WO2022179392A1 - 一种多热源散热冷却装置及冷却方法 - Google Patents

一种多热源散热冷却装置及冷却方法 Download PDF

Info

Publication number
WO2022179392A1
WO2022179392A1 PCT/CN2022/075481 CN2022075481W WO2022179392A1 WO 2022179392 A1 WO2022179392 A1 WO 2022179392A1 CN 2022075481 W CN2022075481 W CN 2022075481W WO 2022179392 A1 WO2022179392 A1 WO 2022179392A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
heat
plate
working medium
heat source
Prior art date
Application number
PCT/CN2022/075481
Other languages
English (en)
French (fr)
Inventor
孔延梅
焦斌斌
张楠
刘瑞文
叶雨欣
Original Assignee
中国科学院微电子研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院微电子研究所 filed Critical 中国科学院微电子研究所
Publication of WO2022179392A1 publication Critical patent/WO2022179392A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/209Heat transfer by conduction from internal heat source to heat radiating structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20254Cold plates transferring heat from heat source to coolant
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20509Multiple-component heat spreaders; Multi-component heat-conducting support plates; Multi-component non-closed heat-conducting structures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20763Liquid cooling without phase change
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present application relates to the technical field of heat dissipation of electronic devices or equipment, and in particular, to a multi-heat source heat dissipation cooling device and a cooling method.
  • the embodiments of the present application aim to provide a multi-heat source heat dissipation cooling device and a cooling method to solve the problem that the existing heat dissipation structure can only dissipate heat for a specific structure, and the integrated heat dissipation plate needs to be replaced as a whole .
  • the present application provides a multi-heat source heat dissipation and cooling device, which includes a heat dissipation plate, and the plurality of heat dissipation plates are spliced longitudinally or transversely to dissipate heat from the heat sources.
  • the multi-heat source heat dissipation and cooling device further includes a working medium supply plate, and the working medium supply plate is provided with a plurality of heat dissipation plate grooves.
  • the radiating plate is arranged in the groove of the radiating plate, the fluid pipeline of the radiating plate is communicated with the fluid pipeline of the working medium supply plate, and the fluid pipeline of each radiating plate is independent of each other.
  • the cooling plate groove is provided with a connection port
  • the cooling plate is provided with a liquid inlet and outlet
  • the connection port communicates with the liquid inlet and outlet.
  • the working medium supply plate is provided with a liquid inlet and liquid separation flow channel and an outlet liquid confluence flow channel.
  • connection port is communicated with the liquid inlet and liquid separation flow channels and the liquid outlet liquid sink flow channels.
  • the heat dissipation plate is provided with micro-channels, and the width and spacing of the micro-channels are set according to the heat flux density of the heat source.
  • a silicone gasket for sealing is provided between the heat dissipation plate and the working medium supply plate.
  • the present application provides a multi-heat source heat dissipation and cooling method, the steps comprising:
  • Step 1 Determine the location distribution of the heat source
  • Step 2 splicing and splicing the heat sink according to the location of the heat source
  • Step 3 Supply the working medium to the cooling plate to dissipate heat from the heat source.
  • the present application can achieve at least one of the following beneficial effects:
  • the radiating plates are longitudinally spliced, the supply of the working medium of each radiating plate is independent, the working medium does not affect each other, the flow distribution is uniform, the temperature uniformity is good, and the energy consumption required for the circulation of the working medium is low; Splicing, the whole cooling system does not need additional working medium supply layer, the structure is simple, the volume is small, it is suitable for working conditions with small space, and the heat dissipation area can be expanded arbitrarily;
  • the heat dissipation plate is arranged in the working medium supply board in a "jigsaw" style according to the heat source distribution on the device or equipment that needs to be dissipated. It is used to solve the heat dissipation of multiple heat sources, simplifying the design and manufacturing process, and is suitable for different devices or equipment.
  • the multi-heat source heat dissipation can reduce the cost and cycle of design and manufacture, and is widely used;
  • the width of the micro-channels of the heat dissipation plate is different, which can dissipate heat in a targeted manner for different heat sources, so that the overall temperature uniformity of the system is better.
  • Figure 1 is a schematic diagram of the "jigsaw-type" heat sink splicing
  • Figure 2 is a schematic diagram of a three-dimensional structure of a multi-heat source heat dissipation cooling system
  • Figure 3 is a schematic diagram of the layered structure of the liquid cooling system
  • FIG. 4 is a schematic diagram of a cooling medium supply plate
  • FIG. 5 is a schematic diagram of a plurality of heat dissipation plates piecing together to realize multi-heat source heat dissipation (front side);
  • FIG. 6 is a schematic diagram of a plurality of heat dissipation plates piecing together to realize multi-heat source heat dissipation (with a connection port on the reverse side);
  • Figure 7 is a schematic diagram of the three-dimensional structure of a single heat sink (1)
  • FIG. 8 is a schematic diagram of the distribution of high-power device arrays
  • Figure 9 is a schematic diagram of the three-dimensional structure of a single heat dissipation plate (2);
  • FIG. 10 is a schematic plan view of a plurality of heat dissipation plates being laterally connected to realize heat dissipation from multiple heat sources;
  • FIG. 11 is a schematic diagram of a three-dimensional effect of multiple heat dissipation plates being horizontally connected to realize multi-heat source heat dissipation;
  • FIG. 12 is a schematic diagram of the installation of the cooling plate and the cooling medium supply plate.
  • connection should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integral connection , which can be mechanical connection, electrical connection, direct connection, or indirect connection through an intermediate medium.
