WO2017114268A1 - 一种合路器 - Google Patents

一种合路器 Download PDF

Info

Publication number
WO2017114268A1
WO2017114268A1 PCT/CN2016/111371 CN2016111371W WO2017114268A1 WO 2017114268 A1 WO2017114268 A1 WO 2017114268A1 CN 2016111371 W CN2016111371 W CN 2016111371W WO 2017114268 A1 WO2017114268 A1 WO 2017114268A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
passband
combiner
target
signal path
Prior art date
Application number
PCT/CN2016/111371
Other languages
English (en)
French (fr)
Inventor
蔡丹涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16881057.0A priority Critical patent/EP3386028B1/en
Publication of WO2017114268A1 publication Critical patent/WO2017114268A1/zh
Priority to US16/020,404 priority patent/US10680304B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/213Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
    • H01P1/2135Frequency-selective devices, e.g. filters combining or separating two or more different frequencies using strip line filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/213Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
    • H01P1/2138Frequency-selective devices, e.g. filters combining or separating two or more different frequencies using hollow waveguide filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1081Reduction of multipath noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • H04B1/123Neutralising, balancing, or compensation arrangements using adaptive balancing or compensation means
    • H04B1/126Neutralising, balancing, or compensation arrangements using adaptive balancing or compensation means having multiple inputs, e.g. auxiliary antenna for receiving interfering signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/0057Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using diplexing or multiplexing filters for selecting the desired band

