JP2009117545A - 冷却装置 - Google Patents

冷却装置 Download PDF

Info

Publication number
JP2009117545A
JP2009117545A JP2007287641A JP2007287641A JP2009117545A JP 2009117545 A JP2009117545 A JP 2009117545A JP 2007287641 A JP2007287641 A JP 2007287641A JP 2007287641 A JP2007287641 A JP 2007287641A JP 2009117545 A JP2009117545 A JP 2009117545A
Authority
JP
Japan
Prior art keywords
flow path
cooling surface
cooling
refrigerant
side flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007287641A
Other languages
English (en)
Inventor
Makoto Iwashima
誠 岩島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2007287641A priority Critical patent/JP2009117545A/ja
Publication of JP2009117545A publication Critical patent/JP2009117545A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】多孔質体に冷媒流路を設けた冷却装置の冷却性能を向上させる。
【解決手段】半導体素子8が接合される上壁3を冷却面Sとするケーシング2と、ケーシングの冷媒入口INと冷媒出口OUTの間に設けられた多孔質体10とからなり、多孔質体10には、冷媒入口INに開口し下壁4を流路壁の一部とする第1流路20を設けるとともに、冷媒出口OUTに開口し上壁を流路壁の一部とする第2流路30を設ける。第1流路20は冷媒出口OUT側が閉じ、第2流路30は冷媒入口IN側が閉じているので、冷媒入口INから第1流路20に入った冷媒はすべて多孔質体10内へ染み出て上方へ流れ、第2流路30へ至って冷媒出口OUTから流れ出る。冷媒が冷却面Sに向かって流れるので、半導体素子8は効率良く冷却される。
【選択図】図1