  • connection can be mechanical connection, electrical connection, direct connection, or indirect connection through an intermediate medium.
  • top bottom
  • above bottom
  • under over
  • FIG. 1-FIG. 12 discloses a multi-heat source heat dissipation and cooling device, including a working medium supply plate 1 and a heat dissipation plate 4, and the working medium supply plate 1 is provided with a plurality of heat dissipation plates Slot 2, the radiating plate 4 is arranged in the radiating plate groove 2, the fluid pipeline of the radiating plate 4 communicates with the fluid pipeline of the working medium supply plate 1, and the fluid pipeline of each radiating plate 4 is independent of each other.
  • the multi-heat source heat dissipation cooling device is set on the device or equipment that needs heat dissipation, and the heat dissipation plate 4 is set in the heat dissipation plate groove 2 of the working medium supply plate 1 according to the heat source distribution on the device or equipment that needs heat dissipation, that is, The heat dissipation plate 4 is arranged in the working medium supply plate 1 in a "jigsaw-like" manner.
  • the heat-dissipating plate is arranged in the working medium supply plate in a “jigsaw-like” manner according to the heat-source distribution on the device or equipment that needs to be dissipated, which not only satisfies the multi-heat-source heat dissipation and cooling Because the fluid pipes of each heat dissipation plate on the working fluid supply plate are independent of each other, if the flow channel of a heat dissipation plate is blocked or damaged, only the heat dissipation plate at that place needs to be replaced, without affecting the heat dissipation plate of other heat sources.
  • This heat dissipation solution has the advantages of simplifying the design and manufacturing process, and is suitable for multi-heat source heat dissipation of different devices or equipment.
  • the multi-heat source heat dissipation and cooling device in this embodiment is a "jigsaw-type" multi-heat source heat dissipation, that is, a plurality of heat dissipation plates 4 are pieced together according to the location distribution of the heat sources.
  • the "jigsaw-type" heat-dissipating plate setting of this embodiment not only saves materials, but also realizes the "jigsaw-type” liquid cooling and heat dissipation by using a single set of liquid supply system.
  • the fluid pipes on different heat dissipation plates 4 are independent of each other and do not interfere with each other, and the fluid pipes of the heat dissipation plate 4 are connected with the fluid pipes of the working medium supply plate 1 to form a heat dissipation system with a multi-circuit structure. , so as to achieve separate liquid inlet and outlet.
  • the required cooling device or device in this embodiment is a high-power device array 5.
  • a plurality of heat sources 6 are randomly distributed on the upper surface of the high-power device array 5, and the vertical direction of the position of the heat source 6 is correspondingly provided with
  • the heat dissipation plate 4 is installed and fixed by the heat dissipation plate groove 2 etched on the working medium supply plate 1.
  • the heat dissipation plate groove 2 is provided with a connection port 3, and the heat dissipation plate 4 is provided with a liquid inlet and outlet 9.
  • the connection port 3 on the supply plate 1 and the liquid inlet and outlet ports 9 on the heat dissipation plate 4 carry out working fluid transmission.
  • the overall framework of the liquid cooling system formed in this embodiment is divided into three layers: a device layer, a heat dissipation layer, and a working medium supply layer.
  • the device layer is the device that needs heat dissipation
  • the heat dissipation layer is composed of
  • the heat dissipation plates 4 are formed by "splicing"
  • the working medium supply layer is the working medium supply plate 1 of this embodiment.
  • a 4 ⁇ 4 array of cooling plate grooves 2 are etched on the working medium supply plate 1 , and a connection port 3 is reserved in the cooling plate groove 2 for supplying the cooling medium to the working medium.
  • the flow between the plate 1 and the heat dissipation plate 4 provides an interface.
  • the working medium supply plate 1 is provided with a liquid inlet and liquid separation channel 7 that can evenly distribute the cooling working medium, so as to realize the flow uniformity of the overall liquid supply, and the working medium supply
  • the liquid outlet and confluence flow channel 8 provided in the plate 1 can quickly merge and discharge the hot liquid working medium flowing through the device, and promote the continuous development of the working medium flow circulation system.
  • Each radiator plate 4 is machined with a liquid inlet and outlet port 9 to ensure that the cooling medium can circulate inside the radiator plate 4 .
  • connection ports 3 are provided, and two liquid inlet and outlet ports 9 are correspondingly provided, which are respectively used for liquid inlet and outlet.
  • the liquid inlet and outlet 9 for liquid inlet and the connection port 3 for liquid outlet are communicated with the liquid inlet and liquid separation channel 7, the liquid inlet and outlet port 9 for liquid outlet and the connection port 3 for liquid inlet It is communicated with the outlet liquid sink flow channel 8 .
  • the working fluid supply plate 1 Since the liquid inlet and liquid separation channels 7 and the outlet liquid confluence channels 8 are distributed in the working medium supply plate 1 , in order to prevent the hot working medium in the liquid outlet channel 8 from cooling down the liquid inlet and liquid separation channels 7 The working fluid causes the temperature rise, so the working fluid supply plate 1 is made of materials with low thermal conductivity.
  • the heat dissipation plate 4 is made of materials with high thermal conductivity, such as copper, aluminum and other metals, which is more conducive to smaller thermal resistance on the thermal path and increases the heat transfer coefficient. It should be noted that after the heat dissipation plate 4 is installed in the heat dissipation plate groove 2, the top surface of the heat dissipation plate 4 is in contact with the heat source 6 on the high-power device array 5, and the heat is dissipated through the circulating flow of the working medium.
  • the heat dissipation plate 4 and the working medium supply plate 1 are assembled by physical pressing, and are sealed by a silicone gasket.
