WO2017116126A1 - 전지팩 - Google Patents

전지팩 Download PDF

Info

Publication number
WO2017116126A1
WO2017116126A1 PCT/KR2016/015366 KR2016015366W WO2017116126A1 WO 2017116126 A1 WO2017116126 A1 WO 2017116126A1 KR 2016015366 W KR2016015366 W KR 2016015366W WO 2017116126 A1 WO2017116126 A1 WO 2017116126A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
housing
flow path
battery
heat exchanger
Prior art date
Application number
PCT/KR2016/015366
Other languages
English (en)
French (fr)
Inventor
블럼카조셉
로랭폴
제프리 스미스알렉산더
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020177010191A priority Critical patent/KR101926831B1/ko
Priority to CN201690000866.5U priority patent/CN207910036U/zh
Publication of WO2017116126A1 publication Critical patent/WO2017116126A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a battery pack.
  • the length of the battery pack in the longitudinal length is increased, the operation of the battery pack, there was a problem that the cooling efficiency of the battery module is lowered.
  • the inventors have recognized the need for a battery pack having an improved cooling function for cooling the battery module and having a longitudinal length smaller than other battery packs.
  • the present invention aims to solve the problems of the prior art and the technical problems that have been requested from the past.
  • the battery pack is located directly in line with the second flow path portion set by the first and second cooling fins on the thermally conductive housing for cooling the battery module.
  • air flow characteristics eg, substantially linear air flow
  • cooling functionality are improved, and thus the present invention has been completed.
  • a battery pack is provided according to an exemplary embodiment.
  • the battery pack includes a battery pack housing having a lower wall, first, second, third and fourth sidewalls, and a top cover defining an inner region.
  • the first, second, third and fourth sidewalls are connected to the bottom wall.
  • the battery pack housing has an inlet aperture extending through the first end of the battery pack housing.
  • the battery pack housing has a first outlet aperture extending through the second end of the battery pack housing.
  • the top cover is connected with the first, second, third and fourth side walls.
  • the battery pack further includes a battery module located at an inner distance of the battery pack housing at a predetermined distance above the lower wall and adjacent to the inlet.
  • the battery module includes a first battery cell and a first heat exchanger positioned to face each other.
  • the first heat exchanger is located substantially parallel to the bottom wall.
  • the first heat exchanger establishes a first flow path portion therethrough.
  • the battery pack further includes a first electric fan located in an inner region of the battery pack housing adjacent to the first outlet in fluid communication with the first outlet.
  • the battery pack further includes a thermally conductive housing located in an inner region of the battery pack on the bottom wall.
  • the thermally conductive housing has a first housing portion and at least first and second cooling fins connected upwardly in connection with the first housing portion.
  • the first and second cooling fins set a second flow path portion therebetween. At least a portion of the second flow path portion is positioned substantially in-line with the first flow path portion.
  • the first housing part is located between the first fan assembly and the battery module.
  • the first electric fan cools the battery module by flowing air to the first outlet through the inlet, the first flow path, the second flow path, and the first electric fan.
  • FIG. 1 is a schematic view of a battery pack according to an exemplary embodiment
  • FIG. 2 is another schematic view of the battery pack of FIG. 1;
  • FIG. 3 is a cross-sectional view of a schematic diagram of the battery pack of FIG. 1;
  • FIG. 4 is another schematic view of the top cover of the battery pack of Figure 1 removed;
  • FIG. 5 is another schematic view of the top cover of the battery pack of Figure 1 removed;
  • FIG. 6 is another schematic diagram of a part of the battery pack of FIG. 1;
  • FIG. 7 is a schematic diagram of a louver used in the battery pack of FIG. 1;
  • FIG. 8 is another schematic diagram of the louver of FIG. 7; FIG.
  • FIG. 9 is a block diagram of a portion of the battery pack of FIG. 1;
  • FIG. 10 is an exemplary table used by the micro process in the battery pack of FIG. 1; FIG. And
  • 11 and 12 are flowcharts of a method of controlling the first and second electric fans and the DC-DC voltage converter for cooling the battery module in the battery pack of FIG. 1 according to another exemplary embodiment.
  • the battery pack 10 includes a battery pack housing 30, a battery module 32, first and second electric fans 34 and 35, a thermally conductive housing 36, a DC-DC voltage converter 38, and a first battery pack. And second temperature sensors 40, 42, microprocessor 44 and driver circuits 46, 48.
  • An advantage of the battery pack 10 is that the battery pack 10 has a first flow path portion which is substantially aligned with and directly communicates with the second flow path portion set by the first and second cooling fins on the thermally conductive housing 36 for cooling the battery module 32.
  • air flow characteristics eg, substantially linear air flow
  • cooling functionality have been improved.
  • the inventors use a first flow path portion through a first heat exchanger that is substantially in line with a second flow path portion across the thermally conductive housing 36, whereby a greater amount of thermal energy is generated by the battery module 32 and It was recognized that the air is transferred from the housing 36 to the air flowing through the battery pack housing 30.
  • the battery pack 10 has a smaller housing in the longitudinal direction by disposing a portion of the thermally conductive housing under the battery module 32.
  • substantially in line means arranged substantially in a straight line (eg, ⁇ 15 degrees relative to each other).
  • the battery pack housing 30 is provided to hold the remaining components in the battery pack 10.
  • the battery pack housing 30 has a top cover 79 that sets the lower wall 70, the side walls 72, 74, 76, and 78, and the inner region 60.
  • the battery pack housing 30 further includes a louver 80.
  • the side walls 72, 74, 76, 78 are connected to the lower wall 70 and extend substantially parallel to each other. Side walls 72 and 74 are located at the first and second ends of the bottom wall 70, respectively.
  • the top cover 79 has an inlet 90 extending through the first end of the battery pack housing 30.
  • the battery pack housing 70 has outlets 94 and 96 extending through the second end of the battery pack housing 30.
  • the side walls 76, 78 are connected to the lower wall 70 and extend substantially parallel to each other. Sidewalls 76, 78 are connected between sidewalls 72, 74.
  • Top cover 79 is removably connected to sidewalls 72, 74, 76, 78 to surround interior region 60.
  • the bottom wall 70, sidewalls 72, 74, 76, 78 and top cover 79 are constructed of steel or aluminum.
  • the lower wall 70, the side walls 72, 74, 76, 78 and the top cover 79 are made of plastic.
  • the louver 80 is attached to the top cover 79 at the first end of the battery pack housing 30 adjacent the inlet 90.
  • the louver 80 is configured to allow air to flow therethrough and further flow into the interior region 60 through the inlet 90 while preventing moisture and debris from entering the interior region 60.
  • the louver 80 includes a body 100 and protrusions 102, 104, 106 extending outward from the body 100.
  • the body 100 has openings 108, 110, 112 extending through it, respectively, which openings are located adjacent to each of the protrusions 102, 104, 106.
  • the battery module 32 is located in the inner region 60 adjacent to the inlet 90.
  • the battery module 32 includes frame members 120, 122, 124, battery cells 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, and an end plate 173. , 174).
  • Frame members 120, 122, 124 are provided to hold battery cells 154, 156, 158, 160, 162, 164, 166, 168 therebetween.
  • the frame member 120 and the end plate 173 are provided to hold the battery cells 150 and 152 therebetween.
  • the frame member 124 and the end plate 174 are provided to hold the battery cells 170 and 172 therebetween.
  • the frame member 122 is connected between the frame members 120 and 124.
  • the structure of each of the frame members 120, 122, 124 is identical to each other. Accordingly, only the structure of the frame member 120 will be described in detail below.
  • Frame member 120 has a substantially rectangular ring shaped outer plastic frame 180 and heat exchanger 182.
  • the heat exchanger 182 has first and second thermally conductive plates 190, 192 that establish flow path portions 193 that are joined together and extend therethrough.
  • the frame member 122 has the same structure as the frame member 120 described above.
  • the frame member 122 has a substantially rectangular ring-shaped outer plastic frame 196 and a heat exchanger 198.
  • the heat exchanger 198 sets the flow path portion 199 extending therethrough.
  • the first side of the heat exchanger 198 is in direct contact with the battery cells 158, 160, and the second side of the heat exchanger 198 is in direct contact with the battery cells 162, 164.
  • the frame member 124 has the same structure as the frame member 120 described above.
  • the frame member 124 has a substantially rectangular ring-shaped outer plastic frame 200 and a heat exchanger 202.
  • the heat exchanger 202 sets the flow path portion 203 extending therethrough.
  • the first side of the heat exchanger 202 is in direct contact with the battery cells 166 and 168, and the second side of the heat exchanger 202 is in direct contact with the battery cells 170 and 172.
  • the battery cells 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, and 172 are configured to generate operating voltages, respectively.
  • the battery cells 150-172 are pouch-type lithium ion battery cells having a substantially rectangular ring-shaped body portion and a pair of electrode terminals.
  • the battery cells 150-172 are electrically connected in series with each other. In an exemplary embodiment, the structures of the battery cells 150-172 are identical to each other.
  • the thermally conductive housing 36 has a DC-DC voltage converter 38 inside which the battery cells 150-172 of the battery module 32 are electrically connected. It is provided.
  • the thermally conductive housing 36 transfers heat from the DC-DC voltage converter 38 to the air flowing past the thermally conductive housing 36.
  • the thermally conductive housing 36 is located in the interior region 60 of the battery pack housing 30 on the bottom wall 70.
  • the thermally conductive housing 36 has a first housing portion 320, a second housing portion 322, and cooling fins 330, 332, 334, 336, 340, 342, 344, 346.
  • the first housing part 320 is coupled to the second housing part 322, and the cooling fins 330-346 extend upwardly from the first housing part 320 and are coupled to each other.
  • the first housing part 320 is located on the lower wall 70 between the first electric fan 34 and the battery module 32, and further between the second electric fan 35 and the battery module 32. It is located.
  • the second housing part 322 is located between the battery module 32 and the lower wall 70 of the battery pack housing 30.
  • the second housing portion 322 is located on the lower wall 70 and supports the end of the battery module 32.
  • the cooling fins 330 and 332 set the flow path part 360 extending between the battery module 32 and the first electric fan 34.
  • the cooling fins 332 and 334 set a flow path portion 362 extending between the battery module 32 and the first electric fan 34.
  • At least a portion of the flow path portion 362 is positioned substantially in line with and in direct fluid communication with the flow path portion 199 (shown in FIG. 3) of the heat exchanger 198.
  • the cooling fins 334 and 336 set a flow path portion 364 extending between the battery module 32 and the first electric fan 34.
