WO2017115889A1 - 영양염류 및 유기물 산화전처리 장치 및 측정 방법 - Google Patents

영양염류 및 유기물 산화전처리 장치 및 측정 방법 Download PDF

Info

Publication number
WO2017115889A1
WO2017115889A1 PCT/KR2015/014473 KR2015014473W WO2017115889A1 WO 2017115889 A1 WO2017115889 A1 WO 2017115889A1 KR 2015014473 W KR2015014473 W KR 2015014473W WO 2017115889 A1 WO2017115889 A1 WO 2017115889A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
nutrients
wall
oxidation
organic material
Prior art date
Application number
PCT/KR2015/014473
Other languages
English (en)
French (fr)
Inventor
이동권
신승희
박성호
이석남
홍금용
Original Assignee
비엘프로세스(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 비엘프로세스(주) filed Critical 비엘프로세스(주)
Publication of WO2017115889A1 publication Critical patent/WO2017115889A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour

Definitions

  • the present invention relates to a nutrient and organic oxidation pretreatment device, an organic oxidation pretreatment system and a method for measuring nutrients and organic matter using the same. More specifically, to minimize the loss of ultraviolet rays irradiated for oxidation, to increase the oxidation efficiency and accurate sample
  • the present invention relates to a nutrient and organic oxidation pretreatment apparatus capable of measuring the concentration of nutrients, a nutrient and organic oxidation pretreatment system including the same, and a method of measuring nutrients and organic substances using the same.
  • Total phosphorus and total nitrogen are one of the indicators of eutrophication in rivers, lakes, etc.Phosphorus is the cause of the green algae that eutrophizes the water system along with nitrogen. In addition to being an important indicator of process efficiency in sewage and wastewater treatment plants, it is widely used as an important indicator of nutrient loading in the ecological environment of rivers and oceans.
  • the ascorbic acid reduction method is generally used for phosphorus concentration analysis. This method quantifies phosphorus concentration by measuring the absorbance of molybdate blue produced by reducing phosphorus ammonium molybdate produced by reaction of phosphate with ammonium molybdate to ascorbic acid at 880 nm.
  • total nitrogen is the sum of organic nitrogen and inorganic nitrogen
  • total nitrogen analysis methods include ultraviolet absorbance method, cadmium reduction method, reduced distillation-Kjeldahl method, and the like.
  • Nitrate nitrogen is passed through the cadmium-copper reduction column and reduced to nitrite nitrogen, which is then measured to quantify total nitrogen.
  • Cadmium reduction can quantify trace amounts of nitrate nitrogen, but the experimental procedure is complicated.
  • Reduced distillation-Kjeldahl method is a method of converting the chemical species in the sample to ammonia and measuring it to quantify total nitrogen.
  • Ultraviolet absorbance method is a simple and quick method to quantify total nitrogen by oxidizing nitrogen compound in sample to nitrate nitrogen and measuring nitrate nitrogen directly at 220nm.
  • pretreatment for completely oxidizing nitrogen or phosphorus contained in a sample is important.
  • a sample is placed in a high-pressure steam sterilizer and heat-decomposed by oxidation at 120 to 30 minutes. Since the conventional pretreatment proceeds with the oxidation reaction at high temperature, there is a problem in the accuracy of the measurement of the sample concentration or the reliability of the device, the durability of the oxidation equipment is reduced, and the measurement time is long.
  • the conventional pretreatment apparatus for the measurement of total phosphorus to total nitrogen passes through the wall of the lamp and the wall of the oxidation reactor, i.e., the double wall, between the lamp generating the ultraviolet ray and the space where the oxidation reaction occurs by the ultraviolet ray, and the ultraviolet ray is lost. As a result, there was a problem that the efficiency of the oxidation reaction is reduced.
  • Total Organic Carbon is one of the indicators of pollution levels in rivers, lakes, etc., and refers to the sum of organically bonded carbon in water. In general, it refers to the sum of dissolved organic carbon (DOC) and particulate organic carbon (POC).
  • DOC dissolved organic carbon
  • POC particulate organic carbon
  • BOD biochemical oxygen demand
  • COD chemical oxygen demand
  • a process of oxidizing organic carbon to carbon dioxide is required.
  • Two methods of oxidizing organic carbon to carbon dioxide are a high temperature combustion oxidation method and an ultraviolet-persulfate oxidation method.
  • a sample is burned in a high temperature reactor filled with an oxidative catalyst such as cobalt oxide, platinum, and barium chromium, and the carbon in the sample is converted to carbon dioxide and transported to a detection unit.
  • an oxidative catalyst such as cobalt oxide, platinum, and barium chromium
  • the carbon in the sample is converted to carbon dioxide and transported to a detection unit.
  • the ultraviolet-persulfate oxidation method a persulfate is added to a sample, oxidized in the presence of ultraviolet light, and the organic carbon in the sample is converted to carbon dioxide and transported to the detection unit.
  • the present invention is to solve the above problems, in the conventional pretreatment apparatus for the measurement of total nitrogen or total organic carbon by reducing the ultraviolet loss generated from the ultraviolet lamp to maximize the efficiency of the redox reaction, a simple structure
  • the present invention provides a nutrient and organic oxidation pretreatment apparatus, a nutrient and organic oxidation pretreatment system including the same, and a nutrient and organic matter pretreatment system including the same, which can measure the concentration of nutrients and organic matter in a short time.
  • the present invention is a.
  • a sample injector for introducing or injecting a sample into the oxidation reactor
  • An ultraviolet detector for measuring the ultraviolet intensity irradiated to the oxidation reactor; It provides nutrients and organic material oxidation pretreatment apparatus comprising a.
  • the oxidation reactor has a cylindrical inner wall, and the ultraviolet lamp is inserted into an inner space formed by the inner wall of the oxidation reactor.
  • the oxidation reactor further comprises an outer wall concentric with the inner wall, and the ultraviolet lamp is inserted into an inner space formed by the inner wall of the oxidation reactor.
  • the sample injection unit injects the sample into a space formed by the inner wall.
  • the inner wall and the outer wall of the oxidation reactor are made of quartz.
  • the inner surface of the outer wall of the oxidation reactor is TiO 2
  • the catalyst is coated and the outer wall outer surface is coated with chromium.
  • the ultraviolet lamp is characterized in that it comprises a filament for generating ultraviolet rays having a wavelength of 185nm to 254nm.
  • the sample injection unit further comprises an air injection unit for inducing mixing of the sample during sample injection.
  • the overflow portion is connected to a space for the oxidation reaction through the outer wall to discharge air.
  • the heater is coupled to the outer surface of the outer wall to control the sample temperature inside the oxidation reactor.
  • the ultraviolet detector is coupled to an outer surface of the outer wall to measure ultraviolet intensity.
  • the present invention also provides a nutrient and organic material pre-treatment apparatus according to the present invention.
  • a transfer unit for transferring a sample injected into the nutrients and the organic material pre-treatment device
  • a pretreatment reagent storage unit for storing the pretreatment reagent injected into the nutrients and the organic oxidation pretreatment device
  • a detector for detecting a sample discharged from the nutrients and the organic material pretreatment apparatus comprising a.
  • the present invention also provides
  • It provides a method for measuring nutrients and organic matter comprising the step of measuring the phosphorus or nitrogen concentration by adding a coloring reagent to the discharged mixture.
  • the step of mixing the sample supplied from the sample storage unit and the pretreatment reagent supplied from the pretreatment reagent unit to the reactor to increase the mixing effect of the sample and the pretreatment reagent It is characterized by injecting air into the pretreatment reactor.
  • the sample temperature in the oxidation reactor can be adjusted to 100 °C at room temperature.
  • the nutrient and organic material pretreatment apparatus may increase the transmittance of ultraviolet rays generated from the ultraviolet lamp to promote oxidation of the sample by the ultraviolet light. Accordingly, the oxidation rate of the sample is increased, and the measurement time may be reduced in measuring the sample. In addition, the accurate concentration of the sample can be confirmed, and the sample heating temperature is maintained at less than 100 °C to prevent boiling over phenomenon, the reproducibility of the analysis can be significantly increased, the measurement time is significantly reduced compared to the conventional equipment, the concentration of the sample Because it can be confirmed quickly can be quickly dealt with when the concentration is high due to contamination.
  • FIG. 1 is a first cross-sectional view of a nutrient and organic matter oxidation pretreatment apparatus according to an embodiment of the present invention.
  • FIG. 2 is a second cross-sectional view of the nutrient and organic material oxidation pretreatment apparatus according to the embodiment of the present invention cut along the line II ′ of the nutrient and organic material oxidation pretreatment apparatus according to the embodiment of FIG. 1. .
  • Figure 3 is a schematic diagram of a sample measuring apparatus including a nutrient and organic matter oxidation pretreatment apparatus according to an embodiment of the present invention according to an embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • FIG. 1 is a first cross-sectional view of an integrated ultraviolet pretreatment apparatus according to an embodiment of the present invention
  • FIG. 2 is a second cross-sectional view of the integrated ultraviolet pretreatment apparatus cut along line II ′ of the ultraviolet pretreatment apparatus of FIG. 1.
  • the integrated ultraviolet pretreatment apparatus according to an embodiment of the present invention, the ultraviolet lamp 10, the oxidation reactor 20, the sample injection unit 30, the overflow unit 40, the heater ( 50) and an ultraviolet detector 60.
  • the ultraviolet lamp 10 includes an outer wall having a cylindrical or cylindrical shape, and may be formed integrally with the oxidation reactor.
  • the oxidation reactor in which the oxidation reaction occurs is internal and The double wall is formed on the outside, and the ultraviolet rays generated from the UV lamp penetrate the lamp wall and the inner wall of the oxidation reactor twice, and the transmittance of ultraviolet rays reaching the inside of the oxidation reactor where oxidation reaction occurs is about 80% at 185 nm wavelength. In the case of the 254nm wavelength is reduced to about 70%.