  • a silicone gasket of a certain thickness is attached to the bottom of each cooling plate slot 2 (not shown in the figure), It can not only isolate the thermal influence of heat on the working medium supply plate 1, but also play the role of sealing the working medium liquid.
  • the sealing and fixing between the heat dissipation plate 4 and the working fluid supply plate 1 are realized by the silicone pad 16 arranged on the working fluid supply plate 1 .
  • the silicone pad 16 and the working medium supply plate 1 are installed by silica gel glue, the installation between the heat dissipation plate 4 and the working medium supply plate 1 is fixed by the vacuum adsorption tank 15 on the working medium supply plate 1, and the vacuum pump The air in the vacuum adsorption tank 15 is drawn out, and the heat dissipation plate 4 is adsorbed on the working medium supply plate 1 to achieve a fixed sealing effect; The leaked working medium is taken out through the vacuum adsorption tank 15 to reduce the damage to the system.
  • the heat source 6 of the high-power device array 5 and the heat dissipation plate 4 are bonded by high thermal conductivity materials such as silver paste and gold-tin solder, so as to ensure that the heat of the heat source is transmitted to the heat dissipation plate 4 to the greatest extent. Circulating flow of heat away from the surface of the device, system or equipment.
  • the heat dissipation plate 4 is provided with micro flow channels 11 , the two ends of the micro flow channel 11 are provided with the heat dissipation plate sub-convergent liquid flow channels 10 , and the liquid inlet and outlet 9 are correspondingly provided in the heat dissipation plate sub-confluence liquid flow channels 10 .
  • the cooling plate corresponding to the liquid inlet and outlet 9 is used to divide the liquid flow channel 10 into the micro flow channel 11.
  • the radiating plate branching fluid channel 10 corresponding to the liquid inlet and outlet 9 is used to collect the working fluid in the micro channel 11 .
  • the heat dissipation plate 4 is provided with dual liquid inlet and outlet interconnection channels 12 and a heat dissipation plate connection port 13 .
  • the heat dissipation plate connection port 13 is provided on the heat dissipation plate 4
  • double inlet and outlet liquid interconnection channels 12 are provided, so as to realize the horizontal combined communication of multiple radiating plates 4, and realize working fluid circulation.
  • the heat flux density of different heat sources can be set to different widths, so that different heat sources can be dissipated in a targeted manner, so that the overall temperature uniformity of the system is better.
  • the radiating plates 4 are connected by quick joints 14 , and the setting of the dual inlet and outlet interconnecting channels 12 can effectively prevent the failure of the entire radiating system caused by the blockage of a single radiating plate 4 .
  • the cooling medium can bypass the blocked radiator plate 4 and be transferred to the next radiator plate 4 .
  • the cooling plate 4 has two connection modes, namely longitudinal connection mode and transverse connection mode.
  • the longitudinal connection mode needs to be uniformly supplied by the working fluid liquid supply plate 1 for longitudinal liquid supply (equivalent to parallel liquid supply); , the working fluid flows through the device in turn to dissipate heat (equivalent to a series liquid supply).
  • the advantage of the longitudinal liquid supply is that the supply of the working medium of a single radiator plate 4 is independent, the working medium does not affect each other, the flow distribution is uniform, the temperature uniformity is good, and the energy consumption required for the circulation of the working medium is low.
  • the advantage of horizontal liquid supply is that the entire cooling system does not need an additional working medium supply layer, the structure is simple, the volume is small, and it is suitable for working conditions with narrow space, and the heat dissipation area can be expanded arbitrarily.
  • a "jigsaw” liquid cooling technology is provided to solve the heat dissipation and cooling requirements of multiple heat sources.
  • "Puzzle-type” liquid cooling is a heat dissipation system with a multi-circuit structure realized by a single liquid supply system. In this system, the fluid pipes on different heat dissipation plates are independent of each other and do not interfere with each other, so as to realize separate liquid inlet and outlet. . It should be noted that the size of the heat dissipation plate is consistent with the size of the corresponding heat source.
  • Another specific embodiment of the present application discloses a multi-heat source heat dissipation and cooling method, using the multi-heat source heat dissipation and cooling device of Embodiment 1, and the steps include:
  • Step 1 Determine the location distribution of the heat source
  • Step 2 splicing and splicing the heat sink according to the location of the heat source
  • the heat dissipation plate is correspondingly arranged in the heat dissipation plate groove of the working medium supply plate, so as to realize a "puzzle type" heat dissipation structure.
  • Step 3 Supply the working medium to the cooling plate to dissipate heat from the heat source.
  • the heat dissipation plate 4 adopts the longitudinal connection method, that is, when the heat dissipation plate 4 is arranged in the heat dissipation plate groove 2 of the working medium supply plate 1, the cold working medium in the working medium supply plate 1 flows to the heat dissipation plate 4 to dissipate the heat source.
  • the heat of 6 is taken away to form a hot working medium, which is then returned to the working medium supply plate 1; when the cooling plate 4 adopts the horizontal connection method, the working medium supply plate 1 is no longer required to supply the working medium at this time.
  • the present application proposes a "jigsaw-type" liquid-cooled heat dissipation to solve the heat dissipation of multiple heat sources, and the heat dissipation plates can be pieced together according to the location distribution of the heat sources, thereby solving the heat dissipation requirements of multiple heat sources.
  • the "puzzle-type" liquid cooling heat dissipation can realize the replacement of the heat dissipation plate at a certain point, so as to solve the problem of local blockage or damage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本申请涉及一种多热源散热冷却装置及冷却方法,属于电子器件或设备散热技术领域,解决了现有技术中散热结构仅能针对特定的结构散热,一体化散热板需要整块进行更换的问题。本申请的多热源散热冷却装置包括散热板(4),散热板(4)纵向拼接或横向拼接对热源(6)散热。本申请散热板根据需要散热的器件或设备上的热源分布呈"拼图式"拼接,适用于不同器件或设备的多热源散热,能够实现对某点的散热板单独替换,增加系统可靠性,降低制造成本。

