WO2017114251A1 - 一种投影校正方法及装置 - Google Patents

一种投影校正方法及装置 Download PDF

Info

Publication number
WO2017114251A1
WO2017114251A1 PCT/CN2016/111247 CN2016111247W WO2017114251A1 WO 2017114251 A1 WO2017114251 A1 WO 2017114251A1 CN 2016111247 W CN2016111247 W CN 2016111247W WO 2017114251 A1 WO2017114251 A1 WO 2017114251A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection
distance
background
preset
relative angle
Prior art date
Application number
PCT/CN2016/111247
Other languages
English (en)
French (fr)
Inventor
姜訢
黄永顺
赵宝莹
Original Assignee
青岛海尔股份有限公司
北京一数科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔股份有限公司, 北京一数科技有限公司 filed Critical 青岛海尔股份有限公司
Publication of WO2017114251A1 publication Critical patent/WO2017114251A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3185Geometric adjustment, e.g. keystone or convergence
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]

Definitions

  • the present invention relates to the field of projection technology, and in particular, to a projection correction method and apparatus.
  • projection technology In the daily life and work of users, projection technology has been widely used, for example, various conferences, trainings, various ceremonies, etc. Users often put various types of files on the projection background through the projection device to achieve Sharing with others.
  • the relative angle between the projection device and the projection background is directly related to the degree of distortion of the projection area.
  • a projection correction method is provided: an image of a projection background is acquired by an image acquisition device such as a camera; then, a degree of distortion of the projection area is obtained by means of image processing; thereby correcting the projection according to the degree of distortion.
  • an embodiment of the present invention discloses a projection correction method, which is applied to a projection device, and the method includes:
  • the straight line where the mark points M and N are located is parallel to the x-axis of the pre-established two-dimensional coordinate system;
  • the pre-established two-dimensional coordinate system is: an edge of the smallest rectangle of the outer edge of the end face of the projection lens containing the projection device
  • the straight line is the x-axis, and the straight line with the side perpendicular to the side is the coordinate system of the y-axis;
  • the obtaining the distances D M , D N of the preset marking points M and N on the projection device along the preset direction to the projection background respectively includes:
  • the distances D M , D N of the preset marker points M, N on the projection device along the preset direction to the projection background are obtained.
  • the relative angle ⁇ X including:
  • determining an end surface of the projection lens and a plane of the projection background Before the relative angle ⁇ X it also includes:
  • the method further includes:
  • an embodiment of the present invention discloses a projection correction device, which is applied to a projection device, and the device includes:
  • a first marker point distance obtaining module configured to obtain a distance D MN between the preset marker points M, N on the projection device; wherein the marker points M, N are respectively projection planes of the projection device Two points on the end face that do not coincide, and the line where the mark points M, N are located is parallel to the x-axis of the pre-established two-dimensional coordinate system; the pre-established two-dimensional coordinate system is: a projection lens containing the projection device The straight line of the smallest rectangle of the outer edge of the end face is located on the x-axis, and the straight line of the edge perpendicular to the edge is the coordinate system of the y-axis;
  • a first projection distance obtaining module configured to obtain a distance D M , D N of the marking points M, N respectively along a preset direction to a projection background; wherein the predetermined direction is a method of the end surface of the projection lens Line direction
  • a first angle determining module configured to determine an end surface of the projection lens and the projection according to a difference between the distance D MN and the distance D M and the distance D N according to a triangle angle calculation rule The relative angle ⁇ X of the plane in which the background lies;
  • the first correction parameter obtaining module according to the relative angle ⁇ X, according to a preset correspondence relationship between the relative angle between the correction parameter, said correction parameter to obtain a first relative angle corresponding to ⁇ X;
  • a first projection area correction module configured to correct a projection area of the projection apparatus on the projection background based on the first correction parameter.
  • the first projection distance obtaining module comprises:
  • a first projection distance obtaining sub-module configured to obtain a distance D M , D N of the preset marking points M, N on the projection device along the preset direction to the projection background, respectively, based on the laser ranging sensor;
  • the second projection distance obtaining sub-module is configured to obtain, according to the proximity light sensor, the distances D M , D N of the preset marking points M, N on the projection device to the projection background respectively according to the preset direction.
  • the first angle determining module is specifically configured to:
  • the device further comprises:
  • a projection environment determining module configured to, according to the current time, the distances D M ′, D N ′ along the preset direction from the preset point to the projection background, and the distance D M , the distance D N Determining whether a projection environment in which the projection device is located has changed;
  • the projection distance update module is configured to update the distance D M and the distance D N according to the distance D M ' and the distance D N ' when the determination result of the projection environment determination module is YES.
  • the device further comprises:
  • a second marker point distance obtaining module configured to obtain a distance D PQ between the preset marker points P, Q on the projection device; wherein the marker points P, Q are respectively the projection lens of the projection device Two points on the end face that do not coincide, and the line where the mark points P, Q are located is parallel to the y axis of the pre-established two-dimensional coordinate system;
  • a second projection distance obtaining module configured to obtain distances D P , D Q of the marking points P, Q along the preset direction to the projection background respectively;
  • a second angle determining module configured to determine an end surface of the projection lens and the projection according to the difference between the distance D PQ and the distance D P and the distance D Q according to a triangle angle calculation rule The relative angle ⁇ Y of the plane in which the background lies;
  • a second correction parameter obtaining module configured to obtain a second correction parameter corresponding to the relative angle ⁇ Y according to the corresponding relationship between the preset relative angle and the correction parameter according to the relative angle ⁇ Y ;
  • a second projection area correction module configured to correct a projection area of the projection apparatus on the projection background based on the second correction parameter.
  • the projection device first obtains the distance D MN between the preset marker points M and N on the projection device; and then obtains the marker points M and N respectively along the preset.
  • the relative position of the projection lens and the plane of the projection background are determined.
  • the projection correction is performed by using the solution provided by the embodiment of the present invention, it is not necessary to perform correction according to the image processing result of the image of the projection background, and the data processing result of the distance from the preset marker point to the projection background can be corrected.
  • the data amount of the distance It is much smaller than the amount of data of the image, thus reducing the time taken for data processing during projection correction and increasing the processing speed.
  • Figure 1a is a schematic diagram of a normal projection effect of a projection area.
  • FIG. 1b is a schematic diagram of a projection effect of vertical distortion of a projection area.
  • Fig. 1c is a schematic view showing the projection effect of vertical distortion of another projection area.
  • Figure 1d is a schematic diagram of a projection effect of horizontal distortion of a projection area.
  • Fig. 1e is a schematic diagram showing the projection effect of horizontal distortion of another projection area.
  • FIG. 2a is a schematic diagram of selecting a preset marker point according to an embodiment of the present invention.
  • FIG. 2b is a schematic diagram of another preset marker point according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a projection correction method according to an embodiment of the present invention.
  • FIG. 3b is a schematic diagram of projection of a projection device and a projection background according to an embodiment of the present invention.
  • Figure 3c is a schematic illustration of a front view of a projection device and projection plane.
  • FIG. 4 is a schematic flowchart diagram of another projection correction method according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart diagram of another projection correction method according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a projection correction apparatus according to an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart diagram of another projection correction method according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart diagram of another projection correction method according to an embodiment of the present invention.
  • projection equipment fixed projection equipment, portable projection equipment, etc.
  • various kinds of projection equipment are widely used in the life and work of users.
  • the company holds an annual summary meeting, it can display the performance of this year through projection equipment.
  • video clips such as promotional videos can be placed on the screen through projection devices for sharing to others, etc. It can be seen that the projection device and the user's life and work are closely related.
  • the projection device when the projection device is turned on for projection, the user often finds that the projection area projected onto the projection background has been distorted, and the projected projection area is not a regular rectangular area (as shown in FIG. 1a), for example, The projection area of the trapezoid is displayed (as shown in Fig. 1b, Fig. 1c, Fig. 1d, and Fig. 1e). In this case, the user's visual experience is very bad. Therefore, it is usually necessary to perform the projection area during the projection process. Correction.
  • a projection correction method is provided: an image of a projection background is acquired by an image acquisition device such as a camera; and then, a degree of distortion of an image of the projection background is obtained by image processing; thereby, the projection area is performed according to the degree of distortion. Correction.
  • Correction of the distortion occurring in the projection area can be achieved by the correction scheme for the projection area provided in the prior art.