  • the ultraviolet lamp itself can be placed as the inner wall of the oxidation reactor, so that the ultraviolet light generated from the ultraviolet lamp can transmit only one wall to maintain the transmittance of the ultraviolet light at 90% or more. Can be produced efficiently.
  • the inner wall of the ultraviolet lamp 10 may be formed to have various shapes such as not only a cylindrical shape, but also a rectangular cylinder, and preferably the manufacturing efficiency of the ultraviolet lamp. It may be formed in a cylindrical shape on the side of.
  • the oxidation reactor 20 may include an outer wall having a cylindrical shape.
  • the outer wall may have a cylindrical shape as well as various shapes such as a square cylinder, and preferably, may have a cylindrical shape in terms of manufacturing efficiency of the ultraviolet lamp.
  • the inner wall and the outer wall may be integrally formed.
  • the ultraviolet lamp 10 and the oxidation reactor 20 may be integrally formed.
  • an oxidation reaction may occur between the inner wall of the ultraviolet lamp 10 and the outer wall of the oxidation reactor 20.
  • the outer wall may be spaced apart from the inner wall at intervals of 2 mm or less, and preferably spaced at intervals of 2 mm or less. By spaced apart at the interval of 2mm or less, it is possible to promote the oxidation reaction of the sample, and thus the measurement time can be shortened in the measurement of the sample by increasing the oxidation rate of the sample.
  • the outer wall is spaced more than 2mm from the inner wall, the space for the oxidation reaction is relatively large, the ultraviolet light generated from the ultraviolet lamp is difficult to irradiate the sample efficiently.
  • the ultraviolet light of the wavelength when the thickness of the sample exceeds 2mm, ultraviolet light of the wavelength is difficult to pass through the sample, the ultraviolet light is hard to reach the sample near the outer wall spaced farther from the ultraviolet lamp. Therefore, the ultraviolet light does not reach the entire sample, thereby reducing the oxidation rate of the sample.
  • the ultraviolet lamp 10 may include a filament 11 for generating ultraviolet light.
  • the filament 11 may be disposed on both side surfaces of the inner wall.
  • the filament 11 of the ultraviolet lamp 10 may generate ultraviolet light to oxidize the sample using the ultraviolet light in the oxidation reactor 20.
  • the ultraviolet light has a frequency of 7.5 ⁇ 10 14 to 3 ⁇ 10 15 Hz with a wavelength shorter than that of visible light. The frequency is measured at a wavelength of 100 nm to 400 nm.
  • Ultraviolet rays can be divided into three regions: Extreme Ultraviolet (EUV), Far Ultraviolet (FUV), and Near Ultraviolet (NUV). Extreme ultraviolet rays are located between X-rays and far ultraviolet rays and have a wavelength of 100 nm to 200 nm. Near ultraviolet light is the closest to visible light and consists of a wavelength of 300 nm to 400 nm. The far ultraviolet is located between the extreme ultraviolet and the near ultraviolet and has a wavelength of 200 nm to 300 nm.
  • the ultraviolet rays generated from the ultraviolet lamp 10 of the integrated ultraviolet pretreatment apparatus may have a range of 180 nm to 260 nm, preferably 185 nm or 254 nm wavelength.
  • the wavelength of the ultraviolet rays may generate ultraviolet rays having a desired wavelength range by variously changing the lamps or filaments.
  • the inner wall and the outer wall may be made of glass, quartz, or the like, and preferably made of quartz.
  • quartz has excellent electrical and chemical properties, and in particular, has a low coefficient of thermal expansion (CTE), and a UV transmittance of quartz is about 99%, which is very high. It is hardly absorbed by and can penetrate most of it.
  • CTE coefficient of thermal expansion
  • UV transmittance of quartz is about 99%, which is very high. It is hardly absorbed by and can penetrate most of it.
  • it is possible to improve the durability of the pretreatment apparatus by configuring the outer wall of the material having the same physical and chemical properties as the inner wall.
  • a titanium dioxide (TiO 2 ) catalyst may be coated on an inner wall of the outer wall of the oxidation reactor 20, and the TiO 2 catalyst may be used to prepare a sample by ultraviolet light. In oxidation, it may serve as a catalyst for promoting the oxidation reaction of the sample.
  • the TiO 2 catalyst may be coated on the inner surface of the outer wall.
  • the TiO 2 catalyst may serve as a catalyst for promoting oxidation of phosphorus to nitrogen.
  • the TiO 2 catalyst may serve as a catalyst for promoting oxidation of a sample in oxidation of a sample by ultraviolet light.
  • the outer surface of the outer wall may be coated with chromium.
  • the chromium may be chromium oxide.
  • the sample injection unit 30 may be formed on the first side of the outer wall.
  • the sample injection unit 30 may introduce a sample, a pretreatment reagent, or the like into the oxidation reactor 20, or may flow out the sample, a pretreatment reagent, or the like.
  • the overflow portion 40 may be formed on the second side surface of the outer wall.
  • the overflow part 40 may discharge air from the inside of the oxidation reactor 20 in which an oxidation reaction occurs.
  • the heater 50 may be disposed on an outer surface of the outer wall.
  • the sample temperature inside the oxidation reactor 20 can be adjusted.
  • the sample temperature inside the oxidation reactor 20 may be controlled to 100 ° C or less, preferably 50 ° C to 95 ° C.
  • the ultraviolet detector 60 may be disposed on a part of the outer surface of the outer wall.
  • the ultraviolet detector 60 may measure the intensity of ultraviolet rays generated from the ultraviolet lamp 10. By measuring the intensity of the ultraviolet light can be adjusted the intensity of the ultraviolet light generated from the ultraviolet lamp 10, through which the rate of the oxidation reaction can be controlled.
  • FIG. 3 is a schematic diagram of a nutrient and organic oxidation pretreatment system including an integrated UV pretreatment apparatus according to an embodiment of the present invention.
  • the nutrient and organic oxidation pretreatment system is a nutrient and organic oxidation pretreatment apparatus 100 according to an embodiment of the present invention, and the nutrient and organic oxidation pretreatment apparatus. Detects the sample discharged from the sample storage unit 200 for storing the sample to be injected, the pre-treatment reagent storage unit 300 for storing the pretreatment reagent injected into the nutrients and organic oxidation pretreatment device and the nutrients and organic oxidation pretreatment device It includes a detection unit 400.
  • the integrated ultraviolet pretreatment apparatus 100 included in the sample measuring apparatus according to the present embodiment is substantially the same as the ultraviolet pretreatment apparatus 100 according to FIGS. 1 and 2, the same or corresponding components may be the same. Symbols are used and repeated descriptions are omitted.
  • the sample storage unit 200 In the nutrient and organic oxidation pretreatment system, the sample storage unit 200, the pretreatment reagent storage unit 300, and the air injection pump 110 are connected to the injection unit of the pretreatment apparatus 100.
  • the sample storage unit 200 supplies a measurement liquid such as a sample to the pretreatment device 100. Examples of the measurement liquid stored in the sample storage unit include a sample, a standard liquid, and a zero standard liquid.
  • the pretreatment reagent storage unit 300 supplies a pretreatment reagent to the integrated UV pretreatment device 100.
  • a pretreatment reagent an oxidizing agent, a buffer solution, dilution water, or the like can be used.
  • the detection unit 400 may include a color reagent supply unit 410, a detector 420, and a reaction coil 430.
  • the color reagent supply unit 410 may provide a color reagent.
  • the detector 420 may analyze the sample by measuring the absorbance of the sample oxidized by the oxidation reaction.
  • the reaction coil 430 may promote the color reaction of the mixed solution to which the color reagent is added.
  • the present invention also provides
  • It provides a method for measuring nutrients and organic matter comprising the step of measuring the phosphorus or nitrogen concentration by adding a coloring reagent to the discharged mixture.
  • the step of mixing the sample supplied from the sample storage unit and the pretreatment reagent supplied from the pretreatment reagent unit to the reactor to increase the mixing effect of the sample and the pretreatment reagent It is characterized by injecting air into the pretreatment reactor.
  • air may be injected into the oxidation reactor 20 of the ultraviolet pretreatment apparatus 100 using the air injection pump 110.
  • the air injection pump 110 may transfer the measurement solution in which the oxidation reaction is completed to the detection unit 400 using a 3-way valve.
  • the step of oxidizing by ultraviolet irradiation in the reactor can adjust the temperature in the oxidation reactor 20 to 100 °C or less, preferably 50 °C to 95 °C.
  • the internal temperature of the oxidation reactor 20 can increase the reproducibility of the analysis.
  • the step (S300) of detecting the oxidized sample is included in the mixture discharged from the integrated UV pretreatment apparatus 100 after the oxidation reaction in the oxidation reactor 20.
  • the concentration of phosphorus, nitrogen or organic carbon is measured.
  • the concentration of total phosphorus or total nitrogen may be measured through the detection unit 400.
  • Nutrients and organics measuring method according to the present invention is not limited to measuring the amount of total phosphorus, total nitrogen, can be used for the measurement of total organic carbon in addition to the total phosphorus, total nitrogen.
  • the measuring device used for the measurement of total organic carbon may apply a conventionally used configuration except for the integrated pretreatment device according to the present invention.
  • the detection step measures nutrients and organics by adding a coloring reagent to the mixture discharged from the pretreatment reactor after completion of the oxidation reaction.
  • the present invention relates to a nutrient and organic oxidation pretreatment apparatus, a nutrient and organic oxidation pretreatment system including the same, and a method for measuring nutrients and organic matter using the same, and more particularly, loss of ultraviolet rays irradiated for oxidation.
  • This can be said to be very useful for industrial use in that it is possible to measure the exact concentration of the sample by reducing the oxidation efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