Description

本発明は、半導体素子等の発熱体を冷却するための冷却装置に関する。
半導体素子はその動作に伴って発熱するので、従来より半導体素子を接合してこれを冷却するフィン型の冷却装置が使用されている。
近年、とくに半導体素子の高出力化により発熱量も増大し高温度になるようになっているため、例えば特開2001−358270号公報には、フィンの代わりに多孔質体を利用して、多孔質体に形成した流路に冷媒を流すようにした冷却装置が提案されている。
これによれば、冷媒が多孔質体を染み通って半導体素子等の発熱体を接着した冷却板に接し、冷却板から満遍なく熱を奪い取ることが期待された。
特開2001−358270号公報
しかしながら、上記従来の装置では、多孔質体内の流路孔を冷却板の面に対して平行に、かつ冷却板からの距離を異ならせて複数層に設けて、この流路孔に冷媒をすべて同方向に流すようにしているので、各冷媒流路から流れ出る冷媒が層間で干渉し、その結果、冷却板から距離のある層から出る冷媒ほど冷却板に到達するのが困難になり、期待に反して十分な冷却能力を発揮できないという問題がある。
したがって本発明は、冷媒流路を多孔質体に設けた冷却装置において、冷媒がより効率よく冷却板から熱を奪い取り冷却性能を向上させるようにした装置を提供することを目的とする。
このため本発明は、発熱体が接合される冷却面を備えるケーシングと、該ケーシングの冷媒入口と冷媒出口の間に設けられた多孔質体とからなり、該多孔質体には、冷却面を流路壁の一部とする冷却面側流路と、冷却面から離間した離間側流路とが形成されて、冷却面側流路と離間側流路は多孔質体における両流路間の冷媒の流れが冷却面を横切る方向となるように配置されたものとした。
本発明によれば、冷媒が有効に冷却面方向へ流れるので、冷却面から十分に熱を奪い、発熱体が効率良く冷却される。
以下、本発明の実施の形態を実施例により詳細に説明する。
図1、図2は、IGBTやダイオード等の大電流を流す半導体素子の冷却に適用した第1の実施例の構成を示す。図1の(a)は平面図、(b)は縦断面図、(c)は横断面図であって、とくに(c)は(b)におけるA−A部断面を拡大して示している。また、(b)は(c)におけるB−B部断面にあたる。さらに図2の(d)は図1の(b)におけるC−C矢視図、(e)は同(b)におけるD−D矢視図である。
冷却装置1は、冷媒の通路を構成するケーシング2の上壁3を冷却面Sとして、この冷却面S上に発熱体としての複数の半導体素子8を一定間隔で配して構成される。
ケーシング2は主に銅あるいはアルミニウムなどの熱伝導率の高い金属製であり、半導体素子8はセラミック基板などの絶縁板9を介して冷却面Sに接合される。絶縁板9は半導体素子8の平面形より大きいサイズとしてある。
ケーシング2は横断面が4角形であり、長手方向両端の所定領域を除いて、多孔質体10がケーシング2の内壁に接合されて内部空間を埋めている。所定領域の一方は冷媒入口INとなり、他方は冷媒出口OUTとなっている。
多孔質体10はケーシング2と同様に銅あるいはアルミニウムなどの熱伝導率の高い金属で作製され、気孔径が数十μ〜数mmの範囲としてある。
多孔質体10とケーシング2の壁面間にはそれぞれ冷媒を流す第1流路20と第2流路30が形成されている。すなわち、第1流路20は多孔質体10のケーシングの下壁4との接合面に溝を設けるとともに下壁4を流路壁の一部として形成され、第2流路30は冷却面Sとなっているケーシングの上壁3との接合面に溝を設けるとともに上壁3を流路壁の一部として形成されている。
第1流路20は一定断面で複数本の流路としてケーシング2の幅方向に並べられ、それぞれ冷媒入口INに開口して冷媒出口OUT近傍まで互いに平行に延び、当該冷媒出口OUT側は閉じている。
第2流路30は一定断面で複数本の流路としてケーシングの幅方向に並べられ、それぞれ冷媒出口OUTに開口して冷媒入口IN近傍まで互いに平行に延び、当該冷媒入口IN側は閉じている。
第1流路20の本数は第2流路30の本数よりも多い。
以下、第1流路の個別の流路または第2流路の個別の流路は、個別の流路間を識別する場合のほかは、一括して第1流路あるいは第2流路と呼ぶ。
第1流路20は、その複数の流路が平面図においてケーシング2の幅方向に等間隔に並んで層を形成し、同様に、第2流路30は、複数の流路が平面図においてケーシング2の幅方向に等間隔に並んで層を形成しており、第1流路20の上記幅方向間隔と第2流路30の幅方向間隔とは同一である。
とくに、(c)の横断面図に示されるように、第1流路20と第2流路30はケーシング2の幅方向において幅方向間隔の1/2だけ互いにオフセットしている。このため、横断面において、第1流路20と第2流路30は上下方向に交互に、すなわちジグザグに配置されたものとなっている。
第2流路30は冷却面S側の上層となり、第1流路20は相対的に冷却面Sから遠い下層となる。
以上の構成になる冷却装置1に、冷媒入口INから冷媒が供給されると、冷媒は第1流路20に流入する。第2流路30と第1流路20は上下の関係にあるから、冷媒は第1流路20から染み出て多孔質体10内を冷却面Sと平行な方向ではなく上方向へ流れ、一部は第2流路30へ直接達し、残部は冷却面S近傍まで達してから熱を奪った後第2流路30へ到達して、その後冷媒出口OUTへ向かう。すなわち、半導体素子8で発生した熱は絶縁板9、冷却面S、および多孔質体10を熱伝導により流れて冷媒に吸収される。
第2流路30も冷却面Sを流路壁の一部としているので、第1流路20から染み出た冷媒は大部分が冷却面Sから熱を奪って冷媒出口OUTへ出て行くことになる。
本実施例では、半導体素子8が発明における発熱体に該当し、第1流路20が離間側流路に、そして第2流路30が冷却面側流路に該当している。
本実施例の冷却装置1は以上のように構成され、半導体素子8が接合される冷却面Sを備えるケーシング2と、ケーシングの冷媒入口INと冷媒出口OUTの間に設けられた多孔質体10とからなり、多孔質体10には、冷却面Sを流路壁の一部とする第2流路30の層と、冷却面Sから離間した第1流路20の層とが上下の関係に形成されて、冷媒が多孔質体10内を冷却面Sと平行な方向ではなく冷却面Sを横切る方向に、第1流路20から第2流路30へ流れるものとしたので、冷媒が有効に冷却面Sを通過して、半導体素子8は効率良く冷却される。
そして、第1流路20は冷媒出口OUT側が閉じ、第2流路30は冷媒入口IN側が閉じているので、冷媒入口INから第1流路20に入った冷媒はすべて多孔質体10内へ染み出て第2流路30へ至り、冷媒出口OUTから流れ出て、冷媒が有効に冷却作用に利用される。
