1 CN 2016070517 W CN2016070517 W CN 2016070517W WO 2017117813 A1 WO2017117813 A1 WO 2017117813A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame format
mode frame
uplink
duration
subframe
Prior art date
Application number
PCT/CN2016/070517
Other languages
English (en)
French (fr)
Inventor
夏金环
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16882958.8A priority Critical patent/EP3399816B1/en
Priority to KR1020187022540A priority patent/KR102145255B1/ko
Priority to CN201911273935.6A priority patent/CN111107656B/zh
Priority to PCT/CN2016/070517 priority patent/WO2017117813A1/zh
Priority to JP2018535346A priority patent/JP7118003B2/ja
Priority to CN201680039717.4A priority patent/CN107736068B/zh
Publication of WO2017117813A1 publication Critical patent/WO2017117813A1/zh
Priority to US16/029,022 priority patent/US10631326B2/en
Priority to US16/828,617 priority patent/US11330616B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a scheduling method, a data transmission method, and an apparatus.
  • the user equipment UE detects the downlink control information DCI in the downlink subframe, where the DCI includes scheduling information of the UE transmitting the physical uplink shared channel (PUSCH) and scheduling information of the UE receiving the physical downlink shared channel (PDSCH), for example, in the frequency domain.
  • the PUSCH channel mainly carries the uplink data sent by the terminal, and is transmitted in a single carrier frequency division multiple access SC-FDMA format.
  • the minimum scheduling granularity in the frequency domain is one physical resource block PRB, and one PRB is included in the frequency domain. 12 orthogonal subcarriers, wherein the interval between subcarriers is 15 kHz, therefore, 1 PRB contains a frequency resource of 180 kHz.
  • the uplink supports a single subcarrier spacing of 3.75 kHz.
  • the second type of terminal or the first type of terminal has the capability of supporting a single subcarrier SC of orthogonal subcarrier spacing of 15 kHz.
  • the third type of terminal or the first type of terminal has the capability of: uplink support for transmission of multiple subcarriers SC-FDMA with orthogonal subcarrier spacing of 15 kHz.
  • These three types of terminal downlinks support orthogonal frequency division multiple access OFDMA technology, and the subcarrier spacing is 15 kHz.
  • the minimum scheduling granularity of the LTE system is 1 PRB, and the scheduling of a single subcarrier or multiple subcarrier granularity is not supported, these three types of terminals cannot be supported in the existing LTE system.
  • a signal of a single subcarrier or subchannel of 3.75 kHz is transmitted, and the length of the signal in the time domain is at least four times the length of a signal corresponding to a single subcarrier transmitting a 15 kHz, and LTE
  • the frame structure of the system is in accordance with the 15 kHz subcarrier.
  • the wave spacing is designed so that the first type of terminal is not supported. Therefore, there is a need for a scheduling method, data transmission method and apparatus.
  • the embodiments of the present invention provide a scheduling method, a data processing method, and an apparatus, which solve the problem that the existing LTE system does not support the newly emerged three types of terminals.
  • a scheduling method for use in a communication system, the method comprising:
  • the base station sends the downlink control information DCI to the first type of terminal, where the DCI includes scheduling information when the first type of terminal sends the uplink data by using the first mode frame format.
  • the first mode frame format includes at least one uplink subframe, and each uplink subframe includes at least one first mode frame format symbol;
  • the duration of the first mode frame format symbol is at least four times the duration of the second mode frame format symbol
  • the second mode frame format symbol is an LTE system single carrier frequency division multiple access SC-FDMA symbol.
  • each uplink subframe has a duration of 1 millisecond and contains 14 SC-FDMA symbols, so each SC-FDMA symbol of the LTE system includes a normal cyclic prefix and averages
  • the duration is 1/14 milliseconds. It is worth noting that the duration of SC-FDMA symbols included in each uplink subframe in the LTE system may be different.
  • each uplink subframe has a duration of 1 millisecond and contains 12 SC-FDMA symbols and the duration of each SC-FDMA symbol is the same, so each SC-FDMA symbol of the LTE system includes The cyclic prefix is extended and has a duration of 1/12 milliseconds.
  • the duration of each symbol is 66.7 microseconds.
  • the uplink data is carried on a physical uplink shared channel PUSCH or on a physical channel that is configured to be used by the first type of terminal to transmit uplink data.
  • the method further includes:
  • the base station sends the downlink control information DCI to the second type terminal or the third type terminal, where the DCI includes scheduling information when the second type terminal or the third type terminal sends the uplink data in the second mode frame format.
  • the second mode frame format includes a frame structure type 1 suitable for an FDD system, and a frame structure type 2 applicable to a TDD system, where each radio frame in the second mode frame format includes 10 subframes, each sub-frame The length of the frame is 1 millisecond, and the subcarrier spacing in the physical resource information corresponding to the second mode frame format is 15 kHz.
  • the downlink control information DCI includes scheduling information for instructing the terminal to send uplink data, where at least the number of subcarriers used in the frequency domain, the modulation coding mode or modulation mode used, and the number of bits included in the transport block of the bearer are included.
  • scheduling information for instructing the terminal to send uplink data where at least the number of subcarriers used in the frequency domain, the modulation coding mode or modulation mode used, and the number of bits included in the transport block of the bearer are included.
  • the number of subcarriers used in the frequency domain the modulation coding mode or modulation mode used, and the number of bits included in the transport block of the bearer are included.
  • the first mode frame format symbol may be an SC-FDMA symbol; when the uplink uses FDMA frequency division multiple access, the first mode frame format symbol may be The FDMA symbol is not specifically limited in this embodiment of the present invention.
  • the first mode frame format symbol may be a symbol after adding a cyclic prefix CP, or may be a symbol without a CP added; the second mode frame format symbol may be a symbol after adding a cyclic prefix CP, or may not add a CP. symbol.
  • the second mode frame format includes a frame structure suitable for the FDD system.
  • the second mode frame format includes a frame structure type suitable for the FDD system.
  • the length of one radio frame in the frame structure type 1 is 10 milliseconds, and one radio frame is composed of 20 slots.
  • Each time slot is 0.5 milliseconds, and two time slots are 1 subframe. That is, the frame structure type 1 includes 10 subframes, each subframe has a length of 1 millisecond, and when a normal CP is used, each subframe includes 14 OFDM symbols or SC-FDMA symbols, when an extended CP is used, each subframe contains 12 OFDM symbols or SC-FDMA symbols.
  • the second frame frame format includes two frame structure types suitable for the TDD system, as shown in FIG.
  • the second mode frame format includes a radio frame of 10 milliseconds long, and is composed of two half frames of length 5 milliseconds, each half frame consisting of five 1 millisecond subframes, including a downlink subframe and a special subframe.
  • the uplink subframe, the special subframe includes a downlink pilot time slot DwPTS, an uplink pilot time slot UpPTS, and a guard interval GP.
  • the special subframe is in two fields. All exist in the following.
  • each subframe contains 14 OFDM symbols or SC-FDMA.
  • Symbol when an extended CP is used, each subframe contains 12 OFDM symbols or SC-FDMA symbols.
  • the scheduling information includes using the first
  • the mode frame format sends the physical resource information used by the uplink data, where the physical resource information includes a time resource and a frequency resource, where the time resource includes at least one uplink subframe, and the frequency resource includes one subcarrier;
  • the scheduling information includes physical resource information used for transmitting uplink data by using a second mode frame format, where the physical resource information includes a time resource and a frequency resource, where The time resource includes at least one uplink subframe, and the frequency resource includes one subcarrier or multiple subcarriers, and at most 12 subcarriers.
  • the frequency resource includes one subcarrier; when the terminal is a second type of terminal, the frequency resource includes one subcarrier or multiple subcarriers, and at most 12 subcarriers.
  • a data transmission method comprising:
  • the terminal sends the uplink control information or the random access information to the base station, where the terminal is the first type of terminal, and the frame format used for sending the uplink control information or the random access information is the first mode frame format;
  • the first mode frame format includes at least one uplink subframe, and each uplink subframe includes at least one first mode frame format symbol;
  • the duration of the first mode frame format symbol is at least four times the duration of the second mode frame format symbol
  • the second mode frame format symbol is an LTE system single carrier frequency division multiple access SC-FDMA symbol.
  • the uplink control information UCI includes an ACK or a NACK for confirming whether the terminal is correctly connected.
  • the uplink control information is carried on a physical uplink control channel (PUCCH) or on a physical channel that is configured to be used by the first type of terminal to send uplink control information.
  • the random access information includes a random access preamble, which is carried on a physical random access channel (PRACH) or carried on a physical channel that is configured for a first type of terminal and transmits uplink random access information.
  • PRACH physical random access channel
  • the first mode frame format is preset, for example, the specific one or several carrier frequencies used by the system are corresponding to the first mode frame format, or a specific downlink synchronization signal sequence or a specific transmission downlink synchronization.
  • the format of the signal that is, the specific time and/or the frequency resource location of the mapping, corresponds to the use of the first mode frame format, or the downlink system information includes or the format of the specific downlink system information to be transmitted, that is, the specific time and/or the frequency resource location of the mapping.
  • the terminal may directly send the uplink control information or the random access information in the first frame format to the base station according to the foregoing specific correspondence or the indication information of the downlink system information.
  • the method when the terminal sends the uplink control information to the base station, before the terminal sends the uplink control information to the base station, the method further includes:
  • the terminal receives the downlink control information DCI sent by the base station, where the DCI includes scheduling information used when the first type of terminal sends the uplink data in the first mode frame format.
  • the frame format used by the uplink control information or the random access information is sent.
  • the second mode frame format includes a frame structure type 1 suitable for an FDD system, and a frame structure type 2 applicable to a TDD system
  • the second mode frame format includes 10 subframes, each sub-frame The length of the frame is 1 millisecond, and the subcarrier spacing in the physical resource information corresponding to the second mode frame format is 15 kHz.
  • the method further includes:
  • the terminal receives downlink control information DCI sent by the base station, where the DCI is used to refer to The scheduling information when the second type terminal or the third type terminal sends the uplink data in the second mode frame format is used.
  • the scheduling information includes using the first
  • the mode frame format sends the physical resource information used by the uplink data, where the physical resource information includes a time resource and a frequency resource, where the time resource includes at least one uplink subframe, and the frequency resource includes one subcarrier;
  • the scheduling information includes physical resource information used for transmitting uplink data by using a second mode frame format, where the physical resource information includes a time resource and a frequency resource, where The time resource includes at least one uplink subframe, and the frequency resource includes one subcarrier or multiple subcarriers, and at most 12 subcarriers.
  • the frequency resource includes one subcarrier; when the terminal is a second type of terminal, the frequency resource includes one subcarrier or multiple subcarriers, and at most 12 subcarriers.
  • the uplink subframe duration is 1 millisecond
  • the uplink subframe includes 3 first mode frame format symbols, and the duration of the 3 first mode frame format symbols is equal to the duration of 12 second mode frame format symbols and less than 1 millisecond; the duration of the second mode frame format symbol
  • the time is the duration of the normal cyclic prefix for each SC-FDMA symbol.
  • the uplink subframe duration is 1 millisecond
  • the uplink subframe includes three first mode frame format symbols
  • the The duration of the first mode frame format symbols is equal to the duration of the 12 second mode frame format symbols and is equal to 1 millisecond
  • the duration of the second mode frame format symbols is such that each SC-FDMA symbol includes an extended cyclic prefix duration.
  • the uplink subframe When the uplink subframe duration in the first mode frame format is 2 milliseconds, and the communication system uses a normal CP for the uplink, the uplink subframe includes seven first mode frame format symbols, And the duration of the seven first mode frame format symbols is equal to the duration of 28 second mode frame format symbols and equal to 2 milliseconds, and the duration of the second mode frame format symbols is included for each SC-FDMA symbol The duration of the normal cyclic prefix;
  • the uplink subframe When the uplink subframe duration in the first mode frame format is 2 milliseconds, and the communication system uses an extended CP for the uplink, the uplink subframe includes 6 first mode frame format symbols, and the 6 The duration of the first mode frame format symbols is equal to the duration of the 24 second mode frame format symbols and is equal to 2 milliseconds, and the duration of the second mode frame format symbols is such that each SC-FDMA symbol includes an extended cyclic prefix duration.
  • the first mode frame format further includes at least one special subframe and at least one downlink subframe, where the special subframe includes a downlink pilot time slot DwPTS, At least one of an uplink pilot time slot UpPTS and a guard interval GP.
  • the special subframe includes a downlink pilot time slot DwPTS, At least one of an uplink pilot time slot UpPTS and a guard interval GP.
  • each uplink subframe includes at least one first mode frame format symbol, and each special subframe has a time length of 1 millisecond;
  • the uplink subframe includes three first mode frame format symbols, and the three first mode frame format symbols
  • the duration is equal to a duration of 12 second mode frame format symbols and less than 1 millisecond, the duration of the second mode frame format symbols being a duration of each SC-FDMA symbol comprising a normal cyclic prefix;
  • the uplink subframe When the communication system uses an extended CP in the uplink, and the uplink subframe duration is 1 millisecond, the uplink subframe includes three first mode frame format symbols, and the three first mode frame format symbols The duration is equal to the duration of the 12 second mode frame format symbols and is equal to 1 millisecond, the duration of the second mode frame format symbols being the duration of each SC-FDMA symbol containing the extended cyclic prefix.
  • the switching point of the downlink mode to the uplink in the first mode frame format is a period of 5 milliseconds, and includes one downlink subframe and one time in a length of 5 milliseconds. a special subframe and at least one uplink subframe, where each uplink subframe includes at least one first mode frame format symbol, and the length of each special subframe is 1 millisecond;
  • the uplink subframe duration is 2 milliseconds
  • the uplink subframe includes 7 first mode frame format symbols, and the 7 first mode frame format symbols
  • the duration is equal to the duration of the 28 second mode frame format symbols and is equal to 2 milliseconds
  • the duration of the second mode frame format symbol is a duration in which each SC-FDMA symbol includes a normal cyclic prefix
  • the uplink subframe includes six first mode frame format symbols, and the six first mode frame format symbols
  • the duration is equal to the duration of the 24 second mode frame format symbols and is equal to 2 milliseconds, the duration of the second mode frame format symbols being the duration of each SC-FDMA symbol containing the extended cyclic prefix.
  • the switching point of the downlink mode to the uplink in the first mode frame format is a period of 5 milliseconds, and includes one downlink subframe and one time in a length of 5 milliseconds. a special subframe and at least one uplink subframe, where each uplink subframe includes at least one first mode frame format symbol, and the length of each special subframe is 1 millisecond;
  • the uplink subframe includes 10 first mode frame format symbols, and the 10 first mode frame format symbols
  • the duration is equal to the duration of 40 second mode frame format symbols and less than 3 milliseconds, the duration of the second mode frame format symbols being the duration of each SC-FDMA symbol containing a normal cyclic prefix;
  • the uplink subframe includes nine first mode frame format symbols, and the nine first mode frame format symbols
  • the duration is equal to the duration of the 36 second mode frame format symbols and is equal to 3 milliseconds, the duration of the second mode frame format symbols being the duration of each SC-FDMA symbol containing the extended cyclic prefix.
  • the switching point of the downlink mode to the uplink in the first mode frame format is a period of 5 milliseconds, and includes one downlink subframe, one special subframe, and a length of 5 milliseconds.
  • At least one uplink subframe each uplink subframe includes at least one first mode frame format symbol.
  • each special subframe includes at least DwPTS and GP.
  • One, and the lengths of the DwPTS and the GP are the same as the lengths of the DwPTS and the GP in the special subframe in the second type of frame structure type in the LTE system, and vary according to the configuration of the special subframe, and the total duration of the DwPTS and the GP Less than 1 millisecond.
  • each downlink subframe is 14 orthogonal OFDM symbols; when the communication system uses the extended CP
  • the length of each downlink subframe is the length of 12 orthogonal frequency division multiplexing OFDM symbols.
  • the communication system adopts a normal CP in the uplink
  • the DwPTS and the GP included in the special subframe meet the special subframe configuration in Table 2 as 5, 6, 7, 8, or 9
  • the uplink subframe duration is T1 +3 milliseconds
  • the uplink subframe includes 11 first mode frame format symbols
  • the duration of the 11 first mode frame format symbols is equal to the duration of 44 second mode frame format symbols and is equal to T1 + 3 milliseconds.
  • T1 is 1 millisecond - DwPTS occupation time - GP occupation time, wherein the DwPTS occupation time and the GP occupation time are in milliseconds, and the duration of the second mode frame format symbol is the duration in which each SC-FDMA symbol contains a normal cyclic prefix.
  • the uplink subframe duration is T2+1 milliseconds
  • the uplink subframe includes 4 first mode frame format symbols
  • the durations of the 4 first mode frame format symbols are equal to the duration of 16 second mode frame format symbols and equal to T2+1 milliseconds
  • T2 is 1 millisecond - DwPTS occupation time - GP occupation time, wherein the DwPTS occupation time and the GP occupation time are in milliseconds
  • the duration of the second mode frame format symbol is the duration of each SC-FDMA symbol including the ordinary cyclic prefix .
  • the switching point of the downlink mode to the uplink in the first mode frame format is a period of 10 milliseconds, and includes one downlink subframe and one special subframe in the first 5 milliseconds. And at least one uplink subframe, only the downlink subframe is included in the length of the last 5 milliseconds, and each downlink subframe has a duration of 1 millisecond.
  • Each of the uplink subframes includes at least one first mode frame format symbol, if each special subframe includes at least one of the DwPTS and the GP, and the length of the DwPTS and the GP and the second type of the frame structure type in the LTE system. The lengths of the DwPTS and the GP in the special subframe are respectively the same, and the total duration of the DwPTS and the GP is less than 1 millisecond.
  • each downlink subframe is 14 orthogonal OFDM symbols; when the downlink of the communication system uses the extended CP, each downlink subframe The length is the length of 12 orthogonal frequency division multiplexed OFDM symbols.
  • the uplink subframe includes 10 first mode frame format symbols, and 10 first mode frames.
  • the duration of the format symbol is equal to the duration of the 40 second mode frame format symbols and is less than 3 milliseconds, and the duration of the second mode frame format symbol is each
  • the SC-FDMA symbol contains the duration of the normal cyclic prefix; when the special subframe contains the DwPTS and the GP meets the configuration of the special subframe in Table 2 as 5, 6, 7, 8, or 9, if the length of the first 5 milliseconds
  • the intra-uplink subframe duration is T1+3 milliseconds, and the uplink subframe includes 11 first mode frame format symbols, and the duration of the 11 first mode frame format symbols is equal to the duration of 44 second mode frame format symbols.
  • Time is equal to T1+3 milliseconds
  • T1 is 1 millisecond-DwPTS occupation time-GP occupation time, where DwPTS occupation time and GP occupation time are in milliseconds
  • the duration of the second mode frame format symbol is each SC-FDMA symbol Contains the duration of a normal cyclic prefix.
  • the downlink sub-frame is only included in the downlink sub-frame, and the downlink sub-frame is consistent with the downlink sub-frame in the second mode frame format, and is not described herein again.
  • the uplink subframe includes 9 first mode frame format symbols, and 9 first mode frame format symbols
  • the duration is equal to the duration of the 36 second mode frame format symbols and is equal to 3 milliseconds, the duration of the second mode frame format symbols being the duration of each SC-FDMA symbol containing the extended cyclic prefix.
  • the downlink sub-frame is only included in the downlink sub-frame, and the downlink sub-frame is consistent with the downlink sub-frame in the second mode frame format, and is not described herein again.
  • the uplink subframe duration is 2 milliseconds in the first 5 milliseconds
  • the uplink subframe includes 7 first mode frame format symbols, and the 7 first mode frames.
  • the duration of the format symbol is equal to the duration of the 28 second mode frame format symbols and is less than 2 milliseconds.
  • the duration of the second mode frame format symbol is the duration of each SC-FDMA symbol containing the normal cyclic prefix; the last 5 milliseconds
  • the downlink subframe is only included in the downlink subframe, and the downlink subframe is consistent with the downlink subframe in the second mode frame format.
  • the uplink subframe duration is 2 milliseconds in the first 5 milliseconds
  • the uplink subframe includes 6 first mode frame format symbols
  • the 6 first mode frame format symbols continue.
  • the time is equal to the duration of the 24 second mode frame format symbols and is equal to 2 milliseconds.
  • the duration of the second mode frame format symbols is the duration of each SC-FDMA symbol containing the extended cyclic prefix; only the duration of the last 5 milliseconds
  • the downlink subframe is included, and the downlink subframe is consistent with the downlink subframe of the second mode frame format, and details are not described herein again.
  • the uplink subframe duration is 1 millisecond in the first 5 milliseconds
  • the uplink subframe includes three first mode frame format symbols, and the three The duration of a mode frame format symbol is equal to 12 second mode frame format symbols The duration is less than 1 millisecond; when the special subframe contains the DwPTS and the GP meets the configuration of the special subframe in Table 2 as 5, 6, 7, 8, or 9, if the uplink subframe continues for the first 5 milliseconds
  • the time is T2+1 milliseconds, and the uplink subframe includes four first mode frame format symbols, and the durations of the four first mode frame format symbols are equal to the duration of the 16 second mode frame format symbols and are equal to T2+.
  • T2 is 1 millisecond - DwPTS occupation time - GP occupation time, where DwPTS occupation time and GP occupation time are in milliseconds, and the duration of the second mode frame format symbol is that each SC-FDMA symbol contains a normal cyclic prefix duration.
  • the downlink sub-frame is only included in the downlink sub-frame, and the downlink sub-frame is consistent with the downlink sub-frame in the second mode frame format, and is not described herein again.
  • the uplink subframe When the communication system uses the extended CP in the uplink, if the uplink subframe duration is 1 millisecond in the first 5 milliseconds, the uplink subframe includes three first mode frame format symbols, and the three first mode frame formats The duration of the symbol is equal to the duration of the 12 second mode frame format symbols and is equal to 1 millisecond, the duration of the second mode frame format symbol being the duration of each SC-FDMA symbol containing the extended cyclic prefix.
  • the downlink sub-frame is only included in the downlink sub-frame, and the downlink sub-frame is consistent with the downlink sub-frame in the second mode frame format, and is not described herein again.
  • the switching point of the downlink mode to the uplink in the first mode frame format is a period of 5 milliseconds, and the length included in the length of the previous 5 milliseconds and the length of the next 5 milliseconds
  • the durations of the uplink subframes are different, and each of the 5 milliseconds includes a downlink subframe, a special subframe, and at least one uplink subframe, and each uplink subframe includes at least one first mode frame.
  • the format symbol, the length of each special subframe is less than or equal to 1 millisecond.
  • each downlink subframe is 14 orthogonal OFDM symbols; when the downlink of the communication system is extended CP, the length of each downlink subframe is 12 positive.
  • the length of the frequency division multiplexing OFDM symbol is 14 orthogonal OFDM symbols; when the downlink of the communication system is extended CP, the length of each downlink subframe is 12 positive. The length of the frequency division multiplexing OFDM symbol.
  • the uplink subframe includes 10 first mode frame format symbols, and 10 firsts, if the communication system uses an ordinary CP in the uplink, if the duration of the uplink subframe included in the previous 5 milliseconds is 3 milliseconds.
  • the duration of the mode frame format symbol is equal to the duration of the 40 second mode frame format symbols and is less than 3 milliseconds, and the duration of the second mode frame format symbol is the duration of each SC-FDMA symbol containing the normal cyclic prefix; If the DwPTS and GP included in the subframe meet the configuration of the special subframe in Table 2 as 5, 6, 7, 8, or 9, if the duration of the uplink subframe included in the previous 5 milliseconds is T1 + 3 milliseconds, then Uplink subframe Containing 11 first mode frame format symbols, and the duration of the 11 first mode frame format symbols is equal to the duration of 44 second mode frame format symbols and equal to 3 milliseconds, and the duration of the second mode frame format symbols is
  • the SC-FDMA symbols contain the duration of
  • the uplink subframe includes 7 first mode frame format symbols, and the durations of the 7 first mode frame format symbols are equal to 28 seconds.
  • the duration of the mode frame format symbol is equal to 2 milliseconds, and the duration of the second mode frame format symbol is the duration each normal SC-FDMA symbol contains a normal cyclic prefix.
  • the uplink subframe when the communication system uses the extended CP in the uplink, if the duration of the uplink subframe included in the previous 5 milliseconds is 3 milliseconds, the uplink subframe includes 9 first mode frame format symbols, and 9 first The duration of the mode frame format symbols is equal to the duration of the 36 second mode frame format symbols and is equal to 3 milliseconds, the duration of the second mode frame format symbols being the duration of each SC-FDMA symbol containing the extended cyclic prefix. If the duration of the uplink subframe included in the last 5 milliseconds is 2 milliseconds, the uplink subframe includes six first mode frame format symbols, and the durations of the six first mode frame format symbols are equal to 24 second. The duration of the mode frame format symbol is equal to 2 milliseconds, and the duration of the second mode frame format symbol is the duration of each SC-FDMA symbol containing the extended cyclic prefix.
  • the uplink demodulation reference signal is sent on at least one first mode frame format symbol in the at least one uplink subframe.
  • the 1 millisecond is The uplink signal and the channel are not transmitted on the last first mode frame format symbol in the length of time.
  • the first mode frame format symbol is a symbol including a normal CP
  • the second mode frame format symbol is a common CP.
  • An SC-FDMA symbol when the first mode frame format symbol is a symbol including an extended CP, the second mode frame format symbol is an SC-FDMA symbol including an extended CP; when the first mode frame format symbol is When the symbol of the CP is not included, the second mode frame format symbol is an SC-FDMA symbol that does not include a CP.
  • the second mode frame format includes a frame structure type 2 applicable to the TDD system, where the frame structure type 2 includes one special subframe, multiple downlink subframes, and multiple uplink subframes, and the The duration of one special subframe, each downlink subframe, and each uplink subframe is 1 millisecond.
  • the special subframe includes a downlink pilot time slot DwPTS, an uplink pilot time slot UpPTS, and a guard interval GP.
  • the first mode frame format includes an UpPTS
  • the length of the UpPTS in the first mode frame format is less than or equal to the length of the UpPTS in the frame structure type 2, where the first mode frame format is included
  • the uplink signal and channel are not transmitted on the UpPTS.
  • the first mode frame format symbol corresponding to the duration of the unavailable uplink subframe in the first mode frame format is not Sending an uplink signal and a channel
  • the unavailable uplink subframe is one or more uplink subframes
  • each uplink subframe duration is 1 millisecond
  • the unavailable uplink subframe refers to being in an unavailable uplink subframe.
  • All or part of the frequency resources are reserved resources, and the reserved resources are used for communication between a special terminal or a terminal supported by a special communication system and a base station or a terminal, and a terminal supported by a non-special terminal or a non-special communication system.
  • the reserved resources cannot be used.
  • all or part of the frequency resources in the uplink subframe that are not available in the LTE system are reserved resources and used for communication of the special system between the device and the device.
  • the reserved LTE terminal cannot use the reserved resource on the unavailable uplink subframe.
  • the first type of terminal obtains the information of the unavailable uplink subframe by receiving the system information, including which uplink subframes are unavailable uplink subframes, or further includes which frequency domain resources in the unavailable uplink subframe are reserved resources.
  • a base station in a third aspect, includes: a processor, a memory, a system bus, and a communication interface;
  • the memory is configured to store a computer to execute instructions
  • the processor is coupled to the memory via the system bus, and when the base station is in operation, the processor executes the computer-executed instructions stored in the memory to enable The base station performs the scheduling method of any one of the first aspect to the second possible implementation of the first aspect.
  • a fourth aspect provides a terminal, where the terminal includes: a processor, a memory, a system bus, and a communication interface;
  • the memory is configured to store a computer to execute instructions
  • the processor is coupled to the memory via the system bus, and when the base station is in operation, the processor executes the computer-executed instructions stored in the memory to enable
  • the terminal performs the data transmission method according to any one of the second aspect to the fourth possible implementation of the second aspect.
  • the base station sends the downlink control information DCI to the first type of terminal, where the DCI includes the scheduling when the first type of terminal sends the uplink data in the first mode frame format.
  • the first mode frame format includes at least one uplink subframe
  • each uplink subframe includes at least one first mode frame format symbol
  • the duration of the first mode frame format symbol is at least a second mode frame format 4 times the symbol duration
  • the second mode frame format symbol is an LTE system SC-FDMA symbol
  • the downlink control information DCI is sent to the second type terminal or the third type terminal, and the DCI is included to indicate the second type terminal or the third
  • the scheduling information when the terminal terminal transmits the uplink data in the second mode frame format so that the base station in the LTE system can support the existing LTE terminal, and also supports the newly emerged first type terminal and the first in the FDD and TDD systems.
  • the second type terminal and the third type terminal save time resources and frequency resources, and also improve the utilization rate of the communication system and the base station.