본 발명은 영양염류 및 유기물 산화전처리 장치, 이를 포함하는 영양염류 및 유기물 산화전처리 시스템 및 이를 이용한 영양염류 및 유기물 측정 방법에 관한 것으로, 더욱 상세하게는 산화를 위해 조사되는 자외선의 손실이 감소되어 산화효율을 높여 정확한 시료의 농도를 측정할 수 있는 영양염류 및 유기물 산화전처리 장치, 이를 포함하는 영양염류 및 유기물 산화전처리 시스템 및 이를 이용한 영양염류 및 유기물 측정 방법에 관한 것이다.

Description

영양염류 및 유기물 산화전처리 장치 및 측정 방법
본 발명은 영양염류 및 유기물 산화전처리 장치, 유기물 산화전처리 시스템및 이를 이용한 영양염류 및 유기물 측정 방법에 관한 것으로, 더욱 상세하게는 산화를 위해 조사되는 자외선의 손실을 최소화 시켜, 산화효율을 높여 정확한 시료의 농도를 측정할 수 있는 영양염류 및 유기물 산화전처리 장치, 이를 포함하는 영양염류 및 유기물 산화전처리 시스템및 이를 이용한 영양염류 및 유기물 측정 방법에 관한 것이다.
최근 도시집중화, 산업의 급속한 발전으로 환경오염이 급속히 진행되어 수질환경의 훼손이 심화되고, 하천, 호수 등의 수자원으로 질소, 인과 같은 영양 염류가 유입되어 부영양화를 유발시킴으로서 어패류의 폐사로 인한 수중생태계 파괴, 수자원 활용가치 하락, 상수처리 비용을 상승시키게 되는 문제점이 날로 심화되고 있다.
총인(total phosphorus), 총질소(total nitrogen)는 하천, 호수 등의 부영양화를 나타내는 지표 중의 하나로서, 인은 질소와 함께 수질계를 부영양화시키는 녹조의 원인이 된다.이러한 총인, 총질소에 대한 분석은 하폐수 처리장의 공정 효율을 파악하는 중요한 지표임과 동시에 하천 및 해양의 생태 환경에서도 영양염류의 부하량을 파악하는 중요한 지표로 널리 이용되고 있다.
현재, 인 농도 분석에 있어서 일반적으로 아스코르빈산 환원법을 사용한다. 이 방법은 인산이온이 몰리브덴산암모늄과 반응하여 생성된 몰리브덴산인암모늄을 아스코르빈산으로 환원하여 생성된 몰리브덴산청의 흡광도를 880nm에서 측정하여 인농도를 정량한다.
한편, 총 질소는 유기성질소와 무기성질소의 합으로서, 총질소 분석방법으로는 자외선 흡광도법, 카드뮴 환원법, 환원증류-킬달법 등이 있다. 질산성 질소를 카드뮴-구리 환원칼럼을 통과시켜 아질산성 질소로 환원시켜 이를 측정하여 총질소를 정량하는 것이 카드뮴 환원법으로 미량의 질산성 질소를 정량할 수 있으나 실험절차가 복잡하다. 환원증류-킬달법은 시료중의 화학종을 암모니아로 전환시켜 이를 측정하여 총질소를 정량하는 방법으로 측정방법이 매우 복잡한 문제점이 있다. 자외선 흡광도법은 시료중의 질소화합물을 질산성 질소로 산화시킨 후 220nm에서 직접 질산성 질소를 측정하여 총질소를 정량하는 방법으로 간편하고 신속한 방법이다.
이러한 총인이나 총질소 분석 방법으로 자외선 흡광도법을 사용하는 경우 시료에 포함되어 있는 질소나 인을 완전히 산화시키는 전처리가 중요하다. 종래 전처리 방식은 고압증기멸균기에 시료를 넣어 120에서 30분간 가열 분해하여 산화시키는 방식을 사용하고 있다. 이러한 종래의 전처리 방식은 고온에서 산화 반응을 진행하므로 시료 농도의 측정에 있어서 정확성 내지 기기의 신뢰성에 문제가 있으며, 산화 장비의 내구도가 감소하고, 측정 시간이 길다는 단점이 존재한다.
또한, 종래의 총인 내지 총질소의 측정을 위한 전처리장치는 자외선을 발생시키는 램프와 자외선에 의한 산화 반응이 일어나는 공간 사이에 램프의 벽과 산화 반응기의 벽, 즉 2중의 벽을 투과하여 자외선이 손실되고, 그에 따라 산화반응의 효율이 감소하는 문제점이 있었다.
총유기탄소(Total Organic Carbon; TOC)는 하천, 호수 등의 오염 정도를 나타내는 지표 중의 하나로서, 수중에서 유기적으로 결합된 탄소의 합을 말한다. 일반적으로 용존성 유기탄소(Dissolved Organic Carbon; DOC)와 입자성 유기탄소(Particulate Organic Carbon; POC) 합을 말한다. 기존의 유기화합물 정량방법인 생물화학적 산소요구량(BOD, biochemical oxygen demand), 화학적 산소요구량 (COD, chemical oxygen demand)시험은 다양한 성분의 유기성분을 파악하고 정량하는데 어려움이 있으나, 총 유기탄소분석법은 시료를 직접적으로 산화, 분해하는 공정을 거치기 때문에 측정값이 안정되고 유기성 물질을 폭넓게 측정할 수 있다.
총유기탄소를 분석하기 위하여서는 유기탄소를 이산화탄소로 산화하는 과정이 필요한데, 유기탄소를 이산화탄소로 산화하는 방법으로는 고온연소 산화방법과 자외선-과황산 산화방법의 두 가지 방법이 사용되고 있다. 고온연소 산화방법은 시료를 산화코발트, 백금, 크롬산바륨과 같은 산화성 촉매로 충전된 고온반응기에서 연소시켜 시료 중의 탄소를 이산화탄소로 전환하여 검출부로 운반하여 측정한다. 자외선-과황산 산화방법은 시료에 과황산염을 넣어 자외선 존재하에서 산화시켜 시료 중의 유기탄소를 이산화탄소로 전환하여 검출부로 운반한다.
본 발명은 상기의 문제점을 해결하기 위한 것으로, 종래 총인, 총질소 또는 총유기 탄소의 측정을 위한 전처리장치에서 자외선 램프로부터 발생하는 자외선 손실을 감소시켜 산화환원 반응의 효율을 극대화하여, 간단한 구조를 가지면서도 짧은 시간에 영양염류 및 유기물의 농도를 측정할 수 있는 영양염류 및 유기물 산화전처리 장치, 이를 포함하는 영양염류 및 유기물 산화전처리 시스템 및 이를 이용한 영양염류 및 유기물 측정 방법을 제공하는 것이다.
본 발명은
산화반응기; 자외선 램프;
상기 산화반응기에 시료를 유입 또는 유출하는 시료 주입부;
상기 산화반응기에 공기를 배출하는 오버플로우부;
상기 산화반응기 내부의 시료 온도를 조절하는 히터; 및
상기 산화반응기에 조사되는 자외선 강도를 측정하는 자외선 검출기; 를 포함하는 영양염류 및 유기물산화전처리 장치를 제공한다.
