WO2019144666A1 - 一种投影画面自动校正方法、装置和电子设备 - Google Patents

一种投影画面自动校正方法、装置和电子设备 Download PDF

Info

Publication number
WO2019144666A1
WO2019144666A1 PCT/CN2018/112853 CN2018112853W WO2019144666A1 WO 2019144666 A1 WO2019144666 A1 WO 2019144666A1 CN 2018112853 W CN2018112853 W CN 2018112853W WO 2019144666 A1 WO2019144666 A1 WO 2019144666A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection
projector
plane
distance
angle
Prior art date
Application number
PCT/CN2018/112853
Other languages
English (en)
French (fr)
Inventor
朱剑
张向东
罗志平
严栋
于振宇
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2019144666A1 publication Critical patent/WO2019144666A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3185Geometric adjustment, e.g. keystone or convergence
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3191Testing thereof
    • H04N9/3194Testing thereof including sensor feedback

Definitions

  • the present invention relates to the field of projector technologies, and in particular, to a method, an apparatus, and an electronic device for automatically correcting a projection picture.
  • Intelligent projectors are projectors that have added wireless Wi-Fi Internet access and equipped with intelligent operating systems. Android The system is currently the most widely used intelligent operating system in this series of products. Smart projectors are widely used in business meetings and other occasions due to their small size, easy operation, multi-function, portable belt, and more flexible projection and distance settings.
  • the invention provides a method, a device and an electronic device for automatically correcting a projection picture, so as to solve the problem that the projected image of the projector is offset, which cannot meet the actual demand and the user experience is poor.
  • a method for automatically correcting a projection picture comprising:
  • the maximum projection angle of the projector in the vertical direction and the maximum projection angle of the projector in the horizontal direction are inherent parameters of the projector, and the vertical direction is a beam center line perpendicular to the projector.
  • the direction, the horizontal direction is the direction perpendicular to the vertical direction and the center line of the beam of the projector;
  • the rectangular correction of the projected image projected onto the projection plane is performed according to the relative positional relationship between the projection plane and the projector.
  • an automatic projection screen correction apparatus including:
  • An image acquisition module is configured to obtain a depth image obtained by the depth camera capturing the projection space on the projector, wherein the depth camera and the projector are on the same plane, and the field of view of the depth camera is larger than the projection range of the projector;
  • a position determining module configured to determine a relative position relationship between the projection plane and the projector according to the depth image, and a maximum projection angle of the projector in the vertical direction and a maximum projection angle in the horizontal direction;
  • the maximum projection angle of the projector in the vertical direction and the maximum projection angle of the projector in the horizontal direction are the inherent parameters of the projector
  • the vertical direction is the direction perpendicular to the center line of the beam of the projector
  • the horizontal direction is the vertical direction and the vertical direction respectively.
  • the correction module is configured to perform rectangular correction on the projection picture projected onto the projection plane according to the relative positional relationship between the projection plane and the projector.
  • an electronic device includes a memory and a processor.
  • the memory and the processor are communicably connected by an internal bus.
  • the memory stores program instructions executable by the processor, and the program instructions are processed by the processor.
  • the above-described automatic projection screen correction method can be realized at the time of execution.
  • the invention has the beneficial effects that the projection screen automatic correction method and device of the embodiment of the invention acquires the depth image captured by the depth camera on the projector, and according to the depth image and the maximum projection angle and the horizontal direction of the projector in the vertical direction.
  • the projection angle determines the relative positional relationship between the projection plane and the projector, and performs rectangular correction on the projection image projected onto the projection plane based on the relative positional relationship between the projection plane and the projector.
  • the projector can automatically process the projected picture according to the relative positional relationship between the projection plane and the projector to obtain a suitable rectangular corrected picture, which solves the problem of time consuming and laborious in the manual adjustment process, and ensures the projection effect and satisfies
  • the actual demand has improved the user experience and improved the competitiveness of the projector.
  • FIG. 1 is a flow chart of a method for automatically correcting a projection screen according to an embodiment of the present invention
  • FIG. 2 is a diagram showing an example of projection of a projector according to an embodiment of the present invention.
  • Figure 3 is a flow chart of correcting a projected picture of an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of positioning points on a projection screen according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing a relative position relationship between a projection screen and a plane of a depth camera according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram showing the calculation of a first vertical offset angle according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing the calculation of a second vertical offset angle according to an embodiment of the present invention.
  • Figure 8 is a block diagram of an automatic projection screen correction apparatus according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an electronic device according to an embodiment of the present invention.
  • the design concept of the present invention is that the projection screen existing in the current projector (including the smart pico projector) has an offset, and the problem that the normal image affects the user experience cannot be obtained, and a projection screen automatic correction scheme is proposed.
  • the most common mode of an intelligent projector is vertical projection, that is, the beam emitted by the projector is projected perpendicularly onto a plane to form an image.
  • the technique of vertical projection is the simplest, and the image does not need to be processed. As long as the focal length of the beam is adjusted, it can be projected to form a desired image.
  • vertical projection has a feature that requires a wall or a curtain perpendicular to the ground to be used with a projector. This limits the development of the projector to a certain extent, can not meet the needs of the use of certain scenes, oblique projection came into being.
  • the oblique projection means that the angle between the projected beam and the projection plane is no longer perpendicular, and the projected beam is inclined to the projection plane.
  • the projector projects the image on the desktop and forms an image on the desktop without the need for a wall or curtain to match the projector, reducing the need for a projection environment.
  • Tilt projection requires a keystone correction technique during use to correct a skewed image to a normal rectangular image using a keystone correction (or rectangular correction) algorithm to achieve the desired projection.
  • an automatic correction scheme for a projection screen according to an embodiment of the present invention is proposed.
  • the automatic correction scheme of the projection screen the manual manual operation is abandoned, and the function of rectangular correction and adjustment of the projection screen is automatically realized by the projector, thereby improving the user experience. Improve the competitiveness of the projector.
  • FIG. 1 is a flowchart of a method for automatically correcting a projection picture according to an embodiment of the present invention.
  • the method for automatically correcting a projection picture of the embodiment includes the following steps:
  • Step S101 Acquire a depth image obtained by the depth camera capturing the projection space on the projector.
  • the depth camera and the projector are on the same plane, and the field of view of the depth camera is larger than the projection range of the projector;
  • Step S102 determining a relative positional relationship between the projection plane and the projector according to the depth image, and the maximum projection angle of the projector in the vertical direction and the maximum projection angle in the horizontal direction.
  • the maximum projection angle of the projector in the vertical direction and the maximum projection angle of the projector in the horizontal direction are inherent parameters of the projector
  • the vertical direction is the direction perpendicular to the center line of the beam of the projector
  • the horizontal direction is the vertical direction and the vertical direction respectively.
  • Step S103 performing rectangular correction on the projection picture projected onto the projection plane according to the relative positional relationship between the projection plane and the projector.
  • the projection screen automatic correction method shown in FIG. 1 obtains the distance relationship between the specified point and the plane of the projector by acquiring the depth image, and then uses the inherent parameters of the projector (ie, the maximum projection angle and horizontal direction of the projector in the vertical direction).
  • the maximum projection angle determines the relative positional relationship between the projection plane and the projector.
  • the relative positional relationship between the projection plane and the projector is the premise and basis of the rectangular correction of the projection image. After the relative positional relationship between the projection plane and the projector is obtained, The rectangular correction of the picture can be automatically completed, thereby solving the problem of manual manual adjustment and time consuming, improving the user experience and facilitating the wide application of the projector.
  • the depth camera and the projector are on the same plane, that is, the depth camera and the projector are in the same plane in spatial position relationship, and the plane where the depth camera and the projector are co-located and the projection direction of the projector are vertical.
  • the depth camera and the projector also satisfy the condition that the field of view of the depth camera is larger than the projection range of the projector, which requires that the projection direction of the projector coincides with the shooting direction of the depth camera.
  • FIG. 2 is a view showing a projection of a projector according to an embodiment of the present invention.
  • the plane on which the projector is located (above, the plane indicated by the dotted line formed by the X direction and the Y direction in FIG. 2)
  • the projector and the depth camera are both in this plane, generally the plane passing through the center of the beam of the projector and perpendicular to the projection direction of the projector) and not parallel to the plane being projected (the plane shown by the solid line below).
  • Figure 2 shows the projector placed on the ceiling of the room, the beam emitted by the projector is shot down to a plane as an example to construct a three-dimensional space coordinate system.
  • the position of the projector is the origin, and the origin coordinate value is (0, 0, 0).
  • the direction of the center line of the beam is the Z direction, and the vertical direction is perpendicular to the direction of the center line of the beam of the projector, as shown in the Y direction shown in FIG. 2, and the horizontal direction is the direction perpendicular to the vertical direction and the center line of the beam of the projector, respectively. See the X direction shown in Figure 2.
  • Figure 2 also shows the center point of the projection screen, that is, the intersection of the beam center line of the projector and the projection plane, and the coordinate value of the center point of the projection screen is (0, 0, L0).
  • L0 refers to the first distance from the center point of the projection screen to the plane where the projector is located.
  • the one-time projection picture correction process will be specifically described below with reference to FIGS. 3 to 7.
  • the positional relationship between the depth camera and the projector satisfies certain conditions, that is, the depth camera and the projector are on the same plane and the depth camera and the projector The distance between them is less than a preset threshold (such as 3 cm). That is to say, the depth camera is placed next to the projection module (as shown in Figure 2), ensuring that the distance between the two is close enough, so that for a distant projection plane, the spatial position of the two can be Think it is coincident.
