WO2017115644A1 - Film de protection de surface, procédé de production de film de protection de surface, et élément optique - Google Patents

Film de protection de surface, procédé de production de film de protection de surface, et élément optique Download PDF

Info

Publication number
WO2017115644A1
WO2017115644A1 PCT/JP2016/087069 JP2016087069W WO2017115644A1 WO 2017115644 A1 WO2017115644 A1 WO 2017115644A1 JP 2016087069 W JP2016087069 W JP 2016087069W WO 2017115644 A1 WO2017115644 A1 WO 2017115644A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
antistatic
group
acid
protective film
Prior art date
Application number
PCT/JP2016/087069
Other languages
English (en)
Japanese (ja)
Inventor
賢一 片岡
天野 立巳
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201680072756.4A priority Critical patent/CN108368394A/zh
Priority to KR1020187017651A priority patent/KR20180097576A/ko
Publication of WO2017115644A1 publication Critical patent/WO2017115644A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/25Plastics; Metallised plastics based on macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/255Polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/16Anti-static materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/16Optical coatings produced by application to, or surface treatment of, optical elements having an anti-static effect, e.g. electrically conducting coatings

Definitions

  • the present invention relates to a surface protective film, a method for producing the surface protective film, and an optical member.
  • the present invention includes a base material having a first surface and a second surface, an antistatic layer provided on the first surface of the base material, and an adhesive layer provided on the second surface of the base material.
  • the surface protective film according to the present invention is suitable for applications that are affixed to plastic products and the like that are likely to generate static electricity.
  • optical members for example, polarizing plates used for liquid crystal displays, wavelength plates, retardation plates, optical compensation films, reflective sheets, brightness enhancement films, hard coat films used for touch panels, antireflection films, antiblocks, etc. It is useful as a surface protective film used for the purpose of protecting the surface of a layered film or the like.
  • the surface protective film (also referred to as a surface protective sheet) generally has a configuration in which an adhesive layer is provided on a film-like substrate (support). Such a protective film is bonded to an adherend (protected body) through the pressure-sensitive adhesive layer, and is used for the purpose of protecting the adherend from scratches and dirt during processing and transportation.
  • a panel of a liquid crystal display is formed by bonding an optical member such as a polarizing plate or a wave plate to a liquid crystal cell via an adhesive layer.
  • a polarizing plate to be bonded to a liquid crystal cell is once manufactured in a roll form, and then unwound from this roll and cut into a desired size according to the shape of the liquid crystal cell.
  • a measure is taken to attach a surface protective film to one side or both sides (typically, one side) of the polarizing plate. This surface protective film is peeled off and removed when it is no longer needed.
  • the surface protective film and the optical member are made of a plastic material, they have high electrical insulation and generate static electricity due to friction and peeling. For this reason, static electricity tends to be generated even when the surface protective film is peeled off from the optical member such as a polarizing plate, and when voltage is applied to the liquid crystal with this static electricity remaining, the alignment of the liquid crystal molecules is lost, There is also a concern that the panel may be lost. Also, the presence of static electricity can be a factor that attracts dust and reduces workability. Under such circumstances, the surface protection film is subjected to an antistatic treatment. For example, as a surface layer (topcoat layer, back layer) of the surface protection film, an antistatic layer is formed or an antistatic coating is applied. Thus, an antistatic function is provided (see Patent Documents 1 and 2).
  • PEDOT poly (3,4-ethylenedioxythiophene) / PSS (polystyrene sulfonate) (polythiophene type) type
  • PSS polystyrene sulfonate
  • the antistatic layer is formed using the conductive polymer, the PSS (corresponding to the dopant) is desorbed from PEDOT with the passage of time, and the surface resistivity and peeling band voltage are increased.
  • problems such as an increase in surface resistivity (deterioration) due to oxidation deterioration or light deterioration may occur.
  • the present invention has been intensively studied, and as a result, surface protection film that can achieve antistatic property, stability of peeling band voltage, and print adhesion, method for manufacturing surface protection film, and optical An object is to provide a member.
  • the surface protective film of the present invention has a substrate having a first surface and a second surface, an antistatic layer provided on the first surface of the substrate, and an adhesive to the second surface of the substrate. And a pressure-sensitive adhesive layer formed using the adhesive composition, wherein the antistatic layer comprises a polyaniline sulfonic acid as a conductive polymer component, a polyester resin as a binder, and a melamine-based as a cross-linking agent It is formed using the antistatic agent composition containing a crosslinking agent.
  • the antistatic agent composition contains at least one selected from the group consisting of a fatty acid amide, a fatty acid ester, a silicone lubricant, a fluorine lubricant, and a wax lubricant as a lubricant. It is preferable.
  • the base material is preferably a polyester film.
  • the pressure-sensitive adhesive composition preferably contains at least one selected from the group consisting of an acrylic pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, and a silicone-based pressure-sensitive adhesive.
  • the pressure-sensitive adhesive composition preferably contains an antistatic component.
  • the optical member of the present invention is preferably protected by the surface protective film.
  • the method for producing a surface protective film of the present invention is a method for producing the surface protective film, comprising polyaniline sulfonic acid as a conductive polymer component, a polyester resin as a binder, and a melamine-based cross-linking agent as a cross-linking agent. And a step of preparing an antistatic layer by applying and drying the antistatic agent composition on the first surface of the substrate.
  • the antistatic layer provided on the first surface (back surface) of the base material is formed of an antistatic agent composition containing a specific conductive polymer component, a binder, and a crosslinking agent. Therefore, it is possible to form a uniform antistatic layer, excellent workability, excellent antistatic properties due to the antistatic layer, stability over time of the stripping voltage, and print adhesion It is possible to provide a surface protective film capable of achieving the above, a method for producing the surface protective film, and an optical member protected by the surface protective film.
  • the surface protective film disclosed herein is generally in a form called an adhesive sheet, an adhesive tape, an adhesive label, an adhesive film or the like, and in particular, an optical member (for example, a liquid crystal display panel such as a polarizing plate or a wave plate) It is suitable as a surface protective film that protects the surface of an optical member during processing or transport of an optical member used as a component or an optical member used for a touch panel display such as a hard coat film).
  • the pressure-sensitive adhesive layer in the surface protective film is typically formed continuously, but is not limited to such a form, and is formed in a regular or random pattern such as a spot or stripe. It may be an adhesive layer.
  • the surface protective film disclosed herein may be in the form of a roll or a single sheet.
  • the surface protective film 1 includes a base material (for example, a polyester film) 12, an antistatic layer 11 provided on the first surface of the base material 12, and a second surface of the base material 12 (an antistatic layer 11). And an adhesive layer 13 provided on the opposite surface.
  • the surface protective film 1 is used by sticking the pressure-sensitive adhesive layer 13 to an adherend (a surface to be protected, for example, the surface of an optical member such as a polarizing plate).
  • the surface protective film 1 before use (that is, before sticking to the adherend) is peeled so that the surface of the pressure-sensitive adhesive layer 13 (sticking surface to the adherend) is at least the pressure-sensitive adhesive layer 13 side.
  • the pressure-sensitive adhesive layer 13 comes into contact with the back surface of the base material 12 (the surface of the antistatic layer 11) and the surface thereof is protected. Good.
  • the antistatic layer 11 is formed directly on the first surface of the substrate 12 (without any other layer), and the antistatic layer 11 is exposed on the back surface of the surface protective film 1.
  • the mode in which the antistatic layer 11 also serves as a topcoat layer is provided with an antistatic layer in which the antistatic layer 11 is provided on the substrate 12 as compared with the configuration in which the antistatic layer is provided separately from the topcoat layer.
  • a film (and thus a surface protective film using the film) is advantageous from the viewpoint of improving productivity because the number of layers constituting the surface protective film can be reduced.
  • the surface protective film of the present invention has a base material having a first surface (back surface) and a second surface (surface opposite to the first surface).
  • the resin material constituting the substrate can be used without any particular limitation. For example, transparency, mechanical strength, thermal stability, moisture shielding property, isotropic property, flexibility It is preferable to use a material excellent in properties such as property and dimensional stability.
  • the pressure-sensitive adhesive composition can be applied by a roll coater or the like, and can be wound into a roll shape, which is useful.
  • the substrate (support) examples include polyester polymers such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polybutylene terephthalate; cellulose polymers such as diacetyl cellulose and triacetyl cellulose; polycarbonate polymers; An acrylic polymer such as methyl methacrylate; and the like, a plastic film composed of a resin material having a main resin component (a main component of the resin component, typically a component occupying 50% by mass or more) as the base material It can be preferably used.
  • polyester polymers such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polybutylene terephthalate
  • cellulose polymers such as diacetyl cellulose and triacetyl cellulose
  • polycarbonate polymers An acrylic polymer such as methyl methacrylate
  • An acrylic polymer such as methyl methacrylate
  • a plastic film composed of a resin material having a main resin component (a main component
  • the resin material examples include styrene polymers such as polystyrene and acrylonitrile-styrene copolymers; olefin polymers such as polyethylene, polypropylene, polyolefins having a cyclic or norbornene structure, and ethylene-propylene copolymers; Examples of the resin material include vinyl chloride polymers; amide polymers such as nylon 6, nylon 6,6, and aromatic polyamide. Still other examples of the resin material include imide polymers, sulfone polymers, polyether sulfone polymers, polyether ether ketone polymers, polyphenylene sulfide polymers, vinyl alcohol polymers, vinylidene chloride polymers, vinyl butyral polymers. , Arylate polymers, polyoxymethylene polymers, epoxy polymers and the like. The base material which consists of 2 or more types of blends of the polymer mentioned above may be sufficient.
  • a plastic film made of a transparent thermoplastic resin material can be preferably used.
  • the plastic films it is more preferable to use a polyester film.
  • the polyester film is one having a polymer material (polyester resin) having a main skeleton based on an ester bond such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), or polybutylene terephthalate as a main resin component.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • polybutylene terephthalate polybutylene terephthalate
  • Such a polyester film has preferable properties as a substrate for a surface protective film, such as excellent optical properties and dimensional stability, and has a property of being easily charged as it is.
  • additives such as antioxidants, ultraviolet absorbers, plasticizers, colorants (pigments, dyes, etc.), antistatic agents, antiblocking agents, etc.
  • Various additives such as antioxidants, ultraviolet absorbers, plasticizers, colorants (pigments, dyes, etc.), antistatic agents, antiblocking agents, etc.
  • corona discharge treatment, plasma treatment, ultraviolet irradiation treatment, acid treatment, alkali treatment, and application of a primer are applied to the first surface of the polyester film (the surface on which the antistatic layer is provided).
  • the surface treatment may be performed.
  • Such a surface treatment can be, for example, a treatment for enhancing the adhesion between the substrate and the antistatic layer.
  • Surface treatment in which polar groups such as hydroxyl groups are introduced on the surface of the substrate can be preferably employed.
  • the surface treatment similar to the above may be given to the 2nd surface (surface by which the adhesive layer is formed) of a base material.
  • Such a surface treatment may be a treatment for improving the adhesion between the substrate and the pressure-sensitive adhesive layer (the anchoring property of the pressure-sensitive adhesive layer).
  • the surface protective film of the present invention has an antistatic function by having an antistatic layer on the base material, but it is also possible to use a plastic film that has undergone antistatic treatment as the base material. is there.
  • the use of the substrate is preferable because the surface protection film itself can be prevented from being charged when peeled off.
  • the base material is a plastic film, and by applying an antistatic treatment to the plastic film, it is possible to reduce the surface protection film itself and to have an excellent antistatic ability to the adherend.
  • a conventionally well-known method can be used, for example, antistatic resin which consists of an antistatic agent and a resin component, a conductive polymer, and a conductive substance. Examples thereof include a method of applying a conductive resin, a method of depositing or plating a conductive material, a method of kneading an antistatic agent, and the like.
  • the thickness of the substrate is usually about 5 to 200 ⁇ m, preferably about 10 to 100 ⁇ m.
  • the thickness of the base material is within the above range, it is preferable because the workability for bonding to the adherend and the workability for peeling from the adherend are excellent.