  • an image acquisition device such as a camera is required to acquire an image of the projection background, however, these devices
  • the power consumption is still relatively large. Since some portable projection devices are powered by batteries, the above projection devices cannot normally provide sufficient power supply for image acquisition devices such as cameras, and thus the above projections provided in the prior art.
  • the correction scheme is difficult to meet the actual needs; further, since the solution provided in the prior art also needs to process the acquired image, generally, the processing of the image data usually takes a longer time, but the portable projection device is usually Need to move at any time, the longer processing time is not able to meet the flexibility requirements of this portable projection device.
  • the embodiments of the present invention provide a projection correction method and apparatus, which may be based on a sensor detection device for performing projection correction to reduce the time taken for data processing in the projection correction process and to improve the processing speed.
  • FIG. 2a a schematic diagram of selecting a preset marker point according to an embodiment of the present invention is provided.
  • the selection of the marker points M and N is applicable to a vertical trapezoidal correction of a projection background;
  • FIG. 2b Another schematic diagram for selecting a preset marker point according to an embodiment of the present invention, in addition to selecting marker points M and N suitable for vertical trapezoidal correction of the projection background, is also preset for horizontal trapezoidal correction on the projection background.
  • Mark points P, Q the specific application of each marker point will be described in the following specific embodiments.
  • FIG. 3 is a schematic flowchart of a projection correction method according to an embodiment of the present disclosure, which is applied to a projection device, and the method may include:
  • Step S101 Obtain a distance D MN between the preset marker points M, N on the projection device.
  • the distance D MN between the marker points M, N means the linear distance between the marker points M, N.
  • the marking points M and N are respectively two points on the end surface of the projection lens of the projection device, and the marking points M and N are parallel to the x-axis of the pre-established two-dimensional coordinate system.
  • the pre-established two-dimensional coordinate system is: a line in which one side of the smallest rectangle of the outer edge of the end surface of the projection lens including the projection device is located on the x-axis, and a line on which the side perpendicular to the side is located is the coordinate system of the y-axis.
  • the manner of establishing a two-dimensional coordinate system will be described in detail below.
  • the straight line of one side of the rectangle is the x-axis.
  • the straight line in the rectangle is taken as the x-axis; the line perpendicular to the side is the y-axis, and the straight line in the rectangle in Figure 3b is the y-axis; where O is two-dimensional The origin of the coordinate system.
  • the manner of establishing a two-dimensional coordinate system in the end surface of the projection lens of the projection device shown in FIG. 3b is only one of many ways, and of course, there may be other ways, for example, a rectangular axis of symmetry. To establish a two-dimensional coordinate system, etc., the present invention does not require a specific way of establishing a two-dimensional coordinate system, and any possible implementation can be applied to the present invention.
  • the manufacturer of the projection device often takes into consideration the aesthetics of the product. Therefore, the end faces of the projection device are often not as regular as the end faces shown in Fig. 3b.
  • the end faces of the projection device are often not as regular as the end faces shown in Fig. 3b.
  • it is required It is preferred to determine a minimum rectangle sufficient to contain the outer edge of the end face, and then establish a two-dimensional coordinate system as described above.
  • the determination of a minimum rectangle mentioned here is only an auxiliary tool when establishing a two-dimensional coordinate system.
  • the present invention does not need to be limited thereto, and any possible implementation manner can be applied to the present invention, and those skilled in the art need to make reasonable settings according to specific conditions in practical applications.
  • Step S102 Obtain the distances D M , D N of the marker points M, N respectively along the preset direction to the projection background.
  • the preset direction is the normal direction of the end surface of the projection lens.
  • FIG. 3b is a schematic diagram of projection of a projection device and a projection background according to an embodiment of the present invention. Shown in the dotted rectangular frame on the left side is a projection device in which the marking points M, N are preliminarily provided on the end face of the projection lens of the projection device; wherein MM', NN' are the marking points M, N along The distance from the preset direction to the projected background, and the distance values thereof are D M , D N , respectively, and MM′, NN′ are parallel to the normal direction of the end faces of the marked points M and N.
  • the distances D M , D N can be obtained based on a laser ranging sensor.
  • a laser ranging sensor can emit a very fine laser beam to a target during the ranging process, and then the photoelectric component receives the laser beam emitted by the target, and its own timer measures the time from the transmission to the reception of the laser beam. The distance from the observation point to the target can be calculated.
  • a person skilled in the art can arrange such a laser ranging sensor at a preset marking point of the end surface of the projection lens, so that the distances D M , D N can be conveniently obtained.
  • the distances D M , D N of the preset marker points M, N on the projection device along the preset direction to the projection background may also be obtained based on the proximity light sensor. It is well known that the proximity light sensor can determine the distance of the object based on the intensity of the received infrared light during the ranging process.
  • the above two methods of measuring distance are optical measurement methods, wherein the laser ranging sensor is accurate in ranging due to the high concentration of its own laser, and accurate measurement is needed in practical applications.
  • the occasions are often used, so there is no limit to the distance of the projection; however, the latter's infrared light is slightly less concentrated than the laser, and the measurement distance is not as accurate as the laser ranging sensor.
  • the degree is high, so it is more suitable for the case where the projection distance is not too high when it is used for long-distance projection.
  • Step S103 According to the difference between the distance D MN and the distance D M and the distance D N , according to the triangle angle calculation rule, the relative angle ⁇ X of the end surface of the projection lens and the plane of the projection background is determined.
  • the difference between the angles of the triangle and the projection background is determined by the triangle angle calculation rule.
  • the relative angle ⁇ X of the faces may include:
  • ⁇ X 45° is calculated according to the formula, thereby determining the relative clip of the end face of the projection lens and the plane of the projection background. angle.
  • step S103 the relative angle calculated according to the formula in step S103 is the relative angle ⁇ X between the plane of the projection lens and the plane of the projection background.
  • 3c is a schematic diagram of a front view of a projection device and a projection plane. It is assumed that the angle ⁇ is positive when the projection device is lifted up and the angle ⁇ is positive when the projection plane is rotated clockwise. For example, it is assumed that the projection device is The angle ⁇ is +90 when the horizontal placement position is raised upward by 90°, and the angle ⁇ is -30° when the projection plane is rotated 30° counterclockwise by the vertical plane (as shown in Fig. 3c, rotating from the vertical dotted line position to the projection background) The angle ⁇ formed by the position is negative. It is easy to see that the projection device in FIG.
  • Step S104 According to the relative angle ⁇ X , according to the correspondence between the preset relative angle and the correction parameter, the first correction parameter corresponding to the relative angle ⁇ X is obtained.
  • a person in the art may pre-store a data table including a correspondence between a relative angle and a correction parameter in a memory of the projection device, where at least each angle or angle needs to be included in the data table.
  • the interval and its corresponding correction parameters (configuration information of the projection device, etc.), during the projection process, the corresponding angle or angle interval in the table can be searched according to the calculated value of the relative angle ⁇ X
  • the first correction parameter corresponding to the angle ⁇ X .
  • Step S105 correcting the projection area of the projection device on the projection background based on the first correction parameter.
  • the relative angle ⁇ X of the current projection device and the projection background may be determined according to a preset time interval (for example, 10 minutes, etc.), and the relative clip is updated according to the relative angle between the current projection device and the projection background.
  • the angle ⁇ X and the corresponding first correction parameter are obtained according to the updated relative angle ⁇ X , thereby correcting the projection area of the projection device on the projection background.
  • the relative angle between the current projection device and the projected background is updated.
  • relative angle ⁇ X and obtains a first correction parameter corresponding to the relative angle ⁇ X after the update, and thus the projection area of the projection in the projection apparatus background corrected.
  • the solution provided in the prior art is image-based, or it may be said that the solution provided in the prior art is substantially based on the image of the projection area.
  • the projection correction is performed without correcting from the most fundamental cause of the distortion.
  • the solution provided by the embodiment of the present invention fully considers the relative angle between the projection device and the projection background. Therefore, the problem is solved from the root cause of the distortion, thereby ensuring the accuracy of the projection correction.
  • the projection correction when the projection correction is applied by using the solution provided by the embodiment of the present invention, it is not necessary to correct the projection area according to the image processing result of the image of the projection background (for example, the vertical distortion in FIG. 1b or FIG. 1c can be corrected), according to The data processing result of the distance from the preset marker point to the projection background is corrected.
  • the amount of data of the distance is much smaller than the data amount of the image, thereby reducing the time taken for data processing in the projection correction process and improving the processing speed.
