WO2017115487A1 - 心機能測定システムおよび心機能測定システムを備える体外循環装置 - Google Patents

心機能測定システムおよび心機能測定システムを備える体外循環装置 Download PDF

Info

Publication number
WO2017115487A1
WO2017115487A1 PCT/JP2016/071854 JP2016071854W WO2017115487A1 WO 2017115487 A1 WO2017115487 A1 WO 2017115487A1 JP 2016071854 W JP2016071854 W JP 2016071854W WO 2017115487 A1 WO2017115487 A1 WO 2017115487A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform
blood
cardiac function
patient
flow meter
Prior art date
Application number
PCT/JP2016/071854
Other languages
English (en)
French (fr)
Inventor
晃子 熊野
元文 石森
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to EP16881467.1A priority Critical patent/EP3398509B1/en
Priority to JP2017558856A priority patent/JP6787930B2/ja
Publication of WO2017115487A1 publication Critical patent/WO2017115487A1/ja
Priority to US16/011,885 priority patent/US20180296747A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3653Interfaces between patient blood circulation and extra-corporal blood circuit
    • A61M1/3656Monitoring patency or flow at connection sites; Detecting disconnections
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6866Extracorporeal blood circuits, e.g. dialysis circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3626Gas bubble detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3639Blood pressure control, pressure transducers specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3663Flow rate transducers; Flow integrators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3666Cardiac or cardiopulmonary bypass, e.g. heart-lung machines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/18General characteristics of the apparatus with alarm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3334Measuring or controlling the flow rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3375Acoustical, e.g. ultrasonic, measuring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/502User interfaces, e.g. screens or keyboards

