WO2017114488A1 - 一种可气体直接进样用于重金属元素检测的液体阴极辉光放电等离子体原子发射光谱装置及方法 - Google Patents

一种可气体直接进样用于重金属元素检测的液体阴极辉光放电等离子体原子发射光谱装置及方法 Download PDF

Info

Publication number
WO2017114488A1
WO2017114488A1 PCT/CN2016/113504 CN2016113504W WO2017114488A1 WO 2017114488 A1 WO2017114488 A1 WO 2017114488A1 CN 2016113504 W CN2016113504 W CN 2016113504W WO 2017114488 A1 WO2017114488 A1 WO 2017114488A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid
cathode
anode
hydride
Prior art date
Application number
PCT/CN2016/113504
Other languages
English (en)
French (fr)
Inventor
汪正
黄楚楚
李青
莫家媚
Original Assignee
中国科学院上海硅酸盐研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201511015846.3A external-priority patent/CN105651760B/zh
Priority claimed from CN201610186496.5A external-priority patent/CN105842230B/zh
Application filed by 中国科学院上海硅酸盐研究所 filed Critical 中国科学院上海硅酸盐研究所
Priority to US16/065,669 priority Critical patent/US10705023B2/en
Publication of WO2017114488A1 publication Critical patent/WO2017114488A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • G01N21/67Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using electric arcs or discharges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/443Emission spectrometry
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/48Generating plasma using an arc
    • H05H1/486Arrangements to provide capillary discharges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/4697Generating plasma using glow discharges

