WO2017116085A1 - 방열 장치 - Google Patents

방열 장치 Download PDF

Info

Publication number
WO2017116085A1
WO2017116085A1 PCT/KR2016/015209 KR2016015209W WO2017116085A1 WO 2017116085 A1 WO2017116085 A1 WO 2017116085A1 KR 2016015209 W KR2016015209 W KR 2016015209W WO 2017116085 A1 WO2017116085 A1 WO 2017116085A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
groove
flow
flow passage
plate
Prior art date
Application number
PCT/KR2016/015209
Other languages
English (en)
French (fr)
Inventor
이문호
한창우
정승붕
문유림
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Publication of WO2017116085A1 publication Critical patent/WO2017116085A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/02Arrangements for modifying heat-transfer, e.g. increasing, decreasing by influencing fluid boundary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a heat dissipation device, and more particularly, to a heat dissipation device that is attached to a power device such as a CPU, an LSI, a power semiconductor, and can effectively release heat emitted from the power device by using a cooling fluid.
  • a power device such as a CPU, an LSI, a power semiconductor
  • a heat dissipation device having a plate-shaped body having a cooling water supply flow path and a cooling water discharge flow path and directly attached to each heat generating element has been applied.
  • the heat dissipation device of the method of directly attaching to the heat generating element adopts a water-cooling method using a cooling fluid in a relatively small size, and it is not easy to secure sufficient heat dissipation effect and mechanical strength for production cost. In addition, this also causes a problem of lowering the cooling efficiency, and continues to increase the demand for the capacity of the pump for input / output the cooling fluid to the heat radiating device.
  • the heat dissipation device of the present invention seeks to secure sufficient mechanical strength while increasing the cooling fluid circulation efficiency.
  • the heat dissipation device of the present invention seeks to reduce the resistance of the flow path for the cooling fluid therein.
  • the heat dissipation device of the present invention is to efficiently and reliably remove the heat energy generated from the power device module, which is one of the core components of various personal / home appliances such as a power conversion device.
  • a first flow path groove and a second flow path groove that are parallel to each other are formed on an upper surface thereof, and a third flow path groove and a fourth flow path groove that are parallel to each other are formed on a lower surface thereof.
  • the flow path groove and the fourth flow path groove are intermediate structures to form a parallel relationship with the first flow path groove and the second flow path groove;
  • An upper plate in close contact with an upper surface of the intermediate structure to block the opening surface of the first flow path groove to form a first flow path, and to block the opening surface of the second flow path groove to form a second flow path;
  • a lower plate which is in close contact with a lower surface of the intermediate structure to block an opening surface of the third flow path groove to form a third flow path, and close the opening surface of the fourth flow path groove to form a fourth flow path;
  • And pumping means for simultaneously inputting cooling fluid into the first flow passage, the second flow passage, the third flow passage, and the fourth flow passage.
  • the intermediate structure the intermediate plate disposed in parallel with the upper plate and the lower plate between the upper plate and the lower plate; A first channel plate disposed between the upper plate and the intermediate plate to form sidewalls of the first flow path and the second flow path; And a second channel plate positioned between the lower plate and the intermediate plate to form sidewalls of the third and fourth flow paths.
  • the upper plate may include a first upper plate groove corresponding to the first flow path groove and a second upper plate groove corresponding to the second flow path groove, and the lower plate may include a first lower plate groove corresponding to the third flow path groove.
  • a fourth upper plate groove corresponding to the fourth flow path groove may be formed.
  • the first flow path is located on one side of the heat dissipating device, the flow path direction is changed by combining the first flow path to the fourth flow path constituting one set into a single flow path, and then the first flow path to the fourth flow path to form a pair again
  • a first flow path switching / integration unit for distributing to the air; And changing the direction of the flow path by combining the first to fourth flow paths forming one set into one flow path, which is located on the other side of the heat dissipation device, and then to the first to fourth flow paths forming one set.
  • the dispensing may further include a second flow path switching / integrating unit.
  • the first to fourth flow paths may pass through the thickness of the body in a single linear bent a plurality of times to evenly pass through the entire area of the intermediate structure.
  • a heat dissipating device including a body having a planar shape that may be in close contact with a surface of a cooling target object; A first flow path penetrating the thickness of the body in a single linear curve to evenly cross the entire area of the body; A second flow path penetrating through the thickness of the body in a shape parallel to the first flow path in the area direction; A third flow passage penetrating the thickness of the body in a shape parallel to the first flow passage in the thickness direction; A fourth flow passage penetrating through the thickness of the body in a shape parallel to the second flow passage in the thickness direction; And pumping means for simultaneously inputting cooling fluid into the first flow passage, the second flow passage, the third flow passage, and the fourth flow passage.
  • the heat dissipation device of the present invention has the advantage of reducing the flow path resistance by configuring the flow path inside the heat dissipation device in parallel.
  • the heat dissipation device of the present invention has the advantage of reducing the pressure increase due to the effect of increasing the surface area and the channel width through the parallel channel configuration for the cooling fluid.
  • the heat dissipation device of the present invention has an advantage of increasing the heat transfer efficiency by increasing the surface area compared to the channel formed in the heat sink of the prior art, and improves the flow rate imbalance of each channel part, which is a disadvantage of the prior art.
  • the system can be stably operated for a long time by effectively controlling the heat generation performance of the devices dispersed through the uniform flow distribution to keep the temperature of the power device low.