  • the field of view of the depth camera is larger than the projection range of the projector, that is, the field of view of the depth camera is larger than the projection angle of the projector module of the projector, ensuring that the depth camera capture range is larger than the projection range, thereby ensuring the actual In the application, the depth camera can capture all the points on the projected picture and improve the accuracy of the picture correction.
  • FIG. 5 is a schematic diagram showing the relative position relationship between the projection screen and the plane of the depth camera according to an embodiment of the present invention.
  • the projection direction is a direction perpendicular to the gravity direction of the earth in FIG. 5 (refer to the Y direction in FIG. 2).
  • the spatial positions of the two are considered to be coincident for the distant projection plane, so FIG. 5
  • the depth camera and the plane of the depth camera (the dotted line on the right side in FIG. 5) are illustrated, and the projection module is not illustrated.
  • the relative positional relationship between the projection screen and the depth camera in FIG. 5 is also mainly described.
  • the depth camera and the projector may also have a horizontal distance or a vertical distance in the position, for example, a vertical distance (ie, perpendicular to the ground direction), for example, the depth camera is installed directly above the projector.
  • a vertical distance ie, perpendicular to the ground direction
  • the depth camera is installed directly above the projector.
  • the relative positional relationship between the projection plane and the projector can still be determined according to the calculation process described below, with the difference being the reference origin in both cases.
  • the reference origin can be selected as the depth camera center point, and the depth camera and the projector have a vertical distance in the position, the reference origin is determined by the depth.
  • the center of the camera is changed to the center of the projection module, and the correction angle is introduced. Due to the existence of the correction angle, the coordinate value of the positioning point to be captured will change accordingly. After the coordinate value of the positioning point is changed, the calculation formula of the offset angle is constant, so that after obtaining the distance between the plane of the projection module and the projection plane and the offset angle, the rectangular correction of the projected picture can still be completed. Therefore, in the following embodiments, only the case where the depth position of the depth camera and the projector are close to each other can be considered to be coincident. The calculation process under the other case (ie, the vertical camera and the projector have a vertical distance in position) can be referred to the following description.
  • the process of correcting the projected picture in this embodiment is: first, according to the depth image, determining a first distance from a center point of the projected picture to a plane where the projector is located, and at least one positioning point in the first direction of the projected picture to the projector The distance between the plane and the distance from the at least one positioning point in the second direction of the projection picture to the plane of the projector, wherein the center point of the projection picture is the intersection of the center line of the projector and the projection plane, and the first direction of the projection picture is the projector
  • the direction in which the projection ray in the vertical direction is projected onto the projection plane is in the direction of the line connecting the projection point of the projector, and the projection direction of the projection ray in the horizontal direction is projected onto the projection plane.
  • the distance between the at least one positioning point in the first direction of the projection image to the plane of the projector and the maximum projection angle of the projector in the vertical direction, and the vertical deviation of the projection plane from the plane of the projector in the vertical direction is calculated.
  • the projection picture projected onto the projection plane is rectangular corrected.
  • each positioning point in the same direction of the projection screen can be Indicates the angular offset of the projection plane relative to the projector in the corresponding direction and the distortion of the projected image, so only one positioning point is taken in one direction of the projection image to participate in the calculation. Based on this, the process of correcting the projected picture can be simplified as:
  • the first distance, the second distance, and the maximum projection angle of the projector in the vertical direction calculate a first vertical offset angle of the projection plane corresponding to the position of the first positioning point and the plane of the projector in a vertical direction; And calculating, according to the first distance, the third distance, and the maximum projection angle of the projector in the horizontal direction, the first horizontal offset angle of the projection plane corresponding to the position of the second positioning point and the plane of the projector in the horizontal direction.
  • the projection picture automatic correction method in this embodiment preferably includes the steps of:
  • First determining, according to the depth image, a second distance and a fourth distance from the first positioning point and the third positioning point in the first direction of the projection image to the plane of the projector, and determining the second positioning in the second direction of the projection image
  • the third and fifth positioning points respectively reach a third distance and a fifth distance of the plane of the projector.
  • the first distance, the second distance, and the maximum projection angle of the projector in the vertical direction calculate a first vertical offset angle of the projection plane corresponding to the first positioning point position and the plane of the projector in the vertical direction;
  • the first distance, the fourth distance, and the maximum projection angle of the projector in the vertical direction calculate an angle between the projection plane corresponding to the position of the third positioning point and the second vertical offset of the plane of the projector.
  • the first distance, the third distance, and the maximum projection angle of the projector in the horizontal direction calculating a first horizontal offset angle between the projection plane corresponding to the position of the second positioning point and the plane of the projector in the horizontal direction;
  • the first distance, the fifth distance, and the maximum projection angle of the projector in the horizontal direction calculate an angle between the projection plane corresponding to the position of the fourth positioning point and the second horizontal offset of the plane of the projector in the horizontal direction.
  • rectangular correction is performed on the projection image projected onto the projection plane according to the first distance, the first vertical offset angle, the first horizontal offset angle, the second vertical offset angle and the second horizontal offset angle .
  • step S301 is performed to capture a depth image indicating the distance.
  • the depth image is captured by the depth camera, and the depth value of the depth image represents the distance between some target positioning points on the projection plane and the plane of the camera.
  • the front area of the projector is scanned by any one of a binocular camera, a multi-view camera, a structured optical camera, and a time-of-flight TOF camera on the projector to find a target projection screen (projection plane) and the projector.
  • the distance and angle relationship that is to say, there are various technologies implemented by the depth camera, for example, a binocular camera, a structured optical camera, and a time of flight (TOF) camera. This embodiment does not limit this.
  • step S302 the distance size is obtained.
  • the first distance from the center point of the projection screen to the plane of the projector is determined, and the second distance from the first positioning point and the third positioning point in the first direction of the projection image to the plane of the projector respectively And a fourth distance, and determining a third distance and a fifth distance from the second positioning point and the fourth positioning point in the second direction of the projection image to the plane where the projector is located.
  • the center point of the projection picture is the intersection of the center line of the projector and the projection plane, that is, the zero point shown in FIG.
  • the first direction of the projection image is the direction in which the projection point of the projection light projected by the projector in the vertical direction is projected onto the projection plane, that is, the direction in which the first positioning point and the third positioning point are connected.
  • the second direction of the projection screen is the direction in which the projection point of the projection light projected by the projector in the horizontal direction is projected onto the projection plane, that is, the direction in which the second positioning point and the fourth positioning point are connected.
  • FIG. 4 illustrates two positioning points in the first direction of the projection picture, that is, the first positioning point and the third positioning point. Projecting two positioning points in the second direction of the picture, that is, the second positioning point and the fourth positioning point.
  • the number of positioning points can be determined according to actual needs. For example, only one positioning point in the first direction and the second direction may be taken.
  • an positioning point that is symmetric with respect to the center of the zero point in FIG. 4 is generally selected, or the vertex of the graphic to which the projection picture belongs is selected as the positioning. point.
  • the first distance to the plane where the projector is located is L0, then the coordinate value is (0, 0, L0), and the second distance from the first positioning point to the plane of the projector is L1, the coordinate value is (0, tan ⁇ 2 * L1, L1), the third distance from the second positioning point to the plane of the projector is L2, and the coordinate value is (-tan ⁇ 1 * L2, 0, L2), the third positioning
  • the fourth distance from the point where the projector is located is L3, the coordinate value is (0, -tan ⁇ 2*L3, L3), and the fifth distance from the fourth positioning point to the plane of the projector is L4, and the coordinate value is (tan ⁇ 1).
  • ⁇ 1 represents the maximum projection angle of the projector in the horizontal direction
  • ⁇ 2 represents the maximum projection angle of the projector in the vertical direction.
  • the horizontal direction can be further divided into a horizontal positive direction and a horizontal negative direction, and the corresponding maximum projection angles are ⁇ 1 and - ⁇ 1, respectively, where the negative sign indicates the direction. The same is true in the vertical direction.
  • the projection angle of the projector is represented by 0 degrees of the center line of the beam, and greater than 0 degrees corresponds to the projection angle of the positive direction; less than 0 degrees, corresponding to the negative direction The projection angle.
  • the maximum projection angle of the projector in the vertical direction and the maximum projection angle of the projector in the horizontal direction are inherent parameters of the projector, and the vertical direction is the direction perpendicular to the center line of the beam of the projector, and the horizontal direction is respectively A direction perpendicular to the vertical direction and the centerline of the beam of the projector.
  • the field of view angle is greater than the projection angle of the projection component to ensure that the depth camera capture range is greater than the projection range.
  • the imaging angle of the depth camera of the embodiment is greater than or equal to ⁇ 1 in the horizontal direction, and is vertical.
  • the direction is greater than or equal to ⁇ 2. In the subsequent calculations, ⁇ 1 and ⁇ 2 are used for explanation.
  • the first distance from the center point of the projection screen to the plane where the projector is located is determined.
  • a second distance L1 of the plane a third distance L2 from the second positioning point in the second direction of the projection picture to the plane of the projector, a fourth distance L3 from the third positioning point in the first direction of the projection picture to the plane of the projector, and
  • a fifth distance L4 from the fourth positioning point in the second direction of the projection picture to the plane of the projector.
  • step S303 an offset angle is calculated.