본 발명에 의한 영양염류 및 유기물산화전처리 장치에 있어서, 상기 산화 반응기는 원기둥 형상의 내벽을 구비하고, 상기 자외선램프가 상기 산화 반응기 내벽에 의해 형성된 내부 공간에 삽입되는 것을 특징으로 한다.
본 발명에 의한 영양염류 및 유기물산화전처리 장치에 있어서, 상기 산화 반응기는 상기 내벽과 동심원 관계인 외벽을 더 구비하고, 상기 자외선램프가 상기 산화반응기 내벽에 의해 형성된 내부 공간에 삽입되는 것을 특징으로 한다.
본 발명에 의한 영양염류 및 유기물산화전처리 장치에 있어서, 상기 시료주입부는 상기 시료를 상기 내벽에 의해 형성된 공간에 주입하는 것을 특징으로 한다.
본 발명에 의한 영양염류 및 유기물산화전처리 장치에 있어서, 상기 산화반응기의 내벽 및 외벽은 석영으로 이루어지는 것을 특징으로 한다.
본 발명에 의한 영양염류 및 유기물산화전처리 장치에 있어서, 상기 산화반응기의 외벽 내부 표면은 TiO2 촉매가 코팅되고, 외벽 외부 표면은 크롬으로 코팅되는 것을 특징으로 한다.
본 발명에 의한 영양염류 및 유기물산화전처리 장치에 있어서, 상기 자외선 램프는 185nm 내지 254nm 파장을 가지는 자외선을 발생시키는 필라멘트를 포함하는것을 특징으로 한다.
본 발명에 의한 영양염류 및 유기물산화전처리 장치에 있어서, 상기 시료주입부는 시료 주입시 시료의 혼합(Mixing)을 유도하는 공기 주입부를 더 포함하는 것을 특징으로 한다.
본 발명에 의한 영양염류 및 유기물산화전처리 장치에 있어서, 상기 오버플로우부는 상기 외벽을 통해 상기 산화 반응을 위한 공간에 연결되어 공기를 배출한다.
본 발명에 의한 영양염류 및 유기물산화전처리 장치에 있어서, 상기 히터는 상기 외벽의 외부 면에 결합되어 상기 산화반응기 내부의 시료 온도를 조절한다.
본 발명에 의한 영양염류 및 유기물산화전처리 장치에 있어서, 상기 자외선 검출기는 상기 외벽의 외부 면에 결합되어 자외선 강도를 측정한다.
본 발명은 또한, 본 발명에 의한 영양염류 및 유기물 산화전처리 장치;
상기 영양염류 및 유기물 산화전처리 장치로 주입되는 시료를 이송하는 이송부;
상기 영양염류 및 유기물 산화전처리 장치로 주입되는 전처리 시약을 저장하는 전처리 시약 저장부; 및
영양염류 및 유기물 산화전처리 장치로부터 배출되는 시료를 검출하는 검출부; 를 포함하는 영양염류 및 유기물 산화전처리 시스템을 공급한다.
본 발명은 또한,
시료 저장부에서 공급되는 시료 및 전처리 시약부에서 공급되는 전처리 시약을 혼합하여 영양염류 및 유기물 산화전처리 장치의 반응기로 주입하는 단계;
상기 반응기에서 자외선 조사하여 시료를 산화시키는 단계;
산화 반응 완료 후에 상기 반응기에서 시료 혼합물을 배출시키는 단계;
상기 배출되는 혼합물에 발색시약을 첨가하여 인 또는 질소 농도를 측정하는 단계;를 포함하는 영양염류 및 유기물 측정 방법을 제공한다.
본 발명에 의한 영양염류 및 유기물 측정 방법에 있어서, 상기 시료 저장부에서 공급되는 시료 및 전처리 시약부에서 공급되는 전처리 시약을 혼합하여 반응기로 주입하는 단계에서는 상기 시료와 전처리 시약의 혼합효과를 높이기 위해 상기 전처리 반응기 내로 공기를 주입하는 것을 특징으로 한다.
본 발명에 의한 영양염류 및 유기물 측정 방법에 있어서, 상기 반응기에서 자외선 조사하여 산화시키는 단계에서는 상기 산화 반응기 내부의 시료 온도는 상온에서 100℃까지 조절될 수 있다.
본 발명에 따른 영양염류 및 유기물 산화전처리 장치는 자외선램프로부터 발생하는 자외선의 투과율을 증가시켜 자외선에 의한 시료의 산화반응을 촉진할 수 있다. 이에 따라 시료의 산화율이 증가하며, 시료의 측정에 있어서 측정시간이 감소될 수 있다. 또한, 시료의 정확한 농도를 확인할 수 있으며, 시료 가열 온도를 100℃미만으로 유지하여 끓어 넘치는 현상을 방지하므로 분석의 재현성이 현격하게 높일 수 있으며, 종래 장비에 비해 측정 시간이 현격하게 줄어들어 시료의 농도를 빠르게 확인이 가능하므로 오염 등으로 인하여 농도가 높아졌을 경우에 신속한 대처가 이루어질 수 있다.
도 1은 본 발명의 일 실시예에 따른 영양염류 및 유기물산화전처리 장치의 제1 단면도이다.
도 2는 도 1의 본 발명의 일 실시예에 따른 영양염류 및 유기물산화전처리 장치의 I-I'를 따라 절단한 본 발명의 일 실시예에 따른 영양염류 및 유기물산화전처리 장치의 제2 단면도이다.
도 3은 본 발명의 일 실시예에 따른 본 발명의 일 실시예에 따른 영양염류 및 유기물산화전처리 장치를 포함하는 시료 측정 장치의 개략도이다.
발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는바, 특정 실시예들을 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 본 발명의 일 실시예에 따른 자외선 전처리장치에 대해서 첨부한 도면들을 참조하여 보다 상세하게 설명하고자 한다.
도 1은 본 발명의 일 실시예에 따른 일체형 자외선 전처리장치의 제1 단면도이며, 도 2는 도 1의 자외선 전처리장치의 I-I'를 따라 절단한 일체형 자외선 전처리장치의 제2 단면도이다.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 일체형 자외선 전처리장치는 자외선램프(10), 산화반응기(20), 시료주입부(30), 오버플로우부(40), 히터(50) 및 자외선 검출기(60)를 포함한다.
상기 자외선램프(10)는 원통 또는 원기둥 형상을 가지는 외벽을 포함하며, 상기 산화반응기와 일체형으로 형성될 수 있다.
종래와 같이 상기 자외선램프(10)와 상기 산화반응기(20)를 별도로 형성한 뒤, 상기 자외선램프를 상기 산화반응기에 삽입하는 방식으로 전처리장치를 형성하는 경우, 산화 반응이 일어나는 산화반응기는 내부 및 외부에 2중으로 벽을 형성하고 있어 자외선램프로부터 발생된 자외선이 램프 벽 및 산화반응기의 내부 벽을 두 번 투과하여 산화 반응이 일어나는 산화반응기 내부에 도달하는 자외선의 투과율은 185nm 파장의 경우 80% 가량이며, 254nm 파장의 경우 70%가량으로 감소하게 된다.