  • the power consumption of the sensor device when performing projection correction, is usually much lower than the power consumed by the camera operation, and has superior performance of low power consumption, and is more suitable for portable projection devices.
  • FIG. 4 is a schematic flowchart of another method for the projection correction according to the embodiment of the present invention.
  • the method is further applied to the projection device.
  • the method may further include:
  • Step S106 determining whether the projection environment in which the projection device is located changes according to the distances D M ', D N ' and the distance D M and the distance D N of the current time mark points M, N along the preset direction;
  • Step S107 If the determination is YES, in accordance with the distance D M 'and the distance D N' Update distance D M and the distance D N.
  • the solution provided by the embodiment can determine in time whether the projection environment in which the projection device is located changes (mainly the change of the relative position of the projection device and the projection background), especially for One Portable projection devices that are easy to change position relative to the projection background are very practical, and can accurately determine the correct calibration parameters according to the relative angle between the projection device and the projection background, so as to present a better visual effect for the user. .
  • FIG. 5 is a schematic flowchart of another method for the projection correction according to an embodiment of the present invention.
  • the method is further applied to the projection device.
  • the method may further include:
  • Step S108 Obtain a distance DPQ between the preset marker points P, Q on the projection device (see Fig. 3b).
  • the marking points P and Q are respectively two points on the end surface of the projection lens of the projection device, and the straight points of the marking points P and Q are parallel to the y-axis of the pre-established two-dimensional coordinate system.
  • Step S109 obtaining distances D P , D Q of the marker points P, Q respectively along the preset direction to the projection background (see FIG. 3b).
  • Step S110 According to the difference between the distance D PQ and the distance D P and the distance D Q , according to the triangle angle calculation rule, the relative angle ⁇ Y of the end surface of the projection lens and the plane of the projection background is determined (see FIG. 3 b ).
  • Step S111 According to the relative angle ⁇ Y , according to the correspondence between the preset relative angle and the correction parameter, the second correction parameter corresponding to the relative angle ⁇ Y is obtained.
  • Step S112 Correcting the projection area of the projection device on the projection background based on the second correction parameter.
  • steps S109 to S112 are similar to the steps S102 to S105 in the method embodiment shown in FIG. 3a, and details are not described herein again.
  • the vertical trapezoidal correction and the horizontal trapezoidal correction are two common correction methods for the projection area in which distortion occurs during the projection process.
  • the vertical correction of the projection area can be performed according to the relative angle ⁇ X , and according to the relative The angle ⁇ Y corrects the projection area horizontally. Since the relative angle ⁇ X and the relative angle ⁇ Y obtained by the method of the present embodiment fully take into account the tilt angle of the projection apparatus itself and the tilt angle of the projection background, therefore, only the projection is considered in comparison with the prior art. In terms of the correction method of the tilt angle of the device itself, it is apparent that with higher accuracy, the distortion correction effect of the projection area is better.
  • the projection area can be corrected according to the relative angle ⁇ X (for example, the image in FIG. 1b or FIG. 1c can be used).
  • the vertical distortion is corrected.
  • the projection area according to the relative angle ⁇ Y for example, the horizontal distortion in FIG. 1b or FIG. 1c can be corrected, thereby realizing correction of the projection area from multiple directions. Further guarantees the accuracy of the projection correction.
  • FIG. 6 is a schematic structural diagram of a projection correction apparatus according to an embodiment of the present disclosure, which is applied to a projection apparatus, and corresponds to the method embodiment shown in FIG. 3a, and the apparatus may include:
  • the first marker point distance obtaining module 201 is configured to obtain a distance D MN between the preset marker points M, N on the projection device.
  • the marking points M and N are respectively two points on the end surface of the projection lens of the projection device, and the marking points are not coincident
  • the line where M and N are located is parallel to the x-axis of the pre-established two-dimensional coordinate system.
  • the pre-established two-dimensional coordinate system is: a line having one edge of the smallest rectangle of the outer edge of the end surface of the projection lens including the projection device is the x-axis, and a line perpendicular to the side of the edge is the coordinate system of the y-axis.
  • the first projection distance obtaining module 202 is configured to obtain the distances D M , D N of the marker points M, N respectively along the preset direction to the projection background.
  • the preset direction is the normal direction of the end surface of the projection lens.
  • the first angle determining module 203 is configured to determine a relative angle ⁇ X between the end surface of the projection lens and the plane of the projection background according to the difference between the distance D MN and the distance D M and the distance D N according to the triangle angle calculation rule. .
  • the first correction parameter obtaining module 204 is configured to obtain a first correction parameter corresponding to the relative angle ⁇ X according to the corresponding relationship between the preset relative angle and the correction parameter according to the relative angle ⁇ X .
  • the first projection area correction module 205 is configured to correct the projection area of the projection device on the projection background based on the first correction parameter.
  • the first projection distance obtaining module 202 may include:
  • a first projection distance obtaining sub-module configured to obtain, according to the laser ranging sensor, a distance D M , D N of the preset marking points M, N on the projection device along the preset direction to the projection background respectively;
  • the second projection distance obtaining sub-module is configured to obtain the distances D M , D N of the preset marking points M, N on the projection device to the projection background respectively according to the preset direction based on the proximity light sensor.
  • the first angle determining module 203 can be used to:
  • the projection correction when the projection correction is applied by using the solution provided by the embodiment of the present invention, it is not necessary to correct the projection area according to the image processing result of the image of the projection background (for example, the vertical distortion in FIG. 1b or FIG. 1c can be corrected), according to The data processing result of the distance from the preset marker point to the projection background is corrected.
  • the amount of data of the distance is much smaller than the data amount of the image, thereby reducing the time taken for data processing in the projection correction process and improving the processing speed.
  • the power consumption of the sensor device when performing projection correction, is usually much lower than the power consumed by the camera operation, and has superior performance of low power consumption, and is more suitable for portable projection devices.
  • FIG. 7 is a schematic flowchart diagram of another projection correction method according to an embodiment of the present invention, which is applied to a projection device, corresponding to the method embodiment shown in FIG. 4, based on the device embodiment shown in FIG. Can include:
  • the projection environment determining module 206 is configured to determine a projection environment in which the projection device is located according to the distances D M ', D N ' and the distance D M and the distance D N of the current time mark points M, N along the preset direction to the projection background. Whether it has changed;
  • the projection distance update module 207 is configured to update the distance D M and the distance D N according to the distance D M ' and the distance D N ' when the determination result of the projection environment determination module is YES.
  • the solution provided by this embodiment can timely determine the location of the projection device. Whether the projection environment changes (mainly the change of the relative position of the projection device and the projection background), especially for portable projection devices such as handhelds that are relatively easy to change position with the projection background, and can be based on the projection device and the projection background in time. The relative angle between the two determines the correct calibration parameters to give the user a better visual effect.
  • FIG. 8 is a schematic flowchart of another projection correction method according to an embodiment of the present invention, which is applied to a projection apparatus, corresponding to the method embodiment shown in FIG. 5, based on the apparatus embodiment shown in FIG. Can include:
  • the second marker point distance obtaining module 208 is configured to obtain a distance D PQ between the preset marker points P and Q on the projection device; wherein the marker points P and Q are respectively non-coincident on the end surface of the projection lens of the projection device. Two points, and the line where the points P and Q are located is parallel to the y-axis of the pre-established two-dimensional coordinate system;
  • a second projection distance obtaining module 209 configured to obtain distances D P , D Q of the marking points P, Q respectively along the preset direction to the projection background;
  • the second angle determining module 210 is configured to determine a relative angle ⁇ Y between the end surface of the projection lens and the plane of the projection background according to the difference between the distance D PQ and the distance D P and the distance D Q according to the triangle angle calculation rule. ;
  • the second correction parameter obtaining module 211 is configured to obtain a second correction parameter corresponding to the relative angle ⁇ Y according to the corresponding relationship between the preset relative angle and the correction parameter according to the relative angle ⁇ Y ;
  • the second projection area correction module 212 is configured to correct the projection area of the projection device on the projection background based on the second correction parameter.
  • the projection correction when the projection correction is applied in this embodiment, in addition to correcting the projection area according to the relative angle ⁇ X, the projection area can be corrected according to the relative angle ⁇ Y . Therefore, the correction of the projection area from multiple directions is realized, and the accuracy of the projection correction is further ensured.
  • the description is relatively simple, and the relevant parts can be referred to the description of the method embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Projection Apparatus (AREA)