  • FIG. 1 is a system architecture diagram of a communication system according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a scheduling method according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a second mode frame structure according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a first first mode frame structure according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a second first mode frame structure according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a third first mode frame structure according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a fourth first mode frame structure according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart diagram of another scheduling method according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another second mode frame structure according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a fifth first mode frame structure according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a sixth first mode frame structure according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a seventh first mode frame structure according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of an eighth first mode frame structure according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a ninth first mode frame structure according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a tenth first mode frame structure according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of a first first mode frame structure according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of a twelfth first mode frame structure according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram of a thirteenth first mode frame structure according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic structural diagram of a fourteenth first mode frame structure according to an embodiment of the present disclosure.
  • FIG. 20 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 21 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • the types of user terminals in the embodiments of the present invention mainly include existing LTE terminals and newly appearing terminals.
  • the existing LTE terminal supports the transmission of the orthogonal subcarrier SC-FDMA with the subcarrier spacing of 15 kHz.
  • the minimum scheduling granularity is 1 PRB, including 12 orthogonal subcarriers, that is, 180 kHz, and does not support a single subcarrier or Scheduling of multiple subcarrier granularities.
  • the emerging terminal mainly includes three types, the first type of terminal, and the uplink supports the single subcarrier SC-FDMA transmission with the orthogonal subcarrier spacing of 3.75 kHz or the FDMA transmission of the single subchannel with the subchannel bandwidth of 3.75 kHz; the second type of terminal The uplink supports single subcarrier SC-FDMA transmission with orthogonal subcarrier spacing of 15 kHz; the third type of terminal: uplink supports transmission of multiple subcarrier SC-FDMA with orthogonal subcarrier spacing of 15 kHz.
  • the three types of terminals may also be a kind of terminal, and the terminal has the functions of one or two or both of the foregoing types of terminals, and the downlink of the three types of terminals all support orthogonal frequency division multiple access OFDMA.
  • Technology, and the subcarrier spacing is 15 kHz.
  • the above three types of terminals may be three different terminal types, or they may be just one terminal type but have One or two or three different terminal capabilities are collectively referred to as three types of terminals for convenience of description, and the terminal type and terminal capability are not specifically limited in the present invention.
  • these three types of terminals are mainly used for IoT communication, so the system supporting these three types of newly emerging terminals can be called a narrowband IoT NBIOT system.
  • the application scenarios in the embodiments of the present invention may be roughly classified into three scenarios according to different frequency resources used.
  • the first scenario that is, the independent deployment scenario, the dedicated frequency resource networking supports the new three types of terminals, and the used frequency resources may be located in a frequency band recovered or reused from the GSM system, or located in a 3G system or an LTE system.
  • the band resources used In an independent deployment scenario, only one or more of the new three terminal types are supported in the system, and no other types of LTE terminals exist.
  • the frequency resources used by the system are located in the protection band of the frequency band used by the LTE system.
  • the third scenario that is, the in-band deployment scenario, uses the frequency resource in a standard carrier of the LTE system, such as a bandwidth of 10 MHz or 20 MHz, that is, a standard carrier of the LTE system supports both the common LTE terminal and the new three.
  • a standard carrier of the LTE system such as a bandwidth of 10 MHz or 20 MHz
  • the maximum transmission power that the NBIOT system can use for transmitting the downlink channel in the third scenario may be smaller.
  • the system architecture of the communication system to which the embodiments of the present invention are applied is as shown in FIG. 1.
  • the system architecture diagram includes a base station 101, a user terminal 102, and a communication channel 103.
  • the base station 101 has a scheduling function of a shared channel, and has a history based on the history of packet data sent to the user terminal 102.
  • the scheduling is that when a plurality of user terminals 102 share transmission resources, a mechanism is needed to effectively allocate the physical layer. Resources to obtain statistical multiplexing gain.
  • the user terminal 102 may be a plurality of user terminals, and the user terminal 102 has a function of transmitting and receiving data through a communication channel 103 established with the base station 101.
  • the user terminal 102 performs transmission or reception processing of the shared channel based on the information transmitted through the scheduling control channel.
  • the user terminal 102 may be a mobile station, a mobile phone, a computer, a portable terminal, or the like, and the types of the user terminals 102 may be the same or different.
  • the base station 101 and the user terminal 102 perform data reception and transmission through the communication channel 103.
  • the communication channel 103 may be a wireless communication channel, and in the wireless communication channel, at least a shared channel and a scheduling control channel exist, and the shared channel is for transmitting. And receiving packets in multiple uses
  • the terminal terminals 102 are common to each other, and the scheduling control channel is used to transmit the allocation of the shared channel, the corresponding scheduling result, and the like.
  • FIG. 2 is a schematic flowchart of a scheduling method according to an embodiment of the present invention. The method is applied to a communication system. Referring to FIG. 2, the method includes the following steps.
  • Step 201 The base station sends downlink control information DCI to the first type of terminal, where the DCI includes scheduling information used to indicate that the first type of terminal uses the first mode frame format to send uplink data.
  • the first mode frame format includes at least one uplink subframe, each uplink subframe includes at least one first mode frame format symbol, and the duration of the first mode frame format symbol is at least a second mode frame format symbol duration. 4 times, the second mode frame format symbol is an LTE system single carrier frequency division multiple access SC-FDMA symbol.
  • the first mode frame format symbol may be an SC-FDMA symbol; when the uplink uses FDMA frequency division multiple access, the first mode frame format symbol may be The FDMA symbol is not specifically limited in this embodiment of the present invention.
  • the first mode frame format symbol may be a symbol after adding a cyclic prefix CP, or may be a symbol without a CP added; the second mode frame format symbol may be a symbol after adding a cyclic prefix CP, or may not add a CP. symbol.
  • each uplink subframe has a duration of 1 millisecond and contains 14 SC-FDMA symbols, so each SC-FDMA symbol of the LTE system includes a normal cyclic prefix and averages
  • the duration is 1/14 milliseconds. It is worth noting that the duration of SC-FDMA symbols included in each uplink subframe in the LTE system may be different.
  • each uplink subframe has a duration of 1 millisecond and contains 12 SC-FDMA symbols and the duration of each SC-FDMA symbol is the same, so each SC-FDMA symbol of the LTE system includes The cyclic prefix is extended and has a duration of 1/12 milliseconds.
  • the duration of each symbol is 66.7 microseconds.
  • the uplink data may be carried on the physical uplink shared channel PUSCH or on the physical channel for transmitting uplink data defined for the first type of terminal.
  • the second mode frame format includes a frame structure suitable for the FDD system.
  • the second mode frame format includes a frame structure type suitable for the FDD system.
  • the length of one radio frame in the frame structure type 1 is 10 milliseconds, and one radio frame is composed of 20 slots.
  • Each time slot is 0.5 milliseconds, and two time slots are 1 subframe. That is, the frame structure type 1 includes 10 subframes, each subframe has a length of 1 millisecond, and when a normal CP is used, each subframe includes 14 OFDM symbols or SC-FDMA symbols, when an extended CP is used, each subframe contains 12 OFDM symbols or SC-FDMA symbols.
  • the corresponding first mode frame format under the FDD system is as follows.
  • the uplink subframe includes three first mode frame formats.
  • the duration of the three first mode frame format symbols is equal to the duration of the twelve second mode frame format symbols and less than 1 millisecond, where M1 represents the first mode frame format, and the value 0-2 in M1 represents The number of the first mode frame format symbol, M2 represents the second mode frame format, the value 0-6 in M2 represents the number of the second mode frame format symbol, U represents the uplink subframe, and the duration of the second mode frame format symbol is Each SC-FDMA symbol contains the duration of a normal CP.
  • the uplink subframe when the communication system is FDD and the uplink uses an extended CP, if the uplink subframe duration is 1 millisecond, the uplink subframe includes three first mode frame format symbols, and three first mode frames.
  • the duration of the format symbol is equal to the duration of the 12 second mode frame format symbols and is equal to 1 millisecond, the duration of the second mode frame format symbol being the duration of each SC-FDMA symbol containing the extended CP.
  • the uplink subframe duration in the first mode frame format is 2 milliseconds
  • the uplink subframe includes seven first mode frame format symbols, and the duration of the seven first mode frame format symbols is equal to the duration of 28 second mode frame format symbols and is equal to 2 millisecond. That is, when the communication system adopts a normal CP for uplink, the duration of the 7 first mode frame format symbols is equal to the duration of 28 second mode frame format symbols, and the duration of the second mode frame format symbols is The SC-FDMA symbols contain the duration of the normal CP.
  • the uplink subframe when the uplink subframe duration in the first mode frame format is 2 milliseconds, and the communication system uses the extended CP for the uplink, the uplink subframe includes six first mode frame format symbols, and the six The duration of the first mode frame format symbol is equal to the duration of the 24 second mode frame format symbols and is equal to 2 milliseconds. That is, when the communication system adopts the extended CP for the uplink, the duration of the six first mode frame format symbols is equal to the duration of the 24 second mode frame format symbols, and the duration of the second mode frame format symbols is The SC-FDMA symbols contain the duration of the extended CP.
  • the uplink demodulation reference signal is sent on at least one first mode frame format symbol of the at least one uplink subframe included in the first mode frame format, where the uplink demodulation reference signal is used to help demodulate the uplink data or Uplink control information.
  • the uplink demodulation reference signal may be in the at least one first mode frame format symbol.
  • One or more first mode frame format symbols are sent; when the first mode frame format includes multiple uplink subframes, that is, when two or more uplink subframes are included, the multiple uplink subframes may be
  • the uplink demodulation reference signal is transmitted in any one or more of the plurality, and is transmitted on one or more first mode frame format symbols in the at least one first mode frame format symbol included in the uplink subframe.
  • the uplink demodulation reference signal may be any one of the three first mode frame format symbols or The two first mode frame format symbols are sent, and the uplink demodulation reference signals may also be sent in the three first mode frame format symbols; when the first mode frame format includes two uplink subframes, each uplink subframe includes 3
  • the uplink demodulation reference signal may be sent in any one of the two uplink subframes, or the uplink demodulation reference signal may be sent in both uplink subframes, and the uplink demodulation reference signal is used.
  • the signal can be included in two uplink subframes
  • the first mode frame format symbol is sent on any one or more of the first mode frame format symbols, which is not limited in this embodiment of the present invention.
  • the uplink signal and the channel are not transmitted on the last first mode frame format symbol in the length of 1 millisecond.
  • the first mode frame format symbol is a symbol containing a normal CP
  • the second mode frame format symbol is an SC-containing normal CP.
  • the second mode frame format symbol is an SC-FDMA symbol including an extended CP
  • the first mode frame format symbol is a symbol not including a CP
  • the two-mode frame format symbol is an SC-FDMA symbol that does not include a CP.
  • the detection is not affected by the existing LTE terminal.
  • Sounding Reference Signal SRS
  • the last first mode frame format symbol in the first mode frame format symbol included in the 1 millisecond time length and the last second mode frame format symbol in the 1 millisecond time length When overlapping or completely overlapping, the uplink signal and channel are not transmitted on the last first mode frame format symbol within a 1 millisecond time length.
  • the last first mode frame format symbol in the first mode frame format symbol included in the 1 millisecond time length is within a 1 millisecond time length.
  • the last second mode frame format symbol has partial overlap or complete overlap, the uplink signal and channel are not transmitted on the last first mode frame format symbol within the 1 millisecond time length.
  • the uplink signal or channel is not transmitted on the symbol 2;
  • the first mode frame format is shown. If the seven first mode frame format symbols are symbol 0, symbol 1, ..., symbol 5, and symbol 6, respectively, no uplink signal or channel is transmitted on symbol 3 and symbol 6; In the first mode frame format shown in FIG. 7, if the six first mode frame format symbols are symbol 0, symbol 1, ..., symbol 4, and symbol 5, respectively, no uplink signal is transmitted on symbols 2 and 5 or channel.
  • the second mode frame format includes an unavailable uplink subframe
  • the corresponding first mode frame format symbol is not sent in the duration of the unavailable uplink subframe in the second mode frame format.
  • Sending an uplink signal and a channel where the unavailable uplink subframe is one or more uplink subframes, each uplink subframe duration is 1 millisecond, and the unavailable uplink subframe refers to being in an unavailable uplink subframe.
  • All or part of the frequency resources are reserved resources, and the reserved resources are used for communication between a special terminal or a terminal supported by a special communication system and a base station or a terminal, and a terminal supported by a non-special terminal or a non-special communication system. In addition to the communication between the base station or the terminal, the reserved resources cannot be used. For example, all or part of the frequency resources in the uplink subframe that are not available in the LTE system are reserved resources and used for communication of the special system between the device and the device. The reserved LTE terminal cannot use the reserved resource on the unavailable uplink subframe.
  • the first type of terminal obtains the information of the unavailable uplink subframe by receiving the system information, including which uplink subframes are unavailable uplink subframes, or further includes which frequency domain resources in the unavailable uplink subframe are reserved resources.
  • the second mode frame format includes an unavailable uplink subframe
  • the corresponding duration of the uplink subframe is not available in the second mode frame format.
  • the uplink signal and the channel are not transmitted on a mode frame format symbol, or the uplink signal or channel sequence is deferred to the next mode frame format symbol corresponding to the duration of the unavailable uplink subframe in the second mode frame format.
  • the scheduling information includes physical resource information corresponding to the first mode frame format, where the physical resource information includes a time resource and a frequency resource, the time resource includes at least one uplink subframe, the frequency resource includes one subcarrier, and the subcarrier spacing is 3.75kHz.
  • the time resource in the physical resource information included in the scheduling information may be referred to as a scheduling length, and the minimum scheduling length is a length of three first mode frame format symbols, and the actual scheduling length may be based on a distance between the base station and the terminal.
  • the base station can support at least one scheduling length according to the coverage requirements required by the terminal in the cell.
  • the scheduling length A1 consecutive NA1 uplink subframes, the maximum coverage supported in the cell is LA1
  • the scheduling length A2 consecutive NA2 uplink subframes, the maximum coverage supported in the cell is LA2, etc.
  • the coverage of LA2 is greater than or It is equal to the coverage of the ratio LA1
  • NA1 and NA2 are positive integers
  • NA2 is greater than or equal to NA1 and can be set in advance, which is not specifically limited in the embodiment of the present invention.
  • the frequency resource in the physical resource information included in the scheduling information may be 1 subcarrier or more.
  • the number of subcarriers included in the subcarriers may also be set in advance, which is not specifically limited in the embodiment of the present invention.
  • Step 202 The base station sends downlink control information DCI to the second type terminal or the third type terminal, where the DCI includes scheduling information when the second type terminal or the third type terminal is used to send uplink data in the second mode frame format.
  • the second mode frame format includes a frame structure type 1 applicable to the FDD system, and a frame structure type 2 applicable to the TDD system.
  • the second mode frame format refers to a frame suitable for the FDD system.
  • Structure type one the frame structure type one is a radio frame of 10 ms time length, consisting of 20 time slots, each time slot is 0.5 milliseconds, two time slots are 1 subframe, that is, the second mode frame
  • the format includes 10 subframes, each subframe has a length of 1 millisecond, and the subcarrier spacing in the physical resource information corresponding to the second mode frame format is 15 kHz.
  • the downlink control information DCI includes scheduling information for instructing the terminal to send uplink data, where at least the number of subcarriers used in the frequency domain, the modulation coding mode or modulation mode used, and the number of bits included in the transport block of the bearer are included.
  • scheduling information for instructing the terminal to send uplink data where at least the number of subcarriers used in the frequency domain, the modulation coding mode or modulation mode used, and the number of bits included in the transport block of the bearer are included.
  • the number of subcarriers used in the frequency domain the modulation coding mode or modulation mode used, and the number of bits included in the transport block of the bearer are included.
  • the specific second mode frame format may refer to related technologies, and details are not described herein again.
  • Step 203 The terminal receives the downlink control information DCI sent by the base station, and sends the uplink data based on the downlink control information.
  • the DCI when the terminal is a first type of terminal, the DCI includes scheduling information used to indicate that the first type of terminal uses the first mode frame format to send uplink data, and the first type of terminal sends the first to the base station after receiving the DCI.
  • Uplink data in a mode frame format when the terminal is a second type terminal or a third type terminal, the DCI includes a schedule for indicating that the second type terminal or the third type terminal uses the second mode frame format to send uplink data.
  • the terminal of the second type or the third type of terminal After receiving the scheduling information, the terminal of the second type or the third type of terminal sends the uplink data in the second mode frame format to the base station.
  • the scheduling information includes physical resource information corresponding to the second mode frame format, where the physical resource information includes a time resource and a frequency resource, and the time resource includes at least one In the uplink subframe, the frequency resource includes one subcarrier, and the interval between the subcarriers is 15 kHz.
  • the time resource in the physical resource information included in the scheduling information may be referred to as a scheduling length, and the minimum scheduling length is the length of one uplink subframe in one second mode frame format.
  • the scheduling length may be based on the distance between the base station and the terminal, or according to the coverage requirements required by the terminal in the cell, and the base station may support at least one scheduling length.
  • the scheduling length B1 consecutive NB1 uplink subframes, the maximum coverage supported by the cell is LB1
  • the scheduling length B2 consecutive NB2 uplink subframes, the maximum coverage supported in the cell is LB2, etc.
  • the coverage of LB2 is greater than or It is equal to the coverage of LB1
  • NB1 and NB2 are positive integers
  • NB2 is greater than or equal to NB1 and can be set in advance, which is not specifically limited in the embodiment of the present invention.
  • the frequency resource in the physical resource information included in the scheduling information is 1 subcarrier; and when the terminal is the third type terminal, the physical resource included in the scheduling information
  • the frequency resource in the information is at least 1 subcarrier and at most 12 subcarriers.
  • the method further includes:
  • Step 204 The terminal sends uplink control information or random access information to the base station.
  • the frame format used by the uplink control information or the random access information is a first mode frame format.
  • the first mode frame format includes at least one uplink subframe, each uplink subframe includes at least one first mode frame format symbol, and the duration of the first mode frame format symbol is at least a second mode frame format symbol duration. 4 times, the second mode frame format symbol is an LTE system SC-FDMA symbol.
  • the uplink control information UCI includes an ACK or a NACK for confirming whether the terminal correctly receives the downlink data carried on the downlink shared channel PDSCH, or includes channel state information CSI for reflecting the downlink channel quality.
  • the uplink control information is carried on the physical uplink control channel PUCCH or on the physical channel for transmitting the uplink control information defined for the first type of terminal.
  • the random access information includes a random access preamble, which is carried on the physical random access channel PRACH, or is carried on a physical channel that is configured for the first type of terminal and that sends uplink random access information.
  • the frame format used by the uplink control information or the random access information is a second mode frame format
  • the second mode frame format includes a frame structure type 1 suitable for the FDD system.
  • the frame structure type 2 applicable to the TDD system the second mode frame format includes 10 subframes, each subframe has a length of 1 millisecond, and the subcarrier spacing in the physical resource information corresponding to the second mode frame format is 15 kHz.
  • the frame format of the uplink control information or the random access information sent by the terminal may be the first mode.
  • a frame format or a second mode frame format and the first mode frame format and the second mode frame format may be obtained not only from the downlink control information DCI sent by the base station, but also may be set in advance, and after the setting, the first type of terminal
  • the uplink mode control information or the random access information may be directly sent by using the first mode frame format, and the second type of terminal or the third type of terminal may directly send the uplink control information or the random access information by using the second mode frame format, which is used in the embodiment of the present invention. This is not limited.
  • the first mode frame format is preset, that is, the specific one or several carrier frequencies used by the communication system correspond to the first mode frame format, or a specific downlink synchronization signal sequence or a specific transmission downlink synchronization signal format.
  • the specific time and/or frequency resource location of the mapping corresponds to the first mode frame format, or the downlink system information includes or the format of the specific downlink system information, that is, the specific time of the mapping and/or the frequency resource location corresponding to the first mode frame format.
  • the embodiment of the present invention provides a scheduling method, in which the base station sends downlink control information (DCI) to the first type of terminal, where the DCI includes scheduling information used to indicate that the first type of terminal uses the first mode frame format to send uplink data, where the first
  • the mode frame format includes at least one uplink subframe, each uplink subframe includes at least one first mode frame format symbol, and the duration of the first mode frame format symbol is at least four times the duration of the second mode frame format symbol
  • the second mode frame format symbol is an LTE system SC-FDMA symbol, and sends downlink control information DCI to the second type terminal or the third type terminal, where the DCI includes a second mode for indicating the second type terminal or the third type terminal.
  • the scheduling information when the uplink format is sent in the frame format so that the base station in the LTE system can support the existing LTE terminal, and also supports the newly emerged first type terminal, the second type terminal, and the third type terminal in the FDD system. It saves frequency resources and also improves the utilization of base stations.
  • FIG. 8 is a schematic flowchart of a scheduling method according to an embodiment of the present invention, which is applied to a communication system, and the method includes the following steps.
  • Step 301 The base station sends downlink control information (DCI) to the first type of terminal, where the DCI includes scheduling information used to indicate that the first type of terminal uses the first mode frame format to send uplink data.
  • DCI downlink control information
  • the first mode frame format includes at least one uplink subframe, each uplink subframe includes at least one first mode frame format symbol; and the first mode frame format symbol has a duration of at least a second
  • the mode frame format symbol is 4 times longer, and the second mode frame format symbol is an LTE system SC-FDMA symbol.
  • each uplink subframe has a duration of 1 millisecond and contains 14 SC-FDMA symbols, so each SC-FDMA symbol of the LTE system includes a normal cyclic prefix and averages
  • the duration is 1/14 milliseconds. It is worth noting that the duration of SC-FDMA symbols included in each uplink subframe in the LTE system may be different.
  • each uplink subframe has a duration of 1 millisecond and contains 12 SC-FDMA symbols and the duration of each SC-FDMA symbol is the same, so each SC-FDMA symbol of the LTE system includes The cyclic prefix is extended and has a duration of 1/12 milliseconds.
  • the duration of each symbol is 66.7 microseconds.
  • the uplink data may be carried on the physical uplink shared channel PUSCH or on the physical channel for transmitting the uplink data defined for the first type of terminal.
  • the first mode frame format symbol when SC-FDMA is used in the uplink, the first mode frame format symbol may be an SC-FDMA symbol; when the uplink uses FDMA frequency division multiple access, the first mode frame format symbol may be an FDMA symbol, which is implemented by the present invention. This example does not specifically limit this.
  • the first mode frame format symbol may be a symbol after adding a cyclic prefix CP, or may be a symbol without a CP added; the second mode frame format symbol may be a symbol after adding a cyclic prefix CP, or may not add a CP. symbol.
  • the second mode frame format includes a frame structure type 1 suitable for the FDD system, and a frame structure type suitable for the TDD system. Second, and when the communication system is FDD or TDD, the corresponding first mode frame format is different.
  • the second mode frame format includes two frame structure types suitable for the TDD system, as shown in FIG. 9.
  • the second mode frame format includes one radio frame of 10 milliseconds long, and is composed of two half frames having a length of 5 milliseconds.
  • Each field consists of five 1 millisecond subframes, including a downlink subframe, a special subframe, and an uplink subframe.
  • the special subframe includes a downlink pilot slot DwPTS and an uplink pilot.
  • the gap UpPTS and the guard interval GP when the switching point of the downlink to uplink is 5 milliseconds, the special subframe exists in both fields, and when the switching point of the downlink to uplink is 10 milliseconds, the special The subframe exists only in the first field, and when a normal CP is used, each subframe contains 14 OFDM symbols or SC-FDMA symbols. When the extended CP is used, each subframe contains 12 OFDM symbols or SC-FDMA symbols. .
  • the corresponding first mode frame format under the TDD system is as follows.
  • the first mode frame format includes at least one special subframe and at least one downlink subframe, and the special subframe includes a downlink guide. At least one of a frequency slot DwPTS, an uplink pilot time slot UpPTS, and a guard interval GP.
  • the second mode frame format is frame structure type 2
  • the uplink and downlink configurations in the second mode frame format are as shown in Table 1 below, where D is a downlink subframe, S is a special subframe, and U is an uplink subframe. frame.
  • the duration of each subframe is 1 millisecond
  • the special subframe includes a downlink pilot time slot DwPTS, an uplink pilot time slot UpPTS, and a guard interval GP.
  • the first mode frame format includes UpPTS
  • the first mode frame format is UpPTS
  • the UpPTS included in the first mode frame format does not send the uplink signal and the channel, where the length of the DwPTS/GP/UpPTS in the special subframe in the second mode frame format is as follows Table 2 shows.
  • each uplink subframe includes at least one first mode frame format symbol, and each special subframe has a time length of 1 millisecond.
  • the length of each downlink subframe is 14 orthogonal OFDM symbols; when the downlink of the communication system is an extended CP, the length of each downlink subframe is 12 The length of the orthogonal frequency division multiplexed OFDM symbol.
  • the uplink subframe when the communication system uplink adopts a normal CP, and when the uplink subframe duration is 1 millisecond, the uplink subframe includes three first mode frame format symbols, and the three first mode frame format symbols continue.
  • the time is equal to the duration of the 12 second mode frame format symbols and is less than 1 millisecond.
  • the duration of the second mode frame format symbols is the duration of each SC-FDMA symbol including the normal cyclic prefix, where D represents the downlink subframe.
  • S represents a special subframe.
  • the uplink subframe when the uplink of the communication system is an extended CP, and the uplink subframe duration is 1 millisecond, the uplink subframe includes three first mode frame format symbols, and the three first mode frame format symbols are used.
  • the duration is equal to the duration of the 12 second mode frame format symbols and is equal to 1 millisecond, the duration of the second mode frame format symbol is the duration of each SC-FDMA symbol containing the extended cyclic prefix.
  • the uplink and downlink configuration of the first mode frame format is as shown in Table 1 above, where D represents a downlink subframe, S represents a special subframe, and U represents an uplink subframe.
  • the configuration of the special subframe is as shown in Table 2 above, and each uplink subframe has a duration of 1 millisecond.
  • the last symbol in the first mode frame format symbol included in the 1 millisecond time length partially overlaps or completely overlaps with the last second mode frame format symbol in the 1 millisecond time length, within 1 millisecond of the length of time The last mode of the first mode frame format symbol does not send the uplink signal and the channel.
  • the second mode frame format symbol is an SC-FDMA symbol including a normal CP
  • the second mode frame format symbol is an SC-FDMA symbol including an extended CP
  • the first mode frame format symbol is a symbol not including a CP
  • the second mode frame format symbol Is an SC-FDMA symbol that does not contain a CP.
  • the scenario when the scenario is deployed in the third scenario, that is, the in-band scenario, if the 1 ms time length includes the last symbol in the first mode frame format symbol and the last second mode frame format in the 1 millisecond time length
  • the symbols have partial overlap or complete overlap, in order not to affect the transmission of the SRS by the existing LTE terminal, the last first mode frame format symbol in the first mode frame format symbol included in the 1 millisecond time length and the last in the 1 millisecond time length
  • the uplink signal and channel are not transmitted on the last first mode frame format symbol within a 1 millisecond time length.
  • the last first mode frame format symbol in the first mode frame format symbol included in the 1 millisecond time length is within 1 millisecond length
  • the uplink signal and channel are not transmitted on the last first mode frame format symbol within the 1 millisecond time length.
  • the three first mode frame format symbols are symbol 0, symbol 1, and symbol 2, respectively, no uplink signal or channel is transmitted on symbol 2.
  • the switching point of the downlink mode to the uplink in the first mode frame format is a period of 5 milliseconds, and includes 1 downlink subframe, 1 special subframe, and at least 5 milliseconds.
  • 1 uplink subframe each uplink subframe includes at least one first mode frame format symbol, and the length of each special subframe is 1 millisecond;
  • the communication system is downlinked, In the case of a CP, the length of each downlink subframe is 14 orthogonal OFDM symbols; when the downlink of the communication system is an extended CP, the length of each downlink subframe is 12 orthogonal frequency division multiplexing OFDM. The length of the symbol.
  • the uplink subframe includes 10 first mode frame format symbols, and the ten first mode frame format symbols continue.
  • the time is equal to the duration of the 40 second mode frame format symbols and is less than 3 milliseconds, the duration of the second mode frame format symbols being the duration of each SC-FDMA symbol containing the normal cyclic prefix.