Definitions

  • the present invention relates to the field of atomic spectroscopy, and relates to a microplasma device, and more particularly to a microplasma device and a heavy metal element detecting device and method including the microplasma device. Background technique
  • Microplasma is a general term for plasmas of the order of millimeters or even lower. Microdischarge plasmas are generally capable of operating at atmospheric pressure, and operations generally do not require special gases, and have low operating costs and small instrument size.
  • a liquid cathode glow discharge device is a type of apparatus which, under atmospheric pressure, uses a sample solution as a cathode and a metal as an anode, and a gas is applied between the electrodes by applying a high voltage between the electrodes. During the discharge process, the solution in the liquid electrode is continuously vaporized, so that the metal ions dissolved in the solution also enter the plasma and are excited to generate spectral radiation, which is used in combination with the spectrometer to realize the detection of metal ions in the solution.
  • the injection mode of the liquid cathode glow discharge device is liquid injection, that is, the liquid sample is introduced into the glass capillary by the peristaltic pump through the injection tube and overflows, the injection mode is single, and only the liquid sample can be tested;
  • the liquid pH must be 1, which is critical for sample preparation and severely restricts its application in the field of analysis.
  • the elements in the solution to be tested have low atomization efficiency in plasma evaporation, which reduces the sensitivity of the element to be tested. Therefore, improving the way of injection, especially for gas injection, not only simplifies the sample before The process broadens the application area of the microplasma; it also increases the sensitivity of the test and provides the possibility to be used in conjunction with other instruments.
  • spectroscopy-based metal ion detection methods mainly include atomic absorption spectroscopy and atomic emission spectroscopy.
  • Detection instruments commonly used in these methods include flame atomic absorption spectrometers, inductively coupled plasma emission spectrometers, and the like.
  • these commonly used detection instruments are bulky, expensive, and costly to detect, and are difficult to use for field analysis and monitoring.
  • people began to study simple, fast and low-cost metal element detection technology in order to achieve rapid and effective monitoring of metal residues in the environment, and to protect people's health and ecological safety.
  • the liquid cathode glow discharge spectroscopy technology has the advantages of simple structure, small volume, low operating power consumption, operation under normal pressure, no atomizer, no vacuum system, easy miniaturization and on-line analysis. It has broad application prospects in metal ion detection and water purification in many fields such as geology, environmental protection, materials science and food safety.
  • liquid cathode glow discharge spectroscopy has lower detection limits for most elements, such as Li, Na, etc., it is less sensitive to most heavy metal elements, especially toxic heavy metal elements, such as Se, Te, Hg, As, Sb, Bi, Pb, etc. At present, scientists have improved the sensitivity of certain elements by adding small organic acids or surfactants, and achieved good results.
  • the hydride generation injection technique separates the component to be tested from the matrix in a gaseous form, reduces matrix interference, and enriches the element to be tested, so that the injection efficiency is pneumatically atomized. ⁇ 5% increased to nearly 100%; the easy dissociation of homogen gas hydride makes the atomization efficiency greatly improved, which can greatly improve the detection limit and precision of the measurement, and can realize morphological analysis and multi-element detection .
  • the technical problem to be solved by the present invention is to provide a simple device.
  • the micro-plasma device which is small in size, convenient to operate, and low in cost, is suitable for the analysis of metal elements in gases, and can realize direct gas injection and improve the sensitivity of metal element analysis.
  • a microplasma apparatus suitable for analysis of a metal element in a gas, comprising a high voltage power source, a snubber resistor, a hollow metal anode, and a liquid cathode; wherein the hollow metal anode passes through the snubber resistor and the high voltage power source
  • the positive electrode is connected
  • the liquid cathode is connected to the negative electrode of the high-voltage power source through a graphite electrode
  • the micro-plasma device is further configured to: form a discharge region between the hollow metal anode and the liquid cathode,
  • the hollow metal anode also serves as an injection line for allowing the gas to be tested to enter the discharge region and be excited.
  • a microplasma device suitable for analysis of metal elements in a gas has the following advantages: a simple structure, a small size, convenient installation and operation, low operating power consumption, low cost, and direct gas generation. Injection, and can improve the sensitivity of metal element analysis.
  • the microplasma device of the invention can operate under atmospheric pressure, does not require an atomizer, does not require a vacuum system, is easy to realize miniaturization, is injected in a gas form, and does not affect plasma stability, and has high sensitivity of metal element analysis, and is suitable for use in Analysis of metal elements in gases and the possibility of use in conjunction with other instruments.
  • the hollow metal anode in the present invention is a hollow titanium tube.
  • the gas to be tested is carried into the hollow metal anode by an inert gas as a carrier gas.
  • the inert gas has a cooling effect on the anode hollow titanium tube, which prevents the anode from being overheated and damaged.
  • the carrier gas flow rate is preferably from 50 to 1 50 ml/min.
  • the inert gas may be argon gas or helium gas or the like.
  • the liquid cathode is an electrolyte solution that is introduced into the cathode capillary by a peristaltic pump and overflows; the top end of the cathode capillary maintains a distance of 3 to 4 mm from the bottom end of the hollow metal anode.
  • the microplasma device suitable for the analysis of metal elements in a gas according to the present invention is further provided a waste liquid pool directly below the hollow metal anode; the graphite electrode horizontally penetrates a wall portion of the waste liquid pool and is fixed to one side of the waste liquid pool; the cathode capillary vertically penetrates the graphite electrode
  • the waste liquid in the waste liquid pool is taken out by the peristaltic pump that introduces the electrolyte solution into the cathode capillary tube through the drain pipe.
  • the cathode capillary is a glass capillary having an inner diameter of 0.38 mm and an outer diameter of 1.1 mm; the inner diameter of the liquid discharge tube is 2-3 mm, and the outer diameter is 4-5 mm.
  • the hollow metal anode has an inner diameter of 0.8-1.0 mm and an outer diameter of 2.0-2.5 mm. Adjust the peristaltic pump so that the liquid cathode flow rate is 1.0-2.1 ml/min, and the gas flow rate to be measured is adjusted to 50-150 ml/min.
  • the high voltage power source adopts a high voltage source having a rated current of 0.1 A and capable of supplying a DC voltage of 0 to 2000 V; and the resistance of the buffer resistor is 1 to 1.2 ⁇ .
  • the hollow metal anode and the waste liquid pool are fixed on a three-dimensional platform with an adjustable X, ⁇ , and ⁇ directions of 2 ⁇ .
  • the peristaltic pump is a general laboratory peristaltic pump.
  • the peristaltic pump, the anode material, and the carrier gas type are not limited thereto.
  • the device of the invention is simple, small in size, convenient in installation, low in operating power consumption, operates under atmospheric pressure, requires no atomizer, does not require a vacuum system, is easy to realize miniaturization, is injected in a gas form, and does not affect plasma stability. Sex, metal element analysis sensitivity is high, suitable for the analysis of metal elements in gases.
  • the technical problem to be solved by the present invention is to provide a simple structure, convenient operation, low cost, convenient and quick, and heavy metal.
  • an apparatus for detecting heavy metal elements comprising: a hydride generator unit, a liquid cathode glow discharge spectrometer unit, and a connection between the hydride generator unit and the liquid cathode glow discharge a connecting unit of the spectrometer unit, the liquid cathode glow discharge spectrometer unit is formed as follows: an electrolyte solution is used as a cathode, a hollow titanium tube is used as an anode, and after applying a high voltage to the two electrodes, a glow discharge microplasma is generated between the two poles; the hydride generator unit is formed to generate a structure of a heavy metal element hydride to be tested; and the hydrogen metal element to be tested is hydrogenated by the hydride generator unit The material is transported to the hollow titanium tube anode via the connecting unit, and is introduced from the hollow titanium tube anode to the glow discharge microplasma and excited to generate a characteristic emission spectrum.
  • the apparatus for detecting heavy metal elements of the present invention is a combination of a hydride generator and a liquid cathode glow discharge spectrometer for ion detection of heavy metal elements, particularly toxic heavy metal elements in water, biological and ore samples. And improve the analytical sensitivity and expand selectivity of heavy metal elements, especially toxic heavy metal elements, by liquid cathode glow discharge spectroscopy.
  • the device of the invention combines the advantages of a liquid cathode glow discharge spectrometer and a hydride generator, and has the advantages of simple structure, convenient installation, convenient operation and low cost, and is used for combining liquid cathode glow discharge spectrometer with other injection technologies.
  • the foundation has been laid and the application prospect of the actual sample analysis of liquid cathode glow discharge spectrometer has been broadened.
  • the hydride generator unit includes: a sample introduction system, a reaction ring for reacting a reaction solution transported by the sample introduction system to generate the hydride of the heavy metal element to be tested, A gas-liquid separator for separating the hydride of the heavy metal element to be tested from the liquid after the reaction, and a carrier gas flow control system for controlling the carrier gas for transporting the hydride of the heavy metal element to be tested.
  • the connecting unit may further include a hydride output tube connected between the anode tip of the hollow titanium tube of the liquid cathode glow discharge spectrometer and the gas-liquid separator of the hydride generator unit. .
  • the hydride output tube is a plastic soft rubber tube with an inner diameter of 0.3-0.35
  • the diameter of the eve is 0.38-0.43 cm.
  • the sample introduction system comprises a peristaltic pump, a sample conduit, a reducing agent conduit and a liquid carrying conduit, and the sample to be tested, the reducing agent and the carrier liquid are respectively passed through the sample conduit through the peristaltic pump, A reductant conduit and a carrier fluid conduit are introduced to the reaction loop, the carrier gas flow control system including a carrier gas conduit and a gas flow controller for controlling gas flow within the carrier gas conduit.
  • the liquid cathode glow discharge spectrometer unit comprises a light source generating portion, a spectroscopic system, a detecting device, and a data processing system
  • the light source generating portion comprises a high voltage power source
  • the IJ and the The hollow titanium tube anode and the graphite electrode connected to the positive and negative electrodes of the high-voltage power source, and the liquid pool located below the anode of the hollow titanium tube, the graphite electrode horizontally penetrating through a side wall of the liquid pool and vertically penetrating a cathode capillary of the graphite electrode, a drain tube for discharging waste liquid in the liquid pool, and a creeping force for introducing the electrolyte into the cathode capillary or introducing the waste liquid into the drain tube a pump
  • the spectroscopic system comprising a collecting lens and a spectrometer, the center of the glow discharge region generating the glow discharge microplasma, the
  • the present invention also provides a method of detecting heavy metal elements using the apparatus for detecting heavy metal elements of the present invention.
  • the method includes the following steps:
  • a suitable object distance is selected within a range in which a real image is presented, and a characteristic emission spectrum line generated by the lens is introduced into the spectrometer through a lens and the content of heavy metal elements in the sample solution to be tested is measured to realize detection of heavy metal element ions.
  • the reducing agent solution is sodium borohydride or potassium borohydride solution
  • the carrier liquid is an electrolyte acid
  • the carrier gas preferably used is an inert gas.
  • the heavy metal elements to be tested in the method include Se, Te, Hg, As, Sb, Bi, Pb, Sn elements in water, biological and ore samples.
  • the method of the present invention comprises a method for detecting and morphological analysis of heavy metal elements in a sample by a liquid cathode glow discharge spectrometer driven by a direct current under normal pressure and a hydride generator, and the operation steps are simple and easy.
  • Implementation combined with the advantages of liquid cathode glow discharge and hydride generation, can simplify the sample preparation process, reduce the matrix effect, and can improve the detection sensitivity of heavy metal elements and expand the selectivity, which can be achieved in water, biological and ore samples.
  • Detection of hydrogenation element concentrations such as Se, Te, Hg, As, Sb, Bi, Pb, and Sn
  • analysis of valence states of elements such as As, Se, and Hg.
  • the device of the invention has the advantages of simple device, small volume, convenient installation, low operating power consumption, operation under atmospheric pressure, no atomizer, no vacuum system, easy miniaturization, injection in gas form, and no influence on plasma stability. Sex, metal element analysis sensitivity is high, suitable for the analysis of metal elements in gases.
  • FIG. 1 is a schematic view showing the structure of a microplasma apparatus suitable for analysis of a metal element in a gas according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of an apparatus for use in combination of a hydride generator for detecting heavy metal elements and a liquid cathode glow discharge spectrometer according to an embodiment of the present invention
  • FIG. 3 is a characteristic emission spectrum of 100 ng/mL mercury element obtained using the apparatus and method of the present invention
  • FIG. 4 is a characteristic of 250 ng/mL selenium element obtained using the apparatus and method of the present invention. Emission Spectrogram
  • Figure 5 is a characteristic emission spectrum of 10 g/mL arsenic element obtained using the apparatus and method of the present invention
  • Figure 6 is a valence analysis of selenium element using the apparatus and method of the present invention Technical roadmap;
  • the present invention provides a microplasma device suitable for analyzing metal elements in a gas, comprising: a high voltage power source, a buffer resistor, a hollow metal anode, and a liquid cathode;