  • cooling fins 340 and 342 set the flow path part 370 extending between the battery module 32 and the second electric fan 35.
  • the cooling fins 342 and 344 set a flow path portion 372 extending between the battery module 32 and the second electric fan 35.
  • the cooling fins 344 and 346 set a flow path portion 374 extending between the battery module 32 and the second electric fan 35.
  • the thermally conductive housing 36 is made of aluminum.
  • the thermally conductive housing 36 may be made of other materials, such as steel or other metal alloys.
  • the first electric fan 34 is connected through the inner region 60 of the battery pack housing 30 to cool the battery module 32 and the DC-DC voltage converter 18. It is provided to flow air.
  • the first battery fan 34 includes a housing 400 that sets the central opening 402 and the lower outlet 404.
  • the first electric fan 34 includes an internal motor and fan blades (not shown) for flowing air into the central opening 402 and through the interior of the housing 400, and the air is provided in the lower outlet 404. To be discharged.
  • the drive circuit 46 (shown in FIG. 9) is electrically coupled with the first electric fan 34 and provides a control voltage for controlling the operation of the electric fan 34.
  • the first electric fan 34 flows air through the inlet 90 of the battery pack housing 30 and also flow path portions 193, 199, of each of the heat exchangers 182, 198, 202. Flows through the 203 and also through the flow path portions 360, 362, 364 to the first electric fan 34. It also flows through the outlet 94 to cool the battery module 32 and the DC-DC voltage converter 38.
  • the second electric fan 35 is provided to flow air through the inner region 60 of the battery pack housing 30 to cool the battery module 32 and the DC-DC voltage converter 18.
  • the second electric fan 35 is substantially the same structure as the first electric fan 34.
  • the second electric fan 35 includes a housing 410 which sets the central opening and the lower outlet.
  • the second electric fan 35 includes an internal motor and fan blades (not shown) for flowing air into the central opening and through the interior of the housing 410, and the air is exhausted to the lower outlet.
  • the drive circuit 48 (shown in FIG. 9) is electrically coupled with the second electric fan 35 and provides a control voltage for controlling the operation of the electric fan 35.
  • the second electric fan 35 causes air to flow through the inlet 90 of the battery pack housing 30 and also flow path portions 193, 199, of each of the heat exchangers 182, 198, 202. Flows through the 203 and also through the flow path portions 370, 372, 374 to the second electric fan 35. It also flows through the outlet 96 to cool the battery module 32 and the DC-DC voltage converter 38.
  • the first temperature sensor 40 is located in the inner region 60 of the battery pack housing 30 adjacent to at least one battery cell of the battery module 32.
  • the first temperature sensor 40 is configured to generate a temperature signal indicative of the temperature level of the battery module 32.
  • the second temperature sensor 42 is located in the inner region 60 of the battery pack housing 3 adjacent to the DC-DC voltage converter 38.
  • the second temperature sensor 42 is configured to generate a temperature signal indicative of the temperature level of the DC-DC voltage converter 38.
  • the microprocessor 44 is operably electrically coupled to the first temperature sensor 40, the second temperature sensor 42, and the drive circuits 46, 48.
  • the microprocessor 44 receives first and second temperature signals from the first and second temperature sensors 40 and 42, respectively, and based on the first and second temperature signals, the first and second temperature signals.
  • a second voltage signal is generated and connected to the driver circuits 46 and 48, respectively, to control the operation of the first and second electric fans 34 and 35, respectively, which will be described in more detail below.
  • the microprocessor 44 has a memory device 400 that stores software instructions and data for implementing at least some of the methods of controlling the first and second electric fans 34, 35.
  • the microprocessor 44 for controlling the operating speed of the first and second electric fans 34 and 35 for cooling the battery module 32 and the DC-DC voltage converter 38.
  • An example table 500 is shown that is stored in a memory device 400 that can be used by the.
  • Table 500 includes results 502, 504, 506, 508, 510, 512, 514, 516, 518, 520, 522. Each result includes the following field values: (i) fan speed percentage value, (ii) battery cell temperature value, and (iii) DC-DC voltage converter temperature value.
  • the fan speed percentage value corresponds to a percentage of the threshold or maximum operating speed (eg, 13,000 RPM) associated with each of the first and second electric fans 220, 222.
  • the microprocessor 44 determines the battery cell temperature level, and the DC-DC voltage converter temperature level, and then uses these values as indexes of the table 500 for each of the first and second electric fans 34 and 35. Determine the corresponding fan speed percentage value.
  • the microprocessor 44 selects the highest fan speed percentage value of the two values, and then induces the first and second electric fans 34 and 35 to operate at the operating speed corresponding to the highest fan speed percentage value. Generates a control value.
  • the microprocessor 44 can access the result 504 and 10 of the critical operating speeds of each of the first and second electric fans 34 and 35.
  • a first fan speed percentage value of 0.1 may be selected that corresponds to%.
  • the microprocessor 44 can access the result 506 and determine the critical operating speed of each of the first and second electric fans 34 and 35.
  • a first fan speed percentage value of 0.2 may be selected that corresponds to 20%.
  • the microprocessor 44 selects the highest of the fan speed percentage values of 0.1 and 0.2 corresponding to 0.2 to control each of the first and second electric fans 34, 35.
  • step 602 the first temperature sensor 40 generates a first temperature signal indicative of the first temperature level of the battery module 32. After step 602, the method proceeds to step 604.
  • step 604 the second temperature sensor 42 generates a second temperature signal indicative of the second temperature level of the DC-DC voltage converter 38. After step 604, the method proceeds to step 606.
  • step 606 the microprocessor 44 determines the first fan speed percentage value based on the first temperature level.
  • the first fan speed ratio value corresponds to a first percentage of threshold operating speed values associated with the first and second electric fans 34, 35.
  • step 608 the microprocessor 44 determines a second fan speed percentage value based on the second temperature level.
  • the second fan speed ratio value corresponds to a second percentage of the threshold operating speed value associated with the first and second electric fans 34, 35.
  • step 610 the microprocessor 44 makes a determination as to whether the first fan speed percentage value is greater than or equal to the second fan speed percentage value. If the value of process 610 is yes, the method proceeds to process 612. Otherwise, the method proceeds to step 618.
  • step 612 the microprocessor 44 selects a first fan speed percentage value. After step 612, the method proceeds to step 614.
  • the microprocessor 44 outputs the first and second control voltages, respectively, and derives the first and second electric fans 34, 35, respectively, each at a first fan speed percentage value. In order to operate at the corresponding operating speed, first and second control signals are generated which direct the first and second drive circuits 46 and 48. After step 614, the method proceeds to step 616.
  • step 616 the first electric fan 34 supplies air to the inlet port 90 of the battery pack housing 30 and the flow path portion 199 of the heat exchanger 198 of the battery module 32 (shown in FIG. 3).
  • the battery module 32 through the flow path portion 362 set by the cooling fins 332 and 334 (shown in FIG. 5) of the thermally conductive housing 36, and the first electric fan 34. It flows to the outlet 94 (shown in FIG. 4) of the battery pack housing 30 to cool.
  • step 617 the method advances to step 617.
  • the second electric fan 35 supplies air to the inlet port 90 of the battery pack housing 30, the flow path part 199 of the heat exchanger 198 of the battery module 32, and the thermally conductive housing ( The battery pack housing 30 to cool the battery module 32 through the flow path portion 372 set by the cooling fins 332 and 334 (shown in FIG. 5) of the 36 and the second electric fan 35. Flows into the outlet 96 of. After step 617, the method proceeds to step 618.
  • step 618 the microprocessor 44 makes a determination as to whether the second fan speed percentage value is greater than the first fan speed percentage value. If the value of step 618 is YES, the method proceeds to step 620. Otherwise, the method returns to step 602.
  • step 620 the microprocessor 44 selects a second fan speed percentage value. After step 620, the method proceeds to step 622.
  • step 622 the microprocessor 44 outputs third and fourth control voltages, respectively, and induces first and second electric fans 220 and 222, respectively, each at a second fan speed percentage value. In order to operate at the corresponding operating speed, third and fourth control signals are generated which direct the first and second drive circuits 46 and 48. After step 622, the method proceeds to step 624.
  • the first electric fan 34 supplies air to the inlet port 90 of the battery pack housing 30 and the flow path portion 199 of the heat exchanger 198 of the battery module 32 (shown in FIG. 3).
  • the battery module 32 through the flow path portion 362 set by the cooling fins 332 and 334 (shown in FIG. 5) of the thermally conductive housing 36, and the first electric fan 34. It flows to the outlet 94 (shown in FIG. 4) of the battery pack housing 30 to cool.
  • the method proceeds to process 626.
  • the second electric fan 35 supplies air to the inlet port 90 of the battery pack housing 30, the flow path part 199 of the heat exchanger 198 of the battery module 32, and the thermally conductive housing ( The battery pack housing 30 to cool the battery module 32 through the flow path portion 372 (shown in FIG. 5) set by the cooling fins 342 and 344 of the 36, and the second electric fan 35. Flows into the outlet 96 of. After step 626, the method returns to step 602.
  • the foregoing methods may be implemented at least in part in the form of computer readable media having computer executable instructions for executing one or more memory devices or methods.
  • the memory devices may include one or more of the following: a hard drive, a RAM memory, a flash memory, and other computer readable media known to those skilled in the art: when the computer executable instructions are loaded and executed in one or more computers or microprocessors, One or more computers or microprocessors are devices that are programmed to perform the relevant procedures of the method.
  • the battery pack described herein provides a substantial advantage over other battery packs.
  • the battery pack has a battery having a first heat exchanger defining a first flow path portion substantially aligned with a second flow path portion set by the first and second cooling fins on the thermally conductive housing for cooling the battery module.
  • the air flow characteristics were improved.
  • the battery pack includes a housing having a smaller longitudinal length by disposing a portion of the thermally conductive housing under the battery module.
  • the advantage of the battery pack of the present invention is substantially in line with the second flow path portion is set by the first and second cooling fins on the thermally conductive housing for cooling the battery module.
  • the use of a battery module having a first heat exchanger which is located in and directly establishes a first flow path portion has an effect of improving air flow characteristics (eg, substantially linear air flow) and cooling functionality.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