  • the corresponding calculation of the offset angle is performed by using the inherent parameters of the projector.
  • the second distance L1 calculates a vertical offset angle between the projection plane and the plane of the projector in the vertical direction
  • the third The distance L2 and the maximum projection angle ⁇ 1 of the projector in the horizontal direction are calculated as the horizontal offset angle between the projection plane and the plane of the projector in the horizontal direction.
  • the calculation of the vertical offset angle corresponding to the two positioning points (ie, the first positioning point and the third positioning point) in the first direction of the projection image is schematically illustrated.
  • the calculation process of the horizontal offset angle corresponding to the two positioning points (ie, the second positioning point and the fourth positioning point) in the second direction of the projection image is the same, so it can also be referred to the calculation description of the vertical offset angle described below. ,No longer.
  • FIG. 6 illustrates the calculation principle of the first vertical offset angle.
  • the zero point on the projection screen the first positioning point, and the vertical line from the zero point as the starting point to the line segment of the distance L1.
  • the resulting intersections, these three points constitute a right-angled triangle
  • the first vertical offset angle ⁇ 1 is the inner angle of the right-angled triangle, so using the geometric relationship, the first vertical offset angle ⁇ 1 can be calculated according to the following formula value:
  • L0 is the first distance from the center point of the projection screen to the plane where the projector is located
  • L1 is the second distance from the first positioning point to the plane of the projector
  • L1 is greater than L0
  • ⁇ 2 is the vertical direction of the projector (specifically, vertical The maximum projection angle of the direction, ie + ⁇ 2).
  • Figure 7 is a schematic diagram showing the calculation principle of the second vertical offset angle.
  • the projection plane corresponding to the position of the third positioning point and the projector are calculated according to the first distance, the fourth distance, and the maximum projection angle of the projector in the vertical direction.
  • the second vertical offset angle of the plane in the vertical direction is calculated according to the first distance, the fourth distance, and the maximum projection angle of the projector in the vertical direction.
  • L0 is the first distance from the center of the projection screen to the plane of the projector
  • L3 is the fourth distance from the third positioning point to the plane of the projector
  • L0 is greater than L3
  • - ⁇ 2 is the vertical direction of the projector (specifically vertical) The maximum projection angle of the negative direction, ie, - ⁇ 2).
  • the first vertical offset angle ⁇ 1 corresponding to the plane of the projector at the position of the first anchor point and the plane of the projector is calculated, and the plane of the projection corresponding to the position of the third anchor point and the plane of the projector
  • the second vertical offset in the vertical direction is at an angle ⁇ 3.
  • the plane projected by the projector is not a very ideal plane (for example, the projection plane has fine unevenness), and there are measurement errors and noises, even in the same direction.
  • the projection plane in the actual projection is not an ideal flat state or a curved surface but a curved surface, only one positioning point in the same direction for rectangular correction may have a low precision and a poor correction effect.
  • the corresponding projection points on the projection screen can be respectively corrected according to the offset angle, thereby improving the pertinence and accuracy of the rectangular correction, and ensuring an ideal projection. effect.
  • the value of the first vertical offset angle ⁇ 1 calculated according to the above process and the value of the second vertical offset angle ⁇ 3 are greatly different.
  • the pixel corresponding to the negative projection angle (ie, - ⁇ 2) to the range of 0 degrees on the projection screen can be corrected according to the value of the second vertical offset angle ⁇ 3.
  • the pixel points corresponding to the range of 0 degrees to the orthographic projection angle (ie, ⁇ 2) are corrected according to the first vertical offset angle ⁇ 1, thus improving the projection distortion effect and satisfying the user's needs.
  • the projection plane corresponding to the position of the second positioning point is calculated according to the first distance, the third distance, and the maximum projection angle of the projector in the horizontal direction.
  • the angle ⁇ 2 is offset from the first horizontal offset of the plane in which the projector is located.
  • the projection plane corresponding to the position of the fourth positioning point and the plane of the projector are calculated.
  • the second horizontal offset in the horizontal direction is at an angle ⁇ 4.
  • Step S304 determining a relative positional relationship between the projection plane and a plane where the projector is located
  • the relative positional relationship between the projection plane and the plane of the projector is determined according to the offset angle calculated in the previous step, that is, the relative positional relationship is obtained by using the offset angle of the projection plane relative to the plane of the projector.
  • the calculated second vertical offset angle ⁇ 3 is not equal to 0 degrees, for example, equal to 15 degrees, it indicates that the plane of the projection plane and the depth camera (or projector) are inclined in the vertical direction, and are not parallel. At this time, L3 is smaller than L0. It is necessary to correct the deformed or deformed projection picture generated when the projector is projected.
  • the relative positional relationship between the projection plane and the plane of the depth camera (or projector) in the horizontal direction can be determined according to the horizontal offset angle.
  • step S305 the projection screen is adjusted.
  • the projection image projected onto the projection plane is rectangularly corrected, specifically according to the first distance, the vertical offset angle and the horizontal offset angle, and the projection to the projection plane.
  • the projected image on the screen is rectangular corrected.
  • the values of the first vertical offset angle ⁇ 1, the second vertical offset angle ⁇ 3, the first horizontal offset angle ⁇ 2, and the second horizontal offset angle ⁇ 4 are determined by a rectangular correction algorithm.
  • the spatial geometric relationship between the projection plane and the plane of the depth camera, and then the image to be projected is processed by digital technology, thereby completing the autonomous correction of the trapezoidal deformation image of the projector, and the rectangular correction algorithm belongs to the prior art, and there is no more here. description of.
  • the automatic projection screen correction method of the present embodiment does not require the user to manually correct the projection screen, and the system can be automatically completed, which improves the user experience and facilitates the large-scale popularization and application of the projector.
  • FIG. 8 is a block diagram of an automatic projection screen correction apparatus according to an embodiment of the present invention.
  • the projection screen automatic correction apparatus 800 of the present embodiment includes:
  • the image acquisition module 801 is configured to obtain a depth image obtained by the depth camera capturing the projection space on the projector, wherein the depth camera and the projector are located on the same plane, and the field of view of the depth camera is larger than the projection range of the projector;
  • a position determining module 802 configured to determine a relative position relationship between the projection plane and the projector according to the depth image, and a maximum projection angle of the projector in the vertical direction and a maximum projection angle in the horizontal direction;
  • the maximum projection angle of the projector in the vertical direction and the maximum projection angle of the projector in the horizontal direction are the inherent parameters of the projector
  • the vertical direction is the direction perpendicular to the center line of the beam of the projector
  • the horizontal direction is the vertical direction and the vertical direction respectively.
  • the correction module 803 is configured to perform rectangular correction on the projection image projected onto the projection plane according to the relative positional relationship between the projection plane and the projector.
  • the location determining module 802 is configured to determine, according to the depth image, a first distance from a center point of the projection picture to a plane where the projector is located, and a distance from the at least one positioning point in the first direction of the projection image to a plane where the projector is located.
  • the distance between the at least one positioning point in the first direction of the projection image to the plane of the projector and the maximum projection angle of the projector in the vertical direction, and the vertical deviation angle between the projection plane and the plane of the projector in the vertical direction is calculated.
  • the distance from the at least one positioning point in the second direction of the projection image to the plane of the projector and the maximum projection angle of the projector in the horizontal direction, and the horizontal offset clip of the projection plane and the plane of the projector in the horizontal direction is calculated. angle;
  • the correction module 803 is specifically configured to perform rectangular correction on the projection image projected onto the projection plane according to the first distance, the vertical offset angle, and the horizontal offset angle.
  • the location determining module 802 is specifically configured to determine, according to the depth image, a first distance from a center point of the projection picture to a plane where the projector is located, and a first positioning point in a first direction of the projection image to a plane where the projector is located.
  • the correction module 803 is specifically configured to perform rectangular correction on the projection picture projected onto the projection plane according to the first distance, the first vertical offset angle, and the first horizontal offset angle.
  • the position determining module 802 is further configured to: determine, according to the depth image, a fourth distance from the third positioning point in the first direction of the projection image to the plane where the projector is located, and a fourth position in the second direction of the projection image.
  • the correction module 803 is specifically configured to project the projection onto the projection plane according to the first distance, the first vertical offset angle, the first horizontal offset angle, the second vertical offset angle, and the second horizontal offset angle
  • the projected picture is rectangular corrected.
  • the depth camera is any of a binocular camera, a multi-view camera, a structured light camera, a time-of-flight TOF camera.
  • the image acquisition module 801 is specifically configured to acquire a depth image obtained by capturing a projection space by any one of a binocular camera, a multi-view camera, a structured optical camera, and a time-of-flight TOF camera on the projector; the depth camera and the projector are located on the same plane and The distance between the depth camera and the projector is less than a preset threshold.
  • the working process of the automatic projection correction device of the embodiment corresponds to the implementation steps of the automatic projection correction method, and therefore, the working process of the automatic projection correction device of the embodiment is further improved.
  • the working process of the automatic projection correction device of the embodiment is further improved.
  • FIG. 9 is a schematic structural diagram of an electronic device according to an embodiment of the present invention.
  • the electronic device includes a memory 91 and a processor 92.
  • the memory 91 and the processor 92 are communicably connected by an internal bus 93.
  • the memory 91 stores program instructions that can be executed by the processor 92, and the program instructions are processed.
  • the device 92 is executed, the above-described automatic projection screen correction method can be realized.
  • the logic instructions in the memory 91 described above may be implemented in the form of a software functional unit and sold or used as a stand-alone product, and may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .
  • Another embodiment of the present invention provides a computer readable storage medium storing computer instructions that cause the computer to perform the methods described above.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Projection Apparatus (AREA)