  • the uplink subframe includes nine first mode frame format symbols, and the nine first mode frame format symbols continue.
  • the time is equal to the duration of the 36 second mode frame format symbols and is equal to 3 milliseconds, the duration of the second mode frame format symbols being the duration of each SC-FDMA symbol containing the extended cyclic prefix.
  • the ten first mode frame format symbols are symbol 0, symbol 1, ..., symbol 8, and symbol 9, respectively, they are not transmitted on symbols 3 and 6.
  • Uplink signal or channel as shown in the first mode frame format shown in FIG. 13, if the nine first mode frame format symbols are symbol 0, symbol 1, ..., symbol 7, symbol 8, respectively, symbol 2, symbol 5
  • the uplink signal or channel is not transmitted on the sum sign 8.
  • the uplink subframe duration is 2 milliseconds
  • the uplink subframe includes 7 first mode frame format symbols, and the 7 first mode frame format symbols
  • the duration is equal to the duration of the 28 second mode frame format symbols and is equal to 2 milliseconds, the duration of the second mode frame format symbols being the duration of each SC-FDMA symbol containing the normal cyclic prefix.
  • the uplink subframe duration is 2 milliseconds
  • the uplink subframe includes six first mode frame format symbols, and the six first mode frame format symbols
  • the duration is equal to the duration of the 24 second mode frame format symbols and is equal to 2 milliseconds, the duration of the second mode frame format symbols being the duration of each SC-FDMA symbol containing the extended cyclic prefix.
  • the first mode frame format is symbol 0, symbol 1, symbol 1, symbol 6, and symbol 6 No uplink signal or channel is sent.
  • the first mode frame format shown in FIG. 15 if the six first mode frame format symbols are symbol 0, symbol 1, ..., and symbol 5, respectively, no uplink signal or channel is transmitted on symbol 2 and symbol 5.
  • the uplink subframe when the communication system uses the normal CP in the uplink, if the uplink subframe duration is 1 millisecond, the uplink subframe includes three first mode frame format symbols, and the three first mode frames.
  • the duration of the format symbol is equal to the duration of the 12 second mode frame format symbols and is less than 1 millisecond, and the duration of the second mode frame format symbol is the duration of each SC-FDMA symbol containing the normal cyclic prefix.
  • the uplink subframe when the communication system uses the extended CP in the uplink, if the uplink subframe duration is 1 millisecond, the uplink subframe includes three first mode frame format symbols, and the three first mode frames
  • the duration of the format symbol is equal to the duration of the 12 second mode frame format symbols and is equal to 1 millisecond, the duration of the second mode frame format symbol being the duration of each SC-FDMA symbol containing the extended cyclic prefix.
  • the three first mode frame format symbols are symbol 0, symbol 1, and symbol 2, respectively, no uplink signal or channel is sent on symbol 3.
  • the switching point of the downlink mode to the uplink in the first mode frame format is a period of 5 milliseconds, and includes a downlink subframe and a special subframe in a length of 5 milliseconds.
  • each uplink subframe includes at least one first mode frame format symbol
  • each special subframe includes at least one of DwPTS and GP
  • the length of the DwPTS and the GP and the second in the LTE system The lengths of the DwPTS and the GP in the special subframe in the class frame structure type are the same, and are different according to the configuration of the special subframe. As shown in Table 2, the total duration of the DwPTS and the GP is less than 1 millisecond.
  • each downlink subframe is 14 orthogonal OFDM symbols; when the downlink of the communication system uses the extended CP, each downlink subframe The length is the length of 12 orthogonal frequency division multiplexed OFDM symbols.
  • the uplink subframe includes 11 first mode frame format symbols
  • the duration of the 11 first mode frame format symbols is equal to the duration of 44 second mode frame format symbols and is equal to T1+ 3 milliseconds
  • T1 is 1 millisecond - DwPTS occupation time - GP account
  • the duration of the second mode frame format symbol is the duration in which each SC-FDMA symbol contains a normal cyclic prefix.
  • the 11 first mode frame format symbols are symbol 0, symbol 1, ..., symbol 9, and symbol 10, respectively, at symbol 0, symbol 3, No uplink signals or channels are transmitted on symbols 7 and 10.
  • the uplink subframe includes four first mode frame format symbols, and the durations of the four first mode frame format symbols are equal to the duration of the 16 second mode frame format symbols and equal to T2 +1 millisecond, T2 is 1 millisecond - DwPTS occupation time - GP occupation time, where DwPTS occupation time and GP occupation time are in milliseconds, and the duration of the second mode frame format symbol is a normal cyclic prefix for each SC-FDMA symbol The duration.
  • the first mode frame format is as shown in FIG. 19, and if the four first mode frame format symbols are symbol 0, symbol 1, symbol 2, and symbol 3, respectively, not sent on symbol 0 and symbol 3. Uplink signal or channel.
  • the switching point of the downlink mode to the uplink in the first mode frame format is a period of 10 milliseconds, and includes one downlink subframe and one special subframe in the first 5 milliseconds. And at least one uplink subframe, only the downlink subframe is included in the length of the last 5 milliseconds, and each downlink subframe has a duration of 1 millisecond.
  • Each of the uplink subframes includes at least one first mode frame format symbol. In the first mode frame format shown in FIG. 18 and FIG.
  • each special subframe includes at least one of DwPTS and GP, and DwPTS
  • the length of the GP and the length of the DwPTS and the GP in the special subframe in the second type of frame structure type in the LTE system are the same as the lengths of the DwPTS and the GP in different special subframe configurations in Table 2, and the total length of the DwPTS and the GP
  • the duration is less than 1 millisecond.
  • each downlink subframe is 14 orthogonal OFDM symbols; when the downlink of the communication system uses the extended CP, each downlink subframe The length is the length of 12 orthogonal frequency division multiplexed OFDM symbols.
  • the communication system adopts a normal CP in the uplink, if it is within the length of the first 5 milliseconds
  • the uplink subframe duration is 3 milliseconds
  • the uplink subframe includes 10 first mode frame format symbols
  • the durations of the 10 first mode frame format symbols are equal to the duration of 40 second mode frame format symbols and less than 3.
  • the duration of the second mode frame format symbol is the duration of each SC-FDMA symbol containing the normal cyclic prefix, as shown in FIG. 12; when the special subframe contains DwPTS and GP, the special subframe in Table 2 is met.
  • the uplink subframe includes 11 first mode frame format symbols, and the 11
  • the duration of the first mode frame format symbols is equal to the duration of 44 second mode frame format symbols and is equal to T1 + 3 milliseconds
  • T1 is 1 millisecond - DwPTS occupation time - GP occupation time, wherein DwPTS occupation time and GP occupation time
  • the unit is in milliseconds
  • the duration of the second mode frame format symbol is the duration in which each SC-FDMA symbol contains a normal cyclic prefix, as shown in FIG.
  • the downlink sub-frames are only included in the downlink sub-frames, and the downlink sub-frames are consistent with the downlink sub-frames in the second mode frame format.
  • the uplink subframe duration is 3 milliseconds in the first 5 milliseconds
  • the uplink subframe includes 9 first mode frame format symbols, and 9 first mode frame format symbols
  • the duration is equal to the duration of the 36 second mode frame format symbols and is equal to 3 milliseconds
  • the duration of the second mode frame format symbols is the duration of each SC-FDMA symbol including the extended cyclic prefix, as shown in FIG. .
  • the downlink sub-frames are only included in the downlink sub-frames, and the downlink sub-frames are consistent with the downlink sub-frames in the second mode frame format.
  • the uplink subframe duration is 2 milliseconds in the first 5 milliseconds
  • the uplink subframe includes 7 first mode frame format symbols, and the 7 first mode frames.
  • the duration of the format symbol is equal to the duration of the 28 second mode frame format symbols and is less than 2 milliseconds.
  • the duration of the second mode frame format symbol is the duration of each SC-FDMA symbol containing the normal cyclic prefix, as shown in FIG. 14
  • the downlink sub-frame is only included in the downlink sub-frame, and the downlink sub-frame is consistent with the downlink sub-frame in the second mode frame format.
  • the uplink subframe duration is 2 milliseconds in the first 5 milliseconds
  • the uplink subframe includes 6 first mode frame format symbols
  • the 6 first mode frame format symbols continue.
  • the time is equal to the duration of the 24 second mode frame format symbols and Equal to 2 milliseconds
  • the duration of the second mode frame format symbol is the duration of each SC-FDMA symbol including the extended cyclic prefix, as shown in FIG. 15; only the downlink subframe is included in the length of the last 5 milliseconds, and the downlink is The subframe is consistent with the downlink subframe of the second mode frame format, and is not repeatedly described herein.
  • the uplink subframe duration is 1 millisecond in the first 5 milliseconds
  • the uplink subframe includes three first mode frame format symbols, and the three The duration of a mode frame format symbol is equal to the duration of 12 second mode frame format symbols and less than 1 millisecond, as shown in FIG. 16; when the special subframe contains the DwPTS and the GP meets the configuration of the special subframe in Table 2.
  • the uplink subframe duration is T2+1 milliseconds in the first 5 milliseconds
  • the uplink subframe includes four first mode frame format symbols, and the four
  • the duration of a mode frame format symbol is equal to the duration of 16 second mode frame format symbols and is equal to T2 + 1 millisecond
  • T2 is 1 millisecond - DwPTS occupation time - GP occupation time, where DwPTS occupation time and GP occupation time unit In milliseconds
  • the duration of the second mode frame format symbol is the duration of each SC-FDMA symbol containing the normal cyclic prefix, as shown in FIG.
  • the downlink sub-frames are only included in the downlink sub-frames, and the downlink sub-frames are consistent with the downlink sub-frames in the second mode frame format.
  • the uplink subframe When the communication system uses the extended CP in the uplink, if the uplink subframe duration is 1 millisecond in the first 5 milliseconds, the uplink subframe includes three first mode frame format symbols, and the three first mode frame formats The duration of the symbol is equal to the duration of the 12 second mode frame format symbols and is equal to 1 millisecond. The duration of the second mode frame format symbol is the duration of each SC-FDMA symbol containing the extended cyclic prefix, as shown in FIG. Show.
  • the downlink sub-frames are only included in the downlink sub-frames, and the downlink sub-frames are consistent with the downlink sub-frames in the second mode frame format.
  • the switching point of the downlink mode to the uplink in the first mode frame format is a period of 5 milliseconds, and the length included in the length of the previous 5 milliseconds and the length of the next 5 milliseconds
  • the durations of the uplink subframes are different, and each of the 5 milliseconds includes a downlink subframe, a special subframe, and at least one uplink subframe, and each uplink subframe includes at least one first mode frame.
  • the format symbol, the length of each special subframe is less than or equal to 1 millisecond.
  • each downlink subframe is The length of 14 orthogonal frequency division multiplexing OFDM symbols; when the downlink of the communication system adopts the extended CP, the length of each downlink subframe is the length of 12 orthogonal frequency division multiplexing OFDM symbols.
  • the uplink subframe includes 10 first mode frame format symbols, and 10 firsts, if the communication system uses an ordinary CP in the uplink, if the duration of the uplink subframe included in the previous 5 milliseconds is 3 milliseconds.
  • the duration of the mode frame format symbol is equal to the duration of the 40 second mode frame format symbols and is less than 3 milliseconds, and the duration of the second mode frame format symbol is the duration of each SC-FDMA symbol containing the normal cyclic prefix, as specified in As shown in FIG.
  • the uplink subframe includes 11 first mode frame format symbols, and the duration of the 11 first mode frame format symbols is equal to the duration of 44 second mode frame format symbols and is equal to 3 milliseconds,
  • the duration of the two mode frame format symbols is the duration of each SC-FDMA symbol containing a normal cyclic prefix, as shown in FIG.
  • the uplink subframe includes 7 first mode frame format symbols, and the durations of the 7 first mode frame format symbols are equal to 28 seconds.
  • the duration of the mode frame format symbol is equal to 2 milliseconds, and the duration of the second mode frame format symbol is the duration of each SC-FDMA symbol containing the normal cyclic prefix, as shown in FIG.
  • the uplink subframe when the communication system uses the extended CP in the uplink, if the duration of the uplink subframe included in the previous 5 milliseconds is 3 milliseconds, the uplink subframe includes 9 first mode frame format symbols, and 9 first The duration of the mode frame format symbol is equal to the duration of the 36 second mode frame format symbols and is equal to 3 milliseconds, and the duration of the second mode frame format symbol is the duration of each SC-FDMA symbol containing the extended cyclic prefix, as specified in Figure 13 shows. If the duration of the uplink subframe included in the last 5 milliseconds is 2 milliseconds, the uplink subframe includes six first mode frame format symbols, and the durations of the six first mode frame format symbols are equal to 24 second. The duration of the mode frame format symbol is equal to 2 milliseconds, and the duration of the second mode frame format symbol is the duration of each SC-FDMA symbol containing the extended cyclic prefix, as shown in FIG.
  • the uplink signal and the channel are not sent on the first mode frame format symbol corresponding to the duration of the unavailable uplink subframe in the second mode frame format.
  • the unavailable uplink subframe is one or more uplink subframes, each of which is on The line subframe duration is 1 millisecond.
  • the unavailable uplink subframe refers to all or part of the frequency resources in the unavailable uplink subframe as reserved resources, and the reserved resources are used for special terminals or for special communication.
  • the communication between the terminal and the base station or the terminal supported by the system, and the communication between the terminal and the base station or the terminal supported by the non-special terminal or the non-special communication system cannot use the reserved resources, for example, the uplink is not available in the LTE system. All or part of the frequency resources in the subframe are reserved resources and used for communication of such a special system between the device and the device, and the reserved LTE terminal cannot use the reserved resource in the unavailable uplink subframe.
  • the first type of terminal obtains the information of the unavailable uplink subframe by receiving the system information, including which uplink subframes are unavailable uplink subframes, or further includes which frequency domain resources in the unavailable uplink subframe are reserved resources.
  • the second mode frame format includes an unavailable uplink subframe
  • the first corresponding to the duration of the uplink subframe that is not available in the second mode frame format.
  • the uplink signal and the channel are not transmitted on the mode frame format symbol, or the uplink signal or channel sequence on the first mode frame format symbol corresponding to the duration of the unavailable uplink subframe in the second mode frame format is deferred to the next Transmitted on the first mode frame format symbol corresponding to the duration of the available uplink subframes in the second mode frame format.
  • the uplink demodulation reference signal is sent on at least one first mode frame format symbol in the at least one uplink subframe.
  • the uplink demodulation reference signal may be in the at least one first mode frame format symbol.
  • One or more uplink transmissions; when the first mode frame format includes multiple uplink subframes, that is, when two or more uplink subframes are included, any one or more of the multiple uplink subframes may be used.
  • the uplink demodulation reference signal is transmitted internally and transmitted on any one or more of the at least one first mode frame format symbols included in the uplink subframe.
  • the uplink demodulation reference signal may be three.
  • the uplink mode demodulation reference signal may be sent in any one of the first mode frame format symbols, or may be sent in the three first mode frame format symbols; when the first mode frame format includes one downlink subframe, one a special subframe and two uplink subframes, and each uplink subframe includes three first mode frame format symbols, and may be in any one of two uplink subframes.
  • Sending an uplink demodulation reference signal, or sending an uplink demodulation reference signal in both uplink subframes, and the uplink demodulation reference signal may be any one of the first mode frame format symbols included in the two uplink subframes or The multiple transmissions are not limited in this embodiment of the present invention.
  • the scheduling information includes physical resource information corresponding to the first mode frame format, where the physical resource information includes a time resource and a frequency resource, the time resource includes at least one uplink subframe, and the frequency resource includes one subcarrier.
  • the time resource in the physical resource information included in the scheduling information may be referred to as a scheduling length, and the minimum scheduling length is a length of three first mode frame format symbols, and the actual scheduling length may be based on a distance between the base station and the terminal.
  • the base station can support at least one scheduling length according to the requirements of the coverage required by the terminal in the cell.
  • the scheduling length C1 consecutive NC1 uplink subframes
  • the maximum coverage supported by the cell is LC1
  • the scheduling length C2 continuous NC2
  • the maximum coverage supported by the cell is LC2 uplink subframes, etc.
  • the coverage of LC2 is greater than or It is equal to the coverage of the LC1
  • the NC1 and the NC2 are positive integers
  • the NC2 is greater than or equal to the NC1 and can be set in advance, which is not specifically limited in the embodiment of the present invention.
  • the frequency resource in the physical resource information included in the scheduling information is 1 subcarrier.
  • Step 302 The base station sends downlink control information DCI to the second type terminal or the third type terminal, where the DCI includes scheduling information when the second type terminal or the third type terminal sends the uplink data to use the second mode frame format.
  • the second mode frame format includes a frame structure type 1 suitable for the FDD system, and a frame structure type 2 applicable to the TDD system.
  • the second mode frame format refers to a frame suitable for the TDD system.
  • Structure type 2 frame structure type 2 includes a radio frame of 10 milliseconds long, consisting of two half frames of length 5 milliseconds, each half frame consisting of 5 1 millisecond subframes, including downlink subframes,
  • the special subframe includes an uplink pilot time slot DwPTS, an uplink pilot time slot UpPTS, and a guard interval GP. That is, the second mode frame format includes 10 subframes, and the length of each subframe is 1 millisecond, and the interval between subcarriers in the physical resource information corresponding to the second mode frame format is 15 kHz.
  • the downlink control information DCI includes scheduling information for instructing the terminal to send uplink data, where at least the number of subcarriers used in the frequency domain, the modulation coding mode or modulation mode used, and the number of bits included in the transport block of the bearer are included.
  • scheduling information for instructing the terminal to send uplink data where at least the number of subcarriers used in the frequency domain, the modulation coding mode or modulation mode used, and the number of bits included in the transport block of the bearer are included.
  • the number of subcarriers used in the frequency domain the modulation coding mode or modulation mode used, and the number of bits included in the transport block of the bearer are included.
  • Step 303 The terminal receives the downlink control information DCI sent by the base station, and sends the uplink data based on the downlink control information.
  • the DCI when the terminal is a first type of terminal, the DCI includes scheduling information when the first type of terminal sends the uplink data to use the first mode frame format, and the first type of terminal sends the first to the base station after receiving the DCI.
  • Uplink data in a mode frame format when the terminal is a second type terminal or a third type terminal, the DCI includes a schedule for indicating that the second type terminal or the third type terminal sends uplink data using the second mode frame format After receiving the scheduling information, the terminal of the second type or the third type of terminal sends the uplink data in the second mode frame format to the base station.
  • the scheduling information includes physical resource information corresponding to the second mode frame format, where the physical resource information includes a time resource and a frequency resource, and the time resource includes at least one uplink.
  • the frequency resource includes one subcarrier, and the interval between the subcarriers is 15 kHz.
  • the time resource in the physical resource information included in the scheduling information may be referred to as a scheduling length
  • the minimum scheduling length is the length of one uplink subframe in one second mode frame format
  • the actual scheduling length may be based on the base station and the terminal.
  • the distance between the base stations or the base station can support at least one scheduling length according to the required coverage requirements of the terminal in the cell.
  • the scheduling length D1 consecutive ND1 uplink subframes, the maximum coverage supported by the cell is LD1
  • the scheduling length D2 consecutive ND2 uplink subframes, the maximum coverage supported in the cell is LD2, etc.
  • the coverage of LD2 is greater than or It is equal to the coverage of the LD1
  • ND1 and ND2 are positive integers
  • ND2 is greater than or equal to ND1 and can be set in advance, which is not specifically limited in the embodiment of the present invention.
  • the frequency resource in the physical resource information included in the scheduling information is 1 subcarrier; and when the terminal is the third type terminal, the physical resource included in the scheduling information
  • the frequency resource in the information is at least 1 subcarrier and at most 12 subcarriers.
  • the method further includes:
  • Step 304 The terminal sends uplink control information or random access information to the base station.
  • the frame format used by the uplink control information or the random access information is a first mode frame format.
  • the first mode frame format includes at least one uplink subframe, and each uplink subframe includes at least one first mode frame format symbol; the first mode frame lattice
  • the duration of the symbol is at least four times the duration of the second mode frame format symbol, and the second mode frame format symbol is an LTE system single carrier frequency division multiple access SC-FDMA symbol.
  • the uplink control information UCI includes an ACK or a NACK for confirming whether the terminal correctly receives the downlink data carried on the downlink shared channel PDSCH, or includes channel state information CSI for reflecting the downlink channel quality.
  • the uplink control information is carried on the physical uplink control channel PUCCH or on the physical channel for transmitting the uplink control information defined for the first type of terminal.
  • the random access information includes a random access preamble, which is carried on the physical random access channel PRACH, or is carried on a physical channel that is configured for the first type of terminal and that sends uplink random access information.
  • the frame format used by the uplink control information or the random access information is a second mode frame format
  • the second mode frame format includes a frame structure type 1 suitable for the FDD system.
  • the frame structure type 2 applicable to the TDD system the second mode frame format includes 10 subframes, each subframe has a length of 1 millisecond, and the subcarrier spacing in the physical resource information corresponding to the second mode frame format is 15 kHz.
  • the frame format of the uplink control information or the random access information sent by the terminal may be the first mode frame format or the second mode frame format
  • the The first mode frame format and the second mode frame format may be obtained not only from the downlink control information DCI sent by the base station, but also may be set in advance, and after setting, the first type terminal may directly use the first mode frame format to send the uplink control.
  • the second type of terminal or the third type of terminal may also use the second mode frame format to send the uplink control information or the random access information, which is not limited in this embodiment of the present invention.
  • the first mode frame format is preset, that is, the specific one or several carrier frequencies used by the communication system correspond to the first mode frame format, or a specific downlink synchronization signal sequence or a specific transmission downlink synchronization signal format.
  • the specific time and/or frequency resource location of the mapping corresponds to the first mode frame format, or the downlink system information includes or the format of the specific downlink system information, that is, the specific time of the mapping and/or the frequency resource location corresponding to the first mode frame format.
  • An embodiment of the present invention provides a scheduling method, where a base station sends a downlink control to a first type of terminal.
  • the information DCI where the DCI includes scheduling information for instructing the first type of terminal to use the first mode frame format to send uplink data, where the first mode frame format includes at least one uplink subframe, and each uplink subframe includes at least one First mode frame format symbols, and the duration of the first mode frame format symbols is at least 4 times the duration of the second mode frame format symbols, the second mode frame format symbols are LTE system SC-FDMA symbols, and to the second
  • the class terminal or the third type terminal sends downlink control information DCI, where the DCI includes scheduling information when the second type terminal or the third type terminal uses the second mode frame format to send uplink data, so that the base station in the LTE system can On the basis of supporting the existing LTE terminals, the first-type terminals, the second-type terminals, and the third-type terminals emerging in the TDD system are also supported, which saves time resources and improves the utilization
  • FIG. 20 is a base station, where the base station includes: a processor 41, a memory 42, a system bus 43, and a communication interface 44.
  • FIG. 20 is merely illustrative, and does not limit the structure of the base station.
  • the base station may also include more or fewer components than those shown in FIG. 20, or have a different configuration than that shown in FIG.
  • the memory 42 is configured to store computer execution instructions
  • the processor 42 is coupled to the memory 42 via the system bus 43, and when the base station is running, the processor 41 executes the memory stored by the memory 42
  • the computer executes instructions to cause the base station to perform the steps of the base station in the method illustrated in Figures 2 and 8 above.
  • FIG. 2 and FIG. 8 For a specific method, refer to the related description in the embodiment shown in any one of FIG. 2 and FIG. 8 , and details are not described herein again.
  • the embodiment further provides a storage medium, which may include the memory 42.
  • the processor 41 can be a CPU.
  • the processor 41 can also be other general purpose processors, DSPs, ASICs, FPGAs or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the processor 41 may be a dedicated processor, and the dedicated processor may include at least one of a baseband processing chip, a radio frequency processing chip, and the like. Further, the dedicated processor may also include a chip having other dedicated processing functions of the base station.
  • the memory 42 can include a volatile memory, such as a random access memory RAM;
  • the memory 42 may also include a non-volatile memory, such as a read only memory ROM, a flash memory, an HDD or an SSD; the memory 42 may also include a combination of the above types of memory.
  • the system bus 43 can include a data bus, a power bus, a control bus, and a signal status bus. For the sake of clarity in the present embodiment, various buses are illustrated as the system bus 43 in FIG.
  • the communication interface 44 may specifically be a transceiver on a base station.
  • the transceiver can be a wireless transceiver.
  • the wireless transceiver can be an antenna of a base station or the like.
  • the processor 41 performs data transmission and reception with the other device, for example, the terminal through the communication interface 44.
  • each step of the base station in the method flow shown in any one of the foregoing FIG. 2 and FIG. 8 can be implemented by the processor 41 in the hardware form executing the computer-executed instructions in the form of software stored in the memory 42. To avoid repetition, we will not repeat them here.
  • a base station is configured to transmit downlink control information DCI to a first type of terminal, where the DCI includes scheduling information used to indicate that the first type of terminal uses the first mode frame format to send uplink data, where
  • the first mode frame format includes at least one uplink subframe, each uplink subframe includes at least one first mode frame format symbol, and the duration of the first mode frame format symbol is at least a duration of the second mode frame format symbol duration 4 times, the second mode frame format symbol is an LTE system SC-FDMA symbol; and the base station sends downlink control information DCI to the second type terminal or the third type terminal, where the DCI is included to indicate the second type terminal or the third type terminal
  • the scheduling information when the uplink data is sent by using the second mode frame format, so that the LTE system can support the existing LTE terminal, and also supports the newly emerged first type terminal, the second type terminal, and the first in the FDD and TDD systems.
  • the three types of terminals save time resources and also improve the utilization of communication systems and base stations.
  • FIG. 21 is a terminal according to an embodiment of the present invention.
  • the terminal includes: a processor 51, a memory 52, a system bus 53, and a communication interface 54.
  • FIG. 21 is merely illustrative and does not limit the structure of the terminal.
  • the terminal may also include more or less components than those shown in FIG. 21, or have a different configuration than that shown in FIG.
  • the memory 52 is configured to store computer execution instructions, the processor 51 and the storage
  • the processor 52 is connected through the system bus 53, and when the terminal is running, the processor 51 executes the computer execution instruction stored in the memory 52, so that the terminal performs any of the foregoing as shown in FIG. 2 and FIG.
  • For a specific method refer to the related description in the embodiment shown in any one of FIG. 2 and FIG. 8 , and details are not described herein again.
  • the embodiment further provides a storage medium, which may include the memory 52.
  • the processor 51 can be a central processing unit (English: central processing unit, abbreviation: CPU).
  • the processor 51 can also be other general-purpose processors, digital signal processing (DSP), application specific integrated circuit (ASIC), field programmable gate array (English) : field-programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processing
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the processor 51 may be a dedicated processor, and the dedicated processor may include at least one of a baseband processing chip, a radio frequency processing chip, and the like. Further, the dedicated processor may also include a chip having other dedicated processing functions of the terminal.
  • the memory 52 may include a volatile memory (English: volatile memory), such as random-access memory (abbreviation: RAM); the memory 52 may also include a non-volatile memory (English: Non-volatile memory, such as read-only memory (English: read-only memory, abbreviation: ROM), flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviation: HDD) or solid state drive (English) : solid-state drive, abbreviated: SSD); the memory 52 may also include a combination of the above types of memory.
  • ROM read-only memory
  • flash memory English: flash memory
  • HDD hard disk drive
  • SSD solid state drive
  • the system bus 53 can include a data bus, a power bus, a control bus, and a signal status bus. For the sake of clarity in the present embodiment, various buses are illustrated as the system bus 53 in FIG.
  • the communication interface 54 may specifically be a transceiver on the terminal.
  • the transceiver can be a wireless transceiver.
  • the wireless transceiver can be an antenna of the terminal or the like.
  • the processor 51 transmits and receives data to and from other devices, such as a base station, through the communication interface 54.
  • each step of the terminal in the method flow shown in any one of the foregoing FIG. 2 and FIG. 8 can execute the software stored in the memory 52 by the processor 51 in the hardware form.
  • the form of computer execution instructions is implemented. To avoid repetition, we will not repeat them here.
  • the embodiment of the present invention provides a terminal, where the terminal receives the downlink control information DCI sent by the base station, and when the terminal is the first type of terminal, the DCI includes, when the terminal type terminal is configured to use the first mode frame format to send uplink data.
  • Scheduling information wherein the first mode frame format includes at least one uplink subframe, each uplink subframe includes at least one first mode frame format symbol, and the duration of the first mode frame format symbol is at least a second mode frame format 4 times the symbol duration, the second mode frame format symbol is an LTE system SC-FDMA symbol; when the terminal is a second type terminal or a third type terminal, the DCI includes a second type terminal or a third type terminal.
  • the three types of terminals save time resources and also improve the utilization of the communication system.