Definitions

  • the present invention relates to an extracorporeal circulation apparatus that is set in, for example, an extracorporeal circulation apparatus that performs extracorporeal blood circulation and auxiliary circulation, and that includes a cardiac function measurement system for measuring the cardiac function of a patient.
  • an extracorporeal circulation device For example, when performing cardiac surgery on a patient, an extracorporeal circulation device is used.
  • the pump is activated to remove blood from the patient's vein (vena cava) via a tube, and after exchanging gas in the blood by an artificial lung, this blood is again returned to the patient's artery (aorta). Perform extracorporeal blood circulation, auxiliary circulation, etc. through the tube.
  • an extracorporeal circulation device for example, to perform extracorporeal blood circulation or auxiliary circulation
  • the patient is connected to various medical devices to obtain biological information about the patient. It is necessary to obtain vital values such as blood pressure and body temperature.
  • the present invention does not require a special device to be connected to the cardiac function (heart state) of a patient even in an area where medical equipment such as an emergency emergency site or a remote place is insufficient.
  • Another object of the present invention is to provide a cardiac function measuring system and an extracorporeal circulation device including the cardiac function measuring system that can be easily obtained.
  • the cardiac function measurement system includes a flow meter for measuring a flow waveform of the blood circulating through blood from a human body, and a blood flow fluctuation waveform included in the flow waveform measured by the flow meter. It has a control part from which a certain pulsation waveform is obtained, and a display part by which the pulsation waveform showing the heart function of the human body is displayed by a command from the control part.
  • the flow meter measures the flow rate waveform of the blood circulating the blood from the human body, and the control unit detects the blood flow fluctuation waveform included in the flow rate waveform measured by the flow meter.
  • a movement waveform is obtained, and a pulsation waveform indicating the heart function of the human body is displayed on the display unit according to a command from the control unit.
  • the cardiac function measurement system uses a flow meter to measure the blood flow waveform during circulation of blood from the human body.
  • the display unit is capable of changing a time unit for detecting the flow rate fluctuation waveform, and displays a long-time measurement result as a waveform.
  • the display section includes a waveform display area section that displays the pulsation waveform, and a lighting notification area section that lights and reports the quality of the pulsation waveform displayed in the waveform display area section. It is characterized by providing.
  • the lighting notification area of the display unit can notify the surgeon of whether or not the pulsation waveform obtained from the patient is lit. Can grasp the state of the heart function.
  • the flow meter is an ultrasonic flow meter, and the flow meter is detachably attached to a tube for circulating the blood.
  • the flow meter only needs to be attached to a tube that circulates blood. Therefore, even in an area where there is insufficient medical equipment such as an emergency site or remote area in an actual emergency, Function (heart condition) can be obtained.
  • An extracorporeal circulation apparatus comprising the cardiac function measurement system of the present invention is an extracorporeal circulation apparatus that extracorporeally circulates blood from a human body, and a flow meter that measures a flow waveform of the blood circulating through blood from the human body,
  • the pulsation waveform indicating the heart function of the human body is obtained by a control unit that obtains a pulsation waveform that is the blood flow fluctuation waveform included in the flow rate waveform measured by a flow meter, and by a command from the control unit.
  • a display portion to be displayed is an extracorporeal circulation apparatus that extracorporeally circulates blood from a human body, and a flow meter that measures a flow waveform of the blood circulating through blood from the human body.
  • the flow meter measures the flow rate waveform of the blood circulating the blood from the human body
  • the control unit detects the blood flow fluctuation waveform included in the flow rate waveform measured by the flow meter.
  • a movement waveform is obtained, and a pulsation waveform indicating the heart function of the human body is displayed on the display unit according to a command from the control unit.
  • the present invention provides a cardiac function measurement system that can easily obtain a patient's cardiac function (heart condition) without connecting a special device, even in an actual emergency site or remote area.
  • an extracorporeal circulation device comprising a cardiac function measurement system can be provided.
  • FIG. 1 is a system diagram showing an example of an extracorporeal circulation apparatus to which an embodiment of the cardiac function measurement system of the present invention is applied, for example, to circulate blood in a patient's body and add oxygen. It is a figure which shows the example of the display part of the controller shown in FIG. It is a figure which shows the electrical connection example of a display part, a green light emission part, a yellow light emission part, a red light emission part, and an alarm buzzer. It is a figure which shows the example of the waveform obtained when the heart beat of the patient P shown in FIG. 1 is strong. It is a figure which shows the example of the waveform obtained when the heart beat of the patient P shown in FIG. 1 is weak.
  • FIG. 1 is a system diagram showing an example of an extracorporeal circulation apparatus for applying oxygen by circulating blood in a patient's body, for example, to which an embodiment of the cardiac function measurement system of the present invention is applied.
  • a cardiac function measuring system 200 is applied to the extracorporeal circulation device 1 shown in FIG. “Extracorporeal circulation” performed by the extracorporeal circulation apparatus 1 includes “extracorporeal circulation operation” and “auxiliary circulation operation”.
  • the extracorporeal circulation device 1 can perform both “extracorporeal circulation operation” and “auxiliary circulation operation”.
  • the “extracorporeal circulation operation” means, for example, when the blood circulation in the heart is temporarily stopped by cardiac surgery, the extracorporeal circulation device 1 performs the blood circulation operation and the gas exchange operation (oxygenation and / or oxygen) for the blood. Or carbon dioxide removal).
  • the “auxiliary circulation operation” is an extracorporeal circulation device in a case where the heart of the patient P to which the extracorporeal circulation device 1 is applied cannot perform a sufficient function, or in a state where gas exchange by the lung cannot be performed sufficiently. 1 is to perform a blood circulation operation and a gas exchange operation for the blood.
  • the extracorporeal circulation device 1 shown in FIG. 1 operates the pump of the extracorporeal circulation device 1 to remove blood from the patient's vein (vena cava), and then introduces blood into the blood using an artificial lung. After the oxygen exchange of the blood by performing the above gas exchange, the extracorporeal lung extracorporeal blood circulation can be performed to return the blood to the artery (aorta) of the patient again.
  • the extracorporeal circulation device 1 is a device that performs substitution of the heart and lungs.
  • the extracorporeal circulation device 1 has a circulation circuit 1R for circulating blood.
  • the circulation circuit 1R includes an artificial lung 2, a centrifugal pump 3, a drive motor 4 that is a driving means for driving the centrifugal pump 3, a venous catheter (blood removal side catheter) 5, and an artery side catheter (blood feeding). Side catheter) 6 and a controller 10.
  • the controller 10 has a control unit 100.
  • the centrifugal pump 3 is a so-called rotary pump. Since the rotation signal G of the centrifugal pump 3 is sent to the control unit 100 of the controller 10, the control unit 100 can determine whether or not the rotation state of the centrifugal pump 3 is steady.
  • a venous catheter (blood removal side catheter) 5 is inserted from the femoral vein, and the distal end of the venous side catheter 5 is placed in the right atrium.
  • An artery side catheter (blood supply side catheter) 6 is inserted from the femoral artery.
  • the venous catheter 5 is connected to the centrifugal pump 3 using a blood removal tube (also called blood removal line) 11.
  • the blood removal tube 11 is a conduit for sending blood.
  • the artificial lung 2 is disposed between the centrifugal pump 3 and the blood supply tube 12.
  • the oxygenator 2 performs a gas exchange operation (oxygen addition and / or carbon dioxide removal) on the blood.
  • the oxygenator 2 is, for example, a membrane oxygenator, and a hollow fiber membrane oxygenator is particularly preferably used.
  • Oxygen gas is supplied from the oxygen gas supply unit 13 to the artificial lung 2 through the tube 14.
  • the blood supply tube 12 is a conduit connecting the artificial lung 2 and the artery side catheter 6.
  • these blood removal tube 11 and blood supply tube 12 for example, a highly transparent and flexible synthetic resin conduit such as vinyl chloride resin or silicone rubber can be used.
  • the liquid blood flows in the V direction, and in the blood supply tube 12, the blood flows in the W direction.
  • an ultrasonic flow meter 70 which is a preferable example of a flow meter is detachably disposed outside the blood removal tube 11 in the middle of the blood removal tube 11, for example.