Abstract

本发明公开了一种投影画面自动校正方法、装置和电子设备,包括:获取投影仪上深度摄像头捕捉投影空间得到的深度图像,根据深度图像,以及投影仪在垂直方向的最大投影角度和水平方向的最大投影角度,确定投影平面与投影仪的相对位置关系;根据投影平面与投影仪的相对位置关系,对投影至投影平面上的投影画面进行矩形校正。本发明实施例投影画面自动校正方法和装置自动对投影的画面进行处理得到合适的矩形校正后的画面,解决了手工调整投影画面导致的费时、费力问题,满足了实际需求,改善了用户体验,提高了投影仪的竞争力。

Description

一种投影画面自动校正方法、装置和电子设备 技术领域
本发明涉及投影仪技术领域,具体涉及一种投影画面自动校正方法、装置和电子设备。
发明背景
随着技术的进步,投影仪领域也取得了突飞猛进的发展,市场上开始出现了智能投影仪,智能投影仪是指新增了无线Wi-Fi上网功能并搭载了智能操作系统的投影仪,Android系统是目前运用到这一系列产品中较为广泛的智能操作系统。智能投影仪具有体积小、易操作、多功能、便携带、投影方式和距离设置更加灵活等特点,因而被广泛应用于商务会议展示等场合。
但是,现有的投影仪在投影时,比如倾斜投影的情况下,由于倾斜投影的入射角度不垂直,投影得到的图像存在偏移,不能满足实际需求,用户体验差。这一技术问题亟待解决。
发明内容
本发明提供了一种投影画面自动校正方法、装置和电子设备,以解决投影仪投影图像存在偏移,不能满足实际需求,用户体验差的问题。
根据本发明的一个方面,提供了一种投影画面自动校正方法,包括:
获取投影仪上深度摄像头捕捉投影空间得到的深度图像,其中深度摄像头与投影仪位于同一平面上,且深度摄像头的视场范围大于投影仪的投影范围;
根据所述深度图像,以及投影仪在垂直方向的最大投影角度和水平方向的最大投影角度,确定投影平面与投影仪的相对位置关系;
其中,所述投影仪在垂直方向的最大投影角度和所述投影仪在水平方向的最大投影角度均为所述投影仪的固有参数,所述垂直方向是垂直于所述投影仪的光束中心线的方向,水平方向是分别与垂直方向和投影仪的光束中心线相垂直的方向;
根据投影平面与投影仪的相对位置关系,对投影至投影平面上的投影画面进行矩形校正。
根据本发明的另一个方面,提供了一种投影画面自动校正装置,包括:
图像获取模块,用于获取投影仪上深度摄像头捕捉投影空间得到的深度图 像,其中深度摄像头与投影仪位于同一平面上,且深度摄像头的视场范围大于投影仪的投影范围;
位置确定模块,用于根据深度图像,以及投影仪在垂直方向的最大投影角度和水平方向的最大投影角度,确定投影平面与投影仪的相对位置关系;
其中,投影仪在垂直方向的最大投影角度和投影仪在水平方向的最大投影角度均为投影仪的固有参数,垂直方向是垂直于投影仪的光束中心线的方向,水平方向是分别与垂直方向和投影仪的光束中心线相垂直的方向;
校正模块,用于根据投影平面与投影仪的相对位置关系,对投影至投影平面上的投影画面进行矩形校正。
根据本发明的又一个方面,提供了一种电子设备,包括存储器和处理器,存储器和处理器之间通过内部总线通讯连接,存储器存储有能够被处理器执行的程序指令,程序指令被处理器执行时能够实现上述投影画面自动校正方法。
本发明的有益效果是:本发明实施例的投影画面自动校正方法和装置,通过获取投影仪上深度摄像头捕捉的深度图像,根据深度图像以及投影仪在垂直方向的最大投影角度和水平方向的最大投影角度,确定投影平面与投影仪的相对位置关系,并基于投影平面与投影仪的相对位置关系,对投影至投影平面上的投影画面进行矩形校正。从而使投影仪能根据投影平面与投影仪之间的相对位置关系自动对投影的画面进行处理得到合适的矩形校正后的画面,解决了手动调整过程中费时费力的问题,保证了投影效果,满足了实际需求,改善了用户体验,提高了投影仪的竞争力。
附图简要说明
图1是本发明一个实施例的投影画面自动校正方法的流程图;
图2是本发明一个实施例的投影仪投影示例图;
图3本发明一个实施例的校正投影画面的流程图;
图4是本发明一个实施例的投影画面上定位点的示意图;
图5是本发明一个实施例的投影画面与深度摄像头所在平面相对位置关系示意图;
图6是本发明一个实施例的第一垂直偏移夹角的计算原理图;
图7是本发明一个实施例的第二垂直偏移夹角的计算原理图;
图8是本发明一个实施例的投影画面自动校正装置的框图;
图9是本发明一个实施例的电子设备的结构示意图。
具体实施方式
本发明的设计构思在于:针对当前的投影仪(包括智能微型投影仪)存在的投影画面有偏移,无法得到正常图像影响用户体验的问题,提出一种投影画面自动校正方案。智能投影仪最常用的模式是垂直投影,即,投影仪发出的光束垂直投射到一个平面上而形成图像。垂直投影的技术最简单,图像不需要经过任何处理,只要调整好光束的焦距,就能够投影形成想要的图像。但垂直投影有一个特点,那就是需要一个垂直于地面的墙面或者是幕布,配合投影仪来使用。这在一定程度上限制了投影仪的发展,不能满足某些场景的使用需求,倾斜投影应运而生。
倾斜投影,顾名思义,是指投影光束与投影平面之间的夹角不再是垂直的,投影光束与投影平面相倾斜。比如,投影仪把图像投影在桌面上,在桌面上形成图像,而不需要墙面或者幕布跟投影仪来配合,降低了对投影环境的要求。倾斜投影在使用过程中需要使用一个梯形校正的技术,通过梯形校正(或称矩形校正)算法,把歪斜的图像纠正为正常的矩形画面,从而得到想要的投影效果。
有一种投影画面的矩形校正方案是依靠人工手动调节完成的,这种方案在应用过程中,根据使用的实际投影角度和屏幕的位置,由用户手动一点点的慢慢调节,最终得到合理的矩形校正后的画面。不难看出,该方案费时费力,并且对用户的技术水平要求高,使用受限,用户体验不佳。
对此,提出了本发明实施例的投影画面自动校正方案,通过该投影画面自动校正方案,抛开人工手动操作,由投影仪来自动实现投影画面矩形校正和调节的功能,改善了用户体验,提高了投影仪的竞争力。
图1是本发明一个实施例的投影画面自动校正方法的流程图,参见图1,本实施例的这种投影画面自动校正方法包括下列步骤:
步骤S101,获取投影仪上深度摄像头捕捉投影空间得到的深度图像。
其中,深度摄像头与投影仪位于同一平面上,且深度摄像头的视场范围大于投影仪的投影范围;
步骤S102,根据深度图像,以及投影仪在垂直方向的最大投影角度和水平方向的最大投影角度,确定投影平面与投影仪的相对位置关系。
其中,投影仪在垂直方向的最大投影角度和投影仪在水平方向的最大投影角度均为投影仪的固有参数,垂直方向是垂直于投影仪的光束中心线的方向, 水平方向是分别与垂直方向和投影仪的光束中心线相垂直的方向;
步骤S103,根据投影平面与投影仪的相对位置关系,对投影至投影平面上的投影画面进行矩形校正。
图1所示的投影画面自动校正方法,通过获取深度图像,得到指定点到投影仪所在平面的距离关系,再利用投影仪的固有参数(即,投影仪在垂直方向的最大投影角度和水平方向的最大投影角度)确定出投影平面与投影仪的相对位置关系,投影平面与投影仪的相对位置关系是投影画面矩形校正的前提和基础,系统在得到投影平面与投影仪的相对位置关系之后,即可自动完成对画面的矩形校正,从而解决了人工手动调节费时费力的问题,改善了用户体验,有利于投影仪的广泛应用。
需要说明的是,步骤S101中深度摄像头与投影仪位于同一平面上是指深度摄像头与投影仪在空间位置关系上处于同一个平面,并且深度摄像头与投影仪共同所在的平面与投影仪投射方向相垂直。此外,深度摄像头与投影仪还满足,深度摄像头的视场范围大于投影仪的投影范围的条件,这要求投影仪的投射方向与深度摄像头的拍摄方向一致。
图2是本发明一个实施例的投影仪投影示例图,如图2所示,在倾斜投影的情况下,投影仪所在平面(图2上方,由X方向和Y方向构成的虚线所示的平面,投影仪和深度摄像头均在这一平面内,一般该平面经过投影仪的光束中心且与投影仪的投射方向垂直)与被投影平面(下方实线所示平面)不平行。图2以投影仪放置在房间天花板上,投影仪发出的光束向下射到一个平面上为例构建三维空间坐标系,投影仪所在位置为原点,原点坐标值为(0,0,0),光束中心线的方向为Z方向,垂直方向与投影仪的光束中心线的方向垂直,见图2中所示Y方向,水平方向是分别与垂直方向和投影仪的光束中心线相垂直的方向,参见图2中所示X方向。图2中还示意了投影画面中心点,即,投影仪的光束中心线与投影平面的交点,投影画面中心点的坐标值为(0,0,L0)。这里的L0是指投影画面中心点到投影仪所在平面的第一距离。
以下结合图3至图7对一次投影画面校正过程进行具体说明。
为便于计算和说明,本实施例中深度摄像头和投影仪(具体是投影仪的投影模组)的位置关系满足一定的条件,即,深度摄像头与投影仪位于同一平面上且深度摄像头与投影仪之间的距离小于预设阈值(比如3厘米)。也就是说,深度摄像头的摆放位置要紧挨着投影模组(如图2所示),保证两者之间的距离 足够近,从而对于远方的投影平面来讲,两者的空间位置可以被认为是重合的。同时,深度摄像头的视场范围大于投影仪的投影范围,即,深度摄像头的视场角度大于投影仪的投影模组的投射角,保证了深度摄像头捕捉范围要大于投影范围,从而能够保证在实际应用中,深度摄像头能捕捉到投影画面上的所有点,提高画面校正的准确度。
图5是本发明一个实施例的投影画面与深度摄像头所在平面相对位置关系示意图,如图5所示,图5中以投影方向是与地球重力方向垂直的方向(可参见图2中的Y方向)为例进行的说明,由于图5的场景中,深度摄像头与投影模组之间的距离足够近,从而对于远方的投影平面来讲,两者的空间位置被认为是重合的,所以图5中示意了深度摄像头以及深度摄像头所在平面(图5中右边的虚线)而未示意投影模组,下面实施例中也是以图5所示投影画面与深度摄像头所在平面相对位置关系进行重点说明。