Abstract

本发明实施例提供的一种投影校正方法及装置,该方法包括:获得投影设备上预设的标记点M、N之间的距离DMN;获得M、N沿着预设方向到投影背景的距离DM、DN;根据DMN以及DM与DN之间的差值,确定投影镜头所在端面与投影背景所在平面的相对夹角αX;根据相对夹角αX,按照预设的相对夹角与校正参数之间的对应关系,获得相对夹角αX对应的第一校正参数;基于第一校正参数,对投影设备在投影背景上的投影区域进行校正。应用本发明实施例提供的方案进行投影校正时,无需根据投影背景的图像的图像处理结果进行校正,可根据预设标记点到投影背景的距离的数据处理结果进行校正,降低了投影校正过程中数据处理所花费的时间,提高了处理速度。

Description

一种投影校正方法及装置
本申请要求了申请日为2015年12月31日,申请号为201511032475.X,发明名称为“一种投影校正方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及投影技术领域,特别是涉及一种投影校正方法及装置。
背景技术
在用户的日常生活与工作中,投影技术得到了广泛的应用,例如,各种会议、培训、各种典礼等等,用户经常将各种类型的文件通过投影设备投放到投影背景上,以实现与他人的共享。一般的,投影设备与投影背景之间的相对夹角直接关系到投影区域的畸变程度。
现有技术中提供了这样一种投影校正方法:通过摄像头等图像采集设备采集投影背景的图像;然后,利用图像处理的方式获得投影区域的畸变程度;从而根据该畸变程度对投影进行校正。
上述方案虽然可以对投影区域进行校正,但是这种方式是基于图像的,需要采集图像并对采集图像进行处理,容易理解的,图像的数据量通常比较大,因此对其处理所花费的时间较长。
发明内容
本发明实施例的目的在于提供一种投影校正方法及装置,以降低投影校正过程中数据处理所花费的时间,提高处理速度。
为达到上述目的,本发明实施例公开了一种投影校正方法,应用于投影设备,所述方法包括:
获得所述投影设备上预设的标记点M、N之间的距离DMN;其中,所述标记点M、N分别为所述投影设备的投影镜头所在端面上不重合的两点,且所述标记点M、N所在直线与预先建立的二维坐标系的x轴平行;所述预先建立的二维坐标系为:以包含投影设备的投影镜头所在端面外边缘的最小矩形的一条边所在直线为x轴,以与该边垂直的边所在直线为y轴的坐标系;
获得所述标记点M、N分别沿着预设方向到投影背景的距离DM、DN;其中,所述预设方向为所述投影镜头所在端面的法线方向;
根据所述距离DMN以及所述距离DM与所述距离DN之间的差值,按照三角形角度计算规则,确定所述投影镜头所在端面与所述投影背景所在平面的相对夹角αX
根据所述相对夹角αX,按照预设的相对夹角与校正参数之间的对应关系,获得所述相对夹角αX对应的第一校正参数;
基于所述第一校正参数,对所述投影设备在所述投影背景上的投影区域进行校正。
较佳的,所述获得所述投影设备上预设标记点M、N分别沿着预设方向到投影背景的 距离DM、DN,包括:
基于激光测距传感器,获得所述投影设备上预设标记点M、N分别沿着预设方向到投影背景的距离DM、DN
或,
基于接近光传感器,获得所述投影设备上预设标记点M、N分别沿着预设方向到投影背景的距离DM、DN
较佳的,所述根据所述距离DMN以及所述距离DM与所述距离DN之间的差值,按照三角形角度计算规则,确定所述投影镜头所在端面与所述投影背景所在平面的相对夹角αX,包括:
根据如下公式:
Figure PCTCN2016111247-appb-000001
确定所述投影镜头所在端面与所述投影背景所在平面的相对夹角αX
较佳的,所述根据所述距离DMN以及所述距离DM与所述距离DN之间的差值,按照三角形角度计算规则,确定所述投影镜头所在端面与所述投影背景所在平面的相对夹角αX之前,还包括:
根据当前时刻所述标记点M、N沿着所述预设方向到所述投影背景的距离DM′、DN′以及所述距离DM、所述距离DN,判断所述投影设备所处的投影环境是否发生变化;
若为是,则按照所述距离DM′与所述距离DN′更新所述距离DM和所述距离DN
较佳的,所述基于所述第一校正参数,对所述投影设备在所述投影背景上的投影区域进行校正之后,还包括:
获得所述投影设备上预设的标记点P、Q之间的距离DPQ;其中,所述标记点P、Q分别为所述投影设备的投影镜头所在端面上不重合的两点,且所述标记点P、Q所在直线与所述预先建立的二维坐标系的y轴平行;
获得所述标记点P、Q分别沿着所述预设方向到投影背景的距离DP、DQ
根据所述距离DPQ以及所述距离DP与所述距离DQ之间的差值,按照三角形角度计算规则,确定所述投影镜头所在端面与所述投影背景所在平面的相对夹角αY
根据所述相对夹角αY,按照所述预设的相对夹角与校正参数之间的对应关系,获得所述相对夹角αY对应的第二校正参数;
基于所述第二校正参数,对所述投影设备在所述投影背景上的投影区域进行校正。
为达到上述目的,本发明实施例公开了一种投影校正装置,应用于投影设备,所述装置包括:
第一标记点距离获得模块,用于获得所述投影设备上预设的标记点M、N之间的距离DMN;其中,所述标记点M、N分别为所述投影设备的投影镜头所在端面上不重合的两点,且所述标记点M、N所在直线与预先建立的二维坐标系的x轴平行;所述预先建立的二维 坐标系为:以包含投影设备的投影镜头所在端面外边缘的最小矩形的一条边所在直线为x轴,以与该边垂直的边所在直线为y轴的坐标系;
第一投影距离获得模块,用于获得所述标记点M、N分别沿着预设方向到投影背景的距离DM、DN;其中,所述预设方向为所述投影镜头所在端面的法线方向;
第一夹角确定模块,用于根据所述距离DMN以及所述距离DM与所述距离DN之间的差值,按照三角形角度计算规则,确定所述投影镜头所在端面与所述投影背景所在平面的相对夹角αX
第一校正参数获得模块,用于根据所述相对夹角αX,按照预设的相对夹角与校正参数之间的对应关系,获得所述相对夹角αX对应的第一校正参数;
第一投影区域校正模块,用于基于所述第一校正参数,对所述投影设备在所述投影背景上的投影区域进行校正。
较佳的,所述第一投影距离获得模块,包括:
第一投影距离获得子模块,用于基于激光测距传感器,获得所述投影设备上预设标记点M、N分别沿着预设方向到投影背景的距离DM、DN
第二投影距离获得子模块,用于基于接近光传感器,获得所述投影设备上预设标记点M、N分别沿着预设方向到投影背景的距离DM、DN
较佳的,所述第一夹角确定模块,具体用于:
根据如下公式:
Figure PCTCN2016111247-appb-000002
确定所述投影镜头所在端面与所述投影背景所在平面的相对夹角αX
较佳的,所述装置还包括:
投影环境判断模块,用于根据当前时刻所述标记点M、N沿着所述预设方向到所述投影背景的距离DM′、DN′以及所述距离DM、所述距离DN,判断所述投影设备所处的投影环境是否发生变化;
投影距离更新模块,用于在所述投影环境判断模块的判断结果为是时,按照所述距离DM′与所述距离DN′更新所述距离DM和所述距离DN
较佳的,所述装置还包括:
第二标记点距离获得模块,用于获得所述投影设备上预设的标记点P、Q之间的距离DPQ;其中,所述标记点P、Q分别为所述投影设备的投影镜头所在端面上不重合的两点,且所述标记点P、Q所在直线与所述预先建立的二维坐标系的y轴平行;
第二投影距离获得模块,用于获得所述标记点P、Q分别沿着所述预设方向到投影背景的距离DP、DQ
第二夹角确定模块,用于根据所述距离DPQ以及所述距离DP与所述距离DQ之间的差值,按照三角形角度计算规则,确定所述投影镜头所在端面与所述投影背景所在平面的相对 夹角αY
第二校正参数获得模块,用于根据所述相对夹角αY,按照所述预设的相对夹角与校正参数之间的对应关系,获得所述相对夹角αY对应的第二校正参数;
第二投影区域校正模块,用于基于所述第二校正参数,对所述投影设备在所述投影背景上的投影区域进行校正。
由以上可见,在本发明实施例提供的技术方案中,投影设备首先获得投影设备上预设的标记点M、N之间的距离DMN;接着,获得标记点M、N分别沿着预设方向到投影背景的距离DM、DN;然后,根据距离DMN以及距离DM与距离DN之间的差值,按照三角形角度计算规则,确定投影镜头所在端面与投影背景所在平面的相对夹角αX;然后,根据相对夹角αX,按照预设的相对夹角与校正参数之间的对应关系,获得相对夹角αX对应的第一校正参数;最后,基于第一校正参数,对投影设备在投影背景上的投影区域进行校正。
应用本发明实施例提供的方案进行投影校正时,无需根据投影背景的图像的图像处理结果进行校正,可以根据预设标记点到投影背景的距离的数据处理结果进行校正,显然,距离的数据量要远小于图像的数据量,因此,降低了投影校正过程中数据处理所花费的时间,提高了处理速度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a为一种投影区域的正常投影效果示意图。
图1b为一种投影区域发生垂直畸变的投影效果示意图。
图1c为另一种投影区域发生垂直畸变的投影效果示意图。
图1d为一种投影区域发生水平畸变的投影效果示意图。
图1e为另一种投影区域发生水平畸变的投影效果示意图。
图2a为本发明实施例提供的一种预设标记点的选取示意图。