  • the surface protective film of the present invention comprises a substrate having a first surface (back surface) and a second surface (surface opposite to the first surface), and an antistatic layer provided on the first surface of the substrate.
  • the antistatic layer is formed using a polyaniline sulfonic acid as a conductive polymer component, a polyester resin as a binder, and an antistatic agent composition containing a melamine-based crosslinking agent as a crosslinking agent. It is characterized by being made.
  • the surface protective film has an antistatic layer (topcoat layer), the antistatic property due to the antistatic layer, the stability over time of the stripping voltage, and the print adhesion are improved, which is a preferred embodiment.
  • the antistatic agent composition contains polyaniline sulfonic acid as a conductive polymer component.
  • the polyaniline sulfonic acid is “water-soluble”, but can be immobilized in the antistatic layer by using a melamine-based cross-linking agent described later to improve water resistance.
  • an aqueous solution containing a conductive polymer an antistatic layer having excellent surface resistivity over time is obtained, which is a preferred embodiment.
  • the antistatic layer when the conductive polymer used in forming the antistatic layer is “water-dispersible”, the antistatic layer is prepared using a dispersion containing the water-dispersible conductive polymer.
  • the film is formed, agglomerates are easily generated, it is difficult to form a uniform layer of the conductive polymer, and the obtained antistatic layer tends to deteriorate the surface resistivity over time, which is not preferable.
  • the content of the conductive polymer is preferably 10 to 200 parts by weight, more preferably 25 to 150 parts by weight, and still more preferably 40 to 120 parts by weight with respect to 100 parts by weight of the binder contained in the antistatic layer. Part by mass. If the content of the conductive polymer is too small, the antistatic effect may be reduced, and if the content of the conductive polymer is too large, the adhesion of the antistatic layer to the substrate may be reduced or the transparency may be decreased. There is a risk of lowering, which is not preferable.
  • the polyaniline sulfonic acid used as the conductive polymer component preferably has a standard polystyrene equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of 5 ⁇ 10 5 or less. ⁇ 10 5 or less is more preferable.
  • Mw polystyrene equivalent weight average molecular weight measured by gel permeation chromatography
  • the weight average molecular weight of these conductive polymers is usually preferably 1 ⁇ 10 3 or more, and more preferably 5 ⁇ 10 3 or more.
  • Examples of commercial products of the polyaniline sulfonic acid include a product name “aqua-PASS” manufactured by Mitsubishi Rayon Co., Ltd.
  • the antistatic layer disclosed herein contains polyaniline sulfonic acid (polyaniline type) as an essential component as the conductive polymer component.
  • polyaniline type polyaniline type
  • one or more other antistatic components polyaniline sulfonic acid
  • Organic conductive materials other than the above, inorganic conductive materials, antistatic agents, etc. may be included together.
  • the antistatic layer contains substantially no antistatic component other than the conductive polymer, that is, the antistatic component contained in the antistatic layer is substantially free of the conductive polymer.
  • An embodiment consisting only of the component polyaniline sulfonic acid can be more preferably practiced.
  • organic conductive substance examples include cation type antistatic agents having a cationic functional group such as a quaternary ammonium salt, a pyridinium salt, a primary amino group, a secondary amino group, and a tertiary amino group; sulfonates and sulfates Anionic antistatic agents having an anionic functional group such as salts, phosphonates, phosphate esters; amphoteric ionic antistatic agents such as alkylbetaines and their derivatives, imidazolines and their derivatives, alanine and their derivatives; amino alcohols Nonionic antistatic agents such as glycerin and derivatives thereof, glycerin and derivatives thereof, polyethylene glycol and derivatives thereof; polymerization of monomers having the cation type, anion type or zwitterion type ion conductive groups (for example, quaternary ammonium base) Alternatively, an ion conductive polymer obtained by copolymerization; Include; thioph
  • the inorganic conductive material examples include tin oxide, antimony oxide, indium oxide, cadmium oxide, titanium oxide, zinc oxide, indium, tin, antimony, gold, silver, copper, aluminum, nickel, chromium, titanium, iron, cobalt, Examples thereof include copper iodide, ITO (indium oxide / tin oxide), ATO (antimony oxide / tin oxide), and the like. Such inorganic conductive materials may be used alone or in combination of two or more.
  • the antistatic agent examples include a cationic antistatic agent, an anionic antistatic agent, an amphoteric ion antistatic agent, a nonionic antistatic agent, and a single ion having a cationic, anionic or zwitterionic ion conductive group.
  • examples thereof include an ion conductive polymer obtained by polymerizing or copolymerizing a monomer.
  • the antistatic layer is characterized by containing a polyester resin as a binder as an essential component in order to impart solvent resistance, mechanical strength, and thermal stability.
  • the polyester resin is preferably a resin material containing polyester as a main component (typically exceeding 50% by mass, preferably 75% by mass or more, for example, 90% by mass or more).
  • the polyester typically includes polyvalent carboxylic acids (typically dicarboxylic acids) having two or more carboxyl groups in one molecule and derivatives thereof (an anhydride, esterified product, halogenated product of the polyvalent carboxylic acid).
  • polyhydric carboxylic acid component selected from, and polyhydric alcohols (typically diols) having two or more hydroxyl groups in one molecule. It is preferable to have a structure in which one or two or more compounds (polyhydric alcohol component) are condensed.
  • Examples of compounds that can be employed as the polyvalent carboxylic acid component include oxalic acid, malonic acid, difluoromalonic acid, alkylmalonic acid, succinic acid, tetrafluorosuccinic acid, alkylsuccinic acid, ( ⁇ ) -malic acid, meso -Tartaric acid, itaconic acid, maleic acid, methylmaleic acid, fumaric acid, methylfumaric acid, acetylenedicarboxylic acid, glutaric acid, hexafluoroglutaric acid, methylglutaric acid, glutaconic acid, adipic acid, dithioadipic acid, methyladipic acid, dimethyl Adipic acid, tetramethyladipic acid, methyleneadipic acid, muconic acid, galactaric acid, pimelic acid, suberic acid, perfluorosuberic acid, 3,3,6,6-tetramethylsuberic acid, azelaic acid
  • the compound that can be employed as the polyvalent carboxylic acid component include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, and acid anhydrides thereof; adipic acid, sebacic acid, azelaic acid, succinic acid, Aliphatic dicarboxylic acids such as fumaric acid, maleic acid, highmic acid, 1,4-cyclohexanedicarboxylic acid and the acid anhydrides thereof; and lower alkyl esters of the dicarboxylic acids (for example, monoalcohols having 1 to 3 carbon atoms) Ester) and the like.
  • aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, and acid anhydrides thereof
  • adipic acid, sebacic acid, azelaic acid, succinic acid Aliphatic dicarboxylic acids such as fumaric acid, maleic acid, high
  • Examples of compounds that can be employed as the polyhydric alcohol component include ethylene glycol, propylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, neo Pentyl glycol, 1,5-pentanediol, 1,6-hexanediol, 3-methylpentanediol, diethylene glycol, 1,4-cyclohexanedimethanol, 3-methyl-1,5-pentanediol, 2-methyl-1,
  • Examples include diols such as 3-propanediol, 2,2-diethyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, xylylene glycol, hydrogenated bisphenol A, and bisphenol A. It is done.
  • Other examples include alkylene oxide adducts (for example, ethylene oxide
  • the molecular weight of the polyester resin is, for example, about 5 ⁇ 10 3 to 1.5 ⁇ 10 5 (preferably 1 ⁇ 10 5) as the number average molecular weight (Mn) in terms of standard polystyrene measured by gel permeation chromatography (GPC). 4 to about 6 ⁇ 10 4 ).
  • the glass transition temperature (Tg) of the polyester resin may be, for example, 0 to 120 ° C. (preferably 10 to 80 ° C.).
  • polyester resin examples include, for example, trade names Vylonal MD-1100, MD-1200, MD-1245, MD-1335, MD-1480, MD-1500, MD-2000 manufactured by Toyobo Co., Ltd. Name Plus Coat Z-221, Z-446, Z-561, Z-565, Z-880, RZ-105, RZ-570, Z-592, Z-687, Z-690, Pes Resin A manufactured by Takamatsu Yushi Co., Ltd. -110F, A-120, A-124GP, A-125S, A-520, A-613D, A-615GE, A-640, A-645GH, A-647GEX, A-684G and the like.
  • the antistatic layer is a resin other than a polyester resin (for example, acrylic resin, acrylic-urethane) as a binder, as long as the performance of the surface protective film disclosed herein (for example, performance such as antistatic properties) is not significantly impaired.
  • Resin acrylic-styrene resin, acrylic-silicone resin, silicone resin, polysilazane resin, polyurethane resin, fluororesin, polyolefin resin, and the like.
  • a preferred embodiment of the technology disclosed herein is a case where the binder of the antistatic layer is substantially composed only of a polyester resin.
  • an antistatic layer in which the proportion of the polyester resin in the binder is 98 to 100% by mass is preferable.
  • the proportion of the binder in the whole antistatic layer can be, for example, 50 to 95% by mass, and usually 60 to 90% by mass is appropriate.
  • the antistatic agent composition used when forming the antistatic layer in the technique disclosed herein is a lubricant comprising a fatty acid amide, a fatty acid ester, a silicone lubricant, a fluorine lubricant, and a wax lubricant. It is a preferred embodiment to use at least one selected.
  • a further release treatment for example, a treatment in which a known release treatment agent such as a silicone release agent or a long-chain alkyl release agent is applied and dried is applied to the surface of the antistatic layer.
  • the coating is not performed, an antistatic layer having both sufficient slipping property and printing adhesion can be obtained, so that it can be a preferable mode.
  • the aspect in which the surface of the antistatic layer is not further peeled can prevent whitening due to the peeling treatment agent (for example, whitening due to storage under heating and humidification conditions). This is preferable. It is also advantageous from the viewpoint of solvent resistance.
  • fatty acid amide examples include lauric acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, hydroxy stearic acid amide, oleic acid amide, erucic acid amide, N-oleylparticic acid amide, N-stearyl stearic acid.
  • fatty acid ester examples include polyoxyethylene bisphenol A laurate, butyl stearate, 2-ethylhexyl palmitate, 2-ethylhexyl stearate, monoglyceride behenate, cetyl 2-ethylhexanoate, isopropyl myristate, palmitic acid Isopropyl acid, cholesteryl isostearate, lauryl methacrylate, coconut fatty acid methyl, methyl laurate, methyl oleate, methyl stearate, myristyl myristate, octyldodecyl myristate, pentaerythritol monooleate, pentaerythritol monostearate, pentaerythritol Tetrapalmitate, stearyl stearate, isotridecyl stearate, 2-ethylhexanoic acid triglyceride Butyl laurate
  • silicone lubricant examples include polydimethylsiloxane, polyether modified polydimethylsiloxane, amino modified polydimethylsiloxane, epoxy modified polydimethylsiloxane, carbinol modified polydimethylsiloxane, mercapto modified polydimethylsiloxane, carboxyl modified polydimethyl.
  • Siloxane methyl hydrogen silicone, methacrylic modified polydimethylsiloxane, phenol modified polydimethylsiloxane, silanol modified polydimethylsiloxane, aralkyl modified polydimethylsiloxane, fluoroalkyl modified polydimethylsiloxane, long chain alkyl modified polydimethylsiloxane, higher fatty acid modified ester Modified polydimethylsiloxane, higher fatty acid amide modified polydimethylsiloxane, phenyl modified poly Dimethyl siloxane.
  • These lubricants may be used alone or in combination of two or more.
  • fluorine-based lubricant examples include perfluoroalkane and perfluorocarboxylic acid ester. These lubricants may be used alone or in combination of two or more.
  • wax-based lubricant examples include petroleum wax (paraffin wax, etc.), plant wax (carnauba wax, etc.), mineral wax (montan wax, etc.), higher fatty acid (serotic acid, etc.), and neutral fat (palmitin). And various waxes such as acid triglyceride). These lubricants may be used alone or in combination of two or more.
  • the ratio of the lubricant to the whole antistatic layer can be 1 to 50% by mass, and usually 5 to 40% by mass is appropriate.
  • the ratio of the lubricant to the whole antistatic layer can be 1 to 50% by mass, and usually 5 to 40% by mass is appropriate.
  • the antistatic layer contains a melamine-based crosslinking agent as a crosslinking agent.
  • a melamine-based crosslinking agent By using the melamine-based crosslinking agent, water-soluble polyaniline sulfonic acid, which is an essential component when forming the antistatic layer, can be fixed in the binder, and it has excellent water resistance and improved printing adhesion. Can be realized.
  • melamine-based crosslinking agent melamine, alkylated melamine, methylol melamine, alkoxylated methyl melamine, alkyl etherified melamine and the like can be used.
  • another crosslinking agent can be mix
  • the antistatic layer in the technology disclosed herein is, if necessary, other antistatic agents, antioxidants, colorants (pigments, dyes, etc.), fluidity adjusting agents (thixotropic agents, thickeners, etc.), It may contain additives such as film-forming aids, surfactants (such as antifoaming agents), and preservatives. Moreover, it is also possible to contain a glycidyl compound, a polar solvent, a polyhydric aliphatic alcohol, a lactam compound, etc. as a conductivity improver.
  • the method for producing a surface protective film of the present invention comprises a step of preparing an antistatic agent composition containing polyaniline sulfonic acid as a conductive polymer component, a polyester resin as a binder, and a melamine-based cross-linking agent as a cross-linking agent; Applying an antistatic composition to the first surface of the substrate and drying to prepare an antistatic layer.
  • an antistatic agent composition liquid composition in which essential components such as the conductive polymer component and additives used as necessary are dissolved in an appropriate solvent (water or the like).
  • a coating material for forming an antistatic layer) and applying it to a substrate can be suitably formed.
  • a method of applying the antistatic agent composition to the first surface of the substrate and drying it, and performing a curing treatment (heat treatment, ultraviolet treatment, etc.) as necessary can be preferably employed.
  • the NV (nonvolatile content) of the antistatic composition can be, for example, 5% by mass or less (typically 0.05 to 5% by mass), and is usually 1% by mass or less (typically 0%). 10 to 1% by mass).
  • the NV of the antistatic agent composition is 0.05 to 0.50% by mass (for example, 0.10 to 0.40% by mass).
  • the solvent constituting the antistatic agent composition is preferably a solvent that can stably dissolve the components for forming the antistatic layer.