본 발명은 내부 영역(interior region)을 설정하는 하부 벽(bottom wall), 제 1, 제 2 제 3 및 제 4 측벽들(side walls), 및 탑 커버(top cover)를 구비한 전지팩 하우징(battery pack housing)으로서; 상기 제 1, 제 2, 제 3 및 제 4 측벽들은 하부 벽에 연결되어 있고; 상기 전지팩 하우징은 전지팩 하우징의 제 1 단부(end)에 관통 연장되어 있는 유입구(inlet aperture)를 구비하고 있고, 상기 전지팩 하우징은 전지팩 하우징의 제 2 단부에 관통 연장되어 있는 제 1 배출구(outlet aperture)를 구비하고 있으며, 상기 탑 커버는 제 1, 제 2, 제 3 및 제 4 측벽들과 연결되어 있는 구조의 전지팩 하우징; 상기 하부 벽 위로 소정의 거리에 있고 유입구에 인접한 전지팩 하우징의 내부 영역에 위치하는 전지모듈(battery module)로서, 상기 전지모듈은 서로 대향하여 위치하는 제 1 전지셀 및 제 1 열 교환기를 구비하고 있고, 상기 제 1 열 교환기는 하부 벽에 실질적으로 평행하게 위치하며, 상기 제 1 열 교환기는 그것을 관통하는 제 1 유로부(flow path portion)를 설정하고 있는 구조의 전지모듈; 상기 제 1 배출구와 유동적으로 연통하는 제 1 배출구에 인접한 전지팩 하우징의 내부 영역에 위치하는 제 1 전기팬(electric fan); 및 상기 하부 벽 상의 전지팩의 내부 영역에 위치하는 열 전도성 하우징(thermally conductive housing)으로서, 상기 열 전도성 하우징은 제 1 하우징부(housing portion) 및 상기 제 1 하우징부에 연결되어 상향 연장되는 적어도 제 1 및 제 2 냉각핀들(cooling fins)을 구비하고 있으며, 상기 제 1 및 제 2 냉각핀들은 그 사이에 제 2 유로부를 설정하고, 상기 제 2 유로부의 적어도 일부분은 제 1 유로부와 실질적으로 일렬(in-line)로 위치하며, 상기 제 1 하우징부는 제 1 팬 어셈블리(fan assembly) 및 전지모듈 사이에 위치하는 구조의 열 전도성 하우징; 을 포함하고 있고, 상기 제 1 전기팬은 공기를 유입구, 제 1 유로부, 제 2 유로부 및 제 1 전기팬을 통해 제 1 배출구로 유동시켜 전지모듈을 냉각시키는 것을 특징으로 하는 전지팩에 관한 것이다.