본 발명의 일 실시예에 따른 전처리장치에 따르면, 자외선램프 자체를 산화반응기의 내벽으로 둘 수 있어 자외선램프로부터 발생한 자외선이 하나의 벽만을 투과하여 자외선의 투과율을 90% 이상으로 유지할 수 있어 산화 반응을 효율적으로 일으킬 수 있다.
본 발명의 일 실시예에 따른 전처리장치에 따르면, 상기 자외선램프(10)의 내벽의 형상은 원통 형상뿐만 아니라, 사각통 등 다양한 형상을 갖도록 형성될 수 있으며, 바람직하게는 상기 자외선램프의 제조 효율성의 측면에서 원통 형상으로 형성될 수 있다.
본 발명의 일 실시예에 따른 전처리장치에 따르면, 상기 산화반응기(20)는 원통 형상을 가지는 외벽을 포함할 수 있다. 이와 달리, 상기 외벽의 형상은 원통 형상뿐만 아니라, 사각통 등 다양한 형상을 갖도록 형성될 수 있으며, 바람직하게는 상기 자외선램프의 제조 효율성의 측면에서 원통 형상으로 형성될 수 있다.
본 발명의 일 실시예에 따른 전처리장치에 따르면, 상기 내벽 및 상기 외벽은 일체로 형성될 수 있다. 다시 말하면, 상기 자외선램프(10) 및 상기 산화반응기(20)는 일체로 형성될 수 있다.
본 발명의 일 실시예에 따른 전처리 장치에서는 상기 자외선램프(10)의 상기 내벽 및 상기 산화반응기(20)의 상기 외벽 사이에서 산화 반응이 일어날 수 있다.
상기 외벽은 상기 내벽으로부터 2mm 이하의 간격으로 이격될 수 있으며, 바람직하게는 2mm 이하의 간격으로 이격될 수 있다. 상기 2mm 이하의 간격으로 이격됨으로써 시료의 산화반응을 촉진할 수 있으며, 따라서 시료의 산화율을 가장 증가시킴으로써 시료의 측정에 있어서 측정시간을 단축시킬 수 있다. 상기 외벽이 상기 내벽으로부터 2mm를 초과하여 이격되는 경우에는, 산화 반응을 위한 공간이 상대적으로 넓어 자외선램프로부터 발생된 자외선이 효율적으로 시료에 조사되기 어렵다.
특히, 자외선 파장 중 185nm의 경우, 시료의 두께가 2mm를 초과하는 경우, 상기 파장의 자외선은 상기 시료를 투과하기 어려워, 자외선 램프에서 보다 멀리 이격된 외벽 부근의 시료까지는 자외선이 도달하기 어렵다. 따라서 시료 전체에 자외선이 도달하지 못하여 시료의 산화율이 감소하게 된다.
본 발명의 일 실시예에 따른 전처리장치에 따르면, 상기 자외선램프(10)는 자외선을 발생시키는 필라멘트(11)를 포함할 수 있다. 상기 필라멘트(11)는 상기 내벽의 양 측면에 배치될 수 있다.
본 발명의 일 실시예에 따른 전처리장치에 따르면, 상기 자외선램프(10)의 상기 필라멘트(11)는 자외선을 발생시켜 상기 산화반응기(20)에서 상기 자외선을 이용하여 시료를 산화시킬 수 있다. 상기 자외선은 가시광선보다 짧은 파장으로 7.5 × 1014 내지 3 × 1015Hz의 진동수를 가진다. 상기 진동수는 100nm 내지 400nm의 파장으로 측정된다. 자외선은 극자외선(Extreme Ultraviolet; EUV), 원자외선(Far Ultraviolet; FUV), 근자외선(Near Ultraviolet; NUV)의 3개의 영역으로 나뉘어 질 수 있다. 극자외선은 X선과 원자외선 사이에 위치하며 100nm 내지 200nm의 파장으로 이루어진다. 근자외선은 가시광선에 가장 근접하며 300nm 내지 400nm의 파장으로 이루어진다. 원자외선은 상기 극자외선과 근자외선의 사이에 위치하며 200nm 내지 300nm 의 파장으로 이루어진다.
본 발명의 일 실시예에 따른 일체형 자외선 전처리장치의 자외선램프(10)에서 발생하는 상기 자외선은 180nm 내지 260nm 범위를 가질 수 있으며, 바람직하게는 185nm 또는 254nm 파장을 사용할 수 있다. 이러한 자외선의 파장은 상기의 램프 내지 필라멘트를 다양하게 변경함으로써 원하는 파장의 범위를 갖는 자외선을 발생시킬 수 있다.
본 발명의 일 실시예에 따른 전처리장치에 따르면, 상기 내벽 및 상기 외벽은 유리(glass), 석영(quartz) 등으로 이루어 질 수 있으며, 바람직하게는 석영으로 이루어질 수 있다. 특히, 석영은 전기적, 화학적 성질이 우수하고 특히, 열팽창계수(Coefficient of Thermal Expansionl; CTE)가 낮으며, 석영의 자외선 투과율이 99% 정도로 매우 높아 상기 자외선램프(10)로부터 발광하는 자외선이 상기 내벽에 거의 흡수되지 않고 대부분 투과할 수 있다. 또한 외벽을 내벽과 물리적 및 화학적 성질이 동일한 재료로 구성함으로써 전처리장치의 내구성을 향상시킬 수 있다.
본 발명의 일 실시예에 따른 전처리장치에 따르면, 상기 산화반응기(20)의 외벽의 내벽에는 이산화타이타늄(titanium dioxide; TiO2) 촉매가 코팅될 수 있으며, 상기 TiO2촉매는 자외선에 의한 시료의 산화에 있어서, 시료의 산화반응을 촉진하는 촉매 역할을 할 수 있다.
본 발명의 일 실시예에 따른 전처리장치에 따르면,상기 외벽의 내부 면에는 TiO2 촉매가 코팅될 수 있다. 상기 TiO2 촉매는 인 내지 질소의 산화반응을 촉진하는 촉매 역할을 할 수 있다. 상기 TiO2 촉매는 자외선에 의한 시료의 산화에 있어서, 시료의 산화반응을 촉진하는 촉매 역할을 할 수 있다.
도시하지는 않았으나, 상기 외벽의 외부 면은 크롬(chromium)으로 코팅될 수 있다. 상기 크롬은 크롬 산화물(chromium oxide)일 수 있다. 상기 산화반응기(20)의 상기 외벽의 외부 면에 크롬으로 코팅함으로써 상기 자외선램프(10)로부터 방출된 자외선을 산화반응기(20) 내부로 반사할 수 있다. 즉, 상기 자외선이 상기 외벽을 투과하여 상기 외벽의 외부로 방출되는 것을 방지할 수 있다.
본 발명의 일 실시예에 따른 전처리장치에 따르면, 상기 시료주입부(30)는 상기 외벽의 제1 측면에 형성될 수 있다. 상기 시료주입부(30)는 상기 산화반응기(20)의 내부로 시료, 전처리 시약 등을 유입하거나 상기 시료, 전처리 시약 등을 유출할 수 있다.