  • the ultrasonic flow meter 70 detects the flow rate of blood flowing through the blood removal tube 11 in a non-contact manner.
  • an ultrasonic propagation time difference type flowmeter can be used, but the flowmeter is not particularly limited.
  • the ultrasonic flowmeter 70 is most preferably detachably attached to the blood removal tube 11. The reason for this is that the blood removal tube 11 is a tube closest to the heart of the patient P. Moreover, the blood removal tube 11 can measure the blood flow rate immediately after blood removal from the heart.
  • the cardiac function measurement system 200 includes an ultrasonic flow meter 70 and a controller 10.
  • the ultrasonic flow meter 70 shown in FIG. 1 generates a blood flow detection signal R when detecting the flow rate of blood flowing through the blood supply tube 12.
  • This blood flow rate detection signal R is sent to the control unit 100, so that the control unit 100 always obtains the flow rate value of the blood flowing in the blood supply tube 12.
  • the ultrasonic bubble detection sensor 20 is disposed outside the blood removal tube 11 in the middle of the blood removal tube 11.
  • the fast clamp 17 is disposed outside the blood feeding tube 12 at a midway position of the blood feeding tube 12.
  • the ultrasonic bubble detection sensor 20 detects the presence of bubbles in the blood sent into the blood removal tube 11
  • the ultrasonic bubble detection sensor 20 sends a detection signal indicating the detection of bubbles to the controller 10. send.
  • the fast clamp 17 urgently closes the blood supply tube 12 in order to prevent blood from being sent to the patient P side in accordance with a command from the controller 10.
  • the ultrasonic bubble detection sensor 20 can detect the mixed bubbles when the bubbles are mixed in the circuit due to erroneous operation of the three-way cock 18 or breakage of the tube during the blood circulation operation. If air bubbles are detected, the controller 10 in FIG. 1 notifies an alarm by an alarm, lowers the rotational speed of the centrifugal pump 3, or stops the centrifugal pump 3 and instructs the fast clamp 17 to The blood supply tube 12 is immediately closed by the fast clamp 17 to prevent air bubbles from being sent into the patient P's body. Thereby, the circulation operation of blood in the circulation circuit 1R of the extracorporeal circulation device 1 is temporarily stopped to prevent bubbles from entering the human body of the patient P.
  • FIG. 2 shows an example of the display unit 30 of the controller 10 shown in FIG.
  • the controller 10 illustrated in FIG. 1 includes a display unit 30.
  • the display unit 30 includes a blood flow rate display region (unit: LPM) 31, a rotation speed display region (unit: RPM) 32 of the centrifugal pump 3, and a blood flow rate display per minute.
  • An area unit (unit: L / min / m 2) 33, a waveform display area unit 40, a lighting notification area unit 50, a battery charge state display unit 34 indicating the degree of battery charge, and a commercial power source are electrically connected.
  • a power connection display 35 indicating that the As the display unit 30, for example, a color liquid crystal display device or an organic EL (electroluminescence) display device can be used.
  • the blood flow rate display area 31 shown in FIG. 2 digitally displays the flow rate of blood flowing in the blood supply tube 12.
  • the rotational speed display area 32 of the centrifugal pump 3 digitally displays the rotational speed of the centrifugal pump 3.
  • the blood flow rate display area 33 per minute digitally displays the extracorporeal circulation flow rate of blood per 1 m 2 per minute.
  • the waveform display area 40 shown in FIG. 2 has a function of displaying the state of the cardiac function of the patient P described later with a waveform 60.
  • the lighting notification area unit 50 shown in FIG. 2 has a function of lighting up and warning the operator of the extracorporeal circulation device 1 in three stages, for example, of the state of cardiac function of the patient P described later.
  • the lighting notification area unit 50 includes a green light emitting unit 51, a yellow light emitting unit 52, a red light emitting unit 53, and an alarm buzzer 54.
  • As the green light emitting part 51, the yellow light emitting part 52, and the red light emitting part 53 for example, light emitting diodes of different colors can be used.
  • the green light emitting unit 51 emits red light to visually notify the surgeon that the state of the cardiac function is a safe state.
  • the yellow light emitting unit 52 is slightly out of safety and slightly out of the safe range, and emits yellow light when it is in a caution state, so that the state of the heart function is a caution state visually to the surgeon. Notify that.
  • the red light emitting section 53 emits red light when the state of the cardiac function is out of the safe range and is in a dangerous state, so that the surgeon visually recognizes that the state of the cardiac function is in a dangerous state. Notice.
  • the alarm buzzer 54 notifies the surgeon that the state of the cardiac function is a dangerous state by sound or voice at the same time as the red light emitting unit 53 emits light.
  • FIG. 3 shows an electrical connection example of the display unit 30, the green light emitting unit 51, the yellow light emitting unit 52, the red light emitting unit 53, and the alarm buzzer 54.
  • the control unit 100 is electrically connected to the display unit 30, the green light emitting unit 51, the yellow light emitting unit 52, the red light emitting unit 53, and the alarm buzzer 54.
  • This waveform 60 is a cardiac function display waveform indicating the state of cardiac function of the patient P.
  • a waveform 60 shown in FIG. 4 shows an example of a cardiac function display waveform when the heart beat of the patient P shown in FIG. 1 is strong, and a waveform 60 shown in FIG. 5 is a heart beat of the patient P shown in FIG.
  • the example of the cardiac function display waveform when a motion is weak is shown.
  • the waveform shown in FIG. 4A is a rotary pump waveform 61 generated when the centrifugal pump 3 which is a rotary pump rotates at a constant speed.
  • the rotary pump waveform 61 is a straight waveform that maintains a constant level.
  • the waveform shown in FIG. 4B is a pulsation waveform 62 when the heartbeat of the patient P is strong.
  • a blood flow rate detection signal R indicating the flow rate of blood flowing in the blood feeding tube 12 from the ultrasonic flow meter 70 shown in FIG.
  • the pulsation waveform 62 is a pulsation waveform included in the blood flow rate detection signal R, which is the measurement value, when the flow rate value of the blood flowing in the blood supply tube 12 is obtained.
  • a waveform 60 shown in FIG. 4 (C) is a waveform formed by adding the rotary pump waveform 61 shown in FIG. 4 (A) and the pulsation waveform 62 shown in FIG. 4 (B).
  • the waveform shown in FIG. 5A is a rotary pump waveform 61 generated when the centrifugal pump 3 which is a rotary pump is rotating at a constant speed.
  • the rotary pump waveform 61 is a linear waveform that maintains a constant level.
  • the waveform shown in FIG. 5B is a pulsation waveform 62A when the pulsation of the heart of the patient P is weak.
  • a blood flow rate detection signal R indicating the flow rate of blood flowing in the blood feeding tube 12 from the ultrasonic flow meter 70 shown in FIG.
  • the pulsation waveform 62 ⁇ / b> A is a pulsation waveform included in the blood flow rate detection signal R, which is the measured value, when obtaining the flow rate value of the blood flowing in the blood supply tube 12.
  • a waveform 60 shown in FIG. 5C is a waveform formed by adding the rotary pump waveform 61 shown in FIG. 5A and the pulsation waveform 62 shown in FIG. 5B. In this way, when the heart of the patient P weakens when the rotation of the centrifugal pump 3 is constant, the pulsation waveform 62A shown in FIG. 5B is compared with the pulsation waveform 62 shown in FIG. 4B. , Wave height becomes small and gentle
  • an extracorporeal circulation device is used when a patient is transported by an ambulance at an actual emergency site or when a patient is treated in a place where medical equipment such as a remote area is not available.
  • various medical devices are connected to the patient, and vital values such as blood pressure values and body temperature that are biological information about the patient cannot be acquired. Even if there is such a medical device, there is no time margin for connecting the medical device to the patient in an actual emergency site.
  • the waveform of the waveform 60 corresponding to the magnitude of the heartbeat of the patient P can be displayed in the waveform display area 40 on the display unit 30.
  • the time unit in displaying the detection result can be increased or decreased by an instruction from the control unit 100 or by switching with an operation button (not shown).
  • the surgeon can visually observe the waveform state of the waveform 60 that is always displayed in the waveform display area 40. For this reason, the surgeon can visually confirm the magnitude and fluctuation of the pulsation state of the patient P in the waveform display area 40.
  • the operator can easily know the cardiac function (heart condition) of the patient simply by observing the waveform display area 40 of the display unit 30 of the controller 10 shown in FIG.
  • the pulsation component (blood flow fluctuation) of the patient P can be obtained reliably, and the patient's blood pressure fluctuation can be checked. Therefore, the cardiac function of the patient P can be estimated. Accordingly, since it is not necessary to set up a line for measuring blood pressure to the patient P in an emergency, the ultrasonic flow meter 70 is attached to the blood feeding tube 12 immediately in response to the emergency of the patient P. That's okay. Further, it is not necessary to directly attach a measurement line for measuring blood pressure or the like from the patient P to the patient P, and the long-term safety of the patient P is improved.