  • a pump having a lower pumping pressure and / or a lower capacity may be used to distribute a cooling fluid (eg, cooling water) inside the heat sink.
  • a cooling fluid eg, cooling water
  • FIG. 1 is a cross-sectional view and a plan view of a heat dissipation device having a single flow path penetrating through the thickness of the body in a single linear curve so as to evenly cross the entire area of the body;
  • FIG. 2 is a cross-sectional view showing a heat dissipation device in which a plurality of parallel flow paths are formed parallel to the area direction of the body.
  • FIG 3 is a cross-sectional view showing a heat sink according to an embodiment of the present invention.
  • FIG. 4A and 4B are plan views of the heat sink of the structure of FIG. 3 configured to combine a plurality of separated parts.
  • FIG. 5 to 7 are cross-sectional views showing heat sinks according to another embodiment of the present invention, in which a plurality of separate parts may be manufactured in a combined form.
  • FIGS. 3 to 7 are conceptual diagrams illustrating an embodiment of the pumping means that can be applied to the heat sink of FIGS. 3 to 7 described above.
  • first and second may be used to describe various components, but the components may not be limited by the terms. The terms are only for the purpose of distinguishing one component from another.
  • first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • a component When a component is referred to as being connected or connected to another component, it may be understood that the component may be directly connected to or connected to the other component, but there may be other components in between. .
  • FIG. 1 shows a heat sink having a single flow path penetrating through the thickness t of the body in a single linear curve so as to evenly cross the entire area U ⁇ W of the body.
  • the single channel structure shown in the drawing shows that the coolant can be circulated evenly inside the heat sink to increase the cooling performance.
  • a large pressure is required to input the coolant into the single channel, thereby increasing the capacity of the pump. have.
  • FIG. 2 illustrates a heat sink having a plurality of parallel flow paths (with two parallel flow paths in the drawing) parallel to the area of the heat sink body as a structure to compensate for the disadvantage of a single flow path requiring a large capacity of the pump.
  • three flow paths constitute one set, and the set of flow paths have a shape that penetrates through the thickness t of the body in a curved shape so as to evenly pass through the entire area of the heat sink body.
  • the heat sink structure of FIG. 2 has an advantage in that a cooling fluid (for example, coolant) can be distributed inside the heat sink by applying a pump having a lower pumping pressure than in the case of FIG. As the thickness becomes thinner, there is a disadvantage that it is difficult to secure sufficient mechanical strength of the body. On the other hand, the use of high strength materials for sufficient mechanical strength can complicate the process or increase manufacturing costs.
  • a cooling fluid for example, coolant
  • FIG 3 illustrates a heat sink as a heat radiation device according to an embodiment of the present invention.
  • the illustrated heat sink includes a planar body that can be in close contact with the surface of the object to be cooled; A first flow path (P1) penetrating the thickness of the body in a single linear curve to evenly pass through the entire area (U ⁇ W) of the body; A second flow path (P2) penetrating the thickness of the body in a shape parallel to the first flow path (P1) in the area direction; A third flow path P3 penetrating the thickness of the body in a shape parallel to the first flow path P1 in the thickness direction; A fourth flow path P4 penetrating the thickness of the body in a shape parallel to the second flow path P2 in the thickness direction; And pumping means for simultaneously inputting cooling fluid into the first flow path P1, the second flow path P2, the third flow path P3, and the fourth flow path P4.
  • FIG. 3 is a structure for compensating the shortcomings of a single flow path requiring a large capacity of the pump, and a plurality of parallel flow paths parallel to the area (U ⁇ W) direction and the thickness (t) direction of the heat sink body (four parallel in the drawing).
  • the heat sink in which the flow path was formed) is shown. It can be seen that one set of four flow paths arranged in two dimensions in parallel constitutes a flow path in which the inlet and the cross-sectional area of the cooling fluid are formed in a square shape.
  • four flow paths constitute one set such that two flow paths are parallel to each other in the area direction and the thickness direction, and the set of flow paths are linearly curved to evenly pass through the entire area of the heat sink body. It has a shape penetrating t).
  • the first flow path P1 to the fourth flow path P4 constituting one set may pass through the thickness of the body in a single linear bent several times so as to evenly pass through the entire area of the intermediate structure. Cooling fluid (cooling water) can be distributed to the radiator.
  • the heat sink structure of FIG. 3 has an advantage in that a cooling fluid (for example, coolant) can be distributed inside the heat sink by applying a pump having a lower pumping pressure than in the case of FIG. ) Is also thick enough, it is also possible to ensure a sufficient mechanical strength of the body.
  • a cooling fluid for example, coolant
  • the manufacturing process is not significantly complicated as compared with the case of FIG.
  • FIG. 3 is a cross sectional view of the A-B line in the plan view.
  • the area between the CD line and the EF line of the plan view has a shape in which the four flow paths are one set in the shape of ⁇ according to the idea of the present invention, but the area above the CD line and the area below the EF line of the plan view Four flow paths may be combined into a single flow path. According to this structure, it is more advantageous for the flow path imbalance to be re-distributed to the four flow paths of the straight portion after collecting the cooling fluid at both ends.
  • FIG. 4A is a plan view of a heat sink having the structure of FIG. 3 configured to combine three separate parts based on a CD line and an EF line
  • FIG. 4B is a view of a channel opening surface of the first side plate 80 of FIG. 4A. Top view.
  • the illustrated heat sink includes: an intermediate body 100 having a plurality of straight parallel flow paths (with four parallel flow paths in the drawing) parallel to the area direction and the thickness direction; A first side plate 80 attached to one side of the intermediate body 100 to form one side of the heat sink; And a second side plate 90 attached to the other side of the intermediate body 100 to form the other side of the heat sink.