Abstract

本发明实施例提供一种调度方法、数据传输方法及装置,涉及通信技术领域,用于解决现有LTE系统不支持新出现类型终端的问题。该调度方法包括:基站向第一类终端发送下行控制信息DCI,所述DCI包含用于指示所述第一类终端使用第一模式帧格式发送上行数据时的调度信息;其中,所述第一模式帧格式包括至少1个上行子帧,每个上行子帧包含至少1个第一模式帧格式符号;所述第一模式帧格式符号的持续时间至少为第二模式帧格式符号持续时间的4倍,所述第二模式帧格式符号为LTE系统单载波频分多址SC-FDMA符号。

Description

调度方法、数据传输方法及装置 技术领域
本发明涉及通信技术领域,尤其涉及一种调度方法、数据传输方法及装置。
背景技术
目前,在长期演进LTE系统中,用户设备UE在下行子帧检测下行控制信息DCI,DCI包含UE发送物理上行共享信道PUSCH的调度信息和UE接收物理下行共享信道PDSCH的调度信息,例如频域上使用的物理资源块的个数,使用的调制编码方式或者调制方式以及承载的传输块包含的比特数等。PUSCH信道主要承载的是终端发送的上行数据,采用单载波频分多址SC-FDMA的格式发送,在频率域上最小的调度粒度是1个物理资源块PRB,1个PRB在频率域上包含12个正交子载波,其中子载波之间的间隔是15kHz,因此,1个PRB包含180kHz的频率资源。
而随着通信技术的快速发展,已经出现了多种LTE的终端类型或者一类终端类型具有的能力可能有多种,比如,第一类终端,上行支持正交子载波间隔为3.75kHz的单个子载波SC-FDMA发送或子信道带宽为3.75kHz的单个子信道的FDMA发送;第二类终端或者第一类终端具有的能力为,上行支持正交子载波间隔为15kHz的单个子载波SC-FDMA发送;第三类终端或者第一类终端具有的能力为:上行支持正交子载波间隔为15kHz的多个子载波SC-FDMA的发送。这三类终端下行都支持正交频分多址OFDMA技术,且子载波间隔为15kHz。
然而,由于LTE系统最小的调度粒度是1个PRB,不支持单个子载波或者多个子载波粒度的调度,因此,这三类终端在现有LTE系统中都无法支持。比如,对于第一类终端,发送一个3.75kHz的单个子载波或子信道的信号,这个信号在时域上的长度至少是发送一个15kHz的单个子载波对应的信号的长度的4倍,而LTE系统的帧结构是按照15kHz子载 波间隔设计的,所以不支持第一类终端。因此,亟需一种调度方法、数据传输方法及装置。
发明内容
本发明的实施例提供一种调度方法、数据处理方法及装置,解决了现有LTE系统不支持新出现的三类终端的问题。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,提供一种调度方法,应用于通信系统,所述方法包括:
基站向第一类终端发送下行控制信息DCI,所述DCI包含用于指示所述第一类终端使用第一模式帧格式发送上行数据时的调度信息;
其中,所述第一模式帧格式包括至少1个上行子帧,每个上行子帧包含至少1个第一模式帧格式符号;
所述第一模式帧格式符号的持续时间至少为第二模式帧格式符号持续时间的4倍,所述第二模式帧格式符号为LTE系统单载波频分多址SC-FDMA符号。
其中,当LTE系统上行配置为普通循环前缀CP时,每个上行子帧持续时间为1毫秒并包含14个SC-FDMA符号,因此所述LTE系统每个SC-FDMA符号包含普通循环前缀且平均持续时间为1/14毫秒,值得注意的是LTE系统中每个上行子帧包含的SC-FDMA符号的持续时间可能不同,例如每个上行子帧包含的14个SC-FDMA符号中,有2个长SC-FDMA符号且每个长SC-FDMA符号的持续时间为71.88微秒,有12个短SC-FDMA符号且每个短SC-FDMA符号的持续时间为71.35微秒;当LTE系统上行配置为扩展循环前缀CP时,每个上行子帧持续时间为1毫秒并包含12个SC-FDMA符号且每个SC-FDMA符号的持续时间相同,因此所述LTE系统每个SC-FDMA符号包含扩展循环前缀且持续时间为1/12毫秒。
当所述LTE系统SC-FDMA符号不包含CP时,每个符号的持续时间为66.7微秒。
所述上行数据承载在物理上行共享信道PUSCH上或者承载在为第一类终端定义的发送上行数据的物理信道。
结合第一方面,在第一方面的第一种可能的实现方式中,所述方法还包括:
基站向第二类终端或者第三类终端发送下行控制信息DCI,所述DCI包含用于指示所述第二类终端或者第三类终端使用第二模式帧格式发送上行数据时的调度信息;
其中,所述第二模式帧格式包括适用于FDD系统的帧结构类型一,以及适用于TDD系统的帧结构类型二,所述第二模式帧格式中每个无线帧包含10个子帧,每个子帧的长度为1毫秒,且所述第二模式帧格式对应的物理资源信息中子载波间隔为15kHz。
例如,下行控制信息DCI包括用于指示终端发送上行数据的调度信息,其中至少包括在频域上使用的子载波的个数,使用的调制编码方式或者调制方式以及承载的传输块包含的比特数等中的一种。
需要说明的是,当上行采用单载波频分多址SC-FDMA时,第一模式帧格式符号可以是SC-FDMA符号;当上行采用FDMA频分多址时,第一模式帧格式符号可以是FDMA符号,本发明实施例对此不作具体限定。另外,第一模式帧格式符号可以是添加了循环前缀CP后的符号,也可以是未添加CP的符号;第二模式帧格式符号可以是添加了循环前缀CP后的符号,也可以未添加CP的符号。
由于该通信系统可以为频分双工(Frequency Division Duplex,FDD)系统,也可以为时分双工(Time Division Duplex,TDD)系统,因此,该第二模式帧格式包括适用于FDD系统的帧结构类型一,以及适用于TDD系统的帧结构类型二,且当该通信系统为FDD或者为TDD时,对应的第一模式帧格式是不相同的。
其中,第二模式帧格式包括的适用于FDD系统的帧结构类型一如图3所示,帧结构类型一中1个无线帧的时间长度为10毫秒,1个无线帧由20个时隙组成,每个时隙为0.5毫秒,两个时隙为1个子帧,也即是,帧结构类型一包括10个子帧,每个子帧的长度为1毫秒,且采用普通CP时,每个子帧包含14个OFDM符号或SC-FDMA符号,采用扩展CP时,每个子帧包含12个OFDM符号或者SC-FDMA符号。
第二模式帧格式包括的适用于TDD系统的帧结构类型二如图9所示, 第二模式帧格式包括1个10毫秒长的无线帧,由两个长度为5毫秒的半帧组成,每个半帧由5个1毫秒的子帧组成,其中包括下行子帧、特殊子帧和上行子帧,特殊子帧包括下行导频时隙DwPTS、上行导频时隙UpPTS和保护间隔GP,当下行转上行的切换点是以5毫秒为周期时,特殊子帧在两个半帧内都存在,当下行转上行的切换点是以10毫秒为周期时,特殊子帧仅在第一个半帧内存在,且采用普通CP时,每个子帧包含14个OFDM符号或SC-FDMA符号,采用扩展CP时,每个子帧包含12个OFDM符号或者SC-FDMA符号。
结合第一方面至第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,当所述终端为第一类终端时,所述调度信息包含使用第一模式帧格式发送上行数据使用的物理资源信息,所述物理资源信息包括时间资源和频率资源,所述时间资源包含至少一个上行子帧,所述频率资源包含一个子载波;
当所述终端为第二类终端或者第三类终端时,所述调度信息包含使用第二模式帧格式发送上行数据使用的物理资源信息,所述物理资源信息包括时间资源和频率资源,所述时间资源包含至少一个上行子帧,所述频率资源包含一个子载波或者多个子载波,且最多为12个子载波。具体地,当所述终端为第二类终端时,所述频率资源包含一个子载波;当所述终端为第二类终端时,所述频率资源包含一个子载波或者多个子载波,且最多为12个子载波。
第二方面,提供一种数据传输方法,所述方法包括:
终端向基站发送上行控制信息或者随机接入信息,所述终端为第一类终端,发送所述上行控制信息或者随机接入信息使用的帧格式为第一模式帧格式;
其中,所述第一模式帧格式包括至少1个上行子帧,每个上行子帧包含至少1个第一模式帧格式符号;
所述第一模式帧格式符号的持续时间至少为第二模式帧格式符号持续时间的4倍,所述第二模式帧格式符号为LTE系统单载波频分多址SC-FDMA符号。
所述上行控制信息UCI包括ACK或NACK用于确认终端是否正确接 收下行共享信道PDSCH上承载的下行数据;或者包含用于反应下行信道质量的信道状态信息CSI。所述上行控制信息承载在物理上行控制信道PUCCH上或者承载在为第一类终端定义的发送上行控制信息的物理信道上。所述随机接入信息包括随机接入前导码,承载在物理随机接入信道PRACH上或者承载在为第一类终端定义的发送上行随机接入信息的物理信道上。
可选的,所述第一模式帧格式为预先设置的,比如系统使用的特定的一种或几种载波频率对应使用第一模式帧格式,或者特定的下行同步信号序列或者特定的发送下行同步信号的格式即映射的具体时间和/或频率资源位置对应使用第一模式帧格式,或者下行系统信息包含或者特定的发送下行系统信息的格式即映射的具体时间和/或频率资源位置对应使用第一模式帧格式,所述终端根据上述特定对应关系或下行系统信息的指示信息获知使用第一模式帧格式后,可以直接向基站发送使用第一帧格式的上行控制信息或者随机接入信息。
结合第二方面,在第二方面的第一种可能的实现方式中,当所述终端向基站发送上行控制信息时,在所述终端向基站发送上行控制信息之前,所述方法还包括:
所述终端接收所述基站发送的下行控制信息DCI,所述DCI包含用于指示所述第一类终端使用第一模式帧格式发送上行数据时的调度信息。
结合第二方面,在第二方面的第二种可能的实现方式中,当所述终端为第二类终端或者第三类终端时,发送所述上行控制信息或者随机接入信息使用的帧格式为第二模式帧格式,所述第二模式帧格式包括适用于FDD系统的帧结构类型一,以及适用于TDD系统的帧结构类型二,所述第二模式帧格式包含10个子帧,每个子帧的长度为1毫秒,且所述第二模式帧格式对应的物理资源信息中子载波间隔为15kHz。
结合第二方面的第二种可能的实现方式,在第二方面的第三种可能的实现方式中,当所述终端向基站发送上行控制信息时,在所述终端向基站发送上行控制信息之前,所述方法还包括:
所述终端接收基站发送的下行控制信息DCI,所述DCI包含用于指 示所述第二类终端或者第三类终端使用第二模式帧格式发送上行数据时的调度信息。
结合第二方面至第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中,当所述终端为第一类终端时,所述调度信息包含使用第一模式帧格式发送上行数据使用的物理资源信息,所述物理资源信息包括时间资源和频率资源,所述时间资源包含至少一个上行子帧,所述频率资源包含一个子载波;
当所述终端为第二类终端或者第三类终端时,所述调度信息包含使用第二模式帧格式发送上行数据使用的物理资源信息,所述物理资源信息包括时间资源和频率资源,所述时间资源包含至少一个上行子帧,所述频率资源包含一个子载波或者多个子载波,且最多为12个子载波。具体地,当所述终端为第二类终端时,所述频率资源包含一个子载波;当所述终端为第二类终端时,所述频率资源包含一个子载波或者多个子载波,且最多为12个子载波。
结合第一方面或者第二方面,其中,当所述通信系统为频分双工FDD,且上行采用普通循环前缀CP时,若所述上行子帧持续时间为1毫秒,所述上行子帧包含3个第一模式帧格式符号,且所述3个第一模式帧格式符号的持续时间等于12个第二模式帧格式符号的持续时间且小于1毫秒;所述第二模式帧格式符号的持续时间为每个SC-FDMA符号包含普通循环前缀的持续时间。
可选的,当所述通信系统为FDD,且上行采用扩展CP时,若所述上行子帧持续时间为1毫秒,所述上行子帧包含3个第一模式帧格式符号,且所述3个第一模式帧格式符号的持续时间等于12个第二模式帧格式符号的持续时间且等于1毫秒,所述第二模式帧格式符号的持续时间为每个SC-FDMA符号包含扩展循环前缀的持续时间。
可选的,当所述通信系统为FDD,所述第一模式帧格式时间长度为N*10毫秒,其中N为1或大于0的偶数,所述第一模式帧格式中的上行子帧为M毫秒,其中M为大于0的偶数,且M<=N*10;
当所述第一模式帧格式中的上行子帧持续时间为2毫秒,且所述通信系统为上行采用普通CP时,所述上行子帧包含7个第一模式帧格式符号, 且所述7个第一模式帧格式符号的持续时间等于28个第二模式帧格式符号的持续时间且等于2毫秒,所述第二模式帧格式符号的持续时间为每个SC-FDMA符号包含普通循环前缀的持续时间;
当所述第一模式帧格式中的上行子帧持续时间为2毫秒,且所述通信系统为上行采用扩展CP时,所述上行子帧包含6个第一模式帧格式符号,且所述6个第一模式帧格式符号的持续时间等于24个第二模式帧格式符号的持续时间且等于2毫秒,所述第二模式帧格式符号的持续时间为每个SC-FDMA符号包含扩展循环前缀的持续时间。
可选的,当所述通信系统为时分双工TDD时,所述第一模式帧格式还包括至少一个特殊子帧和至少一个下行子帧,所述特殊子帧包含下行导频时隙DwPTS、上行导频时隙UpPTS和保护间隔GP中的至少一个。
可选的,当所述通信系统为TDD时,每个上行子帧至少包含1个第一模式帧格式符号,每个特殊子帧的时间长度为1毫秒;
当所述通信系统上行采用普通CP,且所述上行子帧持续时间为1毫秒时,所述上行子帧包含3个第一模式帧格式符号,且所述3个第一模式帧格式符号的持续时间等于12个第二模式帧格式符号的持续时间且小于1毫秒,所述第二模式帧格式符号的持续时间为每个SC-FDMA符号包含普通循环前缀的持续时间;
当所述通信系统上行采用扩展CP,且所述上行子帧持续时间为1毫秒时,所述上行子帧包含3个第一模式帧格式符号,且所述3个第一模式帧格式符号的持续时间等于12个第二模式帧格式符号的持续时间且等于1毫秒,所述第二模式帧格式符号的持续时间为每个SC-FDMA符号包含扩展循环前缀的持续时间。
可选的,当所述通信系统为TDD时,所述第一模式帧格式中下行转为上行的切换点是以5毫秒为周期,在5毫秒时间长度内包括1个下行子帧、1个特殊子帧和至少1个上行子帧,所述每个上行子帧包含至少1个第一模式帧格式符号,所述每个特殊子帧的时间长度为1毫秒;
当所述通信系统上行采用普通CP,且所述上行子帧持续时间为2毫秒时,所述上行子帧包含7个第一模式帧格式符号,且所述7个第一模式帧格式符号的持续时间等于28个第二模式帧格式符号的持续时间且等于 2毫秒,所述第二模式帧格式符号的持续时间为每个SC-FDMA符号包含普通循环前缀的持续时间;
当所述通信系统上行采用扩展CP,且所述上行子帧持续时间为2毫秒时,所述上行子帧包含6个第一模式帧格式符号,且所述6个第一模式帧格式符号的持续时间等于24个第二模式帧格式符号的持续时间且等于2毫秒,所述第二模式帧格式符号的持续时间为每个SC-FDMA符号包含扩展循环前缀的持续时间。
可选的,当所述通信系统为TDD时,所述第一模式帧格式中下行转为上行的切换点是以5毫秒为周期,在5毫秒时间长度内包括1个下行子帧、1个特殊子帧和至少1个上行子帧,所述每个上行子帧包含至少1个第一模式帧格式符号,所述每个特殊子帧的时间长度为1毫秒;
当所述通信系统上行采用普通CP,且所述上行子帧持续时间为3毫秒时,所述上行子帧包含10个第一模式帧格式符号,且所述10个第一模式帧格式符号的持续时间等于40个第二模式帧格式符号的持续时间且小于3毫秒,所述第二模式帧格式符号的持续时间为每个SC-FDMA符号包含普通循环前缀的持续时间;
当所述通信系统上行采用扩展CP,且所述上行子帧持续时间为3毫秒时,所述上行子帧包含9个第一模式帧格式符号,且所述9个第一模式帧格式符号的持续时间等于36个第二模式帧格式符号的持续时间且等于3毫秒,所述第二模式帧格式符号的持续时间为每个SC-FDMA符号包含扩展循环前缀的持续时间。
进一步的,当该通信系统为TDD时,第一模式帧格式中下行转为上行的切换点是以5毫秒为周期,在5毫秒时间长度内包含1个下行子帧、1个特殊子帧和至少1个上行子帧,每个上行子帧至少包含1个第一模式帧格式符号,在如图18、19所示的第一模式帧格式中,每个特殊子帧至少包含DwPTS和GP中的一个,且DwPTS和GP的长度和LTE系统中第二类帧结构类型中特殊子帧内的DwPTS和GP的长度分别相同,且根据特殊子帧的配置不同而不同,DwPTS和GP总的时长小于1毫秒。
具体的,当该通信系统下行采用普通CP时,每个下行子帧的长度为14个正交频分复用OFDM符号的长度;当该通信系统下行采用扩展CP 时,每个下行子帧的长度为12个正交频分复用OFDM符号的长度。
可选的,当该通信系统上行采用普通CP,且特殊子帧包含的DwPTS和GP符合表2中特殊子帧配置为5、6、7、8或9时,若上行子帧持续时间为T1+3毫秒,则上行子帧包含11个第一模式帧格式符号,且该11个第一模式帧格式符号的持续时间等于44个第二模式帧格式符号的持续时间且等于T1+3毫秒,T1为1毫秒-DwPTS占用时间-GP占用时间,其中DwPTS占用时间和GP占用时间的单位为毫秒,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含普通循环前缀的持续时间。
可选的,当该通信系统上行采用普通CP,且特殊子帧包含的DwPTS和GP符合表2中特殊子帧的配置为5、6、7、8或9时,若上行子帧持续时间为T2+1毫秒,则上行子帧包含4个第一模式帧格式符号,且该4个第一模式帧格式符号的持续时间等于16个第二模式帧格式符号的持续时间且等于T2+1毫秒,T2为1毫秒-DwPTS占用时间-GP占用时间,其中DwPTS占用时间和GP占用时间的单位为毫秒,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含普通循环前缀的持续时间。
进一步的,当该通信系统为TDD时,第一模式帧格式中下行转为上行的切换点是以10毫秒为周期,且在前5毫秒时间长度内包括一个下行子帧、1个特殊子帧和至少1个上行子帧,后5毫秒时间长度内只包括下行子帧,且每个下行子帧持续时间为1毫秒。其中,每个上行子帧至少包含1个第一模式帧格式符号,若每个特殊子帧至少包含DwPTS和GP中的一个,且DwPTS和GP的长度和LTE系统中第二类帧结构类型中特殊子帧内的DwPTS和GP的长度分别相同,则DwPTS和GP总的时长小于1毫秒。
具体的,当该通信系统下行采用普通CP时,每个下行子帧的长度为14个正交频分复用OFDM符号的长度;当该通信系统下行采用扩展CP时,每个下行子帧的长度为12个正交频分复用OFDM符号的长度。
其中,当该通信系统上行采用普通CP时,若在前5毫秒时间长度内上行子帧持续时间为3毫秒,则上行子帧包含10个第一模式帧格式符号,且10个第一模式帧格式符号的持续时间等于40个第二模式帧格式符号的持续时间且小于3毫秒,第二模式帧格式符号的持续时间为每个 SC-FDMA符号包含普通循环前缀的持续时间;当该特殊子帧包含的DwPTS和GP符合表2中特殊子帧的配置为5、6、7、8或9时,若在前5毫秒时间长度内上行子帧持续时间为T1+3毫秒,则上行子帧包含11个第一模式帧格式符号,且该11个第一模式帧格式符号的持续时间等于44个第二模式帧格式符号的持续时间且等于T1+3毫秒,T1为1毫秒-DwPTS占用时间-GP占用时间,其中DwPTS占用时间和GP占用时间的单位为毫秒,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含普通循环前缀的持续时间。后5毫秒的时间长度内只包含下行子帧,且下行子帧与第二模式帧格式的下行子帧一致,本发明在此不再赘述。
当该通信系统上行采用扩展CP时,若在前5毫秒时间长度内上行子帧持续时间为3毫秒,则上行子帧包含9个第一模式帧格式符号,且9个第一模式帧格式符号的持续时间等于36个第二模式帧格式符号的持续时间且等于3毫秒,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含扩展循环前缀的持续时间。后5毫秒的时间长度内只包含下行子帧,且下行子帧与第二模式帧格式的下行子帧一致,本发明在此不再赘述。
可选的,当该通信系统上行采用普通CP时,在前5毫秒时间长度内上行子帧持续时间为2毫秒,上行子帧包含7个第一模式帧格式符号,且7个第一模式帧格式符号的持续时间等于28个第二模式帧格式符号的持续时间且小于2毫秒,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含普通循环前缀的持续时间;后5毫秒的时间长度内只包含下行子帧,且下行子帧与第二模式帧格式的下行子帧一致,本发明在此不再赘述。
当该通信系统上行采用扩展CP时,在前5毫秒时间长度内上行子帧持续时间为2毫秒,上行子帧包含6个第一模式帧格式符号,且6个第一模式帧格式符号的持续时间等于24个第二模式帧格式符号的持续时间且等于2毫秒,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含扩展循环前缀的持续时间;后5毫秒的时间长度内只包含下行子帧,且下行子帧与第二模式帧格式的下行子帧一致,本发明在此不再赘述。
可选的,当该通信系统上行采用普通CP时,若在前5毫秒时间长度内上行子帧持续时间为1毫秒,则上行子帧包含3个第一模式帧格式符号,且该3个第一模式帧格式符号的持续时间等于12个第二模式帧格式符号 的持续时间且小于1毫秒;当特殊子帧包含的DwPTS和GP符合表2中特殊子帧的配置为5、6、7、8或9时,若在前5毫秒时间长度内上行子帧持续时间为T2+1毫秒,则上行子帧包含4个第一模式帧格式符号,且该4个第一模式帧格式符号的持续时间等于16个第二模式帧格式符号的持续时间且等于T2+1毫秒,T2为1毫秒-DwPTS占用时间-GP占用时间,其中DwPTS占用时间和GP占用时间的单位为毫秒,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含普通循环前缀的持续时间。后5毫秒的时间长度内只包含下行子帧,且下行子帧与第二模式帧格式的下行子帧一致,本发明在此不再赘述。
当该通信系统上行采用扩展CP时,若在前5毫秒时间长度内上行子帧持续时间为1毫秒,则上行子帧包含3个第一模式帧格式符号,且该3个第一模式帧格式符号的持续时间等于12个第二模式帧格式符号的持续时间且等于1毫秒,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含扩展循环前缀的持续时间。后5毫秒的时间长度内只包含下行子帧,且下行子帧与第二模式帧格式的下行子帧一致,本发明在此不再赘述。
进一步的,当该通信系统为TDD时,第一模式帧格式中下行转为上行的切换点是以5毫秒为周期,且前一个5毫秒时间长度内和后一个5毫秒时间长度内包含的1个上行子帧的持续时间长度不同,每个5毫秒时间长度内包括1个下行子帧,1个特殊子帧和至少1个上行子帧,每个上行子帧包含至少1个第一模式帧格式符号,每个特殊子帧的时间长度小于或等于1毫秒。当通信系统下行采用普通CP时,每个下行子帧的长度为14个正交频分复用OFDM符号的长度;当通信系统下行采用扩展CP时,每个下行子帧的长度为12个正交频分复用OFDM符号的长度。
其中,当该通信系统上行采用普通CP时,若前一个5毫秒时间长度内包含的上行子帧持续时间为3毫秒,则上行子帧包含10个第一模式帧格式符号,且10个第一模式帧格式符号的持续时间等于40个第二模式帧格式符号的持续时间且小于3毫秒,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含普通循环前缀的持续时间;当特殊子帧包含的DwPTS和GP符合表2中特殊子帧的配置为5、6、7、8或9时,若前一个5毫秒时间长度内包含的上行子帧持续时间为T1+3毫秒,则上行子帧 包含11个第一模式帧格式符号,且11个第一模式帧格式符号的持续时间等于44个第二模式帧格式符号的持续时间且等于3毫秒,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含普通循环前缀的持续时间。若后一个5毫秒时间长度内包含的上行子帧持续时间为2毫秒,则上行子帧包含7个第一模式帧格式符号,且7个第一模式帧格式符号的持续时间等于28个第二模式帧格式符号的持续时间且等于2毫秒,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含普通循环前缀的持续时间。
另外,当该通信系统上行采用扩展CP时,若前一个5毫秒时间长度内包含的上行子帧持续时间为3毫秒,则上行子帧包含9个第一模式帧格式符号,且9个第一模式帧格式符号的持续时间等于36个第二模式帧格式符号的持续时间且等于3毫秒,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含扩展循环前缀的持续时间。若后一个5毫秒时间长度内包含的上行子帧持续时间为2毫秒,则上行子帧包含6个第一模式帧格式符号,且6个第一模式帧格式符号的持续时间等于24个第二模式帧格式符号的持续时间且等于2毫秒,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含扩展循环前缀的持续时间。
可选的,在所述至少一个上行子帧中的至少一个第一模式帧格式符号上发送上行解调参考信号。
可选的,当1毫秒时间长度包含的第一模式帧格式符号中的最后一个符号与1毫秒时间长度内的最后一个第二模式帧格式符号有部分重叠或完全重叠时,在所述1毫秒时间长度内的最后一个第一模式帧格式符号上不发送上行信号和信道,当所述第一模式帧格式符号为包含普通CP的符号时,所述第二模式帧格式符号为包含普通CP的SC-FDMA符号;当所述第一模式帧格式符号为包含扩展CP的符号时,所述第二模式帧格式符号为包含扩展CP的SC-FDMA符号;当所述第一模式帧格式符号为不包含CP的符号时,所述第二模式帧格式符号为不包含CP的SC-FDMA符号。
可选的,所述第二模式帧格式包括适用于TDD系统的帧结构类型二,所述帧结构类型二包括1个特殊子帧、多个下行子帧和多个上行子帧,且所述1个特殊子帧、每个下行子帧和每个上行子帧的持续时间为1毫秒, 所述特殊子帧包括下行导频时隙DwPTS、上行导频时隙UpPTS和保护间隔GP。
可选的,当所述第一模式帧格式包括UpPTS,且所述第一模式帧格式中UpPTS的长度小于等于帧结构类型二中UpPTS的长度时,在所述第一模式帧格式包含的所述UpPTS上不发送上行信号和信道。
可选的,当所述第二模式帧格式包括不可用上行子帧时,在所述第一模式帧格式中与所述不可用上行子帧的持续时间对应的第一模式帧格式符号上不发送上行信号和信道,所述不可用上行子帧为一个或多个上行子帧,每个上行子帧持续时间为1毫秒,所述不可用上行子帧是指在不可用上行子帧内的全部或部分频率资源为预留资源,所述预留资源用于特殊终端或者用于特殊通信系统支持的终端和基站或终端之间的通信,而对非特殊终端或非特殊通信系统支持的终端和基站或终端之间的通信外,不能使用预留的资源,例如LTE系统中不可用上行子帧中的全部或部分频率资源为预留资源并用于设备和设备之间这种特殊系统的通信,而在不可用上行子帧上普通LTE终端不能使用所述预留资源。
第一类终端通过接收系统信息获知不可用上行子帧的信息,包括哪些上行子帧为不可用上行子帧,或进一步包括哪些不可用上行子帧内哪些频域资源为预留资源等。
第三方面,提供一种基站,所述基站包括:处理器、存储器、系统总线和通信接口;
所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述系统总线连接,当所述基站运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述基站执行第一方面至第一方面的第二种可能的实现方式中的任一项所述的调度方法。
第四方面,提供一种终端,所述终端包括:处理器、存储器、系统总线和通信接口;
所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述系统总线连接,当所述基站运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述终端执行第二方面至第二方面的第四种可能的实现方式中的任一项所述的数据传输方法。
本发明的实施例提供的调度方法、数据传输方法及装置,基站通过向第一类终端发送下行控制信息DCI,DCI包含用于指示第一类终端使用第一模式帧格式发送上行数据时的调度信息,其中,第一模式帧格式包括至少1个上行子帧,每个上行子帧包含至少1个第一模式帧格式符号,且第一模式帧格式符号的持续时间至少为第二模式帧格式符号持续时间的4倍,第二模式帧格式符号为LTE系统SC-FDMA符号,以及向第二类终端或者第三类终端发送下行控制信息DCI,DCI包含用于指示第二类终端或者第三类终端使用第二模式帧格式发送上行数据时的调度信息,从而使得LTE系统中的基站能够在支持现有LTE终端的基础上,也支持FDD和TDD系统下新出现的第一类终端、第二类终端和第三类终端,节省了时间资源和频率资源,同时也提高了通信系统和基站的利用率。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种通信系统的系统架构图;