Description

一种多热源散热冷却装置及冷却方法 技术领域
本申请涉及电子器件或设备散热技术领域,尤其涉及一种多热源散热冷却装置及冷却方法。
背景技术
随着电子器件输出功率的不断提升,尺寸的不断缩小,导致电子设备的功率及热流密度不断提高,热管理问题已成为制约电子器件或设备发挥最大电学性能的瓶颈,液体冷却技术由于较高的散热能力在散热行业中被广泛采用。
在众多的电子器件系统、设备中,比如:云计算、数据中心的超级计算机、高功率器件阵列组成的模块等,均具有多个热源需要散热,热源位置分布与散热需求均有差异。传统的液冷方案是由冷却工质在一体化的散热流道组成的散热板中流动,将热量带离器件、系统或设备表面,而一体化的散热板存在以下问题:
(1)需要针对不同模块或设备的散热需求进行定制化的散热结构设计、制作等,无法采用一种通用的热管理方案来解决,该技术方法实际应用效率低下;
(2)整个液冷系统中,若一体化散热板中某段流道出现阻塞或损坏,则对整个散热板造成不可逆的损伤,需要更换整个散热板才可以正常工作。
发明内容
鉴于上述的分析,本申请实施例旨在提供一种多热源散热冷却装置及冷却方法,用以解决现有的散热结构仅能针对特定的结构散热,一体化散热板需要整块进行更换的问题。
一方面,本申请提供了一种多热源散热冷却装置,包括散热板,多个散热板纵向拼接或横向拼接并对热源散热。
进一步地,散热板纵向拼接时,多热源散热冷却装置还包括工质供应板,工质供应板上设有多个散热板槽。
进一步地,散热板设于散热板槽中,散热板的流体管道与工质供应板的流体管道连通,且每个散热板的流体管道相互独立。
进一步地,散热板槽内设有连接口,散热板上设有进出液口,连接口和进出液口连通。
进一步地,工质供应板内设有进液分液流道和出液汇液流道。
进一步地,连接口与进液分液流道和出液汇液流道连通。
进一步地,散热板内设有微流道,微通道的宽度和间距根据热源的热流密度设置。
进一步地,散热板与工质供应板之间设有用于密封的硅胶垫。
另一方面,本申请提供了一种多热源散热冷却方法,步骤包括:
步骤1:确定热源位置分布;
步骤2:根据热源位置分布拼接散热板;
步骤3:向散热板供应工质,对热源散热。
与现有技术相比,本申请至少可实现如下有益效果之一:
(1)散热板纵向拼接,每个散热板的工质供应是单独的,工质互不相影响,流量分布均匀,温度均匀性好,且工质循环所需的能耗低;散热板横向拼接,整个散热系统不需要额外附加的工质供应层,构造简单,体积小,适用于空间狭小的工况,并且散热面积可任意拓展;
(2)散热板根据需要散热的器件或设备上的热源分布呈“拼图式”设于工质供应板中,用于解决多热源的散热,简化了设计与制造流程,适用于不同器件或设备的多热源散热,能够降低设计制造的成本和周期,得到广泛应用;
(3)对热源采用“拼图式”液冷散热,能够实现对某点的散热板单独替换,以此解决局部的堵塞或损坏问题,能够快捷有效的对散热系统进行维护,增加系统可靠性,降低制造成本;
(4)针对不同的热源热流密度大小,散热板的微流道的宽度不同,可以对不同热源有针对性的散热,使得系统整体的温度均匀性更好。
本申请中,上述各技术方案之间还可以相互组合,以实现更多的优选组合方案。本申请的其他特征和优点将在随后的说明书中阐述,并且,部分优点可从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过说明书以及附图中所特别指出的内容中来实现和获得。
附图说明
附图仅用于示出具体实施例的目的,而并不认为是对本申请的限制,在整个附图中,相同的参考符号表示相同的部件。
图1为“拼图式”散热板拼接示意图;
图2为多热源散热冷却系统三维结构示意图;
图3为液冷散热系统分层结构示意图;
图4为冷却工质供应板示意图;
图5为多个散热板拼凑实现多热源散热(正面)示意图;
图6为多个散热板拼凑实现多热源散热(反面含连接口)示意图;
图7为单个散热板三维结构示意图(一);
图8为高功率器件阵列分布示意图;
图9为单个散热板三维结构示意图(二);
图10为多个散热板横向连接实现多热源散热的平面示意图;
图11为多个散热板横向连接实现多热源散热三维效果示意图;
图12为散热板和冷却工质供应板安装示意图。
附图标记:
1-冷却工质供应板;2-散热板槽;3-连接口;4-散热板;5-高功率器件阵列;6-热源;7-进液分液通道;8-出液汇液流道;9-进出液口;10-散热板分汇液流道;11-微流道;12-双进出液互连通道;13-散热板连接口;14-快接头;15-真空吸附槽;16-硅胶垫。
具体实施方式