  • first side plate 80 In the first side plate 80, four flow paths forming one set are merged into one flow path to change the direction of the flow path, and the first flow path is divided into four flow paths forming one set of the intermediate body 100. / Integrating portion 84; And a flow path inlet 82 arranged in the longitudinal direction of the first side plate 80.
  • the second side plate 90 converts the second flow path in which four flow paths forming one set are combined into one flow path to change the direction of the flow path and then divides the four flow paths into four flow paths forming one set of the intermediate body 100. / Integrating portion 94; And a flow path outlet 92 disposed in the longitudinal direction of the second side plate 90.
  • FIG. 5 to 7 illustrate heat sinks according to another embodiment of the present invention in which the intermediate body 100 of FIG. 4A may be manufactured in a form in which a plurality of separate parts are combined.
  • four flow paths constitute one set such that two flow paths are parallel in the area direction and the thickness direction, and one set of flow paths includes the heat sink body. It has a shape that penetrates through the thickness of the body in a linear curve so as to evenly cross the entire area.
  • a first flow path groove and a second flow path groove parallel to each other are formed on an upper surface thereof, and a third flow path groove and a fourth flow path groove parallel to each other are formed on a lower surface thereof.
  • the third flow path groove and the fourth flow path groove may include an intermediate structure 140 to make a parallel relationship with the first flow path groove and the second flow path groove; An upper plate which is in close contact with the upper surface of the intermediate structure 140 to block the opening surface of the first flow path groove to form a first flow path, and close the opening surface of the second flow path groove to form a second flow path; A lower plate 160 in close contact with an upper surface of the intermediate structure 140 to block an opening surface of the third flow path groove to form a third flow path, and to block an opening surface of the fourth flow path groove to form a fourth flow path; And pumping means for simultaneously inputting cooling fluid into the first flow passage, the second flow passage, the third flow passage, and the fourth flow passage.
  • the upper plate 120 is attached to the upper surface of the manufactured intermediate structure 140.
  • the lower plate 120 may be attached to the bottom surface of the manufactured intermediate structure 140.
  • a first flow path groove and a second flow path groove parallel to each other are formed on an upper surface thereof, and a third flow path groove and a fourth flow path groove parallel to each other are formed on a lower surface thereof.
  • the third flow path groove and the fourth flow path groove may include an intermediate structure 140 to make a parallel relationship with the first flow path groove and the second flow path groove;
  • An upper plate which is in close contact with the upper surface of the intermediate structure 140 to block the opening surface of the first flow path groove to form a first flow path, and close the opening surface of the second flow path groove to form a second flow path;
  • a lower plate 160 in close contact with an upper surface of the intermediate structure 140 to block an opening surface of the third flow path groove to form a third flow path, and to block an opening surface of the fourth flow path groove to form a fourth flow path;
  • And pumping means for simultaneously inputting cooling fluid into the first flow passage, the second flow passage, the third flow passage, and the fourth flow passage,
  • the intermediate structure includes an intermediate plate 145 disposed in parallel with the upper plate 120 and the lower plate 160 between the upper plate 120 and the lower plate 160; A first channel plate 142 positioned between the upper plate 120 and the intermediate plate 145 to form sidewalls of the first flow path and the second flow path; And a second channel plate 147 positioned between the lower plate 160 and the intermediate plate 145 to form sidewalls of the third and fourth flow paths.
  • the heat sink of the structure shown in FIG. 6 secures the strength of all or part of the upper plate 120 and the lower plate 160, the intermediate plate 145, the first channel plate 142, and the second channel plate 147. It can be produced by a milling process and / or forging process, and then by joining the respective components. In this case, there is an advantage that can sufficiently secure the mechanical strength of the completed heat sink.
  • the first flow path groove and the second flow path groove which are parallel to each other are formed on the upper surface
  • the third flow path groove and the fourth flow path groove which are parallel to each other are formed on the lower surface thereof.
  • the third flow path groove and the fourth flow path groove may include an intermediate structure 240 in parallel with the first flow path groove and the second flow path groove; In close contact with the upper surface of the intermediate structure 240, the opening surface of the first flow path groove is formed to form a first flow path, and the opening surface of the second flow path groove is formed to form a second flow path, wherein the first flow path groove An upper plate 220 having a first upper plate groove corresponding to the second upper plate groove and a second upper plate groove corresponding to the second flow path groove; In close contact with the upper surface of the intermediate structure 240, the opening of the third flow path groove is formed to form a third flow path, and the opening of the fourth flow path groove is formed to form a fourth flow path, wherein the third flow path groove A lower plate 260
  • the heat sink of the structure shown in Figure 7, the upper plate 220 and lower plate 260, the intermediate structure 240 is produced by extrusion (or casting) process, milling process, forging process, etc., and then attached to each It can be prepared as.
  • a suitable manufacturing process can be used for each component, and there is an advantage in that precision can be sufficiently secured while using a relatively inexpensive process.
  • FIG 8 shows an embodiment of the pumping means which can be applied to the heat sink of FIGS. 3 to 7 described above.
  • Four flow paths P1 to P4 of the heat sink of FIGS. Although arranged, it is shown in a single plane in Figure 8 for ease of understanding.
  • the pumping means shown in FIG. 8 inputs coolant as cooling fluid simultaneously to four flow paths P1 to P4 using one pump 10.
  • the pumping means of FIG. 8 can minimize the pump cost.
  • the present invention relates to a heat dissipation device, and can be used in the field of power devices such as CPUs, LSIs, and power semiconductors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