また、第1流路20と第2流路30はそれぞれ等間隔に並べて配置された複数の流路からなり、第2流路30を第1流路20に対して並び方向にオフセットして、第2流路30の各流路が第1流路20の流路間隔の中間に配置されているので、多孔質体10の全断面が冷媒の通路として用いられ、高い熱伝達性能が得られる。
次に、図3は第1の実施例の第1の変形例を示す。これは、冷媒入口に開口する第1流路と冷媒出口に開口する第2流路とを上下逆にしたものである。
図3は縦断面図であって、図1の(b)に対応するものである。
冷却装置1’において、第1流路20’は多孔質体10’のケーシングの冷却面S(上壁3)との接合面に複数本の溝を平行に設けるとともに上壁3を流路壁の一部として形成され、それぞれ冷媒入口INに開口するとともに、冷媒出口OUT近傍まで延び、当該冷媒出口OUT側は閉じている。溝の並びは図2の(e)における第1流路20と同様である。
第2流路30’は多孔質体10’のケーシング2の下壁4との接合面に複数本の溝を平行に設けるとともに下壁4を流路壁の一部として形成され、それぞれ冷媒出口OUTに開口するとともに、冷媒入口IN近傍まで延び、当該冷媒入口IN側は閉じている。溝の並びは図2の(d)における第2流路30と同様である。
本構造は、換言すれば、第1の実施例における第1流路20を冷媒出口OUTに開口させ、第2流路30を冷媒入口INに開口させたものに相当する。
その他の構成は上記実施例と同じである。
冷媒入口INから冷媒が供給されると、冷媒は第1流路20’に流入する。第1流路20’はケーシング2の冷却面Sを流路壁の一部として上層にあるから、冷媒は第1流路20’から染み出て多孔質体10’内を下方へ流れて第2流路30’へ達し、その後冷媒出口OUTへ向かう。
冷媒入口INから供給された冷媒はすべて第1流路20’に入り、第1流路20’においてその流路壁の一部をなす冷却面Sと接触してから多孔質体10’内に染み出て第2流路30’へ向かい、また第1流路20’の複数の流路間の部分へ染み出た冷媒は冷却面Sに接してとくに高温となっている多孔質体10’を通過してから第2流路30’へ向かうことになる。これにより、半導体素子8で発生した熱は絶縁板9、冷却面S、および多孔質体10’を熱伝導により流れ、半導体素子8は効率良く冷却される。
なお、この変形例では、半導体素子8が発明における発熱体に該当し、第1流路20’が冷却面側流路に、そして第2流路30’が離間側流路に該当している。
次に、図4、図5は第1の実施例のさらに第2の変形例を示す。
図4の(a)は平面図、(b)は縦断面図、(c)は横断面図であって、とくに(c)は(b)におけるE−E部断面を拡大して示している。また、(b)は(c)におけるF−F部断面にあたる。さらに図5の(d)は図4の(b)におけるG−G矢視図、(e)は同(b)におけるH−H矢視図である。
上記実施例では第1流路20および第2流路30をそれぞれ多孔質体10に溝を設けて形成したが、この変形例の冷却装置1”は、ケーシング側に溝を設けたものである。
すなわち、第1流路20”はケーシング2”の下壁4”に溝を設けるとともに多孔質体10”をその流路壁の一部として形成してある。同様に、第2流路30”はケーシング2”の冷却面S(上壁3”)に溝を設けるとともに多孔質体10”をその流路壁の一部として形成してある。
第1流路20”および第2流路30”がそれぞれ平行な複数本からなることは上記実施例と同じである。
第1流路20”は、それぞれ多孔質体10”の冷媒入口IN側の端面より延びて冷媒入口INに開口するとともに、冷媒出口OUT近傍まで延び、当該冷媒出口OUT側は閉じている。
第2流路30”は、それぞれ多孔質体10”の冷媒出口OUT側の端面より延びて冷媒出口OUTに開口するとともに、冷媒入口IN近傍まで延び、当該冷媒入口IN側は閉じている。
他の構成は上記実施例と同じである。
この変形例によっても、半導体素子8で発生した熱は絶縁板9、冷却面S、および多孔質体10”を熱伝導により流れ、半導体素子8は効率良く冷却される。
また、多孔質体10”の形状が簡素化されるので、その作製が容易となる。
この変形例では、半導体素子8が発明における発熱体に該当し、第1流路20”
が離間側流路に、そして第2流路30”が冷却面側流路に該当している。
図6、図7は第1の実施例の第3の変形例を示す。これは、冷却面が2つの場合に対応させたものである。
図6の(a)は平面図、(b)は縦断面図、(c)は横断面図であって、とくに(c)は(b)におけるJ−J部断面を拡大して示している。また、(b)は(c)におけるK−K部断面にあたる。さらに図7の(d)は図6の(b)におけるL−L矢視図、(e)は同(b)におけるM−M部断面図である。
冷却装置1”’は、ケーシング2”’の上壁3と下壁4が冷却面S、Sとなっており、それぞれの冷却面Sに半導体素子8が絶縁板9を介して接合されている。
ケーシング2”’の内壁に接合された多孔質体10”’の高さ方向中央位置に、平行な複数本からなり冷媒入口INに開口する第1流路20”’が設けられ、第1流路20”’は冷媒出口OUT近傍まで延びて、当該冷媒出口OUT側は閉じている。
第1流路20”’を挟んで、上側と下側の第2流路30、30”’が設けられている。
上側の第2流路30は、多孔質体10”’の上壁3との接合面に溝を設けるとともに上壁3を流路壁の一部として形成され、下側の第2流路30”’は多孔質体10”’の下壁4との接合面に溝を設けるとともに下壁4を流路壁の一部として形成されている。第2流路30”’の平面配置は透視したとき図7の(d)と一致する。
第1流路20”’の断面は、上側の第2流路30と下側の第2流路30”’との2流路に流す冷媒量を賄うために、各第2流路の断面よりも大きな面積に設定される。
その他の構成は、上記実施例と同じである。
以上のように構成した変形例によっても、第1流路20”’と上側の第2流路30間および第1流路20”’と下側の第2流路30”’間の冷媒の流れが、上記実施例と同様に、冷却面S、Sに対して垂直な上下方向となって半導体素子8が効率良く冷却される。
また、冷却面が2面となるので、多くの半導体素子の冷却をコンパクトな形態で賄うことができる。
この変形例では、半導体素子8が発明における発熱体に該当し、第1流路20”’が離間側流路に、そして第2流路30および30”’が冷却面側流路に該当している。
次に、第2の実施例について説明する。これは第1の実施例に対して、第1流路と第2流路の形状を変えたものである。