  • the hollow metal anode passes through the buffer resistor and the high voltage power supply Connected to the pole, the liquid cathode is connected to the anode of the high voltage power source through a graphite electrode;
  • the microplasma device is further configured to: form a discharge region between the hollow metal anode and the liquid cathode,
  • the hollow metal anode also serves as a sample line for allowing the gas to be tested to enter the discharge region and be excited. According to the invention, direct gas injection can be realized, and the sensitivity of metal element analysis is improved.
  • FIG. 1 is a schematic view showing the structure of a microplasma apparatus suitable for analysis of a metal element in a gas according to an embodiment of the present invention.
  • the power supply uses a BHK2000-0.1MG high-voltage source with a rated current of 0.1 A and a DC voltage of 0 to 2000 V to provide DC high voltage.
  • the lead wire drawn from the positive electrode of the high voltage source is connected to the anode 10 of the hollow titanium tube as a hollow anode via a buffer resistor having a resistance value of 1 to 1.2 ⁇ ⁇ ; and the graphite electrode 9 is connected to the negative electrode.
  • the electrolyte solution 14 is introduced from the electrolyte bottle by the peristaltic pump 1, and the electrolyte solution overflowing from the cathode capillary 12 is used as a liquid cathode, and is connected to the negative electrode of the high-voltage power source through the graphite electrode 9, thereby constituting the entire circuit of the glow device.
  • hollow titanium tube anode 10 is used as a hollow anode, and the same as the gas injection line, the gas to be tested enters the glow discharge region and is excited.
  • the hollow titanium tube anode 10 can have an inner diameter of 0.8-1.0
  • Mm outer diameter
  • the injection gas is carried into the hollow titanium tube anode 10 by, for example, argon as a carrier gas, and the carrier gas flow rate is 50-150 ml/min.
  • the argon gas also has a cooling effect on the hollow titanium tube anode 10, the anode can be prevented from being overheated and damaged.
  • the hollow titanium tube anode 10 and the waste liquid pool 21 are both fixed on a three-dimensional platform with an adjustable X, Y, and ⁇ direction of 2 ⁇ , and the waste liquid pool 21 is made of an acid-resistant and corrosion-resistant insulator material, such as a polymer.
  • the tetrafluoroethylene is processed and located directly under the anode 10 of the hollow titanium tube, wherein the electrolyte may be a mineral acid having a pH of 1, for example, one or more of nitric acid, hydrochloric acid and sulfuric acid.
  • the electrolyte solution 14 in the electrolyte bottle is introduced into the cathode capillary 12 by the peristaltic pump 1, and the waste liquid in the waste liquid pool 21 is taken out from the same peristaltic pump 1 through the drain pipe 13 to the waste liquid bottle 15.
  • the cathode capillary 12 is a glass capillary, an inner diameter of 0.38 mm, an outer diameter of l. l mm.
  • the tip end of the cathode capillary 12 is kept at a distance of 3 to 4 mm from the bottom end of the hollow titanium tube anode 10, thereby constituting a glow discharge region 11, into which the gas to be measured enters and is excited.
  • the graphite electrode 9 horizontally penetrates the wall portion of the waste liquid tank 21 and is fixed to one side of the waste liquid pool 21. Cathode hair The thin tube 12 extends vertically through the horizontally placed graphite electrode 9.
  • the drain 13 can have an inner diameter of 2 mm and an outer diameter of 4 mm.
  • the peristaltic pump is a general laboratory peristaltic pump.
  • the electrolyte solution is used as the cathode, and the hollow titanium tube anode 10 is used as the anode.
  • the gas between the electrodes is discharged; the glow discharge is in the hollow titanium tube anode 10 and A region between the sample solutions overflowing the tip end of the cathode capillary 12 is generated.
  • the testing process is carried out under atmospheric conditions.
  • the gas to be tested is introduced from the top of the hollow titanium tube anode 10 and reaches the discharge area. 11. After the injection, the plasma remains stable and does not extinguish.
  • the inorganic acid electrolyte is driven by the peristaltic pump 1 into the cathode capillary 12 and continuously overflows. Adjust the peristaltic pump 1 to make the catholyte flow rate 1.0-2.1 ml/min
  • micro-plasma device suitable for the analysis of the metal elements in the gas is combined with the lens and the spectrometer, and the H 2 Se produced by the hydrogenation of the Se solution is measured multiple times.
  • the result shows that the detection limit of the instrument for H 2 Se is 0.2 ng/mL with good sensitivity, signal RSD below 5%, sensitivity increased by 4 orders of magnitude compared to liquid cathode glow discharge microplasma (detection limit 2.6 g/mL) using liquid injection. It has a wider range of applications and is possible to work with other instruments.
  • the anode material, the electrolyte solution, the peristaltic pump, the type of the carrier gas, and the like are not limited to the above embodiments.
  • FIG. 2 is a schematic structural view of an apparatus for use in combination of a hydride generator for detecting heavy metal elements and a liquid cathode glow discharge spectrometer according to an embodiment of the present invention.
  • the apparatus for hydride generator for heavy metal element detection and liquid cathode glow discharge spectrometer includes a hydride generator 17, a joint interface unit, and a liquid cathode glow discharge spectrometer. unit.
  • the liquid cathode glow discharge spectrometer unit may include a light source generating portion, a spectroscopic system, a detecting device, and a data processing system.
  • the light source generating portion may include a high voltage power source, a snubber resistor, a three-dimensional platform, a hollow titanium tube anode 10, a peristaltic pump 1B, a liquid pool 18, a graphite electrode 9, a drain tube 13, and a cathode capillary 12 that vertically penetrates the graphite electrode 9.
  • the high voltage power supply can adopt a rated current of 0.1 A, and can provide 0 ⁇ 2000 V
  • the lead wire from the positive pole of the high voltage power supply is buffered and empty
  • the heart titanium tube anode 10 is connected; the negative electrode is connected to the graphite electrode 9.
  • the experimental device is ignited to require a certain concentration of inorganic acid as the electrolyte solution.
  • the electrolyte solution 14 is introduced into the cathode capillary 12 by the peristaltic pump 1B, and the electrolyte solution overflowing from the tip end of the cathode capillary 12 is connected to the graphite electrode 9, thereby constituting the entire circuit of the glow device. After a high voltage is applied to both electrodes under normal pressure, a glow discharge microplasma is generated between the two electrodes to form a glow discharge region 11.
  • the electrolyte solution 14 may be one of inorganic acids such as nitric acid, hydrochloric acid, sulfuric acid, and the like having a pH of 1.
  • the adjustable peristaltic pump 1B flow rate is 1.0-2.1 m! Jmin, causing the electrolyte solution 14 to continuously overflow the top of the cathode capillary 12 of the liquid cathode glow discharge spectrometer.
  • the hollow titanium tube anode 10 is also used as a gas tube.
  • the hollow titanium tube anode 10 may have an inner diameter of 0.8-1.0 mm and an outer diameter of 2.0-2.5 mm.
  • the injection gas is introduced into the hollow titanium tube anode 10 by an inert gas such as argon gas or helium gas as a carrier gas.
  • an inert gas such as argon gas or helium gas as a carrier gas.
  • the inert gas since the inert gas also has a cooling effect on the hollow titanium tube anode 10, it can prevent the anode from being overheated and damaged.
  • the hollow titanium tube anode 10 and the liquid pool 18 are both fixed on a three-dimensional platform with an adjustable X, Y, and ⁇ direction of 2 ⁇ , and the liquid pool 18 is made of an acid-resistant, corrosion-resistant insulator material such as poly Made of tetrafluoroethylene, located directly below the anode 10 of the hollow titanium tube.
  • the electrolyte solution 14 is introduced into the cathode capillary 12 by the peristaltic pump 1B, and the waste liquid in the liquid pool 18 is taken out by the same peristaltic pump 1B through the discharge pipe 13.
  • the cathode capillary 12 can be a glass capillary having an inner diameter of 0.38 mm and an outer diameter of 1.1 mm.
  • the tip end of the cathode capillary tube 12 is kept at a distance of 3 to 4 mm from the bottom end of the hollow titanium tube anode 10 and constitutes a glow discharge region 11, into which the gas to be measured enters and is excited.
  • the graphite electrode 9 is horizontally passed through the wall of the waste liquid tank and fixed to one side of the waste liquid pool.
  • the cathode capillary 12 extends vertically through the horizontally placed graphite electrode 9.
  • the drain 13 can have an inner diameter of 2 mm and an outer diameter of 4 mm.
  • Peristaltic pump IB is a general laboratory peristaltic pump.
  • the spectroscopic system includes: a collecting lens 19 and a spectrometer 20, a center of the glow discharge region 11, a center of the collecting lens 19, and a spectrometer 20
  • the centers of the entrance slits are on the same line to ensure that the emission spectrum generated by the discharge enters the entrance slit with minimal light loss.
  • the combined instrument interface unit includes a hydride output tube 8 connected between the top end of the hollow titanium tube anode 10 and the gas-liquid separator 7 of the hydride generator 17 connected to the liquid cathode glow discharge spectrometer, the hydride output tube 8 can be a plastic soft hose with an inner diameter of 0.33 cm and an outer diameter of 0.41 cm.
  • the hydride generator 17 includes a sample introduction system, a reaction loop 2, a carrier gas flow control system, and a gas-liquid separator 7
  • the injection system includes a peristaltic pump 1A, a sample conduit, a reductant conduit, and a carrier fluid conduit
  • the carrier gas flow control system includes a carrier gas conduit and a gas flow controller 16.
  • the sample solution 4, the reducing agent 6 and the carrier liquid 5 are introduced into the reaction ring 2 through the same peristaltic pump 1A through the sample conduit, the reducing agent conduit and the carrier liquid conduit, respectively, and The reaction takes place in reaction ring 2 to produce the corresponding hydride.
  • the gas-liquid separator 7 in the hydride generator 17 separates the produced hydride from the reacted liquid, and the inert gas as a carrier gas controlled by the gas flow rate controller 16.
  • the generated hydride is led out through the hydride output tube 8 to the top of the hollow titanium tube anode 10 of the liquid cathode glow discharge spectrometer and thereby enters the discharge plasma of the glow discharge region 11.
  • the anode can be prevented from being overheated and damaged.
  • the reducing agent solution may be sodium borohydride or potassium borohydride solution during the experiment, and the medium may be 0.1 mol/L sodium hydroxide solution; the carrier liquid may be hydrochloric acid or other electrolyte acid.
  • the peristaltic pumps 1A, IB are general laboratory peristaltic pumps.
  • the peristaltic pump, the anode material, and the type of carrier gas are not limited thereto.
  • the determination of the heavy metal element content in the sample solution includes the detection of hydrogenating elements such as Se, Te, Hg, As, Sb, Bi, Pb, Sn in water, biomass and ore samples.
  • FIG. 3 and 5 respectively show characteristic emission spectra of lOO ng/mL Hg and lO g/mL As, the ordinate represents the emission intensity, and the abscissa represents the wavelength range. It can be seen from Fig. 3 and Fig. 5 that the wavelengths of Hg and As appear at 253.8 nm and 193.85 nm, respectively, which verifies the feasibility of the detection device and method of the present invention.
  • FIG. 6 is a diagram showing the use of the apparatus and method of the present invention The selenium element valence analysis technology roadmap, Figure 4 is a characteristic emission spectrum of 250 ng/mL Se obtained using the apparatus and method of the present invention. As shown in Figure 6, when the carrier liquid 5 is 1
  • the mol/L HC1 the reduced lignin lj6 is 1.2% NaBH 4
  • the carrier gas is the flow rate of 110 m! Jmin argon gas
  • the 250 ng/mL Se(IV) solution can produce the corresponding hydride and enter the glow
  • the discharge plasma is thus excited, as shown in Fig. 4, the characteristic line is obtained at a wavelength of 196.24 nm; and the 50 g/L Se(VI) solution cannot produce hydride and characteristic lines under the same conditions. Therefore, the sample was not pretreated, and the content of Se(IV) was determined under the experimental conditions. After the sample was bathed with 6 mol/L of HC1 for 30 min, the total Se content was determined under the experimental conditions. Realize the valence analysis of Se.
  • the device of the invention combines the advantages of a liquid cathode glow discharge spectrometer and a hydride generator, and has the advantages of simple structure, convenient installation, convenient operation and low cost, and is combined with other injection technology for liquid cathode glow discharge spectrometer.
  • the foundation has been laid and the application prospect of the actual sample analysis of liquid cathode glow discharge spectrometer has been broadened.
  • the method of the present invention comprises a method of detecting and valency analysis of heavy metal elements in a sample by a liquid cathode glow discharge spectrometer driven by direct current under normal pressure and a hydride generator, and the operation steps are simple. Easy to implement, combined with the advantages of liquid cathode glow discharge and hydride generation, simplifying the sample preparation process, reducing the matrix effect, improving the detection sensitivity of heavy metal elements and expanding the selectivity, enabling the realization of water, biology and ore
  • the concentration of hydrogenated elements such as Se, Te, Hg, As, Sb, Bi, Pb, and Sn in the sample and the analysis of the valence states of elements such as As, Se, and Hg.
  • the device has the advantages of simple device, small volume, convenient installation, low operating power consumption, operation under atmospheric pressure, no atomizer, no vacuum system, easy miniaturization, injection in gas form, and no influence on plasma stability, metal
  • the elemental analysis has high sensitivity and is suitable for the analysis of metal elements in gases.
  • the device of the invention combines the advantages of a liquid cathode glow discharge spectrometer and a hydride generator, and has the advantages of simple structure, convenient installation, convenient operation and low cost, and is laid for the liquid cathode glow discharge spectrometer combined with other injection technologies. The foundation and the application of the actual sample analysis of the liquid cathode glow discharge spectrometer were broadened.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma & Fusion (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Electromagnetism (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种可气体直接进样用于重金属元素检测的液体阴极辉光放电等离子体原子发射光谱装置及方法,所述液体阴极辉光放电等离子体原子发射光谱装置包括高压电源、缓冲电阻(22)、空心的金属阳极(10)和液体阴极;所述空心的金属阳极(10)通过所述缓冲电阻(22)与所述高压电源的正极相连,所述液体阴极通过石墨电极(9)与所述高压电源的负极相连;所述等离子体装置还形成为如下结构:在所述空心的金属阳极(10)与所述液体阴极之间形成放电区域(11),述空心的金属阳极(10)还作为进样管路,使待测气体进入所述放电区域(11)并被激发。该装置简单、体积小、安装方便、运行功耗低、大气压下操作、无需雾化器、无需真空系统、易于实现小型化,以气体形式进样,且不影响其等离子体稳定性,金属元素分析灵敏度高,适用于气体中金属元素的分析。