Definitions

  • the present invention relates to the field of electronic technologies, and in particular, to a combiner.
  • antennas of different frequency bands need to be integrated into one antenna, and antennas of different frequency bands need to have independent function of downtilt angle when sharing the same vibrator, so these antennas are respectively carried and adjusted.
  • the signals of the respective antennas need to be combined into the same oscillator through the combiner.
  • the two frequency bands may be relatively close together, so each filter constituting the combiner needs a steep roll-off. characteristic.
  • a filter with steep roll-off characteristics is usually a band-stop filter.
  • One advantage of the band-stop filter is that the frequencies between the pass band and the stop band are very close, which can satisfy 30dB of tens of MHz or more than 10MHz of passband. The above requirements. Therefore, a multi-channel band-stop filter is usually used to form a combiner. As shown in FIG. 1, the passband frequency of the band rejection filter on the left side of the junction is lower than the stopband frequency, and the passband frequency on the right is higher than the stopband frequency.
  • this combiner has a disadvantage in that the passband frequency is higher than the stopband frequency, and the transmission line of the signal channel between each cavity needs to be designed to be larger than 1/4 of the wavelength of the resonant frequency. This doubles the volume of the combiner.
  • Embodiments of the present invention provide a combiner that shortens the length of a main transmission line of a signal path and reduces the volume of the combiner while maintaining a steep roll-off characteristic of the band stop filter.
  • a first aspect of the present invention provides a combiner comprising an outer conductor and an inner conductor, the outer conductor and the inner conductor forming at least two band rejection filters, and the at least two band rejection filters Forming at least two pass bands;
  • the at least two passbands include a first target merging passband and a second target merging passband, and the frequency of the first target merging passband is less than a frequency of the second target merging passband;
  • a signal channel is included between a signal input end and a signal output end of a band rejection filter to which the second target combined pass band belongs, and the signal path is formed by the inner conductor, and the signal channel is formed
  • the inner conductor contains a capacitor. This allows the filter to be held by setting a capacitor in the signal path. While the steep roll-off characteristics are required, the length of the main transmission line of the signal path can be reduced, and the volume of the combiner can be reduced.
  • the second target combining passband includes at least one passband, and a frequency difference between adjacent passbands in the at least one passband Less than a preset threshold;
  • the frequency difference between the first target combined passband and the second target combined passband is less than the predetermined threshold.
  • the frequency relationship between the combined passbands is further defined, thereby accurately determining the band rejection filter that needs to add a capacitor, thereby effectively shortening the length of the main transmission line of the channel path of the band rejection filter.
  • the outer conductor of the combiner comprises two opposite parallel faces, the two opposite parallel faces are provided with metal or attached Conductive layer.
  • the inner conductor constituting the signal channel includes at least two strip conductors, the at least two strips The overlapping portions of the conductors form the capacitance; or,
  • the inner conductor constituting the signal path includes a first conductor and a second conductor
  • the first conductor is formed by microstrip lines laid on upper and lower sides of the first portion of the printed circuit board PCB and the upper and lower sides are
  • the microstrip lines are connected by metallized vias
  • the second conductors are formed by microstrip lines laid on upper and lower sides of the second portion of the PCB board and pass between the microstrip lines of the upper and lower sides Metallized via connections, the first conductor and the second conductor splice overlap form the capacitance.
  • the inner conductor constituting the signal path is further defined, and the capacitance may be formed by a spliced overlapping portion of the strip conductor, or may be The spliced overlap between the microstrip lines connected by the metallized vias provides for two implementations of the capacitance, reducing the length of the main transmission line of the signal path.
  • the outer conductor of the combiner includes a ground conductor disposed on one side of the PCB board, and the PCB board is set to open. hole;
  • the inner conductor constituting the signal path includes a microstrip line laid on the other side of the PCB board And a microstrip line disposed on the upper and lower surfaces of the opening, wherein the microstrip lines on the upper and lower sides of the opening form an overlap to form the capacitor.
  • Another way of forming the capacitor is provided by another implementation of the outer conductor and the inner conductor. In this implementation, only the PCB board and the microstrip line are needed, and the composition is simple, and the signal transmission line can also be reduced. length.
  • the band rejection filter to which the second target combining passband includes a resonant cavity
  • the resonant cavity is a band-stopping pitch line structure.
  • An implementation of the resonant cavity structure is provided by further defining the resonant cavity of the band stop filter.
  • the branch line structure is suspended at one end and the other end is connected to the inner conductor constituting the signal path.
  • the one end of the branch line structure is connected to the outer conductor metal of the combiner, and the other end is configured Capacitive coupling between the inner conductors of the signal path.
  • the one end of the branch line structure is connected to the outer conductor metal of the combiner, and the other end is suspended.
  • the intermediate portion of the stub line structure is connected to one end of a conductor, and the other end of the conductor is metal-connected to the inner conductor constituting the signal path.
  • a second aspect of the present invention provides an antenna device comprising the combiner of any of the possible implementations of the first aspect.
  • the combiner includes an outer conductor and an inner conductor, and the outer conductor and the inner conductor constitute at least two band rejection filters, and the at least two band rejection filters form at least two passbands, and the at least two passbands
  • the belt includes a first target combined road passband and a second target combined passband, the frequency of the first target combined passband is less than the frequency of the second target combined passband, and the second target merged passband belongs to the same path
  • a signal path is formed between the signal input end and the output end of the band rejection filter, and the signal path is composed of an inner conductor, and the inner conductor constituting the signal path includes a capacitor.
  • FIG. 2 is a schematic structural diagram of a combiner provided in an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a strip line according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a PCB suspension strip line according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another PCB suspension strip line according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a PCB filter according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a combiner provided in an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of another combiner provided in an embodiment of the present invention.
  • FIG. 9 is an enlarged view of a splicing portion provided in an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of still another combiner provided in an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of an antenna device according to an embodiment of the present invention.
  • the filter is a device for realizing signal selection, and the basic function is to let the signal in the passband frequency, that is, the signal useful for the device, pass through as little as possible; let the signal outside the passband frequency, That is, the signals that are useless to the device are filtered out as much as possible.
  • the band rejection filter resonates the input signal through a plurality of resonant cavities to form a band-stop signal, that is, has a stop band frequency and a pass band frequency.
  • FIG. 1 it is an equivalent circuit of a conventional combiner provided by an embodiment of the present invention, and the equivalent circuit includes two band rejection filters, and the two band rejection filters are connected.
  • the band frequencies are relatively close, so the output signals of the two band rejection filters are combined, as shown in the prior art as shown in FIG.
  • the combiner the passband frequency of the B-band rejection filter is higher than the passband frequency of the A-band rejection filter.
  • the transmission line of the signal channel between each resonant cavity in the B-band rejection filter is required. It is designed to be larger than 1/4 of the wavelength corresponding to the resonant frequency, which increases the volume and structural complexity of the combiner.
  • a capacitor is added to the signal channel of the B-channel band rejection filter to form a hybrid filter between the band rejection filter and the high-pass filter, thereby greatly shortening the main transmission line of the signal channel.
  • the required length reduces the volume of the combiner.
  • the band rejection filter constituting the combiner may include at least two, and the above combination of the two band rejection filters is only an example.
  • At least two band rejection filters may form at least two passbands, and when the at least two band rejection filters are combined, phases between the respective passbands generated by the respective band rejection filters The distance between the adjacent relationship and the pass band is different.
  • only the distance between each adjacent pass band for combining is considered to be relatively small, that is, the pass bands are adjacent to each other but do not overlap, and adjacent The passbands are relatively close to each other, for example, the passband of the first band rejection filter is [1710HZ-1880HZ], and the passband of the second band rejection filter is [1920HZ-2170HZ], then the first pass The pass band of the band rejection filter is 40 Hz apart from the pass band of the second band rejection filter, and is a pass band that is relatively close to each other.
  • a predistor between the pass bands is usually set. Let the threshold be used as a definition to distinguish whether the passbands are relatively close. If the two passbands that are far apart are combined, there will be no problem that the main transmission line of the signal channel is relatively long.
  • the first target combined passband and the second target combined passband are passbands in which at least two passbands do not have a passband overlap, and each adjacent passband is relatively close.
  • the frequency difference between the first target combined passband and the second target combined passband is less than a preset threshold, that is, the first target combined passband and the second target combined passband are adjacent and relatively close.