Description

전지팩
본 출원은 2015.12.29자 미국 특허 출원 제 14/982,486호에 기초한 우선권의 이익을 주장하며, 해당 미국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 전지팩에 관한 것이다.
종래의 전지팩이 다수의 전지모듈들을 포함할 때, 전지팩의 길이 방향 길이가 늘어나고, 전지팩의 작동 시, 전지모듈들의 냉각 효율이 저하되는 문제점이 있었다.
이에, 본 발명자들은 전지 모듈을 냉각시키기 위한 개선된 냉각 기능과 다른 전지 팩들보다 작은 길이 방향 길이를 갖는 전지 팩에 대한 필요성을 인식하였다.
본 발명은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험들을 계속한 끝에 전지팩은 전지모듈을 냉각시키기 위한 열 전도성 하우징 상의 제 1 및 제 2 냉각핀들에 의해 설정되는 제 2 유로부와 실질적으로 일렬로 위치하고 직접 연통하는 제 1 유로부를 설정하는 제 1 열 교환기를 갖는 전지모듈을 이용함으로써 공기 유동 특성들(예를 들어, 실질적으로 선형 공기 유동) 및 냉각 기능성이 개선됨을 확인하고, 본 발명을 완성하기에 이르렀다.
예시적인 실시예에 따른 배터리 팩이 제공된다. 전지팩은 하부 벽, 제 1, 제 2, 제 3 및 제 4 측벽들, 및 내부 영역을 정의하는 탑 커버를 구비하는 전지팩 하우징을 포함한다.
제 1, 제 2, 제 3 및 제 4 측벽들은 하부 벽에 연결되어 있다. 전지팩 하우징은 전지팩 하우징의 제 1 단부(end)에 관통 연장되어 있는 유입구(inlet aperture)를 구비하고 있다.
전지팩 하우징은 전지팩 하우징의 제 2 단부에 관통 연장되어 있는 제 1 배출구(outlet aperture)를 구비하고 있다. 탑 커버는 제 1, 제 2, 제 3 및 제 4 측벽들과 연결되어 있다.
전지팩은 하부 벽 위로 소정의 거리에 있고 유입구에 인접한 전지팩 하우징의 내부 영역에 위치하는 전지모듈(battery module)을 더 포함한다.
전지모듈은 서로 대향하여 위치하는 제 1 전지셀 및 제 1 열 교환기를 구비하고 있다. 제 1 열 교환기는 하부 벽에 실질적으로 평행하게 위치되어 있다.
제 1 열 교환기는 그것을 관통하는 제 1 유로부(flow path portion)를 설정한다. 전지팩은 제 1 배출구와 유동적으로 연통하는 제 1 배출구에 인접한 전지팩 하우징의 내부 영역에 위치하는 제 1 전기팬(electric fan)을 더 포함한다.
전지팩은 하부 벽 상의 전지팩의 내부 영역에 위치하는 열 전도성 하우징을 더 포함한다.
열 전도성 하우징은 제 1 하우징부(housing portion) 및 상기 제 1 하우징부에 연결되어 상향 연장되는 적어도 제 1 및 제 2 냉각핀들(cooling fins)을 구비하고 있다.
제 1 및 제 2 냉각핀들은 그 사이에 제 2 유로부를 설정한다. 제 2 유로부의 적어도 일부분은 제 1 유로부와 실질적으로 일렬(in-line)로 위치한다.
제 1 하우징부는 제 1 팬 어셈블리(fan assembly) 및 전지모듈 사이에 위치되어 있다. 제 1 전기팬은 공기를 유입구, 제 1 유로부, 제 2 유로부 및 제 1 전기팬을 통해 제 1 배출구로 유동시켜 전지모듈을 냉각시킨다.
도 1은 예시적인 실시예에 따른 전지팩의 모식도이다;
도 2는 도 1의 전지팩의 다른 모식도이다;
도 3은 도 1의 전지팩의 모식도의 단면도이다;
도 4는 도 1의 전지팩의 탑 커버가 제거된 다른 모식도이다;
도 5는 도 1의 전지팩의 탑 커버가 제거된 다른 모식도이다;
도 6은 도 1의 전지팩의 일부의 다른 모식도이다;
도 7은 도 1의 전지팩 내에 이용되는 루버의 모식도이다;
도 8은 도 7의 루버의 다른 모식도이다;
도 9는 도 1의 전지팩의 일부의 블록도이다;
도 10은 도 1의 전지팩 내의 마이크로 프로세스에 의해 이용되는 예시적인 테이블이다; 및
도 11 및 12는 다른 예시적인 실시예에 따른 도 1의 전지팩 내의 전지모듈의 냉각을 위한 제 1 및 제 2 전기팬 및 DC-DC 전압 컨버터를 제어하는 방법의 순서도들이다.
도 1, 3 및 9를 참조하면, 예시적인 실시예에 따른 전지팩(10)이 제공된다. 전지팩(10)은 전지팩 하우징(30), 전지모듈(32), 제 1 및 제 2 전기팬(34, 35), 열 전도성 하우징(36), DC-DC 전압 변환기(38), 제 1 및 제 2 온도 센서들(40, 42), 마이크로 프로세서(44) 및 드라이버 회로들(46, 48)을 포함한다.
전지팩(10)의 이점은 전지모듈(32)을 냉각시키기 위한 열 전도성 하우징(36) 상의 제 1 및 제 2 냉각핀들에 의해 설정되는 제 2 유로부와 실질적으로 일렬로 위치하고 직접 연통하는 제 1 유로부를 설정하는 제 1 열 교환기를 갖는 전지모듈(32)을 이용함으로써 공기 유동 특성들(예를 들어, 실질적으로 선형 공기 유동) 및 냉각 기능성이 개선되었다.
특히, 본 발명자들은 열 전도성 하우징(36)을 가로지르는 제 2 유로부와 실질적으로 일렬인 제 1 열 교환기를 통과하는 제 1 유로부를 이용함으로써, 보다 많은 양의 열 에너지가 전지모듈(32) 및 하우징(36)으로부터 전지팩 하우징(30)을 통해 유동하는 공기로 전달되는 것을 인식하였다.
또한, 전지팩(10)은 전지모듈(32) 아래에 열 전도성 하우징의 일부를 배치시킴으로써 길이 방향으로 좀 더 작은 하우징을 갖는다.
이해를 위해, "실질적으로 일렬"이라는 용어는 실질적으로 직선 (예를 들어, 서로에 대해 ±15도)으로 배열되는 것을 의미한다.
도 1 내지 3을 참조하면, 전지팩 하우징(30)은 전지팩(10) 내의 나머지 구성 요소들을 보유하기 위해 제공된다. 전지팩 하우징(30)은 하부 벽(70), 측벽들(72, 74, 76, 78) 및 내부 영역(60)을 설정하는 탑 커버(79)를 구비한다. 전지팩 하우징(30)은 루버(80)를 더 포함한다.
측벽들(72, 74, 76, 78)은 하부 벽(70)에 연결되어 있으며 서로 실질적으로 평행하게 연장되어 있다. 측벽들(72,74)은 각각, 하부 벽(70)의 제 1 및 제 2 단부에 위치되어 있다. 탑 커버(79)는 전지팩 하우징(30)의 제 1 단부에 관통 연장되어 있는 유입구(90)를 구비한다.
전지팩 하우징(70)은 전지팩 하우징(30)의 제 2 단부에 관통 연장되는 배출구들(94, 96)을 구비한다. 측벽들(76, 78)은 하부 벽(70)에 연결되어 있으며 서로 실질적으로 평행하게 연장되어 있다. 측벽들(76, 78)은 측벽들(72, 74) 사이에 연결되어 있다.
탑 커버(79)는 내부 영역(60)을 둘러싸도록 측벽들(72, 74, 76, 78)에 제거 가능하게 연결되어 있다. 예시적인 실시예에서, 하부 벽(70), 측벽들(72, 74, 76, 78) 및 탑 커버(79)는 스틸(steel) 또는 알루미늄으로 구성되어 있다. 다른 실시예에서, 하부 벽(70), 측벽들(72, 74, 76, 78) 및 탑 커버(79)는 플라스틱으로 구성되어 있다.
도 3, 7 및 8을 참조하면, 루버(80)는 유입구(90)에 인접한 전지팩 하우징(30)의 제 1 단부에 있는 탑 커버(79)에 부착되어 있다. 루버(80)는 수분 및 잔해가 내부 영역(60)으로 들어가는 것을 방지하면서 공기가 그를 통해 유동하고 더 유입구(90)를 통해 내부 영역(60) 내로 더 유동하도록 이루어져 있다.
루버(80)는 본체(100) 및 본체(100)에서 외측으로 연장된 돌출부들(102, 104, 106)을 포함한다. 본체(100)는 각각 관통 연장되어 있는 개구들(108, 110, 112)을 구비하고 있으며, 상기 개구들은 돌출부들(102, 104, 106) 각각에 인접하게 위치되어 있다.
도 3을 참조하면, 전지모듈(32)은 유입구(90)에 인접한 내부 영역(60)에 위치되어 있다. 전지모듈(32)은 프레임 부재들(120, 122, 124), 전지셀들(150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172) 및 엔드 플레이트(173, 174)를 포함한다.
프레임 부재들(120, 122, 124)은 그 사이에 전지셀들(154, 156, 158, 160, 162, 164, 166, 168)을 보유하도록 제공되어 있다. 또한, 프레임 부재(120) 및 엔드 플레이트(173)은 그 사이에 전지셀들(150, 152)을 보유하도록 제공되어 있다. 또한, 프레임 부재(124) 및 엔드 플레이트(174)는 그 사이에 전지셀들(170, 172)을 보유하도록 제공되어 있다.
프레임 부재(122)는 프레임 부재들(120, 124) 사이에 연결되어 있다. 각각의 프레임 부재들(120, 122, 124)의 구조는 서로 동일하다. 이에 따라, 프레임 부재(120)의 구조에 대해서만 이하 상세히 설명할 것이다.