Description

说明书
发明名称:一种可气体直接进样用于重金属元素检测的液体阴极辉 光放电等离子体原子发射光谱装置及方法 技术领域
[0001] 本发明属于原子光谱分析领域, 涉及一种微等离子体装置, 更具体地, 涉及一 种微等离子体装置及具备该微等离子体装置的重金属元素检测装置及方法。 背景技术
[0002] 传统的金属元素分析方法包括原子吸收光谱法、 电感耦合等离子体发射光谱 / 质谱法等, 这些方法中使用的检测仪器价格昂贵, 设备体积较大, 检测步骤繁 琐, 检测成本偏高。 随着科学技术的发展和检测水平的提高,人们幵始研究简单 、 快速和低成本的金属元素快速检测技术。
[0003] 微等离子体是尺度为毫米量级甚至更低的等离子体的统称, 微放电等离子体通 常能够运行在大气压条件下, 操作通常无须特殊气体, 具有运行成本低, 仪器 体积小等特点。 液体阴极辉光放电装置就是这样一类仪器, 其在大气压下, 以 进样溶液为阴极, 金属为阳极, 通过向电极间施加高压, 使电极间的气体产生 放电。 放电过程中, 液体电极中的溶液不断被汽化, 使得溶解在溶液中的金属 离子也进入到等离子体中并被激发, 产生光谱辐射, 与光谱仪联用, 从而实现 溶液中金属离子的检测。 由于它既具有原子吸收光谱法成本低廉, 发射光谱法 的高通量、 多元素和高灵敏度等的优点, 又具有结构简单、 体积小、 运行功耗 低、 能在大气压下操作、 无需雾化器、 无需真空系统、 易于实现小型化和在线 分析等优点, 因此在原子光谱分析领域得到了广泛的应用。
技术问题
[0004] 液体阴极辉光放电装置的进样方式为液体进样, 即液体样品经进样管由蠕动泵 引入玻璃毛细管并溢出, 进样方式单一, 只能对液体样品进行测试; 而且由于 阴极液体 pH值必须为 1, 对于样品前处理要求苛刻, 严重制约了其在分析领域的 应用; 同吋, 待测溶液中的元素在等离子体蒸发原子化效率低, 降低了待测元 素的灵敏度。 因此改进其进样方式, 特别是实现气体进样, 不仅能简化样品前 处理过程, 拓宽微等离子体的应用领域; 而且还能提高其测试灵敏度, 并为与 其他仪器联用提供了可能。
[0005] 传统的基于光谱技术的金属离子检测方法主要包括原子吸收光谱法和原子发射 光谱法。 这些方法中常用的检测仪器包括火焰原子吸收光谱仪, 电感耦合等离 子体发射光谱仪等。 但这几种常用的检测仪器体积庞大, 价格昂贵, 检测成本 高, 难以用于野外分析和监测。 随着科技发展和检测水平的提高, 人们幵始研 究简单、 快速和低成本的金属元素检测技术, 以期实现快速有效地监控环境中 的金属残留, 保障人民健康与生态安全。
[0006] 液体阴极辉光放电光谱检测技术具有结构简单、 体积小、 运行功耗低、 能在常 压下操作、 无需雾化器、 无需真空系统、 易于实现小型化和在线分析等优点, 在地质、 环保、 材料学、 食品安全等多个领域中的金属离子检测、 水质净化等 方面有广阔的应用前景。
[0007] 虽然液体阴极辉光放电光谱法对大多数元素具有较低的检出限, 例如 Li、 Na等 , 但其对大部分重金属元素, 特别是毒重金属元素灵敏度低, 如 Se、 Te、 Hg、 As、 Sb、 Bi、 Pb等。 目前, 科学家们通过添加小分子有机酸或表面活性剂等来 改进某些元素的灵敏度, 取得了较好的效果。 但仍存在两方面问题: 一方面, 灵敏度的改进有限, 只对部分元素具有较好的效果, 而对众多毒重金属元素没 有较好的普适性, 还不能完全满足环境监测等的需求; 另一方面, 虽然通过液 相色谱分离或通过新型材料固相分离等方法可以进行元素形态分析, 但是过程 比较繁琐, 成本相对较高。
[0008] 利用化学反应使待测物形成挥发性气体不仅是提高分析方法的灵敏度与选择性 的有效途径, 而且是一种特殊的技术。 其中发展最为成熟的是氢化物发生技术 , 其与常规的仪器检测手段如电感耦合等离子体发射光谱、 石墨炉原子吸收光 谱等相结合, 实现气体进样。
[0009] 与常规的进样方式相比, 氢化物发生进样技术使待测组分以气体形式从基体分 离, 降低基体干扰, 能富集待测元素, 使得进样效率由气动雾化的 < 5%提高到 接近 100%; 同吋气体氢化物的易解离性使得原子化效率大大提高, 能够极大地 改善测定的检出限和精密度, 并且可以实现形态分析和多元素同吋检测。 问题的解决方案
技术解决方案
[0010] 为了克服现有装置的不足, 本发明所要解决的技术问题在于提供一种装置简单
、 体积小、 操作方便、 成本低的适用于气体中金属元素分析的微等离子体装置 , 能够实现气体直接进样, 提高了金属元素分析灵敏度。
[0011] 为了解决上述技术问题, 本发明所采用的技术方案是:
[0012] 提供一种适用于气体中金属元素分析的微等离子体装置, 包括高压电源、 缓冲 电阻、 空心的金属阳极和液体阴极; 所述空心的金属阳极通过所述缓冲电阻与 所述高压电源的正极相连, 所述液体阴极通过石墨电极与所述高压电源的负极 相连; 所述微等离子体装置还形成为如下结构: 在所述空心的金属阳极与所述 液体阴极之间形成放电区域, 所述空心的金属阳极还作为进样管路, 使待测气 体进入所述放电区域并被激发。
[0013] 根据本发明的一种适用于气体中金属元素分析的微等离子体装置, 具有如下有 益效果: 结构简单, 体积小巧, 安装及操作方便, 运行功耗低、 成本低廉, 能 够实现气体直接进样, 且能够提高金属元素分析的灵敏度。 本发明的微等离子 体装置能够在大气压下操作、 无需雾化器、 无需真空系统、 易于实现小型化, 以气体形式进样, 且不影响其等离子体稳定性, 金属元素分析灵敏度高, 适用 于气体中金属元素的分析, 且为与其他仪器联用提供了可能。
[0014] 优选地, 本发明中所述空心的金属阳极为空心钛管。
[0015] 优选地, 所述待测气体由惰性气体作为载气带入所述空心的金属阳极。 惰性气 体对阳极空心钛管具有冷却的作用, 能防止阳极过热损坏。 载气流量较佳为 50-1 50 ml/min。 且, 惰性气体可采用氩气或氦气等。
[0016] 本发明中, 较佳为所述液体阴极为通过蠕动泵引入阴极毛细管并溢出的电解质 溶液; 所述阴极毛细管的顶端与所述空心的金属阳极的底端保持 3~4 mm的距离
[0017] 由于实现气体进样, 不仅能简化样品前处理过程, 拓宽微等离子体的应用领域
; 而且还能提高其测试灵敏度, 并为与其他仪器联用提供了可能。
[0018] 优选地, 根据本发明的适用于气体中金属元素分析的微等离子体装置, 还具备 位于所述空心的金属阳极的正下方的废液池; 所述石墨电极水平贯穿所述废液 池的壁部并固定于所述废液池的一侧; 所述阴极毛细管垂直贯穿所述石墨电极
[0019] 更优选地, 所述废液池中的废液由将电解质溶液引入所述阴极毛细管的所述蠕 动泵经排液管引出。
[0020] 较佳为, 在本发明中, 所述阴极毛细管为玻璃毛细管, 内径为 0.38 mm, 外径 为 1.1 mm; 所述排液管内径为 2-3 mm, 外径为 4-5 mm, 所述空心的金属阳极内 径为 0.8-1.0 mm, 外径为 2.0-2.5 mm。 调节蠕动泵使液体阴极流速为 1.0-2.1 ml/分 钟, 调节待测气体流速为 50-150 ml/分钟。
[0021] 本发明中, 优选为所述高压电源采用额定电流为 0.1 A、 能够提供 0~2000 V直 流电压的高压源; 所述缓冲电阻阻值为 1〜1.2 ΚΩ。
[0022] 较佳为, 所述空心的金属阳极和所述废液池固定在 X、 Υ、 Ζ方向可调的精度为 2 μηι的三维平台上。
[0023] 在本发明中, 蠕动泵为普通实验室用蠕动泵。 且蠕动泵、 阳极材料以及载气种 类不限于此。
[0024] 本发明的优点在于:
[0025] 本发明装置简单、 体积小、 安装方便、 运行功耗低、 大气压下操作、 无需雾化 器、 无需真空系统、 易于实现小型化, 以气体形式进样, 且不影响其等离子体 稳定性, 金属元素分析灵敏度高, 适用于气体中金属元素的分析。
[0026] 另一方面, 为克服现有重金属元素检测装置及方法的不足, 本发明还要解决的 技术问题在于提供一种结构简单、 操作方便、 成本低廉、 能够方便快捷、 实吋 地对重金属元素进行检测并能够提高对重金属元素的灵敏度以及选择性的用于 重金属元素检测的装置及方法。
[0027] 为了解决上述技术问题, 本发明所采用的技术方案是:
[0028] 一方面, 提供一种用于重金属元素检测的装置, 包括: 氢化物发生器单元、 液 体阴极辉光放电光谱仪单元、 以及连接所述氢化物发生器单元与所述液体阴极 辉光放电光谱仪单元的连接单元, 所述液体阴极辉光放电光谱仪单元形成为如 下结构: 以电解质溶液为阴极, 以空心钛管为阳极, 向两电极施加高压后, 在 两极间产生辉光放电微等离子体; 所述氢化物发生器单元形成为使待测样品产 生待测重金属元素氢化物的结构; 所述氢化物发生器单元所产生的所述待测重 金属元素氢化物经由所述连接单元输送至空心钛管阳极, 并从所述空心钛管阳 极引至所述辉光放电微等离子体并被激发而产生特征发射光谱。
[0029] 本发明的用于重金属元素检测的装置是氢化物发生器与液体阴极辉光放电光谱 仪联用的装置, 以实现对水体、 生物及矿石样品中重金属元素尤其是毒重金属 元素的离子检测, 并提高液体阴极辉光放电光谱法对重金属元素尤其是毒重金 属元素的分析灵敏度且扩大选择性。