需要说明的是,实际应用中,深度摄像头与投影仪在位置上也可以存在水平距离或者垂直距离,以存在垂直距离(即垂直于地面方向)为例,比如,深度摄像头安装在投影仪正上方5厘米处,这种情况下,依然能够按照下述描述的计算过程确定出投影平面与投影仪的相对位置关系,不同之处在于两种情况下的参考原点。当深度摄像头与投影仪的空间位置近到可以被认为是重合的情况下,参考原点可选为深度摄像头中心点,而深度摄像头与投影仪在位置上存在垂直距离的情况下,参考原点由深度摄像头中心改为投影模组的中心,并引入修正角,由于修正角的存在,待捕捉的定位点的坐标值将发生相应变化。定位点的坐标值改变以后,偏移角度的计算公式是不变的,这样,在得到投影模组所在平面与投影平面的距离以及偏移角度后,仍然可以完成投影画面的矩形校正。所以,下面实施例中仅以深度摄像头与投影仪的空间位置近到可以被认为是重合的这种情况进行重点说明。另一种情况(即深度摄像头与投影仪在位置上存在垂直距离)下的计算过程可以参考下面的说明。
总体上,本实施例的校正投影画面的过程是:首先,根据深度图像,确定出投影画面中心点到投影仪所在平面的第一距离,投影画面第一方向上至少一个定位点到投影仪所在平面的距离,以及投影画面第二方向上至少一个定位点到投影仪所在平面的距离,其中,投影画面中心点为投影仪的光束中心线与投影平面的交点,投影画面第一方向是投影仪在垂直方向的投影光线投射到投影平面上得到的投影点的连线所在方向,投影画面第二方向是投影仪在水平方向 的投影光线投射到投影平面上得到的投影点的连线所在方向。
然后,根据第一距离,投影画面第一方向上至少一个定位点到投影仪所在平面的距离以及投影仪在垂直方向的最大投影角度,计算投影平面与投影仪所在平面在垂直方向的垂直偏移夹角;并且,根据第一距离,投影画面第二方向上至少一个定位点到投影仪所在平面的距离以及投影仪在水平方向的最大投影角度,计算投影平面与投影仪所在平面在水平方向的水平偏移夹角。
最后,根据第一距离,垂直偏移夹角以及水平偏移夹角,对投影至投影平面上的投影画面进行矩形校正。
实际应用中,当投影仪投射的平面是一个很理想的平面(比如,没有其它物体遮挡的、平整的平面)时,如果忽略测量的误差和噪声,投影画面同一方向上每个定位点都能指示相应方向上投影平面相对投影仪的角度偏移情况以及投射出的图像畸变情况,所以投影画面一个方向上只取一个定位点参与计算即可。基于此,校正投影画面的流程就可以简化为:
首先,根据深度图像,确定出投影平面上投影画面中心点到投影仪所在平面的第一距离,投影画面第一方向上第一定位点到投影仪所在平面的第二距离,以及投影画面第二方向上第二定位点到投影仪所在平面的第三距离。
接着,根据第一距离,第二距离以及投影仪在垂直方向的最大投影角度,计算对应第一定位点位置处的投影平面与投影仪所在平面在垂直方向的第一垂直偏移夹角;并且根据第一距离,第三距离以及投影仪在水平方向的最大投影角度,计算对应第二定位点位置处的投影平面与投影仪所在平面在水平方向的第一水平偏移夹角。
最后,根据第一距离,第一垂直偏移夹角以及第一水平偏移夹角,对投影至投影平面上的投影画面进行矩形校正。
考虑到实际投影环境的复杂性,为了提高投影画面校正的精度,优选地,本实施例中的投影画面自动校正方法包括步骤:
首先,根据深度图像,确定出投影画面第一方向上第一定位点、第三定位点分别到投影仪所在平面的第二距离和第四距离,以及确定出投影画面第二方向上第二定位点、第四定位点分别到投影仪所在平面的第三距离和第五距离。
接着,根据第一距离,第二距离以及投影仪在垂直方向的最大投影角度,计算对应第一定位点位置处的投影平面与投影仪所在平面在垂直方向的第一垂直偏移夹角;根据第一距离,第四距离以及投影仪在垂直方向的最大投影角度, 计算对应第三定位点位置处的投影平面与投影仪所在平面在垂直方向的第二垂直偏移夹角。并且,根据第一距离,第三距离以及投影仪在水平方向的最大投影角度,计算对应第二定位点位置处的投影平面与投影仪所在平面在水平方向的第一水平偏移夹角;根据第一距离,第五距离以及投影仪在水平方向的最大投影角度,计算对应第四定位点位置处的投影平面与投影仪所在平面在水平方向的第二水平偏移夹角。
最后,根据第一距离,第一垂直偏移夹角,第一水平偏移夹角,第二垂直偏移夹角和第二水平偏移夹角对投影至投影平面上的投影画面进行矩形校正。
图3是本发明一个实施例的校正投影画面的流程图,结合图3,对本发明优选实施例的实现步骤进行说明。参见图3,流程开始,执行步骤S301,捕捉得到指示距离的深度图像。
本步骤中是利用深度摄像头对投影空间进行捕捉得到深度图像,深度图像的深度值代表了投影平面上的一些目标定位点与摄像头所在平面的距离。具体的,通过投影仪上双目摄像头、多目摄像头、结构光摄像头、飞行时间TOF摄像头中任一摄像头对投影仪的前方区域进行扫描,以发现目标投影屏幕(投影平面)与投影仪之间的距离与角度关系。也就是说,深度摄像头实现的技术有多种,例如,双目摄像头、结构光摄像头、飞行时间TOF(Time Of Flight)摄像头,本实施例对此不做限制。
步骤S302,获取距离大小。
本步骤中是根据深度图像,确定出投影画面中心点到投影仪所在平面的第一距离,投影画面第一方向上第一定位点、第三定位点分别到投影仪所在平面的第二距离和第四距离,以及确定出投影画面第二方向上第二定位点、第四定位点分别到投影仪所在平面的第三距离和第五距离。
参见图4,投影画面中心点为投影仪的光束中心线与投影平面的交点,即图4中所示的零点。投影画面第一方向是投影仪在垂直方向的投影光线投射到投影平面上得到的投影点的连线所在方向,即第一定位点和第三定位点连线所在方向。投影画面第二方向是投影仪在水平方向的投影光线投射到投影平面上得到的投影点的连线所在方向,即,第二定位点和第四定位点连线所在方向。
可以理解,图4示意了投影画面第一方向上的两个定位点,即,第一定位点和第三定位点。投影画面第二方向上的两个定位点,即第二定位点和第四定位点。但实际应用中不以此为限,定位点的数量可以根据实际需求进行确定, 比如也可以只取第一方向和第二方向的各一个定位点。
需要说明的是,为了提高投影画面校正的整体精度,选择同一方向上的多个定位点时,一般会选择相对图4中的零点中心对称的定位点,或者选择投影画面所属图形的顶点作为定位点。
图4中,以零点为参考原点,其到投影仪所在平面的第一距离为L0,则其坐标值为(0,0,L0),第一定位点到投影仪所在平面的第二距离为L1,其坐标值为(0,tanθ2*L1,L1),第二定位点到投影仪所在平面的第三距离为L2,其坐标值为(-tanθ1*L2,0,L2),第三定位点到投影仪所在平面的第四距离为L3,其坐标值为(0,-tanθ2*L3,L3),第四定位点到投影仪所在平面的第五距离为L4,其坐标值为(tanθ1*L4,0,L4),这里的θ1表示投影仪在水平方向的最大投影角度,θ2表示投影仪在垂直方向的最大投影角度。而水平方向又可分为水平正方向和水平负方向,则对应的最大投影角度分别为θ1和-θ1,这里的负号表示方向。垂直方向同理。注,在投影仪的固有参数中,投影仪的投影角度是以光束中心线所在的0度为基准来表示的,大于0度对应的是正方向的投影角;小于0度,对应的是负方向的投影角。
需要说明的是,投影仪在垂直方向的最大投影角度和投影仪在水平方向的最大投影角度均为投影仪的固有参数,垂直方向是垂直于投影仪的光束中心线的方向,水平方向是分别与垂直方向和投影仪的光束中心线相垂直的方向。另外,根据前述深度摄像头的视场角度大于投影部件的投射角,以保证深度摄像头捕捉范围大于投影范围的要求,本实施例的深度摄像头的拍摄角度,在水平方向上大于或者等于θ1,在垂直方向上大于或者等于θ2。后续的计算中,均以θ1和θ2来说明。
结合图4和图5,本实施例中根据深度图像,确定出投影画面中心点到投影仪所在平面的第一距离,即,距离L0,投影画面第一方向上第一定位点到投影仪所在平面的第二距离L1,投影画面第二方向上第二定位点到投影仪所在平面的第三距离L2,投影画面第一方向上第三定位点到投影仪所在平面的第四距离L3,以及投影画面第二方向上第四定位点到投影仪所在平面的第五距离L4。
步骤S303,计算偏移角度。
本步骤是在得到第一距离、第二距离,第三距离、第四距离以及第五距离后,并利用投影仪的固有参数进行偏移角度的相应计算。
例如,根据第一距离L0,第二距离L1以及投影仪在垂直方向的最大投影 角度θ2,计算投影平面与投影仪所在平面在垂直方向的垂直偏移夹角,根据第一距离L0,第三距离L2以及投影仪在水平方向的最大投影角度θ1,计算投影平面与投影仪所在平面在水平方向的水平偏移夹角。
参见图6和图7,本实施例中以投影画面第一方向上两个定位点(即第一定位点和第三定位点)对应的垂直偏移夹角的计算进行示意说明。而投影画面第二方向上两个定位点(即第二定位点和第四定位点)对应的水平偏移夹角的计算过程下同,因此也可以参见下述垂直偏移夹角的计算说明,不再赘述。
参见图6,图6示意的是第一垂直偏移夹角的计算原理,由图6可知,投影画面上的零点,第一定位点,以及以零点为起点向距离L1所在线段引垂线所得的交点,这三个点构成了一个直角三角形,第一垂直偏移夹角δ1为直角三角形的内角,因此利用几何关系,根据下述公式可以计算得出第一垂直偏移夹角δ1的值:
Figure PCTCN2018112853-appb-000001
其中,L0为投影画面中心点到投影仪所在平面的第一距离,L1为第一定位点到投影仪所在平面的第二距离,L1大于L0,θ2为投影仪在垂直方向(具体是垂直正方向,即,+θ2)的最大投影角度。
图7示意的是第二垂直偏移夹角的计算原理,这里根据第一距离,第四距离以及投影仪在垂直方向的最大投影角度,计算对应第三定位点位置处的投影平面与投影仪所在平面在垂直方向的第二垂直偏移夹角。