프레임 부재(120)는 실질적으로 직사각형 링 형상의 외부 플라스틱 프레임(180) 및 열 교환기(182)를 구비한다. 열 교환기(182)는 함께 결합되고 이를 통해 연장되는 유로부(193)를 설정하는 제 1 및 제 2 열 전도성 플레이트(190, 192)를 구비한다.
프레임 부재(122)는 전술한 프레임 부재(120)와 동일한 구조를 갖는다. 프레임 부재(122)는 실질적으로 직사각형의 링-형상의 외부 플라스틱 프레임(196) 및 열 교환기(198)를 구비한다.
열 교환기(198)은 그것을 통해 연장하는 유로부(199)를 설정한다. 열 교환기(198)의 제 1 면은 전지셀들(158, 160)과 직접 접촉하고, 그리고 열 교환기(198)의 제 2 면은 전지셀들(162, 164)과 직접 접촉한다.
프레임 부재(124)는 전술한 프레임 부재(120)와 동일한 구조를 갖는다. 프레임 부재(124)는 실질적으로 직사각형의 링-형상 외부 플라스틱 프레임(200) 및 열 교환기(202)를 구비한다.
열 교환기(202)는 이를 통해 연장되는 유로부(203)을 설정한다. 열 교환기(202)의 제 1 면은 전지셀들(166, 168)과 직접 접촉하고, 열 교환기(202)의 제 2 면은 전지셀들(170, 172)과 직접 접촉한다.
전지셀들(150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172)은 각각 동작 전압을 발생하도록 구성되어 있다. 일 실시예에서, 전지셀들(150-172)은 실질적으로 직사각형의 링-형상의 본체부 및 한 쌍의 전극 단자들을 구비하는 파우치형 리튬 이온 전지셀들이다.
예시적인 실시예에서, 전지셀들(150-172)는 서로 직렬로 전기적으로 연결되어 있다. 예시적인 실시예에서, 전지셀들(150-172)의 구조는 서로 동일하다.
도 3 내지 5 및 9를 참조하면, 열 전도성 하우징(36)은 전지모듈(32)의 전지셀들(150-172)이 전기적으로 연결되어 있는 DC-DC 전압 컨버터(38)를 내부에 보유하도록 제공되어 있다. 열 전도성 하우징(36)은 DC-DC 전압 컨버터(38)로부터 열 전도성 하우징(36)을 지나 유동하는 공기로 열을 전달한다.
열 전도성 하우징(36)은 하부 벽(70) 상의 전지팩 하우징(30)의 내부 영역(60)에 위치되어 있다. 열 전도성 하우징(36)은 제 1 하우징부(320), 제 2 하우징부(322), 및 냉각핀들(330, 332, 334, 336, 340, 342, 344, 346)을 구비한다.
제 1 하우징부(320)는 제 2 하우징부(322)에 결합되어 있고, 그리고 냉각핀들(330-346)은 제 1 하우징부(320)로부터 상향 연장되어 결합되어 있다. 제 1 하우징부(320)는 제 1 전기팬(34) 및 전지모듈(32) 사이에 하부 벽(70) 상에 위치되어 있고, 제 2 전기팬(35) 및 전지모듈(32) 사이에 더 위치되어 있다.
제 2 하우징부(322)는 전지모듈(32) 및 전지팩 하우징(30)의 하부 벽(70) 사이에 위치되어 있다. 또한, 제 2 하우징부(322)는 하부 벽(70) 상에 위치되어 있으며 전지모듈(32)의 단부를 지지한다.
도 3 및 5를 참조하면, 냉각핀들(330, 332)는 전지모듈(32) 및 제 1 전기팬(34) 그들 사이로 연장되는 유로부(360)를 설정한다. 또한, 냉각핀들(332, 334)는 전지모듈(32) 및 제 1 전기팬(34) 그들 사이로 연장되는 유로부(362)를 설정한다.
유로부(362)의 적어도 일부는 열 교환기(198)의 유로부(199) (도 3에 도시됨)와 실질적으로 일렬로 위치하고 직접 유동적으로 연통한다. 냉각핀들(334, 336)은 전지모듈(32) 및 제 1 전기팬(34) 그들 사이로 연장되는 유로부(364)를 설정한다.
또한, 냉각핀들(340, 342)는 전지모듈(32) 및 제 2 전기팬(35) 그들 사이로 연장되는 유로부(370)를 설정한다. 냉각핀들(342, 344)은 전지모듈(32) 및 제 2 전기팬(35) 그들 사이로 연장되는 유로부(372)를 설정한다. 또한, 냉각핀들(344, 346)은 전지모듈(32) 및 제 2 전기팬(35) 그들 사이로 연장되는 유로부(374)를 설정한다.
예시적인 실시예에서, 열 전도성 하우징(36)은 알루미늄으로 이루어져 있다. 물론, 다른 실시예에서, 열 전도성 하우징(36)은 스틸 또는 다른 금속 합금과 같은 다른 재질로 이루어질 수 있다.
도 3 내지 5 및 9를 참조하면, 제 1 전기팬(34)은 전지모듈(32) 및 DC-DC 전압 컨버터(18)를 냉각시키기 위해 전지팩 하우징(30)의 내부 영역(60)을 통해 공기를 유동시키도록 제공되어 있다. 제 1 전지팬(34)은 중앙 개구(402) 및 하부 배출구(404)를 설정하는 하우징(400)을 포함한다.
제 1 전기팬(34)은 중앙 개구(402) 내로 그리고 하우징(400)의 내부를 통해 공기를 유동시키는 내부 모터 및 팬 날개(blades)(미도시)를 포함하고, 그리고 공기는 하부 배출구(404)로 배출된다. 구동 회로(46)(도 9에 도시됨)는 제 1 전기팬(34)과 전기적으로 결합되며 그리고 전기팬(34)의 작동을 제어하기위한 제어 전압을 제공한다.
작동 중에, 제 1 전기팬(34)은 공기를 전지팩 하우징(30)의 유입구(90)를 통해 유동시키고 그리고 또한 열 교환기들(182, 198, 202) 각각의, 유로부들(193, 199, 203)을 통해, 그리고 또한 유로부들(360, 362, 364)를 통해 제 1 전기팬(34)으로 유동한다. 그리고 또한 전지모듈(32) 및 DC-DC 전압 컨버터(38)를 냉각시키기 위해 배출구(94)를 통해 유동한다.
제 2 전기팬(35)은 전지모듈(32) 및 DC-DC 전압 컨버터(18)를 냉각시키도록 전지팩 하우징(30)의 내부 영역(60)을 통해 공기를 유동시키도록 제공되어 있다. 제 2 전기팬(35)은 실질적으로 제 1 전기팬(34)과 동일한 구조이다. 제 2 전기팬(35)은 중앙 개구 및 하부 배출구를 설정하는 하우징(410)을 포함하고 있다.
제 2 전기팬(35)은 중앙 개구 내로 그리고 하우징(410)의 내부를 통해 공기를 유동시키는 내부 모터 및 팬 날개(blades)(미도시)를 포함하고, 그리고 공기는 하부 배출구로 배출된다. 구동 회로(48)(도 9에 도시됨)는 제 2 전기팬(35)과 전기적으로 결합되며 그리고 전기팬(35)의 작동을 제어하기위한 제어 전압을 제공한다.
작동 중에, 제 2 전기팬(35)은 공기를 전지팩 하우징(30)의 유입구(90)를 통해 유동시키고 그리고 또한 열 교환기들(182, 198, 202) 각각의, 유로부들(193, 199, 203)을 통해, 그리고 또한 유로부들(370, 372, 374)을 통해 제 2 전기팬(35)으로 유동한다. 그리고 또한 전지모듈(32) 및 DC-DC 전압 컨버터(38)를 냉각시키기 위해 배출구(96)를 통해 유동한다.
도 3 및 9를 참조하면, 제 1 온도 센서(40)는 전지모듈(32)의 적어도 하나의 전지셀에 인접하는 전지팩 하우징(30)의 내부 영역(60)에 위치되어 있다. 제 1 온도 센서(40)는 전지모듈(32)의 온도 레벨을 나타내는 온도 신호를 발생하도록 구성되어 있다.
제 2 온도 센서(42)는 DC-DC 전압 컨버터(38)에 인접하는 전지팩 하우징(3)의 내부 영역(60)에 위치되어 있다. 제 2 온도 센서(42)는 DC-DC 전압 컨버터(38)의 온도 레벨을 나타내는 온도 신호를 발생하도록 구성되어 있다.
마이크로 프로세서(44)는 제 1 온도 센서(40), 제 2 온도 센서(42) 및 구동 회로들(46, 48)에 작동 가능하게 전기적으로 결합되어 있다. 예시적인 실시예에서, 마이크로 프로세서(44)는 각각, 제 1 및 제 2 온도 센서(40, 42)로부터 제 1 및 제 2 온도 신호를 수신하고 제 1 및 제 2 온도 신호에 기초하여 제 1 및 제 2 전압 신호를 생성하여 구동기 회로들(46, 48)에 각각 연결되어 제 1 및 제 2 전기팬(34, 35)의 작동을 각각 제어하며, 이는 이하에서 보다 상세하게 설명될 것이다.
마이크로 프로세서(44)는 제 1 및 제 2 전기팬(34, 35)을 제어하는 방법의 적어도 일부를 구현하기 위한 소프트웨어 명령 및 데이터를 저장하는 메모리 장치(400)를 구비한다.
도 9 및 10을 참조하면, 전지모듈(32) 및 DC-DC 전압 컨버터(38)를 냉각시키기 위한 제 1 및 제 2 전기팬(34, 35)의 작동 속도를 제어하기 위해 마이크로 프로세서(44)에 의해 이용될 수 있는 메모리 장치(400)에 저장된 예시적인 테이블(500)이 도시되어 있다.
테이블(500)은 결과들(502, 504, 506, 508, 510, 512, 514, 516, 518, 520, 522)을 포함하고 있다. 각각의 결과들에는 이하 필드값들이 포함됩니다: (i) 팬 속도 백분율 값, (ii) 전지셀 온도값 및 (iii) DC-DC 전압 컨버터 온도값. 팬 속도 백분율 값은 제 1 및 제 2 전기팬(220, 222) 각각과 관련된 임계 또는 최대 작동 속도(예를 들면, 13,000 RPM)의 백분율에 대응한다.