  • a solvent may be an organic solvent, water, or a mixed solvent thereof.
  • the organic solvent include esters such as ethyl acetate; ketones such as methyl ethyl ketone, acetone and cyclohexanone; cyclic ethers such as tetrahydrofuran (THF) and dioxane; aliphatic or alicyclic such as n-hexane and cyclohexane.
  • Hydrocarbons aromatic hydrocarbons such as toluene and xylene; aliphatic or alicyclic alcohols such as methanol, ethanol, n-propanol, isopropanol, and cyclohexanol; alkylene glycol monoalkyl ether (for example, ethylene glycol monomethyl ether) , Ethylene glycol monoethyl ether), glycol ethers such as dialkylene glycol monoalkyl ether; and the like can be used.
  • the solvent of the antistatic agent composition is water or a mixed solvent containing water as a main component (for example, a mixed solvent of water and ethanol).
  • the thickness of the antistatic layer in the technique disclosed herein is typically 3 to 500 nm, preferably 3 to 100 nm, more preferably 3 to 60 nm. If the thickness of the antistatic layer is too small, it becomes difficult to form the antistatic layer uniformly (for example, the thickness of the antistatic layer varies greatly depending on the location). Unevenness may be likely to occur. On the other hand, if it is too thick, the properties of the substrate (optical properties, dimensional stability, etc.) may be affected.
  • the surface resistivity ( ⁇ / ⁇ ) measured on the surface of the antistatic layer is preferably 1.0 ⁇ 10 11 or less, more preferably , and a 5.0 ⁇ 10 10 or less, further preferably 1.0 ⁇ 10 10 or less.
  • a surface protective film exhibiting a surface resistivity within the above range can be suitably used as a surface protective film used in, for example, processing or transporting an article that dislikes static electricity such as a liquid crystal cell or a semiconductor device.
  • the said surface resistivity can be calculated
  • the surface protective film disclosed herein preferably has a property that the back surface (surface of the antistatic layer) can be easily printed with water-based ink or oil-based ink (for example, using an oil-based marking pen).
  • a surface protective film is used to provide an identification number or the like of the adherend to be protected in the process of carrying or transporting the adherend (for example, an optical member) performed with the surface protective film attached.
  • the surface protective film has excellent printability.
  • the solvent is alcohol-based and has high printability for oil-based inks containing pigments.
  • the printed ink is difficult to be removed by rubbing or transfer (that is, excellent in print adhesion).
  • the surface protective film disclosed herein may also have a solvent resistance that does not cause a noticeable change in appearance even if the print is wiped with alcohol (for example, ethyl alcohol) when correcting or erasing the print. preferable.
  • the surface protective film disclosed herein can be implemented in an embodiment including other layers in addition to the base material, the pressure-sensitive adhesive layer, and the antistatic layer.
  • Examples of the arrangement of the “other layer” include the space between the second surface (front surface) of the substrate and the pressure-sensitive adhesive layer.
  • the layer disposed between the front surface of the substrate and the pressure-sensitive adhesive layer can be, for example, an undercoat layer (anchor layer) or an antistatic layer that enhances the anchoring property of the pressure-sensitive adhesive layer with respect to the second surface. It may be a surface protective film having a configuration in which an antistatic layer is disposed on the front surface of the substrate, an anchor layer is disposed on the antistatic layer, and an adhesive layer is disposed thereon.
  • the surface protective film of the present invention has a pressure-sensitive adhesive layer formed on the second surface of the base material using a pressure-sensitive adhesive composition, and the pressure-sensitive adhesive composition has adhesiveness.
  • a pressure-sensitive adhesive composition an acrylic pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, a synthetic rubber-based pressure-sensitive adhesive, a natural rubber-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, and the like can be used. It is at least one selected from the group consisting of a PSA adhesive, a urethane PSA, and a silicone PSA, and particularly preferably by using an acrylic PSA using a (meth) acrylic polymer. is there.
  • the (meth) acrylic polymer constituting the acrylic pressure-sensitive adhesive has an alkyl group having 1 to 14 carbon atoms as a raw material monomer constituting the acrylic pressure-sensitive adhesive (meta) )
  • Acrylic monomers can be used as the main monomer.
  • As said (meth) acrylic-type monomer 1 type (s) or 2 or more types can be used as a main component.
  • the (meth) acrylic polymer refers to an acrylic polymer and / or a methacrylic polymer
  • the (meth) acrylate refers to acrylate and / or methacrylate.
  • the “main component” in the present invention means the largest component in the total amount of constituent components, preferably more than 40% by mass, more preferably more than 50% by mass, and still more preferably 60% by mass. It means exceeding%.
  • Examples of the (meth) acrylic monomer having an alkyl group having 1 to 14 carbon atoms include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, s-butyl (meth) acrylate, t-butyl (meth) acrylate, isobutyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, n-nonyl (meth) acrylate , Isononyl (meth) acrylate, n-decyl (meth) acrylate, isodecyl (meth) acrylate, n-dodecyl (meth) acrylate, n-tridecyl (meth) acrylate
  • the surface protective film of the present invention includes hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl.
  • 6 to 14 carbon atoms such as (meth) acrylate, n-decyl (meth) acrylate, isodecyl (meth) acrylate, n-dodecyl (meth) acrylate, n-tridecyl (meth) acrylate, n-tetradecyl (meth) acrylate, etc.
  • a (meth) acrylic monomer having an alkyl group is preferred.
  • a (meth) acrylic monomer having an alkyl group having 6 to 14 carbon atoms it becomes easy to control the adhesive force to the adherend to be low, and the removability is excellent.
  • the (meth) acrylic polymer constituting the acrylic pressure-sensitive adhesive preferably contains a (meth) acrylic monomer having a hydroxyl group as a raw material monomer.
  • a (meth) acrylic monomer having a hydroxyl group one or more kinds can be used.
  • the (meth) acrylic monomer having a hydroxyl group By using the (meth) acrylic monomer having a hydroxyl group, it is easy to control the crosslinking of the pressure-sensitive adhesive composition, and it is easy to control the balance between the improvement of wettability by flow and the reduction of the adhesive strength in peeling. Become. Furthermore, unlike carboxyl groups and sulfonate groups that can generally act as cross-linking sites, hydroxyl groups have an appropriate interaction with ionic compounds, which are antistatic components (antistatic agents), and so on. Also in terms of surface, it can be suitably used.
  • Examples of the (meth) acrylic monomer having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and 6-hydroxyhexyl (meth).
  • the glass transition temperature and release of the (meth) acrylic polymer should be adjusted so that the Tg is 0 ° C. or lower (usually ⁇ 100 ° C. or higher) because the adhesive performance is easily balanced.
  • a polymerizable monomer or the like for adjusting the property can be used as long as the effects of the present invention are not impaired.
  • Examples of the polymerizable monomer other than the (meth) acrylic monomer having an alkyl group having 1 to 14 carbon atoms and the (meth) acrylic monomer having a hydroxyl group used in the (meth) acrylic polymer A (meth) acrylic monomer having a carboxyl group can be used.
  • Examples of the (meth) acrylic monomer having a carboxyl group include (meth) acrylic acid, carboxylethyl (meth) acrylate, carboxylpentyl (meth) acrylate, and the like.
  • the (meth) acrylic monomer having a carboxyl group is preferably 5 parts by mass or less with respect to 100 parts by mass of the (meth) acrylic monomer having an alkyl group having 1 to 14 carbon atoms. More preferably, it is less than 1 part by weight, more preferably less than 1 part by weight, even more preferably less than 0.2 part by weight, and most preferably less than 0.01 part by weight and less than 0.1 part by weight.
  • the amount exceeds 5 parts by mass, a large number of acid functional groups such as carboxyl groups having a large polar action exist, and when an ionic compound is blended as an antistatic component, an acid functional group such as a carboxyl group is included in the ionic compound.
  • the (meth) acrylic monomer having an alkyl group having 1 to 14 carbon atoms, the (meth) acrylic monomer having a hydroxyl group, and the (meth) having a carboxyl group, which are used in the (meth) acrylic polymer are used in the (meth) acrylic polymer.
  • Other polymerizable monomers other than acrylic monomers can be used without particular limitation as long as they do not impair the characteristics of the present invention.
  • cohesive strength / heat resistance improving components such as cyano group-containing monomers, vinyl ester monomers, aromatic vinyl monomers, amide group-containing monomers, imide group-containing monomers, amino group-containing monomers, epoxy group-containing monomers, N-acryloylmorpholine
  • a component having a functional group functioning as an adhesive strength improvement or a crosslinking base point such as a vinyl ether monomer can be appropriately used.
  • a nitrogen-containing monomer such as a cyano group-containing monomer, an amide group-containing monomer, an imide group-containing monomer, an amino group-containing monomer, and N-acryloylmorpholine.
  • Use of a nitrogen-containing monomer is useful because it can secure an appropriate adhesive force that does not cause floating or peeling, and can provide a surface protective film having excellent shearing force.
  • These polymerizable monomers may be used alone or in combination of two or more.
  • Examples of the cyano group-containing monomer include acrylonitrile and methacrylonitrile.
  • Examples of the vinyl ester monomer include vinyl acetate, vinyl propionate, and vinyl laurate.
  • aromatic vinyl monomer examples include styrene, chlorostyrene, chloromethyl styrene, ⁇ -methyl styrene, and other substituted styrene.
  • Examples of the amide group-containing monomer include acrylamide, methacrylamide, diethylacrylamide, N-vinylpyrrolidone, N, N-dimethylacrylamide, N, N-dimethylmethacrylamide, N, N-diethylacrylamide, and N, N-diethyl.
  • Examples include methacrylamide, N, N′-methylenebisacrylamide, N, N-dimethylaminopropyl acrylamide, N, N-dimethylaminopropyl methacrylamide, and diacetone acrylamide.
  • Examples of the imide group-containing monomer include cyclohexylmaleimide, isopropylmaleimide, N-cyclohexylmaleimide, and itaconimide.
  • amino group-containing monomer examples include aminoethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, and the like.
  • epoxy group-containing monomer examples include glycidyl (meth) acrylate, methyl glycidyl (meth) acrylate, and allyl glycidyl ether.
  • vinyl ether monomer examples include methyl vinyl ether, ethyl vinyl ether, isobutyl vinyl ether, and the like.
  • other polymerizable monomers other than the (meth) acrylic monomer having an alkyl group having 1 to 14 carbon atoms, the (meth) acrylic monomer having a hydroxyl group, and the (meth) acrylic monomer having a carboxyl group are:
  • the amount is preferably 0 to 40 parts by mass, and more preferably 0 to 30 parts by mass with respect to 100 parts by mass of the (meth) acrylic monomer having an alkyl group having 1 to 14 carbon atoms.
  • the (meth) acrylic polymer may further contain an alkylene oxide group-containing reactive monomer as a monomer component.
  • the average number of moles of oxyalkylene units added in the alkylene oxide group-containing reactive monomer is preferably 1 to 40 from the viewpoint of compatibility with the ionic compound as the antistatic component, and preferably 3 to 40. More preferably, it is more preferably 4 to 35, and particularly preferably 5 to 30.
  • the average added mole number is 1 or more, the effect of reducing the contamination of the adherend (protected body) tends to be obtained efficiently.
  • the said average addition mole number is larger than 40, since interaction with an ionic compound is large and there exists a tendency for the viscosity of an adhesive composition to rise and for coating to become difficult, it is unpreferable.
  • the terminal of the oxyalkylene chain may be substituted with other functional groups or the like as a hydroxyl group.
  • the alkylene oxide group-containing reactive monomer may be used alone or in combination of two or more, but the total content is the total amount of monomer components of the (meth) acrylic polymer.
  • the content is preferably 20% by mass or less, more preferably 10% by mass or less, still more preferably 5% by mass or less, still more preferably 4% by mass or less, and 3% by mass or less. Particularly preferred is 1% by mass or less.
  • Examples of the oxyalkylene unit of the alkylene oxide group-containing reactive monomer include those having an alkylene group having 1 to 6 carbon atoms, such as an oxymethylene group, an oxyethylene group, an oxypropylene group, and an oxybutylene group. It is done.
  • the hydrocarbon group of the oxyalkylene chain may be linear or branched.
  • the alkylene oxide group-containing reactive monomer is a reactive monomer having an ethylene oxide group.
  • a (meth) acrylic polymer having a reactive monomer having an ethylene oxide group as the base polymer, the compatibility between the base polymer and the ionic compound is improved, and bleeding to the adherend is suitably suppressed, and the A fouling pressure-sensitive adhesive composition is obtained.
  • alkylene oxide group-containing reactive monomer examples include (meth) acrylic acid alkylene oxide adducts and reactive surfactants having reactive substituents such as acryloyl group, methacryloyl group, and allyl group in the molecule. can give.
  • the (meth) acrylic acid alkylene oxide adduct include, for example, polyethylene glycol (meth) acrylate, polypropylene glycol (meth) acrylate, polyethylene glycol-polypropylene glycol (meth) acrylate, polyethylene glycol-polybutylene glycol (meth) ) Acrylate, polypropylene glycol-polybutylene glycol (meth) acrylate, methoxy polyethylene glycol (meth) acrylate, ethoxy polyethylene glycol (meth) acrylate, butoxy polyethylene glycol (meth) acrylate, octoxy polyethylene glycol (meth) acrylate, lauroxy polyethylene Glycol (meth) acrylate, stearoxy polyethylene glycol Lumpur (meth) acrylate, phenoxy polyethylene glycol (meth) acrylate, methoxy polypropylene glycol (meth) acrylate, octoxypolyethylene glycol - polyprop
  • the reactive surfactant include, for example, an anionic reactive surfactant having a (meth) acryloyl group or an allyl group, a nonionic reactive surfactant, and a cationic reactive surfactant. Is given.
  • the weight average molecular weight (Mw) of the (meth) acrylic polymer is preferably 100,000 to 5,000,000, more preferably 200,000 to 2,000,000, and further preferably 300,000 to 800,000.
  • Mw weight average molecular weight
  • the weight average molecular weight is smaller than 100,000, the adhesive force tends to be generated due to the reduced cohesive force of the pressure-sensitive adhesive layer.