  • the second target junction passband may include at least one passband, each of the passbands being adjacent to each other but not overlapping and adjacent passbands being relatively close apart.
  • the frequency of the first target combined pass band is smaller than the frequency of the second target combined pass band.
  • the embodiment of the present invention mainly improves the band stop filter to which the second target combined pass band belongs.
  • the combiner of the embodiment of the present invention includes an outer conductor 10 and an inner conductor 11;
  • the outer conductor 10 and the inner conductor 11 constitute at least two band rejection filters 12, as shown in FIG. 2, forming a band rejection filter 1, a band rejection filter 2, a band rejection filter 3, and the like.
  • Each of the band rejection filters is combined by a junction, the at least two band rejection filters forming at least two pass bands, and further, the at least two pass bands include a first target combined pass band and a second target In the combined road pass band, the frequency of the first target combined pass band is less than the frequency of the second target combined pass band.
  • the one-way band rejection filter to which the second target combined path passband belongs is mainly improved.
  • a signal channel is formed between the signal input end and the signal output end of the one-way band-stop filter to which the second target combined passband belongs, and the signal channel is composed of an inner conductor, and the inner conductor constituting the signal channel includes the capacitor 13.
  • a capacitor is included in the signal path of the band rejection filter 2 and the band rejection filter 3.
  • the outer conductor of the combiner comprises two relatively parallel faces, such as parallel faces 14 in Figure 7, which are provided with metal or with a conductive layer attached thereto.
  • the outer conductor of the combiner is a box provided with metal or with a conductive layer attached thereto, the box comprising two upper and lower relatively parallel faces. Further, an RF connector or an RF cable is connected outside the box as a signal input terminal and a signal output terminal.
  • the inner conductor constituting the signal channel includes at least two strip conductors
  • the signal channel of the one-way band-stop filter to which the second target combined passband frequency belongs has a splicing overlap portion, and the splicing overlap portion A capacitor is formed in series with the signal path.
  • FIG. 7 which is a schematic structural view of a combiner provided by the present invention
  • the outer conductor of the combiner is a box provided with metal or with a conductive layer attached thereto, and the box includes two upper and lower parallel faces. 14.
  • the box there are a plurality of strip conductors connecting the signal input end and the signal output end to form a signal channel
  • the figure includes two band rejection filters, wherein the signal path of the one band rejection filter with the higher passband frequency has the following Features: It is also composed of a plurality of strip conductors 15, and there is no metal connection between the conductors, and the overlapping portions of the strip conductors form a capacitor 13.
  • FIG. 3 which is a schematic diagram of a stripline filter constructed of a strip conductor according to an embodiment of the present invention, the stripline filter includes two upper and lower relatively parallel faces, and the two relatively parallel faces constitute The outer conductor, that is, two opposite parallel faces of the metal case of FIG.
  • the strip conductor suspended between the two opposite parallel faces constitutes the inner conductor, as shown in FIG. 7, at least two of the signal channels are formed.
  • the three capacitors formed in series with the signal path are identified in Figure 7.
  • FIG. 8 that is, another structure of the combiner provided by the embodiment of the present invention is schematically illustrated.
  • the outer conductor of the combiner is still constructed of a metal plate or a box with a conductive layer attached thereto, the box comprising two upper and lower relatively parallel faces.
  • a plurality of microstrip lines laid on the lower two sides of the PCB form an inner conductor, and the microstrip lines on the upper and lower sides are the same, as shown in FIG. 4, that is, the microstrip line is laid on the PCB.
  • the inner conductor it should be noted that, in the embodiment of the present invention, the microstrip lines laid on the lower two sides of the PCB board are connected through the metallized via holes, as shown in FIG.
  • the formed conductors constitute the inner conductor of the combiner, and the signal path connecting the signal input end and the signal output end is also composed of multiple
  • the conductor is composed of a two-way band-stop filter.
  • the signal channel of a band-stop filter with a high passband frequency has the following characteristics: it is also composed of a conductor composed of several microstrip lines, and the conductors are overlapped and overlapped.
  • a capacitor is formed in series with the signal path. Further, FIG.
  • FIG. 9 is an enlarged view of a splicing portion of a conductor according to an embodiment of the present invention, wherein a splicing exists between a first conductor and a second conductor constituting a signal path, and the spliced overlapping portion forms a capacitance.
  • both the first conductor and the second conductor are comprised of microstrip lines connected by metallized vias.
  • the inner conductor constituting the signal path includes a first conductor 16 and a second conductor 17, and the first conductor is formed by a microstrip line laid on upper and lower sides of the first portion of the printed circuit board PCB. And the microstrip lines of the upper and lower sides are connected by metallized vias, and the second conductor is formed by microstrip lines laid on the upper and lower sides of the second part of the PCB board and passes between the microstrip lines of the upper and lower sides
  • the metallized via connections, the first conductor and the second conductor splice overlap form a capacitance in series with the signal path, and the stitching overlap is circled in FIG.
  • the outer conductor of the combiner includes a grounding conductor disposed on one side of the PCB board, and the PCB board is provided with an opening;
  • the inner conductor constituting the signal path includes a microstrip line disposed on the other side of the PCB and a microstrip line disposed on the upper and lower sides of the opening, and the microstrip line overlapping portions of the upper and lower sides of the opening form a series connection The capacitance of the signal path.
  • FIG. 6 is a schematic structural diagram of a PCB filter according to an embodiment of the present invention.
  • a microstrip line is disposed on one side of the PCB board, and a metal foil is disposed on all or part of the opposite side of the microstrip line.
  • the outer conductor is called a ground conductor.
  • the microstrip line of the signal path does not necessarily exist only on the side opposite to the outer conductor, and some microstrip lines may exist on the same side as the ground conductor, and then
  • the grounding conductor opens the window to avoid, that is, the opening is provided at the position of the PCB board, and the opening is provided.
  • the overlapping portions of the microstrip lines of the upper and lower faces form a capacitance connected in series to the signal path.
  • FIG. 10 it is a schematic structural view of another combiner formed by the above method, in which a joint is marked, the combiner combines two band-stop filters, wherein the passband frequency
  • the higher one of the circuit board with the resistance filter is provided with an opening 18, and the microstrip lines laid on the upper and lower sides of the opening overlap to form a capacitor.
  • other PCB boards in the opening position are required.
  • the microstrip line is laid on one side and the grounding conductor is laid on the other side.
  • the band rejection filter to which the second target combined passband frequency belongs includes a resonant cavity, and the resonant cavity is a band-stopping pitch line structure, and the banded branching line structure is coupled with the signal channel.
  • the branch line structure is suspended at one end, and the other end is connected to the inner conductor constituting the signal path, as shown in the branch line structure 1 in FIG.
  • one end of the branch line structure is connected to the outer conductor metal of the combiner, and the other end is capacitively coupled with the inner conductor constituting the signal path, as shown in FIG. 2.
  • one end of the branch line structure is metal-connected to the outer conductor of the combiner, and the other end is suspended, and one end of a conductor is connected in the middle portion of the branch line structure (ie, the branch in FIG. 7 The tap of the line structure b), the other end of the conductor is connected to the inner conductor constituting the signal path, and the branch line structure is as shown in the branch line structure 3 of FIG.
  • the combiner includes an outer conductor and an inner conductor, and the outer conductor and the inner conductor constitute at least two band rejection filters, and the at least two band rejection filters form at least two passbands, and the at least two passbands
  • the belt includes a first target combined road passband and a second target combined passband, the frequency of the first target combined passband is less than the frequency of the second target combined passband, and the second target merged passband belongs to the same path
  • a signal path is formed between the signal input end and the output end of the band rejection filter, and the signal path is composed of an inner conductor, and the inner conductor constituting the signal path includes a capacitor.
  • an antenna device includes a combiner provided by an embodiment of the present invention, the combiner includes an outer conductor and an inner conductor, and the outer conductor and the inner conductor constitute at least Two band-stop filters, at least two band-stop filters forming at least two pass bands.
  • the formed at least two passbands include a first target combined passband and a second target combined passband, and the frequency of the first target combined passband is less than the frequency of the second target combined passband;
  • a signal channel is formed between the signal input end and the signal output end of the one band rejection filter to which the second target junction passband belongs, and the signal channel is composed of an inner conductor, and the inner conductor constituting the signal channel includes a capacitor.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).
  • modules or units in the terminal in the embodiment of the present invention may be combined, divided, and deleted according to actual needs.
  • the components of the microcontroller and the like may be implemented by a general-purpose integrated circuit, such as a central processing unit (CPU), or an application specific integrated circuit (ASIC).
  • a general-purpose integrated circuit such as a central processing unit (CPU), or an application specific integrated circuit (ASIC).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明实施例公开了一种合路器,该合路器包括外导体(10)和内导体(11),所述外导体(10)和所述内导体(11)构成至少两路带阻滤波器,所述至少两路带阻滤波器形成至少两个通带;所述至少两个通带中包括第一目标合路通带和第二目标合路通带,所述第一目标合路通带的频率小于所述第二目标合路通带的频率;在所述第二目标合路通带所属的一路带阻滤波器的信号输入端与信号输出端之间包含信号通道,所述信号通道由所述内导体(11)构成,构成所述信号通道的所述内导体包含电容(13)。实施本发明可缩短信号通道的主传输线的长度,减小合路器的体积。