图2b为本发明实施例提供的另一种预设标记点的选取示意图。
图3a为本发明实施例提供的一种投影校正方法的流程示意图。
图3b为本发明实施例提供的一种投影设备与投影背景的投影示意图。
图3c为一种投影设备与投影平面的正视图的示意图。
图4为本发明实施例提供的另一种投影校正方法的流程示意图。
图5为本发明实施例提供的另一种投影校正方法的流程示意图。
图6为本发明实施例提供的一种投影校正装置的结构示意图。
图7为本发明实施例提供的另一种投影校正方法的流程示意图。
图8为本发明实施例提供的另一种投影校正方法的流程示意图。
具体实施方式
现如今,形形色色的投影设备(固定式的投影设备、便携式的投影设备等)在用户的生活与工作中得到了广泛使用的,例如,企业召开年度总结会议时可以通过投影设备将本年度的业绩展示给公司员工,举办典礼时可以将宣传片等视频剪辑通过投影设备投放到幕布上以分享给他人,等等。可见,投影设备与用户的生活与工作是息息相关的。
实际应用中,当开启投影设备进行投影后,用户往往会发现投射到投影背景上的投影区域已发生畸变,所呈现的投影区域并非规则的矩形区域(如图1a所示),例如,会呈现出梯形的投影区域等(如图1b、图1c、图1d和图1e所示),这种情况下,用户的视觉体验是非常不好的,因此,在投影过程中通常需要对投影区域进行校正。
现有技术中提供了这样一种投影校正方法:通过摄像头等图像采集设备采集投影背景的图像;然后,利用图像处理的方式获得投影背景的图像的畸变程度;从而根据该畸变程度对投影区域进行校正。
通过现有技术中提供的这种对投影区域的校正方案能够实现对投影区域所发生的畸变进行校正,但是,该方案中采集投影背景的图像时需要利用摄像头等图像采集设备,然而,这些设备的耗电量还是比较大的,由于一些便携式的投影设备是通过电池供电的,所以通常情况下上述投影设备无法为摄像头等图像采集设备提供足够的电源供应,因此现有技术中提供的上述投影校正方案难以满足实际需要;进一步的,由于现有技术中提供的方案还需要对所采集图像进行处理,一般的,对图像数据的处理通常要花费更长的时间,然而便携式的投影设备通常是需要随时移动的,较长的处理时间不太能够满足这种便携式的投影设备的灵活性的要求。
鉴于以上情况,本发明实施例提供了如下的投影校正方法与装置,该方案可以是基于传感器检测设备进行投影校正的,以降低投影校正过程中数据处理所花费的时间,提高处理速度。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了便于后续描述,在此先对本发明实施例中的预设标记点进行下说明。如图2a所示,为本发明实施例提供的一种预设标记点的选取示意图,这种标记点M、N的选取适用于对投影背景进行垂直梯形校正的情况;如图2b所示,为本发明实施例提供的另一种预设标记点的选取示意图,除了选取适用于对投影背景进行垂直梯形校正的标记点M、N外,还预设了适用于对投影背景进行水平梯形校正的标记点P、Q。另外,各个标记点的具体应用见后续各个具体实施例。
图3a为本发明实施例提供的一种投影校正方法的流程示意图,应用于投影设备,该方法可以包括:
步骤S101:获得投影设备上预设的标记点M、N之间的距离DMN
这里提及的“标记点M、N之间的距离DMN”是指:标记点M、N之间的直线距离。
参见图2a,标记点M、N分别为投影设备的投影镜头所在端面上不重合的两点,且标记点M、N所在直线与预先建立的二维坐标系的x轴平行。
其中,预先建立的二维坐标系为:以包含投影设备的投影镜头所在端面外边缘的最小矩形的一条边所在直线为x轴,以与该边垂直的边所在直线为y轴的坐标系。
以图3b所示的投影设备为例,对建立二维坐标系的方式进行下详细说明,假设该投影镜头所在端面的外边缘是规则的矩形,则以该矩形的一条边所在直线为x轴,图3b中取矩形中的短边所在直线为x轴;以与该边垂直的边所在直线为y轴,图3b中取矩形中的长边所在直线为y轴;其中,O为二维坐标系的原点。
需要说明的是,图3b所示的在投影设备的投影镜头所在端面中建立二维坐标系的方式仅仅是众多方式中的一种,当然还可以有其他的方式,例如,以矩形的对称轴来建立二维坐标系,等等,本发明不需要对建立二维坐标系的具体方式进行限定,任何可能的实现方式均可以应用于本发明。
通常,投影设备的生产厂商往往会考虑到产品的美观性,因此,投影设备的各个端面往往不是像图3b所示的端面那么规则,这时,在建立该端面的二维坐标系时,需要首选确定一个足够包含该端面的外边缘的最小矩形,然后再按照上述方式建立二维坐标系。这里提到的确定一个最小矩形也仅仅是建立二维坐标系时的一个辅助工具,当然,还可以借助于其他的辅助工具来建立二维坐标系,例如,还可以借助于能够包含该端面的外边缘的轮廓线的外切圆或外接圆等等。本发明不需要对此进行限定,任何可能的实现方式均可以应用于本发明,本领域内的技术人员需要根据实际应用中的具体情况进行合理的设置。
步骤S102:获得标记点M、N分别沿着预设方向到投影背景的距离DM、DN
其中,预设方向为投影镜头所在端面的法线方向。
参见图3b,为本发明实施例提供的一种投影设备与投影背景的投影示意图。在左侧的虚线矩形框中所示的是一种投影设备,在投影设备的投影镜头的端面上预先设置有标记点M、N;其中,MM′、NN′为标记点M、N沿着预设方向到投影背景的距离,且其距离值分别为DM、DN,并且MM′、NN′与标记点M、N所在端面的法线方向是平行的。
在本发明的一种实现方式中,可以基于激光测距传感器来获得距离DM、DN。众所周知,激光测距传感器在测距过程中可以向目标发射出一束很细的激光,然后由光电元件接收目标发射的激光束,其自带的计时器测定激光束从发射到接收的时间,即可计算出从观测点到目标的距离。本实现方式中,本领域内的技术人员可以在投影镜头所在端面的预设标记点处布置这样的激光测距传感器,从而可以很方便地获得距离DM、DN
在本发明的另一种实现方式中,还可以基于接近光传感器,获得投影设备上预设标记点M、N分别沿着预设方向到投影背景的距离DM、DN。众所周知,接近光传感器在测距过程时可以根据接收到的反馈的红外线的强度来判断物体的距离。
比较上述两种实现方式可以看出,上述两种测量距离的方式均为光测量方式,其中,激光测距传感器因其自身激光的高聚拢的特性,测距比较准确,实际应用中需要精确测量的场合会经常用到,因此,不会存在对投影距离远近的限制;然而,后者的红外光相比激光而言其光线的聚拢程度就稍差些,测量距离时不如激光测距传感器精确度高,因此,比较适用于远距离投影时,对投影距离的测量精度不是太高的场合。
需要说明的是,上述两种实现方式,仅仅是众多测距手段中的两种,本发明不需要对获得距离DM、DN的具体方式进行限定,任何可能的实现方式均可以应用于本发明,本领域内的技术人员需要根据实际应用中的具体情况进行合理的设置。
步骤S103:根据距离DMN以及距离DM与距离DN之间的差值,按照三角形角度计算规则,确定投影镜头所在端面与投影背景所在平面的相对夹角αX
在本发明的一种具体实现方式中,根据距离DMN以及距离DM与距离DN之间
的差值,按照三角形角度计算规则,确定投影镜头所在端面与投影背景所在平
面的相对夹角αX,可以包括:
根据如下公式:
Figure PCTCN2016111247-appb-000003
确定投影镜头所在端面与投影背景所在平面的相对夹角αX
举例而言,假设距离DM与距离DN之间的差值为20cm,且距离DMN也为20cm,则根据公式计算得到αX=45°,从而确定投影镜头所在端面与投影背景所在平面的相对夹角。
需要说明的是,上述提及的确定相对夹角αX的公式仅仅是三角函数计算公式中的一种,本发明不需要对此进行限定,任何可能的实现方式均可以应用于本发明,本领域内的技术人员需要根据实际应用中的具体情况进行合理的设置。
下面结合具体实例详细说明下,为何按照步骤S103中的公式计算得到的相对夹角就是投影镜头所在平面与投影背景所在平面的相对夹角αX
参见图3c,为一种投影设备与投影平面的正视图的示意图,假设,投影设备向上抬起时角度θ为正,投影平面顺时针旋转时角度β为正,举例而言,假设投影设备由水平放置位置向上抬起90°时角度θ为+90,当投影平面由竖直平面逆时针旋转30°时角度β为-30°(正如图3c中,从竖直的虚线位置旋转至投影背景所在位置所成的角度β就为负),容易看出,图3c中投影设备向上抬起一个角度θ,而投影背景与竖直面的夹角为-β,通过绘制辅助线,将标记点M、N所在平面与投影背景所在平面进行平移后,角度θ与角度β呈共顶点的关系,根据数学中“两直线相交对角相等”的规则,容易得到:投影设备与投影背景的 相对夹角为θ-(-β)=θ+β,即为图3d中的相对夹角αX,且
Figure PCTCN2016111247-appb-000004
步骤S104:根据相对夹角αX,按照预设的相对夹角与校正参数之间的对应关系,获得相对夹角αX对应的第一校正参数。
在本发明的一种实现方式中,本领域内的技术人员可以在投影设备的存储器中预先存储包含相对夹角与校正参数的对应关系的数据表,该数据表中至少需要包含各个角度或角度区间及其对应的校正参数(投影设备的配置信息,等等),在投影过程中,可根据计算得到的相对夹角αX的数值来查找表中对应的角度或角度区间,从而获得与该相对夹角αX对应的第一校正参数。
步骤S105:基于第一校正参数,对投影设备在投影背景上的投影区域进行校正。