  • the weight average molecular weight exceeds 5,000,000, the fluidity of the polymer is lowered, the wetness to the adherend (for example, polarizing plate) becomes insufficient, and the adherend and the pressure-sensitive adhesive layer of the surface protective film It tends to cause blisters that occur during the period.
  • a weight average molecular weight means what was obtained by measuring by GPC (gel permeation chromatography).
  • the glass transition temperature (Tg) of the (meth) acrylic polymer is preferably 0 ° C. or lower, more preferably ⁇ 10 ° C. or lower (usually ⁇ 100 ° C. or higher).
  • the glass transition temperature is higher than 0 ° C., the polymer is difficult to flow, for example, the wettability to the polarizing plate becomes insufficient, and it tends to cause blisters generated between the polarizing plate and the pressure-sensitive adhesive layer of the surface protective film.
  • the glass transition temperature is ⁇ 61 ° C. or lower, an adhesive layer excellent in wettability to a polarizing plate and light release properties can be easily obtained.
  • the glass transition temperature of a (meth) acrylic-type polymer can be adjusted in the said range by changing the monomer component and composition ratio to be used suitably.
  • the polymerization method of the (meth) acrylic polymer is not particularly limited, and can be polymerized by known methods such as solution polymerization, emulsion polymerization, bulk polymerization, suspension polymerization, etc. From the viewpoint of characteristics such as low contamination to the adherend (protected body), solution polymerization is a more preferable embodiment. Further, the polymer obtained may be any of a random copolymer, a block copolymer, an alternating copolymer, a graft copolymer, and the like.
  • urethane-type adhesive When using a urethane-type adhesive for the said adhesive layer, arbitrary appropriate urethane-type adhesives can be employ
  • a urethane type adhesive Preferably, what consists of urethane resin (urethane type polymer) obtained by making a polyol and a polyisocyanate compound react is mentioned.
  • the polyol include polyether polyol, polyester polyol, polycarbonate polyol, and polycaprolactone polyol.
  • the polyisocyanate compound include diphenylmethane diisocyanate, tolylene diisocyanate, hexamethylene diisocyanate, and the like.
  • silicone type adhesive When using a silicone type adhesive for the said adhesive layer, arbitrary appropriate silicone type adhesives can be employ
  • a silicone-based pressure-sensitive adhesive one obtained by blending or agglomerating a silicone resin (silicone-based polymer, silicone component) can be preferably used.
  • silicone pressure-sensitive adhesive examples include addition reaction curable silicone pressure-sensitive adhesives and peroxide curable silicone pressure-sensitive adhesives.
  • peroxides benzoyl peroxide and the like
  • an addition reaction curable silicone pressure-sensitive adhesive is preferable.
  • the curing reaction of the addition reaction curable silicone pressure-sensitive adhesive for example, when obtaining a polyalkyl silicone pressure-sensitive adhesive, generally, a method of curing a polyalkylhydrogensiloxane composition with a platinum catalyst can be mentioned.
  • the pressure-sensitive adhesive composition constituting the pressure-sensitive adhesive layer preferably contains an antistatic component, and more preferably contains an ionic compound as the antistatic component.
  • the ionic compound include alkali metal salts and / or ionic liquids. By containing these ionic compounds, excellent antistatic properties can be imparted.
  • the pressure-sensitive adhesive layer (using the antistatic component) obtained by crosslinking the pressure-sensitive adhesive composition containing the antistatic component as described above is an adherend that is not antistatic when peeled (for example, a polarizing plate) ), And a surface protective film with reduced contamination on the adherend is obtained. For this reason, it becomes very useful as an antistatic surface protective film in a technical field related to optical and electronic components in which charging and contamination are particularly serious problems.
  • the alkali metal salt Since the alkali metal salt has high ion dissociation properties, it is preferable in that it exhibits excellent antistatic ability even with a small amount of addition.
  • the alkali metal salt include a cation composed of Li + , Na + , K + , Cl ⁇ , Br ⁇ , I ⁇ , AlCl 4 ⁇ , Al 2 Cl 7 ⁇ , BF 4 ⁇ , PF 6 ⁇ , SCN.
  • These alkali metal salts may be used alone or in combination of two or more.
  • ionic liquid as an antistatic component (antistatic agent)
  • a pressure-sensitive adhesive layer having a high antistatic effect can be obtained without impairing the adhesive properties.
  • ionic liquids have a low melting point (melting point of 100 ° C. or lower) compared to ordinary ionic compounds, so molecular movement is easy. It is considered that excellent antistatic ability can be obtained.
  • an excellent peeling antistatic property on the adherend can be achieved by transferring a very small amount of the ionic liquid to the adherend.
  • an ionic liquid having a melting point of room temperature (25 ° C.) or less can be transferred to an adherend more efficiently, excellent antistatic properties can be obtained.
  • the ionic liquid since the ionic liquid is in a liquid state at a temperature of 100 ° C. or lower, it can be easily added and dispersed or dissolved in the pressure-sensitive adhesive as compared with a solid salt. Further, since the ionic liquid has no vapor pressure (nonvolatile), it has a characteristic that the antistatic property is continuously obtained without disappearing with time.
  • the ionic liquid refers to a molten salt (ionic compound) having a melting point of 100 ° C. or lower and exhibiting a liquid state.
  • ionic liquid those composed of an organic cation component represented by the following general formulas (A) to (E) and an anion component are preferably used.
  • An ionic liquid having these cations provides a further excellent antistatic ability.
  • R a in the formula (A) represents a hydrocarbon group having 4 to 20 carbon atoms, and may be a functional group in which a part of the hydrocarbon group is substituted with a hetero atom
  • R b and R c May be the same or different and each represents hydrogen or a hydrocarbon group having 1 to 16 carbon atoms, and a part of the hydrocarbon group may be a functional group substituted with a hetero atom.
  • the nitrogen atom contains a double bond, there is no R c .
  • R d in the formula (B) represents a hydrocarbon group having 2 to 20 carbon atoms, and may be a functional group in which a part of the hydrocarbon group is substituted with a hetero atom
  • R e , R f And R g may be the same or different and each represents hydrogen or a hydrocarbon group having 1 to 16 carbon atoms, and a part of the hydrocarbon group may be a functional group substituted with a hetero atom.
  • R h in the formula (C) represents a hydrocarbon group having 2 to 20 carbon atoms, and may be a functional group in which a part of the hydrocarbon group is substituted with a hetero atom
  • R i , R j , And R k may be the same or different and each represents hydrogen or a hydrocarbon group having 1 to 16 carbon atoms, and a part of the hydrocarbon group may be a functional group substituted with a hetero atom.
  • Z in the formula (D) represents a nitrogen, sulfur, or phosphorus atom
  • R 1 , R m , R n , and R o are the same or different and represent a hydrocarbon group having 1 to 20 carbon atoms.
  • a functional group in which a part of the hydrocarbon group is substituted with a hetero atom may be used.
  • Z is a sulfur atom, there is no Ro .
  • R P in the formula (E) represents a hydrocarbon group having 1 to 18 carbon atoms, a part of the hydrocarbon group may be substituted by a functional group with a heteroatom.
  • Examples of the cation represented by the formula (A) include a pyridinium cation, a piperidinium cation, a pyrrolidinium cation, a cation having a pyrroline skeleton, a cation having a pyrrole skeleton, and a morpholinium cation.
  • Specific examples include, for example, 1-butylpyridinium cation, 1-hexylpyridinium cation, 1-butyl-3-methylpyridinium cation, 1-butyl-3,4-dimethylpyridinium cation, 1-methyl-1-ethylpyrrole Dinium cation, 1-methyl-1-hexylpyrrolidinium cation, 1-ethyl-1-hexylpyrrolidinium cation, pyrrolidinium-2-one cation, 1-propylpiperidinium cation, 1-methyl-1 -Ethylpiperidinium cation, 1-methyl-1-hexylpiperidinium cation, 2-methyl-1-pyrroline cation, 1-ethyl-2-phenylindole cation, 1,2-dimethylindole cation, 1-ethylcarbazole Cation, N-ethyl-N-methylmol Such as O Li cation.
  • Examples of the cation represented by the formula (B) include an imidazolium cation, a tetrahydropyrimidinium cation, and a dihydropyrimidinium cation.
  • Specific examples include, for example, 1,3-dimethylimidazolium cation, 1-ethyl-3-methylimidazolium cation, 1-hexyl-3-methylimidazolium cation, 1-octyl-3-methylimidazolium cation, 1-decyl-3-methylimidazolium cation, 1-tetradecyl-3-methylimidazolium cation, 1- (2-methoxyethyl) -3-methylimidazolium cation, 1,3-dimethyl-1,4,5, 6-tetrahydropyrimidinium cation, 1,2,3-trimethyl-1,4,5,6-tetrahydropyrimidinium cation, 1,2,3,5-tetramethyl-1,4,5,6-tetrahydro Pyrimidinium cation, 1,3-dimethyl-1,4-dihydropyrimidinium cation, 1,3-di Til-1,6-dihydropyrimidinium
  • Examples of the cation represented by the formula (C) include a pyrazolium cation and a pyrazolinium cation.
  • Specific examples include, for example, 1-methylpyrazolium cation, 3-methylpyrazolium cation, 1-ethyl-2-methylpyrazolinium cation, 1-ethyl-2,3,5-trimethylpyrazolium cation 1-propyl-2,3,5-trimethylpyrazolium cation, 1-butyl-2,3,5-trimethylpyrazolium cation, 1-ethyl-2,3,5-trimethylpyrazolinium cation, 1 -Propyl-2,3,5-trimethylpyrazolinium cation, 1-butyl-2,3,5-trimethylpyrazolinium cation and the like.
  • Examples of the cation represented by the formula (D) include a tetraalkylammonium cation, a trialkylsulfonium cation, a tetraalkylphosphonium cation, and a part of the alkyl group is substituted with an alkenyl group, an alkoxyl group, or an epoxy group. And so on.
  • Specific examples include, for example, tetramethylammonium cation, tetrabutylammonium cation, tetrapentylammonium cation, tetrahexylammonium cation, triethylmethylammonium cation, tributylethylammonium cation, trimethyldecylammonium cation, N, N-diethyl-N— Methyl-N- (2-methoxyethyl) ammonium cation, glycidyltrimethylammonium cation, trimethylsulfonium cation, triethylsulfonium cation, tributylsulfonium cation, trihexylsulfonium cation, diethylmethylsulfonium cation, dibutylethylsulfonium cation, dimethyldecylsulfonium cation, Tetramethyl
  • asymmetric such as triethylmethylammonium cation, tributylethylammonium cation, trimethyldecylammonium cation, diethylmethylsulfonium cation, dibutylethylsulfonium cation, dimethyldecylsulfonium cation, triethylmethylphosphonium cation, tributylethylphosphonium cation, trimethyldecylphosphonium cation Tetraalkylammonium cation, trialkylsulfonium cation, tetraalkylphosphonium cation, N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium cation, glycidyltrimethylammonium cation, diallyldimethylammonium cation, N, N -Dimethyl-N-ethyl-N-heptyl
  • Examples of the cation represented by the formula (E) include a sulfonium cation. Further, the formula Specific examples of R P in (E) is a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, an octyl group, nonyl group, decyl group, dodecyl group, tridecyl group, tetradecyl group, An octadecyl group etc. are mentioned.
  • the anion component is not particularly limited as long as it satisfies that it becomes an ionic liquid.
  • anion component an anion represented by the following formula (F) can also be used.
  • an anion component an anion component containing a fluorine atom is particularly preferably used since an ionic liquid having a low melting point can be obtained.
  • ionic liquid used in the present invention are appropriately selected from a combination of the cation component and the anion component.
  • the ionic liquid used in the present invention are appropriately selected from a combination of the cation component and the anion component.
  • the said ionic liquid may be used independently, and 2 or more types may be mixed and used for it.
  • the antistatic component (ionic compound) is contained with respect to 100 parts by mass of a polymer (for example, (meth) acrylic polymer, urethane polymer, silicone polymer, etc.) that is a main component of the pressure-sensitive adhesive composition.
  • the amount is preferably less than 10 parts by mass, more preferably 5 parts by mass or less, further preferably 0.001 to 3 parts by mass, particularly preferably 0.005 to 0.9 parts by mass, and 0.01 to 0.5 parts by mass. Part is most preferred. It is preferable for it to be in the above-mentioned range since it is easy to achieve both antistatic properties and low contamination.
  • the pressure-sensitive adhesive composition more preferably contains an organopolysiloxane having an oxyalkylene chain, and more preferably contains an organopolysiloxane having an oxyalkylene side chain.
  • organopolysiloxane a known organopolysiloxane having a polyoxyalkylene main chain can be used as appropriate, and is preferably represented by the following formula.
  • R 1 and / or R 2 has an oxyalkylene chain having 1 to 6 carbon atoms, and the alkylene group in the oxyalkylene chain may be linear or branched
  • the terminal of may be an alkoxy group or a hydroxyl group, and either R 1 or R 2 may be a hydroxyl group, or may be an alkyl group or an alkoxy group.
  • a part of the alkoxy group may be a functional group substituted with a hetero atom.
  • N is an integer of 1 to 300.
  • organopolysiloxane those having a siloxane-containing site (siloxane site) as the main chain and an oxyalkylene chain bonded to the end of the main chain are used.
  • siloxane site siloxane site
  • oxyalkylene chain bonded to the end of the main chain
  • R 1 and / or R 2 in the formula has an oxyalkylene chain containing a hydrocarbon group having 1 to 6 carbon atoms, and the oxyalkylene chain includes an oxymethylene group, an oxyethylene group, an oxyalkylene chain. Examples thereof include a propylene group and an oxybutylene group, and among them, an oxyethylene group and an oxypropylene group are preferable.
  • R 1 and R 2 when both R 1 and R 2 have an oxyalkylene chain, they may be the same or different.
  • hydrocarbon group of the oxyalkylene chain may be linear or branched.
  • the end of the oxyalkylene chain may be an alkoxy group or a hydroxyl group, but more preferably an alkoxy group.
  • N is an integer of 1 to 300, preferably 10 to 200, and more preferably 20 to 150.
  • n is within the above range, the compatibility with the base polymer is balanced and a preferred embodiment is obtained.
  • you may have reactive substituents, such as a (meth) acryloyl group, an allyl group, and a hydroxyl group, in a molecule
  • the organopolysiloxane may be used alone or in combination of two or more.
  • organopolysiloxane having an oxyalkylene chain examples include, for example, commercially available products having trade names of X-22-4952, X-22-4272, X-22-6266, KF-6004, KF-889. (Shin-Etsu Chemical Co., Ltd.), BY16-201, SF8427 (Toray Dow Corning Co., Ltd.), IM22 (Asahi Kasei Wacker Co., Ltd.) and the like. These compounds may be used alone or in combination of two or more.