Description

一种合路器 技术领域
本发明涉及电子技术领域,尤其涉及一种合路器。
背景技术
随着通信技术的发展,需要把不同频段的天线集成到一根天线里,而不同频段的天线在共用同一个振子的情况下需要有下倾角独立可调的功能,所以这些天线在各自携带调节下倾角的移相器后,需要通过合路器,将各个天线的信号合成到同一个振子上,通常两个频段可能相隔比较近,因此构成合路器的每路滤波器需要陡峭的滚降特性。
具有陡峭滚降特性的滤波器通常为带阻滤波器,带阻滤波器的一个优点是通带和阻带之间的频率相隔很近,能满足通带外几十MHz或十几MHz抑制30dB以上的需求。因此通常采用多路带阻滤波器组成合路器,如图1所示,合路口左边的带阻滤波器的通带频率低于阻带频率,右边的则通带频率高于阻带频率。但是这种合路器有一个缺点是,通带频率高于阻带频率这一路带阻滤波器中,每个谐振腔之间的信号通道的传输线需要设计成大于谐振频点波长的1/4倍,这就增加了合路器的体积。
发明内容
本发明实施例提供一种合路器,在保持带阻滤波器需要陡峭的滚降特性的同时,缩短信号通道的主传输线的长度,减小合路器的体积。
本发明第一方面提供一种合路器,所述合路器包括外导体和内导体,所述外导体和所述内导体构成至少两路带阻滤波器,所述至少两路带阻滤波器形成至少两个通带;
所述至少两个通带中包括第一目标合路通带和第二目标合路通带,所述第一目标合路通带的频率小于所述第二目标合路通带的频率;
在所述第二目标合路通带所属的一路带阻滤波器的信号输入端与信号输出端之间包含信号通道,所述信号通道由所述内导体构成,构成所述信号通道的所述内导体包含电容。这样通过在信号通道内设置电容,可以在保持滤波器 需要陡峭的滚降特性的同时,可以减小信号通道的主传输线的长度,降低合路器的体积。
基于第一方面,在第一方面的第一种可行的实施方式中,所述第二目标合路通带包含至少一个通带,所述至少一个通带中相邻通带之间的频率差小于预设阈值;
所述第一目标合路通带与所述第二目标合路通带之间的频率差小于所述预设阈值。这样通过进一步限定合路通带之间的频率关系,从而精确地确定需要添加电容的带阻滤波器,有效缩短该路带阻滤波器信道通道的主传输线长度。
基于第一方面,在第一方面的第二种可行的实施方式中,所述合路器的外导体包含两个相对平行的面,所述两个相对平行的面上设置有金属或附着有导电层。通过设置金属或附着导电层在相对平行的面上形成外导体,可以减小合路器的重量。
基于第一方面第二种可行的实施方式,在第一方面第三种可行的实施方式中,所述构成所述信号通道的内导体包含至少两个带状导体,所述至少两个带状导体拼接重叠部分形成所述电容;或者,
所述构成所述信号通道的内导体包含第一导体和第二导体,所述第一导体由敷设于印刷电路板PCB第一部分上下两个面的微带线形成且所述上下两个面的微带线之间通过金属化过孔连接,所述第二导体由敷设于所述PCB板第二部分上下两个面的微带线形成且所述上下两个面的微带线之间通过金属化过孔连接,所述第一导体和所述第二导体拼接重叠部分形成所述电容。在第一方面第三种可行的实施方式中所限定的外导体的形状与组成基础上,对构成信号通道的内导体进一步限定,电容可以是通过带状导体的拼接重叠部分形成,也可以是通过金属化过孔连接的微带线之间的拼接重叠部分形成,从而提供了电容的两种实现方式,减小信号通道主传输线的长度。
基于第一方面第一种可行的实施方式,在第一方面的第四种可行的实施方式中,所述合路器的外导体包含敷设在PCB板一面的接地导体,所述PCB板设置开孔;
所述构成所述信号通道的内导体包含敷设在所述PCB板另一面的微带线 以及敷设在所述开孔上下两个面的微带线,所述开孔上下两个面的所述微带线构成重叠形成所述电容。通过另一种外导体和内导体的实现方式,提供了另一种电容的形成方式,这种实现方式中,只需要PCB板以及微带线,组成结构简单,也可以减小信号通道主传输线的长度。
基于第一方面或者第一方面第一种可行的实施方式或者第一方面第二种可行的实施方式或者第一方面第三种可行的实施方式或者第一方面第四种可行的实施方式,在第一方面第五种可行的实施方式中,所述第二目标合路通带所属的所述带阻滤波器包含谐振腔,所述谐振腔为带阻枝节线结构。通过对带阻滤波器的谐振腔进一步限定,从而提供了谐振腔结构的一种实现方式。
基于第一方面第五种可行的实施方式,在第一方面第六种可行的实施方式中,所述枝节线结构一端悬空,另一端与构成所述信号通道的内导体之间金属连接。
基于第一方面第五种可行的实施方式,在第一方面第七种可行的实施方式中,所述枝节线结构一端与所述合路器的所述外导体金属连接,另一端与构成所述信号通道的内导体之间电容耦合。
基于第一方面第五种可行的实施方式,在第一方面第八种可行的实施方式中,所述枝节线结构的一端与所述合路器的外导体金属连接,另一端悬空,在所述枝节线结构的中间部分连接一导体的一端,所述导体的另一端与构成所述信号通道的内导体之间金属连接。
本发明第二方面提供一种天线设备,包括第一方面任意一种可行的实施方式中的合路器。
本发明实施例中,合路器包括外导体和内导体,外导体和内导体构成至少两路带阻滤波器,该至少两路带阻滤波器形成至少两个通带,该至少两个通带中包括第一目标合路通带和第二目标合路通带,第一目标合路通带的频率小于第二目标合路通带的频率,在第二目标合路通带所属的一路带阻滤波器的信号输入端与输出端之间包含信号通道,该信号通道由内导体构成,构成信号通道的内导体包含电容。通过在通带频率较大的合路通带所属带阻滤波器的信号通道中设置电容,从而在保持带阻滤波器需要陡峭的滚降特性的同时,缩短信号通道的主传输线的长度,减小合路器的体积。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例中提供的一种现有技术中的合路器等效结构;