由图7可知,利用几何关系,根据下述公式可以计算得出第二垂直偏移夹角δ3的值:
Figure PCTCN2018112853-appb-000002
其中,L0为投影画面中心点到投影仪所在平面的第一距离,L3为第三定位点到投影仪所在平面的第四距离,L0大于L3,-θ2为投影仪在垂直方向(具体是垂直负方向,即,﹣θ2)的最大投影角度。
至此,计算出了对应第一定位点位置处的投影平面与投影仪所在平面在垂直方向的第一垂直偏移夹角δ1,以及,对应第三定位点位置处的投影平面与投影仪所在平面在垂直方向的第二垂直偏移夹角δ3。
需要说明的是,通常情况下,投影仪投射的平面并非会是一个很理想的平面(比如,投影平面存在细微凹凸不平的情形),且存在测量误差和噪声,此时, 即便是位于同一方向上的定位点,每个定位点处所能指示的一定区域范围内的投影平面的角度偏移情况会存在细微差异,因此,通过在同一方向上采用多个定位点进行偏移角度的计算,解决了实际投影中投影平面不是理想平整状态或者不是平面而是弯曲的曲面等情况时,同一方向上只选取一个定位点进行矩形校正可能出现精度低,校正效果差的问题。通过利用同一个方向上多个定位点计算出的多个偏移角度,能够按照偏移角度对投影画面上相应的投影点分别进行校正,提高矩形校正的针对性和准确度,保证实现理想投影效果。
比如,当投影平面为曲面时,按照上述过程计算出的第一垂直偏移夹角δ1的值和第二垂直偏移夹角δ3的值就会相差较大。这样,在进行矩形校正时可以将投影画面上,对应负投影角度(即,-θ2)到0度这一范围的像素点,按照第二垂直偏移夹角δ3的值来校正。而对应0度到正投影角度(即,θ2)这一范围的像素点按照第一垂直偏移夹角δ1来纠正,如此,改善投影畸变效果,满足用户需求。
本实施例中,按照与第一垂直偏移夹角δ1相似的计算过程,根据第一距离,第三距离以及投影仪在水平方向的最大投影角度,计算对应第二定位点位置处的投影平面与投影仪所在平面在水平方向的第一水平偏移夹角δ2。
按照与第二垂直偏移夹角δ3相似的计算过程,根据第一距离,第五距离以及投影仪在水平方向的最大投影角度,计算对应第四定位点位置处的投影平面与投影仪所在平面在水平方向的第二水平偏移夹角δ4。
步骤S304,确定投影平面与投影仪所在平面的相对位置关系;
本步骤中,是根据上一步骤中计算出的偏移角度来确定投影平面与投影仪所在平面的相对位置关系,即,相对位置关系是利用投影平面相对于投影仪所在平面的偏移角度来表示的。以垂直方向为例说明,比如,如果计算出的第二垂直偏移夹角δ3等于0度,说明投影平面与深度摄像头(或者投影仪)所在平面平行,投影仪发出的光线可以垂直的打到投影平面上,此时L3=L0,不需要进行矩形校正。如果计算出的第二垂直偏移夹角δ3不等于0度,例如等于15度,说明投影平面与深度摄像头(或者投影仪)所在平面在垂直方向是倾斜关系,不平行,此时L3小于L0,需要对投影仪投影时产生的畸形或变形投影画面进行校正。
按照相同的原理,根据水平偏移夹角即可确定投影平面与深度摄像头(或者投影仪)所在平面在水平方向上的相对位置关系。
步骤S305,调整投影画面。
这里是根据投影平面与投影仪的相对位置关系,对投影至投影平面上的投影画面进行矩形校正,具体是根据第一距离,垂直偏移夹角以及水平偏移夹角,对投影至投影平面上的投影画面进行矩形校正。
例如,根据第一距离L0,第一垂直偏移角度δ1,第二垂直偏移角度δ3,第一水平偏移角度δ2以及第二水平偏移角度δ4的值,采用矩形校正算法,即可判断投影平面与深度摄像头所在平面的空间几何关系,再通过数字技术来处理待投射的图像,从而完成投影仪的梯形变形图像的自主纠正,而矩形校正算法属于已有的技术,这里不再过多的描述。
由上述可知,本实施例的投影画面自动校正方法不需要用户手动校正投影画面,系统能够自动完成,提高了用户的使用感受,方便了投影仪的大规模推广应用。
本发明实施例还提供了一种投影画面自动校正装置,图8是本发明一个实施例的投影画面自动校正装置的框图,参见图8,本实施例的投影画面自动校正装置800包括:
图像获取模块801,用于获取投影仪上深度摄像头捕捉投影空间得到的深度图像,其中深度摄像头与投影仪位于同一平面上,且深度摄像头的视场范围大于投影仪的投影范围;
位置确定模块802,用于根据深度图像,以及投影仪在垂直方向的最大投影角度和水平方向的最大投影角度,确定投影平面与投影仪的相对位置关系;
其中,投影仪在垂直方向的最大投影角度和投影仪在水平方向的最大投影角度均为投影仪的固有参数,垂直方向是垂直于投影仪的光束中心线的方向,水平方向是分别与垂直方向和投影仪的光束中心线相垂直的方向;
校正模块803,用于根据投影平面与投影仪的相对位置关系,对投影至投影平面上的投影画面进行矩形校正。
在一个实施例中,位置确定模块802,用于根据深度图像,确定出投影画面中心点到投影仪所在平面的第一距离,投影画面第一方向上至少一个定位点到投影仪所在平面的距离,以及投影画面第二方向上至少一个定位点到投影仪所在平面的距离;其中,投影画面中心点为投影仪的光束中心线与投影平面的交点,投影画面第一方向是投影仪在垂直方向的投影光线投射到投影平面上得到的投影点的连线所在方向,投影画面第二方向是投影仪在水平方向的投影光线 投射到投影平面上得到的投影点的连线所在方向;
根据第一距离,投影画面第一方向上至少一个定位点到投影仪所在平面的距离以及投影仪在垂直方向的最大投影角度,计算投影平面与投影仪所在平面在垂直方向的垂直偏移夹角,根据第一距离,投影画面第二方向上至少一个定位点到投影仪所在平面的距离以及投影仪在水平方向的最大投影角度,计算投影平面与投影仪所在平面在水平方向的水平偏移夹角;
校正模块803,具体用于根据第一距离,垂直偏移夹角以及水平偏移夹角,对投影至投影平面上的投影画面进行矩形校正。
在一个实施例中,位置确定模块802,具体用于根据深度图像,确定出投影画面中心点到投影仪所在平面的第一距离,投影画面第一方向上第一定位点到投影仪所在平面的第二距离,以及投影画面第二方向上第二定位点到投影仪所在平面的第三距离;根据第一距离,第二距离以及投影仪在垂直方向的最大投影角度,计算对应第一定位点位置处的投影平面与投影仪所在平面在垂直方向的第一垂直偏移夹角;根据第一距离,第三距离以及投影仪在水平方向的最大投影角度,计算对应第二定位点位置处的投影平面与投影仪所在平面在水平方向的第一水平偏移夹角;
校正模块803,具体用于根据第一距离,第一垂直偏移夹角以及第一水平偏移夹角,对投影至投影平面上的投影画面进行矩形校正。
在一个实施例中,位置确定模块802还用于,根据深度图像,确定出投影画面第一方向上第三定位点到投影仪所在平面的第四距离,以及投影画面第二方向上第四定位点到投影仪所在平面的第五距离;根据第一距离,第四距离以及投影仪在垂直方向的最大投影角度,计算对应第三定位点位置处的投影平面与投影仪所在平面在垂直方向的第二垂直偏移夹角;根据第一距离,第五距离以及投影仪在水平方向的最大投影角度,计算对应第四定位点位置处的投影平面与投影仪所在平面在水平方向的第二水平偏移夹角;
校正模块803,具体用于根据第一距离,第一垂直偏移夹角,第一水平偏移夹角,第二垂直偏移夹角和第二水平偏移夹角对投影至投影平面上的投影画面进行矩形校正。
在一个实施例中,深度摄像头为双目摄像头、多目摄像头、结构光摄像头、飞行时间TOF摄像头中的任一种。图像获取模块801,具体用于获取投影仪上双目摄像头、多目摄像头、结构光摄像头、飞行时间TOF摄像头中任一摄像头 捕捉投影空间得到的深度图像;深度摄像头与投影仪位于同一平面上且深度摄像头与投影仪之间的距离小于预设阈值。
需要说明的是,本实施例的这种投影画面自动校正装置的工作过程是和前述投影画面自动校正方法的实现步骤相对应的,因此,有关本实施例的投影画面自动校正装置工作过程的更具体说明可以参见前述实施例,这里不再赘述。
图9是本发明一个实施例的电子设备的结构示意图。如图9所示,该电子设备包括存储器91和处理器92,存储器91和处理器92之间通过内部总线93通讯连接,存储器91存储有能够被处理器92执行的程序指令,程序指令被处理器92执行时能够实现上述的投影画面自动校正方法。
此外,上述的存储器91中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本发明的另一个实施例提供一种计算机可读存储介质,计算机可读存储介质存储计算机指令,计算机指令使所述计算机执行上述的方法。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图的一个流 程或多个流程和/或方框图的一个方框或多个方框中指定的功能的装置。
需要说明的是术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本发明的说明书中,说明了大量具体细节。然而能够理解的是,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。类似地,应当理解,为了精简本发明公开并帮助理解各个发明方面中的一个或多个,在上面对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释呈反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如权利要求书所反映的那样,发明方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。
以上所述,仅为本发明的具体实施方式,在本发明的上述教导下,本领域技术人员可以在上述实施例的基础上进行其他的改进或变形。本领域技术人员应该明白,上述的具体描述只是更好的解释本发明的目的,本发明的保护范围以权利要求的保护范围为准。