  • organosiloxane having (bonding) the oxyalkylene chain in the main chain it is also possible to use an organosiloxane having (bonding) the oxyalkylene chain in the side chain.
  • Use of an organosiloxane having an alkylene chain is a preferred embodiment because it is easy to achieve both antistatic properties and low contamination.
  • an organopolysiloxane having a known polyoxyalkylene side chain can be used as appropriate, and is preferably represented by the following formula.
  • R 1 is a monovalent organic group
  • R 2 , R 3 and R 4 are alkylene groups
  • R 5 is hydrogen or an organic group
  • m and n are integers from 0 to 1000, provided that m and n are simultaneously
  • a and b are integers from 0 to 100. However, a and b are not 0 at the same time.
  • R 1 in the formula is a monovalent group exemplified by an alkyl group such as a methyl group, an ethyl group or a propyl group, an aryl group such as a phenyl group or a tolyl group, or an aralkyl group such as a benzyl group or a phenethyl group. It is an organic group, and each may have a substituent such as a hydroxyl group.
  • R 2 , R 3 and R 4 may be an alkylene group having 1 to 8 carbon atoms such as a methylene group, an ethylene group or a propylene group.
  • R 3 and R 4 are different alkylene groups, and R 2 may be the same as or different from R 3 or R 4 .
  • One of R 3 and R 4 is preferably an ethylene group or a propylene group in order to increase the concentration of an ionic compound that can be dissolved in the polyoxyalkylene side chain.
  • R 5 may be an alkyl group such as a methyl group, an ethyl group or a propyl group, or a monovalent organic group exemplified by an acyl group such as an acetyl group or a propionyl group, each having a substituent such as a hydroxyl group. It may be. These compounds may be used alone or in combination of two or more. Moreover, you may have reactive substituents, such as a (meth) acryloyl group, an allyl group, and a hydroxyl group, in a molecule
  • organosiloxanes having a polyoxyalkylene side chain an organosiloxane having a polyoxyalkylene side chain having a hydroxyl group terminal is presumed to have a good balance of compatibility.
  • organosiloxane examples include, for example, commercial names KF-351A, KF-352A, KF-353, KF-354L, KF-355A, KF-615A, KF-945, KF-640, KF.
  • the organosiloxane used in the present invention preferably has an HLB (Hydrophile-Lipophile Balance) value of 1 to 16, more preferably 3 to 14.
  • HLB Hydrophile-Lipophile Balance
  • the content of the organopolysiloxane is 0.
  • the amount is preferably 01 to 5 parts by mass, more preferably 0.03 to 3 parts by mass, still more preferably 0.05 to 1 part by mass, and most preferably 0.05 to 0.5 parts by mass. It is preferable for it to be in the above-mentioned range since both antistatic properties and light releasability (removability) can be easily achieved.
  • the pressure-sensitive adhesive composition may contain a polyoxyalkylene chain-containing compound that is a polyether component that does not contain organopolysiloxane.
  • a polyoxyalkylene chain-containing compound that is a polyether component that does not contain organopolysiloxane.
  • polyoxyalkylene chain-containing compound not containing the organopolysiloxane examples include, for example, polyoxyalkylene alkylamine, polyoxyalkylene diamine, polyoxyalkylene fatty acid ester, polyoxyalkylene sorbitan fatty acid ester, polyoxyalkylene alkylphenyl.
  • Nonionic surfactants such as ether, polyoxyalkylene alkyl ether, polyoxyalkylene alkyl allyl ether, polyoxyalkylene alkyl phenyl allyl ether; polyoxyalkylene alkyl ether sulfate ester salt, polyoxyalkylene alkyl ether phosphate ester salt, Polyoxyalkylene alkyl phenyl ether sulfate ester salt, polyoxyalkylene alkyl phenyl ether phosphoric acid
  • Anionic surfactants such as stealth salts; other cationic surfactants having polyoxyalkylene chains (polyalkylene oxide chains), amphoteric surfactants, polyether compounds having polyoxyalkylene chains (and derivatives thereof) And acrylic compounds having a polyoxyalkylene chain (and derivatives thereof) and the like. Moreover, you may mix
  • polyether compound having a polyoxyalkylene chain examples include block copolymers of polypropylene glycol (PPG) -polyethylene glycol (PEG), block copolymers of PPG-PEG-PPG, and PEG-PPG-PEG. Examples thereof include block copolymers.
  • the derivative of the polyether compound having a polyoxyalkylene chain include an oxypropylene group-containing compound having a terminal etherification (PPG monoalkyl ether, PEG-PPG monoalkyl ether, etc.), an oxypropylene group having a terminal acetylation Containing compounds (terminal acetylated PPG and the like), and the like.
  • the acrylic compound having a polyoxyalkylene chain examples include a (meth) acrylate polymer having an oxyalkylene group.
  • the oxyalkylene group has an addition mole number of oxyalkylene units of preferably 1 to 50, more preferably 2 to 30 from the viewpoint of coordination of the ionic compound when an ionic compound is used as the antistatic component. 2 to 20 is more preferable.
  • the terminal of the oxyalkylene chain may be a hydroxyl group or may be substituted with an alkyl group, a phenyl group or the like.
  • the (meth) acrylate polymer having an oxyalkylene group is preferably a polymer containing an alkylene oxide (meth) acrylate as a monomer unit (component).
  • Specific examples of the (meth) acrylate alkylene oxide examples include methoxy-polyethylene glycol (meth) acrylate type such as methoxy-diethylene glycol (meth) acrylate and methoxy-triethylene glycol (meth) acrylate, ethoxy-diethylene glycol ( Meth) acrylate, ethoxy-polyethylene glycol (meth) acrylate type such as ethoxy-triethylene glycol (meth) acrylate, butoxy-diethylene glycol (meth) acrylate, Butoxy-polyethylene glycol (meth) acrylate type such as toxi-triethylene glycol (meth) acrylate, phenoxy-polyethylene glycol (meth) acrylate
  • the monomer unit (component) other monomer units (components) other than the (meth) acrylic acid alkylene oxide can also be used.
  • specific examples of other monomer components include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, s-butyl (meth) acrylate, t-butyl (meth) acrylate, isobutyl (meth) ) Acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, n-decyl (meth) ) Acrylates, isodecyl (meth) acrylates, n-dodecyl
  • monomer units (components) other than the (meth) acrylic acid alkylene oxide carboxyl group-containing (meth) acrylate, phosphoric acid group-containing (meth) acrylate, cyano group-containing (meth) acrylate, vinyl esters , Aromatic vinyl compounds, acid anhydride group-containing (meth) acrylates, hydroxyl group-containing (meth) acrylates, amide group-containing (meth) acrylates, amino group-containing (meth) acrylates, epoxy group-containing (meth) acrylates, N- Acryloylmorpholine, vinyl ethers, and the like can be used as appropriate.
  • the polyoxyalkylene chain-containing compound not containing the organopolysiloxane is a compound having at least a part of a (poly) ethylene oxide chain.
  • the compatibility between the base polymer and the antistatic component is improved, bleeding to the adherend is suitably suppressed, and a low-staining adhesive composition is obtained. It is done.
  • a PPG-PEG-PPG block copolymer is used, a pressure-sensitive adhesive excellent in low contamination can be obtained.
  • the mass of the (poly) ethylene oxide chain in the entire polyoxyalkylene chain-containing compound not containing the organopolysiloxane is preferably 5 to 90% by mass, more preferably 5 to 85%. % By weight, more preferably 5 to 80% by weight, most preferably 5 to 75% by weight.
  • the molecular weight of the polyoxyalkylene chain-containing compound not containing the organopolysiloxane is suitably a number average molecular weight (Mn) of 50,000 or less, preferably 200 to 30,000, more preferably 200 to 10,000, 200 to 5000 is preferably used.
  • Mn number average molecular weight
  • Mn means a value in terms of polystyrene obtained by GPC (gel permeation chromatography).
  • the content of the polyoxyalkylene chain-containing compound not containing the organopolysiloxane can be, for example, 0.005 to 20 parts by mass, preferably 0, with respect to 100 parts by mass of the (meth) acrylic polymer. 0.01 to 10 parts by mass, more preferably 0.03 to 5 parts by mass, still more preferably 0.05 to 3 parts by mass, and most preferably 0.1 to 0.9 parts by mass. It is preferable for it to be in the above-mentioned range, since it is easy to achieve both wettability to the adherend and low contamination.
  • the pressure-sensitive adhesive composition preferably contains a crosslinking agent. Moreover, in this invention, it is set as an adhesive layer using the said adhesive composition.
  • the pressure-sensitive adhesive composition contains the (meth) acrylic polymer
  • the structural unit, the structural ratio, the selection and addition ratio of the crosslinking agent, etc. of the (meth) acrylic polymer are appropriately adjusted for crosslinking.
  • a surface protective film (adhesive layer) having more excellent heat resistance can be obtained.
  • an isocyanate compound As the cross-linking agent used in the present invention, an isocyanate compound, an epoxy compound, a melamine resin, an aziridine derivative, a metal chelate compound, or the like may be used.
  • an isocyanate compound is a preferred embodiment.
  • these compounds may be used independently and may be used in mixture of 2 or more types.
  • isocyanate compound examples include aliphatic polyisocyanates such as trimethylene diisocyanate, butylene diisocyanate, hexamethylene diisocyanate (HDI), dimer acid diisocyanate, and fats such as cyclopentylene diisocyanate, cyclohexylene diisocyanate, and isophorone diisocyanate (IPDI).
  • aliphatic polyisocyanates such as trimethylene diisocyanate, butylene diisocyanate, hexamethylene diisocyanate (HDI), dimer acid diisocyanate, and fats such as cyclopentylene diisocyanate, cyclohexylene diisocyanate, and isophorone diisocyanate (IPDI).
  • Aromatic isocyanates such as cyclic isocyanates, 2,4-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, xylylene diisocyanate (XDI), allophanate bonds, biuret bonds, isocyanurate bonds, uretdione bonds , Urea bond, carbodiimide bond, uretonimine bond, oxadiazinetrione bond Polyisocynate modified products thereof obtained by modifying the.
  • Aromatic isocyanates such as cyclic isocyanates, 2,4-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, xylylene diisocyanate (XDI), allophanate bonds, biuret bonds, isocyanurate bonds, uretdione bonds , Urea bond, carbodiimide bond, uretonimine bond, oxadiazinetrione bond Polyisocyn
  • These isocyanate compounds may be used alone, or may be used in combination of two or more, and a bifunctional isocyanate compound and a trifunctional or higher isocyanate compound may be used in combination.
  • a cross-linking agent in combination, it becomes possible to achieve both tackiness and resilience resistance (adhesiveness to a curved surface), and a surface protective film with better adhesion reliability can be obtained.
  • the blending ratio (mass ratio) of both compounds is [bifunctional isocyanate compound] / [3
  • the functional or higher isocyanate compound] (mass ratio) is preferably 0.1 / 99.9 to 50/50, more preferably 0.1 / 99.9 to 20/80, and 0.1 / 99 9.9 to 10/90 is more preferable, 0.1 / 99.9 to 5/95 is more preferable, and 0.1 / 99.9 to 1/99 is most preferable.
  • epoxy compound examples include N, N, N ′, N′-tetraglycidyl-m-xylenediamine (trade name: TETRAD-X, manufactured by Mitsubishi Gas Chemical Co., Ltd.) and 1,3-bis (N, N-dioxy). Glycidylaminomethyl) cyclohexane (trade name: TETRAD-C, manufactured by Mitsubishi Gas Chemical Company, Inc.).
  • Examples of the melamine resin include hexamethylol melamine.
  • Examples of the aziridine derivative include commercially available product names HDU, TAZM, TAZO (manufactured by Mutual Yakugyo Co., Ltd.) and the like.
  • metal chelate compound examples include aluminum, iron, tin, titanium, and nickel as metal components, and acetylene, methyl acetoacetate, and ethyl lactate as chelate components.
  • the content of the crosslinking agent used in the present invention is, for example, from 0.01 to 20 parts by mass with respect to 100 parts by mass of the (meth) acrylic polymer used in the acrylic adhesive.
  • the content is preferably 0.1 to 15 parts by mass, more preferably 0.5 to 10 parts by mass, and most preferably 1.0 to 6 parts by mass.
  • the content is less than 0.01 parts by mass, the crosslinking formation by the crosslinking agent becomes insufficient, the cohesive force of the resulting pressure-sensitive adhesive layer becomes small, and sufficient heat resistance may not be obtained, It tends to cause glue residue.
  • the pressure-sensitive adhesive composition may further contain a cross-linking catalyst for more effectively proceeding with any of the cross-linking reactions described above.
  • crosslinking catalysts include tin catalysts such as dibutyltin dilaurate and dioctyltin dilaurate, tris (acetylacetonato) iron, tris (hexane-2,4-dionato) iron, and tris (heptane-2,4-dionato).
  • Iron tris (heptane-3,5-dionato) iron, tris (5-methylhexane-2,4-dionato) iron, tris (octane-2,4-dionato) iron, tris (6-methylheptane-2, 4-Dionato) iron, Tris (2,6-dimethylheptane-3,5-dionato) iron, Tris (nonane-2,4-dionato) iron, Tris (nonane-4,6-dionato) iron, Tris (2 , 2,6,6-tetramethylheptane-3,5-dionato) iron, tris (tridecan-6,8-dionato) iron, tris (1-phenylbutane-1,3) Diato) iron, tris (hexafluoroacetylacetonato) iron, tris (ethyl acetoacetate) iron, tris (acetoacetate-n-propyl) iron, tris (isopropyl acetoa
  • the content of the crosslinking catalyst is not particularly limited, but is preferably about 0.0001 to 1 part by mass, for example, 0.001 to 0.5 part with respect to 100 parts by mass of the (meth) acrylic polymer. Part by mass is more preferable. Within the above range, when the pressure-sensitive adhesive layer is formed, the speed of the cross-linking reaction is high, and the pot life of the pressure-sensitive adhesive composition is lengthened.
  • the pressure-sensitive adhesive composition may contain an acrylic oligomer.
  • the acrylic oligomer preferably has a weight average molecular weight (Mw) of 1000 or more and less than 30000, more preferably 1500 or more and less than 20000, and still more preferably 2000 or more and less than 10,000.
  • the acrylic oligomer is a (meth) acrylic polymer containing a (meth) acrylic monomer having an alicyclic structure represented by the following general formula as a monomer unit, and when used as an acrylic pressure-sensitive adhesive, It functions as a tackifier resin, improves adhesion, and is effective in suppressing the surface protection film from floating.
  • CH 2 C (R 1 ) COOR 2 [wherein R 1 is a hydrogen atom or a methyl group, and R 2 is an alicyclic hydrocarbon group having an alicyclic structure]
  • alicyclic hydrocarbon group R 2 in the above general formula alicyclic carbon such as cyclohexyl group, isobornyl group, dicyclopentanyl group, dicyclopentenyl group, adamantyl group, tricyclopentanyl group, tricyclopentenyl group and the like.
  • a hydrogen group etc. can be mentioned.
  • the (meth) acrylic acid ester having such an alicyclic hydrocarbon group include cyclohexyl (meth) acrylate having a cyclohexyl group, isobornyl (meth) acrylate having an isobornyl group, and a dicyclopentanyl group.
  • esters of (meth) acrylic acid with alicyclic alcohols such as (meth) acrylic acid dicyclopentanyl.
  • adhesiveness can be improved by giving an acrylic oligomer as a monomer unit a (meth) acrylic monomer having a relatively bulky structure.