图2为本发明实施例中提供的一种合路器的结构示意图;
图3为本发明实施例中提供的一种带状线的结构示意图;
图4为本发明实施例中提供的一种PCB悬置带状线的结构示意图;
图5为本发明实施例中提供的另一种PCB悬置带状线的结构示意图;
图6为本发明实施例中提供的一种PCB滤波器的结构示意图;
图7为本发明实施例中提供的一种合路器的结构示意图;
图8为本发明实施例中提供的另一种合路器的结构示意图;
图9为本发明实施例中提供的一种拼接部分放大图;
图10为本发明实施例中提供的又一种合路器的结构示意图;
图11为本发明实施例中提供的一种天线设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例中,滤波器是一种实现信号选择的器件,基本功能是让通带频率内的信号,即对于本设备有用的信号尽可能少损耗的通过;让通带频率外的信号,即对本设备无用的信号尽可能多的过滤掉。带阻滤波器通过多个谐振腔将输入的信号进行谐振处理,形成带阻信号,即具有阻带频率和通带频率。
在如图1所示,即是本发明实施例提供的一种现有合路器的等效电路,在该等效电路中包括两路带阻滤波器,该两路带阻滤波器的通带频率相隔比较近,因此在对该两路带阻滤波器的输出信号进行合路,在现有的如图1所示的 合路器,B路带阻滤波器的通带频率高于A路带阻滤波器的通带频率,在实际设计中,B路带阻滤波器中每个谐振腔之间信号通道的传输线需要设计成大于谐振频率对应波长的1/4倍,这就增加了合路器体积和结构复杂度。
本发明实施例中为了解决此问题,在B路带阻滤波器的信号通道上增加电容,构成带阻滤波器与高通滤波器之间的混合型滤波器,从而大大缩短该信号通道的主传输线所需要的长度,降低合路器的体积。本发明实施例主要对这种混合型滤波器结构进行描述。需要说明的是,在实际应用中,组成合路器的带阻滤波器可能包括至少两个,以上对两个带阻滤波器组成的合路器进行介绍的仅为举例。
本发明实施例中至少两路带阻滤波器可以形成至少两个通带,在对该至少两路带阻滤波器进行合路时,各个带阻滤波器所产生的各个通带之间的相邻关系以及通带之间的距离不同,在本发明实施例中仅仅考虑进行合路的各个相邻通带之间距离比较小,即是通带之间彼此相邻但不重叠,且相邻通带之间相隔比较近的通带,例如第一路带阻滤波器的通带为【1710HZ-1880HZ】,第二路带阻滤波器的通带为【1920HZ-2170HZ】,则第一路带阻滤波器的通带与第二路带阻滤波器的通带相隔40HZ,是属于相隔比较近的通带,属于本发明所述范畴之内,通常会设置通带之间频率差的预设阈值作为区分通带之间是否相隔比较近的界定。若是相隔比较远的两个通带进行合路时,则不会存在信号通道的主传输线比较长的问题。
本发明实施例中,第一目标合路通带和第二目标合路通带是至少两个通带中不存在通带重叠,且各个相邻通带之间相隔比较近的通带。第一目标合路通带和第二目标合路通带之间的频率差小于预设阈值,即是第一目标合路通带和第二目标合路通带相邻,且相隔比较近。第二目标合路通带可以包括至少一个通带,该至少一个通带中各个通带之间彼此相邻但不重叠且相邻通带之间也是相隔比较近。第一目标合路通带的频率小于第二目标合路通带的频率,本发明实施例主要对第二目标合路通带所属的带阻滤波器进行改进。
请参照图2,为本发明实施例提供的一种合路器的结构示意图,如图所示,本发明实施例的合路器包括外导体10和内导体11;
本发明实施例中,该外导体10和内导体11构成至少两路带阻滤波器12,如图2所示,构成带阻滤波器1、带阻滤波器2、带阻滤波器3等,各路带阻滤波器通过合路口进行合路,该至少两路带阻滤波器形成至少两个通带,进一步的,该至少两个通带中包括第一目标合路通带和第二目标合路通带,第一目标合路通带的频率小于第二目标合路通带的频率。
本发明实施例中,主要对第二目标合路通带所属的一路带阻滤波器进行改进。第二目标合路通带所属的一路带阻滤波器的信号输入端和信号输出端之间包含信号通道,该信号通道由内导体构成,构成信号通道的内导体包含电容13。如图2所示,在带阻滤波器2和带阻滤波器3的信号通道上包含电容。
在一种可选的实施例中,合路器的外导体包含两个相对平行的面,如图7中的平行的面14,该两个平行的面上设置有金属或者附着有导电层。
如图7和图8所示,合路器的外导体为设置有金属或有附着有导电层的盒子,该盒子包括上下两个相对平行的面。进一步的,盒子外面连接了射频连接器或射频电缆,作为信号输入端和信号输出端。
可选的,构成信号通道的内导体包含至少两个带状导体,第二目标合路通带频率所属的一路带阻滤波器的信号通道带状导体之间存在拼接重叠部分,该拼接重叠部分形成串联于信号通道的电容。如图7所示,即是本发明提供的一种合路器的结构示意图,合路器的外导体为设置有金属或有附着有导电层的盒子,该盒子包括上下两个相对平行的面14。在该盒子内有若干带状导体连通信号输入端和信号输出端,形成信号通道,图中包括了两路带阻滤波器,其中通带频率较高的一路带阻滤波器的信号通道有以下特点:它也是由若干带状导体15构成,导体间不存在金属连接,带状导体之间拼接重叠部分形成电容13。进一步,如图3所示,即是本发明实施例对带状导体构成的带状线滤波器的示意图,带状线滤波器包含上下两个相对平行的面,该两个相对平行的面构成外导体,即相当于图7中金属盒子两个相对平行的面,悬置在两个相对平行面之间的带状导体构成内导体,如图7所示,在构成信号通道的至少两个带状导体之间存在拼接重叠,该拼接重叠部分即形成信号通道的电容。图7中将所形成的串联于信号通道的三个电容进行了标识。