図8、図9は第2の実施例の構成を示し、図8の(a)は平面図、(b)は縦断面図、(c)は(b)におけるN−N部の拡大断面図、(d)は(b)におけるP−P部の拡大断面図である。また、(b)は(c)におけるQ−Q部断面にあたる。さらに図9の(e)は図8の(b)におけるR−R矢視図、(f)は同(b)におけるT−T矢視図である。
第1の実施例と同一部分には同符号を付して、詳細な説明は省略する。
冷却装置1Aにおいて、互いに平行な複数本の流路からなる第1流路20Aは、それぞれ多孔質体10Aのケーシング2の下壁4との接合面に溝を設けるとともに下壁4を流路壁の一部として形成され、互いに平行な複数本からなる第2流路30Aはそれぞれ冷却面Sとなっているケーシング2の上壁3との接合面に溝を設けるとともに上壁3を流路壁の一部として形成されている。
とくに(b)の縦断面図に示されるように、第1流路20Aは、それぞれ冷媒入口INへの開口部において溝の深さを大きくして断面積を大とし、冷媒出口OUT側へ進むに従って溝の深さを浅くして断面積を減少させ、冷媒出口OUT近傍において溝の深さが0となって閉じている。
第2流路30Aは、それぞれ冷媒出口OUTへの開口部において溝の深さを大きくして断面積を大とし、冷媒入口IN側へ進むに従って溝の深さを浅くして断面積を減少させ、冷媒入口IN近傍において溝の深さが0となって閉じている。
したがって、(b)の縦断面において、それぞれ多孔質体10Aに形成された第1流路20Aの溝と第2流路30Aの溝の各底壁は互いに平行な状態で傾斜しており、第1流路20Aと第2流路30Aの各断面積はケーシングの長手方向において相補的に変化している。
その他の構成は第1の実施例と同じである。
本実施例は以上のように構成され、冷媒が多孔質体10A内を第1流路20Aから第2流路30Aへ冷却面Sを横切る方向に流れるものとしたので、冷媒が有効に冷却面Sを通過して、半導体素子8は効率良く冷却される。
そして、第1流路20Aは冷媒出口OUT側が閉じ、第2流路30Aは冷媒入口IN側が閉じているので、冷媒入口INから第1流路20Aに入った冷媒はすべて多孔質体10A内へ染み出て第2流路30Aへ至り、冷媒出口OUTから流れ出て、冷媒が有効に冷却作用に利用される。
また、第1流路20Aと第2流路30Aはそれぞれ等間隔に並べて配置された複数の流路からなり、第2流路30Aを第1流路20Aに対して並び方向にオフセットして、第2流路30Aの各流路が第1流路20Aの流路間隔の中間に配置されているので、多孔質体10Aの全断面が冷媒の通路として用いられ、高い熱伝達性能が得られる。
さらに本実施例では、第1流路20Aの断面積が冷媒入口INに近いほど大きく、第2流路30Aの断面積が冷媒出口OUTに近いほど大きくなっているので、ケーシング2の長手方向の位置がどこであるかに関わらず、第1流路20Aからは均一に多孔質体10Aへ冷媒が染み出てゆき、多孔質体10Aを通過した冷媒も均一に第2流路30Aへ流れ出るので、冷媒が冷却面Sからの熱を均一に奪い取り、半導体素子8を一層効率良く冷却することができる。
本実施例では、半導体素子8が発明における発熱体に該当し、第1流路20Aが離間側流路に、そして第2流路30Aが冷却面側流路に該当している。
なお、本実施例は第1の実施例をベースとして、第1流路と第2流路の形状を変えたが、上述の第1〜第3の変形例についても同様に適用できるものである。
図10、図11は第1流路と第2流路の形状を変えた第3の実施例を示す。
図10の(a)は平面図、(b)は縦断面図、(c)は(b)におけるU−U部の拡大断面図、(d)は(b)におけるV−V部の拡大断面図である。また、(b)は(c)におけるW−W部断面にあたる。さらに図11の(e)は図10の(b)におけるX−X矢視図、(f)は同(b)におけるY−Y矢視図である。
第1の実施例と同一部分には同符号を付して、詳細な説明は省略する。
冷却装置1Bにおいて、第2流路30Bは多孔質体10Bのケーシング2の上壁3との接合面に一定深さの溝を設けるとともに上壁3を流路壁の一部として形成されている。
平面図において、第2流路30Bは冷却面Sに接合する各半導体素子8の接合位置に対応して、換言すれば半導体素子の直下に、半導体素子8の外形をカバーする格子状部32を備えている。ここでは、格子状部32は格子枠34、35によって縦横3列に区切られており、合計9個の格子穴相当部37が形成されている。
そして、半導体素子8の列に沿う方向(ケーシング2の長手方向)の4本の格子枠34は順次接続されて冷媒出口OUTに開口している。換言すれば、ケーシング2の長手方向に4本の溝が冷媒出口OUTまで延ばして設けられ、これら4本の溝を各半導体素子8の接合位置に対応した部位においてそれぞれ幅方向に延びる4本の溝(格子枠35)でつないでいる。
第1流路20Bは多孔質体10Bのケーシング2の下壁4との接合面に溝を設けるとともに下壁4を流路壁の一部として形成され、冷媒入口INに開口し、第2流路30Bの長手方向の4本の溝と平行に延びて冷媒出口OUT近傍で閉じている。
第2流路30Bの長手方向の溝(格子枠34)と第1流路20Bとはケーシング2の幅方向において幅方向間隔の1/2だけ互いにオフセットしており、第1流路20Bは平面図において第2流路30Bが形成する格子の格子穴相当部37の中心を通っている。
第1流路20Bは、各格子穴相当部37の中心に対応して冷却面S方向へ延びる膨出部22を備えている。膨出部22の底壁23bの高さ(深さ)は第2流路30Bの溝の底壁との間に所定の高さ方向間隙hを残している。
他の構成は第1の実施例と同じである。
上記構成によれば、第2流路30Bが格子状部32を有して幅方向に延びる溝を備えているので、第1、第2の実施例では横断面における幅方向に隣接する第1流路20の溝から第2流路30の溝へ向かう傾斜した流れが主であるのに対して、第1流路20Bの膨出部22から第2流路30Bの幅方向に延びる格子枠35の溝への流れも追加されて、全体として冷却面Sを横切る方向の流れを増大させるとともに、半導体素子8が接合される冷却面Sの領域からより均等に熱を奪うことができる。
本実施例では、半導体素子8が発明における発熱体に該当し、第1流路20Bが離間側流路に、そして第2流路30Bが冷却面側流路に該当している。
本実施例は以上のように構成され、第1の実施例と同様に、冷媒が多孔質体10B内を第1流路20Bから第2流路30Bへ冷却面Sを横切る方向に流れるものとしたので、冷媒が有効に冷却面Sを通過して、半導体素子8は効率良く冷却される。