下面结合附图来具体描述本申请的优选实施例,其中,附图构成本申请一部分,并与本申请的实施例一起用于阐释本申请的原理,并非用于限定本申请的范围。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接,可以是机械连接,也可以是电连接,可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
全文中描述使用的术语“顶部”、“底部”、“在……上方”、“下”和“在……上”是相对于装置的部件的相对位置,例如装置内部 的顶部和底部衬底的相对位置。可以理解的是装置是多功能的,与它们在空间中的方位无关。
实施例1
本申请的一个具体实施例,如图1-图12所示,公开了一种多热源散热冷却装置,包括工质供应板1和散热板4,工质供应板1上设有多个散热板槽2,散热板4设于散热板槽2中,散热板4的流体管道与工质供应板1的流体管道连通,且每个散热板4的流体管道相互独立。
实施时,将多热源散热冷却装置设于需要散热的器件或设备上,根据需要散热的器件或设备上的热源分布,将散热板4设于工质供应板1的散热板槽2中,即散热板4呈“拼图式”设于工质供应板1中。
与现有技术相比,本实施例的多热源散热冷却装置,散热板根据需要散热的器件或设备上的热源分布呈“拼图式”设于工质供应板中,既满足多热源的散热冷却需求,又由于设于工质供应板上每个散热板的流体管道相互独立,若某处散热板流道阻塞或损坏时,只需要针对该处的散热板进行更换,不影响其他热源散热板的正常使用,这种散热方案具有简化设计与制造流程,适用于不同器件或设备的多热源散热的优点。
本实施例的多热源散热冷却装置,为“拼图式”多热源散热,即根据热源位置分布将多个散热板4进行拼凑,如图1所示,散热板4根据热源的位置对应设置,相比于传统全覆盖需要散热器件的散热板设置方式而言,本实施例的“拼图式”散热板设置,既节省了材料,又由于“拼图式”液冷散热是采用单套供液系统实现的多回路结构的散热系统,若某散热板4的流道阻塞或损坏时,只需要针对该点的散热板4单独更换,不会影响到其他热源散热板4的正常使用。这种散热方案具有简化设计与制造流程的优点,能够快捷有效的对散热系统进行维护,增加系统可靠性,降低制造成本。
值得注意的是,本实施例中,不同散热板4上的流体管道都是相互独立互不干扰的,散热板4的流体管道与工质供应板1的流体管道连通形成多回路结构的散热系统,从而实现单独的进液出液。
“拼图式”散热,首先需要确定不同模块或设备上的热源分布,再根据热源位置分布对各个散热板进行拼凑、统一供液,以解决不同模块或设备的多热源的散热冷却需求,本实施例提供的散热冷却方式具有通用性。
需要说明的是,热源的位置确定可以通过两种方法,一是由器件或设备的设计分析得出热源的分布位置;二是可以通过红外热成像仪确定器件或设备的热源位置,再进行相应的散热设计。
进一步地,本实施例的需要散热器件或设备为高功率器件阵列5,如图2所示,高功率器件阵列5的上表面随机分布有多个热源6,热源6位置的垂直方向对应设有散热板4,散热板4通过工质供应板1上刻蚀的散热板槽2进行安装固定,散热板槽2内设有连接口3,散热板4上设有进出液口9,通过工质供应板1上的连接口3与散热板4上的进出液口9进行工质传输。
值得注意的是,如图3所示,本实施例形成的液冷散热系统整体框架分为三层:器件层、散热层、工质供应层,器件层即为需要散热的器件,散热层由散热板4“拼接”形成,工质供应层即为本实施例的工质供应板1。
本实施例中,如图4所示,工质供应板1上刻蚀有4×4阵列的散热板槽2,散热板槽2中预留有连接口3,为冷却工质在工质供应板1与散热板4之间的流通提供接口,工质供应板1内设有能够将冷却工质均匀的分配的进液分液流道7,实现整体供液的流动均匀性,工质供应板1内设有的出液汇液流道8能够将流经器件后的热液工质快速的汇合排出, 促进工质流动循环系统的继续发展。每个散热板4上均加工有进出液口9,保证冷却工质能够在散热板4内部流通,在每个散热板4安装之前都需要根据热源6的位置分布进行相应的拼凑排布。
连接口3设有两个,进出液口9对应设有两个,分别用于进液和出液,具体地,连接口3设于散热板槽2的底部,进出液口9设于散热板4的底部,用于进液的进出液口9及用于出液的连接口3与进液分液流道7连通,用于出液的进出液口9及用于进液的连接口3与出液汇液流道8连通。
由于工质供应板1中分布有进液分液流道7和出液汇液流道8,为了防止出液汇液流道8内的热工质对进液分液流道7内的冷工质造成温升影响,因此工质供应板1采用低导热系数的材料。
散热板4采用高导热系数的材料,如铜、铝等金属,这样更有利于较小热通路上的热阻,增大传热系数。需要说明的是,散热板4设于散热板槽2内后,散热板4的顶面与高功率器件阵列5上的热源6接触,通过工质的循环流动进行散热。