图2为本发明实施例提供的一种调度方法的流程示意图;
图3为本发明实施例提供的一种第二模式帧结构的结构示意图;
图4为本发明实施例提供的第一种第一模式帧结构的结构示意图;
图5为本发明实施例提供的第二种第一模式帧结构的结构示意图;
图6为本发明实施例提供的第三种第一模式帧结构的结构示意图;
图7为本发明实施例提供的第四种第一模式帧结构的结构示意图;
图8为本发明实施例提供的另一种调度方法的流程示意图;
图9为本发明实施例提供的另一种第二模式帧结构的结构示意图;
图10为本发明实施例提供的第五种第一模式帧结构的结构示意图;
图11为本发明实施例提供的第六种第一模式帧结构的结构示意图;
图12为本发明实施例提供的第七种第一模式帧结构的结构示意图;
图13为本发明实施例提供的第八种第一模式帧结构的结构示意图;
图14为本发明实施例提供的第九种第一模式帧结构的结构示意图;
图15为本发明实施例提供的第十种第一模式帧结构的结构示意图;
图16为本发明实施例提供的第十一种第一模式帧结构的结构示意图;
图17为本发明实施例提供的第十二种第一模式帧结构的结构示意图;
图18为本发明实施例提供的第十三种第一模式帧结构的结构示意图;
图19为本发明实施例提供的第十四种第一模式帧结构的结构示意图;
图20为本发明实施例提供的一种基站的结构示意图;
图21为本发明实施例提供的一种终端的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在介绍本发明之前,首先对本发明中的用户终端类型和应用场景进行简单介绍。
本发明实施例中的用户终端类型主要包括现有LTE终端和新出现终端。其中,现有LTE终端,上行支持子载波间隔为15kHz的正交子载波SC-FDMA的发送,最小的调度粒度是1个PRB,包含12个正交子载波即180kHz,不支持单个子载波或者多个子载波粒度的调度。新出现终端主要包括三类,第一类终端,上行支持正交子载波间隔为3.75kHz的单个子载波SC-FDMA发送或子信道带宽为3.75kHz的单个子信道的FDMA发送;第二类终端,上行支持正交子载波间隔为15kHz的单个子载波SC-FDMA发送;第三类终端:上行支持正交子载波间隔为15kHz的多个子载波SC-FDMA的发送。当然,这三类终端也可以是一种终端,这一种终端具有其中一种或两种或同时具有上述三类终端的功能,且这三类终端的下行都支持正交频分多址OFDMA技术,且子载波间隔为15kHz。上述三类终端可能是三种不同的终端类型,也可能只是一种终端类型但具有其 中一种或两种或三种不同的终端能力,为方便叙述统称为三类终端,而在本发明中不对终端类型和终端能力作具体限定。另外,这三类终端主要用于物联网通信,因此支持这三类新出现终端的系统可以称为窄带物联网NBIOT系统。
本发明实施例中的应用场景根据使用的频率资源的不同,大致可以分为三种场景。其中,第一种场景,即独立部署场景,专用的频率资源组网支持新的三种终端,所用频率资源可以是位于从GSM系统中回收重新利用的频段,或者是位于3G系统或是LTE系统所用的频段资源。在独立部署场景中,系统中仅支持新的三种终端类型中的一种或多种,不存在其他类型的LTE终端。第二种场景,即保护带部署场景,系统所使用的频率资源位于LTE系统使用的频段的保护带内。第三种场景,即带内部署场景,所使用的频率资源位于LTE系统的一个标准载波,如10MHz或20MHz的带宽之内,即LTE系统的一个标准载波内同时支持普通LTE终端以及新的三种终端类型中的一种或多种,因此,为了不影响普通LTE终端的正常通信,第三种场景中NBIOT系统发送下行信道能使用的最大发送功率可能更小。
本发明的实施例所应用的通信系统的系统架构如图1所示,该系统架构图包括基站101、用户终端102、以及通信信道103。
其中,基站101具有共享信道的调度功能,具有基于发送到用户终端102的分组数据的历史来建立调度,调度就是在多个用户终端102共用传输资源时,需要有一种机制来有效地分配物理层资源,以获得统计复用增益。
用户终端102可以是多个用户终端,且用户终端102具有通过与基站101之间建立的通信信道103而发送和接收数据的功能。用户终端102根据通过调度控制信道发送的信息,进行共享信道的发送或接收处理。另外,用户终端102可以是移动台,手机、计算机以及便携终端等等,且该用户终端102的类型可以相同,也可以不同。
基站101与用户终端102之间通过通信信道103进行数据的接收和发送,该通信信道103可以是无线通信信道,且在无线通信信道中,至少存在共享信道和调度控制信道,共享信道是为了发送和接收分组而在多个用 户终端102之间公用,调度控制信道用于发送共享信道的分配、以及相应的调度结果等。
图2为本发明实施例提供的一种调度方法的流程示意图,应用于通信系统,参见图2,该方法包括以下几个步骤。
步骤201:基站向第一类终端发送下行控制信息DCI,DCI包含用于指示第一类终端使用第一模式帧格式发送上行数据时的调度信息。
其中,第一模式帧格式包括至少1个上行子帧,每个上行子帧包含至少1个第一模式帧格式符号;第一模式帧格式符号的持续时间至少为第二模式帧格式符号持续时间的4倍,第二模式帧格式符号为LTE系统单载波频分多址SC-FDMA符号。
需要说明的是,当上行采用单载波频分多址SC-FDMA时,第一模式帧格式符号可以是SC-FDMA符号;当上行采用FDMA频分多址时,第一模式帧格式符号可以是FDMA符号,本发明实施例对此不作具体限定。另外,第一模式帧格式符号可以是添加了循环前缀CP后的符号,也可以是未添加CP的符号;第二模式帧格式符号可以是添加了循环前缀CP后的符号,也可以未添加CP的符号。
其中,当LTE系统上行配置为普通循环前缀CP时,每个上行子帧持续时间为1毫秒并包含14个SC-FDMA符号,因此所述LTE系统每个SC-FDMA符号包含普通循环前缀且平均持续时间为1/14毫秒,值得注意的是LTE系统中每个上行子帧包含的SC-FDMA符号的持续时间可能不同,例如每个上行子帧包含的14个SC-FDMA符号中,有2个长SC-FDMA符号且每个长SC-FDMA符号的持续时间为71.88微秒,有12个短SC-FDMA符号且每个短SC-FDMA符号的持续时间为71.35微秒;当LTE系统上行配置为扩展循环前缀CP时,每个上行子帧持续时间为1毫秒并包含12个SC-FDMA符号且每个SC-FDMA符号的持续时间相同,因此所述LTE系统每个SC-FDMA符号包含扩展循环前缀且持续时间为1/12毫秒。当所述LTE系统SC-FDMA符号不包含CP时,每个符号的持续时间为66.7微秒。
上行数据可以承载在物理上行共享信道PUSCH上,或者承载在为第一类终端定义的发送上行数据的物理信道上。
由于该通信系统可以为频分双工(Frequency Division Duplex,FDD)系统,也可以为时分双工(Time Division Duplex,TDD)系统,因此,该第二模式帧格式包括适用于FDD系统的帧结构类型一,以及适用于TDD系统的帧结构类型二,且当该通信系统为FDD或者为TDD时,对应的第一模式帧格式是不相同的。
其中,第二模式帧格式包括的适用于FDD系统的帧结构类型一如图3所示,帧结构类型一中1个无线帧的时间长度为10毫秒,1个无线帧由20个时隙组成,每个时隙为0.5毫秒,两个时隙为1个子帧,也即是,帧结构类型一包括10个子帧,每个子帧的长度为1毫秒,且采用普通CP时,每个子帧包含14个OFDM符号或SC-FDMA符号,采用扩展CP时,每个子帧包含12个OFDM符号或者SC-FDMA符号。
另外,FDD系统下对应的第一模式帧格式如下所述。
具体的,如图4所示,当该通信系统为频分双工FDD,且上行采用普通循环前缀CP时,若上行子帧持续时间为1毫秒,上行子帧包含3个第一模式帧格式符号,且该3个第一模式帧格式符号的持续时间等于12个第二模式帧格式符号的持续时间且小于1毫秒,图中M1表示第一模式帧格式,M1中的数值0-2表示第一模式帧格式符号的编号,M2表示第二模式帧格式,M2中的数值0-6表示第二模式帧格式符号的编号,U表示上行子帧,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含普通CP的持续时间。
如图5所示,当该通信系统为FDD,且上行采用扩展CP时,若上行子帧持续时间为1毫秒,上行子帧包含3个第一模式帧格式符号,且3个第一模式帧格式符号的持续时间等于12个第二模式帧格式符号的持续时间且等于1毫秒,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含扩展CP的持续时间。
进一步的,当该通信系统为FDD,第一模式帧格式时间长度或第一模式帧格式中1个无线帧的时间长度为N*10毫秒,其中N为1或大于0的偶数,第一模式帧格式中的上行子帧为M毫秒,其中M为大于0的偶数,且M<=N*10;
如图6所示,当第一模式帧格式中的上行子帧持续时间为2毫秒,且 通信系统为上行采用普通CP时,上行子帧包含7个第一模式帧格式符号,且该7个第一模式帧格式符号的持续时间等于28个第二模式帧格式符号的持续时间且等于2毫秒。也即是,当该通信系统为上行采用普通CP时,7个第一模式帧格式符号的持续时间等于28个第二模式帧格式符号的持续时间,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含普通CP的持续时间。
如图7所示,当第一模式帧格式中的上行子帧持续时间为2毫秒,且通信系统为上行采用扩展CP时,上行子帧包含6个第一模式帧格式符号,且该6个第一模式帧格式符号的持续时间等于24个第二模式帧格式符号的持续时间且等于2毫秒。也即是,当该通信系统为上行采用扩展CP时,6个第一模式帧格式符号的持续时间等于24个第二模式帧格式符号的持续时间,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含扩展CP的持续时间。
进一步的,在第一模式帧格式包括的至少1个上行子帧中的至少1个第一模式帧格式符号上发送上行解调参考信号,该上行解调参考信号用于帮助解调上行数据或上行控制信息。
也即是,当第一模式帧格式包括一个上行子帧,该上行子帧包括至少一个第一模式帧格式符号时,该上行解调参考信号可以在该至少一个第一模式帧格式符号中的一个或者多个第一模式帧格式符号上发送;当第一模式帧格式包括多个上行子帧,也即是包括两个或者两个以上的上行子帧时,可以在该多个上行子帧中任意一个或者多个内发送该上行解调参考信号,且在上行子帧包括的至少一个第一模式帧格式符号中的一个或者多个第一模式帧格式符号上发送。
比如,当第一模式帧格式包括一个上行子帧,该上行子帧包括3个第一模式帧格式符号时,该上行解调参考信号可以在3个第一模式帧格式符号中的任意一个或者两个第一模式帧格式符号上发送,也可以在3个第一模式帧格式符号都发送上行解调参考信号;当第一模式帧格式包括两个上行子帧,每个上行子帧包括3个第一模式帧格式符号时,可以在两个上行子帧中的任意一个内发送上行解调参考信号,也可以在两个上行子帧都发送上行解调参考信号,且该上行解调参考信号可以在两个上行子帧包括的 第一模式帧格式符号中的任意一个或者多个第一模式帧格式符号上发送,本发明实施例对此不作限定。
可选的,当1毫秒时间长度包含的第一模式帧格式符号中的最后一个第一模式帧格式符号与1毫秒时间长度内的最后一个第二模式帧格式符号有部分重叠或完全重叠时,1毫秒时间长度内的最后一个第一模式帧格式符号上不发送上行信号和信道,当第一模式帧格式符号为包含普通CP的符号时,第二模式帧格式符号为包含普通CP的SC-FDMA符号;当第一模式帧格式符号为包含扩展CP的符号时,第二模式帧格式符号为包含扩展CP的SC-FDMA符号;当第一模式帧格式符号为不包含CP的符号时,第二模式帧格式符号为不包含CP的SC-FDMA符号。
也即是,当第一模式帧格式符号的边界与第二模式帧格式符号的边界是对齐的时,若在第三种场景,即带内部署场景时,为了不影响现有LTE终端发送探测参考信号(Sounding Reference Signal,SRS),在1毫秒时间长度包含的第一模式帧格式符号中的最后一个第一模式帧格式符号与1毫秒时间长度内的最后一个第二模式帧格式符号有部分重叠或完全重叠时,1毫秒时间长度内的最后一个第一模式帧格式符号上不发送上行信号和信道。可选地,对于第一种独立部署场景下和第二种保护带场景下,在1毫秒时间长度包含的第一模式帧格式符号中的最后一个第一模式帧格式符号与1毫秒时间长度内的最后一个第二模式帧格式符号有部分重叠或完全重叠时,1毫秒时间长度内的最后一个第一模式帧格式符号上不发送上行信号和信道。
比如,如图5所示的第一模式帧格式,若该3个第一模式帧格式符号分别为符号0、符号1、符号2,则符号2上不发送上行信号或信道;如图6所示的第一模式帧格式,若该7个第一模式帧格式符号分别为符号0、符号1、…、符号5、符号6,则在符号3和符号6上不发送上行信号或信道;如图7所示的第一模式帧格式,若该6个第一模式帧格式符号分别为符号0、符号1、…、符号4、符号5,则在符号2和符号5上不发送上行信号或信道。
进一步的,当第二模式帧格式包括不可用上行子帧时,在第二模式帧格式中不可用上行子帧的持续时间内对应的第一模式帧格式符号上不发 送上行信号和信道,所述不可用上行子帧为一个或多个上行子帧,每个上行子帧持续时间为1毫秒,所述不可用上行子帧是指在不可用上行子帧内的全部或部分频率资源为预留资源,所述预留资源用于特殊终端或者用于特殊通信系统支持的终端和基站或终端之间的通信,而对非特殊终端或非特殊通信系统支持的终端和基站或终端之间的通信外,不能使用预留的资源,例如LTE系统中不可用上行子帧中的全部或部分频率资源为预留资源并用于设备和设备之间这种特殊系统的通信,而在不可用上行子帧上普通LTE终端不能使用所述预留资源。
第一类终端通过接收系统信息获知不可用上行子帧的信息,包括哪些上行子帧为不可用上行子帧,或进一步包括哪些不可用上行子帧内哪些频域资源为预留资源等。
也即是,在第三种场景,即带内部署场景时,若第二模式帧格式包括不可用上行子帧,在与第二模式帧格式中不可用上行子帧的持续时间内对应的第一模式帧格式符号上不发送上行信号和信道,或者将本该在与第二模式帧格式中不可用上行子帧的持续时间对应的第一模式帧格式符号上上行信号或信道顺序推迟到下一个与第二模式帧格式中可用上行子帧的持续时间对应的第一模式帧格式符号上发送,所述可用上行子帧是指除第二模式帧格式中不可用上行子帧之外的上行子帧。
进一步的,该调度信息包含第一模式帧格式对应的物理资源信息,该物理资源信息包括时间资源和频率资源,时间资源包含至少一个上行子帧,频率资源包含一个子载波,且子载波间隔为3.75kHz。
其中,该调度信息包含的物理资源信息中的时间资源可以称为调度长度,最小的调度长度为3个第一模式帧格式符号的长度,实际的调度长度可以根据基站与终端之间的距离,或者根据终端在小区中所要求达到的覆盖要求,基站可以支持至少一个调度长度。比如,调度长度A1:连续NA1个上行子帧,小区中支持的最大覆盖为LA1,调度长度A2:连续NA2个上行子帧,小区中支持的最大覆盖为LA2等等,LA2的覆盖范围大于或等于比LA1的覆盖范围,NA1、NA2为正整数,NA2大于或等于NA1且可以事先设置,本发明实施例对此不作具体限定。另外,对于每种调度长度,该调度信息包含的物理资源信息中的频率资源可以为1个子载波或多 个子载波,包含的子载波的数量也可以事先设置,本发明实施例对此不作具体限定。
步骤202:基站向第二类终端或者第三类终端发送下行控制信息DCI,该DCI包含用于指示第二类终端或者第三类终端使用第二模式帧格式发送上行数据时的调度信息。
其中,第二模式帧格式包括适用于FDD系统的帧结构类型一,以及适用于TDD系统的帧结构类型二,当该通信系统为FDD时,第二模式帧格式是指适用于FDD系统的帧结构类型一,帧结构类型一为一个10毫秒时间长度的无线帧,由20个时隙组成,每个时隙为0.5毫秒,两个时隙为1个子帧,也即是,第二模式帧格式包括10个子帧,每个子帧的长度为1毫秒,且第二模式帧格式对应的物理资源信息中子载波间隔为15kHz。
例如,下行控制信息DCI包括用于指示终端发送上行数据的调度信息,其中至少包括在频域上使用的子载波的个数,使用的调制编码方式或者调制方式以及承载的传输块包含的比特数等中的一种。
需要说明的是,当通信系统为FDD系统时,具体的第二模式帧格式可以参考相关技术,本发明实施例在此不再赘述。
步骤203:终端接收基站发送的下行控制信息DCI,并基于下行控制信息发送上行数据。
具体的,当该终端为第一类终端时,该DCI包含用于指示第一类终端使用第一模式帧格式发送上行数据时的调度信息,第一类终端在接收到DCI后向基站发送第一模式帧格式的上行数据;当该终端为第二类终端或者第三类终端时,该DCI包含用于指示第二类终端或者第三类终端使用第二模式帧格式发送上行数据时的调度信息,第二类终端或者第三类终端在接收到调度信息后,向基站发送第二模式帧格式的上行数据。
需要说明的是,当终端为第二类终端或者第三类终端时,该调度信息包含第二模式帧格式对应的物理资源信息,该物理资源信息包括时间资源和频率资源,时间资源包含至少一个上行子帧,频率资源包含一个子载波,且子载波之间的间隔为15kHz。
其中,该调度信息包含的物理资源信息中的时间资源可以称为调度长度,最小的调度长度为1个第二模式帧格式中一个上行子帧的长度,实际 的调度长度可以根据基站与终端之间的距离,或者根据终端在小区中所要求达到的覆盖要求,基站可以支持至少一个调度长度。比如,调度长度B1:连续NB1个上行子帧,小区中支持的最大覆盖为LB1,调度长度B2:连续NB2个上行子帧,小区中支持的最大覆盖为LB2等等,LB2的覆盖范围大于或等于比LB1的覆盖范围,NB1、NB2为正整数,NB2大于或等于NB1且可以事先设置,本发明实施例对此不作具体限定。另外,对于每种调度长度,当终端为第二类终端时,该调度信息包含的物理资源信息中的频率资源为1个子载波;当终端为第三类终端时,该调度信息包含的物理资源信息中的频率资源至少为1个子载波,且最多为12个子载波。
可选的,在步骤203之后,该方法还包括:
步骤204:终端向基站发送上行控制信息或者随机接入信息。
具体的,当该终端为第一类终端,该上行控制信息或者随机接入信息使用的帧格式为第一模式帧格式。其中,第一模式帧格式包括至少1个上行子帧,每个上行子帧包含至少1个第一模式帧格式符号;第一模式帧格式符号的持续时间至少为第二模式帧格式符号持续时间的4倍,第二模式帧格式符号为LTE系统SC-FDMA符号。
需要说明的是,该上行控制信息UCI包括ACK或NACK用于确认终端是否正确接收下行共享信道PDSCH上承载的下行数据;或者包含用于反应下行信道质量的信道状态信息CSI。该上行控制信息承载在物理上行控制信道PUCCH上,或者承载在为第一类终端定义的发送上行控制信息的物理信道上。该随机接入信息包括随机接入前导码,承载在物理随机接入信道PRACH上,或者承载在为第一类终端定义的发送上行随机接入信息的物理信道上。
当该终端为第二类终端或者第三类终端时,该上行控制信息或者随机接入信息使用的帧格式为第二模式帧格式,第二模式帧格式包括适用于FDD系统的帧结构类型一,以及适用于TDD系统的帧结构类型二,第二模式帧格式包含10个子帧,每个子帧的长度为1毫秒,且第二模式帧格式对应的物理资源信息中子载波间隔为15kHz。
需要说明的是,当终端向基站发送上行控制信息或者随机接入信息时,终端发送的上行控制信息或者随机接入信息的帧格式可以为第一模式 帧格式或者第二模式帧格式,且该第一模式帧格式和第二模式帧格式不仅可以从基站发送的下行控制信息DCI中获取,也可以预先进行设置,且在设置之后,第一类终端可以直接使用第一模式帧格式发送上行控制信息或随机接入信息,第二类终端或第三类终端也可以直接使用第二模式帧格式发送上行控制信息或随机接入信息,本发明实施例对此不作限定。
比如,第一模式帧格式为预先设置,即通信系统使用的特定的一种或几种载波频率对应使用第一模式帧格式,或者特定的下行同步信号序列或者特定的发送下行同步信号的格式即映射的具体时间和/或频率资源位置对应使用第一模式帧格式,或者下行系统信息包含或者特定的发送下行系统信息的格式即映射的具体时间和/或频率资源位置对应使用第一模式帧格式,终端根据上述特定对应关系或下行系统信息的指示信息获知使用第一模式帧格式后,可以直接向基站发送使用第一帧格式的上行控制信息或者随机接入信息。
本发明实施例提供一种调度方法,基站通过向第一类终端发送下行控制信息DCI,DCI包含用于指示第一类终端使用第一模式帧格式发送上行数据时的调度信息,其中,第一模式帧格式包括至少1个上行子帧,每个上行子帧包含至少1个第一模式帧格式符号,且第一模式帧格式符号的持续时间至少为第二模式帧格式符号持续时间的4倍,第二模式帧格式符号为LTE系统SC-FDMA符号,以及向第二类终端或者第三类终端发送下行控制信息DCI,DCI包含用于指示第二类终端或者第三类终端使用第二模式帧格式发送上行数据时的调度信息,从而使得LTE系统中的基站能够在支持现有LTE终端的基础上,也支持FDD系统下新出现的第一类终端、第二类终端和第三类终端,节省了频率资源,同时也提高了基站的利用率。
图8为本发明实施例提供的一种调度方法的流程示意图,应用于通信系统,该方法包括以下几个步骤。
步骤301:基站向第一类终端发送下行控制信息DCI,DCI包含用于指示第一类终端使用第一模式帧格式发送上行数据时的调度信息。
其中,第一模式帧格式包括至少一个上行子帧,每个上行子帧包含至少一个第一模式帧格式符号;第一模式帧格式符号的持续时间至少为第二 模式帧格式符号持续时间的4倍,第二模式帧格式符号为LTE系统SC-FDMA符号。
其中,当LTE系统上行配置为普通循环前缀CP时,每个上行子帧持续时间为1毫秒并包含14个SC-FDMA符号,因此所述LTE系统每个SC-FDMA符号包含普通循环前缀且平均持续时间为1/14毫秒,值得注意的是LTE系统中每个上行子帧包含的SC-FDMA符号的持续时间可能不同,例如每个上行子帧包含的14个SC-FDMA符号中,有2个长SC-FDMA符号且每个长SC-FDMA符号的持续时间为71.88微秒,有12个短SC-FDMA符号且每个短SC-FDMA符号的持续时间为71.35微秒;当LTE系统上行配置为扩展循环前缀CP时,每个上行子帧持续时间为1毫秒并包含12个SC-FDMA符号且每个SC-FDMA符号的持续时间相同,因此所述LTE系统每个SC-FDMA符号包含扩展循环前缀且持续时间为1/12毫秒。当所述LTE系统SC-FDMA符号不包含CP时,每个符号的持续时间为66.7微秒。
另外,上行数据可以承载在物理上行共享信道PUSCH上,或者承载在为第一类终端定义的发送上行数据的物理信道上。
需要说明的是,当上行采用SC-FDMA时,第一模式帧格式符号可以是SC-FDMA符号;当上行采用FDMA频分多址时,第一模式帧格式符号可以是FDMA符号,本发明实施例对此不作具体限定。另外,第一模式帧格式符号可以是添加了循环前缀CP后的符号,也可以是未添加CP的符号;第二模式帧格式符号可以是添加了循环前缀CP后的符号,也可以未添加CP的符号。
由于该通信系统可以为频分双工FDD系统,也可以为时分双工TDD系统,因此,该第二模式帧格式包括适用于FDD系统的帧结构类型一,以及适用于TDD系统的帧结构类型二,且当该通信系统为FDD或者为TDD时,对应的第一模式帧格式是不相同的。
其中,第二模式帧格式包括的适用于TDD系统的帧结构类型二如图9所示,第二模式帧格式包括1个10毫秒长的无线帧,由两个长度为5毫秒的半帧组成,每个半帧由5个1毫秒的子帧组成,其中包括下行子帧、特殊子帧和上行子帧,特殊子帧包括下行导频时隙DwPTS、上行导频时 隙UpPTS和保护间隔GP,当下行转上行的切换点是以5毫秒为周期时,特殊子帧在两个半帧内都存在,当下行转上行的切换点是以10毫秒为周期时,特殊子帧仅在第一个半帧内存在,且采用普通CP时,每个子帧包含14个OFDM符号或SC-FDMA符号,采用扩展CP时,每个子帧包含12个OFDM符号或者SC-FDMA符号。
另外,TDD系统下对应的第一模式帧格式如下所述。
具体的,当该通信系统为时分双工TDD时,第一模式帧格式除了包括至少1个上行子帧,还包括至少1个特殊子帧和至少1个下行子帧,特殊子帧包含下行导频时隙DwPTS、上行导频时隙UpPTS和保护间隔GP中的至少一个。
当通信系统为TDD时,第二模式帧格式为帧结构类型二,第二模式帧格式中上下行配置如下表1所示,其中D为下行子帧,S为特殊子帧,U为上行子帧。其中每个子帧的持续时间为1毫秒,特殊子帧包括下行导频时隙DwPTS、上行导频时隙UpPTS和保护间隔GP,当第一模式帧格式包括UpPTS,且第一模式帧格式中UpPTS的长度小于等于第二类型帧格式中UpPTS的长度时,在第一模式帧格式包括的UpPTS不发送上行信号和信道,其中第二模式帧格式中特殊子帧中DwPTS/GP/UpPTS的长度如下表2所示。
表1
Figure PCTCN2016070517-appb-000001
表2
Figure PCTCN2016070517-appb-000002
需要说明的是,TS为LTE系统中时域的基本单位,Ts=1/(15000*2048)秒。
当该通信系统为TDD时,每个上行子帧至少包含1个第一模式帧格式符号,每个特殊子帧的时间长度为1毫秒。当该通信系统下行采用普通CP时,每个下行子帧的长度为14个正交频分复用OFDM符号的长度;当通信系统下行采用扩展CP时,每个下行子帧的长度为12个正交频分复用OFDM符号的长度。
如图10所示,当通信系统上行采用普通CP,且当上行子帧持续时间为1毫秒时,上行子帧包含3个第一模式帧格式符号,且3个第一模式帧格式符号的持续时间等于12个第二模式帧格式符号的持续时间且小于1毫秒,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含普通循环前缀的持续时间,图中D表示下行子帧,S表示特殊子帧。
如图11所示,当通信系统上行采用扩展CP,且上行子帧持续时间为1毫秒时,上行子帧包含3个第一模式帧格式符号,且所述3个第一模式帧格式符号的持续时间等于12个第二模式帧格式符号的持续时间且等于 1毫秒,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含扩展循环前缀的持续时间。
进一步的,第一模式帧格式的上下行配置如上述表1所示,其中D表示下行子帧,S表示特殊子帧,U表示上行子帧。其中特殊子帧的配置如上述表2所示,每个上行子帧持续时间为1毫秒。
可选地,当1毫秒时间长度包含的第一模式帧格式符号中的最后一个符号与1毫秒时间长度内的最后一个第二模式帧格式符号有部分重叠或完全重叠时,1毫秒时间长度内的最后一个第一模式帧格式符号上不发送上行信号和信道,当第一模式帧格式符号为包含普通CP的符号时,第二模式帧格式符号为包含普通CP的SC-FDMA符号;当第一模式帧格式符号为包含扩展CP的符号时,第二模式帧格式符号为包含扩展CP的SC-FDMA符号;当第一模式帧格式符号为不包含CP的符号时,第二模式帧格式符号为不包含CP的SC-FDMA符号。
也即是,当在第三种场景,即带内部署场景时,若1毫秒时间长度包含的第一模式帧格式符号中的最后一个符号与1毫秒时间长度内的最后一个第二模式帧格式符号有部分重叠或完全重叠时,为了不影响现有LTE终端发送SRS,在1毫秒时间长度包含的第一模式帧格式符号中的最后一个第一模式帧格式符号与1毫秒时间长度内的最后一个第二模式帧格式符号有部分重叠或完全重叠时,1毫秒时间长度内的最后一个第一模式帧格式符号上不发送上行信号和信道。可选地,对于第一种独立部署场景和第二种保护带部署场景下,在1毫秒时间长度包含的第一模式帧格式符号中的最后一个第一模式帧格式符号与1毫秒时间长度内的最后一个第二模式帧格式符号有部分重叠或完全重叠时,1毫秒时间长度内的最后一个第一模式帧格式符号上不发送上行信号和信道。
比如,如图11所示的第一模式帧格式,若该3个第一模式帧格式符号分别为符号0、符号1、符号2,则符号2上不发送上行信号或信道。
进一步的,当通信系统为TDD时,第一模式帧格式中下行转为上行的切换点是以5毫秒为周期,在5毫秒时间长度内包括1个下行子帧、1个特殊子帧和至少1个上行子帧,每个上行子帧包含至少1个第一模式帧格式符号,每个特殊子帧的时间长度为1毫秒;当通信系统下行采用普通 CP时,每个下行子帧的长度为14个正交频分复用OFDM符号的长度;当通信系统下行采用扩展CP时,每个下行子帧的长度为12个正交频分复用OFDM符号的长度。