마이크로 프로세서(44)는 전지셀 온도 레벨, 및 DC-DC 전압 컨버터 온도 레벨을 결정한 다음, 이들 값을 테이블(500)의 인덱스로서 이용하여 제 1 및 제 2 전기팬(34, 35) 각각에 대한 대응하는 팬 속도 백분율 값을 결정한다.
이 때, 마이크로 프로세서(44)는 두 값 중 가장 높은 팬 속도 백분율 값을 선택한 다음, 제 1 및 제 2 전기팬(34, 35)이 가장 높은 팬 속도 백분율 값에 대응하는 작동 속도로 작동하도록 유도하는 제어 값을 발생시킨다.
예를 들어, 만약 전지셀 온도 값이 섭씨 38도인 경우, 마이크로 프로세서(44)는 결과(504)에 접근할 수 있고 그리고 제 1 및 제 2 전기팬(34, 35) 각각의 임계 작동 속도의 10 %에 대응하는 0.1의 제 1 팬 속도 백분율 값을 선택할 수 있다.
또한, 만약 DC-DC 전압 컨버터 온도 값이 섭씨 90도인 경우, 마이크로 프로세서(44)는 결과(506)에 접근할 수 있고 그리고 제 1 및 제 2 전기팬(34, 35) 각각의 임계 작동 속도의 20 %에 대응하는 0.2의 제 1 팬 속도 백분율 값을 선택할 수 있다.
그 후, 마이크로 프로세서(44)는 제 1 및 제 2 전기팬(34, 35) 각각을 제어하기 위해 0.2에 대응하는 0.1 및 0.2의 팬 속도 백분율 값 중 가장 높은 것을 선택한다.
도 9, 11 및 12를 참조하면, 다른 예시적인 실시예에 따른 전지모듈(32) 및 DC-DC 전압 컨버터(38)를 냉각시키기 위한 제 1 및 제 2 전기팬(34, 35)을 제어하는 방법의 순서도가 제공된다.
과정(602)에서는, 제 1 온도 센서(40)는 전지모듈(32)의 제 1 온도 레벨을 나타내는 제 1 온도 신호를 생성한다. 과정(602) 이후에는, 방법은 과정(604)으로 진행한다.
과정(604)에서는, 제 2 온도 센서(42)는 DC-DC 전압 컨버터(38)의 제 2 온도 레벨을 나타내는 제 2 온도 신호를 발생시킨다. 과정(604) 이후에는, 방법은 과정(606)으로 진행한다.
과정(606)에서는, 마이크로 프로세서(44)는 제 1 온도 레벨에 기초하여 제 1 팬 속도 백분율 값을 결정한다. 제 1 팬 속도 비율 값은 제 1 및 제 2 전기팬(34, 35)과 관련된 임계 작동 속도 값의 제 1 백분율에 대응한다. 과정(606) 이후에는, 방법은 과정(608)으로 진행한다.
과정(608)에서는, 마이크로 프로세서(44)는 제 2 온도 레벨에 기초하여 제 2 팬 속도 백분율 값을 결정한다. 제 2 팬 속도 비율 값은 제 1 및 제 2 전기팬(34, 35)과 관련된 임계 작동 속도 값의 제 2 백분율에 대응한다. 과정(608) 이후에는, 방법은 과정(610)으로 진행한다.
과정(610)에서는, 마이크로 프로세서(44)는 제 1 팬 속도 백분율 값이 제 2 팬 속도 백분율 값보다 크거나 같은지 여부에 관한 결정을 내린다. 과정(610)의 값이 "예"이면, 방법은 과정(612)으로 진행한다. 그렇지 않으면, 방법은 과정(618)으로 진행한다.
과정(612)에서는, 마이크로 프로세서(44)는 제 1 팬 속도 백분율 값을 선택한다. 과정(612) 이후에는, 방법은 과정(614)으로 진행한다.
과정(614)에서는, 마이크로 프로세서(44)는 제 1 및 제 2 제어 전압을 각각 출력하고, 제 1 및 제 2 전기팬(34, 35)을 각각 유도하며, 각각은 제 1 팬 속도 백분율 값에 대응하는 작동 속도로 작동시키기 위해, 제 1 및 제 2 구동 회로(46, 48)를 유도하는 제 1 및 제 2 제어 신호를 발생시킨다. 과정(614) 이후에는, 방법은 과정(616)으로 진행한다.
과정(616)에서는, 제 1 전기팬(34)은 공기를 전지팩 하우징(30)의 유입구(90), 전지모듈(32)의 열 교환기(198)의 유로부(199)(도 3에 도시됨), 열 전도성 하우징(36)의 냉각핀들(332, 334)(도 5에 도시됨)에 의해 설정되는 유로부(362), 및 제 1 전기팬(34)을 통해 전지모듈(32)을 냉각하도록 전지팩 하우징(30)의 배출구(94)(도 4에 도시됨)로 유동시킨다. 과정(616) 이후에는, 방법은 과정(617)으로 진행한다.
과정(617)에서는, 제 2 전기팬(35)은 공기를 전지팩 하우징(30)의 유입구(90), 전지모듈(32)의 열 교환기(198)의 유로부(199), 열 전도성 하우징(36)의 냉각핀들(332, 334)(도 5에 도시됨)에 의해 설정되는 유로부(372), 및 제 2 전기팬(35)을 통해 전지모듈(32)을 냉각하도록 전지팩 하우징(30)의 배출구(96)로 유동시킨다. 과정(617) 이후에는, 방법은 과정(618)으로 진행한다.
과정(618)에서는, 마이크로 프로세서(44)는 제 2 팬 속도 백분율 값이 제 1 팬 속도 백분율 값보다 큰지 여부에 관한 결정을 내린다. 과정(618)의 값이 "예"이면, 방법은 과정(620)으로 진행한다. 그렇지 않으면, 방법은 과정(602)으로 되돌아간다.
과정(620)에서는, 마이크로 프로세서(44)는 제 2 팬 속도 백분율 값을 선택한다. 과정(620) 이후에는, 방법은 과정(622)으로 진행한다.
과정(622)에서는, 마이크로 프로세서(44)는 제 3 및 제 4 제어 전압을 각각 출력하고, 제 1 및 제 2 전기팬(220, 222)을 각각 유도하며, 각각은 제 2 팬 속도 백분율 값에 대응하는 작동 속도로 작동시키기 위해, 제 1 및 제 2 구동 회로(46, 48)를 유도하는 제 3 및 제 4 제어 신호를 발생시킨다. 과정(622) 이후에는, 방법은 과정(624)으로 진행한다.
과정(624)에서는, 제 1 전기팬(34)은 공기를 전지팩 하우징(30)의 유입구(90), 전지모듈(32)의 열 교환기(198)의 유로부(199)(도 3에 도시됨), 열 전도성 하우징(36)의 냉각핀들(332, 334)(도 5에 도시됨)에 의해 설정되는 유로부(362), 및 제 1 전기팬(34)을 통해 전지모듈(32)을 냉각하도록 전지팩 하우징(30)의 배출구(94)(도 4에 도시됨)로 유동시킨다. 과정(624) 이후에는, 방법은 과정(626)으로 진행한다.
과정(626)에서는, 제 2 전기팬(35)은 공기를 전지팩 하우징(30)의 유입구(90), 전지모듈(32)의 열 교환기(198)의 유로부(199), 열 전도성 하우징(36)의 냉각핀들(342, 344)에 의해 설정되는 유로부(372)(도 5에 도시됨), 및 제 2 전기팬(35)을 통해 전지모듈(32)을 냉각하도록 전지팩 하우징(30)의 배출구(96)로 유동시킨다. 과정(626) 이후에는, 방법은 과정(602)으로 되돌아간다.
전술한 방법은 적어도 부분적으로 하나 이상의 메모리 장치 또는 방법을 실행하기 위한 컴퓨터 실행 가능 명령을 구비하는 컴퓨터 판독 가능 매체의 형태로 구현될 수 있다.
메모리 장치들은 이하의 하나 이상을 포함할 수 있다: 하드 드라이브, RAM 메모리, 플래시 메모리, 및 당업자에게 알려진 다른 컴퓨터 판독 가능 매체: 상기 컴퓨터 실행 가능한 명령어가 하나 이상의 컴퓨터 또는 마이크로 프로세서에 로딩되어 실행될 때, 하나 이상의 컴퓨터 또는 마이크로 프로세서는 본 방법의 관련 과정들을 실행하도록 프로그램되어 있는 장치가 된다.
여기에 설명된 전지팩은 다른 전지팩들에 비해 실질적인 이점을 제공한다. 특히, 전지팩은 전지모듈의 냉각을 위한 열 전도성 하우징 상의 제 1 및 제 2 냉각 핀들에 의해 설정되는 제 2 유로부와 실질적으로 일렬로 위치하는 제 1 유로부를 정의하는 제 1 열 교환기를 갖는 전지모듈을 이용함으로써 공기 유동 특성들이 개선되었다.
또한, 전지팩은 열 전도성 하우징의 일부분을 전지모듈 아래에 배치함으로써 길이 방향 길이가 보다 작은 하우징을 구비한다.
청구된 발명이 단지 제한된 수의 실시예와 관련하여 상세히 설명되었지만, 본 발명은 이러한 개시된 실시예에 제한되지 않는다는 것을 쉽게 이해되어야 한다.
오히려, 청구된 발명은 임의의 수의 변형, 변경, 대체 또는 앞서 기술되지 않았지만 본 발명의 사상 및 범위와 상응하는 균등한 구성을 포함하도록 변형될 수 있다.
부가적으로, 청구된 발명의 다양한 실시예들이 설명되었지만, 본 발명의 양상들은 기술된 실시예들 중 일부만을 포함할 수 있음을 이해해야 한다. 이에 따라, 청구된 발명은 전술한 설명에 의해 제한되는 것으로 간주되어서는 안된다.
이상에서 설명한 바와 같이, 본 발명에 따른 전지팩은, 본 발명인 전지팩의 이점은 전지모듈을 냉각시키기 위한 열 전도성 하우징 상의 제 1 및 제 2 냉각핀들에 의해 설정되는 제 2 유로부와 실질적으로 일렬로 위치하고 직접 연통하는 제 1 유로부를 설정하는 제 1 열 교환기를 갖는 전지모듈을 이용함으로써 공기 유동 특성들(예를 들어, 실질적으로 선형 공기 유동) 및 냉각 기능성이 개선되는 효과를 발휘한다.