在投影过程中,可以按照预设的时间间隔(例如,10分钟等等)来确定当前投影设备与投影背景的相对夹角αX,按照当前投影设备与投影背景的相对夹角更新该相对夹角αX,并根据更新后的相对夹角αX来获得对应的第一校正参数,进而对投影设备在投影背景上的投影区域进行校正。较佳的,可以当所确定的相对夹角αX与当前时刻之前的上一次确定的相对夹角的差值大于预设的角度改变阈值时,按照当前投影设备与投影背景的相对夹角更新该相对夹角αX,并根据更新后的相对夹角αX来获得对应的第一校正参数,进而对投影设备在投影背景上的投影区域进行校正。
需要说明的是,与现有技术中提到的方案比较而言,现有技术中提供的方案是基于图像的,也可以是说,现有技术中提供的方案实质上是根据投影区域的图像进行投影校正的,而并没有从产生该畸变的最根本的原因层面上进行校正。而本发明实施例提供的方案中充分考虑了投影设备与投影背景的相对夹角,因此,是从产生该畸变的根本原因层面上解决问题的,从而保证了对投影校正的准确性。
显然,应用本发明实施例提供的方案进行投影校正时,无需根据投影背景的图像的图像处理结果对投影区域进行校正(例如,可以对图1b或图1c中的垂直畸变进行校正),可以根据预设标记点到投影背景的距离的数据处理结果进行校正,显然,距离的数据量要远小于图像的数据量,因此,降低了投影校正过程中数据处理所花费的时间,提高了处理速度。另外,进行投影校正时,传感器设备所消耗的电量通常会远低于摄像头运行所消耗的电量,具有耗电低的优越性能,比较适用于便携式的投影设备。
图4为本发明实施例提供的另一种投影校正方法的流程示意图,应用于投影设备,在图3a所示方法实施例基础之上,该方法还可以包括:
步骤S106:根据当前时刻标记点M、N沿着预设方向到投影背景的距离DM′、DN′以及距离DM、距离DN,判断投影设备所处的投影环境是否发生变化;
步骤S107:在判断为是的情况下,按照距离DM′与距离DN′更新距离DM和距离DN
与图3a所示方法实施例比较而言,本实施例提供的方案能够及时判断出投影设备所处的投影环境是否发生变化(主要是投影设备与投影背景的相对位置的变化),尤其是对于一 些手持等容易与投影背景发生相对位置改变的便携式的投影设备非常实用,能够及时根据投影设备与投影背景之间的相对夹角,确定出准确的校正参数,以为用户呈现出较佳的视觉效果。
图5为本发明实施例提供的另一种投影校正方法的流程示意图,应用于投影设备,在图3a所示方法实施例基础之上,该方法还可以包括:
步骤S108:获得投影设备上预设的标记点P、Q之间的距离DPQ(参见图3b)。
参见图2b,标记点P、Q分别为投影设备的投影镜头所在端面上不重合的两点,且标记点P、Q所在直线与预先建立的二维坐标系的y轴平行。
步骤S109:获得标记点P、Q分别沿着预设方向到投影背景的距离DP、DQ(参见图3b)。
步骤S110:根据距离DPQ以及距离DP与距离DQ之间的差值,按照三角形角度计算规则,确定投影镜头所在端面与投影背景所在平面的相对夹角αY(参见图3b)。
需要说明的是,这里确定相对夹角αY的具体方式可以与步骤S103中确定相对夹角αX类似,此处不再赘述。
步骤S111:根据相对夹角αY,按照预设的相对夹角与校正参数之间的对应关系,获得相对夹角αY对应的第二校正参数。
步骤S112:基于第二校正参数,对投影设备在投影背景上的投影区域进行校正。
需要说明的是,步骤S109至步骤S112与图3a所示方法实施例中步骤S102至步骤S105类似,此处不再赘述。
众所周知,竖直梯形校正和水平梯形校正是在投影过程中针对发生畸变的投影区域的两种常用校正方式,本实施例可以根据相对夹角αX对投影区域进行竖直梯形校正,同时根据相对夹角αY对投影区域进行水平校正。由于,利用本实施例的方法获得的相对夹角αX和相对夹角αY充分考虑到了投影设备自身的倾斜角度和投影背景的倾斜角度,因此,相比与现有技术中仅考虑到投影设备自身的倾斜角度的校正方式而言,显然,具有更高的准确度,投影区域的畸变校正效果更佳。
可见,与图3a所示方法实施例比较而言,在应用本实施例进行投影校正时,除了可以根据相对夹角αX对投影区域进行校正外(例如,可以对图1b或图1c中的垂直畸变进行校正),还可以根据相对夹角αY对投影区域进行校正(例如,可以对图1b或图1c中的水平畸变进行校正),从而实现了从多个方向上对投影区域进行校正,进一步保证了对投影校正的准确程度。
图6为本发明实施例提供的一种投影校正装置的结构示意图,应用于投影设备,对应于图3a所示的方法实施例,该装置可以包括:
第一标记点距离获得模块201,用于获得投影设备上预设的标记点M、N之间的距离DMN
其中,标记点M、N分别为投影设备的投影镜头所在端面上不重合的两点,且标记点 M、N所在直线与预先建立的二维坐标系的x轴平行。
预先建立的二维坐标系为:以包含投影设备的投影镜头所在端面外边缘的最小矩形的一条边所在直线为x轴,以与该边垂直的边所在直线为y轴的坐标系。
第一投影距离获得模块202,用于获得标记点M、N分别沿着预设方向到投影背景的距离DM、DN
其中,预设方向为投影镜头所在端面的法线方向。
第一夹角确定模块203,用于根据距离DMN以及距离DM与距离DN之间的差值,按照三角形角度计算规则,确定投影镜头所在端面与投影背景所在平面的相对夹角αX
第一校正参数获得模块204,用于根据相对夹角αX,按照预设的相对夹角与校正参数之间的对应关系,获得相对夹角αX对应的第一校正参数。
第一投影区域校正模块205,用于基于第一校正参数,对投影设备在投影背景上的投影区域进行校正。
具体的,第一投影距离获得模块202,可以包括:
第一投影距离获得子模块,用于基于激光测距传感器,获得投影设备上预设标记点M、N分别沿着预设方向到投影背景的距离DM、DN
第二投影距离获得子模块,用于基于接近光传感器,获得投影设备上预设标记点M、N分别沿着预设方向到投影背景的距离DM、DN
具体的,第一夹角确定模块203,可以用于:
根据如下公式:
Figure PCTCN2016111247-appb-000005
确定投影镜头所在端面与投影背景所在平面的相对夹角αX
显然,应用本发明实施例提供的方案进行投影校正时,无需根据投影背景的图像的图像处理结果对投影区域进行校正(例如,可以对图1b或图1c中的垂直畸变进行校正),可以根据预设标记点到投影背景的距离的数据处理结果进行校正,显然,距离的数据量要远小于图像的数据量,因此,降低了投影校正过程中数据处理所花费的时间,提高了处理速度。另外,进行投影校正时,传感器设备所消耗的电量通常会远低于摄像头运行所消耗的电量,具有耗电低的优越性能,比较适用于便携式的投影设备。
图7为本发明实施例提供的另一种投影校正方法的流程示意图,应用于投影设备,对应于图4所示的方法实施例,在图6所示装置实施例基础之上,该装置还可以包括:
投影环境判断模块206,用于根据当前时刻标记点M、N沿着预设方向到投影背景的距离DM′、DN′以及距离DM、距离DN,判断投影设备所处的投影环境是否发生变化;
投影距离更新模块207,用于在投影环境判断模块的判断结果为是时,按照距离DM′与距离DN′更新距离DM和距离DN
与图6所示装置实施例比较而言,本实施例提供的方案能够及时判断出投影设备所处的 投影环境是否发生变化(主要是投影设备与投影背景的相对位置的变化),尤其是对于一些手持等容易与投影背景发生相对位置改变的便携式的投影设备非常实用,能够及时根据投影设备与投影背景之间的相对夹角,确定出准确的校正参数,以为用户呈现出较佳的视觉效果。
图8为本发明实施例提供的另一种投影校正方法的流程示意图,应用于投影设备,对应于图5所示的方法实施例,在图6所示装置实施例基础之上,该装置还可以包括:
第二标记点距离获得模块208,用于获得投影设备上预设的标记点P、Q之间的距离DPQ;其中,标记点P、Q分别为投影设备的投影镜头所在端面上不重合的两点,且标记点P、Q所在直线与预先建立的二维坐标系的y轴平行;
第二投影距离获得模块209,用于获得标记点P、Q分别沿着预设方向到投影背景的距离DP、DQ
第二夹角确定模块210,用于根据距离DPQ以及距离DP与距离DQ之间的差值,按照三角形角度计算规则,确定投影镜头所在端面与投影背景所在平面的相对夹角αY
第二校正参数获得模块211,用于根据相对夹角αY,按照预设的相对夹角与校正参数之间的对应关系,获得相对夹角αY对应的第二校正参数;
第二投影区域校正模块212,用于基于第二校正参数,对投影设备在投影背景上的投影区域进行校正。
与图6所示装置实施例比较而言,在应用本实施例进行投影校正时,除了可以根据相对夹角αX对投影区域进行校正外,还可以根据相对夹角αY对投影区域进行校正,从而实现了从多个方向上对投影区域进行校正,进一步保证了对投影校正的准确程度。
对于或装置实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本领域普通技术人员可以理解实现上述方法实施方式中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,所述的程序可以存储于计算机可读取存储介质中,这里所称得的存储介质,如:ROM/RAM、磁碟、光盘等。
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。