如图12所示,当该通信系统上行采用普通CP,且上行子帧持续时间为3毫秒时,上行子帧包含10个第一模式帧格式符号,且10个第一模式帧格式符号的持续时间等于40个第二模式帧格式符号的持续时间且小于3毫秒,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含普通循环前缀的持续时间。
如图13所示,当该通信系统上行采用扩展CP,且上行子帧持续时间为3毫秒时,上行子帧包含9个第一模式帧格式符号,且9个第一模式帧格式符号的持续时间等于36个第二模式帧格式符号的持续时间且等于3毫秒,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含扩展循环前缀的持续时间。
比如,如图12所示的第一模式帧格式,若该10个第一模式帧格式符号分别为符号0、符号1、…、符号8、符号9,则在符号3和符号6上不发送上行信号或信道;如图13所示的第一模式帧格式,若该9个第一模式帧格式符号分别为符号0、符号1、…、符号7、符号8,则在符号2、符号5和符号8上不发送上行信号或信道。
如图14所示,当该通信系统上行采用普通CP时,若上行子帧持续时间为2毫秒,则上行子帧包含7个第一模式帧格式符号,且该7个第一模式帧格式符号的持续时间等于28个第二模式帧格式符号的持续时间且等于2毫秒,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含普通循环前缀的持续时间。
如图15所示,当该通信系统上行采用扩展CP时,若上行子帧持续时间为2毫秒,则上行子帧包含6个第一模式帧格式符号,且该6个第一模式帧格式符号的持续时间等于24个第二模式帧格式符号的持续时间且等于2毫秒,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含扩展循环前缀的持续时间。
可选的,如图14所示的第一模式帧格式,若该7个第一模式帧格式符号分别为符号0、符号1、…、符号5、符号6,则在符号3和符号6上 不发送上行信号或信道。如图15所示的第一模式帧格式,若该6个第一模式帧格式符号分别为符号0、符号1、…、符号5,则在符号2和符号5上不发送上行信号或信道。
另外,如图16所示,当该通信系统上行采用普通CP时,若上行子帧持续时间为1毫秒,则上行子帧包含3个第一模式帧格式符号,且该3个第一模式帧格式符号的持续时间等于12个第二模式帧格式符号的持续时间且小于1毫秒,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含普通循环前缀的持续时间。
另外,如图17所示,当该通信系统上行采用扩展CP时,若上行子帧持续时间为1毫秒,则上行子帧包含3个第一模式帧格式符号,且该3个第一模式帧格式符号的持续时间等于12个第二模式帧格式符号的持续时间且等于1毫秒,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含扩展循环前缀的持续时间。
可选的,如图17所示的第一模式帧格式,若该3个第一模式帧格式符号分别为符号0、符号1、符号2,则在符号3上不发送上行信号或信道。
进一步的,当该通信系统为TDD时,第一模式帧格式中下行转为上行的切换点是以5毫秒为周期,在5毫秒时间长度内包含包括1个下行子帧、1个特殊子帧和至少1个上行子帧,每个上行子帧至少包含1个第一模式帧格式符号,每个特殊子帧至少包含DwPTS和GP中的一个,且DwPTS和GP的长度和LTE系统中第二类帧结构类型中特殊子帧内的DwPTS和GP的长度分别相同,且根据特殊子帧的配置不同而不同,如表2所示,DwPTS和GP总的时长小于1毫秒。
具体的,当该通信系统下行采用普通CP时,每个下行子帧的长度为14个正交频分复用OFDM符号的长度;当该通信系统下行采用扩展CP时,每个下行子帧的长度为12个正交频分复用OFDM符号的长度。
如图18所示,当该通信系统上行采用普通CP,且特殊子帧包含的DwPTS和GP符合上述表2中特殊子帧配置为5、6、7、8或9时,若上行子帧持续时间为T1+3毫秒,则上行子帧包含11个第一模式帧格式符号,且该11个第一模式帧格式符号的持续时间等于44个第二模式帧格式符号的持续时间且等于T1+3毫秒,T1为1毫秒-DwPTS占用时间-GP占 用时间,其中DwPTS占用时间和GP占用时间的单位为毫秒,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含普通循环前缀的持续时间。
可选的,如图18所示的第一模式帧格式,若该11个第一模式帧格式符号分别为符号0、符号1、…、符号9、符号10,则在符号0、符号3、符号7和符号10上不发送上行信号或信道。
如图19所示,当该通信系统上行采用普通CP,且特殊子帧包含的DwPTS和GP符合上述表2中特殊子帧的配置为5、6、7、8或9时,若上行子帧持续时间为T2+1毫秒,则上行子帧包含4个第一模式帧格式符号,且该4个第一模式帧格式符号的持续时间等于16个第二模式帧格式符号的持续时间且等于T2+1毫秒,T2为1毫秒-DwPTS占用时间-GP占用时间,其中DwPTS占用时间和GP占用时间的单位为毫秒,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含普通循环前缀的持续时间。
可选的,如图19所示的第一模式帧格式,若该4个第一模式帧格式符号分别为符号0、符号1、符号2、符号3,则在符号0和符号3上不发送上行信号或信道。
进一步的,当该通信系统为TDD时,第一模式帧格式中下行转为上行的切换点是以10毫秒为周期,且在前5毫秒时间长度内包括一个下行子帧、1个特殊子帧和至少1个上行子帧,后5毫秒时间长度内只包括下行子帧,且每个下行子帧持续时间为1毫秒。其中,每个上行子帧至少包含1个第一模式帧格式符号,在如图18、19所示的第一模式帧格式中,每个特殊子帧至少包含DwPTS和GP中的一个,且DwPTS和GP的长度和LTE系统中第二类帧结构类型中特殊子帧内的DwPTS和GP的长度分别相同如表2中不同特殊子帧配置下DwPTS和GP的长度不同,且DwPTS和GP总的时长小于1毫秒。
具体的,当该通信系统下行采用普通CP时,每个下行子帧的长度为14个正交频分复用OFDM符号的长度;当该通信系统下行采用扩展CP时,每个下行子帧的长度为12个正交频分复用OFDM符号的长度。
其中,当该通信系统上行采用普通CP时,若在前5毫秒时间长度内 上行子帧持续时间为3毫秒,则上行子帧包含10个第一模式帧格式符号,且10个第一模式帧格式符号的持续时间等于40个第二模式帧格式符号的持续时间且小于3毫秒,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含普通循环前缀的持续时间,具体如图12所示;当该特殊子帧包含的DwPTS和GP符合表2中特殊子帧的配置为5、6、7、8或9时,若在前5毫秒时间长度内上行子帧持续时间为T1+3毫秒,则上行子帧包含11个第一模式帧格式符号,且该11个第一模式帧格式符号的持续时间等于44个第二模式帧格式符号的持续时间且等于T1+3毫秒,T1为1毫秒-DwPTS占用时间-GP占用时间,其中DwPTS占用时间和GP占用时间的单位为毫秒,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含普通循环前缀的持续时间,具体如图18所示。后5毫秒的时间长度内只包含下行子帧,且下行子帧与第二模式帧格式的下行子帧一致,本发明实施例在此不再赘述。
当该通信系统上行采用扩展CP时,若在前5毫秒时间长度内上行子帧持续时间为3毫秒,则上行子帧包含9个第一模式帧格式符号,且9个第一模式帧格式符号的持续时间等于36个第二模式帧格式符号的持续时间且等于3毫秒,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含扩展循环前缀的持续时间,具体如图13所示。后5毫秒的时间长度内只包含下行子帧,且下行子帧与第二模式帧格式的下行子帧一致,本发明实施例在此不再赘述。
可选的,当该通信系统上行采用普通CP时,在前5毫秒时间长度内上行子帧持续时间为2毫秒,上行子帧包含7个第一模式帧格式符号,且7个第一模式帧格式符号的持续时间等于28个第二模式帧格式符号的持续时间且小于2毫秒,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含普通循环前缀的持续时间,具体如图14所示;后5毫秒的时间长度内只包含下行子帧,且下行子帧与第二模式帧格式的下行子帧一致,本发明实施例在此不再赘述。
当该通信系统上行采用扩展CP时,在前5毫秒时间长度内上行子帧持续时间为2毫秒,上行子帧包含6个第一模式帧格式符号,且6个第一模式帧格式符号的持续时间等于24个第二模式帧格式符号的持续时间且 等于2毫秒,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含扩展循环前缀的持续时间,具体如图15所示;后5毫秒的时间长度内只包含下行子帧,且下行子帧与第二模式帧格式的下行子帧一致,本发明实施例在此不再赘述。
可选的,当该通信系统上行采用普通CP时,若在前5毫秒时间长度内上行子帧持续时间为1毫秒,则上行子帧包含3个第一模式帧格式符号,且该3个第一模式帧格式符号的持续时间等于12个第二模式帧格式符号的持续时间且小于1毫秒,具体如图16所示;当特殊子帧包含的DwPTS和GP符合表2中特殊子帧的配置为5、6、7、8或9时,若在前5毫秒时间长度内上行子帧持续时间为T2+1毫秒,则上行子帧包含4个第一模式帧格式符号,且该4个第一模式帧格式符号的持续时间等于16个第二模式帧格式符号的持续时间且等于T2+1毫秒,T2为1毫秒-DwPTS占用时间-GP占用时间,其中DwPTS占用时间和GP占用时间的单位为毫秒,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含普通循环前缀的持续时间,具体如图19所示。后5毫秒的时间长度内只包含下行子帧,且下行子帧与第二模式帧格式的下行子帧一致,本发明实施例在此不再赘述。
当该通信系统上行采用扩展CP时,若在前5毫秒时间长度内上行子帧持续时间为1毫秒,则上行子帧包含3个第一模式帧格式符号,且该3个第一模式帧格式符号的持续时间等于12个第二模式帧格式符号的持续时间且等于1毫秒,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含扩展循环前缀的持续时间,具体如图17所示。后5毫秒的时间长度内只包含下行子帧,且下行子帧与第二模式帧格式的下行子帧一致,本发明实施例在此不再赘述。
进一步的,当该通信系统为TDD时,第一模式帧格式中下行转为上行的切换点是以5毫秒为周期,且前一个5毫秒时间长度内和后一个5毫秒时间长度内包含的1个上行子帧的持续时间长度不同,每个5毫秒时间长度内包括1个下行子帧,1个特殊子帧和至少1个上行子帧,每个上行子帧包含至少1个第一模式帧格式符号,每个特殊子帧的时间长度小于或等于1毫秒。当通信系统下行采用普通CP时,每个下行子帧的长度为 14个正交频分复用OFDM符号的长度;当通信系统下行采用扩展CP时,每个下行子帧的长度为12个正交频分复用OFDM符号的长度。
其中,当该通信系统上行采用普通CP时,若前一个5毫秒时间长度内包含的上行子帧持续时间为3毫秒,则上行子帧包含10个第一模式帧格式符号,且10个第一模式帧格式符号的持续时间等于40个第二模式帧格式符号的持续时间且小于3毫秒,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含普通循环前缀的持续时间,具体如图12所示;当特殊子帧包含的DwPTS和GP符合表2中特殊子帧的配置为5、6、7、8或9时,若前一个5毫秒时间长度内包含的上行子帧持续时间为T1+3毫秒,则上行子帧包含11个第一模式帧格式符号,且11个第一模式帧格式符号的持续时间等于44个第二模式帧格式符号的持续时间且等于3毫秒,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含普通循环前缀的持续时间,具体如图18所示。若后一个5毫秒时间长度内包含的上行子帧持续时间为2毫秒,则上行子帧包含7个第一模式帧格式符号,且7个第一模式帧格式符号的持续时间等于28个第二模式帧格式符号的持续时间且等于2毫秒,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含普通循环前缀的持续时间,具体如图14所示。
另外,当该通信系统上行采用扩展CP时,若前一个5毫秒时间长度内包含的上行子帧持续时间为3毫秒,则上行子帧包含9个第一模式帧格式符号,且9个第一模式帧格式符号的持续时间等于36个第二模式帧格式符号的持续时间且等于3毫秒,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含扩展循环前缀的持续时间,具体如图13所示。若后一个5毫秒时间长度内包含的上行子帧持续时间为2毫秒,则上行子帧包含6个第一模式帧格式符号,且6个第一模式帧格式符号的持续时间等于24个第二模式帧格式符号的持续时间且等于2毫秒,第二模式帧格式符号的持续时间为每个SC-FDMA符号包含扩展循环前缀的持续时间,具体如图15所示。
进一步的,第二模式帧格式包括不可用上行子帧时,在与该第二模式帧格式中不可用上行子帧的持续时间对应的第一模式帧格式符号上不发送上行信号和信道,所述不可用上行子帧为一个或多个上行子帧,每个上 行子帧持续时间为1毫秒,所述不可用上行子帧是指在不可用上行子帧内的全部或部分频率资源为预留资源,所述预留资源用于特殊终端或者用于特殊通信系统支持的终端和基站或终端之间的通信,而对非特殊终端或非特殊通信系统支持的终端和基站或终端之间的通信外,不能使用预留的资源,例如LTE系统中不可用上行子帧中的全部或部分频率资源为预留资源并用于设备和设备之间这种特殊系统的通信,而在不可用上行子帧上普通LTE终端不能使用所述预留资源。
第一类终端通过接收系统信息获知不可用上行子帧的信息,包括哪些上行子帧为不可用上行子帧,或进一步包括哪些不可用上行子帧内哪些频域资源为预留资源等。
也即是,在第三种场景,即带内部署场景时,若第二模式帧格式包括不可用上行子帧,在与第二模式帧格式中不可用上行子帧的持续时间对应的第一模式帧格式符号上不发送上行信号和信道,或者将本该在与第二模式帧格式中不可用上行子帧的持续时间对应的第一模式帧格式符号上上行信号或信道顺序推迟到下一个与第二模式帧格式中可用上行子帧的持续时间对应的第一模式帧格式符号上发送。
可选的,在至少一个上行子帧中的至少一个第一模式帧格式符号上发送上行解调参考信号。
也即是,当第一模式帧格式包括一个上行子帧,该上行子帧包括至少一个第一模式帧格式符号时,该上行解调参考信号可以在该至少一个第一模式帧格式符号中的一个或者多个上发送;当第一模式帧格式包括多个上行子帧,也即是包括两个或者两个以上的上行子帧时,可以在该多个上行子帧中任意一个或者多个内发送上行解调参考信号,且在上行子帧包括的至少一个第一模式帧格式符号中的任意一个或者多个上发送。
比如,当第一模式帧格式包括一个下行子帧,一个特殊子帧和一个上行子帧,且该上行子帧包括3个第一模式帧格式符号时,该上行解调参考信号可以在3个第一模式帧格式符号中的任意一个或者任一两个上发送,也可以在3个第一模式帧格式符号都发送上行解调参考信号;当第一模式帧格式包括一个下行子帧,一个特殊子帧和两个上行子帧,且每个上行子帧包括3个第一模式帧格式符号时,可以在两个上行子帧中的任意一个内 发送上行解调参考信号,也可以两个上行子帧内都发送上行解调参考信号,且该上行解调参考信号可以在两个上行子帧包括的第一模式帧格式符号中的任意一个或者多个上发送,本发明实施例对此不作限定。
进一步的,该调度信息包含第一模式帧格式对应的物理资源信息,该物理资源信息包括时间资源和频率资源,时间资源包含至少一个上行子帧,频率资源包含一个子载波。
其中,该调度信息包含的物理资源信息中的时间资源可以称为调度长度,最小的调度长度为3个第一模式帧格式符号的长度,实际的调度长度可以根据基站与终端之间的距离,或者根据终端在小区中所要求达到的覆盖的要求,基站可以支持至少一个调度长度。比如,调度长度C1:连续NC1个上行子帧,小区中支持的最大覆盖为LC1,调度长度C2:连续NC2,小区中支持的最大覆盖为LC2个上行子帧等等,LC2的覆盖范围大于或等于比LC1的覆盖范围,NC1、NC2为正整数,NC2大于或等于NC1且可以事先设置,本发明实施例对此不作具体限定。另外,对于每种调度长度,该调度信息包含的物理资源信息中的频率资源为1个子载波。
步骤302:基站向第二类终端或者第三类终端发送下行控制信息DCI,该DCI包含用于指示第二类终端或者第三类终端发送上行数据使用第二模式帧格式时的调度信息。
其中,第二模式帧格式包括适用于FDD系统的帧结构类型一,以及适用于TDD系统的帧结构类型二,当该通信系统为TDD时,第二模式帧格式是指适用于TDD系统的帧结构类型二,帧结构类型二包括1个10毫秒长的无线帧,由两个长度为5毫秒的半帧组成,每个半帧由5个1毫秒的子帧组成,其中包括下行子帧、特殊子帧和上行子帧,特殊子帧包括下行导频时隙DwPTS、上行导频时隙UpPTS和保护间隔GP,也即是,第二模式帧格式包括10个子帧,每个子帧的长度为1毫秒,且第二模式帧格式对应的物理资源信息中子载波之间的间隔为15kHz。
例如,下行控制信息DCI包括用于指示终端发送上行数据的调度信息,其中至少包括在频域上使用的子载波的个数,使用的调制编码方式或者调制方式以及承载的传输块包含的比特数等中的一种。
需要说明的是,通信系统为TDD系统时,具体的第二模式帧格式可 以参考相关技术,本发明实施例在此不再赘述。
步骤303:终端接收基站发送的下行控制信息DCI,并基于下行控制信息发送上行数据。
具体的,当该终端为第一类终端时,该DCI包含用于指示第一类终端发送上行数据使用第一模式帧格式时的调度信息,第一类终端在接收到DCI后向基站发送第一模式帧格式的上行数据;当该终端为第二类终端或者第三类终端时,该DCI包含用于指示第二类终端或者第三类终端发送上行数据使用第二模式帧格式时的调度信息,第二类终端或者第三类终端在接收到调度信息后,向基站发送第二模式帧格式的上行数据。
需要说明的是当终端为第二类终端或者第三类终端时,该调度信息包含第二模式帧格式对应的物理资源信息,该物理资源信息包括时间资源和频率资源,时间资源包含至少一个上行子帧,频率资源包含一个子载波,且子载波之间的间隔为15kHz。
其中,该调度信息包含的物理资源信息中的时间资源可以称为调度长度,最小的调度长度为1个第二模式帧格式中一个上行子帧的长度,实际的调度长度可以根据基站与终端之间的距离,或者根据终端在小区中所要求达到的覆盖要求,基站可以支持至少一个调度长度。比如,调度长度D1:连续ND1个上行子帧,小区中支持的最大覆盖为LD1,调度长度D2:连续ND2个上行子帧,小区中支持的最大覆盖为LD2等等,LD2的覆盖范围大于或等于比LD1的覆盖范围,ND1、ND2为正整数,ND2大于或等于ND1且可以事先设置,本发明实施例对此不作具体限定。另外,对于每种调度长度,当终端为第二类终端时,该调度信息包含的物理资源信息中的频率资源为1个子载波;当终端为第三类终端时,该调度信息包含的物理资源信息中的频率资源至少为1个子载波,且最多为12个子载波。
可选的,在步骤303之后,该方法还包括:
步骤304:终端向基站发送上行控制信息或者随机接入信息。
具体的,当该终端为第一类终端,该上行控制信息或者随机接入信息使用的帧格式为第一模式帧格式。其中,第一模式帧格式包括至少1个上行子帧,每个上行子帧包含至少1个第一模式帧格式符号;第一模式帧格 式符号的持续时间至少为第二模式帧格式符号持续时间的4倍,第二模式帧格式符号为LTE系统单载波频分多址SC-FDMA符号。
需要说明的是,该上行控制信息UCI包括ACK或NACK用于确认终端是否正确接收下行共享信道PDSCH上承载的下行数据;或者包含用于反应下行信道质量的信道状态信息CSI。该上行控制信息承载在物理上行控制信道PUCCH上,或者承载在为第一类终端定义的发送上行控制信息的物理信道上。该随机接入信息包括随机接入前导码,承载在物理随机接入信道PRACH上,或者承载在为第一类终端定义的发送上行随机接入信息的物理信道上。
当该终端为第二类终端或者第三类终端时,该上行控制信息或者随机接入信息使用的帧格式为第二模式帧格式,第二模式帧格式包括适用于FDD系统的帧结构类型一,以及适用于TDD系统的帧结构类型二,第二模式帧格式包含10个子帧,每个子帧的长度为1毫秒,且第二模式帧格式对应的物理资源信息中的子载波间隔为15kHz。
需要说明的是,当终端向基站发送上行控制信息或者随机接入信息时,终端发送的上行控制信息或者随机接入信息的帧格式可以为第一模式帧格式或者第二模式帧格式,且该第一模式帧格式和第二模式帧格式不仅可以从基站发送的下行控制信息DCI中获取,也可以预先进行设置,且在设置之后,第一类终端可以直接使用第一模式帧格式发送上行控制信息或随机接入信息,第二类终端或第三类终端也可以直接使用第二模式帧格式发送上行控制信息或随机接入信息,本发明实施例对此不作限定。
比如,第一模式帧格式为预先设置,即通信系统使用的特定的一种或几种载波频率对应使用第一模式帧格式,或者特定的下行同步信号序列或者特定的发送下行同步信号的格式即映射的具体时间和/或频率资源位置对应使用第一模式帧格式,或者下行系统信息包含或者特定的发送下行系统信息的格式即映射的具体时间和/或频率资源位置对应使用第一模式帧格式,终端根据上述特定对应关系或下行系统信息的指示信息获知使用第一模式帧格式后,可以直接向基站发送使用第一帧格式的上行控制信息或者随机接入信息。
本发明实施例提供一种调度方法,基站通过向第一类终端发送下行控 制信息DCI,DCI包含用于指示第一类终端使用第一模式帧格式发送上行数据时的调度信息,其中,第一模式帧格式包括至少1个上行子帧,每个上行子帧包含至少1个第一模式帧格式符号,且第一模式帧格式符号的持续时间至少为第二模式帧格式符号持续时间的4倍,第二模式帧格式符号为LTE系统SC-FDMA符号,以及向第二类终端或者第三类终端发送下行控制信息DCI,DCI包含用于指示第二类终端或者第三类终端使用第二模式帧格式发送上行数据时的调度信息,从而使得LTE系统中的基站能够在支持现有LTE终端的基础上,也支持TDD系统下新出现的第一类终端、第二类终端和第三类终端,节省了时间资源,同时也提高了基站的利用率。
图20为本发明实施例提供是一种基站,基站包括:处理器41、存储器42、系统总线43和通信接口44。
本领域普通技术人员可以理解,图20所示的结构仅为示意,其并不对基站的结构造成限定。例如,该基站还可包括比图20中所示更多或者更少的组件,或者具有与图20所示不同的配置。
下面对基站的各个构成部件进行具体的介绍:
所述存储器42用于存储计算机执行指令,所述处理器42与所述存储器42通过所述系统总线43连接,当所述基站运行时,所述处理器41执行所述存储器42存储的所述计算机执行指令,以使所述基站执行上述如图2、图8所示的方法中基站的步骤。具体的方法参见如图2、图8任意之一所示的实施例中的相关描述,此处不再赘述。
本实施例还提供一种存储介质,该存储介质可以包括所述存储器42。
所述处理器41可以为CPU。所述处理器41还可以为其他通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述处理器41可以为专用处理器,该专用处理器可以包括基带处理芯片、射频处理芯片等中的至少一个。进一步地,该专用处理器还可以包括具有基站其他专用处理功能的芯片。
所述存储器42可以包括易失性存储器,例如随机存取存储器RAM; 所述存储器42也可以包括非易失性存储器,例如只读存储器ROM,快闪存储器,HDD或SSD;所述存储器42还可以包括上述种类的存储器的组合。
所述系统总线43可以包括数据总线、电源总线、控制总线和信号状态总线等。本实施例中为了清楚说明,在图20中将各种总线都示意为系统总线43。
所述通信接口44具体可以是基站上的收发器。该收发器可以为无线收发器。例如,无线收发器可以是基站的天线等。所述处理器41通过所述通信接口44与其他设备,例如终端之间进行数据的收发。
在具体实现过程中,上述如图2、图8任意之一所示的方法流程中基站的各步骤均可以通过硬件形式的处理器41执行存储器42中存储的软件形式的计算机执行指令实现。为避免重复,此处不再赘述。
本发明的实施例提供的一种基站,基站通过向第一类终端发送的下行控制信息DCI,该DCI包含用于指示第一类终端使用第一模式帧格式发送上行数据时的调度信息其中,第一模式帧格式包括至少1个上行子帧,每个上行子帧包含至少1个第一模式帧格式符号,且第一模式帧格式符号的持续时间至少为第二模式帧格式符号持续时间的4倍,第二模式帧格式符号为LTE系统SC-FDMA符号;以及基站向第二类终端或者第三类终端发送下行控制信息DCI,该DCI包含用于指示第二类终端或者第三类终端使用第二模式帧格式发送上行数据时的调度信息,从而使得LTE系统能够在支持现有LTE终端的基础上,也支持FDD和TDD系统下新出现的第一类终端、第二类终端和第三类终端,节省了时间资源,同时也提高了通信系统和基站的利用率。
图21为本发明实施例提供是一种终端,该终端包括:处理器51、存储器52、系统总线53和通信接口54。
本领域普通技术人员可以理解,图21所示的结构仅为示意,其并不对终端的结构造成限定。例如,该终端还可包括比图21中所示更多或者更少的组件,或者具有与图21所示不同的配置。
下面对终端的各个构成部件进行具体的介绍:
所述存储器52用于存储计算机执行指令,所述处理器51与所述存储 器52通过所述系统总线53连接,当所述终端运行时,所述处理器51执行所述存储器52存储的所述计算机执行指令,以使所述终端执行上述如图2、图8任意之一所示的方法流程中终端的步骤。具体的方法可参见如图2、图8任意之一所示的实施例中的相关描述,此处不再赘述。
本实施例还提供一种存储介质,该存储介质可以包括所述存储器52。
所述处理器51可以为中央处理器(英文:central processing unit,缩写:CPU)。所述处理器51还可以为其他通用处理器、数字信号处理器(英文:digital signal processing,简称DSP)、专用集成电路(英文:application specific integrated circuit,简称ASIC)、现场可编程门阵列(英文:field-programmable gate array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述处理器51可以为专用处理器,该专用处理器可以包括基带处理芯片、射频处理芯片等中的至少一个。进一步地,该专用处理器还可以包括具有终端其他专用处理功能的芯片。
所述存储器52可以包括易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM);所述存储器52也可以包括非易失性存储器(英文:non-volatile memory),例如只读存储器(英文:read-only memory,缩写:ROM),快闪存储器(英文:flash memory),硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD);所述存储器52还可以包括上述种类的存储器的组合。
所述系统总线53可以包括数据总线、电源总线、控制总线和信号状态总线等。本实施例中为了清楚说明,在图21中将各种总线都示意为系统总线53。
所述通信接口54具体可以是终端上的收发器。该收发器可以为无线收发器。例如,无线收发器可以是终端的天线等。所述处理器51通过所述通信接口54与其他设备,例如基站之间进行数据的收发。
在具体实现过程中,上述如图2、图8任意之一所示的方法流程中终端的各步骤均可以通过硬件形式的处理器51执行存储器52中存储的软件 形式的计算机执行指令实现。为避免重复,此处不再赘述。
本发明实施例提供一种终端,终端通过接收基站发送的下行控制信息DCI,当该终端为第一类终端时,DCI包含用于指示第一类终端使用第一模式帧格式发送上行数据时的调度信息其中,第一模式帧格式包括至少1个上行子帧,每个上行子帧包含至少1个第一模式帧格式符号,且第一模式帧格式符号的持续时间至少为第二模式帧格式符号持续时间的4倍,第二模式帧格式符号为LTE系统SC-FDMA符号;当该终端为第二类终端或者第三类终端时,DCI包含用于指示第二类终端或者第三类终端使用第二模式帧格式发送上行数据时的调度信息,从而使得LTE系统能够在支持现有LTE终端的基础上,也支持FDD和TDD系统下新出现的第一类终端、第二类终端和第三类终端,节省了时间资源,同时也提高了通信系统的利用率。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (30)