Claims (10)

  1. 내부 영역(interior region)을 설정하는 하부 벽(bottom wall), 제 1, 제 2 제 3 및 제 4 측벽들(side walls), 및 탑 커버(top cover)를 구비한 전지팩 하우징(battery pack housing)으로서; 상기 제 1, 제 2, 제 3 및 제 4 측벽들은 하부 벽에 연결되어 있고; 상기 전지팩 하우징은 전지팩 하우징의 제 1 단부(end)에 관통 연장되어 있는 유입구(inlet aperture)를 구비하고 있고, 상기 전지팩 하우징은 전지팩 하우징의 제 2 단부에 관통 연장되어 있는 제 1 배출구(outlet aperture)를 구비하고 있으며, 상기 탑 커버는 제 1, 제 2, 제 3 및 제 4 측벽들과 연결되어 있는 구조의 전지팩 하우징;
    상기 하부 벽 위로 소정의 거리에 있고 유입구에 인접한 전지팩 하우징의 내부 영역에 위치하는 전지모듈(battery module)로서, 상기 전지모듈은 서로 대향하여 위치하는 제 1 전지셀 및 제 1 열 교환기를 구비하고 있고, 상기 제 1 열 교환기는 하부 벽에 실질적으로 평행하게 위치하며, 상기 제 1 열 교환기는 그것을 관통하는 제 1 유로부(flow path portion)를 설정하고 있는 구조의 전지모듈;
    상기 제 1 배출구와 유동적으로 연통하는 제 1 배출구에 인접한 전지팩 하우징의 내부 영역에 위치하는 제 1 전기팬(electric fan); 및
    상기 하부 벽 상의 전지팩의 내부 영역에 위치하는 열 전도성 하우징(thermally conductive housing)으로서, 상기 열 전도성 하우징은 제 1 하우징부(housing portion) 및 상기 제 1 하우징부에 연결되어 상향 연장되는 적어도 제 1 및 제 2 냉각핀들(cooling fins)을 구비하고 있으며, 상기 제 1 및 제 2 냉각핀들은 그 사이에 제 2 유로부를 설정하고, 상기 제 2 유로부의 적어도 일부분은 제 1 유로부와 실질적으로 일렬(in-line)로 위치하며, 상기 제 1 하우징부는 제 1 팬 어셈블리(fan assembly) 및 전지모듈 사이에 위치하는 구조의 열 전도성 하우징; 을 포함하고 있고,
    상기 제 1 전기팬은 공기를 유입구, 제 1 유로부, 제 2 유로부 및 제 1 전기팬을 통해 제 1 배출구로 유동시켜 전지모듈을 냉각시키는 것을 특징으로 하는 전지팩.
  2. 제 1 항에 있어서, 상기 전지팩 하우징 내의 제 2 배출구와 연통하는 제 2 전기팬을 더 포함하고 있고, 상기 열 전도성 하우징은 제 1 하우징부에 연결되어 상방으로 연장되어 있는 제 3 및 제 4 냉각핀을 더 포함하고 있으며, 상기 제 3 및 제 4 냉각핀들은 그 사이에 제 3 유로부를 설정하고, 상기 제 3 유로부의 적어도 일부분은 제 1 유로부와 실질적으로 일렬로 위치하며;
    상기 제 2 전기팬은 공기를 유입구, 제 1 유로부, 제 3 유로부, 및 제 2 전기팬을 통해 제 2 배출구로 유동시켜 전지모듈을 냉각시키도록 구성되어 있는 것을 특징으로 하는 전지팩.
  3. 제 1 항에 있어서, 상기 열 전도성 하우징은 전지모듈 및 전지팩 하우징의 하부 벽 사이에 위치하는 제 2 하우징부를 더 포함하고 있는 것을 특징으로 하는 전지팩.
  4. 제 1 항에 있어서, 상기 전지모듈은 서로 대향하여 위치하는 제 2 전지셀 및 제 2 열 교환기를 더 포함하고 있고; 상기 제 2 열 교환기는 하부 벽에 실질적으로 평행하게 위치하며, 상기 제 2 열 교환기는 그것을 관통하는 제 3 유로부를 설정하고 있는 것을 특징으로 하는 전지팩.
  5. 제 4 항에 있어서, 상기 제 3 유로부는 열 전도성 하우징의 제 1 및 제 2 냉각핀들 상에 위치하는 내부 영역의 일부와 실질적으로 일렬로 되어 있는 것을 특징으로 하는 전지팩.
  6. 제 1 항에 있어서, 상기 열 전도성 하우징은 전지모듈의 제 1 전지셀과 전기적으로 연결되어 있는 DC-DC 전압 컨버터(converter)를 내부에 보유하고 있는 것을 특징으로 하는 전지팩.
  7. 제 1 항에 있어서, 상기 열 전도성 하우징은 알루미늄으로 구성되어 있는 것을 특징으로 하는 전지팩.
  8. 제 1 항에 있어서, 상기 제 1 전지셀은 제 1 열 교환기의 제 1 면(side)에 대향하여 위치하며, 상기 전지모듈은 제 1 열 교환기의 제 1 면에 대향하여 위치하는 제 2 전지셀을 더 구비하고 있는 것을 특징으로 하는 전지팩.
  9. 제 1 항에 있어서, 상기 제 1 열 교환기는, 함께 연결되어 있고 관통 연장되어 있는 제 1 유로부를 설정하는, 제 1 및 제 2 열 전도성 플레이트들(thermally conductive plates)를 포함하는 것을 특징으로 하는 전지팩.
  10. 제 1 항에 있어서, 상기 유입구에 인접한 제 1 측벽에 부착되어 있는 루버(louver)를 더 포함하고 있으며, 상기 루버는 수분(water) 및 잔해가 내부 영역으로 들어가는 것을 방지하면서 상기 내부 영역 내로 공기가 관통하여 유동하도록 구성되어 있는 것을 특징으로 하는 전지팩.
PCT/KR2016/015366 2015-12-29 2016-12-28 전지팩 WO2017116126A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020177010191A KR101926831B1 (ko) 2015-12-29 2016-12-28 전지팩
CN201690000866.5U CN207910036U (zh) 2015-12-29 2016-12-28 电池组