  • the cardiac output is reflected on the ultrasonic flow meter 70. Conventionally, it has been considered that the cardiac output is masked (hidden) by the extracorporeal circulation flow rate.
  • the surgeon performs an extracorporeal circulation operation and an auxiliary circulation operation of the patient P using the extracorporeal circulation device 1, and when ending this operation, the surgeon visually observes the waveform 60 that is always displayed in the waveform display area 40. Can be observed. For this reason, the surgeon can observe the waveform 60 that is constantly displayed in the waveform display area 40 as a pulsation component (flow rate fluctuation) of the patient P, and the waveform 60 is used as a substitute for the change in blood pressure of the patient. Can do. Therefore, since the surgeon can estimate the state of the cardiac function of the patient P while observing the waveform 60, the operator can safely stop the operation of the extracorporeal circulation device 1 while observing the state of the cardiac function of the patient P.
  • the extracorporeal circulation device 1 is attached to the patient P and treated, and the surgeon is displayed in the waveform display area unit 40 illustrated in FIG.
  • the waveform 60 is a pulsating waveform 62 when the heartbeat of the patient P is strong as illustrated in FIG. 4
  • the surgeon determines that the heartbeating state of the patient P is It can be judged that it has been improved. Therefore, the operator can safely remove the extracorporeal circulation device 1 from the patient P and end the extracorporeal circulation operation.
  • the extracorporeal circulation device 1 when the patient P is being transported by an ambulance, the extracorporeal circulation device 1 is attached to the patient P for treatment, and the surgeon enters the waveform display area 40 illustrated in FIG.
  • the displayed waveform 60 can be estimated to be a pulsation waveform 62 when the pulsation of the heart of the patient P is strong as illustrated in FIG. 4, for example, the surgeon determines that the state of the heart of the patient P is It can be judged that it has been improved. Therefore, the operator can safely remove the extracorporeal circulation device 1 from the patient P and end the extracorporeal circulation operation.
  • the surgeon beats the heartbeat of the patient P as illustrated in FIG.
  • the control unit 100 determines that the cardiac function of the patient P is in the safe range. Then, the green light emitting part 51 of the lighting notification area part 50 is turned on. As a result, the controller 10 notifies the surgeon by lighting that the patient P is “safe” for the cardiac function.
  • the control unit 100 determines that the cardiac function of the patient P is out of the safe range. Then, the yellow light emitting unit 52 of the lighting notification area unit 50 is turned on. As a result, the controller 10 notifies the surgeon by lighting that “the patient needs some attention” regarding the cardiac function of the patient P.
  • the control unit 100 determines that the cardiac function of the patient P is completely out of the safe range, lights up the red light-emitting unit 53 of the lighting notification region unit 50, and warns the alarm buzzer 54. Is generated. Thereby, the controller 10 notifies the surgeon of “strong warning” about the cardiac function of the patient P by lighting and sound. In this case, since the controller 10 can notify the surgeon of a “strong warning” by both lighting and sound, the operator 10 can be notified more reliably. As described above, the surgeon can grasp the state of the cardiac function of the patient P by the vision and sound from the controller 10.
  • FIGS. 6A and 6B show examples of fluctuations in the blood flow rate (L / min) over time in the waveform 60.
  • the time axis is shown in seconds
  • the time axis is shown in minutes.
  • the flow rate change width H1 is shown for one pulsation.
  • the blood pressure value of the patient can be almost grasped by adding the liquid feeding pressure and the pressure loss, and the blood pressure value can be substantially calculated based on these numerical values held by the control unit 100.
  • the surgeon can grasp the approximate blood pressure value by observing the waveform 60 that is constantly displayed in the waveform display area 40. Therefore, the approximate blood pressure value obtained by such a method may be displayed together on the display unit 30 in FIG.
  • FIG. 7 conceptually shows a change example of the waveform 60 for each of the three regions.
  • the vertical axis in FIG. 7 is the blood flow rate, and the horizontal axis is the time.
  • the waveform 60 illustrated in FIG. 7 includes (1) a cardiac arrest region T1, (2) a cardiac function recovery region T2, and (3) a cardiac function lowering region T3.
  • a cardiac arrest region T1 since the heart beat of the patient P does not occur, only the rotary pump waveform 61 (blood flow rate of the centrifugal pump 3) of the centrifugal pump 3 is displayed as a linear waveform.
  • the pulsation and output of the heart of the patient P are increased and stabilized, and the cardiac function of the patient P has been recovered due to the pulsation state.
  • the cardiac function lowering region T3 cardiac arrest
  • the stroke volume gradually decreases.
  • FIG. 8 is an enlarged view of a portion T4 of the cardiac function lowering region T3 in FIG.
  • the vertical axis in FIG. 8 is the blood flow rate (L / min), and the horizontal axis is the time (sec).
  • heart pulsation is hardly recognized.
  • the cardiac function measuring system 200 is included in the flow meter 70 that measures the flow waveform of blood circulating through the blood from the human body and the flow waveform measured by the flow meter 70.
  • the pulsating waveform 62 (waveform 60) indicating the heart function of the human body is displayed by the control unit 100 that obtains the pulsating waveform 62 (waveform 60) that is the blood flow fluctuation waveform.
  • a display unit 30 is included.
  • the flow meter 70 measures the flow rate waveform of the blood circulating through the blood from the human body, and the control unit 100 detects the pulse that is the blood flow fluctuation waveform included in the flow rate waveform measured by the flow meter 70.
  • a dynamic waveform 62 (waveform 60) is obtained.
  • a pulsation waveform 62 (waveform 60) indicating the heart function of the human body is displayed on the display unit 30 in accordance with a command from the control unit 100.
  • the cardiac function measurement system 200 uses the flow meter 70 to circulate blood from the human body even in an area where medical equipment such as an emergency site or remote area in an actual emergency is insufficient. Only by mounting on the part where the waveform is obtained, the patient P can be easily acquired without the connection of a special device, without being connected to a special device.
  • the display unit 70 includes a waveform display region unit 40 that displays a pulsating waveform 62 (waveform 60), and a lighting notification region unit 50 that lights and reports the quality of the pulsating waveform displayed in the waveform display region unit 40. It is characterized by providing. Thereby, since the lighting notification area
  • the flow meter 70 is an ultrasonic flow meter, and the flow meter 70 is detachably attached to a tube (for example, a blood feeding tube) 12 that circulates blood.
  • a tube for example, a blood feeding tube
  • the flow meter 70 only needs to be attached to a tube that circulates blood, so that the cardiac function of the patient P can be achieved even in an area where medical equipment such as an emergency site or remote area in an actual emergency is insufficient. (Heart condition) can be obtained.
  • An extracorporeal circulation apparatus 1 including a cardiac function measurement system is an extracorporeal circulation apparatus that extracorporeally circulates blood from a human body, and a flow meter 70 that measures a flow waveform of blood circulating through the blood from the human body.
  • a control unit 100 that obtains a pulsation waveform 62 (waveform 60), which is a blood flow fluctuation waveform included in the flow waveform measured by the flow meter 70, and a command from the control unit 100, the heart function of the human body. It has the display part 30 on which the pulsation waveform 62 (waveform 60) to show is displayed.
  • the flow meter 70 measures the flow rate waveform of the blood circulating through the blood from the human body, and the control unit 100 detects the pulse that is the blood flow fluctuation waveform included in the flow rate waveform measured by the flow meter 70.
  • a dynamic waveform 62 (waveform 60) is obtained.
  • a pulsation waveform 62 (waveform 60) indicating the heart function of the human body is displayed on the display unit 30 in accordance with a command from the control unit 100.
  • the cardiac function measurement system 200 uses the flow meter 70 to circulate blood from the human body even in an area where medical equipment such as an emergency site or remote area in an actual emergency is insufficient. Only by mounting on the part where the waveform is obtained, the patient P can be easily acquired without the connection of a special device, without being connected to a special device.
  • the cardiac function measurement system 200 is mounted on the extracorporeal circulation device 1, and the cardiac function measurement system 200 is configured by the ultrasonic flowmeter 70 and the controller 10.
  • the cardiac function measurement system of the present invention is not limited to the extracorporeal circulation device 1 and can be mounted on other types of medical devices that transfer blood through a tube.
  • SYMBOLS 200 Cardiac function measurement system, 1 ... Extracorporeal circulation device, 3 ... Centrifugal pump, 10 ... Controller, 30 ... Display part, 40 ... Waveform display area part, 50 ... Lighting notification Area part, 62 ... heart beat waveform, 70 ... ultrasonic flow meter (flow meter), 100 ... control part