Claims (13)

  1. 一种投影画面自动校正方法,其中,包括:
    获取投影仪上深度摄像头捕捉投影空间得到的深度图像,其中深度摄像头与投影仪位于同一平面上,且深度摄像头的视场范围大于投影仪的投影范围;
    根据所述深度图像,以及投影仪在垂直方向的最大投影角度和水平方向的最大投影角度,确定投影平面与投影仪的相对位置关系;
    其中,所述投影仪在垂直方向的最大投影角度和所述投影仪在水平方向的最大投影角度均为所述投影仪的固有参数,所述垂直方向是垂直于所述投影仪的光束中心线的方向,所述水平方向是分别与所述垂直方向和所述投影仪的光束中心线相垂直的方向;
    根据投影平面与投影仪的相对位置关系,对投影至投影平面上的投影画面进行矩形校正。
  2. 根据权利要求1所述的方法,其中,所述根据所述深度图像,以及投影仪在垂直方向的最大投影角度和水平方向的最大投影角度,确定投影平面与投影仪的相对位置关系包括:
    根据所述深度图像,确定出投影画面中心点到投影仪所在平面的第一距离,投影画面第一方向上至少一个定位点到投影仪所在平面的距离,以及投影画面第二方向上至少一个定位点到投影仪所在平面的距离,
    其中,所述投影画面中心点为所述投影仪的光束中心线与所述投影平面的交点,所述投影画面第一方向是投影仪在垂直方向的投影光线投射到投影平面上得到的投影点的连线所在方向,所述投影画面第二方向是投影仪在水平方向的投影光线投射到投影平面上得到的投影点的连线所在方向;
    根据所述第一距离,所述投影画面第一方向上至少一个定位点到投影仪所在平面的距离以及投影仪在垂直方向的最大投影角度,计算投影平面与投影仪所在平面在垂直方向的垂直偏移夹角;
    根据所述第一距离,所述投影画面第二方向上至少一个定位点到投影仪所在平面的距离以及投影仪在水平方向的最大投影角度,计算投影平面与投影仪所在平面在水平方向的水平偏移夹角;
    所述根据投影平面与投影仪的相对位置关系,对投影至投影平面上的投影画面进行矩形校正包括:
    根据所述第一距离,所述垂直偏移夹角以及所述水平偏移夹角,对投影至 投影平面上的投影画面进行矩形校正。
  3. 根据权利要求2所述的方法,其中,所述根据所述深度图像,以及投影仪在垂直方向的最大投影角度和水平方向的最大投影角度,确定投影平面与投影仪的相对位置关系包括:
    根据所述深度图像,确定出投影画面中心点到投影仪所在平面的第一距离,投影画面第一方向上第一定位点到投影仪所在平面的第二距离,以及投影画面第二方向上第二定位点到投影仪所在平面的第三距离;
    根据所述第一距离,所述第二距离以及投影仪在垂直方向的最大投影角度,计算对应所述第一定位点位置处的投影平面与投影仪所在平面在垂直方向的第一垂直偏移夹角;
    根据所述第一距离,所述第三距离以及投影仪在水平方向的最大投影角度,计算对应所述第二定位点位置处的投影平面与投影仪所在平面在水平方向的第一水平偏移夹角;
    所述根据投影平面与投影仪的相对位置关系,对投影至投影平面上的投影画面进行矩形校正包括:
    根据所述第一距离,所述第一垂直偏移夹角以及所述第一水平偏移夹角,对投影至投影平面上的投影画面进行矩形校正。
  4. 根据权利要求3所述的方法,其中,所述根据所述深度图像,以及投影仪在垂直方向的最大投影角度和水平方向的最大投影角度,确定投影平面与投影仪的相对位置关系还包括:
    根据所述深度图像,确定出投影画面第一方向上第三定位点到投影仪所在平面的第四距离,以及投影画面第二方向上第四定位点到投影仪所在平面的第五距离;
    根据所述第一距离,所述第四距离以及投影仪在垂直方向的最大投影角度,计算对应所述第三定位点位置处的投影平面与投影仪所在平面在垂直方向的第二垂直偏移夹角;
    根据所述第一距离,所述第五距离以及投影仪在水平方向的最大投影角度,计算对应所述第四定位点位置处的投影平面与投影仪所在平面在水平方向的第二水平偏移夹角;
    所述根据投影平面与投影仪的相对位置关系,对投影至投影平面上的投影画面进行矩形校正包括:
    根据所述第一距离,所述第一垂直偏移夹角,所述第一水平偏移夹角,所 述第二垂直偏移夹角和所述第二水平偏移夹角对投影至投影平面上的投影画面进行矩形校正。
  5. 根据权利要求1所述的方法,其中,所述深度摄像头为双目摄像头、多目摄像头、结构光摄像头、飞行时间TOF摄像头中的任一种。
  6. 根据权利要求1所述的方法,其中,所述深度摄像头与投影仪之间的距离小于预设阈值。
  7. 一种投影画面自动校正装置,其中,包括:
    图像获取模块,用于获取投影仪上深度摄像头捕捉投影空间得到的深度图像,其中深度摄像头与投影仪位于同一平面上,且深度摄像头的视场范围大于投影仪的投影范围;
    位置确定模块,用于根据所述深度图像,以及投影仪在垂直方向的最大投影角度和水平方向的最大投影角度,确定投影平面与投影仪的相对位置关系;
    其中,所述投影仪在垂直方向的最大投影角度和所述投影仪在水平方向的最大投影角度均为所述投影仪的固有参数,所述垂直方向是垂直于所述投影仪的光束中心线的方向,所述水平方向是分别与所述垂直方向和所述投影仪的光束中心线相垂直的方向;
    校正模块,用于根据投影平面与投影仪的相对位置关系,对投影至投影平面上的投影画面进行矩形校正。
  8. 根据权利要求7所述的装置,其中,
    位置确定模块,用于根据所述深度图像,确定出投影画面中心点到投影仪所在平面的第一距离,投影画面第一方向上至少一个定位点到投影仪所在平面的距离,以及投影画面第二方向上至少一个定位点到投影仪所在平面的距离,其中,所述投影画面中心点为所述投影仪的光束中心线与所述投影平面的交点,所述投影画面第一方向是投影仪在垂直方向的投影光线投射到投影平面上得到的投影点的连线所在方向,所述投影画面第二方向是投影仪在水平方向的投影光线投射到投影平面上得到的投影点的连线所在方向;根据所述第一距离,所述投影画面第一方向上至少一个定位点到投影仪所在平面的距离以及投影仪在垂直方向的最大投影角度,计算投影平面与投影仪所在平面在垂直方向的垂直偏移夹角;根据所述第一距离,所述投影画面第二方向上至少一个定位点到投影仪所在平面的距离以及投影仪在水平方向的最大投影角度,计算投影平面与投影仪所在平面在水平方向的水平偏移夹角;
    校正模块,用于根据所述第一距离,所述垂直偏移夹角以及所述水平偏移 夹角,对投影至投影平面上的投影画面进行矩形校正。
  9. 根据权利要求8所述的装置,其中,
    位置确定模块,用于根据所述深度图像,确定出投影画面中心点到投影仪所在平面的第一距离,投影画面第一方向上第一定位点到投影仪所在平面的第二距离,以及投影画面第二方向上第二定位点到投影仪所在平面的第三距离;根据所述第一距离,所述第二距离以及投影仪在垂直方向的最大投影角度,计算对应所述第一定位点位置处的投影平面与投影仪所在平面在垂直方向的第一垂直偏移夹角;根据所述第一距离,所述第三距离以及投影仪在水平方向的最大投影角度,计算对应所述第二定位点位置处的投影平面与投影仪所在平面在水平方向的第一水平偏移夹角;
    校正模块,用于根据所述第一距离,所述第一垂直偏移夹角以及所述第一水平偏移夹角,对投影至投影平面上的投影画面进行矩形校正。
  10. 根据权利要求9所述的装置,其中,
    位置确定模块还用于,根据所述深度图像,确定出投影画面第一方向上第三定位点到投影仪所在平面的第四距离,以及投影画面第二方向上第四定位点到投影仪所在平面的第五距离;根据所述第一距离,所述第四距离以及投影仪在垂直方向的最大投影角度,计算对应所述第三定位点位置处的投影平面与投影仪所在平面在垂直方向的第二垂直偏移夹角;根据所述第一距离,所述第五距离以及投影仪在水平方向的最大投影角度,计算对应所述第四定位点位置处的投影平面与投影仪所在平面在水平方向的第二水平偏移夹角;
    校正模块,用于根据所述第一距离,所述第一垂直偏移夹角,所述第一水平偏移夹角,所述第二垂直偏移夹角和所述第二水平偏移夹角对投影至投影平面上的投影画面进行矩形校正。
  11. 根据权利要求7所述的装置,其中,所述深度摄像头为双目摄像头、多目摄像头、结构光摄像头、飞行时间TOF摄像头中的任一种。
  12. 根据权利要求7所述的装置,其中,所述深度摄像头与所述投影仪之间的距离小于预设阈值。
  13. 一种电子设备,包括存储器和处理器,存储器和处理器之间通过内部总线通讯连接,存储器存储有能够被处理器执行的程序指令,程序指令被处理器执行时能够实现所述权利要求1-6中任一项所述的投影画面自动校正方法。
PCT/CN2018/112853 2018-01-24 2018-10-31 一种投影画面自动校正方法、装置和电子设备 WO2019144666A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810068203.2 2018-01-24
CN201810068203.2A CN108289208B (zh) 2018-01-24 2018-01-24 一种投影画面自动校正方法和装置