可选的,如图8所示,即是本发明实施例提供的另一种合路器的结构示意 图,该合路器的外导体仍然是由设置有金属或有附着有导电层的盒子构成,该盒子包括上下两个相对平行的面。在该盒子内由若干敷设在PCB板上下两个面的微带线构成内导体,上下两个面的微带线相同,如图4所示,即是将微带线敷设在PCB板上构成内导体,需要说明的是,本发明实施例中,将敷设在PCB板上下两个面的微带线通过金属化过孔连接,如图5所示,即是将敷设在PCB上下两面的微带线通过金属化过孔连接。通过金属化过孔连接的微带线实际上已经形成一个导体,在图8中,将所形成的若干导体构成合路器的内导体,连通信号输入端和信号输出端的信号通道也是由多个导体构成,图8中包括了两路带阻滤波器,其中通带频率较高的一路带阻滤波器的信号通道有以下特点:它也是由若干微带线构成的导体组成,导体拼接重叠部分形成串联于信号通道的电容。进一步,图9为本发明实施例对导体拼接部分的放大图,构成信号通道的第一导体和第二导体之间存在拼接,该拼接重叠部分形成电容。如图所示,第一导体和第二导体都是由金属化过孔连接的微带线构成。
具体可选的,如图9所示,构成信号通道的内导体包含第一导体16和第二导体17,该第一导体由敷设于印刷电路板PCB第一部分上下两个面的微带线形成且上下两个面的微带线之间通过金属化过孔连接,第二导体由敷设于PCB板第二部分上下两个面的微带线形成且上下两个面的微带线之间通过金属化过孔连接,第一导体和第二导体拼接重叠部分形成串联于信号通道的电容,图9中将拼接重叠部分进行了圈注。
在另一种可选的实施方式中,所述合路器的外导体包含敷设在PCB板一面的接地导体,该PCB板设置开孔;
构成所述信号通道的内导体包含敷设在该PCB板另一面的微带线以及敷设在该开孔上下两个面的微带线,该开孔上下两个面的微带线重叠部分形成串联于信号通道的电容。
如图6所示,即是本发明实施例提供的一种PCB滤波器的结构示意图,在该PCB板的一面敷设微带线,在该微带线相对的另一面全部或者部分敷设金属箔作为外导体或称为接地导体,在本发明实施例中,信号通道的微带线不一定只存在于与外导体相对的那一面,部分微带线可以存在于与接地导体相同的那一面,然后接地导体开窗口避让,即是在PCB板该位置设置开孔,开孔 上下两个面的微带线重叠部分形成串联于信号通道的电容。
如图10所示,即是通过上述方式形成的又一种合路器的结构示意图,图中标注了合路口,该合路器将两个带阻滤波器进行合路,其中在通带频率较高的那一路带阻滤波器的PCB板上设置开孔18,该开孔上下两个面所敷设的微带线重叠形成电容,需要说明的是,在该开孔位置的其它PCB板上一面敷设微带线,另一面敷设接地导体。
可选的,第二目标合路通带频率所属的带阻滤波器包含谐振腔,该谐振腔为带阻枝节线结构,该带阻枝节线结构与信号通道存在信号耦合。
作为一种可选的实施方式,所述枝节线结构一端悬空,另一端与构成所述信号通道的内导体之间金属连接,如图7所示中的枝节线结构1。
作为另一种可选的实施方式,所述枝节线结构一端与合路器的外导体金属连接,另一端与构成信号通道的内导体之间电容耦合,如图7所示中的枝节线结构2。
作为又一种可选的实施方式,所述枝节线结构的一端与合路器的外导体金属连接,另一端悬空,在该枝节线结构的中间部分连接一导体的一端(即图7中枝节线结构b的抽头),该导体的另一端与构成信号通道的内导体之间金属连接,这种枝节线结构如图7中的枝节线结构3。
本发明实施例中,合路器包括外导体和内导体,外导体和内导体构成至少两路带阻滤波器,该至少两路带阻滤波器形成至少两个通带,该至少两个通带中包括第一目标合路通带和第二目标合路通带,第一目标合路通带的频率小于第二目标合路通带的频率,在第二目标合路通带所属的一路带阻滤波器的信号输入端与输出端之间包含信号通道,该信号通道由内导体构成,构成信号通道的内导体包含电容。通过在通带频率较大的合路通带所属带阻滤波器的信号通道中设置电容,从而在保持带阻滤波器需要陡峭的滚降特性的同时,缩短信号通道的主传输线的长度,减小合路器的体积。
如图11所示,为本发明实施例提供的一种天线设备,该天线设备包括本发明实施例提供的合路器,该合路器包括外导体和内导体,外导体和内导体构成至少两路带阻滤波器,至少两路带阻滤波器形成至少两个通带。
所形成的至少两个通带中包括第一目标合路通带和第二目标合路通带,第一目标合路通带的频率小于第二目标合路通带的频率;
在第二目标合路通带所属的一路带阻滤波器的信号输入端与信号输出端之间包含信号通道,该信号通道由内导体构成,构成信号通道的内导体包含电容。
通过在上述合路器的第二目标合路通带所属带阻滤波器的信号通道中添加电容的方式,从而缩小第二目标合路通带所属带阻滤波器信号通道传输线的长度,减小合路器的体积。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
本发明实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本发明实施例终端中的模块或单元可以根据实际需要进行合并、划分和删减。
本发明实施例的微控制器等部件,可以以通用集成电路,如中央处理器(Central Processing Unit,CPU),或以专用集成电路(Application Specific Integrated Circuit,ASIC)来实现。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (10)