そして、第1流路20Bは冷媒出口OUT側が閉じ、第2流路30Bは冷媒入口IN側が閉じているので、冷媒入口INから第1流路20Bに入った冷媒はすべて多孔質体10B内へ染み出て第2流路30Bへ至り、冷媒出口OUTから流れ出て、冷媒が有効に冷却作用に利用される。
また、第1流路20Bと第2流路30Bはそれぞれ等間隔に並べて配置された複数の流路からなり、第2流路30Bを第1流路20Bに対して並び方向にオフセットして、第2流路30Bの各流路が第1流路20Bの流路間隔の中間に配置されているので、多孔質体10Bの全断面が冷媒の通路として用いられて高い熱伝達性能が得られる。
さらに、第2流路30Bが格子状部32を有して幅方向に延びる溝も備えているので、冷媒流量を増加できるとともに、半導体素子8が接合される冷却面Sの領域をより細かく網羅して均質な冷却が可能となる。
なお、図示では、第1流路20Bの本数を第2流路30Bが形成する格子穴相当部37の列に対応させた3本としたが、その両側にさらに追加して第1の実施例等と同様に5本とすれば、さらに冷媒の流量を増大させることができる。
なお、本実施例は第1の実施例をベースとして、第1流路と第2流路の形状を変えたが、上述の第1〜第3の変形例についても同様に適用できるものである。
例えば、第3の実施例では第1流路20Bを冷媒入口INに開口し、第2流路30Bを冷媒出口OUTに開口して、第1流路20Bと冷却面S間の冷媒の流れを上向きとしたが、これと反対に第1の変形例にそわせて、冷媒入口INと冷媒出口OUTを反転させ、冷却面S側の第2流路30Bを冷媒入口INに開口し、下壁4側の第1流路20Bを冷媒出口OUTに開口して、第1流路20Bと冷却面S間の冷媒の流れを下向きとしても、ほとんど全ての冷媒が有効に冷却面を通過することに変わりないから、上述したのと同一の効果が得られる。
また、第3の変形例に対しては、上側の第2流路20および下側の第2流路30”’に格子状部37を備え、第1流路20”’に上方向および下方向に延びる膨出部22を備えればよい。
次に第4の実施例について説明する。これは第1流路と第2流路の形状を変えるとともに、多孔質体の特定領域の特性を変えたものである。
図12、図13は第4の実施例の構成を示し、図12の(a)は平面図、(b)は縦断面図、(c)横断面図であって、とくに(c)は(b)におけるZ−Z部の拡大断面を示している。また、(b)は(c)におけるAA−AA部断面にあたる。さらに図13の(d)は図12の(b)におけるBB−BB矢視図、(e)は同(b)におけるCC−CC矢視図である。
第1の実施例と同一部分には同符号を付して、詳細な説明は省略する。
冷却装置1Cにおいて、第1流路20Cが多孔質体10Cのケーシング2の下壁4との接合面に溝を設けるとともに下壁4を流路壁の一部として形成されている。第1流路20Cは冷却面Sに接合する各半導体素子8の下方において、半導体素子8のサイズよりも若干小さめの広幅で、断面スリット状を呈している。
第1流路20Cは冷媒入口INに開口するとともに、冷媒出口OUT近傍で閉じている。
第1流路20Cはさらに半導体素子8の接合位置に対応する部位、すなわち半導体素子の直下に膨出部22Cを備えている。膨出部22Cのケーシング長手方向における寸法も幅寸法と同様に半導体素子8のサイズよりも若干小さめに設定されて、平面図において膨出部22Cの形状は半導体素子8の外形と略相似となっている。
第2流路30Cは冷却面Sとなっているケーシング2の上壁3との接合面に一定断面の溝を設けるとともに上壁3を流路壁の一部として形成されている。
第2流路30Cは、半導体素子8の直下の領域を挟んで配置され、半導体素子8の外形よりも外側をケーシング2の長手方向と平行に延びている。
第2流路30Cはそれぞれ冷媒出口OUTに開口して冷媒入口IN近傍まで延び、当該冷媒入口IN側は閉じている。
第1流路20Cの膨出部22Cの底壁23cの高さ(深さ)は第2流路30Cの溝の底壁との間に所定の高さ方向間隙h’を残している。
多孔質体10Cの、両側の第2流路30Cに挟まれるとともに膨出部22Cの底壁23cから冷却面Sとの接合面に至る領域は、他の領域よりも気孔率を高くした低圧力損失部15としてある。低圧力損失部15のケーシング長手方向における寸法は半導体素子8のサイズよりも若干大きめに設定されて、平面図において低圧力損失部15の形状は半導体素子8の外形と略相似となっている。
その他の構成は第1の実施例と同じである。
冷媒入口INから冷媒が供給されると、冷媒は第1流路20Cに流入する。第1流路20Cは半導体素子8のサイズに近い幅で半導体素子8の直下にあるので、冷媒は第1流路20Cの膨出部22Cから染み出て多孔質体10C内を冷却面Sへ向かって上方向へ流れ、広い範囲で冷却面Sと接触し熱を奪う。
この際、第1流路の膨出部22Cと冷却面Sの間は、多孔質体の気孔率を高くして低圧力損失部15としてあるので、冷媒が集中しやすく、ほとんどの冷媒が当該低圧力損失部15を通って冷却面Sへ案内されることになる。
冷却面Sから熱を奪った冷媒は、その後第2流路30Cへ流れて、冷媒出口OUTへ向かう。
本実施例では、半導体素子8が発明における発熱体に該当し、第1流路20Cが離間側流路に、そして第2流路30Cが冷却面側流路に該当している。
本実施例は以上のように構成され、冷媒が冷却面Sへ向かって当該冷却面を横切る方向、すなわち第1流路20Cから多孔質体10C内を上方へ流れるものとしたので、第1の実施例と同様に、冷媒が有効に冷却面Sを通過して、半導体素子8は効率良く冷却される。
また、第1流路20Cは冷媒出口OUT側が閉じ、第2流路30Cは冷媒入口IN側が閉じているので、冷媒入口INから第1流路20Cに入った冷媒はすべて多孔質体10C内へ染み出て第2流路30Cへ至り、冷媒出口OUTから流れ出て、冷媒が有効に冷却作用に利用される。
そしてとくに、第1流路20Cを半導体素子8の直下部位で半導体素子のサイズに対応した広幅としたので、冷却面Sに接合している多孔質体10Cの広い範囲が冷媒への熱伝導領域となって、伝達する熱量を増大させる。
さらに、第1流路20Cに底壁23cを冷却面Sに近づけた膨出部22Cを設けるとともに、膨出部22Cと冷却面Sの間の多孔質体を低圧力損失部15としたので、冷媒が冷却面Sへ向かって集中し、半導体素子8の冷却効率を一層向上させる。
低圧力損失部15は多孔質体10Cの気孔率を他の領域よりも大きくすることにより形成でき、気孔率の設定により圧力損失の度合いを適宜選択することができる。