본 발명의 방열 장치는, 상면에 서로 평행인 제1 유로홈 및 제2 유로홈이 형성되고, 하면에 서로 평행인 제3 유로홈 및 제4 유로홈이 형성되되, 상기 제3 유로홈 및 제4 유로홈은 상기 제1 유로홈 및 제2 유로홈과 평행 관계를 이루도록 하는 중간 구조물; 상기 중간 구조물 상면에 밀착되어, 상기 제1 유로홈의 개구면을 막아 제1 유로를 형성하고, 상기 제2 유로홈의 개구면을 막아 제2 유로를 형성하는 상판; 상기 중간 구조물 하면에 밀착되어, 상기 제3 유로홈의 개구면을 막아 제3 유로를 형성하고, 상기 제4 유로홈의 개구면을 막아 제4 유로를 형성하는 하판; 및 상기 제1 유로, 제2 유로, 제3 유로 및 제4 유로에 동시에 냉각 유체를 입력시키는 펌핑 수단을 포함할 수 있다.

Description

방열 장치
본 발명은 방열 장치에 관한 것으로, 특히, CPU, LSI, 파워 반도체 등 전력 소자에 부착되며 냉각 유체를 이용하여 전력 소자에서 방출되는 열을 효과적으로 방출시킬 수 있는 방열 장치에 관한 것이다.
최근 개인용이나 가정용, 업무용 전자 기기를 구성하는 전자/전기 부품들 중 CPU, LSI, 파워 반도체 등의 발열 소자의 발열 밀도가 증대해, 전자 기기를 위한 방열 수단에 요구되는 냉각 성능이 높아지고 있다.
이러한 상황을 감안해 냉각수 공급 유로 및 냉각수 배출 유로를 구비한 판 형상의 바디를 구비하여, 각 발열 소자에 직접 부착되는 방식의 방열 장치가 적용되고 있다.
그런데, 상술한 발열 소자에 직접 부착하는 방식의 방열 장치는, 비교적 작은 크기에 냉각 유체를 이용하는 수냉식 방식을 채택하여, 제작 비용 대비 충분한 방열 효과 및 기계적 강도를 확보하기가 용이하지 않았다. 또한, 이는 냉각 효율의 저하의 문제점도 야기시키며, 냉각 유체를 방열 장치에 입력/출력시키기 위한 펌프의 용량에 대한 요구도 지속적으로 증대시키고 있다.
본 발명의 방열 장치는 냉각 유체 순환 효율을 높이면서도 충분한 기계적 강도를 확보하고자 한다.
본 발명의 방열 장치는 그 내부의 냉각 유체를 위한 유로의 저항을 감소시키고자 한다.
본 발명의 방열 장치는 전력 변환 장치 등 다양한 개인/가전 기기의 핵심부품 중 하나인 전력 소자 모듈에서 발생하는 열에너지를 효율적이고 안정적으로 제거하고자 한다.
본 발명의 일 측면에 따른 방열 장치는, 상면에 서로 평행인 제1 유로홈 및 제2 유로홈이 형성되고, 하면에 서로 평행인 제3 유로홈 및 제4 유로홈이 형성되되, 상기 제3 유로홈 및 제4 유로홈은 상기 제1 유로홈 및 제2 유로홈과 평행 관계를 이루도록 하는 중간 구조물; 상기 중간 구조물 상면에 밀착되어, 상기 제1 유로홈의 개구면을 막아 제1 유로를 형성하고, 상기 제2 유로홈의 개구면을 막아 제2 유로를 형성하는 상판; 상기 중간 구조물 하면에 밀착되어, 상기 제3 유로홈의 개구면을 막아 제3 유로를 형성하고, 상기 제4 유로홈의 개구면을 막아 제4 유로를 형성하는 하판; 및 상기 제1 유로, 제2 유로, 제3 유로 및 제4 유로에 동시에 냉각 유체를 입력시키는 펌핑 수단을 포함할 수 있다.
여기서, 상기 중간 구조물은, 상기 상판 및 하판 사이에 상기 상판 및 하판과 평행하게 배치된 중간판; 상기 상판과 중간판 사이에 위치하며 상기 제1 유로 및 제2 유로의 측벽을 형성하는 제1 채널판; 및 상기 하판과 중간판 사이에 위치하며 상기 제3 유로 및 제4 유로의 측벽을 형성하는 제2 채널판을 포함할 수 있다.
여기서, 상기 상판에는 상기 제1 유로홈과 대응되는 제1 상판홈 및 상기 제2 유로홈과 대응되는 제2 상판홈이 형성되고, 상기 하판에는 상기 제3 유로홈과 대응되는 제1 하판홈 및 상기 제4 유로홈과 대응되는 제4 상판홈이 형성될 수 있다.
여기서, 상기 방열 장치의 일 측면에 위치하며, 1조를 이루는 상기 제1 유로 내지 제4 유로를 하나의 유로로 합쳐서 유로 방향을 전환한 후, 다시 1조를 이루는 상기 제1 유로 내지 제4 유로로 분배하는 제1 유로 전환/통합부; 및 상기 방열 장치의 다른 측면에 위치하며, 1조를 이루는 상기 제1 유로 내지 제4 유로를 하나의 유로로 합쳐서 유로 방향을 전환한 후, 다시 1조를 이루는 상기 제1 유로 내지 제4 유로로 분배하는 제2 유로 전환/통합부를 더 포함할 수 있다.
여기서, 상기 제1 유로 내지 제4 유로는, 상기 중간 구조물의 전체 면적을 골고루 경유하도록 복수 회 굴곡된 단일 선형으로 상기 바디의 두께를 관통할 수 있다.
본 발명의 일 측면에 따른 방열 장치는, 냉각 대상 물체의 표면에 밀착될 수 있는 평면 형상의 바디; 상기 바디의 전체 면적을 골고루 경유하도록 굴곡된 단일 선형으로 상기 바디의 두께를 관통하는 제1 유로; 상기 제1 유로와 상기 면적 방향으로 평행인 형상으로 상기 바디의 두께를 관통하는 제2 유로; 상기 제1 유로와 상기 두께 방향으로 평행인 형상으로 상기 바디의 두께를 관통하는 제3 유로; 상기 제2 유로와 상기 두께 방향으로 평행인 형상으로 상기 바디의 두께를 관통하는 제4 유로; 및 상기 제1 유로, 제2 유로, 제3 유로 및 제4 유로에 동시에 냉각 유체를 입력시키는 펌핑 수단을 포함할 수 있다.
상술한 구성에 따른 본 발명의 방열 장치를 실시하면, 방열 장치의 냉각 유체 순환 효율을 높이면서도 충분한 기계적 강도를 확보할 수 있는 이점이 있다.
본 발명의 방열 장치는 방열 장치 내부의 유로를 병렬로 구성하여 유로 저항을 감소시키는 이점이 있다.
본 발명의 방열 장치는 냉각 유체에 대한 병렬 채널 구성을 통하여 표면적 증대의 효과 및 채널 폭 감소에 따른 압력 상승을 저감시킬 수 있는 이점이 있다.
본 발명의 방열 장치는 종래 기술의 방열판에 형성된 채널 대비 표면적 증대로 열 전달 효율을 높이고, 종래 기술의 단점인 각 채널부의 유량 불균형을 개선시키는 이점이 있다.
본 발명의 방열 장치를 실시하면 균일한 유동 분포를 통하여 분산되어 있는 소자의 발열성능을 효과적으로 제어하여 전력소자의 온도를 낮게 유지함으로써 장시간에 걸쳐 시스템을 안정적으로 운용할 수 있는 이점이 있다.
본 발명의 방열 장치를 실시하면 궁극적으로는 전력소자 냉각장치의 성능을 향상시킴으로써 기존 제품과 동일한 사이즈에서 보다 큰 출력으로 시스템을 운용할 수 있는 이점이 있다.