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Anesthesiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Physiology (AREA)
  • Fluid Mechanics (AREA)
  • Pulmonology (AREA)
  • External Artificial Organs (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

実際の緊急時の救急現場やへき地等であっても、患者の心機能(心臓の状態)を、特別な装置を接続しなくても、容易に得ることができる心機能測定システムおよび心機能測定システムを備える体外循環装置を提供する。 心機能測定システム200は、人体からの血液を循環中の血液の流量波形が測定される流量計70と、流量計70により測定された流量波形に含まれる血液の流量変動波形である拍動波形62(波形60)が得られる制御部100と、制御部100からの指令により、人体の心機能を示す拍動波形が表示される表示部30を有する。

Description

心機能測定システムおよび心機能測定システムを備える体外循環装置
 本発明は、例えば体外血液循環や補助循環を行う体外循環装置に設定されて、患者の心機能を測定するための心機能測定システムおよび心機能測定システムを備える体外循環装置に関する。
 例えば患者の心臓外科手術を行う場合には、体外循環装置が使用される。この体外循環装置では、ポンプが作動して患者の静脈(大静脈)よりチューブを介して脱血し、人工肺により血液中のガス交換を行った後に、この血液を再び患者の動脈(大動脈)にチューブを介して戻す体外血液循環や補助循環等を行う。
 通常、術者が、例えば患者に対して体外循環装置を装着して、体外血液循環や補助循環を行う時には、患者に対して各種の医療機器を接続することで、患者についての生体情報である血圧値や体温等のバイタル値を取得する必要がある。
特開4500764号公報
 しかし、例えば、緊急時の救急現場で患者が救急車で搬送される時や、あるいはへき地等の医療機器の用意が不十分な地域で患者に対して治療を施す時には、体外循環装置以外に、患者のバイタル値取得を要する場合があっても、全て用意することは困難である。
 また、実際の緊急時の救急現場では、この種の医療機器が用意してあったとしても、医療装置を患者に対して接続するための時間的な余裕がない場合も多い。
 そこで、本発明は、実際の緊急時の救急現場やへき地等の医療機器の用意が不十分な地域であっても、患者の心機能(心臓の状態)を、特別な装置を接続しなくても、容易に得ることができる心機能測定システムおよび心機能測定システムを備える体外循環装置を提供することを目的とする。
 本発明の心機能測定システムは、人体からの血液を循環中の前記血液の流量波形が測定される流量計と、前記流量計により測定された前記流量波形に含まれる前記血液の流量変動波形である拍動波形が得られる制御部と、前記制御部からの指令により、前記人体の心機能を示す前記拍動波形が表示される表示部とを有することを特徴とする。
 上記構成によれば、流量計は、人体からの血液を循環中の血液の流量波形を測定して、制御部は、流量計により測定された流量波形に含まれる血液の流量変動波形である拍動波形が得られ、表示部には、制御部からの指令により、人体の心機能を示す拍動波形が表示されるようになっている。
 このため、実際の緊急時の救急現場やへき地等の医療機器の用意が不十分な地域であっても、心機能測定システムは、流量計を人体からの血液を循環中の血液の流量波形が得られる部分に装着するだけで、患者に対して非侵襲で、患者の心機能(心臓の状態)を、特別な装置を接続しなくても、容易に得ることができる。
 好ましくは、前記表示部は、前記流量変動波形を検出する時間単位を変更可能であり、長時間の計測結果を波形として表示することを特徴とする。
 上記構成によれば、前記流量変動波形を分単位で検出表示すると、拍動ごとの波形をえることができ、それによって、血圧値を把握することができる。
 好ましくは、前記表示部は、前記拍動波形を表示する波形表示領域部と、前記波形表示領域部に表示された前記拍動波形の良否を、点灯して報知する点灯報知領域部と、を備えることを特徴とする。
 上記構成によれば、表示部の点灯報知領域部は、患者から得られる拍動波形の良否を、点灯することで術者に対して報知することができるので、術者は、視覚により、患者の心機能の状態を把握することができる。
 好ましくは、前記流量計は超音波流量計であり、前記流量計は、前記血液を循環させるチューブに対して着脱可能に取り付けられていることを特徴とする。
 上記構成によれば、流量計は、血液を循環させるチューブに取り付けるだけで済むので、実際の緊急時の救急現場やへき地等の医療機器の用意が不十分な地域であっても、患者の心機能(心臓の状態)を得ることができる。
 本発明の心機能測定システムを備える体外循環装置は、人体の血液を体外循環させる体外循環装置であって、人体からの血液を循環中の前記血液の流量波形が測定される流量計と、前記流量計により測定された前記流量波形に含まれる前記血液の流量変動波形である拍動波形が得られる制御部と、前記制御部からの指令により、前記人体の心機能を示す前記拍動波形が表示される表示部と、を有する。
 上記構成によれば、流量計は、人体からの血液を循環中の血液の流量波形を測定して、制御部は、流量計により測定された流量波形に含まれる血液の流量変動波形である拍動波形が得られ、表示部には、制御部からの指令により、人体の心機能を示す拍動波形が表示されるようになっている。このため、実際の緊急時の救急現場やへき地等の医療機器の用意が不十分な地域であっても、心機能測定システムは、流量計を人体からの血液を循環中の血液の流量波形が得られる部分に装着するだけで、患者に対して非侵襲で、患者の心機能(心臓の状態)を、特別な装置を接続しなくても、容易に得ることができる。
 本発明は、実際の緊急時の救急現場やへき地等であっても、患者の心機能(心臓の状態)を、特別な装置を接続しなくても、容易に得ることができる心機能測定システムおよび心機能測定システムを備える体外循環装置を提供することができる。
本発明の心機能測定システムの実施形態が適用されている、例えば患者の体内の血液を循環させて酸素付加を行う体外循環装置の一例を示す系統図である。 図1に示すコントローラの表示部の例を示す図である。 表示部と、緑色の発光部と黄色の発光部と赤色の発光部と、アラームブザーの電気接続例を示す図である。 図1に示す患者Pの心臓の拍動が強い場合の得られる波形の例を示す図である。 図1に示す患者Pの心臓の拍動が弱い場合の得られる波形の例を示す図である。 時間の経過に対する血液の流量(L/min)の変動の例を示す図である。 波形の3つの領域毎の変化例を概念的に示す図である。 図7における心機能低下領域T3の部分T4を拡大して示す図である。
 以下に、本発明の好ましい実施形態を、図面を参照して詳しく説明する。
 尚、以下に述べる実施の形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。
 図1は、本発明の心機能測定システムの実施形態が適用されている、例えば患者の体内の血液を循環させて酸素付加を行うための体外循環装置の一例を示す系統図である。
 図1に示す体外循環装置1には、心機能測定システム200が適用されている。この体外循環装置1が行う「体外循環」には、「体外循環動作」と、「補助循環動作」を含む。体外循環装置1は、「体外循環動作」と「補助循環動作」のいずれも行うことができる。
 「体外循環動作」とは、例えば心臓外科手術によって一時的に心臓での血液循環を止めるような場合に、この体外循環装置1により血液の循環動作とこの血液に対するガス交換動作(酸素付加および/または二酸化炭素除去)を行うことである。
 また、「補助循環動作」とは、体外循環装置1の適用対象である患者Pの心臓が十分な機能を果たせない場合や、肺によるガス交換が十分に行えないような状態において、体外循環装置1によっても血液の循環動作とこの血液に対するガス交換動作を行うことである。
 図1に示す体外循環装置1は、例えば患者の心臓外科手術を行う場合には、体外循環装置1のポンプを作動して患者の静脈(大静脈)から脱血して、人工肺により血液中のガス交換を行って血液の酸素化を行った後に、この血液を再び患者の動脈(大動脈)に戻す人工肺体外血液循環を行うことができる。この体外循環装置1は、心臓と肺の代行を行う装置である。
 図1に示すように、体外循環装置1は、血液を循環させる循環回路1Rを有している。循環回路1Rは、人工肺2と、遠心ポンプ3と、遠心ポンプ3を駆動するための駆動手段であるドライブモータ4と、静脈側カテーテル(脱血側カテーテル)5と、動脈側カテーテル(送血側カテーテル)6と、コントローラ10を有している。このコントローラ10は、制御部100を有する。
 遠心ポンプ3は、いわゆるロータリーポンプである。この遠心ポンプ3の回転信号Gは、コントローラ10の制御部100に送られていることにより、制御部100は、遠心ポンプ3の回転状態が定常かどうかを判断することができる。
 図1に示すように、静脈側カテーテル(脱血側カテーテル)5は、大腿静脈より挿入され、静脈側カテーテル5の先端が右心房に留置される。動脈側カテーテル(送血側カテーテル)6は、大腿動脈より挿入される。静脈側カテーテル5は、脱血チューブ(脱血ラインともいう)11を用いて遠心ポンプ3に接続されている。脱血チューブ11は、血液を送る管路である。
 ドライブモータ4がコントローラ10の指令SGにより遠心ポンプ3を動作すると、遠心ポンプ3は、脱血チューブ11から脱血して血液を人工肺2に通した後に、送血チューブ12(送血ラインともいう)を介して患者Pに血液を戻すことができる。