Publications (1)

Publication Number Publication Date
WO2019144666A1 true WO2019144666A1 (zh) 2019-08-01

Family

ID=62835764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112853 WO2019144666A1 (zh) 2018-01-24 2018-10-31 一种投影画面自动校正方法、装置和电子设备

Country Status (2)

Country Link
CN (1) CN108289208B (zh)
WO (1) WO2019144666A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108289208B (zh) * 2018-01-24 2020-11-27 歌尔股份有限公司 一种投影画面自动校正方法和装置
CN109183925A (zh) * 2018-08-15 2019-01-11 咸丰武陵生物科技有限公司 一种便器冲水方法、装置及系统
CN110890041A (zh) * 2018-09-10 2020-03-17 深圳市易云数字科技有限责任公司 一种互动空中成像系统
FR3086383B1 (fr) * 2018-09-21 2020-08-28 Diotasoft Procede, module et systeme de projection sur une piece d’une image calculee a partir d’une maquette numerique
CN109688390B (zh) * 2018-12-12 2020-11-17 中国科学院深圳先进技术研究院 一种投影画面自动校正方法、系统
CN110211177A (zh) * 2019-06-05 2019-09-06 视云融聚(广州)科技有限公司 摄像画面线性目标指北方法、电子设备及存储介质
CN110285779A (zh) * 2019-06-12 2019-09-27 智久(厦门)机器人科技有限公司 一种深度相机的角度误差补偿方法、装置、存储介质
CN110491316A (zh) * 2019-07-08 2019-11-22 青岛小鸟看看科技有限公司 一种投影仪及其投影控制方法
CN112399158B (zh) * 2019-08-19 2023-06-30 深圳光峰科技股份有限公司 投影图像校准方法、装置及投影设备
CN110677634B (zh) * 2019-11-27 2021-06-29 成都极米科技股份有限公司 投影仪的梯形校正方法、装置、系统及可读存储介质
CN111093066A (zh) * 2019-12-03 2020-05-01 耀灵人工智能(浙江)有限公司 一种动态平面投影方法及系统
CN111322949B (zh) * 2020-04-10 2022-03-11 广景视睿科技(深圳)有限公司 一种墙面标定的方法以及一种边标定的方法
CN112104851B (zh) * 2020-09-15 2022-04-08 成都极米科技股份有限公司 画面校正的检测方法、装置和检测系统
CN114390261B (zh) * 2020-10-20 2023-10-24 深圳海翼智新科技有限公司 投影系统及其梯形校正方法、具有存储功能的装置
CN114697623B (zh) * 2020-12-29 2023-08-15 极米科技股份有限公司 投影面选取和投影图像校正方法、装置、投影仪及介质
CN112995624B (zh) * 2021-02-23 2022-11-08 峰米(北京)科技有限公司 用于投影仪的梯形误差校正方法及装置
CN115086622B (zh) * 2021-03-12 2024-05-24 中强光电股份有限公司 投影机及其校正方法
CN113740816A (zh) * 2021-08-13 2021-12-03 昆山丘钛微电子科技股份有限公司 摄像头模组的测距误差校正方法及装置
CN113645456B (zh) * 2021-09-22 2023-11-07 业成科技(成都)有限公司 投影图像校正方法、投影系统及可读存储介质
CN117529909A (zh) * 2021-12-10 2024-02-06 英特尔公司 自动投影校正
CN116704011B (zh) * 2023-08-04 2024-03-05 深圳市凯立特光电科技有限公司 一种基于数据处理的led显示屏像素校正分析系统
CN116828163B (zh) * 2023-08-30 2023-11-21 深圳市影冠科技有限公司 一种投影仪的控制系统及控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050231691A1 (en) * 2004-04-14 2005-10-20 Baoxin Li Projection system
CN105100792A (zh) * 2015-09-21 2015-11-25 上海碧虎网络科技有限公司 一种几何图形投影成像自动校正装置及其校正方法
CN105554486A (zh) * 2015-12-22 2016-05-04 Tcl集团股份有限公司 一种投影校正方法和装置
US20160173841A1 (en) * 2014-12-11 2016-06-16 Texas Instruments Incorporated Camera Assisted Two Dimensional Keystone Correction
CN106101675A (zh) * 2016-07-20 2016-11-09 Tcl集团股份有限公司 一种基于投影电视的自动梯形校正方法及系统
US20170061575A1 (en) * 2015-08-31 2017-03-02 Canon Kabushiki Kaisha Display apparatus and control method
CN108289208A (zh) * 2018-01-24 2018-07-17 歌尔股份有限公司 一种投影画面自动校正方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104349095B (zh) * 2013-08-09 2017-08-29 联想(北京)有限公司 一种图像调整方法、装置及电子设备
CN104349096B (zh) * 2013-08-09 2017-12-29 联想(北京)有限公司 一种图像标定方法、装置及电子设备
CN105676572A (zh) * 2016-04-19 2016-06-15 深圳市神州云海智能科技有限公司 用于移动机器人配备的投影仪的投影校正方法和设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050231691A1 (en) * 2004-04-14 2005-10-20 Baoxin Li Projection system
US20160173841A1 (en) * 2014-12-11 2016-06-16 Texas Instruments Incorporated Camera Assisted Two Dimensional Keystone Correction
US20170061575A1 (en) * 2015-08-31 2017-03-02 Canon Kabushiki Kaisha Display apparatus and control method
CN105100792A (zh) * 2015-09-21 2015-11-25 上海碧虎网络科技有限公司 一种几何图形投影成像自动校正装置及其校正方法
CN105554486A (zh) * 2015-12-22 2016-05-04 Tcl集团股份有限公司 一种投影校正方法和装置
CN106101675A (zh) * 2016-07-20 2016-11-09 Tcl集团股份有限公司 一种基于投影电视的自动梯形校正方法及系统
CN108289208A (zh) * 2018-01-24 2018-07-17 歌尔股份有限公司 一种投影画面自动校正方法和装置

Also Published As

Publication number Publication date
CN108289208B (zh) 2020-11-27
CN108289208A (zh) 2018-07-17

Similar Documents

Publication Publication Date Title
WO2019144666A1 (zh) 一种投影画面自动校正方法、装置和电子设备
WO2021103347A1 (zh) 投影仪的梯形校正方法、装置、系统及可读存储介质
CN110336987B (zh) 一种投影仪畸变校正方法、装置和投影仪
WO2022193560A1 (zh) 投影仪校正方法、系统、存储介质以及电子设备
CN110099266B (zh) 投影机画面校正方法、装置及投影机
US11402732B2 (en) Dynamic projection device, method and projector
CN112689135A (zh) 投影校正方法、装置、存储介质及电子设备
WO2018068719A1 (zh) 一种图像拼接方法及装置
CN112584113B (zh) 基于映射校正的宽屏投影方法、系统及可读存储介质
KR101669780B1 (ko) 웨어러블 장치의 프로젝션을 제어하기 위한 방법 및 디바이스, 및 웨어러블 장치
JP6443700B2 (ja) アンテナ設定パラメータを取得する方法および装置、ならびにシステム
WO2021031781A1 (zh) 投影图像校准方法、装置及投影设备
WO2017114251A1 (zh) 一种投影校正方法及装置
WO2019114197A1 (zh) 投影方法及投影设备
CN103974047B (zh) 一种穿戴式投影装置及其调焦方法、投影方法
WO2019242207A1 (zh) 图像显示方法、装置、系统及设备、可读存储介质
US9838614B1 (en) Multi-camera image data generation
WO2018171306A1 (zh) 一种图像校正方法及装置、存储介质、投影设备
JP6089233B1 (ja) プロジェクタシステム
CN204302651U (zh) 一种基于摄像头的投影仪自动梯形校正系统
WO2017004871A1 (zh) 投影终端梯形校正方法、装置、投影终端和存储介质
WO2023030066A1 (zh) 一种投影仪的无感自动对焦的计算方法
KR20160040330A (ko) 어안 렌즈로부터 획득한 왜곡 영상을 동심원 형태의 표준 패턴을 이용하여 보정하는 방법
CN113596276B (zh) 便携式电子设备的扫描方法及系统、电子设备及存储介质
CN107346530B (zh) 一种修正鱼眼图像的投影方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18902335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18902335

Country of ref document: EP

Kind code of ref document: A1