본 발명의 일 실시예에 따른 전처리장치에 따르면, 상기 오버플로우부(40)는 상기 외벽의 제2 측면에 형성될 수 있다. 상기 오버플로우부(40)는 산화반응이 일어나는 상기 산화반응기(20) 내부로부터의 공기를 배출할 수 있다.
본 발명의 일 실시예에 따른 전처리장치에 따르면, 상기 히터(50)는 상기 외벽의 외부 면에 배치될 수 있다. 또한, 상기 산화반응기(20) 내부의 시료 온도를 조절할 수 있다. 상기 산화반응기(20) 내부의 시료 온도는 100℃이하로 조절될 수 있으며, 바람직하게는 50℃ 내지 95℃로 조절될 수 있다.
본 발명의 일 실시예에 따른 전처리장치에 따르면, 상기 자외선 검출기(60)는 상기 외벽의 외부 면의 일부에 배치될 수 있다. 상기 자외선 검출기(60)는 상기 자외선램프(10)로부터 발생하는 자외선의 강도를 측정할 수 있다. 상기 자외선의 강도를 측정하여 상기 자외선램프(10)로부터 발생하는 자외선의 강도를 조절할 수 있으며, 이를 통하여 산화반응의 속도를 조절할 수 있다.
도 3은 본 발명의 일 실시예에 따른 일체형 자외선 전처리장치를 포함하는 영양염류 및 유기물 산화전처리 시스템의 개략도이다.
도 3을 참조하면, 본 발명의 일 실시예에 따른 영양염류 및 유기물 산화전처리 시스템은 본 발명의 일 실시예에 따른 영양염류 및 유기물 산화전처리 장치(100), 상기 영양염류 및 유기물 산화전처리 장치로 주입되는 시료를 저장하는 시료 저장부(200), 상기 영양염류 및 유기물 산화전처리 장치로 주입되는 전처리 시약을 저장하는 전처리 시약 저장부(300) 및 영양염류 및 유기물 산화전처리 장치로부터 배출되는 시료를 검출하는 검출부(400)를 포함한다.
본 실시예에 따른 상기 시료 측정 장치에 포함되는 상기 일체형 자외선 전처리장치(100)는 도 1 및 도 2에 따른 자외선 전처리장치(100)와 실질적으로 동일하므로, 동일하거나 대응되는 구성 요소에 대해서는 동일한 도면 부호를 사용하고, 반복되는 설명은 생략한다.
상기 영양염류 및 유기물 산화전처리 시스템은 전처리장치(100)의 주입부에 시료 저장부(200), 전처리 시약 저장부(300) 및 공기주입 펌프(110)가 연결되어 있다. 상기 시료 저장부(200)는 상기 전처리장치(100)로 시료 등의 측정액을 공급한다. 상기 시료 저장부에 저장되는 측정액으로는 시료, 표준액, 제로(zero) 표준액 등이 있다.
상기 전처리 시약 저장부(300)는 상기 일체형 자외선 전처리장치(100)로 전처리 시약을 공급한다. 상기 전처리 시약으로 산화제, 완충액, 희석수 등을 사용할 수 있다.
상기 검출부(400)는 발색시약 공급부(410), 검출기(420) 및 반응 코일(430)을 포함할 수 있다. 상기 발색시약 공급부(410)는 발색시약을 제공할 수 있다. 상기 검출기(420)는 산화반응에 의하여 산화된 시료의 흡광도를 측정하여 시료를 분석할 수 있다. 상기 반응 코일(430)은 상기 발색시약이 첨가된 혼합액의 발색반응을 촉진 시킬 수 있다.
본 발명은 또한,
시료 저장부에서 공급되는 시료 및 전처리 시약부에서 공급되는 전처리 시약을 혼합하여 반응기로 주입하는 단계;
상기 반응기에서 자외선 조사하여 산화시키는 단계;
산화 반응 완료 후에 상기 반응기에서 시료 혼합물을 배출시키는 단계;
상기 배출되는 혼합물에 발색시약을 첨가하여 인 또는 질소 농도를 측정하는 단계;를 포함하는 영양염류 및 유기물 측정 방법을 제공한다.
본 발명에 의한 영양염류 및 유기물 측정 방법에 있어서, 상기 시료 저장부에서 공급되는 시료 및 전처리 시약부에서 공급되는 전처리 시약을 혼합하여 반응기로 주입하는 단계에서는 상기 시료와 전처리 시약의 혼합효과를 높이기 위해 상기 전처리 반응기 내로 공기를 주입하는 것을 특징으로 한다.
상기 공기를 주입하기 위해 공기주입 펌프(110)를 사용하여 상기 자외선 전처리장치(100)의 산화반응기(20) 내부로 공기를 주입할 수 있다. 상기 공기주입 펌프(110)는 3-way 밸브를 사용하여 산화반응이 완료된 측정액을 검출부(400)로 이송할 수 있다.
본 발명에 의한 영양염류 및 유기물 측정 방법에 있어서, 상기 반응기에서 자외선 조사하여 산화시키는 단계는 상기 산화반응기(20) 내의 온도를 100℃ 이하로, 바람직하게는 50℃ 내지 95℃로 조절할 수 있다. 상기 산화반응기(20) 내부 온도를 100℃ 이하로 유지하여 시료가 끓어 넘치는 현상을 방지하여 분석의 재현성을 증가시킬 수 있다.
본 발명에 의한 영양염류 및 유기물 측정 방법에 있어서, 상기 산화된 시료를 검출하는 단계(S300)는 상기 산화반응기(20)에서 산화반응 후에 상기 일체형 자외선 전처리장치(100)에서 배출되는 혼합물에 포함된 인, 질소, 또는 유기탄소의 농도를 측정한다. 본 발명에 의한 영양염류 및 유기물 측정 방법에 있어서, 상기 일체형 자외선 전처리장치(100)에서 시료를 산화시킨 후에 검출부(400)를 통하여 총인 또는 총질소의 농도를 측정할 수 있다.
본 발명에 의한 영양염류 및 유기물 측정 방법으로는 총인, 총질소의 양을 측정하는 것에 한정되지 않으며, 총인, 총질소 외에 총유기탄소의 측정에 사용될 수 있다. 총유기탄소의 측정에 사용되는 측정 장치는 본 발명에 따른 일체형 전처리장치를 제외하고는 종래의 일반적으로 사용되는 구성을 적용할 수 있다.
본 발명에 의한 영양염류 및 유기물 측정 방법에 있어서, 상기 검출단계는 산화반응 완료 후에 상기 전처리 반응기에서 배출되는 혼합물에 발색시약을 첨가하여 영양염류 및 유기물을 측정한다.
이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
이상과 같이, 본 발명은 영양염류 및 유기물 산화전처리 장치, 이를 포함하는 영양염류 및 유기물 산화전처리 시스템 및 이를 이용한 영양염류 및 유기물 측정 방법에 관한 것으로, 더욱 상세하게는 산화를 위해 조사되는 자외선의 손실이 감소되어 산화효율을 높여 정확한 시료의 농도를 측정할 수 있다는 점에서 산업상 이용이 매우 유용하다고 할 수 있다.