散热板4与工质供应板1之间通过物理压扣的方式实现装配,并通过硅胶垫进行密封,在每个散热板槽2的底部附着有一定厚度的硅胶垫(图中未显示),既可以隔离热量对工质供应板1的热影响,同时也起到对工质液体密封的作用。
作为本实施例的另一种实施方式,如图12所示,通过设置在工质供应板1上的硅胶垫16实现散热板4与工质供应板1之间的密封、固定。具体地,硅胶垫16与工质供应板1之间通过硅胶胶水安装,散热板4与工质供应板1之间的安装通过工质供应板1上的真空吸附槽15进行固定,通过真空泵将真空吸附槽15内的空气抽出,将散热板4吸附在工质供应板1上,实现固定密封作用;此外,如若某一散热板4内部发生堵塞, 或者连接口3处发生渗漏问题,可以通过真空吸附槽15将渗漏的工质带出,减小对系统的损坏。
高功率器件阵列5的热源6和散热板4之间通过银浆、金锡焊片等高导热率材料进行粘接,以此保证热源的热量最大程度的传输至散热板4,通过冷却工质的循环流动将热量带离器件、系统或设备表面。
如图7所示,散热板4内设有微流道11,微流道11的两端设有散热板分汇液流道10,进出液口9对应设在散热板分汇液流道10上,当进出液口9用于向散热板4内进液时,进出液口9对应的散热板分汇液流道10用于向微流道11分液,当进出液口9用于将散热板4的工质液体流出时,进出液口9对应的散热板分汇液流道10用于将微流道11内的工质液体汇集。
作为本实施例的另一种实施方式,如图9所示,散热板4上设有双进出液互连通道12和散热板连接口13,具体地,散热板连接口13设于散热板4的侧壁上,通过设置双进出液互连通道12,以此实现多个散热板4的横向组合连通,实现工质循环,并且对于单个散热板4内部的结构微流道11的宽度,针对不同的热源热流密度大小,可以设置成不同的宽度,这样可以对不同热源有针对性的散热,使得系统整体的温度均匀性更好。
如图10所示,散热板4之间通过快接头14进行连接,并且通过双进出液互连通道12的设置能够有效预防单个散热板4堵塞造成的整个散热系统的失效,当某一散热板堵塞时,由于双进出液互连通道12设置,能够使得冷却工质绕过该堵塞的散热板4传输至下一散热板4。
需要说明的是,散热板4有两种连接方式,即纵向连接方式和横向连接方式,纵向连接方式需要统一由工质供液板1进行纵向供液(相当并联式供液);横向连接方式,工质依次流过器件进行散热(相当串联 式供液)。纵向供液的优势是单个散热板4的工质供应是单独的,工质互不相影响,流量分布均匀,温度均匀性好,且工质循环所需的能耗低。横向供液的优势是整个散热系统不需要额外附加的工质供应层,构造简单,体积小,适用于空间狭小的工况,并且散热面积可任意拓展。
本实施例,针对多热源器件或设备的散热需求及上述提到的传统散热冷却方案的缺点,提供了一种“拼图式”液冷散热技术用于解决多热源的散热冷却需求。“拼图式”液冷散热是采用单套供液系统实现的多回路结构的散热系统,该系统中不同散热板上的流体管道都是相互独立互不干扰的,从而实现单独的进液出液。需要说明的是,散热板的尺寸与对应热源尺寸一致。
本实施例中,若某处散热板4流道阻塞或损坏时,只需要针对该点的散热板4进行更换,不影响其他热源散热板4的正常使用,简化了设计与制造流程,适用于不同器件或设备的多热源散热,能够降低设计制造的成本和周期,得到广泛应用,同时能够快捷有效的对散热系统进行维护,增加系统可靠性,降低制造成本。
实施例2
本申请的另一个具体实施例,公开了一种多热源散热冷却方法,采用实施例1的多热源散热冷却装置,步骤包括:
步骤1:确定热源位置分布;
热源的位置确定可以通过两种方法,一是由器件或设备的设计分析得出热源的分布位置;二是可以通过红外热成像仪确定器件或设备的热源位置,再进行相应的散热设计。
步骤2:根据热源位置分布拼接散热板;
根据步骤1获得的热源位置分布将散热板对应设于工质供应板的散热板槽内,实现“拼图式”散热结构。
步骤3:向散热板供应工质,对热源散热。
需要说明的是,当散热板4采用纵向连接方式时,即散热板4设于工质供应板1的散热板槽2内时,工质供应板1内的冷工质流向散热板4将热源6的热量带走,形成热工质,再回流工质供应板1;当散热板4采用横向连接方式时,此时不再需要工质供应板1供应工质,
本申请提出“拼图式”液冷散热用于解决多热源的散热,能根据热源的位置分布对散热板进行拼凑,从而解决多热源的散热需求。
本申请采用“拼图式”液冷散热能够实现对某点的散热板单独替换,以此解决局部的堵塞或损坏问题。
以上所述,仅为本申请较佳的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。