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/982,486 US9966641B2 (en) 2015-12-29 2015-12-29 Battery pack
US14/982,486 2015-12-29

Publications (1)

Publication Number Publication Date
WO2017116126A1 true WO2017116126A1 (ko) 2017-07-06

Family

ID=59087288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/015366 WO2017116126A1 (ko) 2015-12-29 2016-12-28 전지팩

Country Status (4)

Country Link
US (1) US9966641B2 (ko)
KR (1) KR101926831B1 (ko)
CN (1) CN207910036U (ko)
WO (1) WO2017116126A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112331936A (zh) * 2020-06-18 2021-02-05 东风汽车有限公司 一种电池系统以及汽车

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007172939A (ja) * 2005-12-20 2007-07-05 Panasonic Ev Energy Co Ltd 電池パック
KR20080048138A (ko) * 2006-11-28 2008-06-02 현대자동차주식회사 배터리모듈의 냉각 또는 가열장치의 구조
KR101371739B1 (ko) * 2012-09-07 2014-03-12 기아자동차(주) 배터리 시스템
KR101564536B1 (ko) * 2012-11-05 2015-10-29 닛산 지도우샤 가부시키가이샤 배터리 온도 조정 장치
WO2015170880A1 (ko) * 2014-05-09 2015-11-12 주식회사 엘지화학 전지팩 및 이를 조립하는 방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004306726A (ja) 2003-04-04 2004-11-04 Toyota Motor Corp バッテリパック冷却構造
JP3784813B2 (ja) * 2003-11-26 2006-06-14 本田技研工業株式会社 車両モータ用高圧電装の冷却装置及びハイブリッド車両
KR20060027578A (ko) 2004-09-23 2006-03-28 삼성에스디아이 주식회사 이차 전지 모듈 온도 제어 시스템
US20070087266A1 (en) * 2005-10-18 2007-04-19 Debbi Bourke Modular battery system
JP2008251378A (ja) 2007-03-30 2008-10-16 Toyota Motor Corp 電池パックの冷却構造
US20100275619A1 (en) 2009-04-30 2010-11-04 Lg Chem, Ltd. Cooling system for a battery system and a method for cooling the battery system
US8852778B2 (en) 2009-04-30 2014-10-07 Lg Chem, Ltd. Battery systems, battery modules, and method for cooling a battery module
KR101245285B1 (ko) 2011-04-15 2013-03-19 주식회사 엘지화학 배터리 모듈의 온도 감지장치 및 배터리 팩 관리장치와 방법
JP5673452B2 (ja) 2011-09-06 2015-02-18 三菱自動車工業株式会社 組電池の温度調節装置
KR101282473B1 (ko) 2011-09-21 2013-07-04 로베르트 보쉬 게엠베하 배터리 팩
JP2013152839A (ja) 2012-01-25 2013-08-08 Toyota Industries Corp 電池温調装置
US9105950B2 (en) 2012-03-29 2015-08-11 Lg Chem, Ltd. Battery system having an evaporative cooling member with a plate portion and a method for cooling the battery system
KR101391094B1 (ko) 2012-08-02 2014-05-02 삼성에스디아이 주식회사 배터리팩
US10770762B2 (en) 2014-05-09 2020-09-08 Lg Chem, Ltd. Battery module and method of assembling the battery module
US9786967B2 (en) 2014-05-27 2017-10-10 Lg Chem, Ltd. Battery pack and method of controlling an electric fan in the battery pack

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007172939A (ja) * 2005-12-20 2007-07-05 Panasonic Ev Energy Co Ltd 電池パック
KR20080048138A (ko) * 2006-11-28 2008-06-02 현대자동차주식회사 배터리모듈의 냉각 또는 가열장치의 구조
KR101371739B1 (ko) * 2012-09-07 2014-03-12 기아자동차(주) 배터리 시스템
KR101564536B1 (ko) * 2012-11-05 2015-10-29 닛산 지도우샤 가부시키가이샤 배터리 온도 조정 장치
WO2015170880A1 (ko) * 2014-05-09 2015-11-12 주식회사 엘지화학 전지팩 및 이를 조립하는 방법

Also Published As

Publication number Publication date
KR101926831B1 (ko) 2018-12-07
CN207910036U (zh) 2018-09-25
KR20170085035A (ko) 2017-07-21
US9966641B2 (en) 2018-05-08
US20170187079A1 (en) 2017-06-29

Similar Documents

Publication Publication Date Title
WO2017018721A1 (ko) 전지팩
WO2015170880A1 (ko) 전지팩 및 이를 조립하는 방법
WO2010126243A2 (ko) 냉각 매니폴드와 그것의 제조방법
WO2016072669A1 (ko) 전지팩
WO2014081138A1 (ko) 배터리 온도 조절 장치
WO2011149234A2 (ko) 전기 자동차용 배터리 팩과, 조립체 및, 이를 이용한 온도제어 시스템
WO2019182251A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2017104938A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2012044065A2 (ko) 배터리 팩 및 이를 구비하는 배터리 팩 조립체
WO2016089030A1 (ko) 전지팩
WO2018008866A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
WO2018225919A1 (ko) 배터리 팩
WO2015005612A1 (ko) 전지 어셈블리
WO2019066244A1 (ko) 전지 셀 표면 냉각을 위한 불균일 유로를 구비한 쿨링 자켓 및 이를 포함하는 배터리 모듈
WO2010126241A2 (ko) 전지 시스템, 전지모듈 및 전지모듈을 냉각하기 위한 방법
WO2017217633A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
WO2015130057A1 (ko) 전지모듈
WO2017014449A1 (ko) 단자 플레이트 및 bms가 직접 연결된 구조의 전지모듈
WO2018110948A1 (ko) 배터리 팩
WO2015156544A1 (ko) 전지셀 상호연결 및 전압 센싱 어셈블리와 전지모듈
WO2013103254A1 (ko) 배터리 모듈
WO2015182934A1 (ko) 전지 팩 및 전지 팩에 있어서의 전기 팬을 제어하는 방법
WO2017179853A1 (ko) 전지 시스템 및 그것의 조립 방법
WO2015170870A1 (ko) 전지모듈 및 전지모듈 조립 방법
WO2016175472A1 (ko) 전지팩

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20177010191

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16882078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16882078

Country of ref document: EP

Kind code of ref document: A1