[0030] 本发明的装置结合了液体阴极辉光放电光谱仪与氢化物发生器的优点, 其结构 简单、 安装方便、 操作便捷、 成本低廉, 为液体阴极辉光放电光谱仪与其他进 样技术联用奠定了基础, 并拓宽了液体阴极辉光放电光谱仪实际样品分析的应 用前景。
[0031] 本发明中, 所述氢化物发生器单元包括: 进样系统、 使由所述进样系统输送的 反应溶液进行反应以产生所述待测重金属元素氢化物的反应圈、 将所述反应圈 产生的所述待测重金属元素氢化物从反应后的液体中分离的气液分离器, 和控 制用于输送所述待测重金属元素氢化物的载气的载气流量控制系统。
[0032] 也可以是, 所述连接单元包括连接于所述液体阴极辉光放电光谱仪的空心钛管 阳极顶端和所述氢化物发生器单元的所述气液分离器之间的氢化物输出管。
[0033] 优选地, 所述氢化物输出管是塑料软胶管, 内径为 0.3-0.35
cm, 夕卜径为 0.38-0.43 cm。
[0034] 较佳为, 所述进样系统包含蠕动泵、 样品导管、 还原剂导管及载液导管, 通过 该蠕动泵将所述待测样品、 还原剂和载液分别经由所述样品导管、 还原剂导管 及载液导管引入至所述反应圈, 所述载气流量控制系统包括载气导管和用于控 制所述载气导管内的气体流量的气体流量控制器。
[0035] 本发明中, 优选地的是, 所述液体阴极辉光放电光谱仪单元包括光源发生部分 , 分光系统, 检测装置, 数据处理系统, 所述光源发生部分包括高压电源、 分 另 IJ与所述高压电源的正负极相连的所述空心钛管阳极和石墨电极、 位于空心钛 管阳极下方的液体池, 所述石墨电极水平贯穿所述液体池的一侧壁、 垂直贯穿 所述石墨电极的阴极毛细管、 排出所述液体池内的废液的排液管、 和将电解液 弓 I入至所述阴极毛细管或将所述废液弓 I入至所述排液管的蠕动泵, 所述分光系 统包括聚光透镜和光谱仪, 产生所述辉光放电微等离子体的辉光放电区域的中 心、 所述聚光透镜的中心以及所述光谱仪的入射狭缝中心位于同一直线上。
[0036] 另外, 本发明还提供一种使用本发明的用于重金属元素检测的装置检测重金属 元素的方法。 该方法包括以下步骤:
[0037] 取待测样品溶液、 载液、 还原剂溶液, 通过氢化物发生器单元使样品溶液、 载 液和还原剂溶液进行反应, 产生气体氢化物;
[0038] 通过载气将产生的气体氢化物导入液体阴极辉光放电光谱仪的空心钛管阳极, [0039] 使电解质溶液不断溢出液体阴极辉光放电光谱仪单元的阴极毛细管顶端; [0040] 在常压条件下, 在液体阴极辉光放电光谱仪单元中以电解质溶液为阴极, 以空 心钛管为阳极, 向两电极施加高压后, 所述气体氢化物被激发, 从而产生特征 发射光谱;
[0041] 在呈现实像的范围内选择合适的物距, 通过透镜将产生的特征发射光谱谱线引 入到光谱仪并测定待测样品溶液中重金属元素的含量以实现对重金属元素离子 的检测。
[0042] 优选地, 在该方法中所述还原剂溶液为硼氢化钠或硼氢化钾溶液, 所述载液为 电解质酸。
[0043] 较佳为使用的所述载气为惰性气体。
[0044] 本方法中待测的所述重金属元素包括水体、 生物及矿石样品中的 Se、 Te、 Hg 、 As、 Sb、 Bi、 Pb、 Sn元素。
[0045] 本发明的方法包括一种在常压下由直流电驱动的液体阴极辉光放电光谱仪与氢 化物发生器联用对样品中重金属元素进行检测及形态分析的方法, 其操作步骤 简洁, 易于实施, 结合液体阴极辉光放电与氢化物发生的优点, 能够简化样品 前处理过程, 降低基体效应, 而且能够提高重金属元素的检测灵敏度并扩大了 选择性, 可以实现对水体、 生物及矿石样品中 Se、 Te、 Hg、 As、 Sb、 Bi、 Pb、 Sn等氢化元素浓度的检测以及对 As、 Se、 Hg等元素价态的分析。
发明的有益效果 有益效果
[0046] 本发明装置简单、 体积小、 安装方便、 运行功耗低、 大气压下操作、 无需雾化 器、 无需真空系统、 易于实现小型化, 以气体形式进样, 且不影响其等离子体 稳定性, 金属元素分析灵敏度高, 适用于气体中金属元素的分析。
对附图的简要说明
附图说明
[0047] 图 1是根据本发明一实施形态的适用于气体中金属元素分析的微等离子体装置 的结构示意图;
[0048] 图 2是根据本发明一实施形态的用于重金属元素检测的氢化物发生器与液体阴 极辉光放电光谱仪联用的装置的结构示意图;
[0049] 图 3为使用本发明的装置和方法得到的 100 ng/mL汞元素的特征发射光谱图; [0050] 图 4为使用本发明的装置和方法得到的 250 ng/mL硒元素的特征发射光谱图; [0051] 图 5为使用本发明的装置和方法得到的 10 g/mL砷元素的特征发射光谱图; [0052] 图 6为使用本发明的装置和方法的硒元素价态分析技术路线图;
[0053] 图 7为示出标准参考物质 CGSE (6) 1的测试结果的表 1。
[0054] 附图标记:
[0055] 1一蠕动泵; 2—反应圈; 3—反应管道; 4一样品溶液; 5—载液; 6—还原剂; 7_气液分离器; 8—氢化物输出管; 9_石墨电极; 10_空心钛管阳极; 11_放 电区域; 12_阴极毛细管; 13_排液管; 14_电解质溶液; 15_废液瓶; 16_ 气体流量控制器; 17_氢化物发生器; 18_液体池; 19_聚光透镜; 20_光谱 仪; 21_废液池; 22_缓冲电阻。
实施该发明的最佳实施例
本发明的最佳实施方式
[0056] 以下结合附图和下述实施方式进一步说明本发明, 应理解, 附图及下述实施方 式仅用于说明本发明, 而非限制本发明。
[0057] 针对传统金属元素分析装置中存在的种种缺陷, 本发明提供了一种适用于气体 中金属元素分析的微等离子体装置, 包括: 高压电源、 缓冲电阻、 空心的金属 阳极和液体阴极; 所述空心的金属阳极通过所述缓冲电阻与所述高压电源的正 极相连, 所述液体阴极通过石墨电极与所述高压电源的负极相连; 所述微等离 子体装置还形成为如下结构: 在所述空心的金属阳极与所述液体阴极之间形成 放电区域, 所述空心的金属阳极还作为进样管路, 使待测气体进入所述放电区 域并被激发。 采用本发明, 能够实现气体直接进样, 提高了金属元素分析灵敏 度。
[0058] 以下结合附图通过示例性的实施例对本发明作进一步详述。
[0059] 图 1为根据本发明一实施形态的适用于气体中金属元素分析的微等离子体装置 的结构示意图。 如图 1所示, 电源采用额定电流为 0.1 A、 能够提供 0~2000 V直 流电压的 BHK2000-0.1MG高压源提供直流高压。 高压源正极引出的导线经阻值 为 1〜1.2 ΚΩ的缓冲电阻 22与作为空心阳极的空心钛管阳极 10相连接; 负极则与 石墨电极 9相连接。 电解质溶液 14从电解液瓶中由蠕动泵 1引入, 从阴极毛细管 1 2溢出的电解质溶液作为液体阴极, 通过石墨电极 9与高压电源的负极连接, 以 此构成辉光装置的整个回路。
[0060] 其中, 空心钛管阳极 10作为空心阳极, 同吋也作为气体的进样管路, 使待测气 体进入辉光放电区并被激发。 该空心钛管阳极 10内径可为 0.8-1.0
mm, 外径可为 2.0-2.5
mm。 由例如氩气作为载气将进样气体带入空心钛管阳极 10, 载气流量为 50-150 ml/min。 另外, 由于氩气对空心钛管阳极 10还具有冷却的作用, 能防止阳极过热 损坏。
[0061] 空心钛管阳极 10和废液池 21均固定在 X、 Y、 Ζ方向可调的精度为 2 μηι的三维平 台上, 废液池 21由耐酸的、 耐腐蚀的绝缘体材料, 例如聚四氟乙烯加工制成, 位于空心钛管阳极 10的正下方, 其中的电解液可以是 pH值为 1的无机酸, 例如可 以是硝酸、 盐酸和硫酸中的一种或几种。
[0062] 电解液瓶中的电解质溶液 14由蠕动泵 1引入阴极毛细管 12, 废液池 21中的废液 由同一个蠕动泵 1经排液管 13引出至废液瓶 15。 阴极毛细管 12为玻璃毛细管, 内 径可为 0.38 mm, 外径可为 l. l mm。 阴极毛细管 12的顶端与空心钛管阳极 10的底 端保持 3~4 mm距离, 从而构成辉光放电区域 11, 待测气体进入该放电区域 11并 被激发。 石墨电极 9水平贯穿废液池 21的壁部并固定于废液池 21的一侧。 阴极毛 细管 12垂直贯穿水平放置的石墨电极 9。 排液管 13内径可为 2 mm, 外径可为 4 mm。 蠕动泵为普通实验室用蠕动泵。
[0063] 在常压下, 以电解质溶液为阴极, 以空心钛管阳极 10为阳极, 通过向两电极施 加高压, 从而导致电极间的气体发生放电; 辉光放电即在空心钛管阳极 10和阴 极毛细管 12尖端溢出的样品溶液之间的区域产生。
[0064] 测试过程在大气环境下进行。 待测气体从空心钛管阳极 10顶端导入并达到放电 区域 11, 进样吋, 等离子体一直保持稳定不熄灭, 无机酸电解液由蠕动泵 1驱动 进入阴极毛细管 12并不断溢出。 调节蠕动泵 1使阴极电解液流速为 1.0-2.1 ml/min
, 调节进样载气流速为 50-150 ml/min。 施加高压后, 点火成功, 并且稳定放电
[0065] 将该适用于气体中金属元素分析的微等离子体装置与透镜及光谱仪联用后对 Se 溶液氢化产生的 H 2Se进行多次测定, 结果显示仪器对 H 2Se的检出限为 0.2 ng/mL , 具有良好的灵敏度, 信号 RSD低于 5%, 灵敏度与采用液体进样方式的液体阴 极辉光放电微等离子体 (检出限 2.6 g/mL) 相比提高了 4个数量级。 其应用范围 更广泛, 且为与其他仪器联用提供了可能。