 人工肺2は、遠心ポンプ3と送血チューブ12の間に配置されている。人工肺2は、この血液に対するガス交換動作(酸素付加および/または二酸化炭素除去)を行う。人工肺2は、例えば膜型人工肺であるが、特に好ましくは中空糸膜型人工肺を用いる。この人工肺2には、酸素ガス供給部13から酸素ガスがチューブ14を通じて供給される。送血チューブ12は、人工肺2と動脈側カテーテル6を接続している管路である。
 これらの脱血チューブ11と送血チューブ12としては、例えば塩化ビニル樹脂やシリコーンゴム等の透明性の高い、弾性変形可能な可撓性を有する合成樹脂製の管路が使用できる。脱血チューブ11内では、液体である血液はV方向に流れ、送血チューブ12内では、血液はW方向に流れる。
 図1に示す循環回路1Rの例では、流量計の好ましい例である超音波流量計70が、例えば脱血チューブ11の途中において、脱血チューブ11 の外側に、着脱可能に配置されている。この超音波流量計70は、脱血チューブ11内を流れる血液の流量を、非接触で検知する。超音波流量計70としては、例えば超音波伝搬時間差方式の流量計を用いることができるが、特に形式に限定されない。超音波流量計70を使用しないときは、脱血チューブ11から取り外すことができる。
 このように超音波流量計70が、最も好ましくは、脱血チューブ11 に対して着脱可能に装着されるのであるが、この理由としては、脱血チューブ11 は、患者Pの心臓に最も近いチューブであり、しかも脱血チューブ11は、心臓から脱血した直後の血液の流量を測定できるためである。
 図1に示すように、図1に示す循環回路1Rの例では、本発明の実施形態の心機能測定システム200は、超音波流量計70と、コントローラ10を含んでいる。
 図1に示す超音波流量計70が、送血チューブ12内を流れる血液の流量を検知した時に血液流量検知信号Rを発生する。この血液流量検知信号Rは、制御部100に送られることで、制御部100は、送血チューブ12内を流れる血液の流量値を常時得るようになっている。
 また、図1に示す循環回路1Rの例では、超音波気泡検出センサ20が、脱血チューブ11の途中において脱血チューブ11の外側に配置されている。ファストクランプ17は、送血チューブ12の途中位置において送血チューブ12の外側に配置されている。
 超音波気泡検出センサ20が、脱血チューブ11内に送られている血液中に気泡があるのを検出した場合には、超音波気泡検出センサ20は、コントローラ10に気泡を検出した検出信号を送る。これにより、ファストクランプ17は、コントローラ10の指令により、血液が患者P側に送られるのを阻止するために、送血チューブ12を緊急に閉塞する。
 超音波気泡検出センサ20では、血液循環動作中に三方活栓18の誤操作やチューブの破損等により回路内に気泡が混入された場合に、この混入された気泡を検出することができる。もし気泡が検出されると、図1のコントローラ10は、アラームによる警報を報知したり、遠心ポンプ3の回転数を低くしたり、あるいは遠心ポンプ3を停止ししかもファストクランプ17に指令して、ファストクランプ17により送血チューブ12を直ちに閉塞して、気泡が患者Pの体内に送られるのを阻止する。これにより、体外循環装置1の循環回路1Rにおける血液の循環動作の一時停止を行って、気泡が患者Pの人体に混入するのを防止する。
 図2は、図1に示すコントローラ10の表示部30の例を示している。
 図1に示すコントローラ10は、表示部30を有する。図2に示すように、この表示部30は、血液流量表示領域部(単位はLPM)31と、遠心ポンプ3の回転数表示領域部(単位はRPM)32と、1分間当たりの血液流量表示領域部(単位はL/min/m2)33と、波形表示領域部40と、点灯報知領域部50と、バッテリの充電程度を示すバッテリ充電状態表示部34と、商用電源に電気的に接続されていることを示す電源接続表示部35を有する。
 表示部30としては、例えばカラー液晶表示装置や、有機EL(エレクトロルミネッセンス)表示装置等を用いることができる。
 図2に示す血液流量表示領域部31は、送血チューブ12内を流れる血液の流量をデジタル表示する。遠心ポンプ3の回転数表示領域部32は、遠心ポンプ3の回転数をデジタル表示する。1分間当たりの血液流量表示領域部33は、1分間で1m2当たりの血液の体外循環流量をデジタル表示する。
 図2に示す波形表示領域部40は、後で説明する患者Pの心機能の状態を、波形60で表示する機能を有する。
 図2に示す点灯報知領域部50は、体外循環装置1の術者に対して、後で説明する患者Pの心機能の状態の良否を、例えば三段階で点灯して警告する機能を有する。点灯報知領域部50は、緑色の発光部51と、黄色の発光部52と、赤色の発光部53、そしてアラームブザー54を有する。緑色の発光部51と黄色の発光部52と赤色の発光部53としては、例えば異なる発色の発光ダイオードを用いることができる。
 例えば緑色の発光部51は、心機能の状態が良好で安全域にある時に、赤色を発光することで、術者に対して視覚で心機能の状態が安全状態であることを通知する。黄色の発光部52は、心機能の状態がやや不調であり安全域から少し外れて、注意状態である時に、黄色を発光することで、術者に視覚で心機能の状態が注意状態であることを通知する。そして、赤色の発光部53は、心機能の状態が安全域から外れており、危険状態である時に、赤色を発光することで、術者に視覚で心機能の状態が危険状態であることを通知する。
 しかも、アラームブザー54は、赤色の発光部53が発光すると同時に、術者に対して、音あるいは音声で、心機能の状態が危険状態であることを通知する。
 図3は、表示部30と、緑色の発光部51と黄色の発光部52と赤色の発光部53とアラームブザー54の電気接続例を示している。図3に示すように、制御部100は、表示部30と、緑色の発光部51と黄色の発光部52と赤色の発光部53とアラームブザー54に電気的に接続されている。
 次に、図4と図5を参照して、図2に示す波形表示領域部40に表示される波形60について、説明する。この波形60は、患者Pの心機能の状態を示す心機能表示波形である。
 図4に示す波形60は、図1に示す患者Pの心臓の拍動が強い場合の心機能表示波形の例を示し、図5に示す波形60は、図1に示す患者Pの心臓の拍動が弱い場合の心機能表示波形の例を示している。
 図4(A)に示す波形は、ロータリーポンプである遠心ポンプ3が一定回転している時に発生しているロータリーポンプ波形61である。このロータリーポンプ波形61は、一定のレベルを維持している直線の波形である。
 図4(B)に示す波形は、患者Pの心臓の拍動が強い場合の拍動波形62である。図1に示す超音波流量計70から送血チューブ12内を流れる血液の流量を示す血液流量検知信号Rを、制御部100に送る。拍動波形62は、送血チューブ12内を流れる血液の流量値を得る際に、この測定値である血液の流量検知信号Rに含まれる拍動の波形である。図4(C)に示す波形60は、図4(A)に示すロータリーポンプ波形61と、図4(B)に示す拍動波形62を加えることで形成された波形である。
 同様にして、図5(A)に示す波形は、ロータリーポンプである遠心ポンプ3が一定回転している時に発生しているロータリーポンプ波形61である。このロータリーポンプ波形61は、一定のレベルを維持している直線型の波形である。
 図5(B)に示す波形は、患者Pの心臓の拍動が弱い場合の拍動波形62Aである。図1に示す超音波流量計70から送血チューブ12内を流れる血液の流量を示す血液流量検知信号Rを、制御部100に送る。拍動波形62Aは、送血チューブ12内を流れる血液の流量値を得る際に、この測定値である血液の流量検知信号Rに含まれる拍動の波形である。図5(C)に示す波形60は、図5(A)に示すロータリーポンプ波形61と、図5(B)に示す拍動波形62を加えることで形成された波形である。
 このように、遠心ポンプ3の回転が一定である時に、患者Pの心臓が弱まると、図5(B)に示す拍動波形62Aは、図4(B)に示す拍動波形62と比較すると、波高が小さくなだらかになる
 一方、従来、術者が、患者に対して、体外循環装置を用いて体外循環動作や補助循環動作を行う際には、患者に対して各種の装置を接続して、患者についての生体情報である血圧値や体温等のバイタル値を取得する必要があった。
 しかし、実際の緊急時の救急現場において患者が救急車で搬送される時や、へき地等の医療機器が揃っていない場所で患者に対して治療を施す時に、上述したように例えば体外循環装置を用いる場合には、患者に対して各種の医療機器を接続して、患者についての生体情報である血圧値や体温等のバイタル値を取得することができない。また、そのような医療機器があったとしても、実際の緊急時の救急現場においては、医療機器を患者に対して接続するための時間的な余裕がない。
 そこで、本発明の実施形態では、表示部30では、患者Pの心臓の拍動の大小に応じた、波形60は、波形表示領域部40において変動状態を表示することができる。後述するように、この波形表示は、制御部100の指示により、もしくは別途図示しない操作ボタン等によるきりかえによって、検出結果の表示における時間単位を大きくしたり小さくしたりすることができる。これにより、術者は、この波形表示領域部40に常時表示されている波形60の波形状態を、目視で観察することができる。このため、術者は、波形表示領域部40において患者Pの拍動状態の大小や変動を、目視で確認することができる。術者が、図2に示すコントローラ10の表示部30の波形表示領域部40を観察しているだけで、患者の心機能(心臓の状態)を、容易に知ることができる。
 図2に示す波形表示領域部40に常時表示されている波形60を観察することで、患者Pの拍動成分(血液の流量変動)が、確実に得られ、患者の血圧の変動のチェックをする代用となり、患者Pの心機能を推測することができる。
 これにより、緊急時に、患者Pに対して、血圧を測定する等のラインの設置時間が不要なので、超音波流量計70から送血チューブ12に対して、患者Pの緊急時に即応して取り付けるだけですむ。また、患者Pから血圧等を測定する測定ラインを、患者Pに対して直接取り付けることが不要になり、患者Pの長期的な安全性が向上する。