본 발명의 방열 장치를 실시하면 보다 펌핑 압력 및/또는 용량이 낮은 펌프를 적용하여 방열판 내부에 냉각 유체(예: 냉각수)를 유통시킬 수 있는 이점이 있다.
본 발명의 방열 장치를 실시하면 병렬 채널 구조의 방열판의 강도를 저렴한 비용으로 확보할 수 있다.
도 1은 바디의 전체 면적을 골고루 경유하도록 굴곡된 단일 선형으로 상기 바디의 두께를 관통하는 단일 유로를 구비하는 방열 장치를 도시한 단면도 및 평면도.
도 2는 바디의 면적 방향으로 평행한 다수개의 병렬 유로들을 형성한 방열 장치를 도시한 단면도.
도 3은 본 발명의 일 실시예에 따른 방열판을 도시한 단면도.
도 4a 및 4b는 도 3의 구조의 방열판을 복수 개의 분리된 부품들이 결합되는 형태로 구성한 평면도.
도 5 내지 도 7은 복수 개의 분리된 부품들이 결합되는 형태로 제작될 수 있는 본 발명의 다른 실시예에 따른 방열판들을 도시한 단면도.
도 8은 상술한 도 3 내지 도 7의 방열판에 적용될 수 있는 펌핑 수단의 실시예를 도시한 개념도.
이하, 본 발명의 실시를 위한 구체적인 실시예를 첨부된 도면들을 참조하여 설명한다.
본 발명을 설명함에 있어서 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 구성요소들은 용어들에 의해 한정되지 않을 수 있다. 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.
어떤 구성요소가 다른 구성요소에 연결되어 있다거나 접속되어 있다고 언급되는 경우는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해될 수 있다.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다.
본 명세서에서, 포함하다 또는 구비하다 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것으로서, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해될 수 있다.
또한, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다.
도 1은 바디의 전체 면적(U×W)을 골고루 경유하도록 굴곡된 단일 선형으로 상기 바디의 두께(t)를 관통하는 단일 유로를 구비하는 방열판을 도시한다.
도시한 단일 유로 구조는 방열판 내부에 냉각수를 지그재그로 골고루 순환시킬 수 있어 냉각 성능을 높일 수 있는 이점이 있으나, 냉각수를 상기 단일 유로로 입력시키는데 압력이 크게 소요되어, 펌프의 용량이 증대되는 단점이 있다.
도 2는 펌프의 용량이 크게 소요되는 단일 유로의 단점을 보완하기 위한 구조로서 방열판 바디의 면적 방향으로 평행한 다수개의 병렬 유로들(도면에서는 2개의 병렬 유로 구비)을 형성한 방열판을 도시한다.
즉, 도면에서는 3개의 유로가 하나의 1조를 구성하고, 1조의 유로들은 방열판 바디의 전체 면적을 골고루 경유하도록 굴곡된 선형으로 바디의 두께(t)를 관통하는 형상을 가진다.
도 2의 방열판 구조는 도 1의 경우 보다 펌핑 압력이 낮은 펌프를 적용하여 방열판 내부에 냉각 유체(예: 냉각수)를 유통시킬 수 있는 이점이 있으나, 도 1의 경우보다 유로의 측벽(격벽)의 두께가 얇아져서, 바디의 충분한 기계적 강도를 확보하기 어려운 단점이 있다. 반면, 충분한 기계적 강도를 위해 고강도 재료를 이용하는 경우 공정이 복잡해지거나 제조 비용이 증대될 수 있다.
도 3은 본 발명의 일 실시예에 따른 방열 장치로서 방열판을 도시한다.
도시한 방열판은, 냉각 대상 물체의 표면에 밀착될 수 있는 평면 형상의 바디; 상기 바디의 전체 면적(U×W)을 골고루 경유하도록 굴곡된 단일 선형으로 상기 바디의 두께를 관통하는 제1 유로(P1); 상기 제1 유로(P1)와 상기 면적 방향으로 평행인 형상으로 상기 바디의 두께를 관통하는 제2 유로(P2); 상기 제1 유로(P1)와 상기 두께 방향으로 평행인 형상으로 상기 바디의 두께를 관통하는 제3 유로(P3); 상기 제2 유로(P2)와 상기 두께 방향으로 평행인 형상으로 상기 바디의 두께를 관통하는 제4 유로(P4); 및 상기 제1 유로(P1), 제2 유로(P2), 제3 유로(P3) 및 제4 유로(P4)에 동시에 냉각 유체를 입력시키는 펌핑 수단을 포함한다.
도 3은 펌프의 용량이 크게 소요되는 단일 유로의 단점을 보완하기 위한 구조로서 방열판 바디의 면적(U×W) 방향 및 두께(t) 방향으로 평행한 다수개의 병렬 유로들(도면에서는 4개의 병렬 유로 구비)을 형성한 방열판을 도시한다. 2차원적으로 병렬 배치된 4개의 유로의 1조는, 그 냉각 유체의 입구 및 단면적이 田형으로 형성된 유로를 구성함을 알 수 있다.
즉, 도면에서는 면적 방향 및 두께 방향으로 2개씩의 유로가 평행하도록 4개의 유로가 하나의 1조를 구성하고, 1조의 유로들은 방열판 바디의 전체 면적을 골고루 경유하도록 굴곡된 선형으로 바디의 두께(t)를 관통하는 형상을 가진다.
다시 말해, 1조를 구성하는 상기 제1 유로(P1) 내지 제4 유로(P4)는, 상기 중간 구조물의 전체 면적을 골고루 경유하도록 복수 회 굴곡된 단일 선형으로 상기 바디의 두께를 관통하는 방식으로 냉각 유체(냉각수)를 방열 장치에 배포할 수 있다.
도 3의 방열판 구조는 도 1의 경우 보다 펌핑 압력이 낮은 펌프를 적용하여 방열판 내부에 냉각 유체(예: 냉각수)를 유통시킬 수 있는 이점이 있으며, 동시에, 도 2의 경우보다 유로의 측벽(격벽)의 두께가 충분히 두꺼워져, 바디의 충분한 기계적 강도를 확보할 수 있는 이점도 있다. 반면, 도 2의 경우와 비교하여 제조 공정이 크게 복잡해지지 않는다.
도 3에서 단면도는 평면도상의 A-B 라인에 대한 것이다. 상기 평면도의 C-D라인과 E-F 라인 사이의 영역은 본 발명의 사상에 따라 田형으로 4개의 유로가 1조가 되는 형상으로 가지지만, 상기 평면도의 C-D라인 위쪽 영역 및 E-F 라인 아래쪽 영역은 상기 1조를 이루는 4개의 유로가 다시 하나의 유로로 합쳐지는 구조를 가질 수 있다. 이러한 구조에 따라 냉각 유체가 양끝단에서 포집된 후 직선부(田형)의 4개의 유로로의 재분배되는 것이 유로 불균형 해소에 있어 보다 유리하다.
[규칙 제91조에 의한 정정 03.02.2017] 