Claims (17)

  1. 산화반응기;
    자외선 램프;
    상기 산화반응기에 시료를 유입 또는 유출하는 시료 주입부;
    상기 산화반응기에 공기를 배출하는 오버플로우부;
    상기 산화반응기 내부 시료 온도를 조절하는 히터; 및
    상기 산화반응기에 조사되는 자외선 강도를 측정하는 자외선 검출기; 를 포함하는
    영양염류 및 유기물 산화전처리 장치.
  2. 제 1항에 있어서,
    상기 산화반응기는 원기둥 형상의 외벽을 구비하고,
    상기 자외선 램프가 상기 산화반응기 외벽에 의해 형성된 내부 공간에 삽입되는 것인,
    영양염류 및 유기물 산화전처리 장치.
  3. 제 1항에 있어서,
    상기 산화반응기는 상기 외벽과 동심원 관계인 내벽을 더 구비하고,
    상기 자외선 램프가 상기 산화반응기 내벽에 의해 형성된 내부 공간에 삽입되는 것인
    영양염류 및 유기물 산화전처리 장치.
  4. 제 2항 또는 제 3 항에 있어서,
    자외선 램프가 구비된 산화반응기에서 상기 자외선 램프는 상기 산화반응기 내벽으로부터 2mm 이하의 간격으로 이격되어 형성된 내부 공간에 삽입되는 것인,
    영양염류 및 유기물 산화전처리 장치.
  5. 제 2 항에 있어서,
    상기 시료주입부는 상기 시료를 상기 내벽에 의해 형성된 공간에 주입하는 것인
    영양염류 및 유기물 산화전처리 장치.
  6. 제 5 항에 있어서,
    상기 시료주입부는 상기 시료를 상기 산화반응기의 내벽과 외벽 사이 공간에 주입되도록 하는 것인
    영양염류 및 유기물 산화전처리 장치.
  7. 제 2항 또는 제 3 항에 있어서,
    상기 산화반응기 내벽 및 외벽은 석영으로 이루어지는 것을 특징으로 하는 영양염류 및 유기물 산화전처리 장치.
  8. 제 7 항에 있어서,
    상기 산화반응기의 외벽 내부 표면은 TiO2촉매가 코팅되고, 외벽 외부표면은 크롬으로 코팅되는 것을 특징으로 하는
    영양염류 및 유기물 산화전처리 장치.
  9. 제 1항에 있어서,
    상기 자외선 램프는 185 nm 내지 254nm 파장을 가지는 자외선을 발생시키는 필라멘트를 포함하는
    영양염류 및 유기물 산화전처리 장치.
  10. 제 1항에 있어서,
    상기 시료주입부는 시료 주입시 시료의 혼합(Mixing) 및 발생한 자외선에 시료의 접촉을 유도하는 공기 주입부를 더 포함하는 것인
    영양염류 및 유기물 산화전처리 장치.
  11. 제 1 항에 있어서,
    상기 오버플로우부는 상기 외벽을 통해 상기 산화반응을 위한 공간에 연결되어 공기를 배출하기 위해 포함하는 것인
    영양염류 및 유기물 산화전처리 장치.
  12. 제 1 항에 있어서,
    상기 히터는 시료 주입시 내부 시료의 온도를 소정 온도로 유지시키기 위해 포함하는 것인
    영양염류 및 유기물 산화전처리 장치.
  13. 제 12 항에 있어서,
    상기 내부 시료의 온도는 25 내지 100℃로 유지되는 것인
    영양염류 및 유기물 산화전처리 장치.
  14. 제 1 항에 있어서,
    상기 자외선검출기는 상기 산화반응기 외부 벽면에 결합되어 자외선 강도를 측정하기 위해 포함하는 것인
    영양염류 및 유기물 산화전처리 장치.
  15. 제 1항에 의한 영양염류 및 유기물 산화전처리 장치;
    상기 영양염류 및 유기물 산화전처리 장치로 주입되는 시료를 이송하는 측정액 공급부;
    상기 영양염류 및 유기물 산화전처리 장치로 주입되는 전처리 시약을 저장하는 전처리 시약 저장부; 및
    영양염류 및 유기물 산화전처리 장치로부터 배출되는 시료를 검출하는 검출부; 를 포함하는
    영양염류 및 유기물 산화전처리 시스템.
  16. 시료 저장부에서 공급되는 시료 및 전처리 시약부에서 공급되는 전처리 시약을 혼합하여 영양염류 및 유기물 산화전처리 장치의 반응기로 주입하는 단계;
    상기 반응기에서 자외선 조사하여 시료를 산화시키는 단계;
    산화 반응 완료 후에 상기 반응기에서 시료 혼합물을 배출시키는 단계;
    상기 배출되는 혼합물에 발색 시약을 첨가하여 인 또는 질소 농도를 측정하는 단계; 를 포함하는
    영양염류 및 유기물 측정 방법.
  17. 제 16항에 있어서,
    시료 이송부에서 공급되는 시료 및 전처리 시약부에서 공급되는 전처리 시약을 혼합하여 반응기로 주입하는 단계에서는 상기 시료와 전처리 시약의 혼합효과를 높이기 위해 상기 전처리 반응기 내로 공기를 주입하는 것을 특징으로 하는
    영양염류 및 유기물 측정 방법.
PCT/KR2015/014473 2015-12-30 2015-12-30 영양염류 및 유기물 산화전처리 장치 및 측정 방법 WO2017115889A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0189385 2015-12-30
KR20150189385 2015-12-30