なお、第4の実施例では第1流路20Cを冷媒入口INに開口し、第2流路30Cを冷媒出口OUTに開口して、第1流路20Cと冷却面S間の冷媒の流れを上向きとしたが、これと反対に、冷媒入口INと冷媒出口OUTを反転させ、第2流路30Cを冷媒入口INに開口し、第1流路20Cを冷媒出口OUTに開口して、第1流路20Cと冷却面S間の冷媒の流れを下向きとしても、ほとんど全ての冷媒が有効に冷却面Sを通過することに変わりないから、上述したのと同一の効果が得られる。
また、本実施例では、第1流路20Cを広幅の単一流路としたが、第1流路が複数の流路からなる場合であっても、それぞれ第1流路と冷却面の間の多孔質体を低圧力損失部とすることができる。
低圧力損失部15は多孔質体の気孔率を大きくすることで形成するものとしたが、気孔率の代わりに気孔径を他の領域よりも大きくすることによっても形成することができる。
図14、図15は第5の実施例を示す。これはケーシングに遮蔽板を設けたものである。
図14の(a)は平面図、(b)は縦断面図、(c)は(b)におけるDD−DD部の拡大断面図、(d)はケーシングのみを取り出して示す拡大横断面図である。また、(b)は(c)におけるFF−FF部断面にあたる。さらに図15の(e)は(b)におけるEE−EE矢視図である。(f)は図14の(b)におけるGG−GG矢視図、(g)は同(b)におけるHH−HH矢視図である。
第1の実施例と同一部分には同符号を付して、詳細な説明は省略する。
冷却装置1Dにおいては、金属製のケーシング2Dは横断面が4角形であり、上壁3を冷却面Sとし、これに平行に対向する下壁4に4枚の遮蔽板18を幅方向等間隔に設けている。
遮蔽板18は、下壁4から上壁3に向かって垂直に立ち上がるとともに、長手方向に互いに平行に延びており、冷媒入口IN側は後述する多孔質体10Dの端面に一致させ、冷媒出口OUT側は多孔質体10Dの端面より退避している。
遮蔽板18の上端と上壁3の間には所定の間隙h”が設けられており、遮蔽板18の上端面は後述する第2流路30Dの底壁となる。
ケーシング2Dには、長手方向両端の冷媒入口INと冷媒出口OUTになる領域の間に、多孔質体10Dがケーシングの内壁と接合されている。
冷媒出口OUT近傍を残して、多孔質体10Dの下壁4との接合面を全幅にわたって切り欠いて、ケーシングの下壁4との間に一定の間隙を設ける。この間隙部分が遮蔽板によりケーシングの幅方向に分割された溝を形成して、冷媒入口INに開口した第1流路20Dとなっている。
すなわち、第1流路20Dは多孔質体10Dの上記切り欠いた面を底壁とし下壁4を流路壁の一部として形成されている。第1流路20Dの冷媒出口OUT側は閉じている。
一方、多孔質体10Dのケーシングの上壁3との接合面には遮蔽板18の位置に整合させて遮蔽板18の上端面までの深さの溝を設けるとともに上壁3を流路壁の一部として第2流路30Dが形成されている。第2流路30Dは遮蔽板18の厚みを溝幅としており、すなわち遮蔽板18の上端面が底壁となっている。
第2流路30Dは冷媒出口OUTに開口し、冷媒入口IN側は閉じている。
その他の構成は第1の実施例と同じである。
本実施例では、第1流路20Dが遮蔽板18により複数に分割され、遮蔽板18が第2流路30Dの底壁まで延びているので、第1流路20Dから多孔質体10D内に染み出た冷媒はケーシング幅方向への流れを規制されて、すべて冷却面Sである上壁3へ向かって案内され、冷却面S近傍に達してから第2流路30Dへ流れ出ることになる。
本実施例では、半導体素子8が発明における発熱体に該当し、第1流路20Dが離間側流路に、そして第2流路30Dが冷却面側流路に該当している。
本実施例は以上のように構成され、冷媒が冷却面Sへ向かって当該冷却面を横切る方向、すなわち第1流路20Dから多孔質体10D内を上方へ流れるものとしたので、半導体素子は効率良く冷却される。
そして、第1流路20Dは冷媒出口OUT側が閉じ、第2流路30Dは冷媒入口IN側が閉じているので、冷媒入口INから第1流路20Dに入った冷媒はすべて多孔質体10D内へ染み出て第2流路30Dへ至り、冷媒出口OUTから流れ出て、冷媒が有効に冷却作用に利用される。
また、第1流路20Dと第2流路30Dはそれぞれ等間隔に並べて配置された複数の流路からなり、第2流路30Dを第1流路20Dに対して並び方向にオフセットして、第2流路30Dの各流路が第1流路20Dの流路間隔の中間に配置されているので、多孔質体10Dの全断面が冷媒の通路として用いられ、高い熱伝達性能が得られる。
さらに、多孔質体10Dに冷却面Sを横切る方向の遮蔽板18が設けられているので、第1流路20Dから多孔質体10D内に染み出た冷媒は、熱伝達に有効でない領域へ流れるのを阻止されて、すべて冷却面である上壁3へ向かって案内され、半導体素子8の冷却効率が一層向上する。
本実施例は第1の実施例をベースとしたが、その各変形例や、第2〜第4の各実施例についても同様に適用できるものである。
例えば、第3の変形例においては、ケーシング2の上壁3と下壁4間の中間位置において、多孔質体10”内の第1流路20”’の複数の流路間に遮蔽板を鋳込めばよい。
以上、各実施例について説明したが、本発明は図示の実施例に限定されることなく、本発明の効果を奏する範囲において、第1流路、第2流路の本数や形状を適宜変更することができ、また各実施例や変形例を組み合わせることができる。
第1の実施例の構成を示す図である。 第1の実施例の構成を示す図である。 第1の変形例を示す図である。 第2の変形例を示す図である。 第2の変形例を示す図である。 第3の変形例を示す図である。 第3の変形例を示す図である。 第2の実施例の構成を示す図である。 第2の実施例の構成を示す図である。 第3の実施例の構成を示す図である。 第3の実施例の構成を示す図である。 第4の実施例の構成を示す図である。 第4の実施例の構成を示す図である。 第5の実施例の構成を示す図である。 第5の実施例の構成を示す図である。
符号の説明
1、1’、1”、1”’、1A、1B、1C、1D 冷却装置
2、2”、、2”’、2D ケーシング
3、3” 上壁
4、4” 下壁
8 半導体素子
9 絶縁板
10、10’、10”、10”’、10A、10B、10C、10D 多孔質体
15 低圧力損失部
18 遮蔽板
20、20’、20”、20”’、20A、20B、20C、20D 第1流路
22、22C 膨出部
23b、23c 底壁
30、30’、30”、30”’、30A、30B、30C、30D 第2流路
32 格子状部
34、35 格子枠
37 格子穴相当部
IN 冷媒入口
OUT 冷媒出口
S 冷却面