  1. 一种合路器,所述合路器包括外导体10和内导体11,所述外导体10和所述内导体11构成至少两路带阻滤波器12,所述至少两路带阻滤波器形成至少两个通带,其特征在于:
    所述至少两个通带中包括第一目标合路通带和第二目标合路通带,所述第一目标合路通带的频率小于所述第二目标合路通带的频率;
    在所述第二目标合路通带所属的一路带阻滤波器的信号输入端与信号输出端之间包含信号通道,所述信号通道由所述内导体11构成,构成所述信号通道的所述内导体包含电容13。
  2. 如权利要求1所述的合路器,其特征在于,所述第二目标合路通带包含至少一个通带,所述至少一个通带中各个通带彼此相邻但不重叠且相邻通带之间的频率差小于预设阈值;
    所述第一目标合路通带与所述第二目标合路通带之间的频率差小于所述预设阈值。
  3. 如权利要求1所述的合路器,其特征在于,所述合路器的外导体包含两个相对平行的面14,所述两个相对平行的面14上设置有金属或附着有导电层。
  4. 如权利要求3所述的合路器,其特征在于,所述构成所述信号通道的所述内导体包含至少两个带状导体15,所述至少两个带状导体15拼接重叠部分形成所述电容13;或者,
    所述构成所述信号通道的所述内导体包含第一导体16和第二导体17,所述第一导体由敷设于印刷电路板PCB第一部分上下两个面的微带线形成且所述上下两个面的微带线之间通过金属化过孔连接,所述第二导体由敷设于所述PCB板第二部分上下两个面的微带线形成且所述上下两个面的微带线之间通过金属化过孔连接,所述第一导体和所述第二导体拼接重叠部分形成所述电容 13。
  5. 如权利要求1所述的合路器,其特征在于,所述合路器的外导体包含敷设在PCB板一面的接地导体,所述PCB板设置开孔18;
    所述构成所述信号通道的所述内导体包含敷设在所述PCB板另一面的微带线以及敷设在所述开孔上下两个面的微带线,所述开孔上下两个面的所述微带线重叠形成所述电容13。
  6. 如权利要求1至5任一项所述的合路器,其特征在于,所述第二目标合路通带所属的所述带阻滤波器包含谐振腔,所述谐振腔为带阻枝节线结构。
  7. 如权利要求6所述的合路器,其特征在于,所述枝节线结构1一端悬空,另一端与构成所述信号通道的内导体之间金属连接。
  8. 如权利要求6所述的合路器,其特征在于,所述枝节线结构2一端与所述合路器的所述外导体金属连接,另一端与构成所述信号通道的内导体之间电容耦合。
  9. 如权利要求6所述的合路器,其特征在于,所述枝节线结构3的一端与所述合路器的外导体金属连接,另一端悬空,在所述枝节线结构的中间部分连接一导体的一端,所述导体的另一端与构成所述信号通道的内导体之间金属连接。
  10. 一种天线设备,其特征在于,包括如权利要求1至9任一项所述的合路器。
PCT/CN2016/111371 2015-12-28 2016-12-21 一种合路器 WO2017114268A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16881057.0A EP3386028B1 (en) 2015-12-28 2016-12-21 Combiner
US16/020,404 US10680304B2 (en) 2015-12-28 2018-06-27 Combiner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511003618.4A CN105489990B (zh) 2015-12-28 2015-12-28 一种合路器
CN201511003618.4 2015-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/020,404 Continuation US10680304B2 (en) 2015-12-28 2018-06-27 Combiner