[규칙 제91조에 의한 정정 03.02.2017] 
도9는 도 1 내지 도 3의 구조에 따른 방열판들의 냉각 성능 비교를 위한 것이다. 도9에서 볼 수 있는 바와 같이, 유로에서의 냉각수의 유량(flow rate)에 대한 냉각 온도 특성 및 압력 저하 특성이 모두 도 3 구조에 따른 방열판이 우수함을 보여준다.
특히, 유로에서의 냉각수의 유량(flow rate)에 대한 압력 저하 특성은 도 3 구조에 따른 방열판이 현저히 우수한 특성을 가짐을 알 수 있다.
도 3에 도시한 구조의 방열판을 제작에는 압출 또는 밀링(브레이징) 등 다양한 제조 공법이 적용될 수 있다.
도 4a는 도 3의 구조의 방열판을 C-D 라인 및 E-F 라인을 기준으로 3개로 분리된 부품들이 결합되는 형태로 구성한 평면도이고, 도 4b는 도 4a의 제1 측판(80)의 유로 개구면에 대한 평면도이다.
도시한 방열판은, 면적 방향 및 두께 방향으로 평행한 다수개의 직선 병렬 유로들(도면에서는 4개의 병렬 유로 구비)이 형성된 중간 바디(100); 상기 중간 바디(100)의 일측에 부착되어 상기 방열판의 일 측면을 형성하는 제1 측판(80); 및 상기 중간 바디(100)의 다른 일측에 부착되어 상기 방열판의 다른 일 측면을 형성하는 제2 측판(90)을 포함할 수 있다.
상기 제1 측판(80)은, 1조를 이루는 4개의 유로가 하나의 유로로 합쳐져서 유로 방향을 전환한 후 다시 상기 중간 바디(100)의 1조를 이루는 4개의 유로로 분배하는 제1 유로 전환/통합부(84); 및 제1 측판(80)의 길이 방향으로 배치된 유로 입구(82)를 구비한다.
상기 제2 측판(90)은, 1조를 이루는 4개의 유로가 하나의 유로로 합쳐져서 유로 방향을 전환한 후 다시 상기 중간 바디(100)의 1조를 이루는 4개의 유로로 분배하는 제2 유로 전환/통합부(94); 및 제2 측판(90)의 길이 방향으로 배치된 유로 출구(92)를 구비한다.
도 5 내지 도 7은 도 4a의 중간 바디(100)가 복수 개의 분리된 부품들이 결합되는 형태로 제작될 수 있는 본 발명의 다른 실시예에 따른 방열판들을 도시한다.
도 5 내지 도 7에 도시한 방열판들도, 도 3의 경우와 마찬가지로, 면적 방향 및 두께 방향으로 2개씩의 유로가 평행하도록 4개의 유로가 하나의 1조를 구성하고, 1조의 유로들은 방열판 바디의 전체 면적을 골고루 경유하도록 굴곡된 선형으로 바디의 두께를 관통하는 형상을 가진다.
도 5에 도시한 실시예에 따른 방열판은, 상면에 서로 평행인 제1 유로홈 및 제2 유로홈이 형성되고, 하면에 서로 평행인 제3 유로홈 및 제4 유로홈이 형성되되, 상기 제3 유로홈 및 제4 유로홈은 상기 제1 유로홈 및 제2 유로홈과 평행 관계를 이루도록 하는 중간 구조물(140); 상기 중간 구조물(140) 상면에 밀착되어, 상기 제1 유로홈의 개구면을 막아 제1 유로를 형성하고, 상기 제2 유로홈의 개구면을 막아 제2 유로를 형성하는 상판(120); 상기 중간 구조물(140) 상면에 밀착되어, 상기 제3 유로홈의 개구면을 막아 제3 유로를 형성하고, 상기 제4 유로홈의 개구면을 막아 제4 유로를 형성하는 하판(160); 및 상기 제1 유로, 제2 유로, 제3 유로 및 제4 유로에 동시에 냉각 유체를 입력시키는 펌핑 수단을 포함할 수 있다.
도 5에 도시한 구조의 방열판은, 중간 구조물(140)을 압출(또는 주조) 공정 및/또는 밀링 공정으로 제작하고나서, 제작된 중간 구조물(140)의 상면에 상판(120)을 부착하고, 제작된 중간 구조물(140)의 하면에 하판(120)을 부착하는 방식으로 제조될 수 있다.
이 경우, 압출(또는 주조) 공정의 편의성 및 정밀성을 높일 수 있어, 최종 완성품의 정밀도가 높아지는 이점이 있다.