Claims (14)

  1. 発熱体が接合される冷却面を備えるケーシングと、
    該ケーシングの冷媒入口と冷媒出口の間に設けられた多孔質体とからなり、
    該多孔質体には、前記冷却面を流路壁の一部とする冷却面側流路と、前記冷却面から離間した離間側流路とが形成されて、
    前記冷却面側流路と離間側流路は、前記多孔質体における当該冷却面側流路と離間側流路間の冷媒の流れが前記冷却面を横切る方向となるように配置されたことを特徴とする冷却装置。
  2. 前記ケーシングは長手方向の一端側が冷媒入口、他端側が冷媒出口とされ、
    前記冷却面側流路と離間側流路はそれぞれ前記ケーシングの長手方向に平行に延び、
    前記冷却面側流路は前記冷媒入口に開口するとともに、前記冷媒出口側が閉じており、
    前記離間側流路は前記冷媒出口に開口するとともに、前記冷媒入口側が閉じていることを特徴とする請求項1に記載の冷却装置。
  3. 前記ケーシングは長手方向の一端側が冷媒入口、他端側が冷媒出口とされ、
    前記冷却面側流路と離間側流路はそれぞれ前記ケーシングの長手方向に平行に延び、
    前記冷却面側流路は前記冷媒出口に開口するとともに、前記冷媒入口側が閉じており、
    前記離間側流路は前記冷媒入口に開口するとともに、前記冷媒出口側が閉じていることを特徴とする請求項1に記載の冷却装置。
  4. 前記ケーシングは互いに対向する上壁および下壁を冷却面とし、長手方向の一端側が冷媒入口、他端側が冷媒出口とされ、
    前記離間側流路は上壁側の冷却面側流路と下壁側の冷却面側流路間の中間に設けられて、各冷却面側流路と離間側流路はそれぞれ前記ケーシングの長手方向に平行に延び、
    前記離間側流路は前記冷媒入口に開口するとともに、前記冷媒出口側が閉じており、各冷却面側流路は前記冷媒出口に開口するとともに、前記冷媒入口側が閉じていることを特徴とする請求項1に記載の冷却装置。
  5. 前記冷却面側流路と離間側流路はそれぞれ等間隔に並べて配置された複数の流路からなり、前記冷却面側流路を前記離間側流路に対して並び方向にオフセットして、冷却面側流路の各流路が離間側流路の流路間隔の中間に配置されていることを特徴とする請求項1から4のいずれか1に記載の冷却装置。
  6. 前記冷却面側流路および離間側流路はそれぞれその断面積を開口側が大きく、閉じ側が小さくなるように変化させてあることを特徴とする請求項1から5のいずれか1に記載の冷却装置。
  7. 前記冷却面側流路は、複数の流路間をその並び方向につないで形成した格子状部を発熱体の接合位置に対応して備えることを特徴とする請求項5に記載の冷却装置。
  8. 前記離間側流路には、前記冷却面側流路の格子状部における格子穴相当部の中心に向かって延びる膨出部を備えていることを特徴とする請求項7に記載の冷却装置。
  9. 前記多孔質体は、発熱体の接合位置に対応する部位における前記離間側流路から前記冷却面までの領域を低圧力損失部としてあることを特徴とする請求項1から4のいずれか1に記載の冷却装置。
  10. 前記低圧力損失部は、多孔質体の気孔率または気孔径を他の領域よりも大きくしたものであることを特徴とする請求項9に記載の冷却装置。
  11. 前記冷却面側流路は前記低圧力損失部の側方に隣接して配置してあることを特徴とする請求項9または10に記載の冷却装置。
  12. 前記多孔質体には前記冷却面を横切る方向に遮蔽板が設けられて、
    多孔質体内の冷媒の流れ方向を規制することを特徴とする請求項1から6および9から11のいずれか1に記載の冷却装置。
  13. 前記ケーシングは互いに対向する上壁および下壁を備えて上壁を冷却面とし、
    前記離間側流路は前記下壁を流路壁の一部として形成され、
    前記冷却面側流路と離間側流路はそれぞれ等間隔に並べて配置された複数の流路からなり、前記冷却面側流路を前記離間側流路に対して並び方向にオフセットして、冷却面側流路の各流路が離間側流路の流路間隔の中間に配置されており、
    前記下壁には前記離間側流路の複数の流路間に前記冷却面へ向かって延びる遮蔽板が設けられていることを特徴とする請求項1から3のいずれか1に記載の冷却装置。
  14. 前記冷却面側流路と離間側流路の少なくとも一方は、前記ケーシングの壁面に形成した溝を前記多孔質体でカバーしてなることを特徴とする請求項1から13のいずれか1に記載の冷却装置。
JP2007287641A 2007-11-05 2007-11-05 冷却装置 Pending JP2009117545A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007287641A JP2009117545A (ja) 2007-11-05 2007-11-05 冷却装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007287641A JP2009117545A (ja) 2007-11-05 2007-11-05 冷却装置