  1. 一种调度方法,其特征在于,应用于通信系统,所述方法包括:
    基站向第一类终端发送下行控制信息DCI,所述DCI包含用于指示所述第一类终端使用第一模式帧格式发送上行数据时的调度信息;
    其中,所述第一模式帧格式包括至少1个上行子帧,每个上行子帧包含至少1个第一模式帧格式符号;
    所述第一模式帧格式符号的持续时间至少为第二模式帧格式符号持续时间的4倍,所述第二模式帧格式符号为LTE系统单载波频分多址SC-FDMA符号。
  2. 根据权利要求1所述的方法,其特征在于,当所述通信系统为频分双工FDD,且上行采用普通循环前缀CP时,若所述上行子帧持续时间为1毫秒,所述上行子帧包含3个第一模式帧格式符号,且所述3个第一模式帧格式符号的持续时间等于12个第二模式帧格式符号的持续时间且小于1毫秒;
    当所述通信系统为FDD,且上行采用扩展CP时,若所述上行子帧持续时间为1毫秒,所述上行子帧包含3个第一模式帧格式符号,且所述3个第一模式帧格式符号的持续时间等于12个第二模式帧格式符号的持续时间且等于1毫秒。
  3. 根据权利要求1所述的方法,其特征在于,当所述通信系统为FDD,所述第一模式帧格式时间长度为N*10毫秒,其中N为1或大于0的偶数,所述第一模式帧格式中的上行子帧为M毫秒,其中M为大于0的偶数,且M<=N*10;
    当所述第一模式帧格式中的上行子帧持续时间为2毫秒,且所述通信系统为上行采用普通CP时,所述上行子帧包含7个第一模式帧格式符号,且所述7个第一模式帧格式符号的持续时间等于28个第二模式帧格式符号的持续时间且等于2毫秒;
    当所述第一模式帧格式中的上行子帧持续时间为2毫秒,且所述通信系统为上行采用扩展CP时,所述上行子帧包含6个第一模式帧格式符号,且所述6个第一模式帧格式符号的持续时间等于24个第二模式帧格式符号的持续时间且等于2毫秒。
  4. 根据权利要求1所述的方法,其特征在于,当所述通信系统为时分双工TDD时,所述第一模式帧格式还包括至少一个特殊子帧和至少一个下行子帧,所述特殊子帧包含下行导频时隙DwPTS、上行导频时隙UpPTS和保护间隔GP中的至少一个。
  5. 根据权利要求4所述的方法,其特征在于,当所述通信系统为TDD时,每个上行子帧至少包含1个第一模式帧格式符号,每个特殊子帧的时间长度为1毫秒;
    当所述通信系统上行采用普通CP,且所述上行子帧持续时间为1毫秒时,所述上行子帧包含3个第一模式帧格式符号,且所述3个第一模式帧格式符号的持续时间等于12个第二模式帧格式符号的持续时间且小于1毫秒;
    当所述通信系统上行采用扩展CP,且所述上行子帧持续时间为1毫秒时,所述上行子帧包含3个第一模式帧格式符号,且所述3个第一模式帧格式符号的持续时间等于12个第二模式帧格式符号的持续时间且等于1毫秒。
  6. 根据权利要求4所述的方法,其特征在于,当所述通信系统为TDD时,所述第一模式帧格式中下行转为上行的切换点是以5毫秒为周期,在5毫秒时间长度内包括1个下行子帧、1个特殊子帧和至少1个上行子帧,所述每个上行子帧包含至少1个第一模式帧格式符号,所述每个特殊子帧的时间长度为1毫秒;
    当所述通信系统上行采用普通CP,且所述上行子帧持续时间为2毫秒时,所述上行子帧包含7个第一模式帧格式符号,且所述7个第一模式帧格式符号的持续时间等于28个第二模式帧格式符号的持续时间且等于2毫秒;
    当所述通信系统上行采用扩展CP,且所述上行子帧持续时间为2毫秒时,所述上行子帧包含6个第一模式帧格式符号,且所述6个第一模式帧格式符号的持续时间等于24个第二模式帧格式符号的持续时间且等于2毫秒。
  7. 根据权利要求4所述的方法,其特征在于,当所述通信系统为TDD时,所述第一模式帧格式中下行转为上行的切换点是以5毫秒为周期,在 5毫秒时间长度内包括1个下行子帧、1个特殊子帧和至少1个上行子帧,所述每个上行子帧包含至少1个第一模式帧格式符号,所述每个特殊子帧的时间长度为1毫秒;
    当所述通信系统上行采用普通CP,且所述上行子帧持续时间为3毫秒时,所述上行子帧包含10个第一模式帧格式符号,且所述10个第一模式帧格式符号的持续时间等于40个第二模式帧格式符号的持续时间且小于3毫秒;
    当所述通信系统上行采用扩展CP,且所述上行子帧持续时间为3毫秒时,所述上行子帧包含9个第一模式帧格式符号,且所述9个第一模式帧格式符号的持续时间等于36个第二模式帧格式符号的持续时间且等于3毫秒。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,在所述至少一个上行子帧中的至少一个第一模式帧格式符号上发送上行解调参考信号。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,当1毫秒时间长度包含的第一模式帧格式符号中的最后一个第一模式帧格式符号与1毫秒时间长度内的最后一个第二模式帧格式符号有部分重叠或完全重叠时,在所述1毫秒时间长度内的最后一个第一模式帧格式符号上不发送上行信号和信道。
  10. 根据权利要求4-9任一项所述的方法,其特征在于,所述第二模式帧格式包括适用于TDD系统的帧结构类型二,所述帧结构类型二包括1个特殊子帧、多个下行子帧和多个上行子帧,且所述1个特殊子帧、每个下行子帧和每个上行子帧的持续时间分别为1毫秒,所述特殊子帧包括下行导频时隙DwPTS、上行导频时隙UpPTS和保护间隔GP,当所述第一模式帧格式包括UpPTS,且所述第一模式帧格式中UpPTS的长度小于等于帧结构类型二中UpPTS的长度时,在所述第一模式帧格式包括的所述UpPTS上不发送上行信号和信道。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,当所述第二模式帧格式包括不可用上行子帧时,在所述第二模式帧格式中不可用上行子帧的持续时间内对应的第一模式帧格式符号上不发送上行信号和信道。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述方法还 包括:
    基站向第二类终端或者第三类终端发送下行控制信息DCI,所述DCI包含用于指示所述第二类终端或者第三类终端使用第二模式帧格式发送上行数据时的调度信息;
    其中,所述第二模式帧格式包括适用于FDD系统的帧结构类型一,以及适用于TDD系统的帧结构类型二,所述第二模式帧格式包含10个子帧,每个子帧的长度为1毫秒,且所述第二模式帧格式对应的物理资源信息中子载波间隔为15kHz。
  13. 根据权利要求1-12任一项所述的方法,其特征在于,当所述终端为第一类终端时,所述调度信息包含使用第一模式帧格式发送上行数据使用的物理资源信息,所述物理资源信息包括时间资源和频率资源,所述时间资源包含至少一个上行子帧,所述频率资源包含一个子载波;
    当所述终端为第二类终端或者第三类终端时,所述调度信息包含使用第二模式帧格式发送上行数据使用的物理资源信息,所述物理资源信息包括时间资源和频率资源,所述时间资源包含至少一个上行子帧,所述频率资源包含一个子载波或者多个子载波,且最多为12个子载波。
  14. 一种数据传输方法,其特征在于,所述方法包括:
    终端向基站发送上行控制信息或者随机接入信息,所述终端为第一类终端,发送所述上行控制信息或者随机接入信息使用的帧格式为第一模式帧格式;
    其中,所述第一模式帧格式包括至少1个上行子帧,每个上行子帧包含至少1个第一模式帧格式符号;
    所述第一模式帧格式符号的持续时间至少为第二模式帧格式符号持续时间的4倍,所述第二模式帧格式符号为LTE系统单载波频分多址SC-FDMA符号。
  15. 根据权利要求14所述的方法,其特征在于,当所述终端向基站发送上行控制信息时,在所述终端向基站发送上行控制信息之前,所述方法还包括:
    所述终端接收所述基站发送的下行控制信息DCI,所述DCI包含用于指示所述第一类终端使用第一模式帧格式发送上行数据时的调度信息。
  16. 根据权利要求14或15所述的方法,其特征在于,当所述通信系统为频分双工FDD,且上行采用普通循环前缀CP时,若所述上行子帧持续时间为1毫秒,所述上行子帧包含3个第一模式帧格式符号,且所述3个第一模式帧格式符号的持续时间等于12个第二模式帧格式符号的持续时间且小于1毫秒;
    当所述通信系统为FDD,且上行采用扩展CP时,若所述上行子帧持续时间为1毫秒,所述上行子帧包含3个第一模式帧格式符号,且所述3个第一模式帧格式符号的持续时间等于12个第二模式帧格式符号的持续时间且等于1毫秒。
  17. 根据权利要求14或15所述的方法,其特征在于,当所述通信系统为FDD,所述第一模式帧格式时间长度为N*10毫秒,其中N为1或大于0的偶数,所述第一模式帧格式中的上行子帧为M毫秒,其中M为大于0的偶数,且M<=N*10;
    当所述第一模式帧格式中的上行子帧持续时间为2毫秒,且所述通信系统为上行采用普通CP时,所述上行子帧包含7个第一模式帧格式符号,且所述7个第一模式帧格式符号的持续时间等于28个第二模式帧格式符号的持续时间且等于2毫秒;
    当所述第一模式帧格式中的上行子帧持续时间为2毫秒,且所述通信系统为上行采用扩展CP时,所述上行子帧包含6个第一模式帧格式符号,且所述6个第一模式帧格式符号的持续时间等于24个第二模式帧格式符号的持续时间且等于2毫秒。
  18. 根据权利要求14或15所述的方法,其特征在于,当所述通信系统为时分双工TDD时,所述第一模式帧格式还包括至少一个特殊子帧和至少一个下行子帧,所述特殊子帧包含下行导频时隙DwPTS、上行导频时隙UpPTS和保护间隔GP中的至少一个。
  19. 根据权利要求18所述的方法,其特征在于,当所述通信系统为TDD时,每个上行子帧至少包含1个第一模式帧格式符号,每个特殊子帧的时间长度为1毫秒;
    当所述通信系统上行采用普通CP,且所述上行子帧持续时间为1毫秒时,所述上行子帧包含3个第一模式帧格式符号,且所述3个第一模式帧 格式符号的持续时间等于12个第二模式帧格式符号的持续时间且小于1毫秒;
    当所述通信系统上行采用扩展CP,且所述上行子帧持续时间为1毫秒时,所述上行子帧包含3个第一模式帧格式符号,且所述3个第一模式帧格式符号的持续时间等于12个第二模式帧格式符号的持续时间且等于1毫秒。
  20. 根据权利要求18所述的方法,其特征在于,当所述通信系统为TDD时,所述第一模式帧格式中下行转为上行的切换点是以5毫秒为周期,在5毫秒时间长度内包括1个下行子帧、1个特殊子帧和至少1个上行子帧,所述每个上行子帧包含至少1个第一模式帧格式符号,所述每个特殊子帧的时间长度为1毫秒;
    当所述通信系统上行采用普通CP,且所述上行子帧持续时间为2毫秒时,所述上行子帧包含7个第一模式帧格式符号,且所述7个第一模式帧格式符号的持续时间等于28个第二模式帧格式符号的持续时间且等于2毫秒;
    当所述通信系统上行采用扩展CP,且所述上行子帧持续时间为2毫秒时,所述上行子帧包含6个第一模式帧格式符号,且所述6个第一模式帧格式符号的持续时间等于24个第二模式帧格式符号的持续时间且等于2毫秒。
  21. 根据权利要求18所述的方法,其特征在于,当所述通信系统为TDD时,所述第一模式帧格式中下行转为上行的切换点是以5毫秒为周期,在5毫秒时间长度内包括1个下行子帧、1个特殊子帧和至少1个上行子帧,所述每个上行子帧包含至少1个第一模式帧格式符号,所述每个特殊子帧的时间长度为1毫秒;
    当所述通信系统上行采用普通CP,且所述上行子帧持续时间为3毫秒时,所述上行子帧包含10个第一模式帧格式符号,且所述10个第一模式帧格式符号的持续时间等于40个第二模式帧格式符号的持续时间且小于3毫秒;
    当所述通信系统上行采用扩展CP,且所述上行子帧持续时间为3毫秒时,所述上行子帧包含9个第一模式帧格式符号,且所述9个第一模式帧 格式符号的持续时间等于36个第二模式帧格式符号的持续时间且等于3毫秒。
  22. 根据权利要求14-21任一项所述的方法,其特征在于,在所述至少一个上行子帧中的至少一个第一模式帧格式符号上发送上行解调参考信号。
  23. 根据权利要求14-22任一项所述的方法,其特征在于,当1毫秒时间长度包含的第一模式帧格式符号中的最后一个第一模式帧格式符号与1毫秒时间长度内的最后一个第二模式帧格式符号有部分重叠或完全重叠时,在所述1毫秒时间长度内的最后一个第一模式帧格式符号上不发送上行信号和信道。
  24. 根据权利要求18-23任一项所述的方法,其特征在于,所述第二模式帧格式包括适用于TDD系统的帧结构类型二,所述帧结构类型二包括1个特殊子帧、多个下行子帧和多个上行子帧,且所述1个特殊子帧、每个下行子帧和每个上行子帧的持续时间分别为1毫秒,所述特殊子帧包括下行导频时隙DwPTS、上行导频时隙UpPTS和保护间隔GP,当所述第一模式帧格式包括UpPTS,且所述第一模式帧格式中UpPTS的长度小于等于帧结构类型二中UpPTS的长度时,在所述第一模式帧格式包括的所述UpPTS上不发送上行信号和信道。
  25. 根据权利要求14-24任一项所述的方法,其特征在于,当所述第二模式帧格式包括不可用上行子帧时,在所述第二模式帧格式中不可用上行子帧的持续时间内对应的第一模式帧格式符号上不发送上行信号和信道。
  26. 根据权利要求14-25任一项所述的方法,其特征在于,当所述终端为第二类终端或者第三类终端时,所述上行控制信息或者随机接入信息使用的帧格式为第二模式帧格式,所述第二模式帧格式包括适用于FDD系统的帧结构类型一,以及适用于TDD系统的帧结构类型二,所述第二模式帧格式包含10个子帧,每个子帧的长度为1毫秒,且所述第二模式帧格式对应的物理资源信息中子载波间隔为15kHz。
  27. 根据权利要求26所述的方法,其特征在于,当所述终端向基站发送上行控制信息时,在所述终端向基站发送上行控制信息之前,所述 方法还包括:
    所述终端接收基站发送的下行控制信息DCI,所述DCI包含用于指示所述第二类终端或者第三类终端使用第二模式帧格式发送上行数据时的调度信息。
  28. 根据权利要求14-27任一项所述的方法,其特征在于,当所述终端为第一类终端时,所述调度信息包含使用第一模式帧格式发送上行数据使用的物理资源信息,所述物理资源信息包括时间资源和频率资源,所述时间资源包含至少一个上行子帧,所述频率资源包含一个子载波;
    当所述终端为第二类终端或者第三类终端时,所述调度信息包含使用第二模式帧格式发送上行数据使用的物理资源信息,所述物理资源信息包括时间资源和频率资源,所述时间资源包含至少一个上行子帧,所述频率资源包含一个子载波或者多个子载波,且最多为12个子载波。
  29. 一种基站,其特征在于,所述基站包括:处理器、存储器、系统总线和通信接口;
    所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述系统总线连接,当所述基站运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述基站执行如权利要求1-13任一项所述的调度方法。
  30. 一种终端,其特征在于,所述终端包括:处理器、存储器、系统总线和通信接口;
    所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述系统总线连接,当所述基站运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述终端执行如权利要求14-28任一项所述的数据传输方法。
PCT/CN2016/070517 2016-01-08 2016-01-08 调度方法、数据传输方法及装置 WO2017117813A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP16882958.8A EP3399816B1 (en) 2016-01-08 2016-01-08 Scheduling method, and data transmission method and device
KR1020187022540A KR102145255B1 (ko) 2016-01-08 2016-01-08 스케줄링 방법, 데이터 송신 방법 및 장치
CN201911273935.6A CN111107656B (zh) 2016-01-08 2016-01-08 调度方法、数据传输方法及装置
PCT/CN2016/070517 WO2017117813A1 (zh) 2016-01-08 2016-01-08 调度方法、数据传输方法及装置
JP2018535346A JP7118003B2 (ja) 2016-01-08 2016-01-08 スケジューリング方法、データ伝送方法及び装置
CN201680039717.4A CN107736068B (zh) 2016-01-08 2016-01-08 调度方法、数据传输方法及装置
US16/029,022 US10631326B2 (en) 2016-01-08 2018-07-06 Scheduling method, data transmission method, and apparatus
US16/828,617 US11330616B2 (en) 2016-01-08 2020-03-24 Scheduling method, data transmission method, and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/070517 WO2017117813A1 (zh) 2016-01-08 2016-01-08 调度方法、数据传输方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/029,022 Continuation US10631326B2 (en) 2016-01-08 2018-07-06 Scheduling method, data transmission method, and apparatus