Publications (1)

Publication Number Publication Date
WO2017115889A1 true WO2017115889A1 (ko) 2017-07-06

Family

ID=59225372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/014473 WO2017115889A1 (ko) 2015-12-30 2015-12-30 영양염류 및 유기물 산화전처리 장치 및 측정 방법

Country Status (1)

Country Link
WO (1) WO2017115889A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111707651A (zh) * 2020-06-22 2020-09-25 自然资源部第二海洋研究所 一种原位海水营养加富实验装置及其使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014724A (ja) * 2001-06-27 2003-01-15 Shimadzu Corp 全リンの測定方法及び測定装置
KR20070111751A (ko) * 2006-05-19 2007-11-22 삼성전자주식회사 휴대용 단말기의 입력 장치 및 방법
KR20110128770A (ko) * 2011-10-18 2011-11-30 (주)티앤아이 총 유기탄소 측정장치
KR101194333B1 (ko) * 2012-02-27 2012-10-24 비엘프로세스(주) 총인 총질소 측정장치 및 방법
KR20130003781A (ko) * 2011-07-01 2013-01-09 (주)백년기술 용존유기탄소 측정장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014724A (ja) * 2001-06-27 2003-01-15 Shimadzu Corp 全リンの測定方法及び測定装置
KR20070111751A (ko) * 2006-05-19 2007-11-22 삼성전자주식회사 휴대용 단말기의 입력 장치 및 방법
KR20130003781A (ko) * 2011-07-01 2013-01-09 (주)백년기술 용존유기탄소 측정장치
KR20110128770A (ko) * 2011-10-18 2011-11-30 (주)티앤아이 총 유기탄소 측정장치
KR101194333B1 (ko) * 2012-02-27 2012-10-24 비엘프로세스(주) 총인 총질소 측정장치 및 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111707651A (zh) * 2020-06-22 2020-09-25 自然资源部第二海洋研究所 一种原位海水营养加富实验装置及其使用方法

Similar Documents

Publication Publication Date Title
Tichonovas et al. Degradation of various textile dyes as wastewater pollutants under dielectric barrier discharge plasma treatment
KR20140131141A (ko) 자외선 전처리장치
KR102216557B1 (ko) 동시 산화를 이용한 총유기탄소, 총질소 및 총인 멀티측정 방법 및 장치
KR101740013B1 (ko) 습식산화 방식의 총 유기탄소 측정 방법 및 장치
Yamashita et al. A novel open-type biosensor for the in-situ monitoring of biochemical oxygen demand in an aerobic environment
US9199865B2 (en) Method for treatment of dyeing wastewater by using UV/acetylacetone oxidation process
KR101194333B1 (ko) 총인 총질소 측정장치 및 방법
Domingo‐Félez et al. Heterotrophs are key contributors to nitrous oxide production in activated sludge under low C‐to‐N ratios during nitrification—Batch experiments and modeling
Wei et al. A novel free ammonia based pretreatment technology to enhance anaerobic methane production from primary sludge
WO2019189952A1 (ko) 총인 총질소 측정 장치 및 방법
WO2017115889A1 (ko) 영양염류 및 유기물 산화전처리 장치 및 측정 방법
CN100504360C (zh) 一种基于光催化化学发光测定化学需氧量的方法及其检测器件
CN108304932A (zh) 基于银纳米簇的逻辑门的构建及其在智能检测中的应用
van den Berg et al. How to measure diffusion coefficients in biofilms: A critical analysis
CN1865939A (zh) 臭氧与过氧化氢协同测量化学耗氧量和总有机碳的方法
WO2015137694A1 (ko) 표준물첨가법을 이용한 흐름셀을 갖는 미세유체칩과 이를 포함하는 흡광 검출 장치
Fontenot et al. Kinetics and inhibition during the decolorization of reactive anthraquinone dyes under methanogenic conditions
CN104792704B (zh) Toc、tn、tp三指标连续同步实时在线测定仪器
CN109142254A (zh) 一种基于芬顿氧化abts显色测定过氧化氢含量的多波长分光光度检测方法
Yu et al. Determination of chemical oxygen demand using UV/O 3
KR101809021B1 (ko) 전도도법 검출방식의 총유기탄소 측정 센서 및 이를 이용한 총유기탄소 검출 시스템
Infante et al. Development of a spectrophotometric Sequential Injection Analysis (SIA) procedure for determination of ammonium: A Response Surface Methodology (RSM) approach
Jain et al. Electrochemical degradation of erythrosine in pharmaceuticals and food product industries effluent
KR20220001582A (ko) 하수처리장 수질 자동 분석장치
CN106082419A (zh) 大环酰胺金属配合物降解含有机污染物废水的方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15912125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15912125

Country of ref document: EP

Kind code of ref document: A1