Publications (1)

Publication Number Publication Date
JP2009117545A true JP2009117545A (ja) 2009-05-28

Family

ID=40784357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007287641A Pending JP2009117545A (ja) 2007-11-05 2007-11-05 冷却装置

Country Status (1)

Country Link
JP (1) JP2009117545A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103413794A (zh) * 2013-08-16 2013-11-27 中国科学院深圳先进技术研究院 一种半导体功率器件的散热封装结构
JP2015170625A (ja) * 2014-03-05 2015-09-28 株式会社東芝 半導体パッケージ
CN105308739A (zh) * 2014-05-22 2016-02-03 三菱电机株式会社 液冷散热器
WO2017116085A1 (ko) * 2015-12-30 2017-07-06 주식회사 효성 방열 장치
KR20200107546A (ko) * 2019-03-08 2020-09-16 엘지전자 주식회사 방열판 모듈
KR20200107543A (ko) * 2019-03-08 2020-09-16 엘지전자 주식회사 방열판 모듈
CN113644401A (zh) * 2021-08-06 2021-11-12 中国电子科技集团公司第三十八研究所 一种用于有源相控阵天线的集成多级流道的冷却板
CN114222490A (zh) * 2022-01-06 2022-03-22 珠海格力电器股份有限公司 功率模块的散热装置和变频器的散热系统

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103413794A (zh) * 2013-08-16 2013-11-27 中国科学院深圳先进技术研究院 一种半导体功率器件的散热封装结构
JP2015170625A (ja) * 2014-03-05 2015-09-28 株式会社東芝 半導体パッケージ
CN105308739A (zh) * 2014-05-22 2016-02-03 三菱电机株式会社 液冷散热器
WO2017116085A1 (ko) * 2015-12-30 2017-07-06 주식회사 효성 방열 장치
KR20200107546A (ko) * 2019-03-08 2020-09-16 엘지전자 주식회사 방열판 모듈
KR20200107543A (ko) * 2019-03-08 2020-09-16 엘지전자 주식회사 방열판 모듈
KR102202443B1 (ko) * 2019-03-08 2021-01-13 엘지전자 주식회사 방열판 모듈
KR102202435B1 (ko) * 2019-03-08 2021-01-13 엘지전자 주식회사 방열판 모듈
CN113644401A (zh) * 2021-08-06 2021-11-12 中国电子科技集团公司第三十八研究所 一种用于有源相控阵天线的集成多级流道的冷却板
CN113644401B (zh) * 2021-08-06 2023-05-09 中国电子科技集团公司第三十八研究所 一种用于有源相控阵天线的集成多级流道的冷却板
CN114222490A (zh) * 2022-01-06 2022-03-22 珠海格力电器股份有限公司 功率模块的散热装置和变频器的散热系统

Similar Documents

Publication Publication Date Title
JP2009117545A (ja) 冷却装置
JP4586772B2 (ja) 冷却構造及び冷却構造の製造方法
US20100002399A1 (en) Semiconductor device
WO2019043801A1 (ja) ヒートシンク
JP3214513U (ja) 流路が内側の凸状模様からなるベイパーチャンバー
JP2018107365A (ja) 液冷式冷却装置用放熱器およびその製造方法
KR20140042736A (ko) 냉각 장치
JP5332115B2 (ja) パワー素子搭載用ユニット
JP6336364B2 (ja) ヒートシンク
CN102751250B (zh) 冷却装置
JP2010016254A (ja) 半導体装置
CN107768324A (zh) 具有冷却功能的车辆电力模块组件
JP2007266463A (ja) 冷却器
US8002021B1 (en) Heat exchanger with internal heat pipe
JP2019086183A (ja) 伝熱装置
JP7023349B2 (ja) 液冷式冷却器
JP2001358270A (ja) 冷却装置
JP2016025097A5 (ja)
JP4956787B2 (ja) 冷却装置
JP2019194512A (ja) 延伸毛細管層で複数のベイパーチャンバーを連絡する統合型ベイパーチャンバーモジュール
JP7213078B2 (ja) 積層型熱交換器
JP4305253B2 (ja) 放熱器
KR20210088329A (ko) 전력 모듈
JP6997229B2 (ja) コールドプレート
JP2014053471A (ja) 冷却装置