Claims (10)

  1. 一种投影校正方法,应用于投影设备,其特征在于,所述方法包括:
    获得所述投影设备上预设的标记点M、N之间的距离DMN;其中,所述标记点M、N分别为所述投影设备的投影镜头所在端面上不重合的两点,且所述标记点M、N所在直线与预先建立的二维坐标系的x轴平行;所述预先建立的二维坐标系为:以包含投影设备的投影镜头所在端面外边缘的最小矩形的一条边所在直线为x轴,以与该边垂直的边所在直线为y轴的坐标系;
    获得所述标记点M、N分别沿着预设方向到投影背景的距离DM、DN;其中,所述预设方向为所述投影镜头所在端面的法线方向;
    根据所述距离DMN以及所述距离DM与所述距离DN之间的差值,按照三角形角度计算规则,确定所述投影镜头所在端面与所述投影背景所在平面的相对夹角αX
    根据所述相对夹角αX,按照预设的相对夹角与校正参数之间的对应关系,获得所述相对夹角αX对应的第一校正参数;
    基于所述第一校正参数,对所述投影设备在所述投影背景上的投影区域进行校正。
  2. 根据权利要求1所述的方法,其特征在于,所述获得所述投影设备上预设标记点M、N分别沿着预设方向到投影背景的距离DM、DN,包括:
    基于激光测距传感器,获得所述投影设备上预设标记点M、N分别沿着预设方向到投影背景的距离DM、DN
    或,
    基于接近光传感器,获得所述投影设备上预设标记点M、N分别沿着预设方向到投影背景的距离DM、DN
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述距离DMN以及所述距离DM与所述距离DN之间的差值,按照三角形角度计算规则,确定所述投影镜头所在端面与所述投影背景所在平面的相对夹角αX,包括:
    根据如下公式:
    Figure PCTCN2016111247-appb-100001
    确定所述投影镜头所在端面与所述投影背景所在平面的相对夹角αX
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述根据所述距离DMN以及所述 距离DM与所述距离DN之间的差值,按照三角形角度计算规则,确定所述投影镜头所在端面与所述投影背景所在平面的相对夹角αX之前,还包括:
    根据当前时刻所述标记点M、N沿着所述预设方向到所述投影背景的距离DM′、DN′以及所述距离DM、所述距离DN,判断所述投影设备所处的投影环境是否发生变化;
    若为是,则按照所述距离DM′与所述距离DN′更新所述距离DM和所述距离DN
  5. 根据权利要求1所述的方法,其特征在于,所述基于所述第一校正参数,对所述投影设备在所述投影背景上的投影区域进行校正之后,还包括:
    获得所述投影设备上预设的标记点P、Q之间的距离DPQ;其中,所述标记点P、Q分别为所述投影设备的投影镜头所在端面上不重合的两点,且所述标记点P、Q所在直线与所述预先建立的二维坐标系的y轴平行;
    获得所述标记点P、Q分别沿着所述预设方向到投影背景的距离DP、DQ
    根据所述距离DPQ以及所述距离DP与所述距离DQ之间的差值,按照三角形角度计算规则,确定所述投影镜头所在端面与所述投影背景所在平面的相对夹角αY
    根据所述相对夹角αY,按照所述预设的相对夹角与校正参数之间的对应关系,获得所述相对夹角αY对应的第二校正参数;
    基于所述第二校正参数,对所述投影设备在所述投影背景上的投影区域进行校正。
  6. 一种投影校正装置,应用于投影设备,其特征在于,所述装置包括:
    第一标记点距离获得模块,用于获得所述投影设备上预设的标记点M、N之间的距离DMN;其中,所述标记点M、N分别为所述投影设备的投影镜头所在端面上不重合的两点,且所述标记点M、N所在直线与预先建立的二维坐标系的x轴平行;所述预先建立的二维坐标系为:以包含投影设备的投影镜头所在端面外边缘的最小矩形的一条边所在直线为x轴,以与该边垂直的边所在直线为y轴的坐标系;
    第一投影距离获得模块,用于获得所述标记点M、N分别沿着预设方向到投影背景的距离DM、DN;其中,所述预设方向为所述投影镜头所在端面的法线方向;
    第一夹角确定模块,用于根据所述距离DMN以及所述距离DM与所述距离DN之间的差值,按照三角形角度计算规则,确定所述投影镜头所在端面与所述投影背景所在平面的相对夹角αX
    第一校正参数获得模块,用于根据所述相对夹角αX,按照预设的相对夹角与校正参数之间的对应关系,获得所述相对夹角αX对应的第一校正参数;
    第一投影区域校正模块,用于基于所述第一校正参数,对所述投影设备在所述投影背景 上的投影区域进行校正。
  7. 根据权利要求6所述的装置,其特征在于,所述第一投影距离获得模块,包括:
    第一投影距离获得子模块,用于基于激光测距传感器,获得所述投影设备上预设标记点M、N分别沿着预设方向到投影背景的距离DM、DN
    第二投影距离获得子模块,用于基于接近光传感器,获得所述投影设备上预设标记点M、N分别沿着预设方向到投影背景的距离DM、DN
  8. 根据权利要求6所述的装置,其特征在于,所述第一夹角确定模块,具体用于:
    根据如下公式:
    Figure PCTCN2016111247-appb-100002
    确定所述投影镜头所在端面与所述投影背景所在平面的相对夹角αX
  9. 根据权利要求6-8任一项所述的装置,其特征在于,所述装置还包括:
    投影环境判断模块,用于根据当前时刻所述标记点M、N沿着所述预设方向到所述投影背景的距离DM′、DN′以及所述距离DM、所述距离DN,判断所述投影设备所处的投影环境是否发生变化;
    投影距离更新模块,用于在所述投影环境判断模块的判断结果为是时,按照所述距离DM′与所述距离DN′更新所述距离DM和所述距离DN
  10. 根据权利要求6所述的装置,其特征在于,所述装置还包括:
    第二标记点距离获得模块,用于获得所述投影设备上预设的标记点P、Q之间的距离DPQ;其中,所述标记点P、Q分别为所述投影设备的投影镜头所在端面上不重合的两点,且所述标记点P、Q所在直线与所述预先建立的二维坐标系的y轴平行;
    第二投影距离获得模块,用于获得所述标记点P、Q分别沿着所述预设方向到投影背景的距离DP、DQ
    第二夹角确定模块,用于根据所述距离DPQ以及所述距离DP与所述距离DQ之间的差值,按照三角形角度计算规则,确定所述投影镜头所在端面与所述投影背景所在平面的相对夹角αY
    第二校正参数获得模块,用于根据所述相对夹角αY,按照所述预设的相对夹角与校正参数之间的对应关系,获得所述相对夹角αY对应的第二校正参数;
    第二投影区域校正模块,用于基于所述第二校正参数,对所述投影设备在所述投影背景上的投影区域进行校正。
PCT/CN2016/111247 2015-12-31 2016-12-21 一种投影校正方法及装置 WO2017114251A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511032475.XA CN106612422B (zh) 2015-12-31 2015-12-31 一种投影校正方法及装置
CN201511032475.X 2015-12-31