Publications (1)

Publication Number Publication Date
WO2017117813A1 true WO2017117813A1 (zh) 2017-07-13

Family

ID=59273180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070517 WO2017117813A1 (zh) 2016-01-08 2016-01-08 调度方法、数据传输方法及装置

Country Status (6)

Country Link
US (2) US10631326B2 (zh)
EP (1) EP3399816B1 (zh)
JP (1) JP7118003B2 (zh)
KR (1) KR102145255B1 (zh)
CN (2) CN111107656B (zh)
WO (1) WO2017117813A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111247764A (zh) * 2017-08-21 2020-06-05 诺基亚技术有限公司 用于配置窄带物联网通信系统的tdd操作的方法和装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107197524B (zh) * 2016-03-15 2021-06-22 株式会社Kt 用于发送窄带物联网用户设备上行数据的方法及装置
CN111935814B (zh) * 2016-07-18 2021-11-16 中兴通讯股份有限公司 同步信号的发送、接收方法及装置、传输系统
US20180132244A1 (en) * 2016-11-10 2018-05-10 Qualcomm Incorporated Techniques and apparatuses for configuring a common uplink portion in new radio
US10932258B2 (en) * 2017-12-15 2021-02-23 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving control information and data information in wireless communication system
CN112154698A (zh) * 2018-05-11 2020-12-29 华为技术有限公司 一种通信方法和通信装置
CN110945943B (zh) * 2019-11-05 2023-08-29 北京小米移动软件有限公司 数据处理系统、方法、装置、设备及可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102238732A (zh) * 2010-04-28 2011-11-09 中兴通讯股份有限公司 一种正交频分复用系统的无线资源分配、调度方法和装置
WO2015100136A1 (en) * 2013-12-23 2015-07-02 Qualcomm Incorporated Lte hierarchical burst mode
CN104767594A (zh) * 2014-01-03 2015-07-08 北京三星通信技术研究有限公司 Lte系统中上行传输的方法和设备

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070093262A1 (en) * 2005-10-21 2007-04-26 Shupeng Li Transmitting data on an uplink associated with multiple mobile stations in a spread spectrum cellular system
US8098623B2 (en) * 2007-10-03 2012-01-17 Telefonaktiebolaget Lm Ericsson Telecommunications frame structure accomodating differing formats
KR101612558B1 (ko) * 2009-08-28 2016-04-15 엘지전자 주식회사 중계국을 포함하는 무선통신 시스템에서 프레임 전송방법
US8665817B2 (en) * 2009-10-14 2014-03-04 Lg Electronics Inc. Method and apparatus for mode switching between a multi-cell coordinated communication mode and a single-cell MIMO communication mode
KR101684867B1 (ko) * 2010-04-07 2016-12-09 삼성전자주식회사 공간 다중화 이득을 이용한 제어 정보 송수신 방법
US9986388B2 (en) * 2010-10-06 2018-05-29 Unwired Planet International Limited Method and apparatus for transmitting and receiving data
EP2648442A1 (en) * 2010-11-30 2013-10-09 Fujitsu Limited Method for obtaining parameters, base station and terminal equipment
CN103024905B (zh) * 2011-01-07 2015-09-16 华为技术有限公司 一种子帧配比方法与装置
KR101919780B1 (ko) * 2011-03-03 2018-11-19 엘지전자 주식회사 무선 통신 시스템에서 확인응답 정보를 전송하는 방법 및 장치
CN102958184B (zh) 2011-08-25 2017-02-22 华为技术有限公司 下行控制信道传输方法、装置和系统
CN103096440B (zh) * 2011-11-07 2019-01-25 中兴通讯股份有限公司 一种无线信道接入方法及系统
WO2013069218A1 (ja) * 2011-11-07 2013-05-16 パナソニック株式会社 端末装置、基地局装置、送信方法および受信方法
CN102573045B (zh) * 2012-01-18 2014-12-03 华为技术有限公司 LTE-TDD网络和WiMAX网络同步的方法、基站及系统
WO2013112189A1 (en) * 2012-01-23 2013-08-01 Intel Corporation Network assisted user association and offloading techniques for integrated multi-rat heterogeneous networks
WO2013112983A2 (en) * 2012-01-26 2013-08-01 Interdigital Patent Holdings, Inc. Dynamic parameter adjustment for lte coexistence
US9119197B2 (en) * 2012-05-22 2015-08-25 Futurewei Technologies, Inc. System and method for delay scheduling
JP6593859B2 (ja) * 2012-07-05 2019-10-23 日本電気株式会社 無線通信システム、無線端末、無線局、および通信制御方法
US9386576B2 (en) * 2012-11-14 2016-07-05 Qualcomm Incorporated PUCCH resource determination for EPDCCH
CN103929266B (zh) * 2013-01-15 2019-08-09 中兴通讯股份有限公司 控制信道传输、传输处理方法及装置、网络侧设备、终端
CN109361499B (zh) * 2013-01-25 2022-02-08 瑞典爱立信有限公司 以动态tdd配置报告ack/nack的方法、无线通信设备和计算机可读介质
KR102300046B1 (ko) 2013-01-26 2021-09-08 엘지전자 주식회사 무선 통신 시스템에서 단말이 하향링크 제어 정보를 수신하는 방법 및 이를 위한 장치
JP6409230B2 (ja) * 2013-03-27 2018-10-24 シャープ株式会社 端末装置、基地局装置、および通信方法
JP6378673B2 (ja) * 2013-05-09 2018-08-22 シャープ株式会社 端末装置、通信方法および集積回路
US9451639B2 (en) * 2013-07-10 2016-09-20 Samsung Electronics Co., Ltd. Method and apparatus for coverage enhancement for a random access process
US9667386B2 (en) * 2013-11-13 2017-05-30 Samsung Electronics Co., Ltd Transmission of control channel and data channels for coverage enhancements
WO2015139224A1 (en) * 2014-03-19 2015-09-24 Telefonaktiebolaget L M Ericsson(Publ) Uplink power sharing in dual connectivity
WO2016070415A1 (en) * 2014-11-07 2016-05-12 Mediatek Singapore Pte. Ltd. Methods for resource allocation
EP3244553B1 (en) * 2015-01-09 2019-04-10 Samsung Electronics Co., Ltd. Method and apparatus for transmitting control channel for terminal in wireless communication system
US10014970B2 (en) * 2015-03-06 2018-07-03 Qualcomm Incorporated Mitigation of inter-base station resynchronization loss in LTE/LTE-A networks with contention-based shared frequency spectrum
WO2016189766A1 (en) * 2015-05-28 2016-12-01 Nec Corporation METHOD FOR REALIZING eCA SUPPORTING UP TO 32 CCs AND ENHANCING DYNAMIC PUCCH RESOURCE ALLOCATION FOR ASSOCIATED USE
WO2017007502A1 (en) * 2015-07-08 2017-01-12 Intel IP Corporation User equipment (ue) and methods for communication using directional transmission and reception
US10158464B2 (en) * 2015-09-25 2018-12-18 Intel IP Corporation Mobile terminal devices, mobile processing circuits, and methods of processing signals
US10841911B2 (en) * 2015-10-02 2020-11-17 Lg Electronics Inc. Method for transmitting downlink control information in wireless communication system
EP3157282A1 (en) * 2015-10-16 2017-04-19 Panasonic Intellectual Property Corporation of America Improved uplink transmissions in unlicensed cells with additional transmission timing offsets
US10772087B2 (en) * 2015-11-14 2020-09-08 Qualcomm Incorporated Physical layer signaling techniques in wireless communications systems
JP2019033304A (ja) * 2015-12-25 2019-02-28 シャープ株式会社 基地局装置、端末装置および通信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102238732A (zh) * 2010-04-28 2011-11-09 中兴通讯股份有限公司 一种正交频分复用系统的无线资源分配、调度方法和装置
WO2015100136A1 (en) * 2013-12-23 2015-07-02 Qualcomm Incorporated Lte hierarchical burst mode
CN104767594A (zh) * 2014-01-03 2015-07-08 北京三星通信技术研究有限公司 Lte系统中上行传输的方法和设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON ET AL.: "Pseudo CR 45.820 - Narrowband LTE Introduction", 3GPP TSG GE RAN #67 MEETING GP-151023, 14 August 2015 (2015-08-14), XP055519789 *
See also references of EP3399816A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111247764A (zh) * 2017-08-21 2020-06-05 诺基亚技术有限公司 用于配置窄带物联网通信系统的tdd操作的方法和装置

Also Published As

Publication number Publication date
CN111107656B (zh) 2022-05-06
EP3399816B1 (en) 2022-03-09
JP2019503141A (ja) 2019-01-31
CN111107656A (zh) 2020-05-05
CN107736068A (zh) 2018-02-23
KR20180100629A (ko) 2018-09-11
KR102145255B1 (ko) 2020-08-18
EP3399816A1 (en) 2018-11-07
US20180332610A1 (en) 2018-11-15
EP3399816A4 (en) 2018-12-12
US11330616B2 (en) 2022-05-10
JP7118003B2 (ja) 2022-08-15
CN107736068B (zh) 2019-12-24
US10631326B2 (en) 2020-04-21
US20200229225A1 (en) 2020-07-16

Similar Documents

Publication Publication Date Title
WO2017117813A1 (zh) 调度方法、数据传输方法及装置
US11363575B2 (en) Uplink information sending method and apparatus and uplink information receiving method and apparatus
CN107113878B (zh) 无线电接入节点、通信终端及其中执行的方法
CN108810905B (zh) 传输上行信道的方法和装置及传输下行信道的方法和装置
US11134482B2 (en) Method and apparatus for transmitting uplink control information
WO2019096311A1 (zh) 随机接入方法、终端及网络设备
US10952207B2 (en) Method for transmitting data, terminal device and network device
EP3793118A1 (en) Beam indication method, device, and system
WO2020047856A1 (zh) 配置信息的传输方法和终端设备
US20210219278A1 (en) Communication method, apparatus, device, and system, and storage medium
EP3050385A1 (en) Dynamic tdd ul/dl configuration indication for tdd eimta in carrier aggregation
EP3648391B1 (en) Information transmission method and device
EP4024999A1 (en) Communication method, device, and storage medium
US20200045733A1 (en) Uplink Scheduling For NR-U
EP3565327A1 (en) Communication method, access network device and terminal
EP3917246B1 (en) Retuning method and apparatus
US20210377952A1 (en) Resource indication method and terminal device
CN114424643A (zh) 一种上行传输方法及装置
WO2021000239A1 (zh) 无线通信方法、网络设备和终端设备
RU2745959C1 (ru) Способ беспроводной связи, оконечное устройство, сетевое устройство и сетевой узел
US20220132540A1 (en) Methods and apparatuses for transmitting and receiving uplink signal
WO2024011632A1 (zh) 资源配置方法、装置、设备及存储介质
US20230344606A1 (en) Wireless communication method and device
WO2022126590A1 (en) Methods and apparatuses for a pusch repetition enhancement mechanism for a tdd scenario
WO2023284692A1 (en) Sidelink communication method, and terminal device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16882958

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018535346

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016882958

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20187022540

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187022540

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2016882958

Country of ref document: EP

Effective date: 20180801