[0066] 本发明中, 阳极材料、 电解质溶液、 蠕动泵、 以及载气种类等不限于以上实施 例。
[0067] 图 2为根据本发明一实施形态的用于重金属元素检测的氢化物发生器与液体阴 极辉光放电发射光谱仪联用的装置的结构示意图。
[0068] 如图 2所示, 该用于重金属元素检测的氢化物发生器与液体阴极辉光放电光谱 仪联用的装置包括氢化物发生器 17、 联用仪器接口单元以及液体阴极辉光放电 光谱仪单元。
[0069] 液体阴极辉光放电光谱仪单元可包括光源发生部分, 分光系统, 检测装置, 数 据处理系统四个部分。 其中光源发生部分可包含高压电源、 缓冲电阻、 三维平 台、 空心钛管阳极 10、 蠕动泵 1B、 液体池 18、 石墨电极 9、 排液管 13、 和垂直贯 穿石墨电极 9的阴极毛细管 12。
[0070] 其中, 高压电源可采用额定电流为 0.1 A、 能够提供 0~2000 V
直流高压的 BHK2000-0.1MG高压源。 高压电源正极引出的导线经缓冲电阻与空 心钛管阳极 10相连接; 负极则与石墨电极 9相连接。 实验装置点火需要一定浓度 的无机酸作为电解质溶液。 电解质溶液 14由蠕动泵 1B引入阴极毛细管 12, 从阴 极毛细管 12顶端溢出的电解质溶液与石墨电极 9连接, 以此构成辉光装置的整个 回路。 在常压下, 向两电极施加高压后, 在两极间产生辉光放电微等离子体, 形成辉光放电区域 11。
[0071] 其中, 电解质溶液 14可以是 pH为 1的硝酸、 盐酸、 硫酸等无机酸中的一种。 实 验吋, 可调节蠕动泵 1B流速为 1.0-2.1 m!Jmin, 使电解质溶液 14不断溢出液体阴 极辉光放电光谱仪的阴极毛细管 12顶端。 空心钛管阳极 10同吋也作为气体的管 路, 该空心钛管阳极 10内径可为 0.8-1.0 mm, 外径可为 2.0-2.5 mm。 由氩气、 氦 气等惰性气体作为载气将进样气体带入空心钛管阳极 10。 另外, 由于惰性气体 对于空心钛管阳极 10还具有冷却的作用, 能防止阳极过热损坏。
[0072] 优选地, 空心钛管阳极 10和液体池 18均固定在 X、 Y、 Ζ方向可调的精度为 2 μηι 的三维平台上, 液体池 18由耐酸的、 耐腐蚀的绝缘体材料例如聚四氟乙烯加工 制成, 位于空心钛管阳极 10的正下方。 电解质溶液 14由蠕动泵 1B引入阴极毛细 管 12, 液体池 18中的废液经排液管 13由同一个蠕动泵 1B引出。
[0073] 阴极毛细管 12可为玻璃毛细管, 内径可为 0.38 mm, 外径可为 1.1 mm。 阴极毛 细管 12的顶端与空心钛管阳极 10的底端保持 3~4 mm距离并构成辉光放电区域 11 , 待测气体进入该辉光放电区域 11并被激发。 石墨电极 9水平贯穿废液池的壁部 并固定于废液池的一侧。 阴极毛细管 12垂直贯穿水平放置的石墨电极 9。 排液管 13的内径可为 2 mm, 外径可为 4 mm。 蠕动泵 IB为普通实验室用蠕动泵。
[0074] 在本发明的液体阴极辉光放电光谱仪单元中, 所述分光系统包括: 聚光透镜 19 和光谱仪 20, 所述辉光放电区域 11的中心、 聚光透镜 19的中心以及光谱仪 20的 入射狭缝中心位于同一直线上, 以保证放电所产生的发射光谱以最小的光损失 进入到入射狭缝中。
[0075] 联用仪器接口单元包括连接于液体阴极辉光放电光谱仪的空心钛管阳极 10顶端 和氢化物发生器 17的气液分离器 7之间的氢化物输出管 8, 该氢化物输出管 8可以 为塑料软胶管, 其内径可以为 0.33 cm, 外径可以为 0.41 cm。
[0076] 氢化物发生器 17包括进样系统、 反应圈 2、 载气流量控制系统和气液分离器 7四 个部分, 其中进样系统包含蠕动泵 1A、 样品导管、 还原剂导管及载液导管, 载 气流量控制系统包括载气导管和气体流量控制器 16。
[0077] 实验过程中, 在常压条件下, 样品溶液 4、 还原剂 6及载液 5分别通过样品导管 、 还原剂导管及载液导管由经由同一个蠕动泵 1A导入反应圈 2中, 并在反应圈 2 中发生反应产生相应氢化物。 氢化物发生器 17中的气液分离器 7将产生的氢化物 从反应后的液体中分离出来, 由气流流量控制器 16控制的作为载气的惰性气体
(如氩气或氦气等) , 将产生的氢化物经氢化物输出管 8导出至液体阴极辉光放 电光谱仪的空心钛管阳极 10顶端且由此进入辉光放电区域 11的放电等离子体中
[0078] 进样吋, 液体阴极辉光放电光谱仪中的等离子体保持稳定不熄灭。 从空心钛管 顶端进入辉光放电区域 11的气体氢化物被激发, 并产生特征发射光谱。 在呈现 实像的范围内选择合适的物距, 通过透镜将产生的特征发射光谱谱线引入到光 谱仪即可测定样品溶液中重金属元素的含量从而实现对重金属元素离子的检测
。 另外, 由于惰性气体对空心钛管阳极 10还具有冷却的作用, 能防止阳极过热 损坏。
[0079] 实验过程中还原剂溶液可以为硼氢化钠或硼氢化钾溶液, 其介质可以是 0.1 mol/L的氢氧化钠溶液; 载液可以是盐酸或其他电解质酸。
[0080] 在本发明中, 蠕动泵 1A、 IB为普通实验室用蠕动泵。 且蠕动泵、 阳极材料及 载气种类不限于此。 所述的测定样品溶液中的重金属元素含量包括对水体、 生 物及矿石样品中的 Se、 Te、 Hg、 As、 Sb、 Bi、 Pb、 Sn等氢化元素的检测。
[0081] 现以 As和 Hg为例, 对采用本发明的用于重金属元素检测的氢化物发生器与液 体阴极辉光放电光谱仪联用的装置及使用该装置的方法对重金属元素进行检测 的可行性进行说明。
[0082] 图 3、 图 5分别示出了 lOO ng/mL Hg和 lO g/mL As的特征发射光谱图, 纵坐标 代表发射强度, 横坐标代表波长范围。 由图 3和图 5可以看出, Hg和 As的波长分 别在 253.8 nm和 193.85 nm处出现了特征谱线, 验证了本发明检测装置及方法的 可行性。
[0083] 现以 Se为例对建立的价态分析方法进行说明。 图 6为使用本发明的装置和方法 的硒元素价态分析技术路线图, 图 4为使用本发明的装置和方法得到的 250 ng/mL Se的特征发射光谱图。 如图 6所示, 当载液 5为 1
mol/L的 HC1, 还原齐 lj6为 1.2%的 NaBH 4, 载气为流速 110 m!Jmin的氩气吋, 250 ng/mL的 Se(IV)溶液能产生相应的氢化物, 并进入辉光放电等离子体从而受到激 发, 如图 4所示, 在波长为 196.24 nm处获得特征谱线; 而 50 g/L的 Se(VI)溶液在 相同条件下不能产生氢化物和特征谱线。 因此, 未对样品进行预处理吋, 在此 实验条件下测定 Se(IV)的含量; 利用 6 mol/L的 HC1将样品水浴 30 min进行还原后 , 在此实验条件下测定总 Se的含量, 实现对 Se的价态分析。
[0084] 并且对图 7所示的标准参考物质 CGSE (6) 1进行测试, 验证分析方法的准确性 , 结果如表 1所示, 证明该方法的准确性良好, 适用于 Se的价态分析。 由于将毒 重金属元素转化成易解离的氢化物, 并直接进入等离子体, 大大提高了待测元 素的原子化效率和传输效率。 利用该氢化物发生器与液体阴极辉光放电光谱仪 联用装置, 对 SeOV)溶液进行多次测试, 实验结果表明该联用装置对 SeOV)的检 出限降低至 0.2 ng/mL, 信号 RSD均低于 5<¾, 灵敏度与采用液体进样方式 (检出 限 0.8 g/mL) 相比提高了 4000倍。
[0085] 本发明的装置结合了液体阴极辉光放电光谱仪与氢化物发生器的优点, 其结构 简单、 安装方便、 操作便捷、 成本低廉, 为液体阴极辉光放电光谱仪与其他进 样技术联用奠定了基础, 并拓宽了液体阴极辉光放电光谱仪实际样品分析的应 用前景。
[0086] 本发明的方法包括一种在常压下由直流电驱动的液体阴极辉光放电光谱仪与氢 化物发生器联用对样品中重金属元素进行检测及价态分析的方法, 其操作步骤 简洁, 易于实施, 结合了液体阴极辉光放电与氢化物发生的优点, 简化了样品 前处理过程, 降低了基体效应, 提高了重金属元素的检测灵敏度并扩大了选择 性, 可以实现对水体、 生物及矿石样品中 Se、 Te、 Hg、 As、 Sb、 Bi、 Pb、 Sn等 氢化元素浓度的检测以及对 As、 Se、 Hg等元素价态的分析。
[0087] 在不脱离本发明的基本特征的宗旨下, 本发明可体现为多种形式, 因此本发明 中的实施形态是用于说明而非限制, 由于本发明的范围由权利要求限定而非由 说明书限定, 而且落在权利要求界定的范围, 或其界定的范围的等价范围内的 所有变化都应理解为包括在权利要求书中。
工业实用性
本发明装置简单、 体积小、 安装方便、 运行功耗低、 大气压下操作、 无需雾化 器、 无需真空系统、 易于实现小型化, 以气体形式进样, 且不影响其等离子体 稳定性, 金属元素分析灵敏度高, 适用于气体中金属元素的分析。 另外, 本发 明的装置结合了液体阴极辉光放电光谱仪与氢化物发生器的优点, 其结构简单 、 安装方便、 操作便捷、 成本低廉, 为液体阴极辉光放电光谱仪与其他进样技 术联用奠定了基础, 并拓宽了液体阴极辉光放电光谱仪实际样品分析的应用前 、。