  • the content of the acrylic oligomer is, for example, preferably 0.01 to 10 parts by mass, and preferably 0.1 to 7 parts by mass with respect to 100 parts by mass of the (meth) acrylic polymer.
  • the content is more preferably 0.2 to 5 parts by mass, and most preferably 0.3 to 2 parts by mass.
  • the pressure-sensitive adhesive composition may contain other known additives, such as powders such as lubricants, colorants, pigments, surfactants, plasticizers, tackifiers, low molecular weights.
  • powders such as lubricants, colorants, pigments, surfactants, plasticizers, tackifiers, low molecular weights.
  • Polymers surface lubricants, leveling agents, antioxidants, corrosion inhibitors, light stabilizers, UV absorbers, polymerization inhibitors, silane coupling agents, inorganic or organic fillers, metal powders, particles, foils It can be added as appropriate depending on the purpose of using the product.
  • the surface protective film of the present invention is formed by forming the pressure-sensitive adhesive layer on the second surface of the base material, and in this case, crosslinking of the pressure-sensitive adhesive composition is performed after application of the pressure-sensitive adhesive composition.
  • crosslinking of the pressure-sensitive adhesive composition is performed after application of the pressure-sensitive adhesive composition.
  • the method for forming the pressure-sensitive adhesive layer on the base material is not particularly limited.
  • the pressure-sensitive adhesive layer is applied to the base material by applying the pressure-sensitive adhesive composition (solution) to the base material and drying and removing the polymerization solvent. It is produced by forming on top. Thereafter, curing may be performed for the purpose of adjusting the component transfer of the pressure-sensitive adhesive layer or adjusting the crosslinking reaction.
  • one or more solvents other than the polymerization solvent are added to the pressure-sensitive adhesive composition so that the surface-protective film can be uniformly applied on the substrate. You may add a new one.
  • a known method used for producing pressure-sensitive adhesive tapes is used as a method for forming the pressure-sensitive adhesive layer when producing the surface protective film of the present invention. Specific examples include roll coating, gravure coating, reverse coating, roll brushing, spray coating, air knife coating, extrusion coating using a die coater, and the like.
  • the surface protective film of the present invention is usually prepared so that the thickness of the pressure-sensitive adhesive layer is 3 to 100 ⁇ m, preferably about 5 to 50 ⁇ m. It is preferable for the thickness of the pressure-sensitive adhesive layer to be within the above range because it is easy to obtain an appropriate balance between removability and adhesiveness.
  • the total thickness of the surface protective film of the present invention is preferably 1 to 400 ⁇ m, more preferably 10 to 200 ⁇ m, and most preferably 20 to 100 ⁇ m. Within the above range, the adhesive properties (removability, adhesiveness, etc.), workability, and appearance properties are excellent and a preferred embodiment is obtained.
  • the said total thickness means the sum total of the thickness containing all layers, such as a base material, an adhesive layer, an antistatic layer, and an antistatic layer.
  • a separator can be bonded to the surface of the pressure-sensitive adhesive layer for the purpose of protecting the pressure-sensitive adhesive surface as necessary.
  • the material constituting the separator includes paper and plastic film, but a plastic film is preferably used because of its excellent surface smoothness.
  • the film is not particularly limited as long as it can protect the pressure-sensitive adhesive layer.
  • polyethylene film, polypropylene film, polybutene film, polybutadiene film, polymethylpentene film, polyvinyl chloride film, vinyl chloride copolymer examples thereof include a coalesced film, a polyethylene terephthalate film, a polybutylene terephthalate film, a polyurethane film, and an ethylene-vinyl acetate copolymer film.
  • the thickness of the separator is usually about 5 to 200 ⁇ m, preferably about 10 to 100 ⁇ m. It is preferable for it to be in the above-mentioned range since it is excellent in workability for bonding to the pressure-sensitive adhesive layer and workability for peeling from the pressure-sensitive adhesive layer.
  • mold release and antifouling treatment with a silicone type, fluorine type, long chain alkyl type or fatty acid amide type release agent, silica powder, etc., coating type, kneading type, vapor deposition type It is also possible to carry out antistatic treatment such as.
  • the optical member of the present invention is preferably protected by the surface protective film. Since the surface protective film has excellent antistatic properties and stability over time of peeling voltage, it can be used for surface protection applications (surface protective film) during processing, transportation, shipping, etc., so the optical member (polarizing plate, etc.) It is useful for protecting the surface of the film. In particular, since it can be used for plastic products and the like that are likely to generate static electricity, it is very useful for antistatic applications in the technical fields related to optical and electronic parts where charging is a particularly serious problem.
  • Tg Glass transition temperature
  • Tg + 273 ⁇ [Wn / (Tgn + 273)] [Wherein Tg (° C.) is the glass transition temperature of the copolymer, Wn ( ⁇ ) is the mass fraction of each monomer, Tgn (° C.) is the glass transition temperature of the homopolymer of each monomer, and n is the type of each monomer Represents.
  • the surface resistivity ( ⁇ / ⁇ ) in the present invention is preferably 1.0 ⁇ 10 both at the initial stage and when left at room temperature (23 ° C. ⁇ 50% RH) for 1 week (7 days). 11 or less, more preferably 5.0 ⁇ 10 10 or less, and still more preferably 1.0 ⁇ 10 10 or less.
  • a surface protective film exhibiting a surface resistivity within the above range can be suitably used as a surface protective film used in, for example, processing or transporting an article that dislikes static electricity such as a liquid crystal cell or a semiconductor device.
  • the surface protective film 1 was pressure-bonded with a hand roller so that one end of the surface protective film 1 protruded 30 mm from the end of the polarizing plate 20.
  • the sample was left in an environment of 23 ° C. ⁇ 50% RH for one day, and then set at a predetermined position on a sample fixing base 30 having a height of 20 mm.
  • the end of the surface protective film 1 that protruded 30 mm from the polarizing plate 20 was fixed to an automatic winder (not shown), and was peeled so that the peeling angle was 150 ° and the peeling speed was 10 m / min.
  • a potential measuring device 40 (model “KSD-0103” manufactured by Kasuga Denki Co., Ltd.) in which the potential of the adherend (polarizing plate) surface generated at this time is fixed at a position 100 mm in height from the center of the polarizing plate 20.
  • the “initial polarizing plate stripping voltage” was measured. The measurement was performed in an environment of 23 ° C. and 50% RH. Further, after being allowed to stand in an environment of 23 ° C.
  • the polarizing plate peeling voltage is a peeling voltage derived from the antistatic layer and the pressure-sensitive adhesive layer constituting the surface protective film of the present invention, and contributes to antistatic properties.
  • the polarizing plate peeling voltage (kV) (both absolute value, initial and time) in the present invention is preferably 0.8 or less, more preferably 0.7 or less, and still more preferably 0.8. 5 or less. Within the above range, for example, damage to a liquid crystal driver or the like can be prevented, which is a preferable mode.
  • a film side peeling voltage is a peeling voltage derived from the antistatic layer which comprises the surface protection film of this invention, and contributes to antistatic property.
  • the film side peeling voltage (kV) in the present invention (absolute value, both initial and time) is preferably 0.8 or less, more preferably 0.7 or less, and still more preferably 0. 5 or less. Within the above range, the surface protective film after peeling is not charged and is excellent in workability.
  • the surface protective film is cut to a size of 70 mm in width and 100 mm in length, and is bonded to an acrylic plate (trade name “Acrylite”, manufactured by Mitsubishi Rayon Co., Ltd., thickness: 1 mm, width: 70 mm, length: 100 mm).
  • an acrylic plate trade name “Acrylite”, manufactured by Mitsubishi Rayon Co., Ltd., thickness: 1 mm, width: 70 mm, length: 100 mm.
  • This test piece was placed on a smooth PET film held horizontally with the back surface (antistatic layer surface) facing down, and a load of 1.5 kg was placed on the test piece.
  • the test piece loaded with the load was attached to a tensile tester using a non-stretchable thread, and the test piece was pulled horizontally at a measurement temperature of 25 ° C.
  • slipperiness (dynamic frictional force) (N) in this invention Preferably it is 5 or less, More preferably, it is 4.5 or less, More preferably, it is 4 or less. Within the above range, when handling the adherend to which the surface protective film is attached, it is advantageous in terms of workability that the sliding property of the back surface of the base material (surface of the antistatic layer) is good.
  • polyester resin Vylonal MD-1480 (25% aqueous solution, manufactured by Toyobo Co., Ltd.) as a binder, polyaniline sulfonic acid (aqua-PASS, weight average molecular weight 40,000, manufactured by Mitsubishi Rayon Co., Ltd.) as a conductive polymer, and a melamine-based crosslinking agent (as a crosslinking agent) Sumimar M-50W (manufactured by Sumitomo Chemical Co., Ltd.) in water / ethanol (1/3) mixed solvent, binder is 100 parts by mass in solid content, conductive polymer is 75 parts by mass in solid content, and crosslinking agent is in solid content And 5 parts by mass were added and stirred for about 20 minutes to mix thoroughly. In this way, an antistatic layer (2) solution having an NV of about 0.4% was prepared (see Table 1).
  • the (meth) acrylic-type polymer 1 solution (40 mass%) was prepared.
  • the (meth) acrylic polymer 1 had a weight average molecular weight of 560,000 and a glass transition temperature (Tg) of ⁇ 68 ° C. (see Table 2).
  • (Meth) acrylic polymers 2 and 3 were obtained in the same manner as the method for preparing the (meth) acrylic polymer 1 for the pressure-sensitive adhesive layer.
  • the same quantity as the (meth) acrylic-type polymer 1 was mix
  • the (meth) acrylic polymer 1 solution (40% by mass) is diluted to 20% by mass with ethyl acetate, and isocyanurate of hexamethylene diisocyanate is used as a crosslinking agent in 500 parts by mass (100 parts by mass of solid content) of this solution.
  • Acrylic adhesive (2) to (4) solutions were obtained using (meth) acrylic polymers 1 to 3 in the same manner as in the method for preparing the acrylic adhesive (1) solution (see Table 3). .
  • urethane-based adhesive (6) solution 0.1 part by mass of “KF-6004” (manufactured by Shin-Etsu Chemical Co., Ltd.) as an organosiloxane having an oxyalkylene chain, 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide (EMIFSI, No. 1) as an antistatic component
  • EMIFSI 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide
  • silicone adhesive As a silicone adhesive, “X-40-3229” (solid content 60% by mass, manufactured by Shin-Etsu Chemical Co., Ltd.) is 100 parts by mass in solid content, and as a platinum catalyst, “CAT-PL-50T” (Shin-Etsu Chemical Co., Ltd.). (Product) 0.5 parts by mass and 100 parts by mass of toluene as a solvent were blended to obtain a silicone-based adhesive (7) solution (see Table 5).
  • the acrylic pressure-sensitive adhesive (1) solution was applied to the surface (second surface of the base material) opposite to the antistatic layer of the base material having the antistatic layer (base material with antistatic layer), and 130 ° C. was heated for 1 minute to form an adhesive layer having a thickness of 15 ⁇ m.
  • the surface of the pressure-sensitive adhesive layer was bonded with a silicone-treated surface of a polyethylene terephthalate film (thickness 25 ⁇ m), which is a separator with a silicone treatment on one side, to produce a surface protective film (see Tables 1 to 3 and 6). ).
  • Example 7 ⁇ Production of surface protective film>
  • the urethane pressure-sensitive adhesive (5) solution is applied to the surface opposite to the antistatic layer of the base material having the antistatic layer (base material with antistatic layer), heated at 130 ° C. for 1 minute, A pressure-sensitive adhesive layer having a thickness of 15 ⁇ m was formed.
  • the surface of the pressure-sensitive adhesive layer was bonded with a silicone-treated surface of a polyethylene terephthalate film (thickness: 25 ⁇ m), which is a separator with a silicone treatment on one side, to produce a surface protective film (see Tables 1, 4 and 6). ).
  • Example 8 A surface protective film was produced in the same manner as in Example 9 except that the urethane pressure-sensitive adhesive (6) solution was used (see Tables 1, 4 and 6).
  • Example 9 ⁇ Production of surface protective film>
  • the silicone-based pressure-sensitive adhesive (7) solution was applied to the surface opposite to the antistatic layer of the substrate having the antistatic layer (substrate with antistatic layer), heated at 150 ° C. for 1 minute, A pressure-sensitive adhesive layer having a thickness of 15 ⁇ m was formed.
  • the surface of the pressure-sensitive adhesive layer was bonded with a silicone-treated surface of a polyethylene terephthalate film (thickness 25 ⁇ m), which is a separator having one surface subjected to fluorine treatment, to produce a surface protective film (see Tables 1, 5 and 6). ).
  • Example 10 A surface protective film was produced in the same manner as in Example 9 except that the silicone-based pressure-sensitive adhesive (8) solution was used (see Tables 1, 5 and 6).
  • Table 6 shows the results of various measurements and evaluations described above for the surface protective films according to Examples and Comparative Examples.
  • KF353 Organopolysiloxane having an oxyalkylene chain (HLB value: 10) (trade name: KF-353, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • KF6004 Organopolysiloxane having an oxyalkylene chain (HLB value: 9) (trade name: KF-6004, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • LITFSI Lithium bis (trifluoromethanesulfonyl) imide (alkali metal salt, manufactured by Tokyo Chemical Industry Co., Ltd.) (active ingredient 100%)
  • BMPTFSI 1-butyl-3-methylpyridinium bis (trifluoromethanesulfonyl) imide (ionic liquid, Sigma Aldrich, liquid at 25 ° C.) (active ingredient 100%)
  • [Crosslinking agent] C / HX Isocyanurate of hexamethylene diisocyanate (manufactured by Nippon Polyurethane Co., Ltd., trade name: Coronate HX) (active ingredient 100%)
  • Takenate 600 1,3-bis (isocyanatomethyl) cyclohexane (Mitsui Chemicals, trade name: Takenate 600) (active ingredient 100%)
  • the antistatic layer is not formed with the desired antistatic agent composition, the antistatic property due to the antistatic layer and the stability over time of the peeling band voltage are obtained from the evaluation results in Table 6 above. Further, none satisfying all the characteristics of the printing adhesiveness was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