Claims (9)

  1. 一种多热源散热冷却装置,其特征在于,包括散热板(4),多个散热板(4)纵向拼接或横向拼接并对热源(6)散热。
  2. 根据权利要求1所述的多热源散热冷却装置,其特征在于,所述散热板(4)纵向拼接时,多热源散热冷却装置还包括工质供应板(1),工质供应板(1)上设有多个散热板槽(2)。
  3. 根据权利要求2所述的多热源散热冷却装置,其特征在于,所述散热板(4)设于散热板槽(2)中,散热板(4)的流体管道与工质供应板(1)的流体管道连通,且每个散热板(4)的流体管道相互独立。
  4. 根据权利要求2所述的多热源散热冷却装置,其特征在于,所述散热板槽(2)内设有连接口(3),所述散热板(4)上设有进出液口(9),连接口(3)和进出液口(9)连通。
  5. 根据权利要求4所述的多热源散热冷却装置,其特征在于,所述工质供应板(1)内设有进液分液流道(7)和出液汇液流道(8)。
  6. 根据权利要求5所述的多热源散热冷却装置,其特征在于,所述连接口(3)与进液分液流道(7)和出液汇液流道(8)连通。
  7. 根据权利要求1所述的多热源散热冷却装置,其特征在于,所述散热板(4)内设有微流道(11),微流道(11)的宽度和间距根据热源(6)的热流密度设置。
  8. 根据权利要求2所述的多热源散热冷却装置,其特征在于,所述散热板(4)与工质供应板(1)之间设有用于密封的硅胶垫。
  9. 一种多热源散热冷却方法,其特征在于,步骤包括:
    步骤1:确定热源位置分布;
    步骤2:根据热源位置分布拼接散热板;
    步骤3:向散热板供应工质,对热源散热。
PCT/CN2022/075481 2021-02-26 2022-02-08 一种多热源散热冷却装置及冷却方法 WO2022179392A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110218038.6A CN112969349B (zh) 2021-02-26 2021-02-26 一种多热源散热冷却装置及冷却方法
CN202110218038.6 2021-02-26

Publications (1)

Publication Number Publication Date
WO2022179392A1 true WO2022179392A1 (zh) 2022-09-01

Family

ID=76275755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075481 WO2022179392A1 (zh) 2021-02-26 2022-02-08 一种多热源散热冷却装置及冷却方法

Country Status (2)