도 6에 도시한 실시예에 따른 방열판은, 상면에 서로 평행인 제1 유로홈 및 제2 유로홈이 형성되고, 하면에 서로 평행인 제3 유로홈 및 제4 유로홈이 형성되되, 상기 제3 유로홈 및 제4 유로홈은 상기 제1 유로홈 및 제2 유로홈과 평행 관계를 이루도록 하는 중간 구조물(140); 상기 중간 구조물(140) 상면에 밀착되어, 상기 제1 유로홈의 개구면을 막아 제1 유로를 형성하고, 상기 제2 유로홈의 개구면을 막아 제2 유로를 형성하는 상판(120); 상기 중간 구조물(140) 상면에 밀착되어, 상기 제3 유로홈의 개구면을 막아 제3 유로를 형성하고, 상기 제4 유로홈의 개구면을 막아 제4 유로를 형성하는 하판(160); 및 상기 제1 유로, 제2 유로, 제3 유로 및 제4 유로에 동시에 냉각 유체를 입력시키는 펌핑 수단을 포함하되,
상기 중간 구조물은, 상기 상판(120) 및 하판(160) 사이에 상기 상판(120) 및 하판(160)과 평행하게 배치된 중간판(145); 상기 상판(120)과 중간판(145) 사이에 위치하며 상기 제1 유로 및 제2 유로의 측벽을 형성하는 제1 채널판(142); 및 상기 하판(160)과 중간판(145) 사이에 위치하며 상기 제3 유로 및 제4 유로의 측벽을 형성하는 제2 채널판(147)을 구비한다.
도 6에 도시한 구조의 방열판은, 상기 상판(120) 및 하판(160), 중간판(145), 제1 채널판(142), 제2 채널판(147)의 전부 또는 일부를 강도를 확보할 수 있는 밀링 공정 및/또는 단조 공정으로 제작하고 나서, 각 구성요소들을 접합하는 방식으로 제조할 수 있다. 이 경우, 완성된 방열판의 기계적 강도를 충분히 확보할 수 있는 이점이 있다.
도 7에 도시한 실시예에 따른 방열판은, 상면에 서로 평행인 제1 유로홈 및 제2 유로홈이 형성되고, 하면에 서로 평행인 제3 유로홈 및 제4 유로홈이 형성되되, 상기 제3 유로홈 및 제4 유로홈은 상기 제1 유로홈 및 제2 유로홈과 평행 관계를 이루도록 하는 중간 구조물(240); 상기 중간 구조물(240) 상면에 밀착되어, 상기 제1 유로홈의 개구면을 막아 제1 유로를 형성하고, 상기 제2 유로홈의 개구면을 막아 제2 유로를 형성하되, 상기 제1 유로홈과 대응되는 제1 상판홈 및 상기 제2 유로홈과 대응되는 제2 상판홈이 구비된 상판(220); 상기 중간 구조물(240) 상면에 밀착되어, 상기 제3 유로홈의 개구면을 막아 제3 유로를 형성하고, 상기 제4 유로홈의 개구면을 막아 제4 유로를 형성하되, 상기 제3 유로홈과 대응되는 제1 하판홈 및 상기 제4 유로홈과 대응되는 제4 상판홈이 구비된 하판(260); 및 상기 제1 유로, 제2 유로, 제3 유로 및 제4 유로에 동시에 냉각 유체를 입력시키는 펌핑 수단을 포함한다.
도 7에 도시한 구조의 방열판은, 상기 상판(220) 및 하판(260), 중간 구조물(240)을 압출(또는 주조) 공정, 밀링 공정, 단조 공정 등 으로 제작한 후, 이를 각각 부착하는 방식으로 제조될 수 있다. 이 경우, 각 구성 요소마다 적합한 제조 공정을 이용할 수 있어, 비교적 저렴한 공정을 이용하면서도 정밀도를 충분히 확보할 수 있는 이점이 있다.
도 8은 상술한 도 3 내지 도 7의 방열판에 적용될 수 있는 펌핑 수단의 실시예를 도시한다. 도 3 내지 도 7의 방열판의 4개의 유로들(P1 ~ P4)은 田형으로 배치되지만, 이해의 편의를 위해 도 8에서는 단일 평면으로 도시하였다.
도 8에 도시한 펌핑 수단은, 하나의 펌프(10)를 이용하여 4개의 유로들(P1 ~ P4)에 동시에 냉각 유체로서 냉각수를 입력한다. 도 8의 펌핑 수단은 펌프 비용을 최소한으로 절감할 수 있다.
상기한 실시예는 그 설명을 위한 것이며, 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술분야의 통상의 전문가라면 본 발명의 기술사상의 범위에서 다양한 실시예가 가능함을 이해할 수 있을 것이다.
[부호의 설명]
120 : 상판
140 : 중간 구조물
142 : 제1 채널판
145 : 중간판
147 : 제2 채널판
160 : 하판
본 발명은 방열 장치에 관한 것으로, CPU, LSI, 파워 반도체 등 전력 소자 분야에 이용가능하다.