L'invention concerne : un film de protection de surface qui permet d'obtenir des propriétés antistatiques, une stabilité à long terme du potentiel électrostatique de pelage chargé et d'adhérence d'impression; un procédé de production de ce film de protection de surface; et un élément optique. Un film de protection de surface, conformément à la présente invention, comprend : une base présentant une première surface et une seconde surface; une couche antistatique qui est disposée sur la première surface de la base; et une couche adhésive qui est formée sur la seconde surface de la base à l'aide d'une composition adhésive. Ce film de protection de surface est caractérisé en ce que la couche antistatique est formée à l'aide d'une composition d'agent antistatique qui contient un acide sulfonique de polyaniline qui sert de constituant de polymère conducteur, une résine polyester qui sert de liant, et un agent de réticulation à base de mélamine qui sert d'agent de réticulation.
PCT/JP2016/087069 2015-12-28 2016-12-13 Film de protection de surface, procédé de production de film de protection de surface, et élément optique WO2017115644A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680072756.4A CN108368394A (zh) 2015-12-28 2016-12-13 表面保护膜、表面保护膜的制造方法以及光学构件
KR1020187017651A KR20180097576A (ko) 2015-12-28 2016-12-13 표면 보호 필름, 표면 보호 필름의 제조 방법 및 광학 부재