Country Link
CN (1) CN112969349B (zh)
WO (1) WO2022179392A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115942724A (zh) * 2023-03-15 2023-04-07 安徽百信信息技术有限公司 一种液冷散热板
CN117628949A (zh) * 2024-01-25 2024-03-01 中国核动力研究设计院 一种微通道散热塔及其焊接工装

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112969349B (zh) * 2021-02-26 2023-02-21 中国科学院微电子研究所 一种多热源散热冷却装置及冷却方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160334842A1 (en) * 2015-05-12 2016-11-17 Cooler Master Co., Ltd. Portable electronic device and detachable auxiliary heat-dissipating module thereof
CN108759533A (zh) * 2018-05-29 2018-11-06 电子科技大学 一种基于3d批量打印的微通道冷板、散热器及装置
CN209787719U (zh) * 2019-02-17 2019-12-13 厦门伊格特精密机械有限公司 一种可折叠式散热片
CN211352948U (zh) * 2020-03-13 2020-08-25 淮安信息职业技术学院 一种电子设备用拼接式散热装置
CN112969349A (zh) * 2021-02-26 2021-06-15 中国科学院微电子研究所 一种多热源散热冷却装置及冷却方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201138905Y (zh) * 2007-11-07 2008-10-22 山东省科学院能源研究所 小空间多热源条件下的集成散热装置
CN102339112A (zh) * 2011-09-13 2012-02-01 南通芯迎设计服务有限公司 折叠式散热板
CN103267432A (zh) * 2013-04-28 2013-08-28 努奥罗(中国)有限公司 平板型散热器
US11364688B2 (en) * 2019-08-06 2022-06-21 The Boeing Company Induction welding using a heat sink and/or cooling
CN111081665A (zh) * 2019-10-31 2020-04-28 中南大学 一种用于多热源器件散热的装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160334842A1 (en) * 2015-05-12 2016-11-17 Cooler Master Co., Ltd. Portable electronic device and detachable auxiliary heat-dissipating module thereof
CN108759533A (zh) * 2018-05-29 2018-11-06 电子科技大学 一种基于3d批量打印的微通道冷板、散热器及装置
CN209787719U (zh) * 2019-02-17 2019-12-13 厦门伊格特精密机械有限公司 一种可折叠式散热片
CN211352948U (zh) * 2020-03-13 2020-08-25 淮安信息职业技术学院 一种电子设备用拼接式散热装置
CN112969349A (zh) * 2021-02-26 2021-06-15 中国科学院微电子研究所 一种多热源散热冷却装置及冷却方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115942724A (zh) * 2023-03-15 2023-04-07 安徽百信信息技术有限公司 一种液冷散热板
CN115942724B (zh) * 2023-03-15 2023-06-30 安徽百信信息技术有限公司 一种液冷散热板
CN117628949A (zh) * 2024-01-25 2024-03-01 中国核动力研究设计院 一种微通道散热塔及其焊接工装
CN117628949B (zh) * 2024-01-25 2024-04-09 中国核动力研究设计院 一种微通道散热塔及其焊接工装

Also Published As

Publication number Publication date
CN112969349B (zh) 2023-02-21
CN112969349A (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
WO2022179392A1 (zh) 一种多热源散热冷却装置及冷却方法
US20230086448A1 (en) Liquid cooling plate suitable for liquid cooling heat dissipation of electronic device, and heat dissipation unit
US11632879B2 (en) Heat dissipation plate for chip heat dissipation, server heat dissipation system, and heating device
WO2017088806A1 (zh) 一种集成型液冷系统及投影设备
CN114583326A (zh) 储能电池模组、液冷板及液冷板组合
CN104159437B (zh) 复合散热装置
CN114141733A (zh) 一种分级式歧管微通道散热装置
CN111403847A (zh) 一种基于相变材料与u型扁平热管耦合的动力电池极耳散热系统
CN108650848B (zh) 一种温度均匀化的微通道散热器
CN109890186B (zh) 一种具有对称拓扑结构的冷却器流路及双散热面液冷板
CN217404811U (zh) 一种显卡液冷散热结构
CN109152310A (zh) 一种多圆弧微通道散热装置
CN201134443Y (zh) 大功率半导体制冷器
CN210381441U (zh) 一种耐高温电路板
CN109378552B (zh) 交叉型平板热管
CN203377483U (zh) 激光光源、发光装置及投影系统
WO2024001749A1 (zh) 一种光模块的液冷结构及光模块
CN219435958U (zh) 一种电池组液冷装置
CN211980601U (zh) 一种便于散热的线路板
CN219642931U (zh) 一种特种车蓄电池模组水冷散热结构
CN219626737U (zh) 电池包液冷装置
CN209894844U (zh) 一种用于测试板对板连接器的转接板
CN210694762U (zh) 一种sem-d模块冷却机构
CN220209066U (zh) 三层式冷却系统
CN217933966U (zh) 一种具有良好散热性能的电池大模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22758757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22758757

Country of ref document: EP

Kind code of ref document: A1