Publications (1)

Publication Number Publication Date
WO2017114268A1 true WO2017114268A1 (zh) 2017-07-06

Family

ID=55676829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111371 WO2017114268A1 (zh) 2015-12-28 2016-12-21 一种合路器

Country Status (4)

Country Link
US (1) US10680304B2 (zh)
EP (1) EP3386028B1 (zh)
CN (1) CN105489990B (zh)
WO (1) WO2017114268A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105489990B (zh) 2015-12-28 2019-01-25 华为技术有限公司 一种合路器
CN113270703B (zh) * 2021-04-01 2022-01-11 武汉虹信科技发展有限责任公司 双极化多进多出钣金合路器及基站天线
CN113540727B (zh) * 2021-06-30 2022-05-17 西南电子技术研究所(中国电子科技集团公司第十研究所) 频率选择微带分路器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201210508Y (zh) * 2008-04-24 2009-03-18 杭州紫光网络技术有限公司 半集总合路器
CN102354783A (zh) * 2011-08-02 2012-02-15 南京广顺网络通信设备有限公司 一种悬置线高低通合路器
CN202178359U (zh) * 2011-08-02 2012-03-28 南京广顺网络通信设备有限公司 一种悬置线高低通合路器
CN202196847U (zh) * 2011-08-24 2012-04-18 京信通信系统(中国)有限公司 超宽频合路器
CN203242725U (zh) * 2013-03-27 2013-10-16 京信通信系统(中国)有限公司 一种带阻滤波器及双频合路器
US20130285765A1 (en) * 2011-12-19 2013-10-31 Powerwave Technologies, Inc. Broad band diplexer using suspended strip-line capacitor technology
CN203326071U (zh) * 2013-06-28 2013-12-04 唐玉梅 超宽带双频合路器
CN105489990A (zh) * 2015-12-28 2016-04-13 华为技术有限公司 一种合路器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4186359A (en) * 1977-08-22 1980-01-29 Tx Rx Systems Inc. Notch filter network
AU2002227284A1 (en) * 2000-12-12 2002-06-24 Paratek Microwave, Inc. Electrically tunable notch filters
US8736397B2 (en) * 2006-09-07 2014-05-27 Omnitracs, Llc Ku-band coaxial to microstrip mixed dielectric PCB interface with surface mount diplexer
JP2008182340A (ja) * 2007-01-23 2008-08-07 Ngk Spark Plug Co Ltd ダイプレクサ及びそれを用いたマルチプレクサ
JP5259848B2 (ja) * 2011-07-29 2013-08-07 株式会社東芝 再生制御装置及び再生制御方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201210508Y (zh) * 2008-04-24 2009-03-18 杭州紫光网络技术有限公司 半集总合路器
CN102354783A (zh) * 2011-08-02 2012-02-15 南京广顺网络通信设备有限公司 一种悬置线高低通合路器
CN202178359U (zh) * 2011-08-02 2012-03-28 南京广顺网络通信设备有限公司 一种悬置线高低通合路器
CN202196847U (zh) * 2011-08-24 2012-04-18 京信通信系统(中国)有限公司 超宽频合路器
US20130285765A1 (en) * 2011-12-19 2013-10-31 Powerwave Technologies, Inc. Broad band diplexer using suspended strip-line capacitor technology
CN203242725U (zh) * 2013-03-27 2013-10-16 京信通信系统(中国)有限公司 一种带阻滤波器及双频合路器
CN203326071U (zh) * 2013-06-28 2013-12-04 唐玉梅 超宽带双频合路器
CN105489990A (zh) * 2015-12-28 2016-04-13 华为技术有限公司 一种合路器

Also Published As

Publication number Publication date
CN105489990B (zh) 2019-01-25
US20180309181A1 (en) 2018-10-25
EP3386028A1 (en) 2018-10-10
US10680304B2 (en) 2020-06-09
CN105489990A (zh) 2016-04-13
EP3386028B1 (en) 2021-04-07
EP3386028A4 (en) 2018-12-12

Similar Documents

Publication Publication Date Title
CN106169920B (zh) 层叠体及通信装置
US10003318B2 (en) Circuit
JP6079929B2 (ja) 伝送線路部材および電子機器
US8970327B2 (en) Filter based on a combined via structure
WO2016167190A1 (ja) フィルタ回路および周波数切替方法
WO2017114268A1 (zh) 一种合路器
CN106997983A (zh) 定向耦合器
CN104409802A (zh) 微型微波毫米波自负载i/q正交滤波器
WO2015022839A1 (ja) 電力分配器
JP2006332980A (ja) トリプレクサ回路
US10505243B2 (en) Balun
CN204244192U (zh) Lc滤波器电路及高频模块
US9583806B2 (en) Multi-band pass filter
CN103779640A (zh) 微带双通带滤波器
US7782157B2 (en) Resonant circuit, filter circuit, and multilayered substrate
CN105070988A (zh) 一种基于ltcc的s波段功分滤波器
JP5578440B2 (ja) 差動伝送線路
KR101602440B1 (ko) 전력 분배기
KR20150057673A (ko) 격리 특성이 높은 방향성 결합기
US20130265120A1 (en) Microstrip phase inverter
KR102590420B1 (ko) post-loaded 기판 집적형 도파관 공진기
CN111129681A (zh) 一种平衡-不平衡变换装置、通信器件及通信系统
KR101482954B1 (ko) 엘씨 다이플렉서 및 이를 포함한 무선 공유 장치
CN219577026U (zh) 一种适用于特高频频段的叠层片式巴伦
US10813212B2 (en) Multiband filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016881057

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016881057

Country of ref document: EP

Effective date: 20180705