Claims

权利要求书
一种适用于气体中金属元素分析的微等离子体装置, 其特征在于, 包括高压电源、 缓冲电阻、 空心的金属阳极和液体阴极;
所述空心的金属阳极通过所述缓冲电阻与所述高压电源的正极相连, 所述液体阴极通过石墨电极与所述高压电源的负极相连;
所述微等离子体装置还形成为如下结构: 在所述空心的金属阳极与所 述液体阴极之间形成放电区域, 所述空心的金属阳极还作为进样管路
, 使待测气体进入所述放电区域并被激发。
根据权利要求 1所述的适用于气体中金属元素分析的微等离子体装置
, 其特征在于,
所述空心的金属阳极为空心钛管。
根据权利要求 2所述的适用于气体中金属元素分析的微等离子体装置 , 其特征在于,
所述待测气体由惰性气体作为载气带入所述空心的金属阳极。
根据权利要求 1所述的适用于气体中金属元素分析的微等离子体装置 , 其特征在于,
所述液体阴极为通过蠕动泵引入阴极毛细管并溢出的电解质溶液; 所述阴极毛细管的顶端与所述空心的金属阳极的底端保持 3〜4 mm的 距离。
根据权利要求 4所述的适用于气体中金属元素分析的微等离子体装置 , 其特征在于,
还具备位于所述空心的金属阳极的正下方的废液池;
所述石墨电极水平贯穿所述废液池的壁部并固定于所述废液池的一侧 所述阴极毛细管垂直贯穿所述石墨电极。
根据权利要求 5所述的适用于气体中金属元素分析的微等离子体装置 , 其特征在于,
所述废液池中的废液由蠕动泵经排液管引出。 根据权利要求 6所述的适用于气体中金属元素分析的微等离子体装置 , 其特征在于,
所述阴极毛细管为玻璃毛细管, 内径为 0.38 mm, 外径为 1.1 mm; 所述排液管内径为 2-3 mm, 外径为 4-5 mm;
所述空心的金属阳极内径为 0.8-1.0 mm, 夕卜径为 2.0-2.5 mm;
调节所述蠕动泵使液体阴极流速为 1.0-2.1 ml/分钟;
调节待测气体流速为 50-150 ml/分钟。
根据权利要求 1所述的适用于气体中金属元素分析的微等离子体装置 , 其特征在于,
所述高压电源采用额定电流为 0.1 A、 能够提供 0〜2000 V直流电压的 高压源;
所述缓冲电阻阻值为 1〜1.2 ΚΩ。
根据权利要求 5所述的适用于气体中金属元素分析的微等离子体装置 , 其特征在于, 所述空心的金属阳极和所述废液池固定在 X、 Υ、 Ζ方 向可调的精度为 2 μηι的三维平台上。
一种用于重金属元素检测的装置, 其特征在于,
包括氢化物发生器单元、 液体阴极辉光放电光谱仪单元以及连接所述 氢化物发生器单元与所述液体阴极辉光光谱仪单元的连接单元; 所述液体阴极辉光放电光谱仪单元, 以电解质溶液为阴极, 以空心钛 管为阳极, 向两极施加高压后, 在两极间产生辉光放电微等离子体; 所述氢化物发生器单元使待测样品产生待测重金属氢化物; 所述氢化物发生器单元产生的所述待测重金属元素氢化物经由所述连 接单元输送至空心钛管阳极, 并从所述钛管阳极弓 I至所述辉光放电微 等离子体并被激发而产生特征发射光谱。
根据权利要求 10所述的装置, 其特征在于,
所述液体阴极辉光放电光谱仪单元包括光源发生部分, 分光系统, 检 测装置, 数据处理系统四个部分, 其中所述光源发生部分包含高压电 源、 电阻、 三维平台、 空心钛管阳极、 蠕动泵、 液体池、 石墨电极、 进样管和排液管; 所述进样管包含垂直贯穿石墨电极的阴极玻璃毛细 管;
所述氢化物发生器单元包括进样系统, 使所述进样系统输送的反应溶 液进行反应以产生所述待测重金属元素氢化物的反应圈, 将所述反应 圈产生的所述待测重金属元素氢化物从反应后的液体中分离的气液分 离器和控制用于输送待测重金属元素氢化物的载气的载气流量控制系 统; 所述连接单元包括连接于所述液体阴极辉光放电光谱仪单元的所 述空心钛管阳极顶端和所述氢化物发生器单元的所述气液分离器直接 的传输管, 所述传输管内径 0.3-0.35 cm, 外径 0.38-0.43 cm。
[权利要求 12] 根据权利要求 11所述的装置, 其特征在于,
所述进样系统包括蠕动泵、 样品导管、 还原剂导管及载液导管, 通过 该蠕动泵将所述待测样品、 还原剂和载液分别经由所述样品导管、 还 原剂导管及载液导管引入至所述反应圈;
所述载气流量控制系统包括连接于所述空心钛管顶端和所述气液分离 器直接的载气导管和用于控制所述载气导管内的气体流量的气体流量 控制器。
[权利要求 13] —种使用权利要求 10至 12中任意一项所述的装置检测重金属的方法, 其特征在于, 包括以下步骤:
取待测样品溶液、 载液、 还原剂溶液, 通过氢化物发生器单元使样品 溶液、 载液和还原剂溶液进行反应, 产生气体氢化物, 通过载气将产 生的气体氢化物导入液体阴极辉光放电光谱仪的空心钛管阳极; 取电解质溶液, 调节蠕动泵流速, 使电解液不断溢出液体阴极辉光放 电光谱仪阴极毛细管顶端;
在常压条件下, 在液体阴极辉光放电光谱仪单元中以电解质溶液为阴 极, 以空心钛管为阳极, 向两电极施加高压后, 所述气体氢化物被激 发, 从而产生特征发射光谱;
在呈现实像的范围内选择合适的物距, 通过透镜将产生的特征发射光 谱谱线引入到光谱仪并测定待测样品溶液中重金属元素的含量以实现 对重金属元素离子的检测。
[权利要求 14] 根据权利要求 13所述的方法, 其特征在于,
所述还原剂溶液为硼氢化钠或硼氢化钾溶液, 其介质为 0.1 mol/L的氢 氧化钠溶液;
所述载液为电解质酸;
待测的所述重金属元素包括水体、 生物及矿石样品中的 Se、 Te、 Hg 、 As、 Sb、 Bi、 Pb、 Sn氢化元素。
PCT/CN2016/113504 2015-12-31 2016-12-30 一种可气体直接进样用于重金属元素检测的液体阴极辉光放电等离子体原子发射光谱装置及方法 WO2017114488A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/065,669 US10705023B2 (en) 2015-12-31 2016-12-30 Solution cathode glow discharge plasma-atomic emission spectrum apparatus and method capable of performing direct gas sample introduction and used for detecting heavy metal element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201511015846.3 2015-12-31
CN201511015846.3A CN105651760B (zh) 2015-12-31 2015-12-31 一种适用于气体中金属元素分析的微等离子体装置
CN201610186496.5A CN105842230B (zh) 2016-03-29 2016-03-29 一种用于重金属元素检测的装置及方法
CN201610186496.5 2016-03-29