Publications (1)

Publication Number Publication Date
WO2017114251A1 true WO2017114251A1 (zh) 2017-07-06

Family

ID=58614530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111247 WO2017114251A1 (zh) 2015-12-31 2016-12-21 一种投影校正方法及装置

Country Status (2)

Country Link
CN (1) CN106612422B (zh)
WO (1) WO2017114251A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113923428A (zh) * 2021-11-23 2022-01-11 中国航空工业集团公司洛阳电光设备研究所 一种平显投影装置投影精度快速校准终端及校准方法
CN114222102A (zh) * 2022-02-08 2022-03-22 峰米(重庆)创新科技有限公司 投影设备及其调整方法、控制装置、可读存储介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107197222B (zh) * 2017-05-25 2020-04-28 青岛海信电器股份有限公司 生成投影设备的校正信息的方法及装置
CN107749979B (zh) * 2017-09-20 2021-08-31 神画科技(深圳)有限公司 一种投影机左右梯形校正方法
CN107707898B (zh) * 2017-09-30 2019-06-21 歌尔科技有限公司 激光投影仪的图像失真校正方法和激光投影仪
CN109274947A (zh) * 2018-10-18 2019-01-25 安克创新科技股份有限公司 一种投影装置及其投影图像矫正方法和计算机存储介质
CN110389494A (zh) * 2019-07-23 2019-10-29 傲基科技股份有限公司 激光装置及其激光投影图案尺寸的测算方法
CN112399158B (zh) * 2019-08-19 2023-06-30 深圳光峰科技股份有限公司 投影图像校准方法、装置及投影设备
CN114615478B (zh) * 2022-02-28 2023-12-01 青岛信芯微电子科技股份有限公司 投影画面校正方法、系统、投影设备和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000122617A (ja) * 1998-10-12 2000-04-28 Toshiba Corp 台形歪み補正装置
CN1577054A (zh) * 2003-07-17 2005-02-09 三洋电机株式会社 投影型图像显示器
CN1748413A (zh) * 2003-08-08 2006-03-15 卡西欧计算机株式会社 投影仪及其投影图像校正方法
CN1768352A (zh) * 2003-08-25 2006-05-03 卡西欧计算机株式会社 投影设备和投影方法
JP2006135675A (ja) * 2004-11-05 2006-05-25 Sanyo Electric Co Ltd 投写型映像表示装置
CN103002239A (zh) * 2011-09-14 2013-03-27 株式会社理光 投影仪装置和操作检测方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4155890B2 (ja) * 2003-07-15 2008-09-24 カシオ計算機株式会社 プロジェクタ、プロジェクタの傾斜角度取得方法及び投影像補正方法
JP2005275120A (ja) * 2004-03-25 2005-10-06 Toshiba Corp スクリーン傾斜検出装置、スクリーン傾斜検出方法、及び投写型プロジェクタ装置
JP3960390B2 (ja) * 2004-05-31 2007-08-15 Necディスプレイソリューションズ株式会社 台形歪み補正装置を備えたプロジェクタ
CN102158673B (zh) * 2010-02-11 2014-11-26 财团法人工业技术研究院 投影校正系统及方法
CN103179363B (zh) * 2011-12-23 2017-05-03 技嘉科技股份有限公司 投影装置及其影像校准方法
CN102998885B (zh) * 2012-11-20 2015-09-02 芜湖市安曼特微显示科技有限公司 对投影仪投影图像失真校正的方法
CN103096007B (zh) * 2013-01-07 2015-10-21 苏州佳世达光电有限公司 互动式投影系统及其校正方法
JP6244638B2 (ja) * 2013-03-22 2017-12-13 カシオ計算機株式会社 投影装置、投影方法及び投影プログラム
CN104243879A (zh) * 2013-06-24 2014-12-24 中兴通讯股份有限公司 一种用于投影终端的图像修正方法及投影终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000122617A (ja) * 1998-10-12 2000-04-28 Toshiba Corp 台形歪み補正装置
CN1577054A (zh) * 2003-07-17 2005-02-09 三洋电机株式会社 投影型图像显示器
CN1748413A (zh) * 2003-08-08 2006-03-15 卡西欧计算机株式会社 投影仪及其投影图像校正方法
CN1768352A (zh) * 2003-08-25 2006-05-03 卡西欧计算机株式会社 投影设备和投影方法
JP2006135675A (ja) * 2004-11-05 2006-05-25 Sanyo Electric Co Ltd 投写型映像表示装置
CN103002239A (zh) * 2011-09-14 2013-03-27 株式会社理光 投影仪装置和操作检测方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113923428A (zh) * 2021-11-23 2022-01-11 中国航空工业集团公司洛阳电光设备研究所 一种平显投影装置投影精度快速校准终端及校准方法
CN113923428B (zh) * 2021-11-23 2024-01-30 中国航空工业集团公司洛阳电光设备研究所 一种平显投影装置投影精度快速校准终端及校准方法
CN114222102A (zh) * 2022-02-08 2022-03-22 峰米(重庆)创新科技有限公司 投影设备及其调整方法、控制装置、可读存储介质

Also Published As

Publication number Publication date
CN106612422A (zh) 2017-05-03
CN106612422B (zh) 2018-08-28

Similar Documents

Publication Publication Date Title
WO2017114251A1 (zh) 一种投影校正方法及装置
WO2019144666A1 (zh) 一种投影画面自动校正方法、装置和电子设备
US20140039674A1 (en) Projector Positioning
CN104200454B (zh) 鱼眼图像畸变校正方法及装置
US10831238B2 (en) Display method for flexible display screen and flexible display device
TWI739384B (zh) 顯示裝置的亮度動態調節方法及系統
CN109447908A (zh) 一种基于立体视觉的钢卷识别定位方法
CN106954054B (zh) 一种图像矫正方法、装置及投影仪
WO2018112898A1 (zh) 一种投影方法、装置及机器人
US10977767B2 (en) Propagation of spot healing edits from one image to multiple images
CN104679225A (zh) 移动终端的屏幕调节方法、屏幕调节装置及移动终端
CN105488779A (zh) 摄像机畸变修正标定板及标定方法
US10861173B2 (en) Hole-based 3D point data alignment
CN108377371A (zh) 一种投影图像校正的方法及装置
WO2023274090A1 (zh) 便携式电子设备的扫描方法及系统、电子设备及存储介质
CN108269236B (zh) 一种图像纠偏方法及装置
WO2018006566A1 (zh) 视图调整方法和系统
US9736468B2 (en) Calibration method of an image capture system
US20210090339A1 (en) Virtuality-reality overlapping method and system
US20200074615A1 (en) System and Method for Evaluating Displays of Electronic Devices
US11908101B2 (en) Writing surface boundary markers for computer vision
CN107886540B (zh) 制冷设备内物品识别定位方法和制冷设备
CN110197457B (zh) 图案码位置调整方法、装置及计算机可读存储介质
CN104933430A (zh) 一种用于移动终端的交互式图像处理方法及系统
CN111929694B (zh) 点云匹配方法、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16881040

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16881040

Country of ref document: EP

Kind code of ref document: A1