Claims (6)

  1. 상면에 서로 평행인 제1 유로홈 및 제2 유로홈이 형성되고, 하면에 서로 평행인 제3 유로홈 및 제4 유로홈이 형성되되, 상기 제3 유로홈 및 제4 유로홈은 상기 제1 유로홈 및 제2 유로홈과 평행 관계를 이루도록 하는 중간 구조물;
    상기 중간 구조물 상면에 밀착되어, 상기 제1 유로홈의 개구면을 막아 제1 유로를 형성하고, 상기 제2 유로홈의 개구면을 막아 제2 유로를 형성하는 상판;
    상기 중간 구조물 하면에 밀착되어, 상기 제3 유로홈의 개구면을 막아 제3 유로를 형성하고, 상기 제4 유로홈의 개구면을 막아 제4 유로를 형성하는 하판; 및
    상기 제1 유로, 제2 유로, 제3 유로 및 제4 유로에 동시에 냉각 유체를 입력시키는 펌핑 수단
    을 포함하는 방열 장치.
  2. 제1항에 있어서,
    상기 중간 구조물은,
    상기 상판 및 하판 사이에 상기 상판 및 하판과 평행하게 배치된 중간판;
    상기 상판과 중간판 사이에 위치하며 상기 제1 유로 및 제2 유로의 측벽을 형성하는 제1 채널판; 및
    상기 하판과 중간판 사이에 위치하며 상기 제3 유로 및 제4 유로의 측벽을 형성하는 제2 채널판
    을 포함하는 방열 장치.
  3. 제1항에 있어서,
    상기 상판에는 상기 제1 유로홈과 대응되는 제1 상판홈 및 상기 제2 유로홈과 대응되는 제2 상판홈이 형성되고,
    상기 하판에는 상기 제3 유로홈과 대응되는 제1 하판홈 및 상기 제4 유로홈과 대응되는 제4 상판홈이 형성된 방열 장치.
  4. 제1항에 있어서,
    상기 제1 유로 내지 제4 유로는,
    상기 중간 구조물의 전체 면적을 골고루 경유하도록 복수 회 굴곡된 단일 선형으로 상기 바디의 두께를 관통하는 방열 장치.
  5. 제1항에 있어서,
    상기 방열 장치의 일 측면에 위치하며, 1조를 이루는 상기 제1 유로 내지 제4 유로를 하나의 유로로 합쳐서 유로 방향을 전환한 후, 다시 1조를 이루는 상기 제1 유로 내지 제4 유로로 분배하는 제1 유로 전환/통합부; 및
    상기 방열 장치의 다른 측면에 위치하며, 1조를 이루는 상기 제1 유로 내지 제4 유로를 하나의 유로로 합쳐서 유로 방향을 전환한 후, 다시 1조를 이루는 상기 제1 유로 내지 제4 유로로 분배하는 제2 유로 전환/통합부
    를 더 포함하는 방열 장치.
  6. 냉각 대상 물체의 표면에 밀착될 수 있는 평면 형상의 바디;
    상기 바디의 전체 면적을 골고루 경유하도록 굴곡된 단일 선형으로 상기 바디의 두께를 관통하는 제1 유로;
    상기 제1 유로와 상기 면적 방향으로 평행인 형상으로 상기 바디의 두께를 관통하는 제2 유로;
    상기 제1 유로와 상기 두께 방향으로 평행인 형상으로 상기 바디의 두께를 관통하는 제3 유로;
    상기 제2 유로와 상기 두께 방향으로 평행인 형상으로 상기 바디의 두께를 관통하는 제4 유로; 및
    상기 제1 유로, 제2 유로, 제3 유로 및 제4 유로에 동시에 냉각 유체를 입력시키는 펌핑 수단
    을 포함하는 방열 장치.
PCT/KR2016/015209 2015-12-30 2016-12-23 방열 장치 WO2017116085A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0190208 2015-12-30
KR1020150190208A KR20170079527A (ko) 2015-12-30 2015-12-30 방열 장치

Publications (1)

Publication Number Publication Date
WO2017116085A1 true WO2017116085A1 (ko) 2017-07-06

Family

ID=59225346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/015209 WO2017116085A1 (ko) 2015-12-30 2016-12-23 방열 장치

Country Status (2)

Country Link
KR (1) KR20170079527A (ko)
WO (1) WO2017116085A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067258A (ja) * 2005-09-01 2007-03-15 Mitsubishi Materials Corp 冷却器及びパワーモジュール
KR20080095871A (ko) * 2006-01-06 2008-10-29 그라프텍 인터내셔널 홀딩스 인코포레이티드 그래파이트 물질로 제조된 마이크로채널 히트 싱크
JP2009117545A (ja) * 2007-11-05 2009-05-28 Nissan Motor Co Ltd 冷却装置
JP2009260058A (ja) * 2008-04-17 2009-11-05 Mitsubishi Electric Corp 冷媒冷却型電力半導体装置
JP2012521657A (ja) * 2009-03-25 2012-09-13 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. グリッドヒートシンク

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067258A (ja) * 2005-09-01 2007-03-15 Mitsubishi Materials Corp 冷却器及びパワーモジュール
KR20080095871A (ko) * 2006-01-06 2008-10-29 그라프텍 인터내셔널 홀딩스 인코포레이티드 그래파이트 물질로 제조된 마이크로채널 히트 싱크
JP2009117545A (ja) * 2007-11-05 2009-05-28 Nissan Motor Co Ltd 冷却装置
JP2009260058A (ja) * 2008-04-17 2009-11-05 Mitsubishi Electric Corp 冷媒冷却型電力半導体装置
JP2012521657A (ja) * 2009-03-25 2012-09-13 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. グリッドヒートシンク

Also Published As

Publication number Publication date
KR20170079527A (ko) 2017-07-10

Similar Documents

Publication Publication Date Title
CN106059257B (zh) 冷却式功率转换组件
US7259965B2 (en) Integrated circuit coolant microchannel assembly with targeted channel configuration
US7835151B2 (en) Flow distribution module and a stack of flow distribution modules
CN107787160B (zh) 一种电机控制器水冷散热结构
CN103137573A (zh) 功率模块封装
US20120287577A1 (en) Liquid cooling element
US20190139862A1 (en) Heat dissipation apparatus and method for power semiconductor devices
WO2022179392A1 (zh) 一种多热源散热冷却装置及冷却方法
WO2011030976A1 (ko) 열전 냉각 발전 장치
WO2019112288A1 (ko) 열변환장치
WO2011130944A1 (zh) 散热装置及含其的调速器
WO1986007193A1 (en) Cooled stack of electrically isolated semiconductors
US6650538B1 (en) Fin heat sink and airflow tube assembly employing annular airflows, and methods of fabrication thereof
WO2014081140A1 (ko) 공냉식 방열기를 가진 변압기
WO2018040308A1 (zh) 风电变流器功率柜
US6840308B2 (en) Heat sink assembly
US11647607B2 (en) Localized immersion cooling enclosure with thermal efficiency features
WO2017116085A1 (ko) 방열 장치
CN104752374B (zh) 一种散热器及散热器组
US11864357B2 (en) Double-sided cooling cold plates with overhanging heat sinks and through body busbar for high-power density power electronics
KR102539336B1 (ko) 반도체 소자 열관리 모듈 및 이의 제조 방법
CN209859087U (zh) 散热装置和具有其的计算设备
JP2022526554A (ja) 冷却装置
TWM611757U (zh) 液冷式散熱系統
CN209787713U (zh) 一种大功率均匀散热的水冷散热器及电器设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16882037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16882037

Country of ref document: EP

Kind code of ref document: A1