Publications (1)

Publication Number Publication Date
WO2017114488A1 true WO2017114488A1 (zh) 2017-07-06

Family

ID=59224594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113504 WO2017114488A1 (zh) 2015-12-31 2016-12-30 一种可气体直接进样用于重金属元素检测的液体阴极辉光放电等离子体原子发射光谱装置及方法

Country Status (2)

Country Link
US (1) US10705023B2 (zh)
WO (1) WO2017114488A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109752367A (zh) * 2019-03-25 2019-05-14 哈尔滨工业大学(威海) 一种电磁加热-等离子体光谱检测土壤重金属装置及方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111929290A (zh) * 2019-05-13 2020-11-13 中国科学院上海硅酸盐研究所 钨丝电热蒸发-大气压辉光放电原子发射光谱装置
KR102157541B1 (ko) 2019-06-26 2020-09-18 서울대학교산학협력단 검체의 농도 검출 장치 및 방법
CN112782150A (zh) * 2019-11-11 2021-05-11 中国科学院上海硅酸盐研究所 一种用于液体阴极辉光放电光谱仪的进样系统
CA3063389C (en) 2019-12-02 2021-03-30 2S Water Incorporated Solution electrode glow discharge apparatus
CA3068769A1 (en) * 2020-01-20 2021-07-20 2S Water Incorporated Liquid electrode tip
CN113267484B (zh) * 2021-04-01 2024-06-25 重庆邮电大学 一种用于便携式元素光谱仪的溶液阴极辉光放电原子化器
CN113720811B (zh) * 2021-08-19 2022-12-30 中国地质大学(武汉) 一种基于超声雾化进样的微等离子体激发源及激发方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050012038A1 (en) * 2003-07-17 2005-01-20 Clemson University Atmospheric pressure, glow discharge, optical emission source for the direct sampling of liquid media
CN101344483A (zh) * 2008-07-22 2009-01-14 内蒙古蒙牛乳业(集团)股份有限公司 一种检测乳和乳制品中重金属铅含量的方法
US20090278038A1 (en) * 2006-10-25 2009-11-12 Gesellschaft Zur Foerderung Der Analytischen Wissenschaften E.V. Method and device for generating positively and/or negatively ionized gas analytes for gas analysis
CN103237406A (zh) * 2013-05-14 2013-08-07 哈尔滨工业大学 一种带有保护气体大气等离子体发生装置
CN103969243A (zh) * 2014-04-16 2014-08-06 上海化工研究院 微孔高速喷流原子发射光谱法检测极微量样品元素的装置
CN104089945A (zh) * 2014-07-23 2014-10-08 中国科学院上海硅酸盐研究所 一种液体阴极辉光放电原子化器
CN104237178A (zh) * 2014-10-09 2014-12-24 重庆邮电大学 直流放电汽化辅助激光诱导击穿光谱检测水体中痕量金属元素的方法和装置
CN105651760A (zh) * 2015-12-31 2016-06-08 中国科学院上海硅酸盐研究所 一种适用于气体中金属元素分析的微等离子体装置
CN105842230A (zh) * 2016-03-29 2016-08-10 中国科学院上海硅酸盐研究所 一种用于重金属元素检测的装置及方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2644920B2 (ja) 1990-11-29 1997-08-25 株式会社日立製作所 液体クロマトグラフ質量分析装置および分析法
US6686998B2 (en) * 2001-11-30 2004-02-03 Wisconsin Alumni Research Foundation Method and apparatus for glow discharges with liquid microelectrodes
CN1650492A (zh) 2002-08-23 2005-08-03 大东株式会社 离子发生装置
US7828942B2 (en) * 2002-10-03 2010-11-09 Puricore, Inc. Electrochemical treatment of an aqueous salt solution
US7746451B1 (en) * 2006-01-18 2010-06-29 Louisiana Tech University Research Foundation, A Division of Louisiana Tech University Foundation On-chip microplasma systems
US20090229972A1 (en) * 2008-03-13 2009-09-17 Sankaran R Mohan Method and apparatus for producing a feature having a surface roughness in a substrate
CA2859694C (en) * 2010-12-20 2020-03-24 Universite Laval Radioactive and/or magnetic metal nanoparticles and process and apparatus for synthesizing same
US9536725B2 (en) * 2013-02-05 2017-01-03 Clemson University Means of introducing an analyte into liquid sampling atmospheric pressure glow discharge
CN103163116A (zh) 2013-03-06 2013-06-19 中国科学院上海硅酸盐研究所 液体阴极辉光放电发射光谱检测金属离子装置
CN204154649U (zh) 2014-11-10 2015-02-11 中国科学院上海硅酸盐研究所 一种铬元素形态分析装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050012038A1 (en) * 2003-07-17 2005-01-20 Clemson University Atmospheric pressure, glow discharge, optical emission source for the direct sampling of liquid media
US20090278038A1 (en) * 2006-10-25 2009-11-12 Gesellschaft Zur Foerderung Der Analytischen Wissenschaften E.V. Method and device for generating positively and/or negatively ionized gas analytes for gas analysis
CN101344483A (zh) * 2008-07-22 2009-01-14 内蒙古蒙牛乳业(集团)股份有限公司 一种检测乳和乳制品中重金属铅含量的方法
CN103237406A (zh) * 2013-05-14 2013-08-07 哈尔滨工业大学 一种带有保护气体大气等离子体发生装置
CN103969243A (zh) * 2014-04-16 2014-08-06 上海化工研究院 微孔高速喷流原子发射光谱法检测极微量样品元素的装置
CN104089945A (zh) * 2014-07-23 2014-10-08 中国科学院上海硅酸盐研究所 一种液体阴极辉光放电原子化器
CN104237178A (zh) * 2014-10-09 2014-12-24 重庆邮电大学 直流放电汽化辅助激光诱导击穿光谱检测水体中痕量金属元素的方法和装置
CN105651760A (zh) * 2015-12-31 2016-06-08 中国科学院上海硅酸盐研究所 一种适用于气体中金属元素分析的微等离子体装置
CN105842230A (zh) * 2016-03-29 2016-08-10 中国科学院上海硅酸盐研究所 一种用于重金属元素检测的装置及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109752367A (zh) * 2019-03-25 2019-05-14 哈尔滨工业大学(威海) 一种电磁加热-等离子体光谱检测土壤重金属装置及方法
CN109752367B (zh) * 2019-03-25 2023-09-19 哈尔滨工业大学(威海) 一种电磁加热-等离子体光谱检测土壤重金属装置及方法

Also Published As

Publication number Publication date
US20180372646A1 (en) 2018-12-27
US10705023B2 (en) 2020-07-07

Similar Documents

Publication Publication Date Title
WO2017114488A1 (zh) 一种可气体直接进样用于重金属元素检测的液体阴极辉光放电等离子体原子发射光谱装置及方法
CN105842230B (zh) 一种用于重金属元素检测的装置及方法
CN106568833B (zh) 一种用于重金属检测的液体阴极辉光放电光谱装置及方法
Yu et al. Evaluation of liquid cathode glow discharge-atomic emission spectrometry for determination of copper and lead in ores samples
He et al. Flowing and nonflowing liquid electrode discharge microplasma for metal ion detection by optical emission spectrometry
Peng et al. Battery-operated portable high-throughput solution cathode glow discharge optical emission spectrometry for environmental metal detection
Liu et al. Advances in discharge-based microplasmas for the analysis of trace species by atomic spectrometry
Yang et al. Low temperature hydrogen plasma assisted chemical vapor generation for Atomic Fluorescence Spectrometry
CN103969244A (zh) 一种用于液体样品在线检测的便携式元素光谱仪
Li et al. Significant signal enhancement of dielectric barrier discharge plasma induced vapor generation by using non-ionic surfactants for determination of mercury and cadmium by atomic fluorescence spectrometry
CN106290307A (zh) 液体放电等离子体发射光谱装置及金属元素的测定方法
CN102709147A (zh) 一种电喷雾离子源及质谱仪
Yuan et al. An effective analytical system based on a pulsed direct current microplasma source for ultra-trace mercury determination using gold amalgamation cold vapor atomic emission spectrometry
Zhang et al. Review of miniaturized and portable optical emission spectrometry based on microplasma for elemental analysis
CN100558941C (zh) 双阳极电化学氢化物发生器
Yu et al. Determination of gallium and indium by solution cathode glow discharge as an excitation source for atomic emission spectrometry
Peng et al. Solution anode glow discharge optical emission spectrometry: Volatile hydride introduction from the gas jet nozzle cathode for ultrasensitive determination of lead
CN105651760B (zh) 一种适用于气体中金属元素分析的微等离子体装置
Matusiewicz et al. On-line hyphenation of hydride generation with in situ trapping flame atomic absorption spectrometry for arsenic and selenium determination
He et al. High-yield sample introduction using nebulized film dielectric barrier discharge assisted chelate vapor generation for trace rare earth elements determination by inductively coupled plasma mass spectrometry
CN105092763A (zh) Hplc-afs汞形态分析的电化学预还原方法及装置
Zhang et al. A miniature optical emission spectrometric system in a lab-on-valve for sensitive determination of cadmium
Liu et al. Determination of cadmium in water samples by electrochemical hydride generation atomic fluorescence spectrometry using series graphite tubes as electrolytic cells under constant voltage
CN106770144B (zh) 一种基于氢等离子体的固体样品化学蒸气发生进样方法
CN112986219B (zh) 电极进样dbd微等离子体原子发射光谱检测系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16881277

Country of ref document: EP

Kind code of ref document: A1