 なお、体外循環装置1では、例えば血液の体外循環流量が3.87L/minで循環中であっても、心臓の拍出量が超音波流量計70に反映される。従来では、心臓の拍出量は、体外循環流量にマスクされる(隠れてしまう)と考えられていた。
 また、術者は、体外循環装置1を用いて患者Pの体外循環動作や補助循環動作を行って、この動作を終了する時には、波形表示領域部40に常時表示されている波形60を目視で観察することができる。このため、術者は、波形表示領域部40に常時表示されている波形60を、患者Pの拍動成分(流量変動)として観察でき、波形60は患者の血圧の変化状況の代用とすることができる。従って、術者は、波形60を観察しながら患者Pの心機能の状況を推測できるので、患者Pの心機能の状況を見ながら、体外循環装置1の動作を、安全に停止できる。
 具体的には、例えば、患者Pが医療機関に搬送されてきた時に、体外循環装置1を患者Pに取り付けて治療して、術者が、図4に例示する波形表示領域部40に表示されている波形60が、例えば図4に例示するように患者Pの心臓の拍動が強い場合の拍動波形62であると判断できたときには、術者は、患者Pの心臓の拍動状態は改善できたものと判断できる。従って、術者は、患者Pから体外循環装置1を安全に離脱して、体外循環動作を終了することができる。
 また、別の具体的な例では、患者Pが救急車で搬送されている時に、体外循環装置1を患者Pに取り付けて治療して、術者が、図4に例示する波形表示領域部40に表示されている波形60が、例えば図4に例示するように患者Pの心臓の拍動が強い場合の拍動波形62であると推測できたときには、術者は、患者Pの心臓の状態は改善できたものと判断できる。従って、術者は、患者Pから体外循環装置1を安全に離脱して、体外循環動作を終了することができる。
 このように、術者が、体外循環装置1により患者Pの治療では、図4に例示する波形表示領域部40に、図4に例示するような患者Pの心臓の拍動が強い場合の拍動波形62を含む良好な波形60が観察できたときには、患者Pの心機能の強化がなされたので、術者は、治療の効果があったと判断でき、術者は、患者Pから体外循環装置1を安全に離脱して、体外循環動作を終了できる。
 次に、図2に示す点灯報知領域部50の好ましい点灯表示例を、いくつか説明する。
 図2に示す波形表示領域部40には、図4に例示するような良好な波形60が表示されている場合には、制御部100は、患者Pの心機能が安全域にあると判断して、点灯報知領域部50の緑色の発光部51を点灯させる。これにより、コントローラ10は、術者に対して、患者Pの心機能について「安全である」ことを点灯で通知する。
 また、図2に示す波形表示領域部40には、図5に例示するような波形60が表示されている場合には、制御部100は患者Pの心機能が安全域から外れていると判断して、点灯報知領域部50の黄色の発光部52を点灯させる。これにより、コントローラ10は、術者に対して、患者Pの心機能について「やや注意を要する」ことを点灯で通知する。
 さらに、図2に示す波形表示領域部40には、図5に例示する波形60をさらに下回る波形が表示されている場合、例えば患者に心筋梗塞や不整脈等の症状が生じていると推測される場合には、制御部100は、患者Pの心機能が安全域から完全に外れていると判断して、点灯報知領域部50の赤色の発光部53を点灯させるとともに、アラームブザー54により警告音を発生させる。これにより、コントローラ10は、術者に対して、患者Pの心機能について「強い警告」を、点灯と音で通知する。この場合には、コントローラ10は、術者に対して、点灯と音の両方で「強い警告」を通知できるので、術者に対してより確実に知らせることができる。
 以上説明したように、術者は、コントローラ10からの視覚や音により、患者Pの心機能の状態を把握することができる。
 図6(A)と図6(B)は、波形60における時間の経過に対する血液の流量(L/min)の変動の例を示している。図6(A)では、時間軸は秒単位で示し、図6(B)では、時間軸は分単位で示している。
 図6(A)に示すように、流量の計測は、1秒毎に行っているので、流量変化幅H1はでは心臓の拍動ごとの流量変化は見えない.ところが、図6(B)に示すように、時間軸を分単位で大きく取って、流量の変化の全体を見ると、流量変動幅H2は拍動1回分について示されることが分かる。このことから、送液圧と圧損を加味することで、患者の血圧値をほぼ把握することができ、制御部100の保持するこれらの数値をもとに血圧値は略算出できる。この状況を常時知ることで、術者は、波形表示領域部40に常時表示されている波形60を観察することで、血圧値の大よそを把握できる。
 したがって、図2の表示部30には、このような手法で求めたおおよその血圧値をあわせて表示するようにしてもよい。
 図7は、波形60の3つの領域毎の変化例を概念的に示している。図7の縦軸は血液の流量であり、横軸は時間である。
 図7に例示する波形60では、(1)心停止領域T1と、(2)心機能の回復領域T2と、(3)心機能低下領域T3を有している。
 まず、心停止領域T1では、患者Pの心臓の拍動は発生しないので、遠心ポンプ3のロータリーポンプ波形61(遠心ポンプ3の血液流量)のみが、直線波形として表示される。
 次の心機能の回復領域T2では、患者Pの心臓の拍動と拍出量が上昇して安定し、拍動状態になったことにより、患者Pの心機能は回復したことになる。
 続いて、心機能低下領域T3(心停止)では、拍出量が徐々に減少していく。
 図8は、図7における心機能低下領域T3の部分T4を拡大して示している。図8の縦軸は血液の流量(L/min)であり、横軸は時間(sec)である。心機能低下領域T3では、心臓の拍動はほとんど認められない。
 上述したように、本発明の実施形態の心機能測定システム200は、人体からの血液を循環中の血液の流量波形が測定される流量計70と、流量計70により測定された流量波形に含まれる血液の流量変動波形である拍動波形62(波形60)が得られる制御部100と、制御部100からの指令により、人体の心機能を示す拍動波形62(波形60)が表示される表示部30を有する。
 これにより、流量計70は、人体からの血液を循環中の血液の流量波形を測定して、制御部100は、流量計70により測定された流量波形に含まれる血液の流量変動波形である拍動波形62(波形60)が得られる。表示部30には、制御部100からの指令により、人体の心機能を示す拍動波形62(波形60)が表示されるようになっている。
 このため、実際の緊急時の救急現場やへき地等の医療機器の用意が不十分な地域であっても、心機能測定システム200は、流量計70を人体からの血液を循環中の血液の流量波形が得られる部分に装着するだけで、患者Pに対して非侵襲で、患者Pの心機能(心臓の状態)を、特別な装置を接続しなくても、容易に得ることができる。
 表示部70は、拍動波形62(波形60)を表示する波形表示領域部40と、波形表示領域部40に表示された拍動波形の良否を、点灯して報知する点灯報知領域部50と、を備えることを特徴とする。
 これにより、表示部30の点灯報知領域部50は、患者から得られる拍動波形の良否を、点灯することで術者に対して報知することができるので、術者は、視覚により、患者Pの心機能の状態を容易に把握することができる。
 流量計70は超音波流量計であり、流量計70は、血液を循環させるチューブ(例えば送血チューブ)12に対して着脱可能に取り付けられている。これにより、流量計70は、血液を循環させるチューブに取り付けるだけで済むので、実際の緊急時の救急現場やへき地等の医療機器の用意が不十分な地域であっても、患者Pの心機能(心臓の状態)を得ることができる。
 本発明の実施形態の心機能測定システムを備える体外循環装置1は、人体の血液を体外循環させる体外循環装置であり、人体からの血液を循環中の血液の流量波形が測定される流量計70と、流量計70により測定された流量波形に含まれる血液の流量変動波形である拍動波形62(波形60)が得られる制御部100と、制御部100からの指令により、人体の心機能を示す拍動波形62(波形60)が表示される表示部30を有する。
 これにより、流量計70は、人体からの血液を循環中の血液の流量波形を測定して、制御部100は、流量計70により測定された流量波形に含まれる血液の流量変動波形である拍動波形62(波形60)が得られる。表示部30には、制御部100からの指令により、人体の心機能を示す拍動波形62(波形60)が表示されるようになっている。
 このため、実際の緊急時の救急現場やへき地等の医療機器の用意が不十分な地域であっても、心機能測定システム200は、流量計70を人体からの血液を循環中の血液の流量波形が得られる部分に装着するだけで、患者Pに対して非侵襲で、患者Pの心機能(心臓の状態)を、特別な装置を接続しなくても、容易に得ることができる。
 本発明は、上記実施形態に限定されず、特許請求の範囲を逸脱しない範囲で種々の変更を行うことができる。上述した本発明の各実施形態は、任意組み合わせることができる。上記実施形態の各構成は、その一部を省略したり、上記とは異なるように任意に組み合わせることができる。
 本発明の実施形態では、心機能測定システム200は、体外循環装置1に搭載され、心機能測定システム200は、超音波流量計70と、コントローラ10により構成されている。しかし、本発明の心機能測定システムは、体外循環装置1に限定されず、チューブを通じて血液を移送する他の種類の医療機器に対しても、搭載することができる。
 200・・・心機能測定システム、1・・・体外循環装置、3・・・遠心ポンプ、10…コントローラ、30・・・表示部、40・・・波形表示領域部、50・・・点灯報知領域部、62・・・心臓の拍動波形、70・・・超音波流量計(流量計)、100・・・制御部