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015256276A JP2017119753A (ja) 2015-12-28 2015-12-28 表面保護フィルム、表面保護フィルムの製造方法、及び、光学部材
JP2015-256276 2015-12-28

Publications (1)

Publication Number Publication Date
WO2017115644A1 true WO2017115644A1 (fr) 2017-07-06

Family

ID=59224848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087069 WO2017115644A1 (fr) 2015-12-28 2016-12-13 Film de protection de surface, procédé de production de film de protection de surface, et élément optique

Country Status (5)

Country Link
JP (1) JP2017119753A (fr)
KR (1) KR20180097576A (fr)
CN (1) CN108368394A (fr)
TW (1) TW201736130A (fr)
WO (1) WO2017115644A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018012545A1 (fr) * 2016-07-15 2018-01-18 日東電工株式会社 Film de protection de surface, et élément optique
EP3722778A4 (fr) * 2017-12-07 2021-01-13 LG Chem, Ltd. Spécimen pour analyser la forme d'une couche antisalissure antistatique et son procédé de préparation

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7126306B2 (ja) * 2017-12-06 2022-08-26 日東電工株式会社 表面保護フィルムおよび保護フィルム付き光学部材
JP7289966B2 (ja) * 2017-12-06 2023-06-12 日東電工株式会社 表面保護フィルムおよび保護フィルム付き光学部材
JP7289967B2 (ja) * 2017-12-06 2023-06-12 日東電工株式会社 表面保護フィルムおよび保護フィルム付き光学部材
US20220135843A1 (en) * 2018-12-20 2022-05-05 Lg Chem, Ltd. Acrylic Emulsion Pressure-Sensitive Adhesive Composition
JP7285072B2 (ja) * 2018-12-28 2023-06-01 三星エスディアイ株式会社 粘着剤組成物、硬化物および表面保護フィルム
JP7241538B2 (ja) * 2018-12-28 2023-03-17 三星エスディアイ株式会社 粘着剤組成物、硬化物および表面保護フィルム
JP7241537B2 (ja) * 2018-12-28 2023-03-17 三星エスディアイ株式会社 熱硬化型粘着剤組成物、熱硬化物および表面保護フィルム
JP7257165B2 (ja) * 2019-02-12 2023-04-13 日東電工株式会社 補強フィルムを備えるデバイスおよびその製造方法、ならびに補強方法
CN114478491B (zh) * 2022-01-17 2023-10-31 湖南大学 一种高粘附性离子液体胶粘剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000043430A (ja) * 1998-07-31 2000-02-15 Toyobo Co Ltd 熱転写受像シート
JP2000296680A (ja) * 1999-04-14 2000-10-24 Oji Paper Co Ltd 熱転写受容シート
JP2012162624A (ja) * 2011-02-04 2012-08-30 Nitto Denko Corp 粘着シートおよび表面保護フィルム
WO2015076302A1 (fr) * 2013-11-25 2015-05-28 日東電工株式会社 Film de protection de surface, procédé de fabrication du film de protection de surface, et élément optique
WO2016114256A1 (fr) * 2015-01-16 2016-07-21 日東電工株式会社 Film de protection de surface, et élément optique

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100744876B1 (ko) * 1998-06-22 2007-08-01 도요 보세키 가부시키가이샤 고대전방지성 적층체
JP4170102B2 (ja) 2003-01-23 2008-10-22 藤森工業株式会社 表面保護フィルムおよびそれを用いた積層体
JP4891603B2 (ja) * 2005-12-07 2012-03-07 電気化学工業株式会社 粘着シート及びそれを用いた電子部品製造方法。
JP4236273B2 (ja) * 2006-03-13 2009-03-11 日東電工株式会社 粘着型光学フィルム及び画像表示装置
KR100908050B1 (ko) 2007-04-02 2009-07-15 주식회사 대하맨텍 대전방지 코팅액 조성물, 그의 제조방법 및 이를 코팅한대전방지 코팅 필름
JP6742723B2 (ja) * 2015-01-16 2020-08-19 日東電工株式会社 表面保護フィルム、及び、光学部材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000043430A (ja) * 1998-07-31 2000-02-15 Toyobo Co Ltd 熱転写受像シート
JP2000296680A (ja) * 1999-04-14 2000-10-24 Oji Paper Co Ltd 熱転写受容シート
JP2012162624A (ja) * 2011-02-04 2012-08-30 Nitto Denko Corp 粘着シートおよび表面保護フィルム
WO2015076302A1 (fr) * 2013-11-25 2015-05-28 日東電工株式会社 Film de protection de surface, procédé de fabrication du film de protection de surface, et élément optique
WO2016114256A1 (fr) * 2015-01-16 2016-07-21 日東電工株式会社 Film de protection de surface, et élément optique

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018012545A1 (fr) * 2016-07-15 2018-01-18 日東電工株式会社 Film de protection de surface, et élément optique
JP6294578B1 (ja) * 2016-07-15 2018-03-14 日東電工株式会社 表面保護フィルム、及び、光学部材
EP3722778A4 (fr) * 2017-12-07 2021-01-13 LG Chem, Ltd. Spécimen pour analyser la forme d'une couche antisalissure antistatique et son procédé de préparation
US11262279B2 (en) 2017-12-07 2022-03-01 Lg Chem, Ltd. Specimen for analyzing shape of antistatic antifouling layer and method for preparing same

Also Published As

Publication number Publication date
TW201736130A (zh) 2017-10-16
JP2017119753A (ja) 2017-07-06
CN108368394A (zh) 2018-08-03
KR20180097576A (ko) 2018-08-31

Similar Documents

Publication Publication Date Title
JP6294578B1 (ja) 表面保護フィルム、及び、光学部材
WO2017115644A1 (fr) Film de protection de surface, procédé de production de film de protection de surface, et élément optique
JP6457789B2 (ja) 表面保護フィルム、表面保護フィルムの製造方法、及び、光学部材
JP6742723B2 (ja) 表面保護フィルム、及び、光学部材
JP6566630B2 (ja) 表面保護フィルム、表面保護フィルムの製造方法、及び、光学部材
JP6239302B2 (ja) 粘着シート、及び、光学部材
JP6433143B2 (ja) 粘着シート、及び、光学部材
JP6236246B2 (ja) 粘着シート、及び光学部材
JP6203563B2 (ja) 粘着シート、及び、光学部材
JP6905502B2 (ja) 粘着シート、及び、光学部材
JP6419467B2 (ja) 粘着剤組成物、粘着シート、及び、光学部材
JP2018123282A (ja) 粘着剤組成物、粘着剤層、表面保護フィルム、及び、光学部材
WO2015159738A1 (fr) Feuille adhésive, et élément optique
JP2021138966A (ja) 粘着剤組成物、粘着シート、及び、光学部材
WO2016114256A1 (fr) Film de protection de surface, et élément optique
JP6594636B2 (ja) 粘着シート、及び、光学部材
WO2018056167A1 (fr) Composition adhésive sensible à la pression, feuille adhésive sensible à la pression, et élément optique
WO2019194069A1 (fr) Film de protection de surface, élément optique, et dispositif d'affichage
JP6698133B2 (ja) 粘着剤組成物、粘着シート、及び、光学部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881623

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187017651

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16881623

Country of ref document: EP

Kind code of ref document: A1