Claims (5)

  1.  人体からの血液を循環中の前記血液の流量波形が測定される流量計と、
     前記流量計により測定された前記流量波形に含まれる前記血液の流量変動波形である拍動波形が得られる制御部と、
     前記制御部からの指令により、前記人体の心機能を示す前記拍動波形が表示される表示部と、
     を有することを特徴とする心機能測定システム。
  2.  前記表示部は、前記流量変動波形を検出する時間単位を変更可能であり、長時間の計測結果を波形として表示することを特徴とする請求項1に記載の心機能測定システム。
  3.  前記表示部は、前記拍動波形を表示する波形表示領域部と、前記波形表示領域部に表示された前記拍動波形の良否を、点灯して報知する点灯報知領域部とを備えることを特徴とする請求項1または2に記載の心機能測定システム。
  4.  前記流量計は超音波流量計であり、前記流量計は、前記血液を循環させるチューブに対して着脱可能に取り付けられていることを特徴とする請求項1ないし3のいずれかに記載の心機能測定システム。
  5.  人体の血液を体外循環させる体外循環装置であって、
     人体からの血液を循環中の前記血液の流量波形が測定される流量計と、
     前記流量計により測定された前記流量波形に含まれる前記血液の流量変動波形である拍動波形が得られる制御部と、
     前記制御部からの指令により、前記人体の心機能を示す前記拍動波形が表示される表示部と
     を有する心機能測定システムを備えることを特徴とする体外循環装置。
PCT/JP2016/071854 2015-12-28 2016-07-26 心機能測定システムおよび心機能測定システムを備える体外循環装置 WO2017115487A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16881467.1A EP3398509B1 (en) 2015-12-28 2016-07-26 Extracorporeal circulation device provided with cardiac function measurement system
JP2017558856A JP6787930B2 (ja) 2015-12-28 2016-07-26 心機能測定システムおよび心機能測定システムを備える体外循環装置
US16/011,885 US20180296747A1 (en) 2015-12-28 2018-06-19 Cardiac function measuring system and extracorporeal circulator provided with cardiac function measuring system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-256617 2015-12-28
JP2015256617 2015-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/011,885 Continuation US20180296747A1 (en) 2015-12-28 2018-06-19 Cardiac function measuring system and extracorporeal circulator provided with cardiac function measuring system

Publications (1)

Publication Number Publication Date
WO2017115487A1 true WO2017115487A1 (ja) 2017-07-06

Family

ID=59225404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071854 WO2017115487A1 (ja) 2015-12-28 2016-07-26 心機能測定システムおよび心機能測定システムを備える体外循環装置

Country Status (4)

Country Link
US (1) US20180296747A1 (ja)
EP (1) EP3398509B1 (ja)
JP (1) JP6787930B2 (ja)
WO (1) WO2017115487A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020261688A1 (ja) * 2019-06-27 2020-12-30 テルモ株式会社 心機能測定システム、体外循環装置および心機能測定プログラム
WO2021177423A1 (ja) * 2020-03-05 2021-09-10 テルモ株式会社 体外循環装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143078A (ja) * 1986-12-03 1988-06-15 株式会社クラレ 呼吸補助装置
JPH05137783A (ja) * 1991-11-19 1993-06-01 Yasuhiro Fukui 一体型人工心肺
WO2012114545A1 (ja) * 2011-02-25 2012-08-30 パイオニア株式会社 血圧低下予測装置
JP2013208287A (ja) * 2012-03-30 2013-10-10 Fukuda Denshi Co Ltd 生体信号表示装置およびその制御方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4674978B2 (ja) * 2001-02-01 2011-04-20 Cyberdyne株式会社 心機能評価装置
JP3490433B1 (ja) * 2003-06-02 2004-01-26 株式会社サイバーファーム 生体情報監視システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143078A (ja) * 1986-12-03 1988-06-15 株式会社クラレ 呼吸補助装置
JPH05137783A (ja) * 1991-11-19 1993-06-01 Yasuhiro Fukui 一体型人工心肺
WO2012114545A1 (ja) * 2011-02-25 2012-08-30 パイオニア株式会社 血圧低下予測装置
JP2013208287A (ja) * 2012-03-30 2013-10-10 Fukuda Denshi Co Ltd 生体信号表示装置およびその制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020261688A1 (ja) * 2019-06-27 2020-12-30 テルモ株式会社 心機能測定システム、体外循環装置および心機能測定プログラム
WO2021177423A1 (ja) * 2020-03-05 2021-09-10 テルモ株式会社 体外循環装置

Also Published As

Publication number Publication date
JP6787930B2 (ja) 2020-11-18
EP3398509A4 (en) 2019-07-10
EP3398509B1 (en) 2021-02-24
EP3398509A1 (en) 2018-11-07
JPWO2017115487A1 (ja) 2018-10-18
US20180296747A1 (en) 2018-10-18

Similar Documents

Publication Publication Date Title
US10716880B2 (en) Systems and methods for aspiration and monitoring
JP6607455B2 (ja) 吸引監視システムおよび方法
JP2018525089A (ja) 吸引監視システムおよび方法
JP2016514026A (ja) 体外血液治療機を備えた自律乗り物
JP4527425B2 (ja) 自律神経活動モニター装置、血液処理装置および採血装置
RU2013132934A (ru) Устройство для управления пределом предупредительного сигнала устройства предупредительного сигнала
US11883626B2 (en) Detection of an endoscope to a fluid management system
WO2017115487A1 (ja) 心機能測定システムおよび心機能測定システムを備える体外循環装置
JP6324759B2 (ja) 体外循環装置及びその制御方法
JP6296815B2 (ja) 体外循環装置及び体外循環装置の制御方法
JP2006280961A (ja) 自律神経活動モニタ方法
JP4393789B2 (ja) 自律神経活動モニタ装置
WO2015141622A1 (ja) 警報装置、体外循環装置及び警報装置の制御方法
US8626528B2 (en) Intelligent alarms
US11458237B2 (en) Blood purification apparatus
JP7020786B2 (ja) ガス測定装置およびこれを備える体外循環システム
JP6324797B2 (ja) 体外循環装置及び体外循環装置の制御方法
JP6396738B2 (ja) 留置針
JP6630794B2 (ja) 体外循環装置
RU185905U1 (ru) Автоматизированное устройство для экстренного восстановления кровообращения
JP2015062495A (ja) 体外循環装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881467

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017558856

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016881467

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016881467

Country of ref document: EP

Effective date: 20180730